WorldWideScience

Sample records for systems synthesis gas

  1. Ion transport membrane reactor systems and methods for producing synthesis gas

    Science.gov (United States)

    Repasky, John Michael

    2015-05-12

    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  2. Gas Phase Nanoparticle Synthesis

    Science.gov (United States)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  3. Synthesis of Nanoparticle Model Systems for Sustainable Catalysis by Gas Aggregation

    DEFF Research Database (Denmark)

    Bodin, Anders

    The overall goal of this thesis is to develop better catalysts for chemical reactions used in sustainable energy storage and environmental protection. Specifically, the thesis presents research on well-defined catalyst model systems of nanoparticles synthesized by magnetron sputtering, gas......−Mo−S Nanoparticles by Reactive Gas Aggregation: In this project, a method was developed for synthesizing in-flight sulfided Ni-Mo-S nanoparticles by aggregation of sputtered metal from a Mo75Ni25 target in a reactive atmosphere of Ar and H2S. The resulting particles are undersulfided with a stoichiometry of Mo0.8Ni0...... keys to developing better catalysts for energy-storage by electrolysis of CO2 is to understand the principles behind electroreduction of the reaction intermediate CO. This study reports the discovery of a high, transient production of methane at the onset of electroreduction of CO on mass-selected copper...

  4. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  5. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  6. Synthesis of preliminary system designs for offshore oil and gas production

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Sin, Gürkan; Elmegaard, Brian

    2016-01-01

    The present work deals with the design of oil and gas platforms, with a particular focus on the developmentof integrated and intensified petroleum processing plants. It builds on a superstructure based approach that includes all the process steps, transformations and interconnections of relevance...... configurations and screening potentially novel solutions at early stage designs, with respect to technical, energetic and economic criteria....

  7. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  8. Technologies for direct production of flexible H2/CO synthesis gas

    International Nuclear Information System (INIS)

    Song Xueping; Guo Zhancheng

    2006-01-01

    The use of synthesis gas offers the opportunity to furnish a broad range of environmentally clean fuels and high value chemicals. However, synthesis gas manufacturing systems based on natural gas are capital intensive, and hence, there is great interest in technologies for cost effective synthesis gas production. Direct production of synthesis gas with flexible H 2 /CO ratio, which is in agreement with the stoichiometric ratios required by major synthesis gas based petrochemicals, can decrease the capital investment as well as the operating cost. Although CO 2 reforming and catalytic partial oxidation can directly produce desirable H 2 /CO synthesis gas, they are complicated and continued studies are necessary. In fact, direct production of flexible H 2 /CO synthesis gas can be obtained by optimizing the process schemes based on steam reforming and autothermal reforming as well as partial oxidation. This paper reviews the state of the art of the technologies

  9. Gas transfer system

    International Nuclear Information System (INIS)

    Oberlin, J.C.; Frick, G.; Kempfer, C.; North, C.

    1988-09-01

    The state of work on the Vivitron gas transfer system and the system functions are summarized. The system has to: evacuate the Vivitron reservoir; transfer gas from storage tanks to the Vivitron; recirculate gas during operation; transfer gas from the Vivitron to storage tanks; and assure air input. The system is now being installed. Leak alarms are given by SF6 detectors, which set off a system of forced ventilation. Another system continuously monitors the amount of SF6 in the tanks [fr

  10. Alternative Fuels and Chemicals from Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-12-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  11. Alternative fuels and chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-08-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  12. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  13. Alternative Fuels and Chemicals From Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    none

    1998-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  14. Alternative fuels and chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-12-01

    A DOE/PETC funded study was conducted to examine the use of a liquid phase mixed alcohol synthesis (LPMAS) plant to produce gasoline blending ethers. The LPMAS plant was integrated into three utilization scenarios: a coal fed IGCC power plant, a petroleum refinery using coke as a gasification feedstock, and a standalone natural gas fed partial oxidation plant. The objective of the study was to establish targets for the development of catalysts for the LPMAS reaction. In the IGCC scenario, syngas conversions need only be moderate because unconverted syngas is utilized by the combined cycle system. A once through LPMAS plant achieving syngas conversions in the range of 38--49% was found to be suitable. At a gas hourly space velocity of 5,000 sL/Kg-hr and a methanol:isobutanol selectivity ratio of 1.03, the target catalyst productivity ranges from 370 to 460 g iBuOH/Kg-hr. In the petroleum refinery scenario, high conversions ({approximately}95%) are required to avoid overloading the refinery fuel system with low Btu content unconverted syngas. To achieve these high conversions with the low H{sub 2}/CO ratio syngas, a recycle system was required (because of the limit imposed by methanol equilibrium), steam was injected into the LPMAS reactor, and CO{sub 2} was removed from the recycle loop. At the most economical recycle ratio, the target catalyst productivity is 265 g iBuOH/Kg-hr. In the standalone LPMAS scenario, essentially complete conversions are required to achieve a fuel balanced plant. At the most economical recycle ratio, the target catalyst productivity is 285 g iBuOH/Kg-hr. The economics of this scenario are highly dependent on the cost of the natural gas feedstock and the location of the plant. For all three case scenarios, the economics of a LPMAS plant is marginal at current ether market prices. Large improvements over demonstrated catalyst productivity and alcohol selectivity are required.

  15. Generation of synthesis gas by partial oxidation of natural gas in a gas turbine

    NARCIS (Netherlands)

    Cornelissen, R.; Tober, E.; Kok, Jacobus B.W.; van der Meer, Theodorus H.

    2006-01-01

    The application of partial oxidation in a gas turbine (PO-GT) in the production of synthesis gas for methanol production is explored. In PO-GT, methane is compressed, preheated, partial oxidized and expanded. For the methanol synthesis a 12% gain in thermal efficiency has been calculated for the

  16. Method and apparatus for producing synthesis gas

    Science.gov (United States)

    Hemmings, John William; Bonnell, Leo; Robinson, Earl T.

    2010-03-03

    A method and apparatus for reacting a hydrocarbon containing feed stream by steam methane reforming reactions to form a synthesis gas. The hydrocarbon containing feed is reacted within a reactor having stages in which the final stage from which a synthesis gas is discharged incorporates expensive high temperature materials such as oxide dispersed strengthened metals while upstream stages operate at a lower temperature allowing the use of more conventional high temperature alloys. Each of the reactor stages incorporate reactor elements having one or more separation zones to separate oxygen from an oxygen containing feed to support combustion of a fuel within adjacent combustion zones, thereby to generate heat to support the endothermic steam methane reforming reactions.

  17. Synthesis of Zeolite Materials for Noble Gas Separation

    International Nuclear Information System (INIS)

    Achey, R.; Rivera, O.; Wellons, M.; Hunter, D.

    2017-01-01

    Microporous zeolite adsorbent materials are widely used as a medium for separating gases. Adsorbent gas separation systems can run at ambient temperature and require minimal pressure to flow the input gas stream across the adsorbent bed. This allows for low energy consumption relative to other types of separation systems. Specific zeolites also have a high capacity and selectivity for the gases of interest, leading to compact and efficient separation systems. These characteristics are particularly advantageous for the application of signatures detection for non-proliferation, which often requires portable systems with low power draw. Savannah River National Laboratory currently is the leader in using zeolites for noble gas sampling for non-proliferation detection platforms. However, there is a constant customer need for improved sampling capabilities. Development of improved zeolite materials will lead to improved sampling technology. Microwave-assisted and conventional hydrothermal synthesis have been used to make a variety of zeolites tailored for noble gas separation. Materials characterization data collected in this project has been used to help guide the synthesis of improved zeolite materials. Candidate materials have been down-selected based on highest available surface area, maximum overall capacity for gas adsorption and highest selectivity. The creation of improved adsorbent materials initiated in this project will lead to development of more compact, efficient and effective noble gas collectors and concentrators. The work performed in this project will be used as a foundation for funding proposals for further material development as well as possible industrial applications.

  18. Synthesis of Zeolite Materials for Noble Gas Separation

    Energy Technology Data Exchange (ETDEWEB)

    Achey, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rivera, O. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wellons, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hunter, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-02

    Microporous zeolite adsorbent materials are widely used as a medium for separating gases. Adsorbent gas separation systems can run at ambient temperature and require minimal pressure to flow the input gas stream across the adsorbent bed. This allows for low energy consumption relative to other types of separation systems. Specific zeolites also have a high capacity and selectivity for the gases of interest, leading to compact and efficient separation systems. These characteristics are particularly advantageous for the application of signatures detection for non-proliferation, which often requires portable systems with low power draw. Savannah River National Laboratory currently is the leader in using zeolites for noble gas sampling for non-proliferation detection platforms. However, there is a constant customer need for improved sampling capabilities. Development of improved zeolite materials will lead to improved sampling technology. Microwave-assisted and conventional hydrothermal synthesis have been used to make a variety of zeolites tailored for noble gas separation. Materials characterization data collected in this project has been used to help guide the synthesis of improved zeolite materials. Candidate materials have been down-selected based on highest available surface area, maximum overall capacity for gas adsorption and highest selectivity. The creation of improved adsorbent materials initiated in this project will lead to development of more compact, efficient and effective noble gas collectors and concentrators. The work performed in this project will be used as a foundation for funding proposals for further material development as well as possible industrial applications.

  19. FFTF gas processing systems

    International Nuclear Information System (INIS)

    Halverson, T.G.

    1977-01-01

    The design and operation of the two radioactive gas processing systems at the Fast Flux Test Facility (FFTF) exemplifies the concept that will be used in the first generation of Liquid Metal Fast Breeder Reactors (LMFBR's). The two systems, the Radioactive Argon Processing System (RAPS) and the Cell Atmosphere Processing System (CAPS), process the argon and nitrogen used in the FFTF for cover gas on liquid metal systems and as inert atmospheres in steel lined cells housing sodium equipment. The RAPS specifically processes the argon cover gas from the reactor coolant system, providing for decontamination and eventual reuse. The CAPS processes radioactive gasses from inerted cells and other liquid metal cover gas systems, providing for decontamination and ultimate discharge to the atmosphere. The cryogenic processing of waste gas by both systems is described

  20. Synthesis of nano-bio conjugates for drug delivery systems using gas-liquid interfacial discharge plasmas

    International Nuclear Information System (INIS)

    Kaneko, Toshiro; Chen, Qiang; Hatakeyama, Rikizo

    2012-01-01

    Size-controlled gold nanoparticles (AuNPs) covered with DNA are synthesized by using a pulse driven gas-liquid interfacial discharge plasma (GLIDP) to reduce an aqueous solution of chloroauric acid trihydrate with DNA. The size and the assembly of the AuNPs are found to be easily controlled by changing the DNA concentration in the aqueous solution. The synthesized AuNP-DNA conjugates are forced to be encapsulated into double-walled carbon nanotubes (DWNTs) by superimposing a positive DC voltage on the pulse voltage. The AuNP-DNA-conjugate encapsulated DWNTs can be utilized in drug delivery systems when DNA is used as a drug molecule.

  1. NOVEL REACTOR FOR THE PRODUCTION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Vasilis Papavassiliou; Leo Bonnell; Dion Vlachos

    2004-12-01

    Praxair investigated an advanced technology for producing synthesis gas from natural gas and oxygen This production process combined the use of a short-reaction time catalyst with Praxair's gas mixing technology to provide a novel reactor system. The program achieved all of the milestones contained in the development plan for Phase I. We were able to develop a reactor configuration that was able to operate at high pressures (up to 19atm). This new reactor technology was used as the basis for a new process for the conversion of natural gas to liquid products (Gas to Liquids or GTL). Economic analysis indicated that the new process could provide a 8-10% cost advantage over conventional technology. The economic prediction although favorable was not encouraging enough for a high risk program like this. Praxair decided to terminate development.

  2. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Colorado School of Mines, Golden, CO (United States); Smith, Ryan G. [Iowa State Univ., Ames, IA (United States)

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  3. Internal Combustion Engine Powered by Synthesis Gas from Pyrolysed Plastics

    Directory of Open Access Journals (Sweden)

    Chríbik Andrej

    2016-07-01

    Full Text Available The article discusses the application of synthesis gas from pyrolysis of plastics in petrol engine. The appropriate experimental measurements were performed on a combustion engine LGW 702 designated for micro-cogeneration unit. The power parameters, economic parameters in term of brake specific fuel consumption, and internal parameters of the engine were compared to the engine running on the reference fuel - natural gas and synthesis gas. Burning synthesis gas leads to decreased performance by about 5% and to increased mass hourly consumption by 120 %. In terms of burning, synthesis gas has similar properties as natural gas. Compared with [5] a more detailed study has been prepared on the effects of angle of spark advance on the engine torque, giving more detailed assessment of engine cycle variability and considering specification of start and end of combustion in the logarithm p-V diagram.

  4. Process gas solidification system

    International Nuclear Information System (INIS)

    1980-01-01

    A process for withdrawing gaseous UF 6 from a first system and directing same into a second system for converting the gas to liquid UF 6 at an elevated temperature, additionally including the step of withdrawing the resulting liquid UF 6 from the second system, subjecting it to a specified sequence of flash-evaporation, cooling and solidification operations, and storing it as a solid in a plurality of storage vessels. (author)

  5. Synthesis, characterization and gas sensing property of ...

    Indian Academy of Sciences (India)

    Unknown

    et al 2000), drug delivery system (Panda et al 2001) and fuel cells (Gross et al 1998a; Verges et al 2000). It has promising application as a chemical gas sensor (Nagai et al .... apatite biomaterial ceramic was compacted into a pellet of 1⋅0 cm diameter having 0⋅15 cm thickness using poly- vinyl alcohol as binder material.

  6. France independent on gas by 2050. A 100 pc renewable gas mix by 2050? Study synthesis

    International Nuclear Information System (INIS)

    Chapelon, Guillain; Rabetsimamanga, Ony; Bosso, Valerie; Frederic, Sylvain; Legrand, Stephanie; Leboul-Proust, Catherine; Monin, William; Singly, Bertrand de; Combet, Emmanuel; Marchal, David; Meunier, Laurent; Varet, Anne; Vincent, Isabelle; Antoine, Loic; Bardinal, Marc; Bastide, Guillaume; Bodineau, Luc; Canal, David; El Khamlichi, Aicha; Gagnepain, Bruno; Mainsant, Arnaud; Parrouffe, Jean-Michel; Pouet, Jean-Christophe; Theobald, Olivier; Vidalenc, Eric; Thomas, Alban; Madiec, Philippe; Meradi, Sabra; Boure, Quentin; Cherrey, Marc; Coupe, Florian; Couturier, Christian; Metivier, Simon; Chiche, Alice

    2018-01-01

    This document proposes a synthesis of a study which aimed at determining what could be an available renewable or recovery gas resource by 2050 in metropolitan France, whether it would be sufficient to face gas demand every day and at any point of the network, which network or production sector evolutions would be needed, which are the available constraints and leeway, and which would be the impact on the average cost of supplied gas. Potential renewable resources come from methanization, pyro-gasification, and power-to-gas. The production mix assessment is based on an ADEME scenario for 2035-2050. Four scenarios have been defined to assess the different hypotheses, notably resources: a 100 per cent renewable and recovery energies, a 100 per cent renewable and recovery energies with a high pyro-gasification, a 100 per cent renewable and recovery energies with a biomass restrained to gas usages, and a 75 per cent renewable and recovery. Results are presented in terms of theoretical potential, gas demand meeting, cost, and avoided emissions. Lessons learned concern the possibility of a 100 per cent renewable gas system with necessary evolutions, and a complementarity between the gas and electric networks. Limitations and perspectives are discussed

  7. Gas detection system

    International Nuclear Information System (INIS)

    Allan, C.J.; Bayly, J.G.

    1975-01-01

    The gas detection system provides for the effective detection of gas leaks over a large area. It includes a laser which has a laser line corresponding to an absorption line of the gas to be detected. A He-Xe laser scans a number of retroreflectors which are strategically located around a D 2 O plant to detect H 2 S leaks. The reflected beam is focused by a telescope, filtered, and passed into an infrared detector. The laser may be made to emit two frequencies, one of which corresponds with an H 2 S absorption line; or it may be modulated on and off the H 2 S absorption line. The relative amplitude of the absorbed light will be a measure of the H 2 S present

  8. Advances in the Partial Oxidation of Methane to Synthesis Gas

    Institute of Scientific and Technical Information of China (English)

    Quanli Zhu; Xutao Zhao; Youquan Deng

    2004-01-01

    The conversion and utilization of natural gas is of significant meaning to the national economy,even to the everyday life of people. However, it has not become a popular industrial process as expected due to the technical obstacles. In the past decades, much investigation into the conversion of methane,predominant component of natural gas, has been carried out. Among the possible routes of methane conversion, the partial oxidation of methane to synthesis gas is considered as an effective and economically feasible one. In this article, a brief review of recent studies on the mechanism of the partial oxidation of methane to synthesis gas together with catalyst development is wherein presented.

  9. Proceedings of the DGMK-conference 'Synthesis gas chemistry'. Authors' manuscripts

    Energy Technology Data Exchange (ETDEWEB)

    Hoenicke, D; Kohlpaintner, C; Luecke, B; Reschetilowski, W [eds.

    2000-07-01

    The main topics of the DGMK-Conference ''Synthesis Gas Chemistry'' were: production of synthesis gas from several educts, new catalysts, Fischer-Tropsch synthesis, hydroformylation, steam reforming and carbonylation.

  10. Gas turbine premixing systems

    Science.gov (United States)

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  11. Some new techniques in tritium gas handling as applied to metal hydride synthesis

    International Nuclear Information System (INIS)

    Nasise, J.E.

    1988-01-01

    A state-of-the-art tritium Hydriding Synthesis System (HSS) was designed and built to replace the existing system within the Tritium Salt Facility (TSF) at the Los Alamos National Laboratory. This new hydriding system utilizes unique fast-cycling 7.9 mole uranium beds (47.5g of T at 100% loading) and novel gas circulating hydriding furnaces. Tritium system components discussed include fast-cycling uranium beds, circulating gas hydriding furnaces, valves, storage volumes, manifolds, gas transfer pumps, and graphic display and control consoles. Many of the tritium handling and processing techniques incorporated into this system are directly applicable to today's fusion fuel loops. 12 refs., 7 figs

  12. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Kwang-Bok Yi; Anirban Mukherjee; Elizabeth J. Podlaha; Douglas P. Harrison

    2004-03-01

    Mixed metal oxides containing ceria and zirconia have been studied as high temperature desulfurization sorbents with the objective of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S in the product gas. The research was justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeOn (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and was postulated to have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} mixtures was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD analysis showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit desulfurization testing. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that were exposed to low concentrations of H{sub 2}S were constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time was determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations from approximately 0.1 to 10 ppmv, and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, were obtained

  13. Synthesis gas production via hybrid steam reforming of natural gas and bio-liquids

    OpenAIRE

    Balegedde Ramachandran, P.

    2013-01-01

    This thesis deals with (catalytic) steam reforming of bio-liquids for the production of synthesis gas. Glycerol, both crude from the biodiesel manufacturing and refined, and pyrolysis oil are tested as bio-based feedstocks. Liquid bio-based feeds could be preferred over inhomogeneous fibrous solid biomass because of their logistic advantages, better mineral balance, and better processability. Especially the ease of pressurization, which is required for large scale synthesis gas production, is...

  14. LHCB RICH gas system proposal

    CERN Document Server

    Bosteels, Michel; Haider, S

    2001-01-01

    Both LHCb RICH will be operated with fluorocarbon as gas radiator. RICH 1 will be filled with 4m^3 of C4F10 and RICH 2 with 100m^3 of CF4. The gas systems will run as a closed loop circulation and a gas recovery system within the closed loop is planned for RICH 1, where the recovery of the CF4 will only be realised during filling and emptying of the detector. Inline gas purification is foreseen for the gas systems in order to limit water and oxygen impurities.

  15. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Anirban Mukherjee; Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2001-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv of less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeO{sub n} (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} has been developed and the products have been characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} have been prepared. XRD showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Phase separation did not occur when the solid solutions were heat treated at 700 C. A flow reactor system constructed of quartz and teflon has been constructed, and a gas chromatograph equipped with a pulsed flame photometric detector (PFPD) suitable for measuring sub-ppmv levels of H{sub 2}S has been purchased with LSU matching funds. Preliminary desulfurization tests using commercial CeO{sub 2} and CeO{sub 2}-ZrO{sub 2} in highly reducing gas compositions has confirmed that CeO{sub 2}-ZrO{sub 2} is more effective than CeO{sub 2} in removing H{sub 2}S. At 700 C the product H{sub 2}S concentration using CeO{sub 2}-ZrO{sub 2} sorbent was near the 0.1 ppmv PFPD detection limit during the prebreakthrough period.

  16. Techno-economic analysis for the evaluation of three UCG synthesis gas end use approaches

    Science.gov (United States)

    Nakaten, Natalie; Kempka, Thomas; Burchart-Korol, Dorota; Krawczyk, Piotr; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) enables the utilization of coal reserves that are economically not exploitable because of complex geological boundary conditions. In the present study we investigate UCG as a potential economic approach for conversion of deep-seated coals into a synthesis gas and its application within three different utilization options. Related to geological boundary conditions and the chosen gasification agent, UCG synthesis gas composes of varying methane, hydrogen, nitrogen, carbon monoxide and carbon dioxide amounts. In accordance to its calorific value, the processed UCG synthesis gas can be utilized in different manners, as for electricity generation in a combined cycle power plant or for feedstock production making use of its various chemical components. In the present study we analyze UCG synthesis gas utilization economics in the context of clean electricity generation with an integrated carbon capture and storage process (CCS) as well as synthetic fuel and fertilizer production (Kempka et al., 2010) based on a gas composition achieved during an in situ UCG trial in the Wieczorek Mine. Hereby, we also consider chemical feedstock production in order to mitigate CO2 emissions. Within a sensitivity analysis of UCG synthesis gas calorific value variations, we produce a range of capital and operational expenditure bandwidths that allow for an economic assessment of different synthesis gas end use approaches. To carry out the integrated techno-economic assessment of the coupled systems and the sensitivity analysis, we adapted the techno-economic UCG-CCS model developed by Nakaten et al. (2014). Our techno-economic modeling results demonstrate that the calorific value has a high impact on the economics of UCG synthesis gas utilization. In the underlying study, the synthesis gas is not suitable for an economic competitive electricity generation, due to the relatively low calorific value of 4.5 MJ/Nm³. To be a profitable option for electricity

  17. Synthesis, characterization and gas sensing performance

    Indian Academy of Sciences (India)

    For the first time, this study reports the gas sensing performance of aluminosilicate azide cancrinite. The effect of annealing andoperating temperature on gas sensing characteristic of azide cancrinite thick film is investigated systematically for various gases at different operating temperatures. This sensor was observed to be ...

  18. Fission gas detection system

    International Nuclear Information System (INIS)

    Colburn, R.P.

    1984-01-01

    A device for collecting fission gas released by failed fuel rods which device uses a filter adapted to pass coolant but to block passage of fission gas bubbles due to the surface tension of the bubbles. The coolant may be liquid metal. (author)

  19. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  20. Gas Flow Detection System

    Science.gov (United States)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at

  1. Development of biomass gasification systems for gas turbine power generation

    International Nuclear Information System (INIS)

    Larson, E.D.; Svenningsson, P.

    1991-01-01

    Gas turbines are of interest for biomass applications because, unlike steam turbines, they have relatively high efficiencies and low unit capital costs in the small sizes appropriate for biomass installations. Gasification is a simple and efficient way to make biomass usable in gas turbines. The authors evaluate here the technical requirements for gas turbine power generation with biomass gas and the status of pressurized biomass gasification and hot gas cleanup systems. They also discuss the economics of gasifier-gas turbine cycles and make some comparisons with competing technologies. Their analysis indicates that biomass gasifiers fueling advanced gas turbines are promising for cost-competitive cogeneration and central station power generation. Gasifier-gas turbine systems are not available commercially, but could probably be developed in 3 to 5 years. Extensive past work related to coal gasification and pressurized combustion of solid fuels for gas turbines would be relevant in this effort, as would work on pressurized biomass gasification for methanol synthesis

  2. Compressed gas fuel storage system

    Science.gov (United States)

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  3. Biological conversion of coal synthesis gas to methane

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S; Corder, R E; Clausen, E C; Gaddy, J L

    1987-09-01

    High temperatures and pressures are required, and therefore, high costs incurred during catalytic upgrading of coal synthesis gas to methane. Thus, the feasibility of biological reactions in converting synthesis gas to methane has been demonstrated in mixed and pure cultures. Complete conversion has been achieved in 2 hours with a mixed culture, and 45 minutes to 1.5 hours in pure cultures of P. productus and Methanothrix sp.. Typical sulfur levels involved during the process are found not to inhibit the bacteria and so sulfur does not have to be removed prior to biomethanation. Preliminary economic analyses indicate that coal gas may be biologically methanated for 50-60 cents/million Btu. Further studies with pure culture bacteria and increased pressure are expected to enhance biomethanation economics.

  4. System of treating flue gas

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1975-01-01

    A system is described for treating or cleaning incinerator flue gas containing acid gases and radioactive and fissionable contaminants. Flue gas and a quench solution are fed into a venturi and then tangentially into the lower portion of a receptacle for restricting volumetric content of the solution. The upper portion of the receptacle contains a scrub bed to further treat or clean the flue gas

  5. Synthesis gas production from various biomass feedstocks

    Directory of Open Access Journals (Sweden)

    Juan A. Conesa

    2013-10-01

    Full Text Available The decomposition of five different biomass samples was studied in a horizontal laboratory reactor. The samples consisted of esparto grass, straw, Posidonea Oceanic seaweed, waste from urban and agricultural pruning and waste from forest pruning. Both pyrolysis in inert atmosphere and combustion in the presence of oxygen were studied. Different heating rates were used by varying the input speed. Major gas compounds were analyzed. The experimental results show that the amount of CO formed is lower in less dense species. It is also found that there is an increase of hydrocarbons formed at increasing feeding rates, in particular methane, while there is a decrease in the production of hydrogen.

  6. ISOBUTANOL-METHANOL MIXTURES FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Enrique Iglesia

    1998-09-01

    Isobutanol is potential as a fuel additive or precursor to methyl tert-butyl ether (MTBE). Alkali-promoted Cu/ZnO/Al{sub 2}O{sub 3} and Cu/MgO/CeO{sub 2} materials have been found to catalyze the formation of isobutanol from CO and H{sub 2} at temperatures (573-623 K) that allow their use in slurry reactors. Our studies focus on the mechanism and structural requirements for selective isobutanol synthesis on these types of catalysts. Alkali promoted Cu/MgO/CeO{sub 2}, Cu/MgO/ZnO, and CuZnAlO{sub x} materials and their individual components Cu/MgO, MgO/CeO{sub 2}, MgO and CeO{sub 2} have been prepared for the use in kinetic studies of alcohol coupling reactions, in identification of reaction intermediates, and in isobutanol synthesis at high pressures. These samples were prepared by coprecipitation of mixed nitrate solutions with an aqueous solution of KOH (2M) and K{sub 2}CO{sub 3} (1M) at 338 K at a constant pH of 9, except for Cs-Cu/ZnO/Al{sub 2}O{sub 3} at a pH of 7, in a well-stirred thermostated container. The precipitate was filtered, washed thoroughly with dioinized water at 303 K in order to remove residual K ions, and dried at 353 K overnight. Dried samples were calcined at 723 K, except for Cs-Cu/ZnO/Al{sub 2}O{sub 3} at 623 K, for 4 h in order to form the corresponding mixed oxides. Alkali addition (K or Cs) was performed by incipient wetness using K{sub 2}CO{sub 3} (0.25 M) and CH{sub 3}COOCs (0.25 M) aqueous solutions. The crystallinity and phase structures of resulting materials were analyzed by powered X-ray diffraction.

  7. Oxygenated base chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Roeper, M.

    1984-11-01

    Methyl formate, a syngas based intermediate, is already today produced on large scale by base catalyzed methanol carbonylation. An alternative synthesis, based on methanol dehydrogenation, seems to be ready for commercialization, whereas other routes including direct carbon monoxide hydrogenation, formaldehyde disproportionation or methanol oxydehydrogenation are less advanced. Besides being used as a solvent or an insect control agent, methyl formate serves as a feedstock for e.g. formic acid, formamide, N,N-dimethylformamide, and N-formyl morpholine. Newer formic acid processes are based on direct hydrolysis of methyl formate, and appear to replace the traditional indirect formamide based route. Future use of methyl formate could include the production of pure carbon monoxide, methanol, dimethyl carbonate, diphosgene, ethylene glycol via methyl glycolate, acetic acid, and methyl propionate. All these processes either avoid the use of high purity carbon monoxide or proceed under milder conditions than conventional routes. They could gain interest, if syngas and methanol become available at a large scale as competitive feedstocks for the chemical industry.

  8. Proceedings of the DGMK-conference 'Synthesis gas chemistry'. Authors' manuscripts

    Energy Technology Data Exchange (ETDEWEB)

    Hoenicke, D.; Kohlpaintner, C.; Luecke, B.; Reschetilowski, W. [eds.

    2000-07-01

    The main topics of the DGMK-Conference ''Synthesis Gas Chemistry'' were: production of synthesis gas from several educts, new catalysts, Fischer-Tropsch synthesis, hydroformylation, steam reforming and carbonylation.

  9. Pipeline system for gas centrifuge

    International Nuclear Information System (INIS)

    Masumoto, Tsutomu; Umezawa, Sadao.

    1977-01-01

    Purpose: To enable effective operation for the gas centrifuge cascade system upon failures in the system not by interrupting the operation of all of the centrifuges in the system but by excluding only the failed centrifuges. Constitution: A plurality of gas centrifuges are connected by way of a pipeline and an abnormal detector for the automatic detection of abnormality such as destruction in a vacuum barrel and loss of vacuum is provided to each of the centrifuges. Bypass lines for short-circuitting adjacent centrifuges are provided in the pipelines connecting the centrifuges. Upon generation of abnormality in a centrifuge, a valve disposed in the corresponding bypass is automatically closed or opened by a signal from the abnormal detector to change the gas flow to thereby exclude the centrifuge in abnormality out of the system. This enables to effectively operate the system without interrupting the operation for the entire system. (Moriyama, K.)

  10. Synthesis gas production via hybrid steam reforming of natural gas and bio-liquids

    NARCIS (Netherlands)

    Balegedde Ramachandran, P.

    2013-01-01

    This thesis deals with (catalytic) steam reforming of bio-liquids for the production of synthesis gas. Glycerol, both crude from the biodiesel manufacturing and refined, and pyrolysis oil are tested as bio-based feedstocks. Liquid bio-based feeds could be preferred over inhomogeneous fibrous solid

  11. Novel electron gas systems

    International Nuclear Information System (INIS)

    Senatore, G.; Rapisarda, F.; Conti, S.

    1998-01-01

    We review recent progress on the physics of electrons in the bilayered electron gas, relevant to coupled quantum wells in GaAs/AIGaAs heterostructures. First we focus on the phase diagram of a symmetric bilayer at T = B = 0, obtained by diffusion Monte Carlo (DMC) simulations. It is found that inter-layer correlations stabilize crystalline structures at intermediate inter-layer separation, while favoring a liquid phase at smaller distance. Also, the available DMC evidence is in contrast with the recently (Hartree-Fock) predicted total charge transfer (TCT), whereby all the electron spontaneously jump in one layer. In fact, one can show that such a TCT state is never stable in the ideal bilayer with no tunneling. We finally comment on ongoing DMC investigations on the electron-hole bilayer, where excitonic condensation is expected to take place. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  12. Gas House Autonomous System Monitoring

    Science.gov (United States)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  13. Literature Review and Synthesis for the Natural Gas Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Folga, Stephen [Argonne National Lab. (ANL), Argonne, IL (United States); Talaber, Leah [Argonne National Lab. (ANL), Argonne, IL (United States); McLamore, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Kraucunas, Ian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McPherson, Timothy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parrott, Lori [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Manzanares, Trevor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    The efficient and effective movement of natural gas from producing regions to consuming regions requires an extensive and elaborate transportation system. In many instances, natural gas produced from a particular well has to travel a great distance to reach its point of use. The transportation system for natural gas consists of a complex network of pipelines designed to quickly and efficiently transport the gas from its origin to areas of high demand. The transportation of natural gas is closely linked to its storage: If the natural gas being transported is not immediately required, it can be put into storage facilities until it is needed. A description of the natural gas transmission, storage, and distribution (TS&D) sector is provided as follows.

  14. Thermodynamic models to predict gas-liquid solubilities in the methanol synthesis, the methanol-higher alcohol synthesis, and the Fischer-Tropsch synthesis via gas-slurry processes

    NARCIS (Netherlands)

    Breman, B.B; Beenackers, A.A C M

    1996-01-01

    Various thermodynamic models were tested concerning their applicability to predict gas-liquid solubilities, relevant for synthesis gas conversion to methanol, higher alcohols, and hydrocarbons via gas-slurry processes. Without any parameter optimization the group contribution equation of state

  15. Radioactive waste gas processing systems

    International Nuclear Information System (INIS)

    Kita, Kaoru; Minemoto, Masaki; Takezawa, Kazuaki.

    1981-01-01

    Purpose: To effectively separate and remove only hydrogen from hydrogen gas-containing radioactive waste gases produced from nuclear power plants without using large scaled facilities. Constitution: From hydrogen gas-enriched waste gases which contain radioactive rare gases (Kr, Xe) sent from the volume control tank of a chemical volume control system, only the hydrogen is separated in a hydrogen separator using palladium alloy membrane and rare gases are concentrated, volume-decreased and then stored. In this case, an activated carbon adsorption device is connected at its inlet to the radioactive gas outlet of the hydrogen separator and opened at its outlet to external atmosphere. In this system, while only the hydrogen gas permeates through the palladium alloy membrane, other gases are introduced, without permeation, into the activated carbon adsorption device. Then, the radioactive rare gases are decayed by the adsorption on the activated carbon and then released to the external atmosphere. (Furukawa, Y.)

  16. Control synthesis of switched systems

    CERN Document Server

    Zhao, Xudong; Niu, Ben; Wu, Tingting

    2017-01-01

    This book offers its readers a detailed overview of the synthesis of switched systems, with a focus on switching stabilization and intelligent control. The problems investigated are not only previously unsolved theoretically but also of practical importance in many applications: voltage conversion, naval piloting and navigation and robotics, for example. The book considers general switched-system models and provides more efficient design methods to bring together theory and application more closely than was possible using classical methods. It also discusses several different classes of switched systems. For general switched linear systems and switched nonlinear systems comprising unstable subsystems, it introduces novel ideas such as invariant subspace theory and the time-scheduled Lyapunov function method of designing switching signals to stabilize the underlying systems. For some typical switched nonlinear systems affected by various complex dynamics, the book proposes novel design approaches based on inte...

  17. Synthesis for Structure Rewriting Systems

    Science.gov (United States)

    Kaiser, Łukasz

    The description of a single state of a modelled system is often complex in practice, but few procedures for synthesis address this problem in depth. We study systems in which a state is described by an arbitrary finite structure, and changes of the state are represented by structure rewriting rules, a generalisation of term and graph rewriting. Both the environment and the controller are allowed to change the structure in this way, and the question we ask is how a strategy for the controller that ensures a given property can be synthesised.

  18. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  19. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  20. 46 CFR 121.240 - Gas systems.

    Science.gov (United States)

    2010-10-01

    ... gas (LPG) and compressed natural gas (CNG) must meet the following requirements: (a) The design, installation and testing of each LPG system must meet ABYC A-1, “Marine Liquefied Petroleum Gas (LPG) Systems... 46 Shipping 4 2010-10-01 2010-10-01 false Gas systems. 121.240 Section 121.240 Shipping COAST...

  1. Natural disasters and the gas pipeline system.

    Science.gov (United States)

    1996-11-01

    Episodic descriptions are provided of the effects of the Loma Prieta earthquake (1989) on the gas pipeline systems of Pacific Gas & Electric Company and the Cit of Palo Alto and of the Northridge earthquake (1994) on Southern California Gas' pipeline...

  2. Coal pyrolysis under synthesis gas, hydrogen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ariunaa, A.; Li Bao-Qing; Li Wen; Purevsuren, B. (and others) [Chinese Academy of Sciences, Taiyuan (China)

    2007-02-15

    Chinese Xundian, Mongolian Shiveeovoo lignites and Khoot oil shale are pyrolyzed under synthesis gas (SG) at temperature range from 400 to 800{sup o}C for lignite and from 300 to 600{sup o}C for oil shale with heating rate of 10{sup o}C/min in a fixed bed reactor. The results were compared with those obtained by pyrolysis under hydrogen and nitrogen. The results showed that unlike pyrolysis at high pressure, there are only slight different in the yields of char and tar among pyrolyses under various gases at room pressure for lignite, while higher liquid yield with lower yields of char and gas was obtained in pyrolysis of oil shale under SG and H{sub 2} than under N{sub 2}. It is found that the pyrite S can be easily removed to partially convert to organic S under various gaseous atmosphere and the total sulfur removal for oil shale is much less than lignite, which might be related to its high ash content. The higher total sulfur removal and less organic S content in the presence of SG in comparison with those under N{sub 2} and even under H{sub 2} in pyrolysis of Xundian lignite might result from the action of CO in SG. However, CO does not show its function in pyrolysis of Khoot oil shale, which might also be related to the high ash content. The results reported show the possibility of using synthesis gas instead of pure hydrogen as the reactive gas for coal hydropyrolysis. 11 refs., 4 figs., 6 tabs.

  3. Boron-containing catalysts for dry reforming of methane to synthesis gas

    KAUST Repository

    Takanabe, Kazuhiro

    2018-01-04

    The present invention uses a cobalt catalyst for carbon dioxide reforming of lower alkanes to synthesis gas having a cobalt catalyst on an oxide support where the supported cobalt catalyst has been modified with a boron precursor. The boron-treated cobalt catalyst systems as described herein show significant increases in the conversion of CH4 and CO2 during the dry reforming of methane (DRM) reaction as compared to traditional catalysts. Described herein are supported catalysts and methods of using the catalysts for the dry reforming of methane to synthesis gas, with the supported catalysts in the present invention include a boron-treated cobalt catalyst disposed on an oxide support. Also described herein are processes for preparing the supported catalysts.

  4. A Gas Target with a Tritium Gas Handling System

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Wiedling, T

    1963-12-15

    A detailed description is given of a simple tritium gas target and its tritium gas filling system, and how to put it into operation. By using the T (p,n) He reaction the gas target has been employed for production of monoenergetic fast neutrons of well defined energy and high intensity. The target has been operated successfully for a long time.

  5. Solar-gas systems impact analysis study

    Science.gov (United States)

    Neill, C. P.; Hahn, E. F.; Loose, J. C.; Poe, T. E.; Hirshberg, A. S.; Haas, S.; Preble, B.; Halpin, J.

    1984-07-01

    The impacts of solar/gas technologies on gas consumers and on gas utilities were measured separately and compared against the impacts of competing gas and electric systems in four climatic regions of the U.S. A methodology was developed for measuring the benefits or penalties of solar/gas systems on a combined basis for consumers sand distribution companies. It is shown that the combined benefits associated with solar/gas systems are generally greatest when the systems are purchased by customers who would have otherwise chosen high-efficiency electric systems (were solar/gas systems not available in the market place). The role of gas utilities in encouraging consumer acceptance of solar/gas systems was also examined ion a qualitative fashion. A decision framework for analyzing the type and level of utility involvement in solar/gas technologies was developed.

  6. City gas supply management system. Toshi gas kyokyu kanri system

    Energy Technology Data Exchange (ETDEWEB)

    Ota, S [Tokyo Gas Co. Ltd., Tokyo (Japan)

    1991-07-05

    Supply and control system of city gas (about 90% is LNG) at Tokyo Gas Company is summarized. The LNG is delivered from the high pressure, A-middle pressure and B-middle pressure stations through the low pressure governors at about 3,000 locations to the low-pressure conduit networks. The information system department uses a large-size general purpose IBM computer as a host computer, control computers at each station, and communication networks consisted mainly of the in-house wireless networks. The trunk lines are all looped, and the important facilities are dualized. Characteristic functions include the supply prediction, which takes into account the past supply and ambient temperature records, a day of the week for a particular date, and demand fluctuation trends; adjustments of each holder based on the prediction and restrictions; and piping network simulation to decide gas manufacturing patterns, and determine reasonability of local construction of complicated conduits. The monitoring and control system as the central nerve includes a quick block-wide operation at an accident from earthquake and the like to prevent wide area disasters. 8 figs., 1 tab.

  7. Synthesis gas solubility in Fischer-Tropsch slurry: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chao, K.C.; Lin, H.M.

    1988-01-01

    The objective is to investigate the phase equilibrium behavior of synthesis gases and products in a Fischer-Tropsch slurry reactor. A semi-flow apparatus has been designed and constructed for this purpose. Measurements have been made for hydrogen, cabon monoxide, methane, ethane, ethylene, and carbon dioxide in a heavy n-paraffin at temperatures from 100 to 300)degree)C and pressures 10 to 50 atm. Three n-paraffin waxes: n-eicosane (n-C/sub 20/), n-octacosane )n-C/sub 28/), and n-hexatriacontane (n-C/sub 36/), were studied to model the industrial wax. Solubility of synthesis gas mixtures of H/sub 2/ and CO in n-C/sub 28/ was also determined at two temperatures (200 and 300)degree)C) for each of three gas compositions (40.01, 50.01, and 66.64 mol%) of hydrogen). Measurements were extended to investigate the gas solubility in two industrial Fischer-Tropsch waxes: Mobilwax and SASOL wax. Observed solubility increases in the order: H/sub 2/, CO, CH/sub 4/, CO/sub 2/, C/sub 2/H/sub 4/, C/sub 2/H/sub 6/, at a given temperature pressure, and in the same solvent. Solubility increases with increasing pressure for all the gases. Lighter gases H/sub 2/ and CO show increased solubility with increasing temperature, while the heavier gases CO/sub 2/, ethane, and ethylene show decreased solubility with increasing temperature. The solubility of methane, the intermediate gas, changes little with temperature, and shows a shallow minimum at about 200)degrees)C or somewhat above. Henry's constant and partial molal volume of the gas solute at infinite dilution are determinedfrom the gas solubility data. A correlation is developed from the experimental data in the form on an equation of state. A computer program has been prepared to implement the correlation. 19 refs., 66 figs., 39 tabs.

  8. [Phylogeny of gas exchange systems].

    Science.gov (United States)

    Jürgens, K D; Gros, G

    2002-04-01

    Several systems of gas transport have developed during evolution, all of which are able to sufficiently supply oxygen to the tissues and eliminate the CO2 produced by the metabolism, in spite of great distances between the environment and the individual cells of the tissues. Almost all these systems utilize a combination of convection and diffusion steps. Convection achieves an efficient transport of gas over large distances, but requires energy and cannot occur across tissue barriers. Diffusion, on the other hand, achieves gas transport across barriers, but requires optimization of diffusion paths and diffusion areas. When two convectional gas flows are linked via a diffusional barrier (gas/fluid in the case of the avian lung, fluid/fluid in the case of gills), the directions in which the respective convectional movements pass each other are important determinants of gas exchange efficiency (concurrent, countercurrent and cross-current systems). The tracheal respiration found in insects has the advantage of circumventing the convective gas transport step in the blood, thereby avoiding the high energy expenditure of circulatory systems. This is made possible by a system of tracheae, ending in tracheoles, that reaches from the body surface to every cell within the body. The last step of gas transfer in these animals occurs by diffusion from the tracheoles ("air capillaries") to the mitochondria of cells. The disadvantage is that the tracheal system occupies a substantial fraction of body volume and that, due to limited mechanical stability of tracheal walls, this system would not be able to operate under conditions of high hydrostatic pressures, i. e. in large animals. Respiration in an "open" system, i. e. direct exposure of the diffusional barrier to the environmental air, eliminates the problem of bringing the oxygen to the barrier by convection, as is necessary in the avian and mammalian lung, in the insects' tracheal system and in the gills. An open system is

  9. Gas tagging system development in Japan

    International Nuclear Information System (INIS)

    Sekiguchi, N.; Rindo, H.; Akiyama, T.; Miyazawa, T.; Heki, H.

    1981-05-01

    The Gas tagging method has been considered to be most desirable for a failed fuel location system for the fast breeder reactor, regarding the component reduction in the reactor vessel and rapid location during reactor operation. The gas tagging system has been designed by referring to R and D results obtained in Japan and other countries. The designed system is comprised of tag gas filling pins, cover gas sampling system, tag gas recovery and enrichment system, tag gas analyzer and system control and data handling computers. The main specifications for this system have been decided as follows; 1) Main function is location of failed fuels in core and a part of blanket region, 2) Identification capability is each subassembly, 3) Time for identification is within a few days, 4) Continuous operation with automatic start at fuel failure, 5) Detection sensitivity must cover both gas leak and pin burst. In designing the gas tagging system, the following R and D items were selected; 1) System design study, 2) Tag gas capsule development, 3) Modeling the tag gas behavior in reactor primary cooling system, 4) Tag gas recovery and enrichment system, 5) Computer code development for tag gas isotope ratio change estimation. Details of the Japanese gas tagging system development appear in this paper. (author)

  10. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula.

    Science.gov (United States)

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-06-09

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)-CO-N2-noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system.

  11. Gas fired advanced turbine system

    Science.gov (United States)

    Lecren, R. T.; White, D. J.

    The basic concept thus derived from the Ericsson cycle is an intercooled, recuperated, and reheated gas turbine. Theoretical performance analyses, however, showed that reheat at high turbine rotor inlet temperatures (TRIT) did not provide significant efficiency gains and that the 50 percent efficiency goal could be met without reheat. Based upon these findings, the engine concept adopted as a starting point for the gas-fired advanced turbine system is an intercooled, recuperated (ICR) gas turbine. It was found that, at inlet temperatures greater than 2450 F, the thermal efficiency could be maintained above 50%, provided that the turbine cooling flows could be reduced to 7% of the main air flow or lower. This dual and conflicting requirement of increased temperatures and reduced cooling will probably force the abandonment of traditional air cooled turbine parts. Thus, the use of either ceramic materials or non-air cooling fluids has to be considered for the turbine nozzle guide vanes and turbine blades. The use of ceramic components for the proposed engine system is generally preferred because of the potential growth to higher temperatures that is available with such materials.

  12. Synthesis of pneumatic controll systems

    Directory of Open Access Journals (Sweden)

    D. Nowak

    2011-04-01

    Full Text Available Currently, the basic tool for automating the production processes are the PLCs. However, in many areas application of the pneumaticcontrol systems may be more reasonable. The main factor determining choice of the control technology are costs. In the case of pneumaticsystems, the costs shall be determined by the number of elements used. Therefore, during the design works it is important to choose anappropriate method for the pneumatic control systems synthesis. The article presents the MTS method, which may be used for a discretetechnological processes modeling and PLC programming, as well as for a pneumatic control systems designing. An important element ofthe MTS method is the network of actions, which graphically presents an algorithm of the implemented process. Based on the actionnetwork and operating machine’s functional diagram, the diagram of different states is determinated, which graphically shows changes ofthe control system’s input and output signals. Analysis of the diagram of different states, makes it easy to determine a schematic equation, which shall be the basis for the control system implementation. Advantage of the MTS method is the lack of restrictions on the number of the control system’s input and output signals. The resulting solution is characterized by a minimum number of elements needed to implement the control system.

  13. Gas characterization system software acceptance test procedure

    International Nuclear Information System (INIS)

    Vo, C.V.

    1996-01-01

    This document details the Software Acceptance Testing of gas characterization systems. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases

  14. Gas characterization system software acceptance test report

    International Nuclear Information System (INIS)

    Vo, C.V.

    1996-01-01

    This document details the results of software acceptance testing of gas characterization systems. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases

  15. Sustainable synthesis gas from biomass. A bridge to a sustainable supply of energy and resources

    International Nuclear Information System (INIS)

    Den Uil, H.; Van Ree, R.; Van der Drift, A.; Boerrigter, H.

    2004-04-01

    Synthesis gas is currently primarily used in the (petro)chemical industry and for the production of liquid fuels. Smaller amounts are being used for electricity and synthetic natural gas (=SNG) production. Finite fossil resources, the dependence on political instable regimes and the Kyoto-protocol are drivers for the attention for renewable synthesis gas. In this report the market for, production of, use of and economy of renewable synthesis gas are analysed. Current synthesis gas use is limited to about 3% of the Dutch primary energy consumption; worldwide this is about 2%. Driven by the targets for renewable energy and the wide range of possible uses, the market for renewable synthesis gas has a large potential. When using synthesis gas for the production of SNG, electricity, liquid fuels and chemicals, the Dutch market for renewable synthesis gas can be 150 PJ in 2010, doubling about every decade to 1500 PJ in 2040. SNG and electricity, together about 80%. To reach these market volumes, import of biomass will be required due to the limited availability of local biomass resources in the Netherlands. The specifications for synthesis gas are dependent on the application. For (petro)chemical use and the production of liquid fuels high H2 and CO concentrations are required, for SNG and electricity production high CH4 concentrations are preferred. Due to the different specifications the names synthesis gas and product gas are used in this study. The name synthesis gas is claimed for a large number of gasification processes under development. But only for a number of processes this claim is justified. The gasification temperature determines the type of gas produced. At high temperatures, above 1300C, synthesis gas is produced, at low temperatures, 700-1000C, so-called product gas is being produced. Entrained-flow gasification is the only possibility for large-scale synthesis gas production in one step. For this process the particle size of the feed has to be small

  16. Moessbauer Study of the Ni/Ca0.8Sr0.2Ti1-xFexO3-α Catalyst System for Partial Oxidation of Methane to Synthesis Gas

    International Nuclear Information System (INIS)

    Homonnay, Z.; Nomura, K.; Hamakawa, S.; Hayakawa, T.; Juhasz, G.; Kuzmann, E.; Vertes, A.

    2002-01-01

    The Ni/Ca 0.8 Sr 0.2 TiO 3 catalyst system prepared by the citrate method shows high activity in partial oxidation of methane to synthesis gas. It is assumed that the interaction of Ni with the perovskite lattice may be responsible for the increased catalytic activity. 1% 57 Fe dopant substituted for Ti was used in order to see if the presence of Ni has any perturbation effect on the structure of the perovskite. One may expect systematic changes in the Moessbauer parameters of the substitutional Fe impurity as a function of the NiO content if the bulk properties of the perovskite are affected. Samples with different Ni/Ca 0.8 Sr 0.2 Ti 0.99 57 Fe 0.01 O 3-α ratios from 0:1 to 1:1, and others having Fe substitutions for Ti up to 30%, all prepared by the citrate method, have been investigated. The Moessbauer spectra contained doublets of paramagnetic Fe 3+ and Fe 4+ species as well as paramagnetically relaxed Fe 3+ . These species were assigned to the bulk perovskite, the perovskite surface and the NiO/perovskite interface. The perturbation of the perovskite structure by Ni could not be verified.

  17. Gas-phase synthesis of magnetic metal/polymer nanocomposites

    Science.gov (United States)

    Starsich, Fabian H. L.; Hirt, Ann M.; Stark, Wendelin J.; Grass, Robert N.

    2014-12-01

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.

  18. Electron-beam synthesis of fuel in the gas phase

    International Nuclear Information System (INIS)

    Ponomarev, A.V.; Holodkova, E.M.; Ershov, B.G.

    2011-01-01

    Complete text of publication follows. Tendencies of world development focus attention on a vegetative biomass as on the major raw resource for future chemistry and a fuel industry. The significant potential for perfection of biomass conversion processes is concentrated in the field of radiation-chemical methods. Both the mode of post-radiation distillation and mode of electron-beam distillation of biomass have been investigated as well as the mode of gas-phase synthesis of liquid engine fuel from of biomass distillation products. Synergistic action of radiation and temperature has been analyzed at use of the accelerated electron beams allowing to combine radiolysis with effective radiation heating of a material without use of additional heaters. At dose rate above 1 kGy/s the electron-beam irradiation results in intensive decomposition of a biomass and evaporation of formed fragments with obtaining of a liquid condensate (∼ 60 wt%), CO 2 and Co gases (13-18 wt%) and charcoal in the residue. Biomass distillation at radiation heating allows to increase almost three times an organic liquid yield in comparison with pyrolysis. The majority of liquid products from cellulose is represented by the furan derivatives considered among the very perspective components for alternative engine fuels. Distilled-off gases and vapors are diluted with gaseous C 1 -C 5 alkanes and again are exposed to an irradiation to produce liquid fuel from a biomass. This transformation is based on a method of electron-beam circulation conversion of gaseous C 1 -C 5 alkanes (Ponomarev, A.V., Radiat. Phys. Chem., 78, 48, 2009) which consists in formation and removal of liquid products with high degree of carbon skeleton branching. The isomers ratio in a liquid may be controlled by means of change of an irradiation condition and initial gas composition. The irradiation of gaseous alkanes together with vaporous products of biomass destruction allows to synthesize the fuel enriched by conventional

  19. Simulation-Optimization Framework for Synthesis and Design of Natural Gas Downstream Utilization Networks

    Directory of Open Access Journals (Sweden)

    Saad A. Al-Sobhi

    2018-02-01

    Full Text Available Many potential diversification and conversion options are available for utilization of natural gas resources, and several design configurations and technology choices exist for conversion of natural gas to value-added products. Therefore, a detailed mathematical model is desirable for selection of optimal configuration and operating mode among the various options available. In this study, we present a simulation-optimization framework for the optimal selection of economic and environmentally sustainable pathways for natural gas downstream utilization networks by optimizing process design and operational decisions. The main processes (e.g., LNG, GTL, and methanol production, along with different design alternatives in terms of flow-sheeting for each main processing unit (namely syngas preparation, liquefaction, N2 rejection, hydrogen, FT synthesis, methanol synthesis, FT upgrade, and methanol upgrade units, are used for superstructure development. These processes are simulated using ASPEN Plus V7.3 to determine the yields of different processing units under various operating modes. The model has been applied to maximize total profit of the natural gas utilization system with penalties for environmental impact, represented by CO2eq emission obtained using ASPEN Plus for each flowsheet configuration and operating mode options. The performance of the proposed modeling framework is demonstrated using a case study.

  20. DEVELOPMENT OF ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Tijrn

    2003-05-31

    This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced

  1. Ultrasonic experiment on hydrate formation of a synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shicai; Fan, Shuanshi; Liang, Deqing; Zhang, Junshe; Feng, Ziping

    2005-07-01

    The effect of ultrasonic on the induction time and formation rate of natural gas hydrates was investigated in a stainless steel cell in this study. The results show that the induction time with ultrasonic was about 1/6 of that without ultrasonic and only about 1/10 if rehydration after decomposition in water-gas system. In sodium dodecyl sulfate (SDS) solution-gas system, the critical micellar concentration (CMC) was not identified with ultrasonic. The formation rate and storage capacity of hydrate increased with increasing SDS concentration at a range of 0 to 800ppm. However, the increase was insignificant as the SDS concentration increased from 600 to 800ppm, (Author)

  2. Daya Bay Antineutrino Detector Gas System

    OpenAIRE

    Band, H. R.; Cherwinka, J. J.; Chu, M-C.; Heeger, K. M.; Kwok, M. W.; Shih, K.; Wise, T.; Xiao, Q.

    2012-01-01

    The Daya Bay Antineutrino Detector gas system is designed to protect the liquid scintillator targets of the antineutrino detectors against degradation and contamination from exposure to ambient laboratory air. The gas system is also used to monitor the leak tightness of the antineutrino detector assembly. The cover gas system constantly flushes the gas volumes above the liquid scintillator with dry nitrogen to minimize oxidation of the scintillator over the five year lifetime of the experimen...

  3. Gas-phase synthesis of semiconductor nanocrystals and its applications

    Science.gov (United States)

    Mandal, Rajib

    Luminescent nanomaterials is a newly emerging field that provides challenges not only to fundamental research but also to innovative technology in several areas such as electronics, photonics, nanotechnology, display, lighting, biomedical engineering and environmental control. These nanomaterials come in various forms, shapes and comprises of semiconductors, metals, oxides, and inorganic and organic polymers. Most importantly, these luminescent nanomaterials can have different properties owing to their size as compared to their bulk counterparts. Here we describe the use of plasmas in synthesis, modification, and deposition of semiconductor nanomaterials for luminescence applications. Nanocrystalline silicon is widely known as an efficient and tunable optical emitter and is attracting great interest for applications in several areas. To date, however, luminescent silicon nanocrystals (NCs) have been used exclusively in traditional rigid devices. For the field to advance towards new and versatile applications for nanocrystal-based devices, there is a need to investigate whether these NCs can be used in flexible and stretchable devices. We show how the optical and structural/morphological properties of plasma-synthesized silicon nanocrystals (Si NCs) change when they are deposited on stretchable substrates made of polydimethylsiloxane (PDMS). Synthesis of these NCs was performed in a nonthermal, low-pressure gas phase plasma reactor. To our knowledge, this is the first demonstration of direct deposition of NCs onto stretchable substrates. Additionally, in order to prevent oxidation and enhance the luminescence properties, a silicon nitride shell was grown around Si NCs. We have demonstrated surface nitridation of Si NCs in a single step process using non?thermal plasma in several schemes including a novel dual-plasma synthesis/shell growth process. These coated NCs exhibit SiNx shells with composition depending on process parameters. While measurements including

  4. Biological upgrading of coal-derived synthesis gas: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S.; Johnson, E.R.; Ko, C.W.; Clausen, E.C.; Gaddy, J.L.

    1986-10-01

    The technical feasibility of the biological conversion of coal synthesis gas to methane has been demonstrated in the University of Arkansas laboratories. Cultures of microorganisms have been developed which achieve total conversion in the water gas shift and methanation reactions in either mixed or pure cultures. These cultures carry out these conversions at ordinary temperatures and pressures, without sulfur toxicity. Several microorganisms have been identified as having commercial potential for producing methane. These include a mixed culture of unidentified bacteria; P. productus which produces acetate, a methane precursor; and Methanothrix sp., which produces methane from acetate. These cultures have been used in mixed reactors and immobilized cell reactors to achieve total CO and H/sub 2/ conversion in a retention time of less than two hours, quite good for a biological reactor. Preliminary economic projections indicate that a biological methanation plant with a size of 5 x 10/sup 10/ Btu/day can be economically attractive. 42 refs., 26 figs., 86 tabs.

  5. Embedded System Synthesis under Memory Constraints

    DEFF Research Database (Denmark)

    Madsen, Jan; Bjørn-Jørgensen, Peter

    1999-01-01

    This paper presents a genetic algorithm to solve the system synthesis problem of mapping a time constrained single-rate system specification onto a given heterogeneous architecture which may contain irregular interconnection structures. The synthesis is performed under memory constraints, that is......, the algorithm takes into account the memory size of processors and the size of interface buffers of communication links, and in particular the complicated interplay of these. The presented algorithm is implemented as part of the LY-COS cosynthesis system....

  6. 46 CFR 184.240 - Gas systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Gas systems. 184.240 Section 184.240 Shipping COAST... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Cooking and Heating § 184.240 Gas systems. Cooking systems... requirements: (a) The design, installation and testing of each LPG system must meet ABYC A-1, “Marine Liquefied...

  7. Synthesis of Fe Nanoparticles Functionalized with Oleic Acid Synthesized by Inert Gas Condensation

    Directory of Open Access Journals (Sweden)

    L. G. Silva

    2014-01-01

    Full Text Available In this work, we study the synthesis of monodispersed Fe nanoparticles (Fe-NPs in situ functionalized with oleic acid. The nanoparticles were self-assembled by inert gas condensation (IGC technique by using magnetron-sputtering process. Structural characterization of Fe-NPs was performed by transmission electron microscopy (TEM. Particle size control was carried out through the following parameters: (i condensation zone length, (ii magnetron power, and (iii gas flow (Ar and He. Typically the nanoparticles generated by IGC showed diameters which ranged from ~0.7 to 20 nm. Mass spectroscopy of Fe-NPs in the deposition system allowed the study of in situ nanoparticle formation, through a quadrupole mass filter (QMF that one can use together with a mass filter. When the deposition system works without quadrupole mass filter, the particle diameter distribution is around +/−20%. When the quadrupole is in line, then the distribution can be reduced to around +/−2%.

  8. Mercury sorbent delivery system for flue gas

    Science.gov (United States)

    Klunder,; Edgar, B [Bethel Park, PA

    2009-02-24

    The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

  9. The gas introduction system of JET

    International Nuclear Information System (INIS)

    Boschi, A.; Dietz, K.J.; Rebut, P.H.

    1984-01-01

    The Gas Introduction System of JET is designed to handle, measure, transfer and inject into the machine, at given rates and times, the quantities of gases required to feel the plasma discharges. The System is composed by a Gas Handling Unit for the gas preparation, and four identical Gas Introduction Modules which are positioned symmetrically at the machine. The lay-out and design of the different components is described and operational experience is presented. (author)

  10. The gas introduction system of JET

    International Nuclear Information System (INIS)

    Boschi, A.; Dietz, K.J.; Rebut, P.H.

    1985-01-01

    The Gas Introduction System of JET is designed to handle, measure, transfer and inject into the machine, at given rates and times, the quantitites of gases required to feed the plasma discharges. The System is composed by a Gas Handling Unit for the gas preparation, and four identical Gas Introduction Modules which are positioned symmetrically at the machine. In this paper the lay-out and design of the different components is described and operational experience is presented

  11. ANALYTICAL SYNTHESIS OF CHEMICAL REACTOR CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Alexander Labutin

    2017-02-01

    Full Text Available The problem of the analytical synthesis of the synergetic control system of chemical reactor for the realization of a complex series-parallel exothermal reaction has been solved. The synthesis of control principles is performed using the analytical design method of aggregated regulators. Synthesized nonlinear control system solves the problem of stabilization of the concentration of target component at the exit of reactor and also enables one to automatically transfer to new production using the equipment.

  12. Boron-containing catalysts for dry reforming of methane to synthesis gas

    KAUST Repository

    Takanabe, Kazuhiro; Basset, Jean-Marie; Park, Jung-Hyun; Samal, Akshaya Kumar; Alsabban, Bedour

    2018-01-01

    The present invention uses a cobalt catalyst for carbon dioxide reforming of lower alkanes to synthesis gas having a cobalt catalyst on an oxide support where the supported cobalt catalyst has been modified with a boron precursor. The boron

  13. The selective generation of acetic acid directly from synthesis gas

    International Nuclear Information System (INIS)

    Knifton, J.F.

    1986-01-01

    The authors conclude that each of the ruthenium, cobalt and iodide-containing catalyst components have very specific roles to play in the ''melt'' catalyzed conversion of synthesis gas to acetic acid. C 1 -Oxygenate formation is only observed in the presence of ruthenium carbonyls - [Ru(CO) 3 I 3 ] - is here the dominant species - and there is a direct relationship between liquid yield, ΣOAc - productivity and [Ru(CO) 3 I 3 ] - content. Controlled quantities of iodide ensure that initially formed MeOH is rapidly converted to the more reactive methyl iodide. Subsequent cobalt-catalyzed carbonylation to acetic acid may be preparatively attractive (>80% selectivity, good yields) relative to competing syntheses, where the [Co(CO) 4 ] - concentration is maximized that is, where the Co/Ru ratio is >1, the syngas feedstock is rich in CO, and the initial iodide/cobalt ratios are ca. unity. Formation of cobalt-iodide species appears to be a competing, inhibitory step in this catalysis

  14. Bendable Zeolite Membranes: Synthesis and Improved Gas Separation Performance.

    Science.gov (United States)

    Wang, Bo; Ho, W S Winston; Figueroa, Jose D; Dutta, Prabir K

    2015-06-23

    Separation and sequestration of CO2 emitted from fossil energy fueled electric generating units and industrial facilities will help in reducing anthropogenic CO2, thereby mitigating its adverse climate change effects. Membrane-based gas separation has the potential to meet the technical challenges of CO2 separation if high selectivity and permeance with low costs for large-scale manufacture are realized. Inorganic zeolite membranes in principle can have selectivity and permeance considerably higher than polymers. This paper presents a strategy for zeolite growth within the pores of a polymer support, with crystallization time of an hour. With a thin coating of 200-300 nm polydimethylsiloxane (PDMS) on the zeolite-polymer composite, transport data for CO2/N2 separation indicate separation factors of 35-45, with CO2 permeance between 1600 and 2200 GPU (1 GPU = 3.35 × 10(-10) mol/(m(2) s Pa)) using dry synthetic mixtures of CO2 and N2 at 25 °C. The synthesis process results in membranes that are highly reproducible toward transport measurements and exhibit long-term stability (3 days). Most importantly, these membranes because of the zeolite growth within the polymer support, as contrasted to conventional zeolite growth on top of a support, are mechanically flexible.

  15. Metabolic modeling of synthesis gas fermentation in bubble column reactors.

    Science.gov (United States)

    Chen, Jin; Gomez, Jose A; Höffner, Kai; Barton, Paul I; Henson, Michael A

    2015-01-01

    A promising route to renewable liquid fuels and chemicals is the fermentation of synthesis gas (syngas) streams to synthesize desired products such as ethanol and 2,3-butanediol. While commercial development of syngas fermentation technology is underway, an unmet need is the development of integrated metabolic and transport models for industrially relevant syngas bubble column reactors. We developed and evaluated a spatiotemporal metabolic model for bubble column reactors with the syngas fermenting bacterium Clostridium ljungdahlii as the microbial catalyst. Our modeling approach involved combining a genome-scale reconstruction of C. ljungdahlii metabolism with multiphase transport equations that govern convective and dispersive processes within the spatially varying column. The reactor model was spatially discretized to yield a large set of ordinary differential equations (ODEs) in time with embedded linear programs (LPs) and solved using the MATLAB based code DFBAlab. Simulations were performed to analyze the effects of important process and cellular parameters on key measures of reactor performance including ethanol titer, ethanol-to-acetate ratio, and CO and H2 conversions. Our computational study demonstrated that mathematical modeling provides a complementary tool to experimentation for understanding, predicting, and optimizing syngas fermentation reactors. These model predictions could guide future cellular and process engineering efforts aimed at alleviating bottlenecks to biochemical production in syngas bubble column reactors.

  16. Synthesis gas demonstration plant program, Phase I. Site confirmation report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    With few reservations, the Baskett, Kentucky site exhibits the necessary characteristics to suggest compatibility with the proposed Synthesis Gas Demonstration Plant Project. An evaluation of a broad range of technical disciplinary criteria in consideration of presently available information indicated generally favorable conditions or, at least, conditions which could be feasibly accommodated in project design. The proximity of the Baskett site to market areas and sources of raw materials as well as a variety of transportation facilities suggests an overall favorable impact on Project economic feasibility. Two aspects of environmental engineering, however, have been identified as areas where the completion or continuation of current studies are required before removing all conditions on site suitability. The first aspect involves the current contradictory status of existing land use and planning ordinances in the site area. Additional investigation of the legality of, and local attitudes toward, these present plans is warranted. Secondly, terrestrial and aquatic surveys of plant and animal life species in the site area must be completed on a seasonal basis to confirm the preliminary conclusion that no exclusionary conditions exist.

  17. A gas conditioning and analysis system

    International Nuclear Information System (INIS)

    Busch, F.R.

    1974-01-01

    A system for carrying out a rapid analysis of explosive gas-mixtures is described. This system comprises a conduit connecting a sample taking point to a detection chamber, said chamber containing a mass of liquid into which the gas sample is discharged and being provided with a detecting unit for analyzing gases and with separate gas exit and liquid exit. The liquid is sent to a level-regulating chamber, whereas said gas exit sends the gas to a gas-stopping chamber which is in turn, connected to the conduit leading to a discharge point, and a vacuum pump for drawing up the gas sample into the system. This can be apply to nuclear power stations [fr

  18. Antipollution system to remove nitrogen dioxide gas

    Science.gov (United States)

    Metzler, A. J.; Slough, J. W.

    1971-01-01

    Gas phase reaction system using anhydrous ammonia removes nitrogen dioxide. System consists of ammonia injection and mixing section, reaction section /reactor/, and scrubber section. All sections are contained in system ducting.

  19. Reconstruction of Low Pressure Gas Supply System

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2013-01-01

    Full Text Available The current reconstruction of residential areas in large cities especially with the developed heat-supply systems from thermal power stations and reduction of heat consumption for heating due to higher thermal resistance of building enclosing structures requires new technical solutions in respect of gas-supply problems. While making reconstruction of a gas-supply system of the modernized or new buildings in the operating zone of one gas-distribution plant it is necessary to change hot water-supply systems from gas direct-flow water heaters to centralized heat-supply and free gas volumes are to be used for other needs or gas-supply of new buildings with the current external gas distribution network.Selection of additional gas-line sections and points of gas-supply systems pertaining to new and reconstructed buildings for their connection to the current distribution system of gas-supply is to be executed in accordance with the presented methodology.

  20. Synthesis, Characterization, and Gas Sensing Applications of WO3 Nanobricks

    Science.gov (United States)

    Xiao, Jingkun; Song, Chengwen; Dong, Wei; Li, Chen; Yin, Yanyan; Zhang, Xiaoni; Song, Mingyan

    2015-08-01

    WO3 nanobricks are fabricated by a simple hydrothermal method. Morphology and structure of the WO3 nanobricks are characterized by scanning electron microscopy and x-ray diffraction. Gas sensing properties of the as-prepared WO3 sensor are systematically investigated by a static gas sensing system. The results show that the WO3 nanobricks with defect corners demonstrate good crystallinity, and the mean edge length and wall thickness are 1-1.5 and 400 nm, respectively. The WO3 sensor achieves its maximum sensitivity to 100 ppm ethanol at the optimal operating temperature of 300 °C. Ultra-fast response time (2-3 s) and fast recovery time (4-11 s) of the WO3 sensor toward 100 ppm ethanol are also observed at this optimal operating temperature. Moreover, the WO3 sensor exhibits high selectivity to other gases such as methanol, benzene, hexane, and dichloromethane, indicating its excellent potential application as a gas sensor for ethanol detection.

  1. Research in Korea on Gas Phase Synthesis and Control of Nanoparticles

    International Nuclear Information System (INIS)

    Choi, Mansoo

    2001-01-01

    Research activity into the gas phase synthesis of nanoparticles has witnessed rapid growth on a worldwide basis, which is also reflected by Korean research efforts. Nanoparticle research is inherently a multi-disciplinary activity involving both science and engineering. In this paper, the recent studies undertaken in Korea on the gas phase synthesis and control of nanoparticles are reviewed. Studies on the synthesis of various kinds of nanoparticles are first discussed with a focus on the different types of reactors used. Recent experimental and theoretical studies and newly developed methods of measuring and modeling nanoparticle growth are also reviewed

  2. AutoBayes Program Synthesis System System Internals

    Science.gov (United States)

    Schumann, Johann Martin

    2011-01-01

    This lecture combines the theoretical background of schema based program synthesis with the hands-on study of a powerful, open-source program synthesis system (Auto-Bayes). Schema-based program synthesis is a popular approach toward program synthesis. The lecture will provide an introduction into this topic and discuss how this technology can be used to generate customized algorithms. The synthesis of advanced numerical algorithms requires the availability of a powerful symbolic (algebra) system. Its task is to symbolically solve equations, simplify expressions, or to symbolically calculate derivatives (among others) such that the synthesized algorithms become as efficient as possible. We will discuss the use and importance of the symbolic system for synthesis. Any synthesis system is a large and complex piece of code. In this lecture, we will study Autobayes in detail. AutoBayes has been developed at NASA Ames and has been made open source. It takes a compact statistical specification and generates a customized data analysis algorithm (in C/C++) from it. AutoBayes is written in SWI Prolog and many concepts from rewriting, logic, functional, and symbolic programming. We will discuss the system architecture, the schema libary and the extensive support infra-structure. Practical hands-on experiments and exercises will enable the student to get insight into a realistic program synthesis system and provides knowledge to use, modify, and extend Autobayes.

  3. Synthesis and Gas Phase Thermochemistry of Germanium-Containing Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Classen, Nathan Robert [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    The driving force behind much of the work in this dissertation was to gain further understanding of the unique olefin to carbene isomerization observed in the thermolysis of 1,1-dimethyl-2-methylenesilacyclobutane by finding new examples of it in other silicon and germanium compounds. This lead to the examination of a novel phenylmethylenesilacyclobut-2-ene, which did not undergo olefin to carbene rearrangement. A synthetic route to methylenegermacyclobutanes was developed, but the methylenegermacyclobutane system exhibited kinetic instability, making the study of the system difficult. In any case the germanium system decomposed through a complex mechanism which may not include olefin to carbene isomerization. However, this work lead to the study of the gas phase thermochemistry of a series of dialkylgermylene precursors in order to better understand the mechanism of the thermal decomposition of dialkylgermylenes. The resulting dialkylgermylenes were found to undergo a reversible intramolecular β C-H insertion mechanism.

  4. Gas-Phase Combustion Synthesis of Aluminum Nitride Powder

    Science.gov (United States)

    Axelbaum, R. L.; Lottes, C. R.; Huertas, J. I.; Rosen, L. J.

    1996-01-01

    Due to its combined properties of high electrical resistivity and high thermal conductivity aluminum nitride (AlN) is a highly desirable material for electronics applications. Methods are being sought for synthesis of unagglomerated, nanometer-sized powders of this material, prepared in such a way that they can be consolidated into solid compacts having minimal oxygen content. A procedure for synthesizing these powders through gas-phase combustion is described. This novel approach involves reacting AlCl3, NH3, and Na vapors. Equilibrium thermodynamic calculations show that 100% yields can be obtained for these reactants with the products being AlN, NaCl, and H2. The NaCl by-product is used to coat the AlN particles in situ. The coating allows for control of AlN agglomeration and protects the powders from hydrolysis during post-flame handling. On the basis of thermodynamic and kinetic considerations, two different approaches were employed to produce the powder, in co-flow diffusion flame configurations. In the first approach, the three reactants were supplied in separate streams. In the second, the AlCl3 and NH3 were premixed with HCl and then reacted with Na vapor. X-ray diffraction (XRD) spectra of as-produced powders show only NaCl for the first case and NaCl and AlN for the second. After annealing at 775 C tinder dynamic vacuum, the salt was removed and XRD spectra of powders from both approaches show only AlN. Aluminum metal was also produced in the co-flow flame by reacting AlCl3 with Na. XRD spectra of as-produced powders show the products to be only NaCl and elemental aluminum.

  5. Microbial hydrogenogenic CO conversions: applications in synthesis gas purification and biodesulfurization

    NARCIS (Netherlands)

    Sipma, J.

    2006-01-01

    Hydrogen gas attracts great interest as a potential clean future fuel and it is an excellent electron donor in biotechnological reductive processes, e.g. in biodesulfurization. Bulk production of H 2 relies on the conversion of organic matter into synthesis gas, a mixture of H

  6. Microbial aspects of synthesis gas fed bioreactors treating sulfate and metal rich wastewaters

    NARCIS (Netherlands)

    Houten, van B.H.G.W.

    2006-01-01

    The use of synthesis gas fed sulfate-reducing bioreactors to simultaneously remove both oxidized sulfur compounds and metals shows great potential to treat wastewaters generated as a result of flue gas scrubbing, mining activities and galvanic processes. Detailed information about the phylogenetic

  7. Daya Bay Antineutrino Detector gas system

    Science.gov (United States)

    Band, H. R.; Cherwinka, J. J.; Chu, M.-C.; Heeger, K. M.; Kwok, M. W.; Shih, K.; Wise, T.; Xiao, Q.

    2012-11-01

    The Daya Bay Antineutrino Detector gas system is designed to protect the liquid scintillator targets of the antineutrino detectors against degradation and contamination from exposure to ambient laboratory air. The gas system is also used to monitor the leak tightness of the antineutrino detector assembly. The cover gas system constantly flushes the gas volumes above the liquid scintillator with dry nitrogen to minimize oxidation of the scintillator over the five year lifetime of the experiment. This constant flush also prevents the infiltration of radon or other contaminants into these detecting liquids keeping the internal backgrounds low. Since the Daya Bay antineutrino detectors are immersed in the large water pools of the muon veto system, other gas volumes are needed to protect vital detector cables or gas lines. These volumes are also purged with dry gas. Return gas is monitored for oxygen content and humidity to provide early warning of potentially damaging leaks. The design and performance of the Daya Bay Antineutrino Detector gas system is described.

  8. Dual liquid and gas chromatograph system

    Science.gov (United States)

    Gay, D.D.

    A chromatographic system is described that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a nontransparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extreme low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  9. Gas system proposal for the LHCb muon system

    CERN Document Server

    Hahn, F; Lindner, R

    2001-01-01

    This document describes the gas system proposed for the LHCb Muon system, following the Gas Working Group mandate to ensure the uniform approach to gas technology and controls across the LHC detectors. Standard technical design modules are employed as fas as possible, in order to minimise design overheads and long term support costs.

  10. Robust control synthesis for uncertain dynamical systems

    Science.gov (United States)

    Byun, Kuk-Whan; Wie, Bong; Sunkel, John

    1989-01-01

    This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.

  11. System analysis of dry black liquor gasification based synthetic gas production comparing oxygen and air blown gasification systems

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik

    2013-01-01

    Highlights: ► Circulating fluidized bed system for black liquor gasification with direct causticization. ► Effects of gasifying medium i.e. oxygen or air, on gasification are studied. ► Direct causticization eliminates energy intensive limekiln reducing biomass use. ► Results show 10% higher SNG production from O 2 blown system than air blown system. ► SNG production is higher in O 2 blown system than air blown system. - Abstract: The black liquor gasification based bio-fuel production at chemical pulp mill is an attractive option to replace conventional recovery boilers increasing system energy efficiency. The present paper studies circulating fluidized bed system with direct causticization using TiO 2 for the gasification of the black liquor to the synthesis gas. The advantage of using direct causticization is the elimination of energy-intensive lime kiln which is an integral part of the conventional black liquor recovery system. The study evaluates the effects of gasifying medium i.e. oxygen or air, on the fluidized bed gasification system, the synthesis gas composition, and the downstream processes for the synthesis gas conversion to the synthetic natural gas (SNG). The results showed higher synthetic natural gas production potential with about 10% higher energy efficiency using oxygen blown gasification system than the air blown system. From the pulp mill integration perspective, the material and energy balance results in better integration of air blown system than the oxygen blown system, e.g. less steam required to be generated in the power boiler, less electricity import, and less additional biomass requirement. However, the air blown system still requires a significant amount of energy in terms of the synthesis gas handling and gas upgrading using the nitrogen rejection system

  12. Potential of synthesis gas production from rubber wood chip gasification in a bubbling fluidised bed gasifier

    International Nuclear Information System (INIS)

    Kaewluan, Sommas; Pipatmanomai, Suneerat

    2011-01-01

    Experiments of rubber wood chip gasification were carried out in a 100-kW th bubbling fluidised bed gasifier to investigate the effect of air to fuel ratio (represented as equivalence ratio - ER) on the yield and properties of synthesis gas. For all experiments, the flow rate of ambient air was fixed, while the feed rate of rubber wood chip was adjusted to vary ER in the range of 0.32-0.43. Increasing ER continuously raised the bed temperature, which resulted in higher synthesis gas yield and lower yield of ash and tar. However, higher ER generally gave synthesis gas of lower heating value, partly due to the dilution of N 2 . Considering the energy efficiency of the process, the optimum operation was achieved at ER = 0.38, which yielded 2.33 Nm 3 of synthesis gas per kg of dry biomass at the heating value of 4.94 MJ/Nm 3 . The calculated carbon conversion efficiency and gasification efficiency were 97.3% and 80.2%, respectively. The mass and energy balance of the gasification process showed that the mass and energy distribution was significantly affected by ER and that the energy losses accounted for ∼25% of the total output energy. The economical assessment of synthesis gas utilisation for heat and electricity production based on a 1-MW th bubbling fluidised bed gasifier and the operational data resulting from the rubber wood chip gasification experiments in this study clearly demonstrated the attractiveness of replacing heavy fuel oil and natural gas by the synthesis gas for heat applications in terms of 70% and 50% annual saving of fuel cost, respectively. However, the case of electricity production does not seem a preferable option due to its current technical and non-technical barriers.

  13. Fuel from the synthesis gas - the role of process engineering

    Energy Technology Data Exchange (ETDEWEB)

    Stelmachowski, Marek; Nowicki, Lech [Technical Univ. of Lodz, Dept. of Environmental Engineering Systems, Lodz (Poland)

    2003-02-01

    The paper presents the conclusions obtained in the investigations of methanol synthesis, Fischer-Tropsch synthesis, and higher alcohols synthesis from syngas as a raw material in slurry reactors. The overview of the role of process engineering was made on the basis of the experience in optimizing process conditions, modeling reactors and working out new technologies. Experimental data, obtained with a laboratory-stirred autoclave and theoretical considerations were used to develop the kinetic models that can describe the product formation and the model of the simultaneous phase and chemical equilibrium for the methanol and Fischer-Tropsch syntheses in the slurry reactors. These models were employed in modeling of the bubble-column slurry reactor (BCSR). Based on these considerations, a computer simulation of the low-pressure methanol synthesis for the pilot-scale, BCSR, was devised. The results of the calculations and the conclusions could be employed in the process for designing an industrial plant. (Author)

  14. Gas fueling system for SST-1

    International Nuclear Information System (INIS)

    Dhanani, Kalpeshkumar R.; Khan, Ziauddin; Raval, Dilip; Semwal, Pratibha; George, Siju; Paravastu, Yuvakiran; Thankey, Prashant; Khan, Mohammad Shoaib; Pradhan, Subrata

    2015-01-01

    SST-1 Tokamak, the first Indian Steady-state Superconducting experimental device is at present under operation in Institute for Plasma Research. For plasma break down and initiation, the piezoelectric valve based gas feed system is implemented as primary requirement due to its precise control, easy handling, low costs for both construction and maintenance and its flexibility in working gas selection. The main functions of SST-1 gas feed system are to feed the required amount of ultrahigh purity hydrogen gas for specified period into the vessel during plasma operation and ultrahigh helium gas for glow discharge cleaning. In addition to these facilities, the gas feed system is used to feed a mixture gas of hydrogen and helium as well as other gases like nitrogen and Argon during divertor cooling etc. The piezoelectric valves used in SST-1 are remotely driven by a PXI based platform and are calibrated before the plasma operation during each SST-1 plasma operation with precise control. This paper will present the technical development and the results of gas fueling in SST-1. (author)

  15. Gas cogeneration system in Sapporo Therme

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Michihiko

    1988-06-01

    Sapporo Therme is a multi-purpose resort including a hot-water jumbo swimming pool having an area of about 130,000m/sup 2/ and a circumference of 800 m, 13 additional swimming pools with additional sizes, a hot-water slider, 16 types of saunas, an artificial sunbathing system, an athletic system, a restaurant, a cinema, tennis courts, and other outdoor facilities. Sapporo Therme uses a cogeneration system consisting of using LP gas(95% or more propane gas) to drive a 1,200 PS gas engine and supply motive power and lightening. At the same time, the cogeneration system collects gas engine waste heat and combines this heat with that from hot-water and steam boilers to supply hot water to swimming pools, roads, and room heaters. The ratio of waste heat collection rate to power generation efficiency is about 5.0. Sapporo Therme is thus the optimal facilities for cogeneration. (1 figs, 3 photos)

  16. Accident on the gas transfer system

    International Nuclear Information System (INIS)

    Heugel, J.

    1991-10-01

    An accident has happened on the Vivitron gas transfer system on the 7 th August 1991. This report presents the context, facts and inquiries, analyses the reasons and explains also how the repairing has been effected

  17. Synthesis of Nanoparticles in a Pulsed-Periodic Gas Discharge and Their Potential Applications

    Science.gov (United States)

    Ivanov, V. V.; Efimov, A. A.; Myl'nikov, D. A.; Lizunova, A. A.

    2018-03-01

    Conditions for the synthesis of three types nanoparticles (SnO2, Al2O3, and Ag) with typical sizes in the range of 4 to 10 nm and a performance of 0.4 g/h are employed in a pulsed-periodic gas discharge in an atmosphere of air. Spherical Ge nanoparticles with a characteristic size of 13 nm are synthesized by these means for the first time with a performance of around 10 mg/h. The specific energy consumption in the synthesis of nanoparticles is for these materials in the range of 2000 to 5000 kW h/kg. The prospects for using tinoxide nanoparticles in sensor components and jets of silver nanoparticles for aerosol printing are discussed. The merits and demerits of the pulsed gas-discharge method among other gas-phase approaches to the synthesis of nanoparticles are analyzed for the current level of development.

  18. Hologlyphics: volumetric image synthesis performance system

    Science.gov (United States)

    Funk, Walter

    2008-02-01

    This paper describes a novel volumetric image synthesis system and artistic technique, which generate moving volumetric images in real-time, integrated with music. The system, called the Hologlyphic Funkalizer, is performance based, wherein the images and sound are controlled by a live performer, for the purposes of entertaining a live audience and creating a performance art form unique to volumetric and autostereoscopic images. While currently configured for a specific parallax barrier display, the Hologlyphic Funkalizer's architecture is completely adaptable to various volumetric and autostereoscopic display technologies. Sound is distributed through a multi-channel audio system; currently a quadraphonic speaker setup is implemented. The system controls volumetric image synthesis, production of music and spatial sound via acoustic analysis and human gestural control, using a dedicated control panel, motion sensors, and multiple musical keyboards. Music can be produced by external acoustic instruments, pre-recorded sounds or custom audio synthesis integrated with the volumetric image synthesis. Aspects of the sound can control the evolution of images and visa versa. Sounds can be associated and interact with images, for example voice synthesis can be combined with an animated volumetric mouth, where nuances of generated speech modulate the mouth's expressiveness. Different images can be sent to up to 4 separate displays. The system applies many novel volumetric special effects, and extends several film and video special effects into the volumetric realm. Extensive and various content has been developed and shown to live audiences by a live performer. Real world applications will be explored, with feedback on the human factors.

  19. Combustion modeling in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H. [Brigham Young Univ., Provo, UT (United States)] [and others

    1995-10-01

    The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.

  20. General Atomic's radioactive gas recovery system

    International Nuclear Information System (INIS)

    Mahn, J.A.; Perry, C.A.

    1975-01-01

    General Atomic Company has developed a Radioactive Gas Recovery System for the HTGR which separates, for purposes of retention, the radioactive components from the non-radioactive reactor plant waste gases. This provides the capability for reducing to an insignificant level the amount of radioactivity released from the gas waste system to the atmosphere--a most significant improvement in reducing total activity release to the environment. (U.S.)

  1. Inert gas handling in ion plating systems

    International Nuclear Information System (INIS)

    Goode, A.R.; Burden, M.St.J.

    1979-01-01

    The results of an investigation into the best methods for production and monitoring of the inert gas environment for ion plating systems are reported. Work carried out on Pirani gauges and high pressure ion gauges for the measurement of pressures in the ion plating region (1 - 50mtorr) and the use of furnaces for cleaning argon is outlined. A schematic of a gas handling system is shown and discussed. (UK)

  2. Gas Control System for HEAO-B

    Science.gov (United States)

    Taylor, B.; Brissette, R.; Humphrey, A.; Morris, J.; Luger, J.; Swift, W.

    1978-01-01

    The HEAO-B Gas Control System consists of a high pressure gas storage supply together with distribution and regulation assemblies and their associated electronics for management of gas required for HEAO-B X-ray counter experiments. The Gas Control System replenishes a gas mixture (82 percent argon, 12.3 percent carbon dioxide, 5.7 percent xenon) in the counter volumes which is lost by: diffusion through controlled leakage plugs, diffusion through counter windows, and consumption resulting from periodic purges. The gas density in each counter volume is maintained constant to within 0.25 percent by comparison with a sealed reference volume. The system is fully redundant, capable of operating at atmospheric pressure as well as in a vacuum, contains interlocks which shut down gas flow in the event of either leakage or excessive pressure, and is able to shut down counter high voltage if counter pressure is abnormally low. The system is electronically controlled by ground command and self-sustaining in orbit for a period of at least one year.

  3. Temperature lowering in cryogenic chemical-synthesis techniques and system

    International Nuclear Information System (INIS)

    Martinez, H.E.; Nelson, T.O.; Vikdal, L.N.

    1993-01-01

    When evaluating a chemical synthesis process for a reaction that occurs on the cryogenically cooled walls, it is sometimes necessary to reduce the wall temperatures to enhance the chemical process. To evaluate the chemical process at lower than atmospheric boiling of liquid nitrogen, we built a system and used it to reduce the temperature of the liquid nitrogen. The technique of lowering the liquid nitrogen temperature by reducing the pressure of the boil-off is established knowledge. This paper presents the engineering aspects of the system, design features, equipment requirements, methods of control, and results of the chemical synthesis. The heat input to the system was ∼400 watts, placing a relatively large demand on the pumping system. Our system is a scale-up of the small laboratory experiment, and it provides the information needed to design an effective system. The major problem encountered was the large quantity of liquid escaping the system during the processing, placing a large gas load on the vacuum system

  4. Operating experiences of gas purification system of Heavy Water Plant Talcher (Paper No. 1.11)

    International Nuclear Information System (INIS)

    Bhattacharya, R.; Mohanty, P.R.; Pandey, B.L.

    1992-01-01

    The operating experiences with the purification system installed at Heavy Water Plant, Talcher for purification of feed synthesis gas from fertilizer plant is described. The purification system has performed satisfactorily even with levels of impurities as much as 15 to 20 ppm of oxygen and carbon monoxide. The system could not however be tested at designed gas throughput and on a sustained basis. However, increase in gas throughput upto the design value is not expected to pose any problem on the performance of the purification system. (author). 5 figs

  5. Nuclear reactor coolant and cover gas system

    International Nuclear Information System (INIS)

    George, J.A.; Redding, A.H.; Tower, S.N.

    1976-01-01

    A core cooling system is disclosed for a nuclear reactor of the type utilizing a liquid coolant with a cover gas above free surfaces of the coolant. The disclosed system provides for a large inventory of reactor coolant and a balanced low pressure cover gas arrangement. A flow restricting device disposed within a reactor vessel achieves a pressure of the cover gas in the reactor vessel lower than the pressure of the reactor coolant in the vessel. The low gas pressure is maintained over all free surfaces of the coolant in the cooling system including a coolant reservoir tank. Reactor coolant stored in the reservoir tank allows for the large reactor coolant inventory provided by the invention

  6. Ozone Synthesis Efficiency Upgrading in the Pulsed Point-to-Plane Gas Discharge

    International Nuclear Information System (INIS)

    Golota, V.I.; Zavada, L.M.; Kotyukov, O.V.; Polyakov, A.V.; Pugach, S.G.

    2006-01-01

    Results are reported from the studies into electrodynamic characteristics of the barrierless point-to-plane gas discharge as a HV pulse of positive polarity is applied to the point electrode. The efficiency of ozone synthesis has been determined as a function of the length and repetition frequency of the HV pulse. It has been demonstrated that the electrodynamic characteristics of the discharge and the efficiency of ozone synthesis in oxygen-containing gas mixtures essentially depend on the parameters of HV power supply. The HV switch HTS-300 (BEHLKE Electronic GmbH) was used for HV pulse shaping

  7. The direct conversion of synthesis gas to chemicals / Ernest du Toit

    OpenAIRE

    Du Toit, Ernest

    2002-01-01

    The catalytic conversion of synthesis gas, obtainable from the processing of coal, biomass or natural gas, to a complex hydrocarbon product stream can be achieved via the Fischer-Tropsch process. The Fischer-Tropsch synthesis process has evolved from being mainly a fuel producing process in the early 1950's to that of a solvent and speciality wax production process towards the end of the 1970's. From the early 1980's there has been a clear shift towards the production of commod...

  8. Requirements for a Global Greenhouse Gas Information System

    Science.gov (United States)

    Duren, R.; Boland, S.; Lempert, R.; Miller, C.

    2008-12-01

    A global greenhouse gas information system will prove a critical component of any successful effort to mitigate climate change which relies on limiting the atmospheric concentration of greenhouse gases. The system will provide the situational awareness necessary to actively reduce emissions, influence land use change, and sequester carbon. The information from such a system will be subject to intense scrutiny. Therefore, an effective system must openly and transparently produce data of unassailable quality. A global greenhouse gas information system will likely require a combination of space-and air-based remote- sensing assets, ground-based measurements, carbon cycle modeling and self-reporting. The specific requirements on such a system will be shaped by the degree of international cooperation it enjoys and the needs of the policy regime it aims to support, which might range from verifying treaty obligations, to certifying the tradable permits and offsets underlying a market in greenhouse gas emission reductions, to providing a comprehensive inventory of high and low emitters that could be used by non-governmental organizations and other international actors. While some technical studies have examined particular system components in single scenarios, there remains a need for a comprehensive survey of the range of potential requirements, options, and strategies for the overall system. We have initiated such a survey and recently hosted a workshop which engaged a diverse community of stakeholders to begin synthesizing requirements for such a system, with an initial focus on carbon dioxide. In this paper we describe our plan for completing the definition of the requirements, options, and strategies for a global greenhouse gas monitoring system. We discuss our overall approach and provide a status on the initial requirements synthesis activity.

  9. Hydrogen enrichment and separation from synthesis gas by the use of a membrane reactor

    International Nuclear Information System (INIS)

    Sanchez, J.M.; Barreiro, M.M.; Marono, M.

    2011-01-01

    One of the objectives of the CHRISGAS project was to study innovative gas separation and gas upgrading systems that have not been developed sufficiently yet to be tested at a demonstration scale within the time frame of the project, but which show some attractive merits and features for further development. In this framework CIEMAT studied, at bench scale, hydrogen enrichment and separation from syngas by the use of membranes and membrane catalytic reactors. In this paper results about hydrogen separation from synthesis gas by means of selective membranes are presented. Studies dealt with the evaluation of permeation and selectivity to hydrogen of prepared and pre-commercial Pd-based membranes. Whereas prepared membranes turned out to be non-selective, due to discontinuities of the palladium layer, studies conducted with the pre-commercial membrane showed that by means of a membrane reactor it is possible to completely separate hydrogen from the other gas components and produce pure hydrogen as a permeate stream, even in the case of complex reaction system (H 2 /CO/CO 2 /H 2 O) under WGS conditions gas mixtures. The advantages of using a water-gas shift membrane reactor (MR) over a traditional fixed bed reactor (TR) have also been studied. The experimental device included the pre-commercial Pd-based membrane and a commercial high temperature Fe-Cr-based, WGS catalyst, which was packed in the annulus between the membrane and the reactor outer shell. Results show that in the MR concept, removal of H 2 from the reaction side has a positive effect on WGS reaction, reaching higher CO conversion than in a traditional packed bed reactor at a given temperature. On increasing pressure on the reaction side permeation is enhanced and hence carbon monoxide conversion increases. -- Highlights: → H 2 enrichment and separation using a bench-scale membrane reactor MR is studied. → Permeation and selectivity to H 2 of Pd-based membranes was determined. → Complete separation

  10. Gas Fuelling System for SST-1Tokamak

    Science.gov (United States)

    Dhanani, Kalpesh; Raval, D. C.; Khan, Ziauddin; Semwal, Pratibha; George, Siju; Paravastu, Yuvakiran; Thankey, Prashant; Khan, M. S.; Pradhan, Subrata

    2017-04-01

    SST-1 Tokamak, the first Indian Steady-state Superconducting experimental device is at present under operation in the Institute for Plasma Research. For plasma break down & initiation, piezoelectric valve based gas feed system is implemented as a primary requirement due to its precise control, easy handling, low construction and maintenance cost and its flexibility in the selection of the working gas. Hydrogen gas feeding with piezoelectric valve is used in the SST-1 plasma experiments. The piezoelectric valves used in SST-1 are remotely driven by a PXI based platform and are calibrated before each SST-1 plasma operation with precise control. This paper will present the technical development and the results of the gas fuelling system of SST-1.

  11. WWW expert system on producer gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Schouten, E.J.; Lammers, G.; Beenackers, A.A.C.M. [University of Groningen (Netherlands)

    1999-07-01

    The University of Groningen (RUG) has developed an expert system on cleaning of biomass producer gas. This work was carried out in close co-operation with the Biomass Technology Group B.V. (BTG) in Enschede, The Netherlands within the framework of the EC supported JOR3-CT95-0084 project. The expert system was developed as a tool for the designer-engineer of downstream gas cleaning equipment and consists of an information package and a flowsheet package. The packages are integrated in a client/server system. The flowsheeting package of the expert system has been designed for the evaluation of different gas cleaning methods. The system contains a number of possible gas cleaning devices such as: cyclone, fabric filter, ceramic filter, venturi scrubber and catalytic cracker. The user can select up to five cleaning steps in an arbitrary order for his specific gas cleaning problem. After specification of the required design parameters, the system calculates the main design characteristics of the cleaning device. The information package is a collection of HTML{sup TM} files. It contains a large amount of information, tips, experience data, literature references and hyperlinks to other interesting Internet sites. This information is arranged per cleaning device. (orig.)

  12. The evolution of the protein synthesis system. I - A model of a primitive protein synthesis system

    Science.gov (United States)

    Mizutani, H.; Ponnamperuma, C.

    1977-01-01

    A model is developed to describe the evolution of the protein synthesis system. The model is comprised of two independent autocatalytic systems, one including one gene (A-gene) and two activated amino acid polymerases (O and A-polymerases), and the other including the addition of another gene (N-gene) and a nucleotide polymerase. Simulation results have suggested that even a small enzymic activity and polymerase specificity could lead the system to the most accurate protein synthesis, as far as permitted by transitions to systems with higher accuracy.

  13. Analysis of hollow fibre membrane systems for multicomponent gas separation

    KAUST Repository

    Khalilpour, Rajab

    2013-02-01

    This paper analysed the performance of a membrane system over key design/operation parameters. A computation methodology is developed to solve the model of hollow fibre membrane systems for multicomponent gas feeds. The model represented by a nonlinear differential algebraic equation system is solved via a combination of backward differentiation and Gauss-Seidel methods. Natural gas sweetening problem is investigated as a case study. Model parametric analyses of variables, namely feed gas quality, pressure, area, selectivity and permeance, resulted in better understanding of operating and design optima. Particularly, high selectivities and/or permeabilities are shown not to be necessary targets for optimal operation. Rather, a medium selectivity (<60 in the given example) combined with medium permeance (∼300-500×10-10mol/sm2Pa in the given case study) is more advantageous. This model-based membrane systems engineering approach is proposed for the synthesis of efficient and cost-effective multi-stage membrane networks. © 2012 The Institution of Chemical Engineers.

  14. Analysis and Synthesis of Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    like automotive electronics, real-time multimedia, avionics, medical equipment, and factory systems. The proposed analysis and synthesis techniques derive optimized implementations that fulfill the imposed design constraints. An important part of the implementation process is the synthesis...

  15. Synthesis and characterization of porous silicon gas sensors

    Science.gov (United States)

    abbas, Roaa A.; Alwan, Alwan M.; Abdulhamied, Zainab T.

    2018-05-01

    In this work, photo-electrochemical etching process of n-type Silicon of resistivity(10 Ω.cm) and (100) orientation, using two illumination sources IR and violet wavelength in HF acid have been used to produce PSi gas detection device. The fabrication process was carried out at a fixed etching current density of 25mA/cm2 and at different etching time (5, 10, 15 and 20) min and (8, 16, 24, and 30) min. Two configurations of gas sensor configuration planer and sandwich have been made and investigated. The morphological properties have been studied using SEM,the FTIR measurement show that the (Si-Hx) and (Si-O-Si) absorption peak were increases with increasing etching time,and Photoluminescence properties of PSi layer show decrease in the peak of PL peak toward the violet shift. The gas detection process is made on the CO2 gas at different operating temperature and fixed gas concentration. In the planner structure, the gas sensing was measured through, the change in the resistance readout as a function to the exposure time, while for sandwich structure J-V characteristic have been made to determine the sensitivity.

  16. Synthesis report: System studies Bioenergy

    International Nuclear Information System (INIS)

    Berntsson, Thore

    2003-01-01

    The present report marks the end of the research program 'System studies Bioenergy' (1998-2002). The program comprised 17 projects performed at 9 universities or research institutes. All project results were studied in order to identify: contributions to our present knowledge; possible gaps of knowledge, methodology or systems perspective that still exist; and the needs for further research. The projects can be classified into the following groups: Resource potential of forest fuels; Industrial use of biofuels; Potential for synthetic fuels (pellets, bio-oils and transportation fuels); System analysis of efficient use of biofuels; and Socio-economic analyses. The total potential for available biofuel has been estimated to be 125-175 TWh/year (excl. black liquors of paper industry). The potential demand is estimated to about 123 TWh/year, or distributed into the different sectors: Industry: 26 TWh/year, Buildings and services: 35 TWh/year, District heating: 31 TWh/year, and electric power generation (incl. cogeneration in district heating): 31 TWh/year. Further research is needed in the following areas: Systems and methodology of more generic character on optimization of production, refining and use of biofuels in order to substitute fossil fuels directly or indirectly; Heat sinks/district heating in combination with cogeneration vs. other power production in a long term perspective (> 10 years), in the light of new technologies, open markets, economic and political incentives; Energy efficiency in industry, esp. paper and pulp with its unique possibility for process integration, biofuel processing and CO 2 separation; How far should the processing/refinement of biofuels go; Importance of factors of scale; New distributed (small-scale) energy technology; International trade in biofuels; Transport and handling costs for biofuel pellets in Europe; System aspects of implementation and incentives; How are biofuels affected if CO 2 from fossil fuels can be separated and

  17. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas.

    Science.gov (United States)

    Zaidi, Nayyer Abbas; Tahir, Muhammad Waseem; Vellekoop, Michael J; Lang, Walter

    2017-10-07

    Ethylene gas is a naturally occurring gas that has an influence on the shelf life of fruit during their transportation in cargo ships. An unintentional exposure of ethylene gas during transportation results in a loss of fruit. A gas chromatographic system is presented here for the detection of ethylene gas. The gas chromatographic system was assembled using a preconcentrator, a printed 3D printed gas chromatographic column, a humidity sensor, solenoid valves, and an electrochemical ethylene gas sensor. Ambient air was used as a carrier gas in the gas chromatographic system. The flow rate was fixed to 10 sccm. It was generated through a mini-pump connected in series with a mass flow controller. The metal oxide gas sensor is discussed with its limitation in ambient air. The results show the chromatogram obtained from metal oxide gas sensor has low stability, drifts, and has uncertain peaks, while the chromatogram from the electrochemical sensor is stable and precise. Furthermore, ethylene gas measurements at higher ppb concentration and at lower ppb concentration were demonstrated with the electrochemical ethylene gas sensor. The system separates ethylene gas and humidity. The chromatograms obtained from the system are stable, and the results are 1.2% repeatable in five similar measurements. The statistical calculation of the gas chromatographic system shows that a concentration of 2.3 ppb of ethylene gas can be detected through this system.

  18. FFTF fission gas monitor computer system

    International Nuclear Information System (INIS)

    Hubbard, J.A.

    1987-01-01

    The Fast Flux Test Facility (FFTF) is a liquid-metal-cooled test reactor located on the Hanford site. A dual computer system has been developed to monitor the reactor cover gas to detect and characterize any fuel or test pin fission gas releases. The system acquires gamma spectra data, identifies isotopes, calculates specific isotope and overall cover gas activity, presents control room alarms and displays, and records and prints data and analysis reports. The fission gas monitor system makes extensive use of commercially available hardware and software, providing a reliable and easily maintained system. The design provides extensive automation of previous manual operations, reducing the need for operator training and minimizing the potential for operator error. The dual nature of the system allows one monitor to be taken out of service for periodic tests or maintenance without interrupting the overall system functions. A built-in calibrated gamma source can be controlled by the computer, allowing the system to provide rapid system self tests and operational performance reports

  19. Reaction scheme of partial oxidation of methane to synthesis gas over yttrium-stabilized zirconia

    NARCIS (Netherlands)

    Zhu, J.J.; van Ommen, J.G.; Lefferts, Leonardus

    2004-01-01

    The partial oxidation of methane to synthesis gas over yttrium-stabilized zirconia (YSZ) was studied with in situ FTIR and both steady-state and transient experiments. The four major products, CO, H2, CO2, and H2O, are primary products of CPOM over YSZ. Besides these major products and traces of

  20. Alternate fuels and chemicals from synthesis gas: Vinyl acetate monomer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Colberg; Nick A. Collins; Edwin F. Holcombe; Gerald C. Tustin; Joseph R. Zoeller

    1999-01-01

    There has been a long-standing desire on the part of industry and the U.S. Department of Energy to replace the existing ethylene-based vinyl acetate monomer (VAM) process with an entirely synthesis gas-based process. Although there are a large number of process options for the conversion of synthesis gas to VAM, Eastman Chemical Company undertook an analytical approach, based on known chemical and economic principles, to reduce the potential candidate processes to a select group of eight processes. The critical technologies that would be required for these routes were: (1) the esterification of acetaldehyde (AcH) with ketene to generate VAM, (2) the hydrogenation of ketene to acetaldehyde, (3) the hydrogenation of acetic acid to acetaldehyde, and (4) the reductive carbonylation of methanol to acetaldehyde. This report describes the selection process for the candidate processes, the successful development of the key technologies, and the economic assessments for the preferred routes. In addition, improvements in the conversion of acetic anhydride and acetaldehyde to VAM are discussed. The conclusion from this study is that, with the technology developed in this study, VAM may be produced from synthesis gas, but the cost of production is about 15% higher than the conventional oxidative acetoxylation of ethylene, primarily due to higher capital associated with the synthesis gas-based processes.

  1. Methanol synthesis in a countercurrent gas-solid-solid trickle flow reactor. An experimental study

    NARCIS (Netherlands)

    Kuczynski, M.; Oyevaar, M.H.; Pieters, R.T.; Westerterp, K.R.

    1987-01-01

    The synthesis of methanol from CO and H2 was executed in a gas-solid-solid trickle flow reactor. The reactor consisted of three tubular reactor sections with cooling sections in between. The catalyst was Cu on alumina, the adsorbent was a silica-alumina powder and the experimental range 498–523 K,

  2. Preliminary assessment of synthesis gas production via hybrid steam reforming of methane and glycerol

    NARCIS (Netherlands)

    Balegedde Ramachandran, P.; van Rossum, G.; Kersten, Sascha R.A.; van Swaaij, Willibrordus Petrus Maria

    2012-01-01

    In this article, hybrid steam reforming (HSR) of desulphurized methane, together with crude glycerol, in existing commercial steam reformers to produce synthesis gas is proposed. The proposed concept consists of a gasifier to produce vapors, gases, and char from crude glycerol, which is coupled with

  3. Environmental Transmission Electron Microscopy (ETEM) Studies of Single Iron Nanoparticle Carburization in Synthesis Gas

    DEFF Research Database (Denmark)

    Liu, Xi; Zhang, Chenghua; Li, Yongwang

    2017-01-01

    Structuralevolution of iron nanoparticles involving the formationand growth of iron carbide nuclei in the iron nanoparticle was directlyvisualized at the atomic level, using environmental transmission electronmicroscopy (TEM) under reactive conditions mimicking Fischer–Tropschsynthesis. Formation...... and electronenergy-loss spectra provides a detailed picture from initial activationto final degradation of iron under synthesis gas....

  4. Synthesis, characterization and gas sensing performance of SnO2 ...

    Indian Academy of Sciences (India)

    Synthesis, characterization and gas sensing performance of SnO2 thin films prepared by spray pyrolysis. GANESH E PATIL, D D KAJALE, D N CHAVAN†, N K PAWAR††, P T AHIRE, S D SHINDE#,. V B GAIKWAD# and G H JAIN. ∗. Materials Research Laboratory, Arts, Commerce and Science College, Nandgaon 423 106, ...

  5. Computer systems and software description for gas characterization system

    International Nuclear Information System (INIS)

    Vo, C.V.

    1997-01-01

    The Gas Characterization System Project was commissioned by TWRS management with funding from TWRS Safety, on December 1, 1994. The project objective is to establish an instrumentation system to measure flammable gas concentrations in the vapor space of selected watch list tanks, starting with tank AN-105 and AW-101. Data collected by this system is meant to support first tank characterization, then tank safety. System design is premised upon Characterization rather than mitigation, therefore redundancy is not required

  6. Synthesis and Characterization of Quaternary Metal Chalcogenide Aerogels for Gas Separation and Volatile Hydrocarbon Adsorption

    KAUST Repository

    Edhaim, Fatimah A.

    2017-11-01

    In this dissertation, the metathesis route of metal chalcogenide aerogel synthesis was expanded by conducting systematic studies between polysulfide building blocks and the 1st-row transition metal linkers. Resulting materials were screened as sorbents for selective gas separation and volatile organic compounds adsorption. They showed preferential adsorption of polarizable gases (CO2) and organic compounds (toluene). Ion exchange and heavy metal remediation properties have also been demonstrated. The effect of the presence of different counter-ion within chalcogel frameworks on the adsorption capacity of the chalcogels was studied on AFe3Zn3S17 (A= K, Na, and Rb) chalcogels. The highest adsorption capacity toward hydrocarbons and gases was observed on Rb based chalcogels. Adopting a new building block [BiTe3]3- with the 1st-row transition metal ions results in the formation of three high BET surface area chalcogels, KCrBiTe3, KZnBiTe3, and KFeBiTe3. The resulting chalcogels showed preferential adsorption of toluene vapor, and remarkable selectivity of CO2, indicating the potential future use of chalcogels in adsorption-based gas or hydrocarbon separation processes. The synthesis and characterization of the rare earth chalcogels NaYSnS4, NaGdSnS4, and NaTbSnS4 are also reported. Rare earth metal ions react with the thiostannate clusters in formamide solution forming extended polymeric networks by gelation. Obtained chalcogels have high BET surface areas, and showed notable adsorption capacity toward CO2 and toluene vapor. These chalcogels have also been engaged in the absorption of different organic molecules. The results reveal the ability of the chalcogels to distinguish among organic molecules on their electronic structures; hence, they could be used as sensors. Furthermore, the synthesis of metal chalcogenide aerogels Co0.5Sb0.33MoS4 and Co0.5Y0.33MoS4 by the sol-gel method is reported. In this system, the building blocks [MoS4]2- chelated with Co2+ and (Sb3

  7. Gas turbines: gas cleaning requirements for biomass-fired systems

    Directory of Open Access Journals (Sweden)

    Oakey John

    2004-01-01

    Full Text Available Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenges facing these technologies if they are to be cost competitive while delivering the supposed environmental benefits. In particular, it focuses on the use of biomass in gasification-based systems using gas turbines to deliver increased efficiencies. Results from recent studies in a European programme are presented. For these technologies to be successful, an optimal balance has to be achieved between the high cost of cleaning fuel gases, the reliability of the gas turbine and the fuel flexibility of the overall system. Such optimisation is necessary on a case-by-case basis, as local considerations can play a significant part.

  8. The transport system for natural gas

    International Nuclear Information System (INIS)

    Bjoerndalen, Joergen; Nese, Gjermund

    2003-01-01

    In 2002, the actors on the Norwegian shelf in cooperation with the authorities established a new regime for sale and transport of gas. This article deals with some issues of interest relating to this new regime. The transport system for natural gas shows clear signs of being a natural monopoly, which makes it difficult to use the system efficiently. Two main problems of the current way of organizing are pointed out: (1) lack of price and market signals in capacity allocation and (2) unclear incentive effects. The article indicates a possible solution based on the form of organization that is used in the power market

  9. Synthesis of Fault-Tolerant Embedded Systems

    DEFF Research Database (Denmark)

    Eles, Petru; Izosimov, Viacheslav; Pop, Paul

    2008-01-01

    This work addresses the issue of design optimization for fault- tolerant hard real-time systems. In particular, our focus is on the handling of transient faults using both checkpointing with rollback recovery and active replication. Fault tolerant schedules are generated based on a conditional...... process graph representation. The formulated system synthesis approaches decide the assignment of fault-tolerance policies to processes, the optimal placement of checkpoints and the mapping of processes to processors, such that multiple transient faults are tolerated, transparency requirements...

  10. Continuous gas/liquid–liquid/liquid flow synthesis of 4-fluoropyrazole derivatives by selective direct fluorination

    Directory of Open Access Journals (Sweden)

    Jessica R. Breen

    2011-08-01

    Full Text Available 4-Fluoropyrazole systems may be prepared by a single, sequential telescoped two-step continuous gas/liquid–liquid/liquid flow process from diketone, fluorine gas and hydrazine starting materials.

  11. Controller Synthesis for Periodically Forced Chaotic Systems

    Science.gov (United States)

    Basso, Michele; Genesio, Roberto; Giovanardi, Lorenzo

    Delayed feedback controllers are an appealing tool for stabilization of periodic orbits in chaotic systems. Despite their conceptual simplicity, specific and reliable design procedures are difficult to obtain, partly also because of their inherent infinite-dimensional structure. This chapter considers the use of finite dimensional linear time invariant controllers for stabilization of periodic solutions in a general class of sinusoidally forced nonlinear systems. For such controllers — which can be interpreted as rational approximations of the delayed ones — we provide a computationally attractive synthesis technique based on Linear Matrix Inequalities (LMIs), by mixing results concerning absolute stability of nonlinear systems and robustness of uncertain linear systems. The resulting controllers prove to be effective for chaos suppression in electronic circuits and systems, as shown by two different application examples.

  12. Vision for an Open, Global Greenhouse Gas Information System (GHGIS)

    Science.gov (United States)

    Duren, R. M.; Butler, J. H.; Rotman, D.; Ciais, P.; Greenhouse Gas Information System Team

    2010-12-01

    Over the next few years, an increasing number of entities ranging from international, national, and regional governments, to businesses and private land-owners, are likely to become more involved in efforts to limit atmospheric concentrations of greenhouse gases. In such a world, geospatially resolved information about the location, amount, and rate of greenhouse gas (GHG) emissions will be needed, as well as the stocks and flows of all forms of carbon through the earth system. The ability to implement policies that limit GHG concentrations would be enhanced by a global, open, and transparent greenhouse gas information system (GHGIS). An operational and scientifically robust GHGIS would combine ground-based and space-based observations, carbon-cycle modeling, GHG inventories, synthesis analysis, and an extensive data integration and distribution system, to provide information about anthropogenic and natural sources, sinks, and fluxes of greenhouse gases at temporal and spatial scales relevant to decision making. The GHGIS effort was initiated in 2008 as a grassroots inter-agency collaboration intended to identify the needs for such a system, assess the capabilities of current assets, and suggest priorities for future research and development. We will present a vision for an open, global GHGIS including latest analysis of system requirements, critical gaps, and relationship to related efforts at various agencies, the Group on Earth Observations, and the Intergovernmental Panel on Climate Change.

  13. Benchmarking European Gas Transmission System Operators

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter; Trinkner, Urs

    This is the final report for the pan-European efficiency benchmarking of gas transmission system operations commissioned by the Netherlands Authority for Consumers and Markets (ACM), Den Haag, on behalf of the Council of European Energy Regulators (CEER) under the supervision of the authors....

  14. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing in Aerospace Applications

    Science.gov (United States)

    VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine an activation energy for the catalyst-assisted systems.

  15. Fluidized bed gasification of high tonnage sorghum, cotton gin trash and beef cattle manure: Evaluation of synthesis gas production

    International Nuclear Information System (INIS)

    Maglinao, Amado L.; Capareda, Sergio C.; Nam, Hyungseok

    2015-01-01

    Highlights: • High tonnage sorghum, cotton gin trash and beef cattle manure were characterized and gasified in a fluidized bed reactor. • Biomass gasification at 730 °C and ER = 0.35 produced synthesis gas with an average energy content of 4.19 MJ Nm −3 . • Synthesis gas heating value and yield were relatively constant at reaction temperatures from 730 °C to 800 °C. • Optimum hydrogen production on HTS gasification was achieved at 780 °C temperature and ER of 0.4. - Abstract: Fluidized bed gasification using high-tonnage sorghum, cotton gin trash and beef cattle manure was performed in a pilot scale bubbling fluidized bed reactor equipped with the necessary feedback control system. Characterization of biomass showed that the high-tonnage sorghum had the highest energy and carbon content of 19.58 MJ kg −1 and 42.29% wt , respectively among the three feed stocks. At 730 °C reaction temperature and equivalence ratio of 0.35, comparable yields of methane, nitrogen and carbon dioxide (within ± 1.4% vol ) were observed in all three feed stocks. The gasification system produced synthesis gas with an average heating value of 4.19 ± 0.09 MJ Nm −3 and an average yield of 1.98 ± 0.1 Nm 3 kg −1 of biomass. Carbon conversion and gasification efficiencies indicated that most of the carbon was converted to gaseous products (85% average ) while 48% average of the energy from the biomass was converted into combustible gas. The production of hydrogen was significantly affected by the biomass used during gasification. The synthesis gas heating value and yield were relatively constant at reaction temperatures from 730 °C to 800 °C. Utilizing high-tonnage sorghum, the optimum hydrogen production during gasification was achieved at a reaction temperature of 780 °C and an equivalence ratio of 0.40.

  16. Multitube coaxial closed cycle gas laser system

    International Nuclear Information System (INIS)

    Davis, J.W.; Walch, A.P.

    1975-01-01

    A gas laser design capable of long term reliable operation in a commercial environment is disclosed. Various construction details which insulate the laser optics from mechanical distortions and vibrations inevitably present in the environment are developed. Also, a versatile optical cavity made up of modular units which render the basic laser configuration adaptable to alternate designs with different output capabilities is shown in detail. The system built around a convection laser operated in a closed cycle and the working medium is a gas which is excited by direct current electric discharges. (auth)

  17. 49 CFR 192.11 - Petroleum gas systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Petroleum gas systems. 192.11 Section 192.11... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS General § 192.11 Petroleum gas systems. (a) Each plant that supplies petroleum gas by pipeline to a natural gas distribution system must meet the requirements...

  18. Oilfield Flare Gas Electricity Systems (OFFGASES Project)

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Henderson; Robert Fickes

    2007-12-31

    The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas

  19. Selective conversion of synthesis gas into C2-oxygenated products using mixed-metal homogeneous catalysts

    International Nuclear Information System (INIS)

    Whyman, R.

    1986-01-01

    A feature which is a key to any wider utilization of chemistry based on synthesis gas is an understanding of, and more particularly, an ability to control, those factors which determine the selectivity of the C 1 to C 2 transformation during the hydrogenation of carbon monoxide. With the exception of the rhodium-catalyzed conversion of carbon monoxide and hydrogen into ethylene glycol and methanol, in which molar ethylene glycol/methanol selectivities of ca 2/1 may be achieved, other catalyst systems containing metals such as cobalt or ruthenium exhibit only poor selectivities to ethylene glycol. The initial studies in this area were based on the reasoning that, since the reduction of carbon monoxide to C 2 products is a complex, multi-step process, the use of appropriate combinations of metals could generate synergistic effects which might prove more effective (in terms of both catalytic activity and selectivity) than simply the sum of the individual metal components. In particular, the concept of the combination of a good hydrogenation catalyst with a good carbonylation, or ''CO insertion'', catalyst seemed particularly germane. As a result of this approach the authors discovered an unprecedented example of the effect of catalyst promoters, particularly in the enhancement of C 2 /C 1 selectivity, and one which has led to the development of composite mixed-metal homogeneous catalyst systems for the conversion of CO/H 2 into C 2 -oxygenate esters

  20. Gas System 2013 at a glance

    International Nuclear Information System (INIS)

    2014-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents some key figures about GRTgaz activity in 2013: Total Consumption 2013 vs 2012: +1.4% gross consumption, -2% climate adjusted. Public Distribution Consumption 2013 vs 2012: +3.6% gross consumption, -1.9% climate adjusted. Industrial Customers Consumption 2013 vs 2012: -2.4% gross consumption. Power Generation: -50% since 2011. Industrial Customers 2012 vs 2013 (excluding power generation): +2%. Transported Quantities by GRTgaz 2013 vs 2012: Stability (-0.1%). LNG imports are down (-19%) compensated by pipe imports (+5%). Increasing outlet to the South-West, Congestion on North-South Link. Price spread between North and South. In 2013, gas gross consumption rose by 1.4 % on GRTgaz network, mainly because of colder climatic conditions, especially during the first half of the year, compared to 2012. Consumption of industrial customers connected to GRTgaz increased by 2 % (excluding power generation), mainly driven by sectors like Refineries, Chemistry, Glass and Materials. In 2013, GRTgaz transmission network ran under unusual gas flow conditions, especially with a continuing decrease of LNG imports (-19 %) and a low level in underground storages (-8 %)

  1. Calculation of partial molar volume of components in supercritical ammonia synthesis system

    Institute of Scientific and Technical Information of China (English)

    Cunwen WANG; Chuanbo YU; Wen CHEN; Weiguo WANG; Yuanxin WU; Junfeng ZHANG

    2008-01-01

    The partial molar volumes of components in supercritical ammonia synthesis system are calculated in detail by the calculation formula of partial molar volume derived from the R-K equation of state under different conditions. The objectives are to comprehend phase beha-vior of components and to provide the theoretic explana-tion and guidance for probing novel processes of ammonia synthesis under supercritical conditions. The conditions of calculation are H2/N2= 3, at a concentra-tion of NH3 in synthesis gas ranging from 2% to 15%, Concentration of medium in supercritical ammonia syn-thesis system ranging from 20% to 50%, temperature ran-ging from 243 K to 699 K and pressure ranging from 0.1 MPa to 187 MPa. The results show that the ammonia synthesis system can reach supercritical state by adding a suitable supercritical medium and then controlling the reaction conditions. It is helpful for the supercritical ammonia synthesis that medium reaches supercritical state under the conditions of the corresponding total pres-sure and components near the normal temperature or near the critical temperature of medium or in the range of tem-perature of industrialized ammonia synthesis.

  2. LNG systems for natural gas propelled ships

    Science.gov (United States)

    Chorowski, M.; Duda, P.; Polinski, J.; Skrzypacz, J.

    2015-12-01

    In order to reduce the atmospheric pollution generated by ships, the International Marine Organization has established Emission Controlled Areas. In these areas, nitrogen oxides, sulphur oxides and particulates emission is strongly controlled. From the beginning of 2015, the ECA covers waters 200 nautical miles from the coast of the US and Canada, the US Caribbean Sea area, the Baltic Sea, the North Sea and the English Channel. From the beginning of 2020, strong emission restrictions will also be in force outside the ECA. This requires newly constructed ships to be either equipped with exhaust gas cleaning devices or propelled with emission free fuels. In comparison to low sulphur Marine Diesel and Marine Gas Oil, LNG is a competitive fuel, both from a technical and economical point of view. LNG can be stored in vacuum insulated tanks fulfilling the difficult requirements of marine regulations. LNG must be vaporized and pressurized to the pressure which is compatible with the engine requirements (usually a few bar). The boil-off must be controlled to avoid the occasional gas release to the atmosphere. This paper presents an LNG system designed and commissioned for a Baltic Sea ferry. The specific technical features and exploitation parameters of the system will be presented. The impact of strict marine regulations on the system's thermo-mechanical construction and its performance will be discussed. The review of possible flow-schemes of LNG marine systems will be presented with respect to the system's cost, maintenance, and reliability.

  3. Second Greenhouse Gas Information System Workshop

    Science.gov (United States)

    Boland, S. W.; Duren, R. M.; Mitchiner, J.; Rotman, D.; Sheffner, E.; Ebinger, M. H.; Miller, C. E.; Butler, J. H.; Dimotakis, P.; Jonietz, K.

    2009-12-01

    The second Greenhouse Gas Information System (GHGIS) workshop was held May 20-22, 2009 at the Sandia National Laboratories in Albuquerque, New Mexico. The workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was organized by an interagency collaboration between NASA centers, DOE laboratories, and NOAA. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales in order to significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies. This talk provides an overview of the second Greenhouse Gas Information System workshop, presents its key findings, and discusses current status and next steps in this interagency collaborative effort.

  4. Atmospheric-pressure dielectric barrier discharge with capillary injection for gas-phase nanoparticle synthesis

    International Nuclear Information System (INIS)

    Ghosh, Souvik; Liu, Tianqi; Bilici, Mihai; Cole, Jonathan; Huang, I-Min; Sankaran, R Mohan; Staack, David; Mariotti, Davide

    2015-01-01

    We present an atmospheric-pressure dielectric barrier discharge (DBD) reactor for gas-phase nanoparticle synthesis. Nickel nanoparticles are synthesized by homogenous nucleation from nickelocene vapor and characterized online by aerosol mobility measurements. The effects of residence time and precursor concentration on particle growth are studied. We find that narrower distributions of smaller particles are produced by decreasing the precursor concentration, in agreement with vapor nucleation theory, but larger particles and aggregates form at higher gas flow rates where the mean residence time should be reduced, suggesting a cooling effect that leads to enhanced particle nucleation. In comparison, incorporating a capillary gas injector to alter the velocity profile is found to significantly reduce particle size and agglomeration. These results suggest that capillary gas injection is a better approach to decreasing the mean residence time and narrowing the residence time distribution for nanoparticle growth by producing a sharp and narrow velocity profile. (paper)

  5. SnO2 Nanostructure as Pollutant Gas Sensors: Synthesis, Sensing Performances, and Mechanism

    Directory of Open Access Journals (Sweden)

    Brian Yuliarto

    2015-01-01

    Full Text Available A significant amount of pollutants is produced from factories and motor vehicles in the form of gas. Their negative impact on the environment is well known; therefore detection with effective gas sensors is important as part of pollution prevention efforts. Gas sensors use a metal oxide semiconductor, specifically SnO2 nanostructures. This semiconductor is interesting and worthy of further investigation because of its many uses, for example, as lithium battery electrode, energy storage, catalyst, and transistor, and has potential as a gas sensor. In addition, there has to be a discussion of the use of SnO2 as a pollutant gas sensor especially for waste products such as CO, CO2, SO2, and NOx. In this paper, the development of the fabrication of SnO2 nanostructures synthesis will be described as it relates to the performances as pollutant gas sensors. In addition, the functionalization of SnO2 as a gas sensor is extensively discussed with respect to the theory of gas adsorption, the surface features of SnO2, the band gap theory, and electron transfer.

  6. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan [TDA Research, Inc., Wheat Ridge, CO (United States)

    2013-02-15

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H2S, NH3, HCN, AsH3, PH3, HCl, NaCl, KCl, AS3, NH4NO3, NH4OH, KNO3, HBr, HF, and HNO3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.

  7. Methods of Synthesis of Automatic Control Systems with Delay

    Directory of Open Access Journals (Sweden)

    Aliaksandr Lapeta

    2013-05-01

    Full Text Available The paper investigates the procedure for introduction of systems containing delay elements. Shortcomings and difficulties in the synthesis of regulators and precompensators of control systems with delays in output and control channel where determined. The author focused on two approaches for the formation of promatrix and synthesis of control systems, considering the factor of delay.

  8. Gas exchange measurements in natural systems

    International Nuclear Information System (INIS)

    Broecker, W.S.; Peng, T.H.

    1983-01-01

    Direct knowledge of the rates of gas exchange in lakes and the ocean is based almost entirely on measurements of the isotopes 14 C, 222 Rn and 3 He. The distribution of natural radiocarbon has yielded the average rate of CO 2 exchange for the ocean and for several closed basin lakes. That of bomb produced radiocarbon has been used in the same systems. The 222 Rn to 226 Ra ratio in open ocean surface water has been used to give local short term gas exchange rates. The radon method generally cannot be used in lakes, rivers, estuaries or shelf areas because of the input of radon from sediments. A few attempts have been made to use the excess 3 He produced by decay of bomb produced tritium in lakes to give gas transfer rates. The uncertainty in the molecular diffusivity of helium and in the diffusivity dependence of the rate of gas transfer holds back the application of this method. A few attempts have been made to enrich the surface waters of small lakes with 226 Ra and 3 H in order to allow the use of the 222 Rn and 3 He methods. While these studies give broadly concordant results, many questions remain unanswered. The wind velocity dependence of gas exchange rate has yet to be established in field studies. The dependence of gas exchange rate on molecular diffusivity also remains in limbo. Finally, the degree of enhancement of CO 2 exchange through chemical reactions has been only partially explored. 49 references, 2 figures, 2 tables

  9. Numerical investigation of high temperature synthesis gas premixed combustion via ANSYS Fluent

    Directory of Open Access Journals (Sweden)

    Pashchenko Dmitry

    2018-01-01

    Full Text Available A numerical model of the synthesis gas pre-mixed combustion is developed. The research was carried out via ANSYS Fluent software. Verification of the numerical results was carried out using experimental data. A visual comparison of the flame contours that obtained by the synthesis gas combustion for Re = 600; 800; 1000 was performed. A comparison of the wall temperature of the combustion chamber, obtained with the help of the developed model, with the results of a physical experiment was also presented. For all cases, good convergence of the results is observed. It is established that a change in the temperature of the syngas/air mixture at the inlet to the combustion chamber does not significantly affect the temperature of the combustion products due to the dissipation of the H2O and CO2 molecules. The obtained results are of practical importance for the design of heat engineering plants with thermochemical heat recovery.

  10. Oil-shale gasification for obtaining of gas for synthesis of aliphatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Strizhakova, Yu. [Samara State Univ. (Russian Federation); Avakyan, T.; Lapidus, A.L. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2011-07-01

    Nowadays, the problem of qualified usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. Gasification with further processing of gaseous products is a one of possible ways of their use. Production of synthesis gas with H{sub 2}/CO ratio equal 2 is possible by gasification of oil-shale. This gas is converted into the mixture of hydrocarbons over cobalt catalyst at temperature from 160 to 210 C at atmospheric pressure. The hydrocarbons can be used as motor, including diesel, or reactive fuel. (orig.)

  11. Electricity generation from synthesis gas by microbial processes: CO fermentation and microbial fuel cell technology.

    Science.gov (United States)

    Kim, Daehee; Chang, In Seop

    2009-10-01

    A microbiological process was established to harvest electricity from the carbon monoxide (CO). A CO fermenter was enriched with CO as the sole carbon source. The DGGE/DNA sequencing results showed that Acetobacterium spp. were enriched from the anaerobic digester fluid. After the fermenter was operated under continuous mode, the products were then continuously fed to the microbial fuel cell (MFC) to generate electricity. Even though the conversion yield was quite low, this study proved that synthesis gas (syn-gas) can be converted to electricity with the aid of microbes that do not possess the drawbacks of metal catalysts of conventional methods.

  12. Fischer Indole Synthesis in the Gas Phase, the Solution Phase, and at the Electrospray Droplet Interface.

    Science.gov (United States)

    Bain, Ryan M; Ayrton, Stephen T; Cooks, R Graham

    2017-07-01

    Previous reports have shown that reactions occurring in the microdroplets formed during electrospray ionization can, under the right conditions, exhibit significantly greater rates than the corresponding bulk solution-phase reactions. The observed acceleration under electrospray ionization could result from a solution-phase, a gas-phase, or an interfacial reaction. This study shows that a gas-phase ion/molecule (or ion/ion) reaction is not responsible for the observed rate enhancement in the particular case of the Fischer indole synthesis. The results show that the accelerated reaction proceeds in the microdroplets, and evidence is provided that an interfacial process is involved. Graphical Abstract GRAPHICAL ABSTRACT TEXT HERE] -->.

  13. Water-saving liquid-gas conditioning system

    Science.gov (United States)

    Martin, Christopher; Zhuang, Ye

    2014-01-14

    A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

  14. Mechanical valve assembly for xenon 133 gas delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Round, W.H. (Royal Brisbane Hospital, Herston (Australia))

    Some gas delivery systems used in pulmonary ventilation scanning are unable to satisfactorily supply /sup 133/Xe gas to bed-ridden patients. A mechanical gas valve assembly to control the flow of gas in such systems was constructed. A commercially produced /sup 133/Xe gas delivery system when fitted with the new assembly was able to ventilate almost all patients whereas previously this could be achieved with approximately only 50% of patients.

  15. TECHNICAL AND ECONOMICAL ASSESSMENT OF USING PEAT GAS SYNTHESIS IN POWER ENGINEERING

    OpenAIRE

    Карвацький, Антон Янович

    2016-01-01

    Nowadays more and more attention in the world is paid for technology of using low-calorie fuels. They are associated with the processes of pyrolysis, gasification, production of gas synthesis and diesel fuel.In general, gasification technology is developing very well. There are many examples of successful commercial and practical realization of such projects. Examples of such developments commercialization from using of gasification process for electricity and heat production can be used in s...

  16. AGT101 automotive gas turbine system development

    Science.gov (United States)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    The AGT101 automotive gas turbine system consisting of a 74.6 kw regenerated single-shaft gas turbine engine, is presented. The development and testing of the system is reviewed, and results for aerothermodynamic components indicate that compressor and turbine performance levels are within one percent of projected levels. Ceramic turbine rotor development is encouraging with successful cold spin testing of simulated rotors to speeds over 12,043 rad/sec. Spin test results demonstrate that ceramic materials having the required strength levels can be fabricated by net shape techniques to the thick hub cross section, which verifies the feasibility of the single-stage radial rotor in single-shaft engines.

  17. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  18. Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction

    International Nuclear Information System (INIS)

    Liang, Xianqing; Zhong, Jun; Shi, Yalin; Guo, Jin; Huang, Guolong; Hong, Caihao; Zhao, Yidong

    2015-01-01

    Highlights: • A novel approach to synthesis of N-doped few-layer graphene has been developed. • The high doping levels of N in products are achieved. • XPS and XANES results reveal a thermal transformation of N bonding configurations. • The developed method is cost-effective and eco-friendly. - Abstract: Nitrogen-doped (N-doped) graphene sheets with high doping concentration were facilely synthesized through solid–gas reaction of graphene oxide (GO) with ammonia vapor in a self-designed hydrothermal system. The morphology, surface chemistry and electronic structure of N-doped graphene sheets were investigated by TEM, AFM, XRD, XPS, XANES and Raman characterizations. Upon hydrothermal treatment, up to 13.22 at% of nitrogen could be introduced into the crumpled few-layer graphene sheets. Both XPS and XANES analysis reveal that the reaction between oxygen functional groups in GO and ammonia vapor produces amide and amine species in hydrothermally treated GO (HTGO). Subsequent thermal annealing of the resultant HTGO introduces a gradual transformation of nitrogen bonding configurations in graphene sheets from amine N to pyridinic and graphitic N with the increase of annealing temperature. This study provides a simple but cost-effective and eco-friendly method to prepare N-doped graphene materials in large-scale for potential applications

  19. The economic production of alcohol fuels from coal-derived synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1995-12-31

    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2); (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)

  20. Processes in petroleum chemistry. Technical and economical characteristics Vol. 1. Synthesis gas and derivatives. Main hydrocarbon intermediaries (2 ed. )

    Energy Technology Data Exchange (ETDEWEB)

    Chauvel, A.; Lefebvre, G.; Castex, L.

    1985-01-01

    The aim of this book is to give rudiments for a preliminary study to outline petrochemical operation and cost estimation. Basic operations are examined: Steam reforming or partial oxidation, steam or thermal cracking and catalytic reforming. The main topics examined include: hydrogen purification, hydrogen fabrication from hydrocarbons, carbonaceous materials or water, production of carbon monoxide, ammoniac synthesis methanol synthesis from synthesis gas, preparation of formol, urea, acetylene and monomers for the preparation of plastics.

  1. Greenhouse gas balances of biomass energy systems

    International Nuclear Information System (INIS)

    Marland, G.; Schlamadinger, B.

    1996-01-01

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol form corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large non-linearities in carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues. (author). 5 refs, 5 figs

  2. Greenhouse gas balances of biomass energy systems

    International Nuclear Information System (INIS)

    Marland, G.; Schlamadinger, B.

    1994-01-01

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol from corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large nonlinearities in the carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues

  3. Gas turbine exhaust system silencing design

    International Nuclear Information System (INIS)

    Ozgur, D.

    1991-01-01

    Gas turbines are the preferred prime mover in many applications because of their high efficiency, fuel flexibility, and low environmental impact. A typical mid-size machine might have a power rating of 80 MW, a flow of about 1000 kg/hr, and an exhaust temperature of over 500C. The most powerful single source of noise is generally the exhaust, which may generate over a kilowatt of acoustic energy. This paper reports that there are two important ways in which exhaust systems can radiate noise. The first is through the discharge of the exhaust duct, with the exhaust gas. Because of the large quantity of hot gas, the duct exit is always oriented vertically; it may be fairly high in the air in order to promote dispersion of the exhaust plume. This source is almost always attenuated by means of a silencer located somewhere in the ductwork. The second source of noise is often called breakout; it is the radiation of exhaust noise through the walls of the ducting. Breakout is most important for those sections of the exhaust duct which lie upstream of the silencer, where sound levels inside the ducting are highest. Both exhaust duct exit noise and breakout noise can be calculated from the sound power level of the gas turbine exhaust and the sound transmission loss (TL) of the silencer and ducting

  4. N2 gas station and gas distribution system for TLD personnel monitoring gas based semi-automatic badge readers

    International Nuclear Information System (INIS)

    Chourasiya, G.; Pradhan, S.M.; Kher, R.K.; Bhatt, B.C

    2003-01-01

    Full text: New improvised hot gas based Auto TLD badge reader has several advantages over the earlier contact heating based manual badge reader. It requires constant supply of N 2 gas for its operation; The gas supplied using replaceable individual gas cylinders may have some safety hazards in their handling. It was therefore considered worthwhile to setup a N 2 gas assembly/ station outside the lab area and to bring regulated gas supply through network of tubes with proper regulation to the individual readers. The paper presents detailed description of the gas station and distribution system. The system is quite useful and offers several practical advantages for readout of TLD badges on the semiautomatic badge readers based on gas heating. Important advantage from dosimetric point of view is avoidance of gas flow rate fluctuations and corresponding variations in TL readouts

  5. Exhaust gas recirculation system for an internal combustion engine

    Science.gov (United States)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  6. Power control system for a hot gas engine

    Science.gov (United States)

    Berntell, John O.

    1986-01-01

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  7. GlidArc-assisted production of synthesis gas from various carbonaceous feedstocks

    International Nuclear Information System (INIS)

    Czernichowski, A.; Czernichowski, P.; Czernichowski, M.

    2003-01-01

    Pure Hydrogen or its mixture with Carbon Monoxide (called Synthesis Gas) will be massively extracted from various fossil or renewable feedstocks. Such matters contain contaminants (principally Sulphur) that make conventional catalytic reforming technologies very difficult to run without a prior deep cleaning of the feeds in order to avoid the reformer's catalyst poisoning. We propose a non-catalytic process in which almost any carbonaceous feed is converted into the Synthesis Gas in a presence of high-voltage discharges (called GlidArc) that assist the exothermic Partial Oxidation POX). The unique oxidant is air. This contribution presents some of our tests with natural gas, cyclohexane, heptane, toluene, various gasolines, and various diesel oils (including logistic ones). In two separate contributions to this Conference we present our more expanded studies on the GlidArc-assisted POX reforming of commercial propane and rapeseed oil (canola). Our reactors (1- or 2-Liter scale) work at atmospheric pressure and need less than 0.5 kW electric power (rather about 0.1 kW) to produce up to 9 m 3 (n)/h of Nitrogen-diluted SynGas containing up to 27% of H 2 and up to 23% of CO. Such assisting power represents roughly less than 5% (rather around 2%) with respect to the Lower Heating Value of produced Synthesis Gas (up to 11 kW). Recycling such relatively small portion of the power is an acceptable compromise. All tested feeds are totally reformed. No soot is observed at a sufficient O/C ratio. (author)

  8. Consistency Analysis and Data Consultation of Gas System of Gas-Electricity Network of Latvia

    Science.gov (United States)

    Zemite, L.; Kutjuns, A.; Bode, I.; Kunickis, M.; Zeltins, N.

    2018-02-01

    In the present research, the main critical points of gas transmission and storage system of Latvia have been determined to ensure secure and reliable gas supply among the Baltic States to fulfil the core objectives of the EU energy policies. Technical data of critical points of the gas transmission and storage system of Latvia have been collected and analysed with the SWOT method and solutions have been provided to increase the reliability of the regional natural gas system.

  9. Glucose Synthesis in a Protein-Based Artificial Photosynthesis System.

    Science.gov (United States)

    Lu, Hao; Yuan, Wenqiao; Zhou, Jack; Chong, Parkson Lee-Gau

    2015-09-01

    The objective of this study was to understand glucose synthesis of a protein-based artificial photosynthesis system affected by operating conditions, including the concentrations of reactants, reaction temperature, and illumination. Results from non-vesicle-based glyceraldehyde-3-phosphate (GAP) and glucose synthesis showed that the initial concentrations of ribulose-1,5-bisphosphate (RuBP) and adenosine triphosphate (ATP), lighting source, and temperature significantly affected glucose synthesis. Higher initial concentrations of RuBP and ATP significantly enhanced GAP synthesis, which was linearly correlated to glucose synthesis, confirming the proper functions of all catalyzing enzymes in the system. White fluorescent light inhibited artificial photosynthesis and reduced glucose synthesis by 79.2 % compared to in the dark. The reaction temperature of 40 °C was optimum, whereas lower or higher temperature reduced glucose synthesis. Glucose synthesis in the vesicle-based artificial photosynthesis system reconstituted with bacteriorhodopsin, F 0 F 1 ATP synthase, and polydimethylsiloxane-methyloxazoline-polydimethylsiloxane triblock copolymer was successfully demonstrated. This system efficiently utilized light-induced ATP to drive glucose synthesis, and 5.2 μg ml(-1) glucose was synthesized in 0.78-ml reaction buffer in 7 h. Light-dependent reactions were found to be the bottleneck of the studied artificial photosynthesis system.

  10. Multiplex electric discharge gas laser system

    Science.gov (United States)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  11. Distributed gas detection system and method

    Science.gov (United States)

    Challener, William Albert; Palit, Sabarni; Karp, Jason Harris; Kasten, Ansas Matthias; Choudhury, Niloy

    2017-11-21

    A distributed gas detection system includes one or more hollow core fibers disposed in different locations, one or more solid core fibers optically coupled with the one or more hollow core fibers and configured to receive light of one or more wavelengths from a light source, and an interrogator device configured to receive at least some of the light propagating through the one or more solid core fibers and the one or more hollow core fibers. The interrogator device is configured to identify a location of a presence of a gas-of-interest by examining absorption of at least one of the wavelengths of the light at least one of the hollow core fibers.

  12. Fabrication Of Control Rod System Of The RSG-GAS

    International Nuclear Information System (INIS)

    Sudirdjo, Hari; Setyono; Prasetya, Hendra

    2001-01-01

    Eight units of control rod mechanical system of RSG-GAS has been fabricated. The control rod mechanical system of RSG-GAS consist of guide tube and lifting rod. Complete construction of the control rod mechanical system of RSG-GAS are guide tube, lifting rod, absorber, and absorber casing. The eight units of the control rod mechanical system of RSG-GAS has been fabricated according to the mechanical engineering design

  13. Swarm intelligence for multi-objective optimization of synthesis gas production

    Science.gov (United States)

    Ganesan, T.; Vasant, P.; Elamvazuthi, I.; Ku Shaari, Ku Zilati

    2012-11-01

    In the chemical industry, the production of methanol, ammonia, hydrogen and higher hydrocarbons require synthesis gas (or syn gas). The main three syn gas production methods are carbon dioxide reforming (CRM), steam reforming (SRM) and partial-oxidation of methane (POM). In this work, multi-objective (MO) optimization of the combined CRM and POM was carried out. The empirical model and the MO problem formulation for this combined process were obtained from previous works. The central objectives considered in this problem are methane conversion, carbon monoxide selectivity and the hydrogen to carbon monoxide ratio. The MO nature of the problem was tackled using the Normal Boundary Intersection (NBI) method. Two techniques (Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO)) were then applied in conjunction with the NBI method. The performance of the two algorithms and the quality of the solutions were gauged by using two performance metrics. Comparative studies and results analysis were then carried out on the optimization results.

  14. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  15. 46 CFR 154.1350 - Flammable gas detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Flammable gas detection system. 154.1350 Section 154... Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a fixed flammable gas detection system that has sampling points in: (1) Each cargo pump room; (2) Each cargo...

  16. Gas system 2016: Press conference 17 January 2017 + Gas consumption by administrative regions

    International Nuclear Information System (INIS)

    2017-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents some key figures about GRTgaz activity in 2016: A first part presents the national data about gas consumption, production of gas-fired power plants, new gas uses (diesel-gas substitution, biomethane..) and their environmental impacts, and the development of the Internet open-data platform. A second part presents the regional gas consumptions with a focus on industrial clients

  17. Inherently safe passive gas monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph V.; Bellamy, John Stephen; Shuler, James M.; Shull, Davis J.; Leduc, Daniel R.

    2016-09-06

    Generally, the present disclosure is directed to gas monitoring systems that use inductive power transfer to safely power an electrically passive device included within a nuclear material storage container. In particular, the electrically passive device can include an inductive power receiver for receiving inductive power transfer through a wall of the nuclear material storage container. The power received by the inductive power receiver can be used to power one or more sensors included in the device. Thus, the device is not required to include active power generation components such as, for example, a battery, that increase the risk of a spark igniting flammable gases within the container.

  18. Microfabricated Gas Phase Chemical Analysis Systems

    International Nuclear Information System (INIS)

    FRYE-MASON, GREGORY CHARLES; HELLER, EDWIN J.; HIETALA, VINCENT M.; KOTTENSTETTE, RICHARD; LEWIS, PATRICK R.; MANGINELL, RONALD P.; MATZKE, CAROLYN M.; WONG, CHUNGNIN C.

    1999-01-01

    A portable, autonomous, hand-held chemical laboratory ((micro)ChemLab(trademark)) is being developed for trace detection (ppb) of chemical warfare (CW) agents and explosives in real-world environments containing high concentrations of interfering compounds. Microfabrication is utilized to provide miniature, low-power components that are characterized by rapid, sensitive and selective response. Sensitivity and selectivity are enhanced using two parallel analysis channels, each containing the sequential connection of a front-end sample collector/concentrator, a gas chromatographic (GC) separator, and a surface acoustic wave (SAW) detector. Component design and fabrication and system performance are described

  19. Safety of the medical gas pipeline system

    Directory of Open Access Journals (Sweden)

    Sushmita Sarangi

    2018-01-01

    Full Text Available Medical gases are nowadays being used for a number of diverse clinical applications and its piped delivery is a landmark achievement in the field of patient care. Patient safety is of paramount importance in the design, installation, commissioning, and operation of medical gas pipeline systems (MGPS. The system has to be operational round the clock, with practically zero downtime and its failure can be fatal if not restored at the earliest. There is a lack of awareness among the clinicians regarding the medico-legal aspect involved with the MGPS. It is a highly technical field; hence, an in-depth knowledge is a must to ensure safety with the system.

  20. Detection device for off-gas system accidents

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Tsuruoka, Ryozo; Yamanari, Shozo.

    1984-01-01

    Purpose: To rapidly isolate the off-gas system by detecting the off-gas system failure accident in a short time. Constitution: Radiation monitors are disposed to ducts connecting an exhaust gas area and an air conditioning system as a portion of a turbine building. The ducts are disposed independently such that they ventilate only the atmosphere in the exhaust gas area and do not mix the atmosphere in the turbine building. Since radioactivity issued upon off-gas accidents to the exhaust gas area is sucked to the duct, it can be detected by radiation detection monitors in a short time after the accident. Further, since the operator judges it as the off-gas system accident, the off-gas system can be isolated in a short time after the accident. (Moriyama, K.)

  1. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition

    Science.gov (United States)

    Lausund, Kristian Blindheim; Nilsen, Ola

    2016-11-01

    Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic-inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios.

  2. Automated metabolic gas analysis systems: a review.

    Science.gov (United States)

    Macfarlane, D J

    2001-01-01

    The use of automated metabolic gas analysis systems or metabolic measurement carts (MMC) in exercise studies is common throughout the industrialised world. They have become essential tools for diagnosing many hospital patients, especially those with cardiorespiratory disease. Moreover, the measurement of maximal oxygen uptake (VO2max) is routine for many athletes in fitness laboratories and has become a defacto standard in spite of its limitations. The development of metabolic carts has also facilitated the noninvasive determination of the lactate threshold and cardiac output, respiratory gas exchange kinetics, as well as studies of outdoor activities via small portable systems that often use telemetry. Although the fundamental principles behind the measurement of oxygen uptake (VO2) and carbon dioxide production (VCO2) have not changed, the techniques used have, and indeed, some have almost turned through a full circle. Early scientists often employed a manual Douglas bag method together with separate chemical analyses, but the need for faster and more efficient techniques fuelled the development of semi- and full-automated systems by private and commercial institutions. Yet, recently some scientists are returning back to the traditional Douglas bag or Tissot-spirometer methods, or are using less complex automated systems to not only save capital costs, but also to have greater control over the measurement process. Over the last 40 years, a considerable number of automated systems have been developed, with over a dozen commercial manufacturers producing in excess of 20 different automated systems. The validity and reliability of all these different systems is not well known, with relatively few independent studies having been published in this area. For comparative studies to be possible and to facilitate greater consistency of measurements in test-retest or longitudinal studies of individuals, further knowledge about the performance characteristics of these

  3. Process for the manufacture of a gas largely free of inert gases for synthesis. Verfahren zur Herstellung eines weitgehend inertfreien Gases zur Synthese

    Energy Technology Data Exchange (ETDEWEB)

    Eisenlohr, K H; Gaensslen, H; Kriebel, M; Tanz, H

    1983-11-10

    In a process for producing a gas largely free of inert gases for the synthesis of alcohols, particularly methanol, and of hydrocarbons from coal or heavy hydrocarbons by gasification under pressure with oxygen and steam, the crude gas is cooled, the impurities are removed by washing with methanol and the methanol is removed from the cold pure gas by molecular sieves. The pure gas is then cooled further by evaporation and methane is distilled from the liquid part while simultaneously obtaining the synthetic gas consisting of hydrogen and carbon monoxide which is largely free of methane. The methane is wholly or partly compressed and then split into carbon monoxide and hydrogen using steam and oxygen. The split gas is fed back and mixed with the synthesis gas or the partly cleaned crude gas. The synthesis gas heated to the ambient temperature, freed of impurities and free of methane is compressed to the required synthesis pressure.

  4. A system for the synthesis of uranium hexafluoride by high pressure fluorination of uranium oxides

    International Nuclear Information System (INIS)

    Elizalde T, J.; Saniger B, J.M.; Nava S, R.

    1986-01-01

    An equipment for the synthesis of uranium hexafluoride by a direct fluorination method is reported. The equipment is composed by a gaseous fluorine supply, a gas burette, a reactor tube inside a protective shield, a soda-lime chemical trap and a vacuum system. The fluorination is accomplished at a pressure of about 70 kg/cm 2 (1000 lb in 2 ), using gaseous fluorine. (Author). 5 refs, 4 figs, 2 tabs

  5. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  6. Co-pyrolysis of coal with hydrogen-rich gases. 1. Coal pyrolysis under coke-oven gas and synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion

    1998-06-01

    To improve the economics of the hydropyrolysis process, it has been suggested that cheaper hydrogen-rich gases (such as coke oven gas, synthesis gas) could be used instead of pure hydrogen. Pyrolysis of Chinese Xianfeng lignite was carried out with coke oven gas (COG) and synthesis gas (SG) as reactive gases at 0.1-5 MPa and at a final temperature up to 650{degree}C with a heating rate of 5-25{degree}C min{sup -1} in a 10 g fixed-bed reactor. The results indicate that it is possible to use COG and SG instead of pure hydrogen in hydropyrolysis, but that the experimental conditions must be adjusted to optimize the yields of the valuable chemicals. 14 refs., 3 figs., 6 tabs.

  7. Analysis of hollow fibre membrane systems for multicomponent gas separation

    KAUST Repository

    Khalilpour, Rajab; Abbas, Ali; Lai, Zhiping; Pinnau, Ingo

    2013-01-01

    nonlinear differential algebraic equation system is solved via a combination of backward differentiation and Gauss-Seidel methods. Natural gas sweetening problem is investigated as a case study. Model parametric analyses of variables, namely feed gas quality

  8. Feasibility study on blast furnace ironmaking system integrated with methanol synthesis for reduction of carbon dioxide emission with effective use of energy

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, T [and others; Tohoku University, Sendai (Japan)

    1993-01-01

    The system proposed involves injection of natural gas at the tuyeres to reduce coke consumption, and methanol synthesis from the top gas. Operating data are calculated with a mathematical model, showing that significant reductions in emission of greenhouse gases and in exergy losses can be expected. (Development of an effective catalyst for the methanol synthesis is described in a companion paper: A. Muramatsu et al., 1144-1149).

  9. A new helium gas recovery and purification system

    International Nuclear Information System (INIS)

    Yamamotot, T.; Suzuki, H.; Ishii, J.; Hamana, I.; Hayashi, S.; Mizutani, S.; Sanjo, S.

    1974-01-01

    A helium gas recovery and purification system, based on the principle of gas permeation through a membrane, is described. The system can be used for the purification of helium gas containing air as a contaminant. The apparatus, operating at ambient temperature does not need constant attention, the recovery ratio of helium gas is satisfactory and running costs are low. Gases other than helium can be processed with the apparatus. (U.K.)

  10. Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance

    DEFF Research Database (Denmark)

    Kurokawa, Yusuke; Nagai, Keisuke; Hung, Phung Danh

    2018-01-01

    Floods impede gas (O2and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant (dripping wet leaf 7, drp7) which does...... not retain gas films on leaves, and its wild-type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated. Leaf Gas Film 1 (LGF1) was identified as the gene...... determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2-fold and contributes to submergence tolerance. Gene function...

  11. Synthesis of a catalytic reactor membrane for synthesis gas production; Elaboration d'une membrane de reacteur catalytique pour la production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Juste, E.; Julian, A.; Chartier, T. [Limoges Univ., Lab. Science des Procedes Ceramiques et de Traitements de Surface (SPCTS, UMR 6638 CNRS), 87 (France); Juste, E.; Julian, A.; Del Gallo, P.; Richet, N. [Centre de Recherche Claude-Delorme, Air Liquide, 78 - Jouy en Josas (France)

    2007-07-01

    The conversion of natural gas to synthesis gas (mixture of H{sub 2} and CO) is a main challenge for the hydrogen and clean fuels production. Mixed (ionic O{sup 2-} and electronic) conducing ceramics membrane reactors seem particularly promising. The design considered for the membrane is a tri-layer system integrating a reforming catalyst and a dense membrane laying on a porous support. Among the materials considered for the dense membrane, perovskites La{sub 1-x}Sr{sub x}Fe{sub 1-y}Ga{sub y}O{sub 3-{delta}} seem to be interesting for their performances and stability. The oxygen flux through the membrane is measured in terms of temperature under different oxygen partial pressure gradients. In the industrial experimental conditions, the membrane is submitted to a strong oxygen (air/methane) partial pressure gradient of about 900 C which induces mechanical stresses, on account of the material expansion difference, in terms of p{sub O2}. In this framework, the evolutions of the performances and of the expansion coefficient have been followed in terms of the substitutions rates in La{sub (1-x)}Sr{sub x}Fe{sub (1-y)}Ga{sub y}O{sub 3-{delta}} with x{<=}0.5 and y{<=}0.5. (O.M.)

  12. Controller synthesis for negative imaginary systems: a data driven approach

    KAUST Repository

    Mabrok, Mohamed; Petersen, Ian R.

    2016-01-01

    -driven controller synthesis methodology for NI systems is presented. In this approach, measured frequency response data of the plant is used to construct the controller frequency response at every frequency by minimising a cost function. Then, this controller

  13. 49 CFR 393.69 - Liquefied petroleum gas systems.

    Science.gov (United States)

    2010-10-01

    ... Protection Association, Battery March Park, Quincy, MA 02269, as follows: (1) A fuel system installed before... ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.69 Liquefied petroleum gas systems. (a) A fuel system that uses liquefied petroleum gas as a fuel for the operation of a motor vehicle or for the...

  14. GlidArc-assisted production of synthesis gas from LPG (Propane)

    International Nuclear Information System (INIS)

    Czernichowski, A.; Czernichowski, P.; Czernichowski, M.

    2003-01-01

    Small and medium size reformers that run on widely available Liquefied Petroleum Gas (LPG, containing mostly the propane) can provide Synthesis Gas (or Hydrogen extracted from it) to some Fuel Cell powered cars, boats, homes, farms etc. reducing therefore costs of the pure Hydrogen distribution. We contribute to such idea realization through our simply, plasma-assisted reformer avoiding a need of poison resistant catalysts or prior LPG desulfurizer. In fact, any level of sulphur in LPG is accepted for our non-catalytic reformer based on high-voltage discharges (called GlidArc). The discharges catalytically assist the exothermic partial oxidation process. Electric power assistance is less than 2% of the Lower Heating Value (LHV) of produced SynGas. Recycling such a small portion of the energy is therefore an acceptable compromise. The unique oxidant source is air. This contribution presents our expanded tests with commercial LPG in a 1-L reactor working at atmospheric pressure. At a 0.1 kW electric power assistance we produce a Nitrogen-diluted SynGas containing up to 45% of H 2 +CO at the output flow rate corresponding up to 2.7 m 3 (n)/h of pure H 2 +CO mixture that is equivalent to LHV output power of 8.6 kW. The LPG is totally reformed at more than 70% energetic efficiency and at the total absence of soot. (author)

  15. Synthesis and application of graphene–silver nanowires composite for ammonia gas sensing

    International Nuclear Information System (INIS)

    Tran, Quang Trung; Huynh, Tran My Hoa; Tong, Duc Tai; Tran, Van Tam; Nguyen, Nang Dinh

    2013-01-01

    Graphene, consisting of a single carbon layer in a two-dimensional (2D) lattice, has been a promising material for application to nanoelectrical devices in recent years. In this study we report the development of a useful ammonia (NH 3 ) gas sensor based on graphene–silver nanowires ‘composite’ with planar electrode structure. The basic strategy involves three steps: (i) preparation of graphene oxide (GO) by modified Hummers method; (ii) synthesis of silver nanowires by polyol method; and (iii) preparation of graphene and silver nanowires on two electrodes using spin and spray-coating of precursor solutions, respectively. Exposure of this sensor to NH 3 induces a reversible resistance change at room temperature that is as large as ΔR/R 0 ∼ 28% and this sensitivity is eight times larger than the sensitivity of the ‘intrinsic’ graphene based NH 3 gas sensor (ΔR/R 0 ∼ 3,5%). Their responses and the recovery times go down to ∼200 and ∼60 s, respectively. Because graphene synthesized by chemical methods has many defects and small sheets, it cannot be perfectly used for gas sensor or for nanoelectrical devices. The silver nanowires are applied to play the role of small bridges connecting many graphene islands together to improve electrical properties of graphene/silver nanowires composite and result in higher NH 3 gas sensitivity. (paper)

  16. Preliminary study of synthesis gas production from water electrolysis, using the ELECTROFUEL® concept

    International Nuclear Information System (INIS)

    Guerra, L.; Gomes, J.; Puna, J.; Rodrigues, J.

    2015-01-01

    This paper describes preliminary work on the generation of synthesis gas from water electrolysis using graphite electrodes without the separation of the generated gases. This is an innovative process, that has no similar work been done earlier. Preliminary tests allowed to establish correlations between the applied current to the electrolyser and flow rate and composition of the generated syngas, as well as a characterisation of generated carbon nanoparticles. The obtained syngas can further be used to produce synthetic liquid fuels, for example, methane, methanol or DME (dimethyl ether) in a catalytic reactor, in further stages of a present ongoing project, using the ELECTROFUEL ® concept. The main competitive advantage of this project lies in the built-in of an innovative technology product, from RE (renewable energy) power in remote locations, for example, islands, villages in mountains as an alternative for energy storage for mobility constraints. - Highlights: • Generation of synthesis gas from water electrolysis without separation of gases. • Obtained syngas: 7.7% CO; 10.3% O 2 and 2.0% CO 2 . • Syngas can further be used to produce synthetic liquid fuels

  17. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Vernieres, Jerome, E-mail: Jerome.vernieres@oist.jp; Benelmekki, Maria; Kim, Jeong-Hwan; Grammatikopoulos, Panagiotis; Diaz, Rosa E. [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Bobo, Jean-François [Centre d’Elaboration de Materiaux et d’Etudes Structurales (CEMES), 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4 (France); Sowwan, Mukhles, E-mail: Mukhles@oist.jp [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Nanotechnology Research Laboratory, Al-Quds University, P.O. Box 51000, East Jerusalem, Palestine (Country Unknown)

    2014-11-01

    Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO{sub 3} phase) and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g) and low coercivity (less than 20 Oe) at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  18. Development of a natural Gas Systems Analysis Model (GSAM)

    International Nuclear Information System (INIS)

    Godec, M.; Haas, M.; Pepper, W.; Rose, J.

    1993-01-01

    Recent dramatic changes in natural gas markets have significant implications for the scope and direction of DOE's upstream as well as downstream natural gas R ampersand D. Open access transportation changes the way gas is bought and sold. The end of the gas deliverability surplus requires increased reserve development above recent levels. Increased gas demand for power generation and other new uses changes the overall demand picture in terms of volumes, locations and seasonality. DOE's Natural Gas Strategic Plan requires that its R ampersand D activities be evaluated for their ability to provide adequate supplies of reasonably priced gas. Potential R ampersand D projects are to be evaluated using a full fuel cycle, benefit-cost approach to estimate likely market impact as well as technical success. To assure R ampersand D projects are evaluated on a comparable basis, METC has undertaken the development of a comprehensive natural gas technology evaluation framework. Existing energy systems models lack the level of detail required to estimate the impact of specific upstream natural gas technologies across the known range of geological settings and likely market conditions. Gas Systems Analysis Model (GSAM) research during FY 1993 developed and implemented this comprehensive, consistent natural gas system evaluation framework. Rather than a isolated research activity, however, GSAM represents the integration of many prior and ongoing natural gas research efforts. When complete, it will incorporate the most current resource base description, reservoir modeling, technology characterization and other geologic and engineering aspects developed through recent METC and industry gas R ampersand D programs

  19. Gas replacement system for fuel cell. Nenryo denchi no gas chikan hoshiki

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T

    1990-02-14

    When stopping the operation of a fuel cell, the gas in the reaction gas system is purged using such an inert gas as nitrogen for inactivation. A gas source such as inert gas bomb must be prepared beforehand for the purpose. This invention relates to a method of production of inert gas from the air collected from atmosphere to use it as the purge gas. The air collected from the atmosphere is passed through an oxygen remover filled with oxidation catalyst to remove oxygen, and dehumidified by a dehumidifier filled with drying agent, the obtained inert drying gas with nitrogen as the main constituent being used as the purge gas. Copper system catalyst supported by silica is used as the oxidation catalyst, and silica gel as the drying agent. After the operation of the fuel cell is re-started, a part of the high temperature fuel gas extracted from the reaction gas system is introduced to the oxygen remover for the reduction of oxidation catalyst and for heat regeneration of dehumidifying agent by the contained hydrogen. 1 fig.

  20. Maintenance management of gas turbine power plant systems ...

    African Journals Online (AJOL)

    Given the abundant availability of gas and the significant installed capacity of the electricity from Gas Turbine Power Systems; effective maintenance of Gas Turbine Power Plants in Nigeria could be the panacea for achieving regular power generation and supply. The study identified environmental impact on the machines, ...

  1. Power to Fuels: Dynamic Modeling of a Slurry Bubble Column Reactor in Lab-Scale for Fischer Tropsch Synthesis under Variable Load of Synthesis Gas

    Directory of Open Access Journals (Sweden)

    Siavash Seyednejadian

    2018-03-01

    Full Text Available This research developed a comprehensive computer model for a lab-scale Slurry Bubble Column Reactor (SBCR (0.1 m Dt and 2.5 m height for Fischer–Tropsch (FT synthesis under flexible operation of synthesis gas load flow rates. The variable loads of synthesis gas are set at 3.5, 5, 7.5 m3/h based on laboratory adjustments at three different operating temperatures (483, 493 and 503 K. A set of Partial Differential Equations (PDEs in the form of mass transfer and chemical reaction are successfully coupled to predict the behavior of all the FT components in two phases (gas and liquid over the reactor bed. In the gas phase, a single-bubble-class-diameter (SBCD is adopted and the reduction of superficial gas velocity through the reactor length is incorporated into the model by the overall mass balance. Anderson Schulz Flory distribution is employed for reaction kinetics. The modeling results are in good agreement with experimental data. The results of dynamic modeling show that the steady state condition is attained within 10 min from start-up. Furthermore, they show that step-wise syngas flow rate does not have a detrimental influence on FT product selectivity and the dynamic modeling of the slurry reactor responds quite well to the load change conditions.

  2. Instrumentation of dynamic gas pulse loading system

    Energy Technology Data Exchange (ETDEWEB)

    Mohaupt, H.

    1992-04-14

    The overall goal of this work is to further develop and field test a system of stimulating oil and gas wells, which increases the effective radius of the well bore so that more oil can flow into it, by recording pressure during the gas generation phase in real time so that fractures can be induced more predictably in the producing formation. Task 1: Complete the laboratory studies currently underway with the prototype model of the instrumentation currently being studied. Task 2: Perform field tests of the model in the Taft/Bakersfield area, utilizing operations closest to the engineers working on the project, and optimize the unit for various conditions encountered there. Task 3: Perform field test of the model in DGPL jobs which are scheduled in the mid-continent area, and optimize the unit for downhole conditions encountered there. Task 4: Analyze and summarize the results achieved during the complete test series, documenting the steps for usage of downhole instrumentation in the field, and compile data specifying use of the technology by others. Task 5: Prepare final report for DOE, and include also a report on the field tests completed. Describe and estimate the probability of the technology being commercialized and in what time span. The project has made substantial technical progress, though we are running about a month behind schedule. Expenditures are in line with the schedule. Increased widespread interest in the use of DGPL stimulation has kept us very busy. The computer modeling and test instrumentation developed under this program is already being applied to commercial operations.

  3. Catalytic and Noncatalytic Conversion of Methane to Olefins and Synthesis Gas in an AC Parallel Plate Discharge Reactor

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Khodagholi

    2013-01-01

    Full Text Available Direct conversion of methane to ethylene, acetylene, and synthesis gas at ambient pressure and temperature in a parallel plate discharge reactor was investigated. The experiments were carried out using a quartz reactor of outer diameter of 9 millimeter and a driving force of ac current of 50 Hz. The input power to the reactor to establish a stable gas discharge varied from 9.6 to maximum 15.3 watts (w. The effects of ZSM5, Fe–ZSM5, and Ni–ZSM5 catalysts combined with corona discharge for conversion of methane to more valued products have been addressed. It was found that in presence or absence of a catalyst in gas discharge reactor, the rate of methane and oxygen conversion increased upon higher input power supplied to the reactor. The effect of Fe–ZSM5 catalyst combined with gas discharge plasma yields C2 hydrocarbons up to 21.9%, which is the highest productions of C2 hydrocarbons in this work. The effect of combined Ni–ZSM5 and gas discharge plasma was mainly production of synthesis gas. The advantage of introducing ZSM5 to the plasma zone was increase in synthesis gas and acetylene production. The highest energy efficiency was 0.22 mmol/kJ, which belongs to lower rate of energy injection to the reactor.

  4. System and method for producing substitute natural gas from coal

    Science.gov (United States)

    Hobbs, Raymond [Avondale, AZ

    2012-08-07

    The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

  5. Gas stream cleaning system and method

    Science.gov (United States)

    Kunchal, S. Kumar; Erck, Louis J.; Harris, Harry A.

    1979-04-13

    An oil mist and solid particle laden gas from an oil shale retorting operation is initially treated with a temperature controlled oil spray and then by a coalescer to reduce the quantity of oil mist and remove most of the solid particle content of the gas stream and then finally treated by an electrostatic precipitator to essentially remove the oil mist remaining in the gas.

  6. The AutoBayes Program Synthesis System: System Description

    Science.gov (United States)

    Fischer, Bernd; Pressburger, Thomas; Rosu, Grigore; Schumann, Johann; Norvog, Peter (Technical Monitor)

    2001-01-01

    AUTOBAYES is a fully automatic program synthesis system for the statistical data analysis domain. Its input is a concise description of a data analysis problem in the form of a statistical model; its output is optimized and fully documented C/C++ code which can be linked dynamically into the Matlab and Octave environments. AUTOBAYES synthesizes code by a schema-guided deductive process. Schemas (i.e., code templates with associated semantic constraints) are applied to the original problem and recursively to emerging subproblems. AUTOBAYES complements this approach by symbolic computation to derive closed-form solutions whenever possible. In this paper, we concentrate on the interaction between the symbolic computations and the deductive synthesis process. A statistical model specifies for each problem variable (i.e., data or parameter) its properties and dependencies in the form of a probability distribution, A typical data analysis task is to estimate the best possible parameter values from the given observations or measurements. The following example models normal-distributed data but takes prior information (e.g., from previous experiments) on the data's mean value and variance into account.

  7. NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-12-05

    Building upon the 1999 AD Little Study, an expanded market analysis was performed by GE Power Systems in 2001 to quantify the potential demand for an NGGT product. This analysis concluded that improvements to the US energy situation might be best served in the near/mid term (2002-2009) by a ''Technology-Focused'' program rather than a specific ''Product-Focused'' program. Within this new program focus, GEPS performed a parametric screening study of options in the three broad candidate categories of gas turbines: aero-derivative, heavy duty, and a potential hybrid combining components of the other two categories. GEPS's goal was to determine the best candidate systems that could achieve the DOE PRDA expectations and GEPS's internal design criteria in the period specified for initial product introduction, circa 2005. Performance feasibility studies were conducted on candidate systems selected in the screening task, and critical technology areas were identified where further development would be required to meet the program goals. DOE PRDA operating parameters were found to be achievable by 2005 through evolutionary technology. As a result, the study was re-directed toward technology enhancements for interim product introductions and advanced/revolutionary technology for potential NGGT product configurations. Candidate technologies were identified, both evolutionary and revolutionary, with a potential for possible development products via growth step improvements. Benefits were analyzed from two perspectives: (1) What would be the attributes of the top candidate system assuming the relevant technologies were developed and available for an NGGT market opportunity in 2009/2010; and (2) What would be the expected level of public benefit, assuming relevant technologies were incorporated into existing new and current field products as they became available. Candidate systems incorporating these technologies were assessed as

  8. Characterization and calibration of gas sensor systems at ppb level—a versatile test gas generation system

    Science.gov (United States)

    Leidinger, Martin; Schultealbert, Caroline; Neu, Julian; Schütze, Andreas; Sauerwald, Tilman

    2018-01-01

    This article presents a test gas generation system designed to generate ppb level gas concentrations from gas cylinders. The focus is on permanent gases and volatile organic compounds (VOCs) for applications like indoor and outdoor air quality monitoring or breath analysis. In the design and the setup of the system, several issues regarding handling of trace gas concentrations have been considered, addressed and tested. This concerns not only the active fluidic components (flow controllers, valves), which have been chosen specifically for the task, but also the design of the fluidic tubing regarding dead volumes and delay times, which have been simulated for the chosen setup. Different tubing materials have been tested for their adsorption/desorption characteristics regarding naphthalene, a highly relevant gas for indoor air quality monitoring, which has generated high gas exchange times in a previous gas mixing system due to long time adsorption/desorption effects. Residual gas contaminations of the system and the selected carrier air supply have been detected and quantified using both an analytical method (GC-MS analysis according to ISO 16000-6) and a metal oxide semiconductor gas sensor, which detected a maximum contamination equivalent to 28 ppb of carbon monoxide. A measurement strategy for suppressing even this contamination has been devised, which allows the system to be used for gas sensor and gas sensor system characterization and calibration in the low ppb concentration range.

  9. Partial catalytic oxidation of CH{sub 4} to synthesis gas for power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Schneider, A.

    2006-03-15

    The partial oxidation of methane to synthesis gas over rhodium catalysts has been investigated experimentally and numerically in the pressure range of 4 to 10 bar. The methane/oxidizer feed has been diluted with large amounts of H{sub 2}O and CO{sub 2} (up to 70% vol.) in order to simulate new power generation cycles with large exhaust gas recycle. Experiments were carried out in an optically accessible channel-flow reactor that facilitated laser-based in situ measurements, and also in a subscale gas-turbine catalytic reactor. Full-elliptic steady and transient two-dimensional numerical codes were used, which included elementary hetero-/homogeneous chemical reaction schemes. The following are the key conclusions: a) Heterogeneous (catalytic) and homogeneous (gas-phase) schemes have been validated for the partial catalytic oxidation of methane with large exhaust gas recycle. b) The impact of added H{sub 2}O and CO{sub 2} has been elucidated. The added H{sub 2}O increased the methane conversion and hydrogen selectivity, while it decreased the CO selectivity. The chemical impact of CO{sub 2} (dry reforming) was minimal. c) The numerical model reproduced the measured catalytic ignition times. It was further shown that the chemical impact of H{sub 2}O and CO{sub 2} on the catalytic ignition delay times was minimal. d) The noble metal dispersion increased with different support materials, in the order Rh/{alpha}-Al{sub 2}O{sub 3}, Rh/ZrO{sub 2}, and Rh/Ce-ZrO{sub 2}. An evident relationship was established between the noble metal dispersion and the catalytic behavior. (authors)

  10. Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas

    NARCIS (Netherlands)

    Oschatz, M; van Deelen, T W; Weber, J L; Lamme, W S; Wang, G; Goderis, B; Verkinderen, O; Dugulan, A I; de Jong, K P

    2016-01-01

    Lower C2–C4 olefins are important commodity chemicals usually produced by steam cracking of naphtha or fluid catalytic cracking of vacuum gas oil. The Fischer–Tropsch synthesis of lower olefins (FTO) with iron-based catalysts uses synthesis gas as an alternative feedstock. Nanostructured carbon

  11. Moderate temperature gas purification system: Application to high calorific coal-derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M.; Shirai, H.; Nunokawa, M. [Central Research Institute of Electric Power Industry, Kanagawa (Japan)

    2008-01-15

    Simultaneous removal of dust, alkaline and alkaline-earth metals, halides and sulfur compounds is required to enlarge application of coal-derived gas to the high-temperature fuel cells and the fuel synthesis through chemical processing. Because high calorific fuel gas, such as oxygen-blown coal gas, has high carbon monoxide content, high-temperature (above 450{sup o}C) gas purification system is always subjected to the carbon deposition. We suggest moderate temperature (around 300{sup o}C) operation of the gas purification system to avoid the harmful disproportionation reaction and efficient removal of the various contaminants. Because the reaction rate is predominant to the performance of contaminant removal in the moderate temperature gas purification system, we evaluated the chemical removal processes; performance of the removal processes for halides and sulfur compounds was experimentally evaluated. The halide removal process with sodium aluminate sorbent had potential performance at around 300{sup o}C. The sulfur removal process with zinc ferrite sorbent was also applicable to the temperature range, though the reaction kinetics of the sorbent is essential to be approved.

  12. Moderate temperature gas purification system: application to high calorific coal derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    M. Kobayashi; H. Shirai; M. Nunokawa [Central Research Institute of Electric Power Industry (CRIEPI), Kanagawa (Japan)

    2005-07-01

    Simultaneous removal of dust, alkaline and alkaline-earth metals, halides and sulfur compounds is required to enlarge application of coal-derived gas to the high temperature fuel cells and the fuel synthesis through chemical processing. Because high calorific fuel gas, such as oxygen-blown coal gas, has high carbon monoxide content, high temperature gas purification system is always subjected to the carbon deposition and slippage of contaminant of high vapor pressure. It was suggested that moderate temperature operation of the gas purification system is applied to avoid the harmful disproportionation reaction and efficient removal of the various contaminants. To establish the moderate temperature gas purification system, the chemical-removal processes where the reaction rate is predominant to the performance of contaminant removal should be evaluated. Performance of the removal processes for halides and sulfur compounds were experimentally evaluated. The halide removal process with sodium based sorbent had potential good performance at around 300{sup o}C. The sulfur removal process was also applicable to the temperature range, although the improvement of the sulfidation reaction rate is considered to be essential. 11 refs., 8 figs., 1 tab.

  13. Hydrothermal synthesis of h-MoO3 microrods and their gas sensing properties to ethanol

    International Nuclear Information System (INIS)

    Liu, Yueli; Yang, Shuang; Lu, Yu; Podval’naya, Natal’ya V.; Chen, Wen; Zakharova, Galina S.

    2015-01-01

    Highlights: • A simple hydrothermal acid-free method for the synthesis of h-MoO 3 microrods with the hexagonal cross-section is reported. • The h-MoO 3 phase is transformed to α-MoO 3 at 439 °C. • The h-MoO 3 microrods were employed to fabricate gas sensors to detect ethanol. • Sensor showed highest response with a sensitivity of 8.24–500 ppm C 2 H 5 OH at operating temperature of 332 °C. - Abstract: Hexagonal molybdenum trioxide (h-MoO 3 ) microrods were successfully synthesized via a novel and facile hydrothermal route from peroxomolybdate solution with the presence of NH 4 Cl as the mineralizer. A variety of the techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry combined with the thermal gravimetric analysis (DSC–TG) were used to characterize the product. The gas sensing test indicates that h-MoO 3 microrods have a good response to 5–500 ppm ethanol in the range of 273–380 °C, and the optimum operating temperature is 332 °C with a high sensitivity of 8.24 to 500 ppm ethanol. Moreover, it also has a good selectivity toward ethanol gas if compared with other gases, such as ammonia, methanol and toluene. The sensing mechanism of h-MoO 3 microrods to ethanol was also discussed.

  14. Schedulability-Driven Communication Synthesis for Time Triggered Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    1999-01-01

    We present an approach to static priority preemptive process scheduling for the synthesis of hard real-time distributed embedded systems where communication plays an important role. The communication model is based on a time-triggered protocol. We have developed an analysis for the communication...... delays proposing four different message scheduling policies over a time-triggered communication channel. Optimization strategies for the synthesis of communication are developed, and the four approaches to message scheduling are compared using extensive experiments....

  15. Schedulability-Driven Communication Synthesis for Time Triggered Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2004-01-01

    We present an approach to static priority preemptive process scheduling for the synthesis of hard real-time distributed embedded systems where communication plays an important role. The communication model is based on a time-triggered protocol. We have developed an analysis for the communication...... delays with four different message scheduling policies over a time-triggered communication channel. Optimization strategies for the synthesis of communication are developed, and the four approaches to message scheduling are compared using extensive experiments....

  16. Schedulability-Driven Communication Synthesis for Time Triggered Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2006-01-01

    We present an approach to static priority preemptive process scheduling for the synthesis of hard real-time distributed embedded systems where communication plays an important role. The communication model is based on a time-triggered protocol. We have developed an analysis for the communication...... delays proposing four different message scheduling policies over a time-triggered communication channel. Optimization strategies for the synthesis of communication are developed, and the four approaches to message scheduling are compared using extensive experiments...

  17. The Synthesis of Intelligent Real-Time Systems

    Science.gov (United States)

    1990-11-09

    Synthesis of Intelligent Real - Time Systems . The purpose of the effort was to develop and extend theories and techniques that facilitate the design and...implementation of intelligent real - time systems . In particular, Teleos has extended situated-automata theory to apply to situations in which the system has

  18. Lutetium-177 DOTATATE Production with an Automated Radiopharmaceutical Synthesis System.

    Science.gov (United States)

    Aslani, Alireza; Snowdon, Graeme M; Bailey, Dale L; Schembri, Geoffrey P; Bailey, Elizabeth A; Pavlakis, Nick; Roach, Paul J

    2015-01-01

    Peptide Receptor Radionuclide Therapy (PRRT) with yttrium-90 ((90)Y) and lutetium-177 ((177)Lu)-labelled SST analogues are now therapy option for patients who have failed to respond to conventional medical therapy. In-house production with automated PRRT synthesis systems have clear advantages over manual methods resulting in increasing use in hospital-based radiopharmacies. We report on our one year experience with an automated radiopharmaceutical synthesis system. All syntheses were carried out using the Eckert & Ziegler Eurotope's Modular-Lab Pharm Tracer® automated synthesis system. All materials and methods used were followed as instructed by the manufacturer of the system (Eckert & Ziegler Eurotope, Berlin, Germany). Sterile, GMP-certified, no-carrier added (NCA) (177)Lu was used with GMP-certified peptide. An audit trail was also produced and saved by the system. The quality of the final product was assessed after each synthesis by ITLC-SG and HPLC methods. A total of 17 [(177)Lu]-DOTATATE syntheses were performed between August 2013 and December 2014. The amount of radioactive [(177)Lu]-DOTATATE produced by each synthesis varied between 10-40 GBq and was dependant on the number of patients being treated on a given day. Thirteen individuals received a total of 37 individual treatment administrations in this period. There were no issues and failures with the system or the synthesis cassettes. The average radiochemical purity as determined by ITLC was above 99% (99.8 ± 0.05%) and the average radiochemical purity as determined by HPLC technique was above 97% (97.3 ± 1.5%) for this period. The automated synthesis of [(177)Lu]-DOTATATE using Eckert & Ziegler Eurotope's Modular-Lab Pharm Tracer® system is a robust, convenient and high yield approach to the radiolabelling of DOTATATE peptide benefiting from the use of NCA (177)Lu and almost negligible radiation exposure of the operators.

  19. Long life gas laser system and method

    International Nuclear Information System (INIS)

    Hochuli, E.E.

    1975-01-01

    A long life gas discharge laser having an improved self-repairing cathode system is described. In a specific embodiment, water vapor having a partial pressure below about 10 -5 torr incorporated in a molecular sieve is used to provide impurities (in this case water vapor) for repairing the cathode surface by regenerating the oxide surface and/or preventing same from deteriorating. Other impurities may be incorporated in the molecular sieve such as hydrogen, oxygen, for example. In some cases CO 2 may be used. This application includes material disclosed in a paper entitled ''Continuation of the Investigation into Material Properties Affecting the Frequency Stability and Reliability of He-Ne Laser Structures'' submitted to the Office of Naval Research dated June 1972 by the inventor hereof and also a paper entitled ''Investigations of the Long Term Frequency Stability of Stable Laser Structures'' Progress Report for ONR Contract N00014-67-A-D239-0016 July 1972 by the inventor hereof. A royalty free license is hereby granted to the United States for use of the invention for all government purposes. (auth)

  20. Thermal oxidation vitrification flue gas elimination system

    International Nuclear Information System (INIS)

    Kephart, W.; Angelo, F.; Clemens, M.

    1995-01-01

    With minor modifications to a Best Demonstrated Available Technology hazardous waste incinerator, it is possible to obtain combustion without potentially toxic emissions by using technology currently employed in similar applications throughout industry. Further, these same modifications will reduce waste handling over an extended operating envelope while minimizing energy consumption. Three by-products are produced: industrial grade carbon dioxide, nitrogen, and a final waste form that will exceed Toxicity Characteristics Leaching Procedures requirements and satisfy nuclear waste product consistency tests. The proposed system utilizes oxygen rather than air as an oxidant to reduce the quantities of total emissions, improve the efficiency of the oxidation reactions, and minimize the generation of toxic NO x emissions. Not only will less potentially hazardous constituents be generated; all toxic substances can be contained and the primary emission, carbon dioxide -- the leading ''greenhouse gas'' contributing to global warming -- will be converted to an industrial by-product needed to enhance the extraction of energy feedstocks from maturing wells. Clearly, the proposed configuration conforms to the provisions for Most Achievable Control Technology as defined and mandated for the private sector by the Clear Air Act Amendments of 1990 to be implemented in 1997 and still lacking definition

  1. Analysis of a multicomponent gas absorption system with carrier gas coabsorption

    International Nuclear Information System (INIS)

    Merriman, J.R.

    1975-03-01

    Conventional integrated versions of the packed gas absorber design equations do not account for significant coabsorption of the carrier gas along with the dilute transferring species. These equations, as a result, also neglect the relationship between dilute component transfer and carrier gas coabsorption. In the absorption of Kr and Xe from various carrier gases, using CCl 2 F 2 as the process solvent, carrier coabsorption is substantial. Consequently, a design package was developed to deal with multicomponent gas absorption in systems characterized by carrier gas coabsorption. Developed within the general film theory framework, the basic feature of this design approach is a view of dilute component mass-transfer as a conventional diffusive transfer superimposed on a net flux caused by carrier absorption. Other supporting elements of the design package include predictive techniques for various fluid properties, estimating procedures for carrier gas equilibrium constants, and correlations for carrier gas and dilute gas mass-transfer coefficients. When applied to systems using CCl 2 F 2 as the solvent; He, N 2 , air, or Ar as the carrier gas; and Kr or Xe as the dilute gas; the design approach gave good results, even when extended to conditions well beyond those of its development. (U.S.)

  2. Process and system for removing impurities from a gas

    Science.gov (United States)

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  3. National Gas Hydrate Program Expedition 01 offshore India; gas hydrate systems as revealed by hydrocarbon gas geochemistry

    Science.gov (United States)

    Lorenson, Thomas; Collett, Timothy S.

    2018-01-01

    The National Gas Hydrate Program Expedition 01 (NGHP-01) targeted gas hydrate accumulations offshore of the Indian Peninsula and along the Andaman convergent margin. The primary objectives of coring were to understand the geologic and geochemical controls on the accumulation of methane hydrate and their linkages to underlying petroleum systems. Four areas were investigated: 1) the Kerala-Konkan Basin in the eastern Arabian Sea, 2) the Mahanadi and 3) Krishna-Godavari Basins in the western Bay of Bengal, and 4) the Andaman forearc Basin in the Andaman Sea.Upward flux of methane at three of the four of the sites cored during NGHP-01 is apparent from the presence of seafloor mounds, seismic evidence for upward gas migration, shallow sub-seafloor geochemical evidence of methane oxidation, and near-seafloor gas composition that resembles gas from depth.The Kerala-Konkan Basin well contained only CO2 with no detectable hydrocarbons suggesting there is no gas hydrate system here. Gas and gas hydrate from the Krishna-Godavari Basin is mainly microbial methane with δ13C values ranging from −58.9 to −78.9‰, with small contributions from microbial ethane (−52.1‰) and CO2. Gas from the Mahanadi Basin was mainly methane with lower concentrations of C2-C5 hydrocarbons (C1/C2 ratios typically >1000) and CO2. Carbon isotopic compositions that ranged from −70.7 to −86.6‰ for methane and −62.9 to −63.7‰ for ethane are consistent with a microbial gas source; however deeper cores contained higher molecular weight hydrocarbon gases suggesting a small contribution from a thermogenic gas source. Gas composition in the Andaman Basin was mainly methane with lower concentrations of ethane to isopentane and CO2, C1/C2 ratios were mainly >1000 although deeper samples were compositions range from −65.2 to −80.7‰ for methane, −53.1 to −55.2‰ for ethane is consistent with mainly microbial gas sources, although one value recorded of −35.4‰ for propane

  4. Electrical swing adsorption gas storage and delivery system

    Science.gov (United States)

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-01-01

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

  5. Evaluation of the LMFBR cover gas source term and synthesis of the associated R and D

    International Nuclear Information System (INIS)

    Balard, F.; Carluec, B.

    1996-01-01

    K, Germany), sodium aerosols formation in the cover gas (UK, Japan, France), fuel degassing (Mignanelli synthesis, UK). (author)

  6. Synthesis, fractionation, and thin film processing of nanoparticles using the tunable solvent properties of carbon dioxide gas expanded liquids

    Science.gov (United States)

    Anand, Madhu

    Nanoparticles have received significant attention because of their unusual characteristics including high surface area to volume ratios. Materials built from nanoparticles possess unique chemical, physical, mechanical and optical properties. Due to these properties, they hold potential in application areas such as catalysts, sensors, semiconductors and optics. At the same time, CO 2 in the form of supercritical fluid or CO2 gas-expanded liquid mixtures has gained significant attention in the area of processing nanostructures. This dissertation focuses on the synthesis and processing of nanoparticles using CO2 tunable solvent systems. Nanoparticle properties depend heavily on their size and, as such, the ability to finely control the size and uniformity of nanoparticles is of utmost importance. Solution based nanoparticle formation techniques are attractive due to their simplicity, but they often result in the synthesis of particles with a wide size range. To address this limitation, a post-synthesis technique has been developed in this dissertation to fractionate polydisperse nanoparticles ( s . = 30%) into monodisperse fractions ( s . = 8%) using tunable physicochemical properties of CO 2 expanded liquids, where CO2 is employed as an antisolvent. This work demonstrates that by controlling the addition of CO2 (pressurization) to an organic dispersion of nanoparticles, the ligand stabilized nanoparticles can be size selectively precipitated within a novel high pressure apparatus that confines the particle precipitation to a specified location on a surface. Unlike current techniques, this CO2 expanded liquid approach provides faster and more efficient particle size separation, reduction in organic solvent usage, and pressure tunable size selection in a single process. To improve our fundamental understanding and to further refine the size separation process, a detailed study has been performed to identify the key parameters enabling size separation of various

  7. National Gas Hydrate Program Expedition 01 offshore India; gas hydrate systems as revealed by hydrocarbon gas geochemistry

    Science.gov (United States)

    Lorenson, Thomas; Collett, Timothy S.

    2018-01-01

    The National Gas Hydrate Program Expedition 01 (NGHP-01) targeted gas hydrate accumulations offshore of the Indian Peninsula and along the Andaman convergent margin. The primary objectives of coring were to understand the geologic and geochemical controls on the accumulation of methane hydrate and their linkages to underlying petroleum systems. Four areas were investigated: 1) the Kerala-Konkan Basin in the eastern Arabian Sea, 2) the Mahanadi and 3) Krishna-Godavari Basins in the western Bay of Bengal, and 4) the Andaman forearc Basin in the Andaman Sea.Upward flux of methane at three of the four of the sites cored during NGHP-01 is apparent from the presence of seafloor mounds, seismic evidence for upward gas migration, shallow sub-seafloor geochemical evidence of methane oxidation, and near-seafloor gas composition that resembles gas from depth.The Kerala-Konkan Basin well contained only CO2 with no detectable hydrocarbons suggesting there is no gas hydrate system here. Gas and gas hydrate from the Krishna-Godavari Basin is mainly microbial methane with δ13C values ranging from −58.9 to −78.9‰, with small contributions from microbial ethane (−52.1‰) and CO2. Gas from the Mahanadi Basin was mainly methane with lower concentrations of C2-C5 hydrocarbons (C1/C2 ratios typically >1000) and CO2. Carbon isotopic compositions that ranged from −70.7 to −86.6‰ for methane and −62.9 to −63.7‰ for ethane are consistent with a microbial gas source; however deeper cores contained higher molecular weight hydrocarbon gases suggesting a small contribution from a thermogenic gas source. Gas composition in the Andaman Basin was mainly methane with lower concentrations of ethane to isopentane and CO2, C1/C2 ratios were mainly >1000 although deeper samples were exploration and occurs in a forearc basin. Each of these hydrate-bearing systems overlies and is likely supported by the presence and possible migration of gas from deeper gas-prone petroleum

  8. Design Private Cloud of Oil and Gas SCADA System

    OpenAIRE

    Liu Miao; Mancang Yuan; Guodong Li

    2014-01-01

    SCADA (Supervisory Control and Data Acquisition) system is computer control system based on supervisory. SCADA system is very important to oil and gas pipeline engineering. Cloud computing is fundamentally altering the expectations for how and when computing, storage and networking resources should be allocated, managed and consumed. In order to increase resource utilization, reliability and availability of oil and gas pipeline SCADA system, the SCADA system based on cloud computing is propos...

  9. Production of synthesis gas and methane via coal gasification utilizing nuclear heat

    International Nuclear Information System (INIS)

    van Heek, K.H.; Juentgen, H.

    1982-01-01

    The steam gasificaton of coal requires a large amount of energy for endothermic gasification, as well as for production and heating of the steam and for electricity generation. In hydrogasification processes, heat is required primarily for the production of hydrogen and for preheating the reactants. Current developments in nuclear energy enable a gas cooled high temperature nuclear reactor (HTR) to be the energy source, the heat produced being withdrawn from the system by means of a helium loop. There is a prospect of converting coal, in optimal yield, into a commercial gas by employing the process heat from a gas-cooled HTR. The advantages of this process are: (1) conservation of coal reserves via more efficient gas production; (2) because of this coal conservation, there are lower emissions, especially of CO 2 , but also of dust, SO 2 , NO/sub x/, and other harmful substances; (3) process engineering advantages, such as omission of an oxygen plant and reduction in the number of gas scrubbers; (4) lower gas manufacturing costs compared to conventional processes. The main problems involved in using nuclear energy for the industrial gasification of coal are: (1) development of HTRs with helium outlet temperatures of at least 950 0 C; (2) heat transfer from the core of the reactor to the gas generator, methane reforming oven, or heater for the hydrogenation gas; (3) development of a suitable allothermal gas generator for the steam gasification; and (4) development of a helium-heated methane reforming oven and adaption of the hydrogasification process for operation in combination with the reactor. In summary, processes for gasifying coal that employ heat from an HTR have good economic and technical prospects of being realized in the future. However, time will be required for research and development before industrial application can take place. 23 figures, 4 tables. (DP)

  10. Natural gas markets and the creation of an export gas pipeline system in Eastern Russia

    International Nuclear Information System (INIS)

    Saneev, B.G.; Sokolov, A.D.; Popov, S.P.

    2003-01-01

    The world natural gas markets are analysed, with a special focus on the countries of Northeast Asia (NEA). The natural gas demands of China, Japan and South Korea, until the year 2020, is projected, considering a possible share of Russian gas. The resource potential of natural gas from the Siberian platform and the Sakhalin shelf is given as a sound basis for fuelling Russia's position in the natural gas market of NEA countries. Development of the powerful gas industry in the East of Russia faces some particular conditions that can decrease the effectiveness of investments. The eastern geopolitical direction is very important for Russia and the necessity to create a favourable political and economic environment for oil and gas export is of prime interest, as stressed in Energy Strategy for Russia till the Year 2020. In this context, the long-term market for natural gas in East Siberia and the Far East of Russia is investigated. Possible routes of natural gas export from Russia to NEA countries include three main directions: to the west of China with connection to the 'West-East gas pipeline', a route through and/or round Mongolia and, finally, a route along the Trans-Siberian or Baikal-Amur railroads to Russian ports in the Far East. As a result of complex studies, three stages in the creation of the unified gas pipeline system are suggested. Evaluation of the investments required for construction of such a natural gas pipeline system, expected gas volumes and prices on the markets show its high economic efficiency. In conclusion, the most valuable ideas are stressed. (author)

  11. 78 FR 28837 - Acadian Gas Pipeline System; Notice of Petition

    Science.gov (United States)

    2013-05-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-129-001] Acadian Gas Pipeline System; Notice of Petition Take notice that on May 6, 2013, Acadian Gas Pipeline System (Acadian... concerns filed in the September 26, 2011 filing, as more fully detailed in the petition. Any person...

  12. Simple gas chromatographic system for analysis of microbial respiratory gases

    Science.gov (United States)

    Carle, G. C.

    1972-01-01

    Dual column ambient temperature system, consisting of pair of capillary columns, microbead thermistor detector and micro gas-sampling valve, is used in remote life-detection equipment for space experiments. Performance outweighs advantage gained by utilizing single-column systems to reduce weight, conserve carrier gas and operate at lower power levels.

  13. New Commodity Services System increases gas bill for clients

    International Nuclear Information System (INIS)

    Koevoet, H.

    2003-01-01

    The Dutch company Gasunie Trade and Supply will replace the Commodity Services System (CDS, abbreviated in Dutch) January 1, 2004. This will result in a higher gas bill for almost all their clients that are expected to use more than 1 million m 3 natural gas per year. An overview is given of the principles of the old and the new pricing system [nl

  14. Determination of gas volume trapped in a closed fluid system

    Science.gov (United States)

    Hunter, W. F.; Jolley, J. E.

    1971-01-01

    Technique involves extracting known volume of fluid and measuring system before and after extraction, volume of entrapped gas is then computed. Formula derived from ideal gas laws is basis of this method. Technique is applicable to thermodynamic cycles and hydraulic systems.

  15. Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-03-01

    Full Text Available and Actuators B: Chemical Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment Z.P. Tshabalalaa,b, D.E. Motaunga,∗, G.H. Mhlongoa,∗, O.M. Ntwaeaborwab,∗ a DST/CSIR, National Centre...

  16. Ambient temperature aqueous synthesis of ultrasmall copper doped ceria nanocrystals for the water gas shift and carbon monoxide oxidation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Curran, Christopher D. [Department of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem; USA; Lu, Li [Department of Materials Science and Engineering; Lehigh University; Bethlehem; USA; Kiely, Christopher J. [Department of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem; USA; Department of Materials Science and Engineering; McIntosh, Steven [Department of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem; USA

    2018-01-01

    Ultra-small CuxCe1-xO2-δnanocrystals were prepared through a room temperature, aqueous synthesis method, achieving high copper doping and low water gas shift activation energy.

  17. Effect of surface composition of yttrium-stabilized zirconia on partial oxidation of methane to synthesis gas.

    NARCIS (Netherlands)

    Zhu, J.J.; van Ommen, J.G.; Knoester, A.; Lefferts, Leonardus

    2005-01-01

    Catalytic partial oxidation of methane to synthesis gas (CPOM) over yttrium-stabilized zirconia (YSZ) was studied within a wide temperature window (500¿1100 °C). The catalysts were characterized by X-ray fluorescence (XRF) and low-energy ion scattering (LEIS). The influence of calcination

  18. The performance of a thermophilic microbial fuel cell fed with synthesis gas.

    Science.gov (United States)

    Hussain, A; Mehta, P; Raghavan, V; Wang, H; Guiot, S R; Tartakovsky, B

    2012-08-10

    This study demonstrated electricity generation in a thermophilic microbial fuel cell (MFC) operated on synthesis gas (syngas) as the sole electron donor. At 50°C, a volumetric power output of 30-35 mWL(R)(-1) and a syngas conversion efficiency of 87-98% was achieved. The observed pathway of syngas conversion to electricity primarily consisted of a two-step process, where the carbon monoxide and hydrogen were first converted to acetate, which was then consumed by the anodophilic bacteria to produce electricity. A denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rDNA revealed the presence of Geobacter species, Acetobacter, methanogens and several uncultured bacteria and archaea in the anodic chamber. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  19. Synthesis and integration of one-dimensional nanostructures for chemical gas sensing applications

    Science.gov (United States)

    Parthangal, Prahalad Madhavan

    The need for improved measurement technology for the detection and monitoring of gases has increased tremendously for maintenance of domestic and industrial health and safety, environmental surveys, national security, food-processing, medical diagnostics and various other industrial applications. Among the several varieties of gas sensors available in the market, solid-state sensors are the most popular owing to their excellent sensitivity, ruggedness, versatility and low cost. Semiconducting metal oxides such as tin oxide (SnO2), zinc oxide (ZnO), and tungsten oxide (WO3) are routinely employed as active materials in these sensors. Since their performance is directly linked to the exposed surface area of the sensing material, one-dimensional nanostructures possessing very high surface to volume ratios are attractive candidates for designing the next generation of sensors. Such nano-sensors also enable miniaturization thereby reducing power consumption. The key to achieve success in one-dimensional nanotechnologies lies in assembly. While synthesis techniques and capabilities continue to expand rapidly, progress in controlled assembly has been sluggish due to numerous technical challenges. In this doctoral thesis work, synthesis and characterization of various one-dimensional nanostructures including nanotubes of SnO2, and nanowires of WO3 and ZnO, as well as their direct integration into miniature sensor platforms called microhotplates have been demonstrated. The key highlights of this research include devising elegant strategies for growing metal oxide nanotubes using carbon nanotubes as templates, substantially reducing process temperatures to enable growth of WO3 nanowires on microhotplates, and successfully fabricating a ZnO nanowire array based sensor using a hybrid nanowire-nanoparticle assembly approach. In every process, the gas-sensing properties of one-dimensional nanostructures were observed to be far superior in comparison with thin films of the same

  20. Development of a Gas Systems Analysis Model (GSAM)

    International Nuclear Information System (INIS)

    Becker, A.B.; Pepper, W.J.

    1995-01-01

    Objective of developing this model (GSAM) is to create a comprehensive, nonproprietary, PC-based model of domestic gas industry activity. The system can assess impacts of various changes in the natural gas system in North America; individual and collective impacts due to changes in technology and economic conditions are explicitly modeled in GSAM. Major gas resources are all modeled, including conventional, tight, Devonian Shale, coalbed methane, and low-quality gas sources. The modeling system assesses all key components of the gas industry, including available resources, exploration, drilling, completion, production, and processing practices. Distribution, storage, and utilization of natural gas in a dynamic market-gased analytical structure is assessed. GSAM is designed to provide METC managers with a tool to project impacts of future research, development, and demonstration benefits

  1. Steelmaking gas prediction system; Sistema de predicao de gas de aciaria

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Pedro Henrique Boaventura; Sampaio, William Genelhu [USIMINAS, Ipatinga, MG (Brazil)

    2011-12-21

    The Usiminas, Steelmaking Plant located in Ipatinga - MG, has the necessity to complement its energy matrix with additional fuel (oil derived from petroleum presently). Despite the high cost of this fuel, 24,3% of the LDG gas was wasted due to inadequate size of the LDG gas holder and the inappropriate tool to manage the distribution of the fuel. This paper presents how the Steelmaking Gas Prediction System was developed aiming to improve its management and other actions to increase the gas usage minimizing the matrix complementation. (author)

  2. Gas-phase laser synthesis of aggregation-free, size-controlled hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Bapat, Parimal V.; Kraft, Rebecca; Camata, Renato P.

    2012-01-01

    Nanophase hydroxyapatite (HA) is finding applications in many areas of biomedical research, including bone tissue engineering, drug delivery, and intracellular imaging. Details in chemical composition, crystal phase makeup, size, and shape of HA nanoparticles play important roles in achieving the favorable biological responses required in these applications. Most of the nanophase HA synthesis techniques involve solution-based methods that exhibit substantial aggregation of particles upon precipitation. Typically these methods also have limited control over the particle size and crystal phase composition. In this study, we describe the gas-phase synthesis of aggregation-free, size-controlled HA nanoparticles with mean size in the 20–70 nm range using laser ablation followed by aerosol electrical mobility classification. Nanoparticle deposits with adjustable number concentration were obtained on solid substrates. Particles were characterized by transmission electron microscopy, atomic force microscopy, and X-ray diffraction. Samples are well represented by log-normal size distributions with geometric standard deviation σ g ≈ 1.2. The most suitable conditions for HA nanoparticle formation at a laser fluence of 5 J/cm 2 were found to be a temperature of 800 °C and a partial pressure of water of 160 mbar.

  3. Controlled gas-liquid interfacial plasmas for synthesis of nano-bio-carbon conjugate materials

    Science.gov (United States)

    Kaneko, Toshiro; Hatakeyama, Rikizo

    2018-01-01

    Plasmas generated in contact with a liquid have been recognized to be a novel reactive field in nano-bio-carbon conjugate creation because several new chemical reactions have been yielded at the gas-liquid interface, which were induced by the physical dynamics of non-equilibrium plasmas. One is the ion irradiation to a liquid, which caused the spatially selective dissociation of the liquid and the generation of additive reducing and oxidizing agents, resulting in the spatially controlled synthesis of nanostructures. The other is the electron irradiation to a liquid, which directly enhanced the reduction action at the plasma-liquid interface, resulting in temporally controlled nanomaterial synthesis. Using this novel reaction field, gold nanoparticles with controlled interparticle distance were synthesized using carbon nanotubes as a template. Furthermore, nanoparticle-biomolecule conjugates and nanocarbon-biomolecule conjugates were successfully synthesized by an aqueous-solution contact plasma and an electrolyte plasma, respectively, which were rapid and low-damage processes suitable for nano-bio-carbon conjugate materials.

  4. Niobium carbide synthesis by solid-gas reaction using a rotating cylinder reactor

    International Nuclear Information System (INIS)

    Fontes, F.A.O.; Gomes, K.K.P.; Oliveira, S.A.; Souza, C.P.; Sousa, J.F.; Rio Grande do Norte Univ., Natal, RN

    2004-01-01

    A rotating cylinder reactor was designed for the synthesis of niobium carbide powders at 1173 K. Niobium carbide, NbC, was prepared by carbothermal reduction starting from commercial niobium pentoxide powders. The reactor was heated using a custom-made, two-part, hinged, electric furnace with programmable temperature control. The design and operational details of the reactor are presented. The longitudinal temperature gradient inside the reactor was determined. Total reaction time was monitored by a gas chromatograph equipped with an FID detector for determination of methane concentrations. The results show that time of reaction depended on rotation speed. NbC was also prepared in a static-bed alumina reactor using the same conditions as in the previous case. The niobium carbide powders were characterized by X-ray diffraction and compared with commercially available products. Morphological, particle size distribution and surface area analyses were obtained using SEM, LDPS and BET, respectively. Therefore, the present study offers a significant technological contribution to the synthesis of NbC powders in a rotating cylinder reactor. (author)

  5. Gas system 2015: Press conference 21 January 2016 + Gas consumption by administrative regions

    International Nuclear Information System (INIS)

    2016-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents some key figures about GRTgaz activity in 2015: Gas consumption resumed despite warm conditions in 2015. Gas demand for power generation in gas-fired power plants has strongly increased, due to favourable economic conditions. 2015 was characterised by the lowest LNG imports to France ever, which entailed a still intensive use of the North-South link, despite transits to Spain and Italy back to 5 year average level. New gas uses and biomethane permitted to avoid 490,000 tonnes of CO 2 emissions in 2015. A second part presents the regional gas consumptions by administrative regions

  6. Integration Research on Gas Turbine and Tunnel Kiln Combined System

    Science.gov (United States)

    Shi, Hefei; Ma, Liangdong; Liu, Mingsheng

    2018-04-01

    Through the integrated modeling of gas turbine and tunnel kiln combined system, a thermodynamic calculation method of combined system is put forward, and the combined system operation parameters are obtained. By this method, the optimization of the combined system is analyzed and the optimal configuration of the gas turbine is calculated. At the same time, the thermal efficiency of the combined system is analyzed, and the heat distribution and thermal efficiency of the system before and after the improvement are explained. Taking the 1500 kg/h ceramic production as an example, pointed out that if the tunnel kiln has a gas turbine with a power of 342 kw. The amount of electricity of the combined system that produced per unit volume of the fuel which consumes more than it used to will be 7.19 kwh, the system thermal efficiency will reach 57.49%, which higher than the individual gas turbine’s cycle thermal efficiency 20% at least.

  7. Development of KALIMER auxiliary sodium and cover gas management system

    International Nuclear Information System (INIS)

    Kwon, Sang Woon; Hwang, Sung Tae

    1996-11-01

    The objectives of this report are to develop and to describe the auxiliary liquid metal and cover gas management systems of KALIMER. the system includes following system: (1) Auxiliary liquid metal system (2) Inert gas receiving and processing system (3) Impurity monitoring and analysis system. Auxiliary liquid metal and cover gas management system of KALIMER was developed. Functions of each systems and design basis were describes. The auxiliary liquid metal system receives, transfers, and purifies all sodium used in the plant. The system furnishes the required sodium quantity at the pressure, temperature, flow rate, and purity specified by the interfacing system. The intermediated sodium processing subsystem (ISPS) provides continuous purification of IHTS sodium, as well as performs the initial fill operation for both the IHTS and reactor vessel. The primary sodium processing subsystem provides purification (cold trapping) for sodium used in the reactor vessel. The inert gas receiving and processing (IGRP) system provides liquefied and ambient gas storage, delivers inert gases of specified composition and purity at regulated flow rates and pressures to points of usage throughout the KALIMER, and accepts the contaminated gases through its vacuum facilities for storage and transfer to the gas radwaste system. Three gases are used in the KALIMER: helium, argon, and nitrogen. 11 tabs., 12 figs. (Author)

  8. Development of KALIMER auxiliary sodium and cover gas management system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Woon; Hwang, Sung Tae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-11-01

    The objectives of this report are to develop and to describe the auxiliary liquid metal and cover gas management systems of KALIMER. the system includes following system: (1) Auxiliary liquid metal system (2) Inert gas receiving and processing system (3) Impurity monitoring and analysis system. Auxiliary liquid metal and cover gas management system of KALIMER was developed. Functions of each systems and design basis were describes. The auxiliary liquid metal system receives, transfers, and purifies all sodium used in the plant. The system furnishes the required sodium quantity at the pressure, temperature, flow rate, and purity specified by the interfacing system. The intermediated sodium processing subsystem (ISPS) provides continuous purification of IHTS sodium, as well as performs the initial fill operation for both the IHTS and reactor vessel. The primary sodium processing subsystem provides purification (cold trapping) for sodium used in the reactor vessel. The inert gas receiving and processing (IGRP) system provides liquefied and ambient gas storage, delivers inert gases of specified composition and purity at regulated flow rates and pressures to points of usage throughout the KALIMER, and accepts the contaminated gases through its vacuum facilities for storage and transfer to the gas radwaste system. Three gases are used in the KALIMER: helium, argon, and nitrogen. 11 tabs., 12 figs. (Author).

  9. System and method for treatment of a flue gas

    Science.gov (United States)

    Spiry, Irina Pavlovna; Wood, Benjamin Rue; Singh, Surinder Prabhjot; Perry, Robert James; McDermott, John Brian

    2017-09-19

    A method for treatment of a flue gas involves feeding the flue gas and a lean solvent to an absorber. The method further involves reacting the flue gas with the lean solvent within the absorber to generate a clean flue gas and a rich solvent. The method also involves feeding the clean flue gas from the absorber and water from a source, to a wash tower to separate a stripped portion of the lean solvent from the clean flue gas to generate a washed clean flue gas and a mixture of the water and the stripped portion of the lean solvent. The method further involves treating at least a portion of the mixture of the water and the stripped portion of the lean solvent via a separation system to separate the water from the stripped portion of the lean solvent.

  10. Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system

    International Nuclear Information System (INIS)

    Weng, Chen-Hsun; Lee, Gwo-Bin; Huang, Chih-Chia; Yeh, Chen-Sheng; Lei, Huan-Yao

    2008-01-01

    A new microfluidic reaction system capable of mixing, transporting and reacting is developed for the synthesis of gold nanoparticles. It allows for a rapid and a cost-effective approach to accelerate the synthesis of gold nanoparticles. The microfluidic reaction chip is made from micro-electro-mechanical-system technologies which integrate a micro-mixer, micro-pumps, a micro-valve, micro-heaters and a micro temperature sensor on a single chip. Successful synthesis of dispersed gold nanoparticles has been demonstrated within a shorter period of time, as compared to traditional methods. It is experimentally found that precise control of the mixing/heating time for gold salts and reducing agents plays an essential role in the synthesis of gold nanoparticles. The growth process of hexagonal gold nanoparticles by a thermal aqueous approach is also systematically studied by using the same microfluidic reaction system. The development of the microfluidic reaction system could be promising for the synthesis of functional nanoparticles for future biomedical applications

  11. Aerosol Observing System Greenhouse Gas (AOS GhG) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, S. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reichl, K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-03-01

    The Greenhouse Gas (GhG) Measurement system is a combination of two systems in series: (1) the Tower Gas Processing (TGP) System, an instrument rack which pulls, pressurizes, and dries air streams from an atmospheric sampling tower through a series of control and monitoring components, and (2) the Picarro model G2301 cavity ringdown spectrometer (CRDS), which measures CO2, CH4, and H2O vapor; the primary measurements of the GhG system.

  12. DSP Based System for Real time Voice Synthesis Applications Development

    OpenAIRE

    Arsinte, Radu; Ferencz, Attila; Miron, Costin

    2008-01-01

    This paper describes an experimental system designed for development of real time voice synthesis applications. The system is composed from a DSP coprocessor card, equipped with an TMS320C25 or TMS320C50 chip, voice acquisition module (ADDA2),host computer (IBM-PC compatible), software specific tools.

  13. Minimum detectable gas concentration performance evaluation method for gas leak infrared imaging detection systems.

    Science.gov (United States)

    Zhang, Xu; Jin, Weiqi; Li, Jiakun; Wang, Xia; Li, Shuo

    2017-04-01

    Thermal imaging technology is an effective means of detecting hazardous gas leaks. Much attention has been paid to evaluation of the performance of gas leak infrared imaging detection systems due to several potential applications. The minimum resolvable temperature difference (MRTD) and the minimum detectable temperature difference (MDTD) are commonly used as the main indicators of thermal imaging system performance. This paper establishes a minimum detectable gas concentration (MDGC) performance evaluation model based on the definition and derivation of MDTD. We proposed the direct calculation and equivalent calculation method of MDGC based on the MDTD measurement system. We build an experimental MDGC measurement system, which indicates the MDGC model can describe the detection performance of a thermal imaging system to typical gases. The direct calculation, equivalent calculation, and direct measurement results are consistent. The MDGC and the minimum resolvable gas concentration (MRGC) model can effectively describe the performance of "detection" and "spatial detail resolution" of thermal imaging systems to gas leak, respectively, and constitute the main performance indicators of gas leak detection systems.

  14. Gas-mixing system for drift chambers using solenoid valves

    International Nuclear Information System (INIS)

    Cooper, W.E.; Sugano, K.; Trentlage, D.B.

    1983-04-01

    We describe an inexpensive system for mixing argon and ethane drift chamber gas which is used for the E-605 experiment at Fermilab. This system is based on the idea of intermittent mixing of gases with fixed mixing flow rates. A dual-action pressure switch senses the pressure in a mixed gas reservoir tank and operates solenoid valves to control mixing action and regulate reservoir pressure. This system has the advantages that simple controls accurately regulate the mixing ratio and that the mixing ratio is nearly flow rate independent. We also report the results of the gas analysis of various samplings, and the reliability of the system in long-term running

  15. An alternative gas sensor material: Synthesis and electrical characterization of SmCoO3

    International Nuclear Information System (INIS)

    Michel, Carlos Rafael; Delgado, Emilio; Santillan, Gloria; Martinez, Alma H.; Chavez-Chavez, Arturo

    2007-01-01

    Single-phase perovskite SmCoO 3 was prepared by a wet-chemical synthesis technique using metal-nitrates and citric acid; after its characterization by thermal analyses and X-ray diffraction, sintering at 900 deg. C in air, gave single phase and well crystallized powders. The powders were mixed with an organic solvent to prepare a slurry, which was deposited on alumina substrates as thick films, using the screen-printing technique. Electrical and gas sensing properties of sintered SmCoO 3 films were investigated in air, O 2 and CO 2 , the results show that sensitivity reached a maximum value at 420 deg. C, for both gases. Dynamic tests revealed a better behavior of SmCoO 3 in CO 2 than O 2 , due to a fast response and a larger electrical resistance change to this gas. X-ray diffraction made on powders after electrical characterization in gases, showed that perovskite-type structure was preserved

  16. Economic evaluation of the solar thermal co-production of zinc, synthesis gas, and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Spiewak, I [EC Joint Research Centre (Spain)

    1999-08-01

    The use of concentrated solar energy for co-producing Zn and synthesis gas from Zn O and natural gas upgrades the calorific value of the initial reactants by 39% and, when compared to the traditional carbothermic reduction of Zn O, has the potential of reducing CO{sub 2} emissions by up to 78%. An economic assessment for an industrial thermochemical plant, 30 to 51 MW solar input, indicates that the cost of solar production of zinc ranges between 89-133 $/t (excluding the cost of Zn O feed and credit for pollution abatement), and thus might be competitive with conventional fossil-fuel-based processes at current fuel prices. The cost of solar H{sub 2}, produced by splitting water with zinc, is estimated to be in the range 0.10-0.14 $/kWh, and it is a favorable long term prospect once the cost of energy will account for the environmental externalities from fossil fuel burning such as the costs for CO{sub 2} mitigation and pollution abatement. (author) 1 fig., 2 tabs., 5 refs.

  17. CdSe Nanoparticles with Clean Surfaces: Gas Phase Synthesis and Optical Properties

    Directory of Open Access Journals (Sweden)

    Zhang Hongwei

    2015-01-01

    Full Text Available CdSe nanoparticles (NPs were generated in gas phase with a magnetron plasma gas aggregation cluster beam source. Coagulation-free CdSe nanocrystals with very clean particle surface and interface, as well as a fairly uniform spatial distribution were obtained. The deposited NPs have a good dispersity with a mean diameter of about 4.8nm. A strong photoluminescence band corresponding to the near- band-edge transition of the CdSe NPs was observed. The CdSe NP films show a significant photoconductance induced by laser irradiation. With an applied bias voltage of 10V, the photo- induced current can be as high as 0.4mA under 0.01mW/mm2 405nm laser illumination. Our approach offers an alternative method for CdSe NP synthesis, which has the advantages such as high purity, good process and product control, as well as mass production, as compared to the existing methods.

  18. Synthesis and gas-sensing characteristics of α-Fe2O3 hollow balls

    Directory of Open Access Journals (Sweden)

    Chu Manh Hung

    2016-03-01

    Full Text Available The synthesis of porous metal-oxide semiconductors for gas-sensing application is attracting increased interest. In this study, α-Fe2O3 hollow balls were synthesized using an inexpensive, scalable, and template-free hydrothermal method. The gas-sensing characteristics of the semiconductors were systematically investigated. Material characterization by XRD, SEM, HRTEM, and EDS reveals that single-phase α-Fe2O3 hollow balls with an average diameter of 1.5 μm were obtained. The hollow balls were formed by self assembly of α-Fe2O3 nanoparticles with an average diameter of 100 nm. The hollow structure and nanopores between the nanoparticles resulted in the significantly high response of the α-Fe2O3 hollow balls to ethanol at working temperatures ranging from 250 °C to 450 °C. The sensor also showed good selectivity over other gases, such as CO and NH3 promising significant application.

  19. Synthesis, characterization and liquefied petroleum gas (LPG) sensing properties of WO3 nano-particles

    Science.gov (United States)

    Singh, Subhash; Majumder, S. B.

    2018-05-01

    Metal oxide sensors, such as ZnO, SnO2, and WO3 etc. have been utilized for several decades for low-costd etection of combustible and toxic gases. In the present work tungsten oxide (WO3) nanoparticles have been prepared by using an economic wet chemical synthesis route. To understand the phase formation behavior of the synthesized powders, X-ray diffraction analysis has been performed. The microstructure evolution of the synthesized powders was characterized by field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The calcined phase pure WO3 nanoparticles are investigated in terms of LPG gas sensing properties. The gas sensing measurements has been done in two different mode of operation (namely static and dynamic measurements). The degree of oxygen deficiency in the WO3 sensor also affected the sensor properties and the optimum oxygen content of WO3 was necessary to get high sensitivity for LPG. The WO3 sensor shows the excellent sensor properties for LPG at the operating temperature of 250°C.

  20. Controlled PVTS oil and gas production stimulation system

    Energy Technology Data Exchange (ETDEWEB)

    Ospina-Racines, E

    1970-02-01

    By completing oil- or gas-producing wells according to the PVTS method and energizing the flow of the oil-gas fluids in the reservoir with a small horse-power gas compressor at the wellhead, the following oil and gas production features are attained: (1) Original reservoir story energy conditions are restored, improved, used, and conserved while producing oil and/or gas. (2) The flow of oil or gas in the pay formation to the well bore is stimulated by gas compressor energy, outside of the reservoir system. The pressure drawdown is developed by gas-compressor energy in the well casing and not in the pay formation. (3) The stored energy of the reservoir is conserved while producing oil or gas. The potential energy (pressure) of the reservoir can be used to advantage up to bubble point of the virgin crude. (4) Producible reserves are increased from 4-to 5-fold by the conservation of reservoir energy. Present-day primary oil production practice yields a maximum of 20% of the oil in place by depleting the original reservoir energy. The PVTS system will yield over 80% + of oil in place. (5) Producible gas reserves can be increased greatly by establishing a low abandonment pressure at will. The principal features of the PVTS well mechanism and energy injection method are illustrated by a schematic diagram.

  1. Design Private Cloud of Oil and Gas SCADA System

    Directory of Open Access Journals (Sweden)

    Liu Miao

    2014-05-01

    Full Text Available SCADA (Supervisory Control and Data Acquisition system is computer control system based on supervisory. SCADA system is very important to oil and gas pipeline engineering. Cloud computing is fundamentally altering the expectations for how and when computing, storage and networking resources should be allocated, managed and consumed. In order to increase resource utilization, reliability and availability of oil and gas pipeline SCADA system, the SCADA system based on cloud computing is proposed in the paper. This paper introduces the system framework of SCADA system based on cloud computing and the realization details about the private cloud platform of SCADA system.

  2. Direct synthesis of iso-butane from synthesis gas or CO2 over CuZnZrAl/Pd-β hybrid catalyst

    Directory of Open Access Journals (Sweden)

    Congming Li

    2017-12-01

    Full Text Available The effect of various factors on the catalytic performance of iso-butane formation over CuZnZrAl/Pd-β hybrid catalyst via synthesis gas or CO2 hydrogenation has been deeply investigated in this work. It was interesting to note that the iso-butane/n-butane ratio value was much higher than that of thermodynamic equilibrium (about 1/1, whose value was directly related to the reaction condition using this hybrid catalyst. In order to further clearly clarify this finding, various experimental reaction factors were selected to investigate the formation of iso-butane. The results revealed that increasing temperature, H2/COx, CO2/COx, and/or Pd loading possessed an inhibiting effect on the iso-butane yield. High selectivity of iso-butane could be achieved by increasing the reaction pressure, W/F and the weight ratio of CuZnZrAl methanol catalyst to Pd-β catalyst. It is also noted that the addition of water seriously suppressed the reaction activity, resulting in the low ratio of iso-butane/n-butane. A possible reaction route was elucidated based on the latest results. This might shed light on the development of a high efficient catalyst for iso-butane production from synthesis gas or CO2 hydrogenation. Keywords: Iso-butane, Synthesis gas, CO2, CuZnZrAl/Pd-β hybrid catalyst

  3. Performance study of an innovative natural gas CHP system

    International Nuclear Information System (INIS)

    Fu, Lin; Zhao, Xiling; Zhang, Shigang; Li, Yan; Jiang, Yi; Li, Hui; Sun, Zuoliang

    2011-01-01

    In the last decade, technological innovation and changes in the economic and regulatory environment have resulted in increased attention to distributed energy systems (DES). Combined cooling heating and power (CHP) systems based on the gas-powered internal combustion engine (ICE) are increasingly used as small-scale distribution co-generators. This paper describes an innovative ICE-CHP system with an exhaust-gas-driven absorption heat pump (AHP) that has been set up at the energy-saving building in Beijing, China. The system is composed of an ICE, an exhaust-gas-driven AHP, and a flue gas condensation heat exchanger (CHE), which could recover both the sensible and latent heat of the flue gas. The steady performance and dynamic response of the innovative CHP system with different operation modes were tested. The results show that the system's energy utilization efficiency could reach above 90% based on lower heating value (LHV) of natural gas; that is, the innovative CHP system could increase the heat utilization efficiency 10% compared to conventional CHP systems, and the thermally activated components of the system have much more thermal inertia than the electricity generation component. The detailed test results provide important insight into CHP performance characteristics and could be valuable references for the control of CHP systems. The novel CHP system could take on a very important role in the CHP market. (author)

  4. Network analysis and synthesis a modern systems theory approach

    CERN Document Server

    Anderson, Brian D O

    2006-01-01

    Geared toward upper-level undergraduates and graduate students, this book offers a comprehensive look at linear network analysis and synthesis. It explores state-space synthesis as well as analysis, employing modern systems theory to unite the classical concepts of network theory. The authors stress passive networks but include material on active networks. They avoid topology in dealing with analysis problems and discuss computational techniques. The concepts of controllability, observability, and degree are emphasized in reviewing the state-variable description of linear systems. Explorations

  5. Human Systems Integration Synthesis Model for Ship Design

    Science.gov (United States)

    2012-09-01

    33  b.   Diesel .......................................................................................35  c.  Gas Turbine ...acquire systems capable of maximizing the output of the Navy’s Human Capital. The term Human Capital is defined by Kaplan and Norton (2004, p. 13) as...Machine—engines: steam, diesel, gas turbine , or nuclear Prior to establishing a ship’s speed requirements, one must understand the forces that

  6. Synthesis of diamond-like carbon via PECD using a streaming neutral gas injection hollow cathode

    International Nuclear Information System (INIS)

    Pacho, A.; Pares, E.; Ramos, H.; Mendenilla, A.; Malapit, G.

    2009-01-01

    A streaming neutral gas injection hollow cathode system was used to deposit diamond-like carbon films via plasma enhanced chemical vapor deposition on silicon and nickel-coated silicon substrates with acetylene and hydrogen as reactant gases. Samples were characterized using SEM and Raman spectroscopy. The work presented here aims to demonstrate the capability of the system to synthesize carbonaceous films and is starting point towards work on formation of carbon nanostructures. (author)

  7. Conversion of forest residues to a clean gas for fuel or synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, H.F.; Liu, K.T.; Longanbach, J.R.; Curran, L.M.; Chauhan, S.P.

    1979-01-01

    A program is described for developing a gasification system specifically for wood and other biomass materials which allows greatly increased gasifier throughputs and direct catalysis of wood. Wood ash, which is a by-product of a wood gasification plant, can be used as a gasification catalyst for wood, as it increases gasification rates and promotes the water-gas shift reaction. The high reactivity of even uncatalyzed biomass allows the potential of very high gasifier throughputs. However, the achievement of this potential requires that the gasifier operate at gas velocities higher than those attainable in conventional reactor systems. Stable and very smooth fluidization with uniform mixing and distribution of chips throughout the bed was observed on addition of an entrained sand phase to a fluidized bed of alumina and wood chips. Economc feasibility studies based on utilization of a proprietary Battelle gasification system which utilizes an entrained-phase heat carrier indicated that an intermediate-Btu gas can be produced in 1000 ton/day plants at a price competitive with liquefied natural gas and No. 2 heating oil.

  8. Design of a Natural Gas Liquefaction System with Minimum Components

    International Nuclear Information System (INIS)

    Bergese, Franco

    2004-01-01

    In this work an economic method for liquefying natural gas by diminishing its temperature by means of the Joule-Thomson effect is presented.The pressures from and to which the gas must be expanded arose from a thermodynamic calculation optimizing the cost per unit mass of Liquefied Natural Gas LNG).It was determined that the gas should be expanded from 200 atm to 4 atm.This expansion ratio can be used in different scales.Large Scale: liquefaction of gas at well.It takes advantage of the fact that the gas inside the well is stored at high pressure.The gas is expanded in a valve / nozzle and then compressed to the pressure of the local pipeline system.The objective of this project is to export natural gas as LNG, which is transported by ships to the markets of consumption.Using this method of liquefaction, the LNG production levels are limited to a fraction of the production of the well, due to the injection of the un condensed gas into the local pipelines system.Medium Scale: A high pressure pipeline is the source of the gas.The expansion is performed and then the gas is again compressed to the pressure of a lower pressure pipeline into which the gas is injected.The pressure reductions of natural gas are performed nearby big cities.The aim of this project scale is the storage of fuel for gas thermal power plants during periods of low energy consumption for later burning when the resource is limited. Another possibility that offers this size of plant is the transportation of gas to regions where the resource is unavailable.This transportation would be carried out by means of cistern trucks, in the same way that conventional liquid fuels are transported.Small scale: the place of production would be a CNG refueling station. The source of gas is in this case a gas pipeline of urban distribution and the gas should be compressed with the compressor of the refueling station.Compressors have generally low loading factor and the periods of time when they are not producing

  9. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Science.gov (United States)

    2011-04-25

    ... Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems AGENCY: Environmental Protection Agency... Subpart W: Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule. As part of the... greenhouse gas emissions for the petroleum and natural gas systems source category of the greenhouse gas...

  10. Greenhouse Gas Emissions Calculator for Grain and Biofuel Farming Systems

    Science.gov (United States)

    McSwiney, Claire P.; Bohm, Sven; Grace, Peter R.; Robertson, G. Philip

    2010-01-01

    Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultural practices on GHG emissions. The Farming Systems Greenhouse Gas Emissions Calculator, a web-based tool linked to the SOCRATES soil…

  11. 40 CFR 86.211-94 - Exhaust gas analytical system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas analytical system. 86.211-94 Section 86.211-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.211-94 Exhaust gas...

  12. Numerical modeling of underground storage system for natural gas

    Science.gov (United States)

    Ding, J.; Wang, S.

    2017-12-01

    Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).

  13. Synthesis Gas Purification Purification des gaz de synthèse

    Directory of Open Access Journals (Sweden)

    Chiche D.

    2013-10-01

    Full Text Available Fischer-Tropsch (FT based B-XTL processes are attractive alternatives for future energy production. These processes aim at converting lignocellulosic biomass possibly in co-processing with petcoke, coal, or vacuum residues into synthetic biofuels. A gasification step converts the feed into a synthesis gas (CO and H2 mixture , which undergoes the Fischer-Tropsch reaction after H2/CO ratio adjustment and CO2 removal. However synthesis gas also contains various impurities that must be removed in order to prevent Fischer-Tropsch catalyst poisoning. Due to the large feedstocks variety that can be processed, significant variations of the composition of the synthesis gas are expected. Especially, this affects the nature of the impurities that are present (element, speciation, as well as their relative contents. Moreover, due to high FT catalyst sensitivity, severe syngas specifications regarding its purity are required. For these reasons, synthesis gas purification constitutes a major challenge for the development of B-XTL processes. In this article, we focus on these major hurdles that have to be overcome. The different kinds of syngas impurities are presented. The influence of the nature of feedstocks, gasification technology and operating conditions on the type and content of impurities is discussed. Highlight is given on the fate of sulfur compounds, nitrogen compounds, halides, transition and heavy metals. Main synthesis gas purification technologies (based on adsorption, absorption, catalytic reactions, etc. are finally described, as well as the related challenges. Les procédés de synthèse de biocarburants par voie Fischer-Tropsch (FT, voies B-XTL, représentent des alternatives prometteuses pour la production d’énergie. Ces procédés permettent la conversion en carburants de synthèse de biomasse lignocellulosique, éventuellement mise en oeuvre en mélange avec des charges fossiles telles que petcoke, charbons ou résidus sous vide. Pour

  14. Flow regimes in vertical gas-solid contact systems

    Energy Technology Data Exchange (ETDEWEB)

    Yerushalmi, J.; Cankurt, N. T.; Geldart, D.; Liss, B.

    1976-01-01

    The flow characteristics in fluidized beds, i.e., gas-solid systems, was studied to determine the flow regimes, the interaction of gas and solid in the various flow regimes and the dependence of this interaction and of transition between flow regimes on the properties of the gas and solid, on the gas and solid flow rates, and on the containing vessel. Fluidized beds with both coarse and fine particles are considered. Test results using high speed photography to view the operation of a 2-dimensional bed are discussed. (LCL)

  15. Physical aspects of the US oil and gas systems

    Energy Technology Data Exchange (ETDEWEB)

    D' Acierno, J.; Hermelee, A.

    1979-11-01

    The purpose of this report is to describe the physical operations which take place within the petroleum and natural gas industries of the US. This information was the basis for the overall network design and the detailed data requirements for the Emergency Management Information System (EEMIS) of the US Department of Energy (DOE). Since EEMIS represents the entire oil and gas systems this report can be used to obtain a basic understanding of the entire energy system, from production to consumption, that is composed of the US oil and gas industries.

  16. Flash pyrolysis at high temperature of ligno-cellulosic biomass and its components - production of synthesis gas

    International Nuclear Information System (INIS)

    Couhert, C.

    2007-11-01

    Pyrolysis is the first stage of any thermal treatment of biomass and governs the formation of synthesis gas for the production of electricity, hydrogen or liquid fuels. The objective of this work is to establish a link between the composition of a biomass and its pyrolysis gas. We study experimental flash pyrolysis and fix the conditions in which quantities of gas are maximal, while aiming at a regime without heat and mass transfer limitations (particles about 100 μm): temperature of 950 C and residence time of about 2 s. Then we try to predict gas yields of any biomass according to its composition, applicable in this situation where thermodynamic equilibrium is not reached. We show that an additivity law does not allow correlating gas yields of a biomass with fractions of cellulose, hemi-cellulose and lignin contained in this biomass. Several explanations are suggested and examined: difference of pyrolytic behaviour of the same compound according to the biomass from which it is extracted, interactions between compounds and influence of mineral matter. With the aim of industrial application, we study pyrolysis of millimetric and centimetric size particles, and make a numerical simulation of the reactions of pyrolysis gases reforming. This simulation shows that the choice of biomass affects the quantities of synthesis gas obtained. (author)

  17. Development of compact tritium confinement system using gas separation membrane

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Okuno, Kenji

    1994-01-01

    In order to develop more compact and cost-effective tritium confinement system for fusion reactor, a new system using gas separation membranes has been studied at the Tritium Process Laboratory in the Japan Atomic Energy Research Institute. The preliminary result showed that the gas separation membrane system could reduce processing volume of tritium contaminated gas to more than one order of magnitude compared with the conventional system, and that most of tritiated water vapor (humidity) could be directly recovered by water condenser before passing through dryer such as molecular sieves. More detail investigations of gas separation characteristics of membrane were started to design ITER Atmospheric Detritiation System (ADS). Furthermore, a scaled polyimide membrane module (hollow-filament type) loop was just installed to investigate the actual tritium confinement performance under various ITER-ADS conditions. (author)

  18. Pressure regulation system for modern gas-filled detectors

    International Nuclear Information System (INIS)

    McDonald, R.J.

    1986-08-01

    A gas pressure and flow regulation system has been designed and constructed to service a wide variety of gas-filled detectors which operate at pressures of ∼2 to 1000 Torr and flow rate of ∼5 to 200 standard cubic centimeters per minute (sccm). Pressure regulation is done at the detector input by a pressure transducer linked to a solenoid leak valve via an electronic control system. Gas flow is controlled via a mechanical leak valve at the detector output. Interchangeable transducers, flowmeters, and leak valves allow for different pressure and flow ranges. The differential pressure transducer and control system provide automatic let-up of vacuum chambers to atmospheric pressure while maintaining a controlled overpressure in the detector. The gas system is constructed on a standard 19'' rack-mounted panel from commercially available parts. Five of these systems have been built and are routinely used for both ionization chambers and position-sensitive avalanche detectors

  19. Functional design criteria for the retained gas sampler system

    International Nuclear Information System (INIS)

    Wootan, D.W.

    1995-01-01

    A Retained Gas Sampler System (RGSS) is being developed to capture and analyze waste samples from Hanford Flammable Gas Watch List Tanks to determine both the quantity and composition of gases retained in the waste. The RGSS consists of three main components: the Sampler, Extractor, and Extruder. This report describes the functional criteria for the design of the RGSS components. The RGSS Sampler is based on the WHC Universal Sampler design with modifications to eliminate gas leakage. The primary function of the Sampler is to capture a representative waste sample from a tank and transport the sample with minimal loss of gas content from the tank to the laboratory. The function of the Extruder is to transfer the waste sample from the Sampler to the Extractor. The function of the Extractor is to separate the gases from the liquids and solids, measure the relative volume of gas to determine the void fraction, and remove and analyze the gas constituents

  20. Hot Gas Conditioning: Recent Progress with Larger-Scale Biomass Gasification Systems; Update and Summary of Recent Progress

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D. J.

    2001-09-01

    As a result of environmental and policy considerations, there is increasing interest in using renewable biomass resources as feedstock for power, fuels, and chemicals and hydrogen. Biomass gasification is seen as an important technology component for expanding the use of biomass. Advanced biomass gasification systems provide clean products that can be used as fuel or synthesis gases in a variety of environmentally friendly processes. Advanced end-use technologies such as gas turbines or synthesis gas systems require high quality gases with narrowly defined specifications. Other systems such as boilers may also have fuel quality requirements, but they will be substantially less demanding. The gas product from biomass gasifiers contains quantities of particulates, tars, and other constituents that may exceed these specified limits. As a result, gas cleaning and conditioning will be required in most systems. Over the past decade, significant research and development activities have been conducted on the topic of gas cleanup and conditioning. This report provides an update of efforts related to large-scale biomass gasification systems and summarizes recent progress. Remaining research and development issues are also summarized.

  1. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

    1987-08-01

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster dsplays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume II covers papers presented at sessions 5 and 6 on system for the production of synthesis gas, and on system for the production of power. All papers have been processed for inclusion in the Energy Data Base.

  2. Gas analysis modeling system forecast for the Energy Modeling Forum North American Natural Gas Market Study

    International Nuclear Information System (INIS)

    Mariner-Volpe, B.; Trapmann, W.

    1989-01-01

    The Gas Analysis Modeling System is a large computer-based model for analyzing the complex US natural gas industry, including production, transportation, and consumption activities. The model was developed and first used in 1982 after the passage of the NGPA, which initiated a phased decontrol of most natural gas prices at the wellhead. The categorization of gas under the NGPA and the contractual nature of the natural gas market, which existed at the time, were primary factors in the development of the basic structure of the model. As laws and regulations concerning the natural gas market have changed, the model has evolved accordingly. Recent increases in competition in the wellhead market have also led to changes in the model. GAMS produces forecasts of natural gas production, consumption, and prices annually through 2010. It is an engineering-economic model that incorporates several different mathematical structures in order to represent the interaction of the key groups involved in the natural gas market. GAMS has separate supply and demand components that are equilibrated for each year of the forecast by means of a detailed transaction network

  3. Synthesis of milligram quantities of proteins using a reconstituted in vitro protein synthesis system.

    Science.gov (United States)

    Kazuta, Yasuaki; Matsuura, Tomoaki; Ichihashi, Norikazu; Yomo, Tetsuya

    2014-11-01

    In this study, the amount of protein synthesized using an in vitro protein synthesis system composed of only highly purified components (the PURE system) was optimized. By varying the concentrations of each system component, we determined the component concentrations that result in the synthesis of 0.38 mg/mL green fluorescent protein (GFP) in batch mode and 3.8 mg/mL GFP in dialysis mode. In dialysis mode, protein concentrations of 4.3 and 4.4 mg/mL were synthesized for dihydrofolate reductase and β-galactosidase, respectively. Using the optimized system, the synthesized protein represented 30% (w/w) of the total protein, which is comparable to the level of overexpressed protein in Escherichia coli cells. This optimized reconstituted in vitro protein synthesis system may potentially be useful for various applications, including in vitro directed evolution of proteins, artificial cell assembly, and protein structural studies. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Audio system using binaural synthesis for multimodal telepresence applications

    DEFF Research Database (Denmark)

    Madsen, Esben; Markovic, Milos; Olesen, Søren Krarup

    2013-01-01

    are implemented in a distributed manner. Body-tracking of all participants is provided through the system for the purpose of using binaural synthesis for directional sound. Head-worn microphones are used to capture sound, and the visitor is provided with directional sound through headphones. The visitor...

  5. Off-gas recirculation system for nuclear reactors

    International Nuclear Information System (INIS)

    Eppler, M.; Lade, H.J.

    1975-01-01

    According to the invention, it is suggested to provide a buffer vessel in the ring main of the off-gas recirculation system for off-gases of a nuclear reactor to which all chambers or vessels which may contain radioactively contaminated gases are connected, within the connection line to outside air. This is to prevent the immediate release of an appreciable amount of gas to the outside air due to pressure variations conditioned by the sequence of operations - e.g. on the filling of the coolant storage. After the improvement, the released gas may be reduced to the amount of gas corresponding to the leakage gas flow entering the ring mains system. (TK) [de

  6. Multilevel power distribution synthesis for a movable flux mapping system

    International Nuclear Information System (INIS)

    Bollacasa, D.; Terney, W.B.; Vincent, G.F.; Dziadosz, D.; Schleicher, T.

    1992-01-01

    A Computer Software package has been developed to support the synthesis of the 3-dimensional power distribution from detector signals from a movable flux mapping system. The power distribution synthesis is based on methodology developed for fixed incore detectors. The full core solution effectively couples all assemblies in the core whether they are instrumented or not. The solution is not subject to approximations for the treatment of assemblies where a measurement cannot be made and provides an accurate representation of axial variations which may be induced by axial blankets, burnable absorber cut back regions and axially zoned flux suppression rods

  7. Gas characterization system operation, maintenance, and calibration plan

    International Nuclear Information System (INIS)

    Tate, D.D.

    1996-01-01

    This document details the responsibilities and requirements for operation, maintenance, and calibration of the Gas Characterization Systems (GCS) analytical instrumentation. It further, defines the division of responsibility between the Characterization Monitoring Development organization and Tank Farms Operations

  8. Advanced On Board Inert Gas Generation System (OBBIGS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Valcor Engineering Corporation proposes to develop an advanced On Board Inert Gas Generation System, OBIGGS, for aircraft fuel tank inerting to prevent hazardous...

  9. Practical experiences with the synthesis of [11C]CH3I through gas phase iodination reaction using a TRACERlabFXC synthesis module

    International Nuclear Information System (INIS)

    Kniess, Torsten; Rode, Katrin; Wuest, Frank

    2008-01-01

    The results of [ 11 C]CH 3 I synthesis through hydrogen gas reduction of [ 11 C]CO 2 on different nickel catalysts (HARSHAW-nickel, SHIMALITE-nickel, nickel on silica/alumina, nickel nanosize 99.99%) followed by gas phase iodination using a TRACERlab FX C synthesis unit are reported. Further reaction parameters such as furnace temperatures, flow rate of hydrogen gas and reduction time were optimized. It was found that reduction of [ 11 C]CO 2 proceeded in 28-83% yield depending on the nickel catalyst and temperature. The gas phase iodination (methane conversion) gave 31-62% of [ 11 C]CH 3 I depending on temperature and amount of iodine in the iodine furnace. [ 11 C]CH 3 I was used for heteroatom methylation reactions exemplified by a piperazine and a phenol (1 and 3). The specific activity of the 11 C-labelled products 2 and 4 was determined after HPLC purification and solid-phase extraction. Compounds 2 and 4 were obtained in 8-14% radiochemical yield (decay-corrected, based upon trapped [ 11 C]CH 4 ) within 30 min. The specific activity was determined to be in the range of 20-30 GBq/μmol at the end-of-synthesis. Nickel catalyst nanosize was found to be superior compared with other Ni catalysts tested. The relatively low specific activity may be mainly due to carbon contaminations originating from the long copper tubing (500 m) between the cyclotron and the radiochemistry facility

  10. Wind turbines application for energy savings in Gas transportation system

    OpenAIRE

    Mingaleeva, Renata

    2014-01-01

    The Thesis shows the perspectives of involving renewable energy resources into the energy balance of Russia, namely the use of wind energy for the purpose of energy supply for the objects of the Russian Gas transportation system. The methodology of the wind energy technical potential calculation is designed and the wind energy technical potential assessment for onshore and offshore zones of Russia is presented. The analysis of Russian Gas transportation system in terms of energy consumption i...

  11. Expert hierarchical selection of oil and gas distribution systems

    International Nuclear Information System (INIS)

    Frankel, E.G.

    1991-01-01

    Selection and design of oil and gas distribution systems involves a large number of decision makers and interest groups, as well as many alternative technical, financial, network, operating, management and regulatory options. Their objectives and measures of performance are different. Decision models can be effectively represented by hierarchical structures. A simple deterministic analytic hierarchy process is presented with application to oil and gas distribution systems

  12. Design validation and performance of closed loop gas recirculation system

    International Nuclear Information System (INIS)

    Kalmani, S.D.; Majumder, G.; Mondal, N.K.; Shinde, R.R.; Joshi, A.V.

    2016-01-01

    A pilot experimental set up of the India Based Neutrino Observatory's ICAL detector has been operational for the last 4 years at TIFR, Mumbai. Twelve glass RPC detectors of size 2 × 2 m 2 , with a gas gap of 2 mm are under test in a closed loop gas recirculation system. These RPCs are continuously purged individually, with a gas mixture of R134a (C 2 H 2 F 4 ), isobutane (iC 4 H 10 ) and sulphur hexafluoride (SF 6 ) at a steady rate of 360 ml/h to maintain about one volume change a day. To economize gas mixture consumption and to reduce the effluents from being released into the atmosphere, a closed loop system has been designed, fabricated and installed at TIFR. The pressure and flow rate in the loop is controlled by mass flow controllers and pressure transmitters. The performance and integrity of RPCs in the pilot experimental set up is being monitored to assess the effect of periodic fluctuation and transients in atmospheric pressure and temperature, room pressure variation, flow pulsations, uniformity of gas distribution and power failures. The capability of closed loop gas recirculation system to respond to these changes is also studied. The conclusions from the above experiment are presented. The validations of the first design considerations and subsequent modifications have provided improved guidelines for the future design of the engineering module gas system.

  13. Systems of quasilinear equations and their applications to gas dynamics

    CERN Document Server

    Roždestvenskiĭ, B L; Schulenberger, J R

    1983-01-01

    This book is essentially a new edition, revised and augmented by results of the last decade, of the work of the same title published in 1968 by "Nauka." It is devoted to mathematical questions of gas dynamics. Topics covered include Foundations of the Theory of Systems of Quasilinear Equations of Hyperbolic Type in Two Independent Variables; Classical and Generalized Solutions of One-Dimensional Gas Dynamics; Difference Methods for Solving the Equations of Gas Dynamics; and Generalized Solutions of Systems of Quasilinear Equations of Hyperbolic Type.

  14. Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals. Technical Progress Report

    International Nuclear Information System (INIS)

    Akio Ishikawa; Manuel Ojeda; Nan Yao; Enrique Iglesia

    2006-01-01

    This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rate, selectivity for feedstocks consisting of synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third and fourth reporting periods, we improved the catalysts preparation method, which led to Fe-based FT catalysts with the highest FTS reaction rates and selectivities so far reported, a finding that allowed their operation at lower temperatures and pressures with high selectivity to desired products (C 5+ , olefins). During this fifth reporting period, we have studied the effects of different promoters on catalytic performance, specifically how their sequence of addition dramatically influences the performance of these materials in the Fischer-Tropsch synthesis. The resulting procedures have been optimized to improve further upon the already unprecedented rates and C 5+ selectivities of the Fe-based catalysts that we have developed as part of this project. During this fifth reporting period, we have also continued our studies of optimal activation procedures, involving reduction and carburization of oxide precursors during the early stages of contact with synthesis gas. We have completed the analysis of the evolution of oxide, carbide, and metal phases of the active iron components during initial contact with synthesis gas using advanced synchrotron techniques based on X-ray absorption spectroscopy. We have confirmed that the Cu or Ru compensates for inhibitory effects of Zn, a surface

  15. One-step synthesis of dimethyl ether from the gas mixture containing CO2 with high space velocity

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Lin, Bo-Jhih; Lee, How-Ming; Huang, Men-Han

    2012-01-01

    Highlights: ► A bifunctional catalyst for DME synthesis is prepared using a coprecipitation method. ► The DME synthesis from syngas at a high space velocity of is investigated. ► The reaction is dominated by chemical kinetics at lower reaction temperatures. ► Thermodynamic equilibrium governs the reaction at higher temperatures. ► 0.2 g of ZSM5 is sufficient to be blended with 1 g of the catalyst for DME synthesis. -- Abstract: Dimethyl ether (DME) has been considered as a potential hydrogen carrier used in fuel cells; it can also be consumed as a diesel substitute or chemicals. To develop the technique of DME synthesis, a bifunctional Cu–ZnO–Al 2 O 3 /ZSM5 catalyst is prepared using a coprecipitation method. The reaction characteristics of DME synthesis from syngas at a high space velocity of 15,000 mL (g cat h) −1 are investigated and the effects of reaction temperature, pressure, CO 2 concentration and ZSM5 amount on the synthesis are taken into account. The results suggest that an increase in CO 2 concentration in the feed gas substantially decreases the DME formation. The optimum reaction temperature always occurs at 225 °C, regardless of what the pressure is. It is thus recognized that the DME synthesis is governed by two different mechanisms when the reaction temperature varies. At lower reaction temperatures ( 225 °C). For the CO 2 content of 5 vol.% and the pressure of 40 atm, the maximum DME yield is 1.89 g (g cat h) −1 . It is also found that 0.2 g of ZSM5 is sufficient to be blended with 1 g of the catalyst for DME synthesis.

  16. Exergy analysis of a gas-hydrate cool storage system

    International Nuclear Information System (INIS)

    Bi, Yuehong; Liu, Xiao; Jiang, Minghe

    2014-01-01

    Based on exergy analysis of charging and discharging processes in a gas-hydrate cool storage system, the formulas for exergy efficiency at the sensible heat transfer stage and the phase change stage corresponding to gas-hydrate charging and discharging processes are obtained. Furthermore, the overall exergy efficiency expressions of charging, discharging processes and the thermodynamic cycle of the gas-hydrate cool storage system are obtained. By using the above expressions, the effects of number of transfer units, the inlet temperatures of the cooling medium and the heating medium on exergy efficiencies of the gas-hydrate cool storage system are emphatically analyzed. The research results can be directly used to evaluate the performance of gas-hydrate cool storage systems and design more efficient energy systems by reducing the sources of inefficiency in gas-hydrate cool storage systems. - Highlights: • Formulas for exergy efficiency at four stages are obtained. • Exergy efficiency expressions of two processes and one cycle are obtained. • Three mainly influencing factors on exergy efficiencies are analyzed. • With increasing the inlet temperature of cooling medium, exergy efficiency increases. • With decreasing the inlet temperature of heating medium, exergy efficiency increases

  17. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas

    KAUST Repository

    Barthel, Alexander; Saih, Youssef; Gimenez, Michel; Pelletier, Jeremie; Kü hn, Fritz Elmar; D´ Elia, Valerio; Basset, Jean-Marie

    2016-01-01

    Robust and selective catalytic systems based on early transition metal halides (Y, Sc, Zr) and organic nucleophiles were found able to quantitatively capture CO2 from diluted streams via formation of hemicarbonate species and to convert it to cyclic organic carbonates under ambient conditions. This observation was exploited in the direct and selective chemical fixation of flue gas CO2 collected from an industrial exhaust, affording high degrees of CO2 capture and conversion.

  18. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas

    KAUST Repository

    Barthel, Alexander

    2016-02-08

    Robust and selective catalytic systems based on early transition metal halides (Y, Sc, Zr) and organic nucleophiles were found able to quantitatively capture CO2 from diluted streams via formation of hemicarbonate species and to convert it to cyclic organic carbonates under ambient conditions. This observation was exploited in the direct and selective chemical fixation of flue gas CO2 collected from an industrial exhaust, affording high degrees of CO2 capture and conversion.

  19. Passivity analysis and synthesis for uncertain time-delay systems

    Directory of Open Access Journals (Sweden)

    Magdi S. Mahmoud

    2001-01-01

    Full Text Available In this paper, we investigate the robust passivity analysis and synthesis problems for a class of uncertain time-delay systems. This class of systems arises in the modelling effort of studying water quality constituents in fresh stream. For the analysis problem, we derive a sufficient condition for which the uncertain time-delay system is robustly stable and strictly passive for all admissible uncertainties. The condition is given in terms of a linear matrix inequality. Both the delay-independent and delay-dependent cases are considered. For the synthesis problem, we propose an observer-based design method which guarantees that the closed-loop uncertain time-delay system is stable and strictly passive for all admissible uncertainties. Several examples are worked out to illustrate the developed theory.

  20. Thermodynamic-Controlled Gas Phase Process for the Synthesis of Nickel Nanoparticles of Adjustable Size and Morphology

    International Nuclear Information System (INIS)

    Kauffeldt, Elena; Kauffeldt, Thomas

    2006-01-01

    Gas phase processes are a successful route for the synthesis of nano materials. Nickel particles are used in applications ranging from catalysis to nano electronics and energy storage. The application field defines the required particle size, morphology, crystallinity and purity. Nickel tetracarbonyl is the most promising precursor for the synthesis of high purity nickel particles. Due to the toxicity of this precursor and to obtain an optimal process control we developed a two-step flow type process. Nickel carbonyl and nickel particles are synthesized in a sequence of reactions. The particles are formed in a hot wall reactor at temperatures below 400 deg. C in different gas compositions. Varying the process conditions enables the adjustment of the particle size in a range from 3 to 140 nm. The controllable crystalline habits are polycrystalline, single crystals or multiple twinned particles (MTP). Spectroscopic investigations show an excellent purity. We report about the process and first investigations of the properties of the synthesized nickel nanomaterial

  1. Biomolecular System Design: Architecture, Synthesis, and Simulation

    OpenAIRE

    Chiang , Katherine

    2015-01-01

    The advancements in systems and synthetic biology have been broadening the range of realizable systems with increasing complexity both in vitro and in vivo. Systems for digital logic operations, signal processing, analog computation, program flow control, as well as those composed of different functions – for example an on-site diagnostic system based on multiple biomarker measurements and signal processing – have been realized successfully. However, the efforts to date tend to tackle each de...

  2. The Danish gas and electricity system; Det danske gas- og elsystem

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-08-28

    The report presents intermediate results from the project 'A model for and analyses of an integrated gas and electricity system'. The project starts from deregulation of the energy markets and increased focus on the connection between various forms of supply. The report describes the two systems with a view to identify differences and similarities. (BA)

  3. Stakeholder Workshop on EPA GHG Data on Petroleum and Natural Gas Systems

    Science.gov (United States)

    This page describes EPA's November 2015 stakeholder workshop on greenhouse gas data on petroleum and natural gas systems from the Greenhouse Gas Reporting Program and U.S. Greenhouse Gas Inventory of Emissions and Sinks.

  4. Analysis of a gas absorption system with soluble carrier gas and volatile solvent

    International Nuclear Information System (INIS)

    Kanak, B.E.

    1980-01-01

    The effects of column diameter, carrier gas coabsorption, and solvent vaporization on the performance of a packed gas absorption column are examined. The system investigated employs dichlorodifluoromethane as a solvent to remove krypton from a nitrogen stream and is characterized by substantial nitrogen coabsorption. Three columns with diameters of 2, 3, and 4 inches were constructed and packed with 34.5 inches of Goodloe packing. In addition to the more conventional data, the experimental evaluation of these columns included the use of a radioisotope and a gamma scanning technique which provided direct measurement of the columns' molar krypton profiles. A multicomponent gas absorption model was developed, based on the two-film mass transfer theory, that allows the fluxes of all species to interact. Verification of this model was achieved through comparison of the calculated results with experimental data. With the feed gas flow rate between 6 and 36 lb moles/hr-ft 2 and the solvent feed rate between 40 and 400 lb moles/hr-ft 2 , column diameter was found to have no significant impact on the mass transfer efficiency of this system when carried out in columns with diameters of 2 inches or greater. The absorption of krypton was found to be enhanced and inhibited, respectively, by carrier gas coabsorption and solvent vaporization. An injector system to add gaseous solvent to the feed gas stream prior to its introduction into the packed bed was proposed to eliminate the detrimental effects of solvent vaporization.Using this injector to supersaturate the feed gas stream with solvent enhanced absorber performance in the same manner as carrier gas coabsorption

  5. Analysis of Gas Vent System in Overseas LILW Disposal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Yub; Kim, Ju Youl [FNC Technology Co., Yongin (Korea, Republic of); Jung, Hae Ryong; Ha, Jae Chul [Korea Radioactive Waste Management Corporation, Daejeon (Korea, Republic of)

    2012-05-15

    A Low- and Intermediate-Level Radioactive Waste (LILW) disposal facility is currently under construction in Korea. It is located in the aquifer, 80{approx}130 m below the ground surface. Thus, it is expected that disposal facility will be saturated after closure and various gases will be generated from metal corrosion, microbial degradation of organic materials and radiolysis. Generated gases will move up to the upper part of the silo, and it will increase the pressure of the silo. Since the integrity of the engineered barrier could be damaged, development of effective gas vent system which can prevent the gas accumulation in the silo is essential. In order to obtain basic data needed to develop site-specific gas vent system, gas vent systems of Sweden, Finland and Switzerland, which have the disposal concept of underground facility, were analyzed

  6. Synthesis of relay control systems for nuclear reactors

    International Nuclear Information System (INIS)

    Postnikov, N.S.

    1996-01-01

    The problem on stabilizing an oscillatory-unstable reactor by a single-link relay system, the characteristics whereof have a dead zone and hysteresis loop, is considered. The methodology of synthesis of feedback law, providing for stochastic steady-state mode of reactor operation with the minimum frequency of control impact introduction is proposed. This methodology is applicable to general-type relay systems with arbitrary oscillatory-unstable objects. 6 refs., 5 figs

  7. Gas generation and migration analysis for TRU waste disposal system

    International Nuclear Information System (INIS)

    Ando, Kenichi; Noda, Masaru; Yamamoto, Mikihiko; Mihara, Morihiro

    2005-09-01

    In TRU waste disposal system, significant quantities of gases may be generated due to metal corrosion, radiolysis effect and microorganism activities. It is therefore recommended that the potential impact of gas generation and migration on TRU waste repository should be evaluated. In this study, gas generation rates were calculated in the repository and gas migration analysis in the disposal system were carried out using two phase flow model with results of gas generation rates. First, the time dependencies of gas generation rate in each TRU waste repositories were evaluated based on amounts of metal, organic matter and radioactivity. Next, the accumulation pressure of gases and expelled pore water volume nuclides in the repository were calculated by TOUGH2 code. After that, the results showed that the increase of gas pressure was the range of 1.3 to 1.4 MPa. In the repository with and without buffer, the rate of expelled pore water was 0.006 - 0.009 m 3 /y and 0.018 - 0.24m 3 /y, respectively. In addition, the radioactive gas migration through the repository and geosphere are evaluated. And re-saturation analysis is also performed to evaluate the initial condition of the system. (author)

  8. On the stability of boundary layers in gas mantle systems

    International Nuclear Information System (INIS)

    Ohlsson, D.

    1978-10-01

    In this thesis a systematic investigation of the stability properties of the partially ionized boundary regions of gas mantle systems for a large class of dissipative magneto-hydrodynamic modes is presented. In the partially ionized boundary regions of gas mantle systems several strong stabilizing mechanisms arise due to coupling between various dissipative effects in certain parameter regions. The presence of neutral gas strongly enhances the stabilizing effects in a dual fashion. First in an indirect way by cooling the edge region and second in a direct way by enhancing viscous and heat conduction effects. It has, however, to be pointed out that exceptions from this general picture may be found. The stabilizing influence of neutral gas on a large class of electrostatic as well as electromagnetic modes in the boundary regions of gas blanket systems is contrary to what has been found in low density weakly ionized plasmas. In these latter cases presence of neutral gas has even been found to be responsible for the onset of entirely new classes of instabilities. Thus there is no universal stabilizing or destabilizing effect associated with plasma-neutral gas interaction effects. (author)

  9. Activity and selectivity regulation of synthesis gas reaction over supported ruthenium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K; Nobusawa, T; Fukushima, T; Tominaga, H

    1985-01-01

    The catalytic activities of supported ruthenium for synthesis-gas conversion to hydrocarbons was found to be in the following order: TiOS > Nb2O3 > ZrO2 > SiO2 > Ta2O5 > Al2O3 > V2O5 > MoO3 > WO3 > MnO2 > ZnO. Turnover frequencies of the supported ruthenium increased with decrease in dispersion of the metal particles for every carrier material. Even the activities per unit weight of metals were higher for low-dispersion ruthenium of Al2O3, TiO2, and ZrO2. The chain-growth probability of a hydrocarbon product, which is characterized by the Schulz-Flory distribution, increased markedly with decrease in the metal dispersion irrespective of the carrier material. The catalytic activity of ruthenium particles with a dispersed ruthenium increased almost linearly with an increase in reaction pressure (up to at least 2.0 MPa). 23 references, 10 figures, 3 tables.

  10. Combined synthesis and in situ coating of nanoparticles in the gas phase

    International Nuclear Information System (INIS)

    Laehde, Anna; Raula, Janne; Kauppinen, Esko I.

    2008-01-01

    Combined gas phase synthesis and coating of sodium chloride (NaCl) and lactose nanoparticles has been developed using an aerosol flow reactor. Nano-sized core particles were produced by the droplet-to-particle method and coated in situ by the physical vapour deposition of L-leucine vapour. The saturation of L-leucine in the reactor determined the resulting particle size and size distribution. In general, particle size increased with the addition of L-leucine and notable narrowing of the core particle size distribution was observed. In addition, homogeneous nucleation of the vapour, i.e. formation of pure L-leucine particles, was observed depending on the saturation conditions of L-leucine as well as the core particle characteristics. The effects of core particle properties, i.e. size and solid-state characteristics, on the coating process were studied by comparing the results for coated NaCl and lactose particles. During deposition, L-leucine formed a uniform coating on the surface of the core particles. The coating stabilised the nanoparticles and prevented the sintering of particles during storage.

  11. Quantifying greenhouse gas sources and sinks in managed wetland systems

    Science.gov (United States)

    Stephen M Ogle; Patrick Hunt; Carl Trettin

    2014-01-01

    This chapter provides methodologies and guidance for reporting greenhouse gas (GHG) emissions and sinks at the entity scale for managed wetland systems. More specifically, it focuses on methods for managed palustrine wetlands.1 Section 4.1 provides an overview of wetland systems and resulting GHG emissions, system boundaries and temporal scale, a summary of the...

  12. Fast and simple microwave synthesis of TiO2/Au nanoparticles for gas-phase photocatalytic hydrogen generation

    Science.gov (United States)

    May-Masnou, Anna; Soler, Lluís; Torras, Miquel; Salles, Pol; Llorca, Jordi; Roig, Anna

    2018-04-01

    The fabrication of small anatase titanium dioxide (TiO2) nanoparticles (NPs) attached to larger anisotropic gold (Au) morphologies by a very fast and simple two-step microwave-assisted synthesis is presented. The TiO2/Au NPs are synthesized using polyvinylpyrrolidone (PVP) as reducing, capping and stabilizing agent through a polyol approach. To optimize the contact between the titania and the gold and facilitate electron transfer, the PVP is removed by calcination at mild temperatures. The nanocatalysts activity is then evaluated in the photocatalytic production of hydrogen from water/ethanol mixtures in gas-phase at ambient temperature. A maximum value of 5.3 mmol·gcat-1·h-1 (7.4 mmol·gTiO2-1·h-1) of hydrogen is recorded for the system with larger gold particles at an optimum calcination temperature of 450 °C. Herein we demonstrate that TiO2-based photocatalysts with high Au loading and large Au particle size (≈ 50 nm) NPs have photocatalytic activity.

  13. Analysis of gas turbine systems for sustainable energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Anheden, Marie

    2000-02-01

    Increased energy demands and fear of global warming due to the emission of greenhouse gases call for development of new efficient power generation systems with low or no carbon dioxide (CO{sub 2}) emissions. In this thesis, two different gas turbine power generation systems, which are designed with these issues in mind, are theoretically investigated and analyzed. In the first gas turbine system, the fuel is combusted using a metal oxide as an oxidant instead of oxygen in the air. This process is known as Chemical Looping Combustion (CLC). CLC is claimed to decrease combustion exergy destruction and increase the power generation efficiency. Another advantage is the possibility to separate CO{sub 2} without a costly and energy demanding gas separation process. The system analysis presented includes computer-based simulations of CLC gas turbine systems with different metal oxides as oxygen carriers and different fuels. An exergy analysis comparing the exergy destruction of the gas turbine system with CLC and conventional combustion is also presented. The results show that it is theoretically possible to increase the power generation efficiency of a simple gas turbine system by introducing CLC. A combined gas/steam turbine cycle system with CLC is, however, estimated to reach a similar efficiency as the conventional combined cycle system. If the benefit of easy and energy-efficient CO{sub 2} separation is accounted for, a CLC combined cycle system has a potential to be favorable compared to a combined cycle system with CO{sub 2} separation. In the second investigation, a solid, CO{sub 2}-neutral biomass fuel is used in a small-scale externally fired gas turbine system for cogeneration of power and district heating. Both open and closed gas turbines with different working fluids are simulated and analyzed regarding thermodynamic performance, equipment size, and economics. The results show that it is possible to reach high power generation efficiency and total (power

  14. Deuterium concentration deterioration in feed synthesis gas from ammonia plant to heavy water plant (Preprint No. ED-5)

    International Nuclear Information System (INIS)

    Sah, A.K.

    1989-04-01

    Heavy Water Plant (Thal) is designed for 110 T/ Year capacity (55 T/Year each stream), with inlet deuterium concentration of feed synthesis gas at 115 ppm and depleted to 15 ppm. During first start up of plant the inlet concentration to feed synthesis gas was about 97 ppm. At that time the rich condensate recirculation was not there. To make the effective recirculation of deuterium rich condensate and minimum posssible losses some modifications were carried out in ammonia plant. Major ones are: (i)Demineralised (DM) water export for heavy water plant and urea plant which was having deuterium rich DM water connection was connected with DM water of urea plant which is not rich in deuterium, (ii)Sample cooler pump suction was connected with raw water, (iii)Ammonia plant line No.II condensate stripper was rectified during annual shut down to avoid excessive steam venting from its top and other draining, and (iv)Stripper condensate directly connected to make up water bypassing open settler to avoid evaporation and diffusion losses. With these modifications the deuterium concentration in feed synthesis gas improved to about 105 ppm. To improve it to 115 ppm, further modifications are suggested. (author). 5 figs

  15. Measurements of gas permeability and non-Darcy flow in gas-water-hydrate systems

    Energy Technology Data Exchange (ETDEWEB)

    Ersland, G.; Husebo, J.; Graue, A.; Kvamme, B. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology; Baldwin, B. [Green Country Petrophysics LLC, Dewey, OK (United States); Stevens, J.; Howard, J. [ConocoPhillips, OK (United States)

    2008-07-01

    Storage of carbon dioxide (CO{sub 2}) in natural gas hydrate reservoirs may offer stable long-term storage of a greenhouse gas while benefiting from methane production, without requiring heat. By exposing hydrate to a thermodynamically preferred hydrate former, CO{sub 2}, the hydrate may be maintained macroscopically in the solid state and retain the stability of the formation. However, there is concern over the flow capacity in such reservoirs. This depends on several factors, notably thermodynamic destabilization of hydrate in small pores due to capillary effects; the presence of liquid channels separating the hydrate from the mineral surfaces; and, the connectivity of gas or liquid filled pores and channels. This paper described a technique for measuring gas permeability in gas-water-hydrate systems. It reported on several experiments that measured gas permeability during stages of hydrate growth in sandstone core plugs. Interactions between minerals and surrounding molecules were also discussed. The formation of methane hydrate in porous media was monitored and quantified with magnetic resonance imaging (MRI). MRI images of hydrate growth within the porous rock were provided along with measurements of gas permeability and non-Darcy flow effects at various hydrate saturations. Gas permeability was measured at steady state flow of methane through the hydrate-bearing core sample. Significant gas permeability was recorded for porous sandstone even when hydrates occupied up to 60 per cent of the pore space. It was concluded that MRI imaging can be used effectively to map and quantify hydrate saturation in sandstone core plugs. 27 refs., 2 tabs., 10 figs.

  16. Gas turbine control for islanding operation of distribution systems

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2009-01-01

    Danish distribution systems are characterized by a significant penetration of small gas turbine generators (GTGs) and fixed speed wind turbine generators (WTGs). Island operation of these distribution systems are becoming a viable option for economical and technical reasons. However, stabilizing...... frequency in an islanded system is one of the major challenges. This paper presents three different gas turbine governors for possible operation of distribution systems in an islanding mode. Simulation results are presented to show the performance of these governors in grid connected and islanding mode....

  17. LYCOS: The Lyngby Co-Synthesis System

    DEFF Research Database (Denmark)

    Madsen, Jan; Grode, Jesper Nicolai Riis; Knudsen, Peter Voigt

    1997-01-01

    This paper describes the LYCOS system, an experimental co-synthes is environment. We present the motivation and philosophy of LYCOS and after an overview of the entire system, the individual parts are described. We use a single CPU, single ASIC target architecture and we describe the techniques we...

  18. Local CHP Plants between the Natural Gas and Electricity Systems

    DEFF Research Database (Denmark)

    Bregnbæk, Lars; Schaumburg-Müller, Camilla

    2005-01-01

    , and they contribute significantly to the electricity production. CHP is, together with the wind power, the almost exclusive distributed generation in Denmark. This paper deals with the CHP as intermediary between the natural gas system and the electricity system. In particular, the relationship between the peak hour......Local combined heat and power (CHP) plants in Denmark constitute an important part of the national energy conversion capacity. In particular they supply a large share of the district heating networks with heat. At the same time they are important consumers as seen from the gas network system...... characteristics of the electricity and gas systems will be investigated. The point is here that the two systems will tend to have peak demand during the same hours. This is the typical situation, since load is high during the same hours of the day and of the year. Moreover, the random variations in the load...

  19. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  20. BASIN-CENTERED GAS SYSTEMS OF THE U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

    2000-11-01

    The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

  1. Gas management of measurement system; Sistema informatizado de programacao e controle integrado de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Niedersberg, Luis Carlos [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Coordenacao de Programacao e Controle Integrado; Gomes, Lea Visali [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia Executiva de Logistica de Operacoes

    2008-07-01

    This paper has for objective to present the software developed for control of measurement of natural gas in the Gas Company of the Rio Grande do Sul State - Sulgas. This paper will be presented the previous control system, developed as Microsoft Excel and the new system developed in Company's ERP. This software automated great part of the process, reducing possible mistakes, reducing the reverse-work index and improving the quality of the measurements considerably and of the revenue of the Company. (author)

  2. Controller synthesis for negative imaginary systems: a data driven approach

    KAUST Repository

    Mabrok, Mohamed

    2016-02-17

    The negative imaginary (NI) property occurs in many important applications. For instance, flexible structure systems with collocated force actuators and position sensors can be modelled as negative imaginary systems. In this study, a data-driven controller synthesis methodology for NI systems is presented. In this approach, measured frequency response data of the plant is used to construct the controller frequency response at every frequency by minimising a cost function. Then, this controller response is used to identify the controller transfer function using system identification methods. © The Institution of Engineering and Technology 2016.

  3. European standards applied by Gas Transmission System Operator

    International Nuclear Information System (INIS)

    Witek, M.; Kuchta, K.; Oleszkiewicz, J.; Teperek, T.

    2005-01-01

    The lecture described actual state of implementation of European standards concerning transmission of natural gas and underlined their importance for proper performance of Transmission System Operator (TSO). European standards implemented to Polish Standards as PN-EN, necessary for TSO, related to design, construction and operation of high pressure gas network were also described. The lecture underlined as well the impact of standards application on preparation process of national regulations. They obligate TSO to create the technical conditions that ensure safety of gas transmission network functioning as well as environmental and surroundings safety. (authors)

  4. Engine with exhaust gas recirculation system and variable geometry turbocharger

    Science.gov (United States)

    Keating, Edward J.

    2015-11-03

    An engine assembly includes an intake assembly, an internal combustion engine defining a plurality of cylinders and configured to combust a fuel and produce exhaust gas, and an exhaust assembly in fluid communication with a first subset of the plurality of cylinders. Each of the plurality of cylinders are provided in fluid communication with the intake assembly. The exhaust assembly is provided in fluid communication with a first subset of the plurality of cylinders, and a dedicated exhaust gas recirculation system in fluid communication with both a second subset of the plurality of cylinders and with the intake assembly. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the second subset of the plurality of cylinders to the intake assembly. Finally, the engine assembly includes a turbocharger having a variable geometry turbine in fluid communication with the exhaust assembly.

  5. Vermont Yankee advanced off-gas system (AOG)

    International Nuclear Information System (INIS)

    Littlefield, P.S.; Miller, S.R.; DerHagopian, H.

    1975-01-01

    Early in 1971 the Vermont Yankee Nuclear Power Corporation decided to modify the existing off-gas delay system to reduce the release of noble gas isotopes from its boiling water reactor. This modification included a subsystem for recombining the radiolytic hydrogen and oxygen from the reactor and a series of adsorber tanks filled with activated carbon to delay the noble gas isotopes from the condenser air ejectors. The off-gas system and its operating history from initial operation in November 1973 to the present time are described. Data are also presented on the measured dynamic adsorption coefficient of the ambient carbon subsystem. Laboratory adsorption tests were conducted on the carbon prior to AOG startup and the results are compared with the effective coefficients obtained under operating conditions. (U.S.)

  6. Investigation of a combined gas-steam system with flue gas recirculation

    Directory of Open Access Journals (Sweden)

    Chmielniak Tadeusz

    2016-06-01

    Full Text Available This article presents changes in the operating parameters of a combined gas-steam cycle with a CO2 capture installation and flue gas recirculation. Parametric equations are solved in a purpose-built mathematical model of the system using the Ebsilon Professional code. Recirculated flue gases from the heat recovery boiler outlet, after being cooled and dried, are fed together with primary air into the mixer and then into the gas turbine compressor. This leads to an increase in carbon dioxide concentration in the flue gases fed into the CO2 capture installation from 7.12 to 15.7%. As a consequence, there is a reduction in the demand for heat in the form of steam extracted from the turbine for the amine solution regeneration in the CO2 capture reactor. In addition, the flue gas recirculation involves a rise in the flue gas temperature (by 18 K at the heat recovery boiler inlet and makes it possible to produce more steam. These changes contribute to an increase in net electricity generation efficiency by 1%. The proposed model and the obtained results of numerical simulations are useful in the analysis of combined gas-steam cycles integrated with carbon dioxide separation from flue gases.

  7. SYNTHESIS OF THE TECHNICAL CONTROL SYSTEMS WITH VARIABLE STRUCTURE

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available Change. Also the object as a result of an adverse effect is considered. The formal problem definition of synthesis of hardy management system is considered. Model choice criteria ensemble is set. The rule of choice algorithm implementation on the basis of different reference functions is provided. The conclusion is drawn that in case of preliminary processing of the available prior data it is possible to select reference functions correctly which reflect physical processes more precisely. The mathematical description of a dynamic object on the basis of a differential equation, or its decision is provided. Defini- tion of function of a trend is given. Criteria for selection of model of damage are given. The recommendation of modifica- tion of Demark trends algorithm by means of the sliding Yazvinsky's window and a method of self-organization for in- crease of accuracy of creation of a predictive model of damage is made. It is offered to realize a model choice by means of more complex logical analysis of an observed vector in the appropriate situation. Logic-functional control task definition is given and approach to its decision is formulated. The conclusion about what the task of synthesis management system con- sists of is given. This article describes the method of synthesis of control system with variable structure provides increasing survivability control system in a significant change of the external environment, as well as the object itself from the adverse impacts.

  8. Synthesis of magnetic systems producing field with maximal scalar characteristics

    International Nuclear Information System (INIS)

    Klevets, Nickolay I.

    2005-01-01

    A method of synthesis of the magnetic systems (MSs) consisting of uniformly magnetized blocks is proposed. This method allows to synthesize MSs providing maximum value of any magnetic field scalar characteristic. In particular, it is possible to synthesize the MSs providing the maximum of a field projection on a given vector, a gradient of a field modulus and a gradient of a field energy on a given directing vector, a field magnitude, a magnetic flux through a given surface, a scalar product of a field or a force by a directing function given in some area of space, etc. The synthesized MSs provide maximal efficiency of permanent magnets utilization. The usage of the proposed method of MSs synthesis allows to change a procedure of projecting in principal, namely, to execute it according to the following scheme: (a) to choose the sizes, a form and a number of blocks of a system proceeding from technological (economical) reasons; (b) using the proposed synthesis method, to find an orientation of site magnetization providing maximum possible effect of magnet utilization in a system obtained in (a). Such approach considerably reduces a time of MSs projecting and guarantees maximal possible efficiency of magnets utilization. Besides it provides absolute assurance in 'ideality' of a MS design and allows to obtain an exact estimate of the limit parameters of a field in a working area of a projected MS. The method is applicable to a system containing the components from soft magnetic material with linear magnetic properties

  9. Operation and management of aging gas distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    McNorgan, J.D. (Southern California Gas Co., Los Angeles, CA (United States))

    1993-05-01

    Southern California Gas Company, transports billions of cubic feet of natural gas through large-diameter, high-pressure transmission lines, across hundreds of miles of varying terrain, to satisfy the needs of over four and a half million customers. Operating an aging gas system can be truly expensive. Repair costs are very high. Recent figures experienced by our company show that it cost over $800 to repair a main leak, $400 to replace a service, and over $40 a foot to replace even small sized mains. A hidden cost is the effect of the physical limitations imposed by an aging system. It could be under-sized, or limited to a low pressure, thus restricting the volume of gas that can be delivered. Additionally there is the potential loss of valuable gas through leaks or blow downs when making repairs or replacements, and the damage it could do to the environment. For some years Southern California Gas Company has had on-going special and routine pipe replacement programs. The special pipe replacement program is driven primarily to increase the safety of the system, while at the same time improving reliability of service to the customers and reducing their total costs.

  10. Fuel rod puncturing and fission gas monitoring system examination techniques

    International Nuclear Information System (INIS)

    Song, Woong Sup

    1999-02-01

    Fission gas products accumulated in irradiated fuel rod is 1-2 cm 3 in CANDU and 40-50 cm 3 in PWR fuel rod. Fuel rod puncturing and fission gas monitoring system can be used for both CANDU and PWR fuel rod. This system comprises puncturing device located at in cell part and monitoring device located at out cell part. The system has computerized 9 modes and can calculate both void volume and mass volume only single puncturing. This report describes techniques and procedure for operating fuel rod puncturing and gas monitoring system which can be play an important role in successful operation of the devices. Results obtained from the analysis can give more influence over design for fuel rods. (Author). 6 refs., 9 figs

  11. Gas flows in S-E binary systems of galaxies

    Science.gov (United States)

    Sotnikova, N. YA.

    1990-01-01

    Tidal interaction between the galaxies in binary systems leads to important consequences. Some peculiarities in galactic morphology as well as the transfer of matter from one galaxy to another may be due to this factor. In particular, gas flows in intergalactic space may be formed. Such flows enriching one component with gas from the other may play a substantial role in the evolution of mixed (S-E) pairs. One can mention several facts corroborating the possibility of the gas transfer from the spiral to the elliptical galaxy. High HI content (10(exp 7) to 10(exp 9) solar mass) is detected in nearly 40 E galaxies (Bottinelli and Gougenheim, 1979; Knapp et al., 1985). Such galaxies are often members of pairs or of multiple systems including an S galaxy, which may be the source of gas (Smirnov and Komberg, 1980). Moreover, the gas kinematics and its distribution also indicate an external origin for this gas (Knapp et al., 1985). In many cases there is an outer gaseous disk. The directions of the disk and of stellar rotation don't always coincide (van Gorkom et al., 1985; Varnas et al., 1987). The galaxy colors in S-E pairs are correlated (the Holmberg effect): bluer ellipticals have spiral components that are usually bluer (Demin et al., 1984). The fraction of E galaxies with emission lines (N sub em) in S-E pairs showing traces of tidal interaction is twice as large (N sub em approx. equals 0.24) as in pairs without interaction (N sub em approx. equals 0.12) (Sotnikova, 1988b). Since the presence of emission lines in a galaxy spectrum strongly depends on gas content, this fact also leads to the conclusion that ellipticals in interacting S-E pairs are enriched with gas. These facts may be considered as a serious indication of the existence of gas transfer. Hence, investigation of this process is of interest.

  12. Design and synthesis of reactive separation systems

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, M.F.

    1992-01-01

    During the last decade there has been a rapid upturn in interest in reactive distillation. The chemical process industry recognizes the favorable economics of carrying out reaction simultaneously with distillation for certain classes of reacting systems, and many new processes have been built based on this technology. Interest is also increasing by academics and software vendors. Systematic design methods for reactive distillation systems have only recently begun to emerge. In this report we survey the available design techniques and point out the contributions made by our group at the University of Massachusetts.

  13. A synthesis theory for self-oscillating adaptive systems /SOAS/

    Science.gov (United States)

    Horowitz, I.; Smay, J.; Shapiro, A.

    1974-01-01

    A quantitative synthesis theory is presented for the Self-Oscillating Adaptive System (SOAS), whose nonlinear element has a static, odd character with hard saturation. The synthesis theory is based upon the quasilinear properties of the SOAS to forced inputs, which permits the extension of quantitative linear feedback theory to the SOAS. A reasonable definition of optimum design is shown to be the minimization of the limit cycle frequency. The great advantages of the SOAS is its zero sensitivity to pure gain changes. However, quasilinearity and control of the limit cycle amplitude at the system output, impose additional constraints which partially or completely cancel this advantage, depending on the numerical values of the design parameters. By means of narrow-band filtering, an additional factor is introduced which permits trade-off between filter complexity and limit cycle frequency minimization.

  14. Facile Synthesis, Microstructure, and Gas Sensing Properties of NdCoO3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lorenzo Gildo-Ortiz

    2017-01-01

    Full Text Available NdCoO3 nanoparticles were successfully synthesized by a simple, inexpensive, and reproducible solution method for gas sensing applications. Cobalt nitrate, neodymium nitrate, and ethylenediamine were used as precursors and distilled water as solvent. The solvent was evaporated later by means of noncontinuous microwave radiation at 290 W. The obtained precursor powders were calcined at 200, 500, 600, and 700°C in a standard atmosphere. The oxide crystallized in an orthorhombic crystal system with space group Pnma (62 and cell parameters a=5.33 Å, b=7.52 Å, and c=5.34 Å. The nanoparticles showed a diffusional growth to form a network-like structure and porous adsorption configuration. Pellets prepared from NdCoO3 were tested as gas sensors in atmospheres of carbon monoxide and propane at different temperatures. The oxide nanoparticles were clearly sensitive to changes in gas concentrations (0–300 ppm. The sensitivity increased with increasing concentration of the gases and operating temperatures (25, 100, 200, and 300°C.

  15. Synthesis and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid/Composite Membranes

    Directory of Open Access Journals (Sweden)

    Masako Miki

    2013-12-01

    Full Text Available Hyperbranched polyimide–silica hybrids (HBPI–silica HBDs and hyperbranched polyimide–silica composites (HBPI–silica CPTs were prepared, and their general and gas transport properties were investigated to clarify the effect of silica sources and preparation methods. HBPI–silica HBDs and HBPI–silica CPTs were synthesized by two-step polymerization of A2 + B3 monomer system via polyamic acid as precursor, followed by hybridizing or blending silica sources. Silica components were incorporated by the sol-gel reaction with tetramethoxysilane (TMOS or the addition of colloidal silica. In HBPI-silica HBDs, the aggregation of silica components is controlled because of the high affinity of HBPI and silica caused by the formation of covalent bonds between HBPI and silica. Consequently, HBPI-silica HBDs had good film formability, transparency, and mechanical properties compared with HBPI-silica CPTs. HBPI-silica HBD and CPT membranes prepared via the sol-gel reaction with TMOS showed specific gas permeabilities and permselectivities for CO2/CH4 separation, that is, both CO2 permeability and CO2/CH4 selectivity increased with increasing silica content. This result suggests that gas transport can occur through a molecular sieving effect of the porous silica network derived from the sol-gel reaction and/or through the narrow interfacial region between the silica networks and the organic matrix.

  16. Automatic synthesis of supervisory control systems

    NARCIS (Netherlands)

    Najafi, E.

    2016-01-01

    Sequential composition is an effective supervisory control method for addressing control problems in nonlinear dynamical systems. It executes a set of controllers sequentially to achieve a control specification that cannot be realized by a single controller. Sequential composition focuses on the

  17. GIS (Geographic Information Systems) based automatic tool for selection of gas pipeline corridors

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Denise F.; Menezes, Paulo Cesar P.; Paz, Luciana R.L.; Garcia, Katia C.; Cruz, Cristiane B.; Pires, Silvia H.M.; Damazio, Jorge M.; Medeiros, Alexandre M.

    2009-07-01

    This paper describes a methodology developed to build total accumulated surfaces in order to better select gas pipelines corridor alternatives. The methodology is based on the minimization of negative impacts and the use of Geographic Information Systems (GIS), allowing an automatic method of construction, evaluation and selection of alternatives, that will contribute to the decision making process. It is important to emphasize that this paper follows the assumptions presented on the research reports of a project sponsored by the Ministry of Mines and Energy (MME) and elaborated at the Electric Power Research Center (CEPEL), called 'Development of a Geographic Information System to Oil and Gas Sectors in Brazil', and also the studies d GTW Project (Gas to Wire). Gas pipelines, as for their linear characteristic, may cross a variety of habitats and settlements, increasing the complexity of their environmental management. Considering this reality, this paper presents a methodology that takes into account different environmental criteria (layers), according to the area impacted. From the synthesis of the criteria it is presented the total accumulated surface. It is showed an example of a hypothetical gas pipeline connection between two points using the total accumulated surface. To select the 'impact scores' of the features, the gas pipeline was considered as a linear feature, but the result is a region, formed by pixels, each pixel with an accumulated impact score lower than some arbitrary measure. This region is called 'corridor', and it is the final result obtained using the proposed methodology. (author)

  18. Specialized Gas Chromatography--Mass Spectrometry Systems for Clinical Chemistry.

    Science.gov (United States)

    Gochman, Nathan; And Others

    1979-01-01

    A discussion of the basic design and characteristics of gas chromatography-mass spectrometry systems used in clinical chemistry. A comparison of three specific systems: the Vitek Olfax IIA, Hewlett-Packard HP5992, and Du Pont DP-102 are included. (BB)

  19. Greenhouse gas emissions from integrated urban drainage systems

    DEFF Research Database (Denmark)

    Mannina, Giorgio; Butler, David; Benedetti, Lorenzo

    2018-01-01

    As sources of greenhouse gas (GHG) emissions, integrated urban drainage systems (IUDSs) (i.e., sewer systems, wastewater treatment plants and receiving water bodies) contribute to climate change. This paper, produced by the International Working Group on Data and Models, which works under the IWA...

  20. Fast reactor primary cover gas system proposals for CDFR

    International Nuclear Information System (INIS)

    Harrison, L.M.T.

    1987-01-01

    A primary sodium gas cover has been designed for CDFR, it comprises plant to maintain and control; cover gas pressure for all reactor operating at fault conditions, cover gas purity by both blowdown and by a special clean-up facility and the clean argon supply for the failed fuel detection system and the primary pump seal purge. The design philosophy is to devise a cover gas system that can be specified for any LMFBR where only features like vessel and pipework size need to be altered to suit different design and operating conditions. The choice of full power and shutdown operating pressures is derived and the method chosen to control these values is described. A part active/part passive system is proposed for this duty, a surge volume of 250 m 3 gives passive control between full power and hot shutdown. Pressure control operation criteria is presented for various reactor operating conditions. A design for a sodium aerosol filter, based on that used on PFR is presented, it is specifically designed so that it can be fitted with an etched disc type particulate filter and maintenance is minimised. Two methods that maintain cover gas purity are described. The first, used during normal reactor operation with a small impurities ingress, utilises the continuous blowdown associated with the inevitable clean argon purge through the various reactor component seals. The second method physically removes the impurities xenon and krypton from the cover gas by their adsorption, at cryogenic temperature, onto a bed of activated carbon. The equipment required for these two duties and their mode of operation is described with the aid of a system flow diagram. The primary pump seals requires a gas purge to suppress aerosol migration. A system where the argon used for this task is recirculated and partially purified is described. (author)

  1. The evaluation study for gas target system in cyclotron

    International Nuclear Information System (INIS)

    Hur, Min Goo; Yang, Seung Dae; Kim, Sang Wook

    2009-06-01

    The object of this study is an improvement of a gas target and targetry for increasing the radioisotope production yields. The main results are as follows 1. Improvement of beam entrance of the gas target : In this work, the deep hole grid and the hex grid are compared for improvement of beam entrance. Using FEM analysis, it was verified that the hex grid design is more effective than the hole grid. 2. Improvement of target gas loading and withdrawing system : For the targetry, two type of mixture gas (N 2 +H 2 /N 2 +O 2 ) lines was installed for CH 4 /CO 2 production. Use the mixture gas than the He gas, it was proved that the recovery yields was improved and the residual impurity was reduced. 3. Compare the target yields : For improving the cooling efficiency, cooling fin was suggested to the target design. Also, we tested the production yield variation with impurity of the mixture gas. It is more effective to put the cooling fins inside the target cavity for the suppressed target pressure and density reduction effect during the proton beam irradiation. In conclusion, the target with fins inside the target cavity was better for high current irradiation and mass RI production

  2. Synthesis of Optimal Isolation Systems of Hand-Transmitted Vibration

    Directory of Open Access Journals (Sweden)

    Marek Książek

    1997-01-01

    Full Text Available In this article a procedure is presented for the analytical synthesis of optimal vibration isolation for a hand-arm system subjected to stochastic excitation. A general approach is discussed for a selected vibration isolation criterion. The general procedure is illustrated by analytical examples for different hand-arm systems described by their driving-point impedances. The influence of particular forms of excitation and the structure of the vibroisolated hand-arm systems on the resultant vibration isolation is then discussed. Some numerical examples illustrating the procedure have also been included.

  3. An analysis of machine translation and speech synthesis in speech-to-speech translation system

    OpenAIRE

    Hashimoto, K.; Yamagishi, J.; Byrne, W.; King, S.; Tokuda, K.

    2011-01-01

    This paper provides an analysis of the impacts of machine translation and speech synthesis on speech-to-speech translation systems. The speech-to-speech translation system consists of three components: speech recognition, machine translation and speech synthesis. Many techniques for integration of speech recognition and machine translation have been proposed. However, speech synthesis has not yet been considered. Therefore, in this paper, we focus on machine translation and speech synthesis, ...

  4. Robust synthesis for real-time systems

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Legay, Axel; Traonouez, Luois-Marie

    2014-01-01

    Specification theories for real-time systems allow reasoning about interfaces and their implementation models, using a set of operators that includes satisfaction, refinement, logical and parallel composition. To make such theories applicable throughout the entire design process from an abstract...... of introducing small perturbations into formal models. We address this problem of robust implementations in timed specification theories. We first consider a fixed perturbation and study the robustness of timed specifications with respect to the operators of the theory. To this end we synthesize robust...... specification to an implementation, we need to reason about the possibility to effectively implement the theoretical specifications on physical systems, despite their limited precision. In the literature, this implementation problem has been linked to the robustness problem that analyzes the consequences...

  5. Flexible fuel cell gas manifold system

    Science.gov (United States)

    Cramer, Michael; Shah, Jagdish; Hayes, Richard P.; Kelley, Dana A.

    2005-05-03

    A fuel cell stack manifold system in which a flexible manifold body includes a pan having a central area, sidewall extending outward from the periphery of the central area, and at least one compound fold comprising a central area fold connecting adjacent portions of the central area and extending between opposite sides of the central area, and a sidewall fold connecting adjacent portions of the sidewall. The manifold system further includes a rail assembly for attachment to the manifold body and adapted to receive pins by which dielectric insulators are joined to the manifold assembly.

  6. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  7. Cool gas micropropulsion system for cubesats

    NARCIS (Netherlands)

    Breukelen, E. van; Sanders, B.H.; Schuurbiers, C.A.H.

    2009-01-01

    CubeSats are becoming more mature and many capabilities previously associated with microsatellites and bigger platforms are coming to the CubeSat. Moreover, they are becoming available as commercial off the shelf systems with standardized interfaces. TNO Defence and Security of the Netherlands is in

  8. Gas box control system for Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Bell, H.H. Jr.; Hunt, A.L.; Clower, C.A. Jr.

    1983-01-01

    The Tandem Mirror Experiment-Upgrade (TMX-U) uses several methods to feed gas (usually deuterium) at different energies into the plasma region of the machine. One is an arrangement of eight high-speed piezo-electric valves mounted on special manifolds (gas box) that feed cold gas directly to the plasma. This paper describes the electronic valve control and data acquisition portions of the gas box, which are controlled by a desk-top computer. Various flow profiles have been developed and stored in the control computer for ready access by the operator. The system uses two modes of operation, one that exercises and characterizes the valves and one that operates the valves with the rest of the experiment. Both the valve control signals and the pressure transducers data are recorded on the diagnostics computer so that they are available for experiment analysis

  9. Thermodynamic Modeling of Natural Gas Systems Containing Water

    DEFF Research Database (Denmark)

    Karakatsani, Eirini K.; Kontogeorgis, Georgios M.

    2013-01-01

    As the need for dew point specifications remains very urgent in the natural gas industry, the development of accurate thermodynamic models, which will match experimental data and will allow reliable extrapolations, is needed. Accurate predictions of the gas phase water content in equilibrium...... with a heavy phase were previously obtained using cubic plus association (CPA) coupled with a solid phase model in the case of hydrates, for the binary systems of water–methane and water–nitrogen and a few natural gas mixtures. In this work, CPA is being validated against new experimental data, both water...... content and phase equilibrium data, and solid model parameters are being estimated for four natural gas main components (methane, ethane, propane, and carbon dioxide). Different tests for the solid model parameters are reported, including vapor-hydrate-equilibria (VHE) and liquid-hydrate-equilibria (LHE...

  10. Feed gas contaminant control in ion transport membrane systems

    Science.gov (United States)

    Carolan, Michael Francis [Allentown, PA; Minford, Eric [Laurys Station, PA; Waldron, William Emil [Whitehall, PA

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  11. Development of a natural Gas Systems Analysis Model (GSAM)

    International Nuclear Information System (INIS)

    1994-02-01

    Lacking a detailed characterization of the resource base and a comprehensive borehole-to-burnertip evaluation model of the North American natural gas system, past R ampersand D, tax and regulatory policies have been formulated without a full understanding of their likely direct and indirect impacts on future gas supply and demand. The recent disappearance of the deliverability surplus, pipeline deregulation, and current policy debates about regulatory initiatives in taxation, environmental compliance and leasing make the need for a comprehensive gas evaluation system critical. Traditional econometric or highly aggregated energy models are increasingly regarded as unable to incorporate available geologic detail and explicit technology performance and costing algorithms necessary to evaluate resource-technology-economic interactions in a market context. The objective of this research is to create a comprehensive, non-proprietary, microcomputer model of the North American natural gas system. GSAM explicitly evaluates the key components of the natural gas system, including resource base, exploration and development, extraction technology performance and costs, transportation and storage and end use. The primary focus is the detailed characterization of the resource base at the reservoir and sub-reservoir level and the impact of alternative extraction technologies on well productivity and economics. GSAM evaluates the complex interactions of current and alternative future technology and policy initiatives in the context of the evolving gas markets. Scheduled for completion in 1995, a prototype is planned for early 1994. ICF Resources reviewed relevant natural gas upstream, downstream and market models to identify appropriate analytic capabilities to incorporate into GSAM. We have reviewed extraction technologies to better characterize performance and costs in terms of GSAM parameters

  12. Ethanol synthesis and water gas shift over bifunctional sulfide catalysts. Final technical progress report, September 12, 1991--December 11, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Deemer, M.; Richards-Babb, M.; Carr, T.

    1995-07-01

    The objective of this research was to investigate sulfur-resistant catalysts for the conversion of synthesis gas having H{sub 2}/CO {le} 1 into C{sub 1}--C{sub 4} alcohols, especially ethanol, by a highly selective and efficient pathway, while also promoting the water gas shift reaction (WGSR). The catalysts chosen are bifunctional, base-hydrogenation, sulfur-tolerant transition metal sulfides with heavy alkali, e.g. Cs{sup +}, promoter dispersed on their surfaces. The modes of activation of H{sub 2} and CO on MoS{sub 2} and alkali-doped MoS{sub 2} were considered, and computational analyses of the thermodynamic stability of transition metal sulfides and of the electronic structure of these sulfide catalysts were carried out. In the preparation of the cesium-promoted MoS{sub 2} catalysts, a variety of preparation methods using CsOOCH were examined. In all cases, doping with CsOOCH led to a lost of surface area. The undoped molybdenum disulfide catalyst only produced hydrocarbons. Cs-doped MoS{sub 2} catalysts all produced linear alcohols, along with smaller amounts of hydrocarbons. With a 20 wt% CsOOCH/MoS{sub 2} catalyst, temperature, pressure, and flow rate dependences of the synthesis reactions were investigated in the presence and absence of H{sub 2}S in the H{sub 2}/CO = 1/1 synthesis gas during short term testing experiments. It was shown that with a carefully prepared 10 wt% CsOOCH/MoS{sub 2} catalyst, reproducible and high alcohol synthesis activity could be obtained. For example, at 295 C with H{sub 2}/CO = 1 synthesis gas at 8.3 MPa and with GHSV = 7,760 l/kg cat/hr, the total alcohol space time yield was ca 300 g/kg cat/hr (accompanied with a hydrocarbon space time yield of ca 60 g/kg cat/hr). Over a testing period of ca 130 hr, no net deactivation of the catalyst was observed. 90 refs., 82 figs., 14 tabs.

  13. Airfoil seal system for gas turbine engine

    Science.gov (United States)

    None, None

    2013-06-25

    A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

  14. Process analysis of an oxygen lean oxy-fuel power plant with co-production of synthesis gas

    International Nuclear Information System (INIS)

    Normann, Fredrik; Thunman, Henrik; Johnsson, Filip

    2009-01-01

    This paper investigates new possibilities and synergy effects for an oxy-fuel fired polygeneration scheme (transportation fuel and electricity) with carbon capture and co-firing of biomass. The proposed process has the potential to make the oxy-fuel process more effective through a sub-stoichiometric combustion in-between normal combustion and gasification, which lowers the need for oxygen within the process. The sub-stoichiometric combustion yields production of synthesis gas, which is utilised in an integrated synthesis to dimethyl ether (DME). The process is kept CO 2 neutral through co-combustion of biomass in the process. The proposed scheme is simulated with a computer model with a previous study of an oxy-fuel power plant as a reference process. The degree of sub-stoichiometric combustion, or amount of synthesis gas produced, is optimised with respect to the overall efficiency. The maximal efficiency was found at a stoichiometric ratio just below 0.6 with the efficiency for the electricity producing oxy-fuel process of 0.35 and a DME process efficiency of 0.63. It can be concluded that the proposed oxygen lean combustion process constitutes a way to improve the oxy-fuel carbon capture processes with an efficient production of DME in a polygeneration process

  15. A review of gas tariff systems in Europe

    International Nuclear Information System (INIS)

    Wessels, L.; Swagerman, D.

    1996-01-01

    This review of the gas tariff systems in Europe did not confirm the previously established opinion that there is a large difference between the situation in Western Europe and the Central and Eastern Europe. The differences are not as great as the differences inside Western Europe and inside the Central and Eastern Europe countries. This overview was done according to the UN Gas centre questionnaire that was sent to all the countries with economies in transition and the information Gasunie has about he tariff system in western Europe

  16. The Optimal Operation Criteria for a Gas Turbine Cogeneration System

    Directory of Open Access Journals (Sweden)

    Atsushi Akisawa

    2009-04-01

    Full Text Available The study demonstrated the optimal operation criteria of a gas turbine cogeneration system based on the analytical solution of a linear programming model. The optimal operation criteria gave the combination of equipment to supply electricity and steam with the minimum energy cost using the energy prices and the performance of equipment. By the comparison with a detailed optimization result of an existing cogeneration plant, it was shown that the optimal operation criteria successfully provided a direction for the system operation under the condition where the electric power output of the gas turbine was less than the capacity

  17. Prediction of vapour-liquid equilibria for the kinetic study of processes based on synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Di Serio, M.; Tesser, R.; Cozzolino, M.; Santacesaria, E. [Naples Univ., Napoli (Italy). Dept. of Chemistry

    2006-07-01

    Syngas is normally used in the production of a broad range of chemicals and fuels. In many of these processes multiphase reactors, gas-liquid or gas-liquid-solid are used. Kinetic studies in multiphase systems are often complicated by the non-ideal behaviour of reagents and/or products that are consistently partitioned between the liquid and the vapour phase. Moreover, as often kinetic data are collected in batch conditions for the liquid phase, activity coefficients of the partitioned components can consistently change during the time as a consequence of changing the composition of the reaction mixture. Therefore, it is necessary, in these cases, to known the vapor-liquid equilibria (VLE) in order to collect and to interpret correctly the kinetic data. The description of phase equilibria, at high pressures, is usually performed by means of an EOS (Equation of State) allowing the calculation of fugacity coefficients, for each component, in both phases and determining the partition coefficients but the EOS approach involves the experimental determination of the interaction parameters for all the possible binary system of the mixture. For multicomponent mixtures a complete experimental determination of vapourliquid equilibria is very hard, also considering the high pressure and temperatures used. Some predictive group contribution methods have been recently developed. In this paper, we will describe in detail the application of these methods to the methanol homologation, as an example, with the scope of determining more reliable kinetic parameters for this reaction. (orig.)

  18. Balance sheet for the gas system in 2014

    International Nuclear Information System (INIS)

    2015-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents some key figures about GRTgaz activity in 2014: 2014, France's warmest year ever observed (2014, warm / 2013, cold). Total Consumption 2014 vs 2013: -16.5% gross consumption, -5.4% climate adjusted. Public Distribution Consumption 2014 vs 2013: -19.2% gross consumption, -2.2% climate adjusted. Power Generation: -60% since 2011, 2014 vs 2013: -34%. Industrial Consumption has remained stable over the past 10 years. Stable industrial capacity subscriptions (excluding power generation). Transported Quantities by GRTgaz 2014 vs 2013 (-8.4%). Increasing flows from North to South. Imports fall connected to consumption fall, but soften by gas transit flows. Very low LNG imports but LNG was back at the end of 2014. Largely increasing gas transit 2014 vs 2013: +41%. Good level in the UGS at the beginning of the winter 2014/2015. Congestion on North-South link, Congested European North-South corridor. Price spread between North and South disappeared in November and December 2014. In 2014, Gas gross consumption fell by 16.5% in comparison with 2013, essentially because of exceptionally warm climatic conditions. Industrial consumption excluding power generation resists and has remained relatively stable over the past ten years. However gas consumption for power generation continued to fall since 2011. In 2014, GRTgaz's gas transmission network ran under unusual gas flow conditions, especially with a continuing decrease of

  19. The Energy Conversion Analysis of HTR Gas Turbine System

    International Nuclear Information System (INIS)

    Utaja

    2000-01-01

    The energy conversion analysis of HTR gas turbine system by hand calculation is tedious work and need much time. This difficulty comes from the repeated thermodynamic process calculation, both on compression or expansion of the cycle. To make the analysis faster and wider variable analyzed, HTR-1 programme is used. In this paper, the energy conversion analysis of HTR gas turbine system by HTR-1 will be described. The result is displayed as efficiency curve and block diagram with the input and output temperature of the component. This HTR-1 programme is developed by Basic language programming and be compiled by Visual Basic 5.0 . By this HTR-1 programme, the efficiency, specific power and effective compression of the amount of gas can be recognized fast. For example, for CO 2 gas between 40 o C and 700 o C, the compression on maximum efficiency is 4.6 and the energy specific is 18.9 kcal/kg, while the temperature changing on input and output of the component can be traced on monitor. This process take less than one second, while the manual calculation take more than one hour. It can be concluded, that the energy conversion analysis of the HTR gas turbine system by HTR-1 can be done faster and more variable analyzed. (author)

  20. Synthesis, dynamics and photophysics of nanoscale systems

    Science.gov (United States)

    Mirkovic, Tihana

    The emerging field of nanotechnology, which spans diverse areas such as nanoelectronics, medicine, chemical and pharmaceutical industries, biotechnology and computation, focuses on the development of devices whose improved performance is based on the utilization of self-assembled nanoscale components exhibiting unique properties owing to their miniaturized dimensions. The first phase in the conception of such multifunctional devices based on integrated technologies requires the study of basic principles behind the functional mechanism of nanoscale components, which could originate from individual nanoobjects or result as a collective behaviour of miniaturized unit structures. The comprehensive studies presented in this thesis encompass the mechanical, dynamical and photophysical aspects of three nanoscale systems. A newly developed europium sulfide nanocrystalline material is introduced. Advances in synthetic methods allowed for shape control of surface-functionalized EuS nanocrystals and the fabrication of multifunctional EuS-CdSe hybrid particles, whose unique structural and optical properties hold promise as useful attributes of integrated materials in developing technologies. A comprehensive study based on a new class of multifunctional nanomaterials, derived from the basic unit of barcoded metal nanorods is presented. Their chemical composition affords them the ability to undergo autonomous motion in the presence of a suitable fuel. The nature of their chemically powered self-propulsion locomotion was investigated, and plausible mechanisms for various motility modes were presented. Furthermore functionalization of striped metallic nanorods has been realized through the incorporation of chemically controlled flexible hinges displaying bendable properties. The structural aspect of the light harvesting machinery of a photosynthetic cryptophyte alga, Rhodomonas CS24, and the mobility of the antenna protein, PE545, in vivo were investigated. Information obtained

  1. Synthesis of the ABCDEFG ring system of maitotoxin.

    Science.gov (United States)

    Nicolaou, K C; Aversa, Robert J; Jin, Jian; Rivas, Fatima

    2010-05-19

    Maitotoxin (1) continues to fascinate scientists not only because of its size and potent neurotoxicity but also due to its molecular architecture. To provide further support for its structure and facilitate fragment-based biological studies, we developed an efficient chemical synthesis of the ABCDEFG segment 3 of maitotoxin. (13)C NMR chemical shift comparisons of synthetic 3 with the corresponding values for the same carbons of maitotoxin revealed a close match, providing compelling evidence for the correctness of the originally assigned structure to this polycyclic system of the natural product. The synthetic strategy for the synthesis of 3 relied heavily on our previously developed furan-based technology involving sequential Noyori asymmetric reduction and Achmatowicz rearrangement for the construction of the required tetrahydropyran building blocks, and employed a B-alkyl Suzuki coupling and a Horner-Wadsworth-Emmons olefination to accomplish their assembly and elaboration to the final target molecule.

  2. UNSTABLE PLANETARY SYSTEMS EMERGING OUT OF GAS DISKS

    International Nuclear Information System (INIS)

    Matsumura, Soko; Thommes, Edward W.; Chatterjee, Sourav; Rasio, Frederic A.

    2010-01-01

    The discovery of over 400 extrasolar planets allows us to statistically test our understanding of the formation and dynamics of planetary systems via numerical simulations. Traditional N-body simulations of multiple-planet systems without gas disks have successfully reproduced the eccentricity (e) distribution of the observed systems by assuming that the planetary systems are relatively closely packed when the gas disk dissipates, so that they become dynamically unstable within the stellar lifetime. However, such studies cannot explain the small semimajor axes a of extrasolar planetary systems, if planets are formed, as the standard planet formation theory suggests, beyond the ice line. In this paper, we numerically study the evolution of three-planet systems in dissipating gas disks, and constrain the initial conditions that reproduce the observed a and e distributions simultaneously. We adopt initial conditions that are motivated by the standard planet formation theory, and self-consistently simulate the disk evolution and planet migration, by using a hybrid N-body and one-dimensional gas disk code. We also take into account eccentricity damping, and investigate the effect of saturation of corotation resonances on the evolution of planetary systems. We find that the a distribution is largely determined in a gas disk, while the e distribution is determined after the disk dissipation. We also find that there may be an optimum disk mass which leads to the observed a-e distribution. Our simulations generate a larger fraction of planetary systems trapped in mean-motion resonances (MMRs) than the observations, indicating that the disk's perturbation to the planetary orbits may be important to explain the observed rate of MMRs. We also find a much lower occurrence of planets on retrograde orbits than the current observations of close-in planets suggest.

  3. System analysis and planning of a gas distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Edwin F.M.; Farias, Helio Monteiro [AUTOMIND, Rio de Janeiro, RJ (Brazil); Costa, Carla V.R. [Universidade Salvador (UNIFACS), BA (Brazil)

    2009-07-01

    The increase in demand by gas consumers require that projects or improvements in gas distribution networks be made carefully and safely to ensure a continuous, efficient and economical supply. Gas distribution companies must ensure that the networks and equipment involved are defined and designed at the appropriate time to attend to the demands of the market. To do that a gas distribution network analysis and planning tool should use distribution networks and transmission models for the current situation and the future changes to be implemented. These models are used to evaluate project options and help in making appropriate decisions in order to minimize the capital investment in new components or simple changes in operational procedures. Gas demands are increasing and it is important that gas distribute design new distribution systems to ensure this growth, considering financial constraints of the company, as well as local legislation and regulation. In this study some steps of developing a flexible system that attends to those needs will be described. The analysis of distribution requires geographically referenced data for the models as well as an accurate connectivity and the attributes of the equipment. GIS systems are often used as a deposit center that holds the majority of this information. GIS systems are constantly updated as distribution network equipment is modified. The distribution network modeling gathered from this system ensures that the model represents the current network condition. The benefits of this architecture drastically reduce the creation and maintenance cost of the network models, because network components data are conveniently made available to populate the distribution network. This architecture ensures that the models are continually reflecting the reality of the distribution network. (author)

  4. Cadmium in the bioenergy system - a synthesis

    International Nuclear Information System (INIS)

    Ahlfont, K.

    1997-12-01

    Cadmium is a toxic metal without any known positive biological effects. Both emissions and atmospheric deposition of cadmium have decreased radically in Sweden during recent years. In Sweden, about 150 tonnes of cadmium was supplied to the technosphere in 1990, mostly originating from NiCd batteries. More than 100 tonnes of cadmium accumulated in the technosphere. Mankind takes up cadmium from water, food and particulate atmospheric pollution. Even small amounts may be injurious in the long-term since the half-life in the kidneys is 30 years. Cadmium in biofuel and ashes are generally a cause of discussion. Ashes from biofuel constitute a nutrient resource that should be returned to the soil. A possible risk with spreading ashes is the spreading of heavy metals, and then foremost cadmium, which is among the heavy metals that forest soils are considered to tolerate the least. Several studies on cadmium in the bioenergy system have been made, both within the Research Programme for Recycling of Wood-ash, and within Vattenfall's Bioenergy Project. The present report is intended to provide a picture of the current state of knowledge and to review plans for the future With a 3 page summary in English. 51 refs, 1 fig, 3 tabs

  5. Indonesian Text-To-Speech System Using Diphone Concatenative Synthesis

    Directory of Open Access Journals (Sweden)

    Sutarman

    2015-02-01

    Full Text Available In this paper, we describe the design and develop a database of Indonesian diphone synthesis using speech segment of recorded voice to be converted from text to speech and save it as audio file like WAV or MP3. In designing and develop a database of Indonesian diphone there are several steps to follow; First, developed Diphone database includes: create a list of sample of words consisting of diphones organized by prioritizing looking diphone located in the middle of a word if not at the beginning or end; recording the samples of words by segmentation. ;create diphones made with a tool Diphone Studio 1.3. Second, develop system using Microsoft Visual Delphi 6.0, includes: the conversion system from the input of numbers, acronyms, words, and sentences into representations diphone. There are two kinds of conversion (process alleged in analyzing the Indonesian text-to-speech system. One is to convert the text to be sounded to phonem and two, to convert the phonem to speech. Method used in this research is called Diphone Concatenative synthesis, in which recorded sound segments are collected. Every segment consists of a diphone (2 phonems. This synthesizer may produce voice with high level of naturalness. The Indonesian Text to Speech system can differentiate special phonemes like in ‘Beda’ and ‘Bedak’ but sample of other spesific words is necessary to put into the system. This Indonesia TTS system can handle texts with abbreviation, there is the facility to add such words.

  6. Safety evaluation of BWR off-gas treatment systems

    International Nuclear Information System (INIS)

    Schultz, R.J.; Schmitt, R.C.

    1975-01-01

    Some of the results of a safety evaluation performed on current generic types of BWR off-gas treatment systems including cooled and ambient temperature adsorber beds and cryogenics are presented. The evaluation covered the four generic types of off-gas systems and the systems of five major vendors. This study was part of original work performed under AEC contract for the Directorate of Regulatory Standards. The analysis techniques employed for the safety evaluation of these systems include: Fault Tree Analysis; FMECA (Failure Mode Effects and Criticality Analysis); general system comparisons, contaminant, system control, and design adequacy evaluations; and resultant Off-Site Dose Calculations. The salient areas presented are some of the potential problem areas, the approach that industry has taken to mitigate or design against potential upset conditions, and areas where possible deficiencies still exist. Potential problem areas discussed include hydrogen detonation, hydrogen release to equipment areas, operator/automatic control interface, and needed engineering evaluation to insure safe system operation. Of the systems reviewed, most were in the category of advanced or improved over that commonly in use today, and a conclusion from the study was that these systems offer excellent potential for noble gas control for BWR power plants where more stringent controls may be specified -- now or in the future. (U.S.)

  7. A gas circulation and purification system for gas-cell-based low-energy RI-beam production

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, T.; Wada, M.; Katayama, I.; Kojima, T. M.; Reponen, M. [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsubota, T. [Tokyo KOATSU Co., Ltd., 1-9-8 Shibuya, Shibuyaku, Tokyo 150-0002 (Japan)

    2016-06-15

    A gas circulation and purification system was developed at the RIKEN Radioactive Isotope Beam Factory that can be used for gas-cell-based low-energy RI-beam production. A high-flow-rate gas cell filled with one atmosphere of buffer gas (argon or helium) is used for the deceleration and thermalization of high-energy RI-beams. The exhausted buffer gas is efficiently collected using a compact dry pump and returned to the gas cell with a recovery efficiency of >97%. The buffer gas is efficiently purified using two gas purifiers as well as collision cleaning, which eliminates impurities in the gas. An impurity level of one part per billion is achieved with this method.

  8. The Gas6/TAM System and Multiple Sclerosis.

    Science.gov (United States)

    Bellan, Mattia; Pirisi, Mario; Sainaghi, Pier Paolo

    2016-10-28

    Growth arrest specific 6 (Gas6) is a multimodular circulating protein, the biological actions of which are mediated by the interaction with three transmembrane tyrosine kinase receptors: Tyro3, Axl, and MerTK, collectively named TAM. Over the last few decades, many progresses have been done in the understanding of the biological activities of this highly pleiotropic system, which plays a role in the regulation of immune response, inflammation, coagulation, cell growth, and clearance of apoptotic bodies. Recent findings have further related Gas6 and TAM receptors to neuroinflammation in general and, specifically, to multiple sclerosis (MS). In this paper, we review the biology of the Gas6/TAM system and the current evidence supporting its potential role in the pathogenesis of MS.

  9. Emergency cooling system for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Cook, R.K.; Burylo, P.S.

    1975-01-01

    The site of the gas-cooled reactor with direct-circuit gas turbine is preferably the sea coast. An emergency cooling system with safety valve and emergency feed-water addition is designed which affects at least a part of the reactor core coolant after leaving the core. The emergency cooling system includes a water emergency cooling circuit with heat exchanger for the core coolant. The safety valve releases water or steam from the emergency coolant circuit when a certain temperature is exceeded; this is, however, replaced by the emergency feed-water. If the gas turbine exhibits a high and low pressure turbine stage, which are flowed through by coolant one behind another, a part of the coolant can be removed in front of each part turbine by two valves and be added to the haet exchanger. (RW/LH) [de

  10. Design and Synthesis of Nonequilibrium Systems.

    Science.gov (United States)

    Cheng, Chuyang; McGonigal, Paul R; Stoddart, J Fraser; Astumian, R Dean

    2015-09-22

    other hand, rely on a flux of energy, and a ratchet mechanism to make periodic changes to the potential energy surface of a system in order to move molecules uphill to higher energy states. Forging a path from molecular switches to motors involved designing a molecular pump prototype. An asymmetric dumbbell with a 2-isopropylphenyl (neutral) end and a 3,5-dimethylpyridinium (charged) end with a DNP recognition site to entice CBPQT(4+) rings out of solution exhibits relative unidirectional movement of the rings with respect to the dumbbell. Redox chemistry does the trick. During the oxidative cycle, the rings enter the dumbbell by passing over the neutral end onto the recognition site; in the reduction cycle, much of the recognition is lost and the rings find their way back into solution by leaving the dumbbell from the charged end. This on-one-end, off-the-other process can be repeated over and over again using light as the energy source in the presence of a photosensitizer and a compound that shuttles electrons back and forth. Although this prototype demonstrates ratchet-driven translational motion, no work is done. A ring enters the dumbbell from one end and leaves from the other end. Another deficiency of the prototype is the fact that, although the recognition site is muted on reduction, it retains some attraction for the ring. What if the recognition site was attractive initially and then became repulsive? This question was answered by turning to radical chemistry and employing the known stabilization behavior of a bipyridinium radical cation and the bisradical dication, generated on reduction of the CBPQT(4+) ring, to pluck rings out of solution and thread them over the charged end of the pump portion of a semidumbbell. On subsequent oxidation, the pump is primed and the rings pass through a one-way door, given a little thermal energy, onto a collecting-chain where they find themselves accumulating where they would rather not be present. In this manner, an

  11. Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

  12. Balancing Accuracy and Computational Efficiency for Ternary Gas Hydrate Systems

    Science.gov (United States)

    White, M. D.

    2011-12-01

    Geologic accumulations of natural gas hydrates hold vast organic carbon reserves, which have the potential of meeting global energy needs for decades. Estimates of vast amounts of global natural gas hydrate deposits make them an attractive unconventional energy resource. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. Producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. The guest-molecule exchange technology releases CH4 by replacing it with a more thermodynamically stable molecule (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, liquid CO2, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulation of the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and

  13. Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security

    Science.gov (United States)

    2013-05-15

    installation of natural gas generation or cogeneration plants to increase their energy security from the typical three days using diesel supplies to weeks-to...better quantify the regional impact of natural gas for energy security. Modeling and simulation could identify those regions and DoD installations that...Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security N. Judson 15 May 2013 Prepared for the

  14. An Algorithm for Integrated Subsystem Embodiment and System Synthesis

    Science.gov (United States)

    Lewis, Kemper

    1997-01-01

    Consider the statement,'A system has two coupled subsystems, one of which dominates the design process. Each subsystem consists of discrete and continuous variables, and is solved using sequential analysis and solution.' To address this type of statement in the design of complex systems, three steps are required, namely, the embodiment of the statement in terms of entities on a computer, the mathematical formulation of subsystem models, and the resulting solution and system synthesis. In complex system decomposition, the subsystems are not isolated, self-supporting entities. Information such as constraints, goals, and design variables may be shared between entities. But many times in engineering problems, full communication and cooperation does not exist, information is incomplete, or one subsystem may dominate the design. Additionally, these engineering problems give rise to mathematical models involving nonlinear functions of both discrete and continuous design variables. In this dissertation an algorithm is developed to handle these types of scenarios for the domain-independent integration of subsystem embodiment, coordination, and system synthesis using constructs from Decision-Based Design, Game Theory, and Multidisciplinary Design Optimization. Implementation of the concept in this dissertation involves testing of the hypotheses using example problems and a motivating case study involving the design of a subsonic passenger aircraft.

  15. El Paso natural gas nearing completion of system's largest expansion

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    El Paso Natural Gas Co.'s largest expansion program in its 64-year history will be completed along its northern system this spring or early summer. According to the company, the three-tiered, $241.5 million expansion program will increase El Paso's gas-transport capacity by 835 MMcfd to 2.5 bcfd of conventional and coal-seam gas from the San Juan basin in northwestern New Mexico. That's enough natural gas, says the company, to supply the needs of a city of more than 800,000 residents. This paper reports that the expansion involves the San Juan Triangle system, the company's northern main line, and the Permian-San Juan crossover line. The company also filed with the Federal Energy Regulatory Commission (FERC) in October 1991 to construct a new $15.2 million compressor station, Rio Vista, south of Bloomfield, N.M. The station would be used to move additional gas to the main line

  16. Optimal Set-Point Synthesis in HVAC Systems

    DEFF Research Database (Denmark)

    Komareji, Mohammad; Stoustrup, Jakob; Rasmussen, Henrik

    2007-01-01

    This paper presents optimal set-point synthesis for a heating, ventilating, and air-conditioning (HVAC) system. This HVAC system is made of two heat exchangers: an air-to-air heat exchanger and a water-to-air heat exchanger. The objective function is composed of the electrical power for different...... components, encompassing fans, primary/secondary pump, tertiary pump, and air-to-air heat exchanger wheel; and a fraction of thermal power used by the HVAC system. The goals that have to be achieved by the HVAC system appear as constraints in the optimization problem. To solve the optimization problem......, a steady state model of the HVAC system is derived while different supplying hydronic circuits are studied for the water-to-air heat exchanger. Finally, the optimal set-points and the optimal supplying hydronic circuit are resulted....

  17. Development of cooling and cleaning systems for enhanced gas ...

    African Journals Online (AJOL)

    DR OKE

    Energy from biomass based gasifier-engine integrated systems are ..... an almost linear electrical signal of 40 /lVrc. ..... The diesel and ROME can be used as injected fuel in dual fuel mode with producer gas induction and this feature does not.

  18. Greenhouse gas footprints of different biofuel production systems

    NARCIS (Netherlands)

    Hoefnagels, E.T.A.; Smeets, E.M.W.; Faaij, A.P.C.

    2010-01-01

    The aim of this study is to show the impact of different assumptions and methodological choices on the life-cycle greenhouse gas (GHG) performance of biofuels by providing the results for different key parameters on a consistent basis. These include co-products allocation or system expansion, N2O

  19. Transient behavior of ASTRID with a gas power conversion system

    International Nuclear Information System (INIS)

    Bertrand, F.; Mauger, G.; Bensalah, M.; Gauthé, P.

    2016-01-01

    Highlights: • CATHARE2 transient calculations have been performed for ASTRID with a gas PCS. • The behavior of the reactor is close for gas and for water PCS in case of LOOP. • The gas PCS enables to cool the core for at least 10 h for pressurized transients. • The depressurization of the PCS induces an over-cooling for breaches on low pressure pipes. • The spurious opening of a by-pass line of the turbomachine can be controlled without scram. - Abstract: The present article is dedicated to preliminary transient studies carried out for the analysis of the system overall behavior of the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) demonstrator developed in France by CEA and its industrial partners. ASTRID is foreseen to demonstrate the progress made in SFR technology at an industrial scale by qualifying innovative options, some of which still remain open in the areas requiring improvements, especially safety and operability. Among the innovative options, a gas power conversion systems (PCS) is envisaged. In this innovative PCS, the working gas is nitrogen whose flow rate delivers power to a turbine driving with the same shaft two compressors (low and high pressure) separated by an intercooler. The other part of the work delivered by the gas is used to drive the alternator that produces electricity. The main objective of such a PCS consists in avoiding physically the possibility of a sodium/water reaction with the secondary circuit but the impact of this PCS on the control of incidental and accidental transients has also been studied. The main purpose of the studies presented in the paper is to assess the dynamic behavior of ASTRID including a gas PCS with the CATHARE2 code. The first transient presented deals with a loss of off-site power and has been calculated for the gas PCS but also for a classical steam/water PCS for comparison purpose. Then typical transients of gas system have been investigated. Several families of

  20. Transient behavior of ASTRID with a gas power conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, F., E-mail: frederic.bertrand@cea.fr; Mauger, G.; Bensalah, M.; Gauthé, P.

    2016-11-15

    Highlights: • CATHARE2 transient calculations have been performed for ASTRID with a gas PCS. • The behavior of the reactor is close for gas and for water PCS in case of LOOP. • The gas PCS enables to cool the core for at least 10 h for pressurized transients. • The depressurization of the PCS induces an over-cooling for breaches on low pressure pipes. • The spurious opening of a by-pass line of the turbomachine can be controlled without scram. - Abstract: The present article is dedicated to preliminary transient studies carried out for the analysis of the system overall behavior of the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) demonstrator developed in France by CEA and its industrial partners. ASTRID is foreseen to demonstrate the progress made in SFR technology at an industrial scale by qualifying innovative options, some of which still remain open in the areas requiring improvements, especially safety and operability. Among the innovative options, a gas power conversion systems (PCS) is envisaged. In this innovative PCS, the working gas is nitrogen whose flow rate delivers power to a turbine driving with the same shaft two compressors (low and high pressure) separated by an intercooler. The other part of the work delivered by the gas is used to drive the alternator that produces electricity. The main objective of such a PCS consists in avoiding physically the possibility of a sodium/water reaction with the secondary circuit but the impact of this PCS on the control of incidental and accidental transients has also been studied. The main purpose of the studies presented in the paper is to assess the dynamic behavior of ASTRID including a gas PCS with the CATHARE2 code. The first transient presented deals with a loss of off-site power and has been calculated for the gas PCS but also for a classical steam/water PCS for comparison purpose. Then typical transients of gas system have been investigated. Several families of

  1. Fatigue life analysis of cracked gas receiver of emergency cut-off system in gas gathering station

    Science.gov (United States)

    Hu, Junzhi; Zhou, Jiyong; Li, Siyuan

    2017-06-01

    Small-scale air compressor and gas receiver are used as the driving gas of the emergency cut-off system in gas gathering station. Operation of block valve is ensured by starting and stopping compressor automatically. The frequent start-stop of compressor and the pressure fluctuation pose a threat to the service life of gas receiver, and then affect normal operation of the emergency cut-off system and security of gas gathering station. In this paper, the fatigue life of a pressure vessel with axial semi-elliptical surface crack in the inner wall is analyzed under the varying pressure by means of the theory of fracture mechanics. The influences of the amplitude of pressure fluctuation and the initial crack size on the residual life of gas receiver are discussed. It provides a basis for setting the working parameters of gas receiver of emergency cut-off system and determining the maintenance cycle.

  2. Slag processing system for direct coal-fired gas turbines

    Science.gov (United States)

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  3. Design of a new terminal gas stripper system

    International Nuclear Information System (INIS)

    Alvarez, Daniela E.; Amodei, Aldo J.; Bonino, Adrian G.; Bustos, Gustavo R.; Giannico, Matias A.; Serdeiro, Guillermo A.; Pomar, Cayetano

    2002-01-01

    A new terminal gas stripper, for the electrostatic FN tandem accelerator of the AMS system at the Nuclear Regulatory Authority in Argentina, is being designed at present. Most of the vacuum, electrical and electronic components are already available. The remote control of the system is being developed at LABI (Eng. Faculty, Buenos Aires University, Argentina). In order to construct the vacuum chamber, a collaboration with the LNLS (Campinas Univ, Sao Paulo, Brazil) is under consideration. The status of the project is presented. (author)

  4. Analysis of Damped Mass-Spring Systems for Sound Synthesis

    Directory of Open Access Journals (Sweden)

    Don Morgan

    2009-01-01

    Full Text Available There are many ways of synthesizing sound on a computer. The method that we consider, called a mass-spring system, synthesizes sound by simulating the vibrations of a network of interconnected masses, springs, and dampers. Numerical methods are required to approximate the differential equation of a mass-spring system. The standard numerical method used in implementing mass-spring systems for use in sound synthesis is the symplectic Euler method. Implementers and users of mass-spring systems should be aware of the limitations of the numerical methods used; in particular we are interested in the stability and accuracy of the numerical methods used. We present an analysis of the symplectic Euler method that shows the conditions under which the method is stable and the accuracy of the decay rates and frequencies of the sounds produced.

  5. Control Decisions for Flammable Gas Hazards in Waste Transfer Systems

    International Nuclear Information System (INIS)

    KRIPPS, L.J.

    2000-01-01

    This report describes the control decisions for flammable gas hazards in waste transfer systems (i.e., waste transfer piping and waste transfer-associated structures) made at control decision meetings on November 30, 1999a and April 19, 2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996). Following the Contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the US. Department of Energy (DOE), Office of River Protection (ORP) for review and approval. The control decision meeting on November 30, 1999 to address flammable gas hazards in waste transfer systems followed the control decision process and the criteria for control decisions described in Section 3.3.1.5 of the FSAR. The control decision meeting agenda, attendance list, and introductory and background presentations are included in Attachments 1 through 4. The control decision discussions on existing and other possible controls for flammable gas hazards in waste transfer systems and the basis for selecting or not selecting specific controls are summarized in this report

  6. Engineering considerations for corrosion monitoring of gas gathering pipeline systems

    Energy Technology Data Exchange (ETDEWEB)

    Braga, T.G.; Asperger, R.G.

    1987-01-01

    Proper corrosion monitoring of gas gathering pipelines requires a system review to determine the appropriate monitor locations and types of monitoring techniques. This paper develops and discusses a classification of conditions such as flow regime and gas composition. Also discussed are junction categories which, for corrosion monitoring, need to be considered from two points of view. The first is related to fluid flow in the line and the second is related corrosion inhibitor movement along the pipeline. The appropriate application of the various monitoring techniques such as coupons, hydrogen detectors, electrical resistance probe and linear polarization probes are discussed in relation to flow regime and gas composition. Problems caused by semi-conduction from iron sulfide are considered. Advantages and disadvantages of fluid gathering methods such as pots and flow-through drips are discussed in relation to their reliability as on-line monitoring locations.

  7. Method and system to facilitate sealing in gas turbines

    Science.gov (United States)

    Morgan, Victor John; Foster, Gregory Thomas; Sarawate, Neelesh Nandkumar

    2017-09-12

    A method and system for sealing between components within a gas turbine is provided. A first recess defined in a first component receives a seal member. A second recess defined in a second component adjacent the first component also receives the seal member. The first and second recesses are located proximate a hot gas path defined through the gas turbine, and define circumferential paths about the turbine axis. The seal member includes a sealing face that extends in a direction substantially parallel to the turbine axis. The seal member also includes a plurality of seal layers, wherein at least one of the seal layers includes at least one stress relief region for facilitating flexing of the first seal member.

  8. System evaluation of offshore platforms with gas liquefaction processes

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; de Oliveira Júnior, Silvio

    2018-01-01

    Abstract Floating, production, storage and offloading plants are facilities used for offshore processing of hydrocarbons in remote locations. At present, the produced gas is injected back into the reservoir instead of being exported. The implementation of refrigeration processes offshore for liqu......Abstract Floating, production, storage and offloading plants are facilities used for offshore processing of hydrocarbons in remote locations. At present, the produced gas is injected back into the reservoir instead of being exported. The implementation of refrigeration processes offshore...... improvements are discussed based on an energy and exergy analysis. Compared to a standard platform where gas is directly injected into the reservoir, the total power consumption increases by up to 50%, and the exergy destruction within the processing plant doubles when a liquefaction system is installed....... It is therefore essential to conduct a careful analysis of the trade-off between the capital costs and operating revenues for such options....

  9. Gas production, microbial synthesis by radio phosphorus and digestibility of babassu and mofumbo in sheep diets

    International Nuclear Information System (INIS)

    Abdalla Filho, Adibe Luiz

    2015-01-01

    When food shortages in natural pastures is committed to animal nutrition, small ruminants can incorporate into their diets the leaves of other plants, such as trees and shrubs, many of them rich in secondary metabolites such as tannins and which still lack of studies about its effect on animal productivity. In order to verify the possibility of using leaves of Orbignya phalerata (Babassu) and Combretum leprosum (Mofumbo) in feed and to evaluate the effect of their inclusion in the sheep production system, two studies were conducted at the Animal Nutrition Laboratory of Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Piracicaba (LANA/CENA-USP). The first study evaluated the performance variables, biochemical and hematological parameters and also determined the microbial protein synthesis, nutrient apparent digestibility and enteric production of methane (CH4). The second study assessed the carcass characteristics, fatty acid profile and meat color of male sheep used in the first study. The experimental treatments were diets with forages to concentrate rate of 50:50, drawn up on the basis of using the leaves of the experimental plants replacing 30% of the Cynodon dactylon (Tifton-85) hay, resulting in three treatments: Control (no hay replacement), Babassu and Mofumbo. In the first study, there were used 24 Santa Ines sheep, in a randomized experimental design with eight repetitions for each treatment and 48 days of trial period. Also during this period, an in vitro microbial protein synthesis was performed using the radio phosphorus using five different inoculum of each studied treatment. After this period, for nine days, six animals from each treatment were allocated in metabolic cages for determining the nutrient apparent digestibility, microbial protein synthesis and nitrogen balance. Simultaneously it was quantified the enteric CH4 production in vivo. The Control group showed greater (P < 0.05) apparent digestibility of acid detergent fiber

  10. Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport.

    Science.gov (United States)

    Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu

    2018-02-01

    The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores' deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles.

  11. Health systems guidance appraisal--a critical interpretive synthesis.

    Science.gov (United States)

    Ako-Arrey, Denis E; Brouwers, Melissa C; Lavis, John N; Giacomini, Mita K

    2016-01-22

    Health systems guidance (HSG) are systematically developed statements that assist with decisions about options for addressing health systems challenges, including related changes in health systems arrangements. However, the development, appraisal, and reporting of HSG poses unique conceptual and methodological challenges related to the varied types of evidence that are relevant, the complexity of health systems, and the pre-eminence of contextual factors. To address this gap, we are conducting a program of research that aims to create a tool to support the appraisal of HSG and further enhance HSG development and reporting. The focus of this paper was to conduct a knowledge synthesis of the published and grey literatures to determine quality criteria (concepts) relevant for this process. We applied a critical interpretive synthesis (CIS) approach to knowledge synthesis that enabled an iterative, flexible, and dynamic analysis of diverse bodies of literature in order to generate a candidate list of concepts that will constitute the foundational components of the HSG tool. Using our review questions as compasses, we were able to guide the search strategy to look for papers based on their potential relevance to HSG appraisal, development, and reporting. The search strategy included various electronic databases and sources, subject-specific journals, conference abstracts, research reports, book chapters, unpublished data, dissertations, and policy documents. Screening the papers and data extraction was completed independently and in duplicate, and a narrative approach to data synthesis was executed. We identified 43 papers that met eligibility criteria. No existing review was found on this topic, and no HSG appraisal tool was identified. Over one third of the authors implicitly or explicitly identified the need for a high-quality tool aimed to systematically evaluate HSG and contribute to its development/reporting. We identified 30 concepts that may be relevant to the

  12. Mathematical modeling of synthesis gas fueled electrochemistry and transport including H2/CO co-oxidation and surface diffusion in solid oxide fuel cell

    Science.gov (United States)

    Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin

    2015-10-01

    Fuel flexibility is a significant advantage of solid oxide fuel cell (SOFC). A comprehensive macroscopic framework is proposed for synthesis gas (syngas) fueled electrochemistry and transport in SOFC anode with two main novelties, i.e. analytical H2/CO electrochemical co-oxidation, and correction of gas species concentration at triple phase boundary considering competitive absorption and surface diffusion. Staring from analytical approximation of the decoupled charge and mass transfer, we present analytical solutions of two defined variables, i.e. hydrogen current fraction and enhancement factor. Giving explicit answer (rather than case-by-case numerical calculation) on how many percent of the current output contributed by H2 or CO and on how great the water gas shift reaction plays role on, this approach establishes at the first time an adaptive superposition mechanism of H2-fuel and CO-fuel electrochemistry for syngas fuel. Based on the diffusion equivalent circuit model, assuming series-connected resistances of surface diffusion and bulk diffusion, the model predicts well at high fuel utilization by keeping fixed porosity/tortuosity ratio. The model has been validated by experimental polarization behaviors in a wide range of operation on a button cell for H2-H2O-CO-CO2-N2 fuel systems. The framework could be helpful to narrow the gap between macro-scale and meso-scale SOFC modeling.

  13. Gas-cooled reactor power systems for space

    International Nuclear Information System (INIS)

    Walter, C.E.

    1987-01-01

    Efficiency and mass characteristics for four gas-cooled reactor power system configurations in the 2- to 20-MWe power range are modeled. The configurations use direct and indirect Brayton cycles with and without regeneration in the power conversion loop. The prismatic ceramic core of the reactor consists of several thousand pencil-shaped tubes made from a homogeneous mixture of moderator and fuel. The heat rejection system is found to be the major contributor to system mass, particularly at high power levels. A direct, regenerated Brayton cycle with helium working fluid permits high efficiency and low specific mass for a 10-MWe system

  14. Greenhouse gas emissions from on-site wastewater treatment systems

    Science.gov (United States)

    Somlai-Haase, Celia; Knappe, Jan; Gill, Laurence

    2016-04-01

    Nearly one third of the Irish population relies on decentralized domestic wastewater treatment systems which involve the discharge of effluent into the soil via a percolation area (drain field). In such systems, wastewater from single households is initially treated on-site either by a septic tank and an additional packaged secondary treatment unit, in which the influent organic matter is converted into carbon dioxide (CO2) and methane (CH4) by microbial mediated processes. The effluent from the tanks is released into the soil for further treatment in the unsaturated zone where additional CO2 and CH4 are emitted to the atmosphere as well as nitrous oxide (N2O) from the partial denitrification of nitrate. Hence, considering the large number of on-site systems in Ireland and internationally, these are potential significant sources of greenhouse gas (GHG) emissions, and yet have received almost no direct field measurement. Here we present the first attempt to quantify and qualify the production and emissions of GHGs from a septic tank system serving a single house in the County Westmeath, Ireland. We have sampled the water for dissolved CO2, CH4 and N2O and measured the gas flux from the water surface in the septic tank. We have also carried out long-term flux measurements of CO2 from the drain field, using an automated soil gas flux system (LI-8100A, Li-Cor®) covering a whole year semi-continuously. This has enabled the CO2 emissions from the unsaturated zone to be correlated against different meteorological parameters over an annual cycle. In addition, we have integrated an ultraportable GHG analyser (UGGA, Los Gatos Research Inc.) into the automated soil gas flux system to measure CH4 flux. Further, manual sampling has also provided a better understanding of N2O emissions from the septic tank system.

  15. Deliverability on the interstate natural gas pipeline system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

  16. The development of a gas transmission system in Lebanon

    Energy Technology Data Exchange (ETDEWEB)

    Proudian, Serko; Rickaert, Stefan [Tractebel Engineering, Brussels (Belgium)

    2005-07-01

    Tractebel Engineering is undertaking for the Lebanese Ministry of Energy and Water (MEW) advisory services for the launching and for the awarding of a DBOT (Design, Build, Operate and Transfer) contract for the development of a gas transmission system through Lebanon. The service embraces a global approach, integrating legal, market, technical and financial matters, to provide MEW with a clear strategy to its gas development program, aimed at attracting private investors willing to tender on this DBOT project.The Legal Framework Report examines the existing Lebanese legal system and analyzes its suitability to the regulatory framework required to operate gas networks; it also provides recommendations aimed at attracting potential DBOT developers, by facilitating bureaucratic procedures with possible enactment of new laws. The Gas Demand Due Diligence Report provides the market study for present and future demand of gas in Lebanon in the next 25 years (duration of the DBOT contract), with anticipated needs resulting from power generation, industrial sector, commercial and residential sectors. The Pipeline Alternative Solutions Report provides several alternative routing and configurations for the gas transmission pipeline, including surveys, in-land routing (through rough mountain and heavily populated areas), or off-shore routing (through rough marine canyons and sea water depth in excess of 1,500 meters). Basic technical economical study is elaborated for more than 30 options.The Pipeline Financial Optimization Report compares the economics and provides for each solution the expected postal tariff (the compensation that MEW would need to pay to the developer for the execution of the 25 year DBOT contract). The advisory services are completed with preparation of the Pre-Qualification Notice (aimed at selecting a short list of qualified Bidders), preparation of the Request For Proposal (bidding on the selected pipeline option), evaluation of proposal, selection of

  17. Z662-96: oil and gas pipeline systems; 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Ko, S; Burford, G; Martin, A; Adragna, M [eds.

    1997-12-31

    This Standard is part of the pipeline systems and materials segment of the Canadian Standards Association (CSA)`s Transportation program. It covers the design, construction, operation and maintenance of oil and gas industry pipeline systems that carry (1) liquid hydrocarbons, including crude oil, multiphase fluids, condensate, liquid petroleum products, natural gas liquids, and liquefied petroleum gas, (2) oilfield water, (3) oilfield steam, (4) carbon dioxide used in oilfield enhanced recovery schemes, or (5) natural gas, manufactured gas, or synthetic gas. tabs. figs.

  18. The development of a natural gas transportation logistics management system

    Energy Technology Data Exchange (ETDEWEB)

    Pereira dos Santos, Sidney [Petroleo Brasileiro S.A.-PETROBRAS, Av. Almirante Barroso, 81, 12 andar, Centro, Rio de Janeiro RJ 20031-004 (Brazil); Eugenio Leal, Jose, E-mail: jel@puc-rio.br [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Department of Industrial Engineering, R. Marques de S. Vicente 225, Gavea. Rio de Janeiro RJ 22451-900 (Brazil); Oliveira, Fabricio [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Department of Industrial Engineering, R. Marques de S. Vicente 225, Gavea. Rio de Janeiro RJ 22451-900 (Brazil)

    2011-09-15

    Efficient management of the natural gas business chain - based on pipeline transmission networks and taking into consideration the interaction among the main players (e.g., shippers, suppliers, transmission companies and local distribution companies) - requires the use of decision-making support systems. These support systems maximise resources and mitigate contingencies due to gas supply shortfalls, operational contingencies from scheduled and non-scheduled equipment outages and market demand shortfalls. This study presents a practical use for technologies, such as a thermohydraulic simulation of gas flow through pipelines, a Monte Carlo simulation for compressor station availability studies, an economic risk evaluation related to potential revenue losses and contractual penalties and linear programming for the maximisation of income and the minimisation of contractual penalties. The proposed system allows the optimum availability level to be defined and maintained by the Transporter (by installing reserve capacity) to mitigate losses related to revenue and contractual penalties. It also economically identifies, quantifies and justifies the installation of stand-by compressor units that can mitigate the Transporter's exposure to losses caused by capacity shortfalls as a consequence of scheduled and non-scheduled outages. - Highlights: > We present a DSS to help the decision on investments on spare compressor units of pipelines systems. > The system may be applied to new or existing projects. > The system is able to estimate the revenue losses and the contractual penalties. > An economical evaluation shows the NPV for each configuration of spare units. > The method was applied to the case study of the Bolivia-Brazil gas pipeline.

  19. The development of a natural gas transportation logistics management system

    International Nuclear Information System (INIS)

    Pereira dos Santos, Sidney; Eugenio Leal, Jose; Oliveira, Fabricio

    2011-01-01

    Efficient management of the natural gas business chain - based on pipeline transmission networks and taking into consideration the interaction among the main players (e.g., shippers, suppliers, transmission companies and local distribution companies) - requires the use of decision-making support systems. These support systems maximise resources and mitigate contingencies due to gas supply shortfalls, operational contingencies from scheduled and non-scheduled equipment outages and market demand shortfalls. This study presents a practical use for technologies, such as a thermohydraulic simulation of gas flow through pipelines, a Monte Carlo simulation for compressor station availability studies, an economic risk evaluation related to potential revenue losses and contractual penalties and linear programming for the maximisation of income and the minimisation of contractual penalties. The proposed system allows the optimum availability level to be defined and maintained by the Transporter (by installing reserve capacity) to mitigate losses related to revenue and contractual penalties. It also economically identifies, quantifies and justifies the installation of stand-by compressor units that can mitigate the Transporter's exposure to losses caused by capacity shortfalls as a consequence of scheduled and non-scheduled outages. - Highlights: → We present a DSS to help the decision on investments on spare compressor units of pipelines systems. → The system may be applied to new or existing projects. → The system is able to estimate the revenue losses and the contractual penalties. → An economical evaluation shows the NPV for each configuration of spare units. → The method was applied to the case study of the Bolivia-Brazil gas pipeline.

  20. Controlled synthesis of ZnO hollow microspheres via precursor-template method and its gas sensing property

    International Nuclear Information System (INIS)

    Tian, Yu; Li, Jinchai; Xiong, Hui; Dai, Jiangnan

    2012-01-01

    Highlights: ► Zn powder as precursor template for synthesis ZnO hollow spheres. ► Different precursor templates result in different ZnO nanostructures. ► Different experimental conditions enable growth of different surface morphologies of ZnO sphere. ► ZnO hollow sphere materials have good gas sensing performance for detecting ethanol gas. - Abstract: Using Zn powder as precursor templates, ZnO hollow microspheres were successfully prepared by thermal evaporation method and characterized by X-ray diffraction analysis, scanning electron microscope and transmission electron microscope. It was found that different size and shape of precursor resulted in different ZnO nanostructures. When varying experimental conditions, such as air flow rate and working pressure, ZnO hollow spheres with different surface morphologies could be obtained. The advantages of the present synthetic technology are simple, relatively low cost, and high reproducibility. A gas sensor was fabricated from the as-prepared ZnO hollow microspheres and tested to the ethanol gas at different operating temperatures.

  1. HDR video synthesis for vision systems in dynamic scenes

    Science.gov (United States)

    Shopovska, Ivana; Jovanov, Ljubomir; Goossens, Bart; Philips, Wilfried

    2016-09-01

    High dynamic range (HDR) image generation from a number of differently exposed low dynamic range (LDR) images has been extensively explored in the past few decades, and as a result of these efforts a large number of HDR synthesis methods have been proposed. Since HDR images are synthesized by combining well-exposed regions of the input images, one of the main challenges is dealing with camera or object motion. In this paper we propose a method for the synthesis of HDR video from a single camera using multiple, differently exposed video frames, with circularly alternating exposure times. One of the potential applications of the system is in driver assistance systems and autonomous vehicles, involving significant camera and object movement, non- uniform and temporally varying illumination, and the requirement of real-time performance. To achieve these goals simultaneously, we propose a HDR synthesis approach based on weighted averaging of aligned radiance maps. The computational complexity of high-quality optical flow methods for motion compensation is still pro- hibitively high for real-time applications. Instead, we rely on more efficient global projective transformations to solve camera movement, while moving objects are detected by thresholding the differences between the trans- formed and brightness adapted images in the set. To attain temporal consistency of the camera motion in the consecutive HDR frames, the parameters of the perspective transformation are stabilized over time by means of computationally efficient temporal filtering. We evaluated our results on several reference HDR videos, on synthetic scenes, and using 14-bit raw images taken with a standard camera.

  2. Optimum strategies for nuclear energy system development (method of synthesis)

    International Nuclear Information System (INIS)

    Belenky, V.Z.

    1983-01-01

    The problem of optimum long-term development of the nuclear energy system is considered. The optimum strategies (i.e. minimum total uranium consumption) for the transition phase leading to a stationary regime of development are found. For this purpose the author has elaborated a new method of solving linear problems of optimal control which can include jumps in trajectories. The method gives a possibility to fulfil a total synthesis of optimum strategies. A key characteristic of the problem is the productivity function of the nuclear energy system which connects technological system parameters with its growth rate. There are only two types of optimum strategies, according to an increasing or decreasing productivity function. Both cases are illustrated with numerical examples. (orig.) [de

  3. Rapid One-Pot Microwave Synthesis of Mixed-Linker Hybrid Zeolitic-Imidazolate Framework Membranes for Tunable Gas Separations.

    Science.gov (United States)

    Hillman, Febrian; Brito, Jordan; Jeong, Hae-Kwon

    2018-02-14

    The relatively slow and complex fabrication processes of polycrystalline metal-organic framework (MOF) membranes often times restrict their way to commercialization, despite their potential for molecular separation applications. Herein, we report a rapid one-pot microwave synthesis of mixed-linker hybrid zeolitic-imidazolate framework (ZIF) membranes consisting of 2-methylimidazolate (ZIF-8 linker) and benzimidazolate (ZIF-7 linker) linkers, termed ZIF-7-8 membranes. The fast-volumetric microwave heating in conjunction with a unique counter diffusion of metal and linker solutions enabled unprecedented rapid synthesis of well-intergrown ZIF-7-8 membranes in ∼90 s, the fastest MOF membrane preparation up to date. Furthermore, we were able to tune the molecular sieving properties of the ZIF-7-8 membranes by varying the benzimidazole-to-2-methylimidazole (bIm-to-mIm) linker ratio in the hybrid frameworks. The tuning of their molecular sieving properties led to the systematic change in the permeance and selectivity of various small gases. The unprecedented rapid synthesis of well-intergrown ZIF-7-8 membranes with tunable molecular sieving properties is an important step forward for the commercial gas separation applications of ZIF membranes.

  4. Synthesis and Characterization of Cobalt Containing Nanoparticles on Alumina A Potential Catalyst for Gas to Liquid Fuels Production

    Science.gov (United States)

    Cowen, Jonathan; Hepp, Aloysius F.

    2016-01-01

    Fisher-Tröpsch synthesis (FTS) is a century-old gas-to-liquid (GTL) technology that commonly employs cobalt (Co, on an oxide support) or iron (supported or not) species catalysts. It has been well established that the activity of the Co catalyst depends directly upon the number of surface Co atoms. The addition of promoter (mainly noble) metals has been widely utilized to increase the fraction of Co that is available for surface catalysis. Direct synthesis of Co nanoparticles is a possible alternative approach; our preliminary synthesis and characterization efforts are described. Materials were characterized by various transmission microscopies and energy dispersive spectroscopy. Tri-n-octylphosphine oxide (TOPO) and dicobalt octacarbonyl were heated under argon to a temperature of 180 deg with constant stirring for 1 hr. Quenching the reaction in toluene produced Co-containing nanoparticles with a diameter of 5 to 10 nm. Alternatively, an alumina support (SBA-200 Al2O3) was added; the reaction was further stirred and the temperature was decreased to 140 deg to reduce the rate of further growth/ripening of the nucleated Co nanoparticles. A typical size of Co-containing NPs was also found to be in the range of 5 to 10 nm. This can be contrasted with a range of 50 to 200 nm for conventionally-produced Co-Al2O3 Fischer-Tröpsch catalysts. This method shows great potential for production of highly dispersed catalysts that are either supported or unsupported.

  5. Bedside arterial blood gas monitoring system using fluorescent optical sensors

    Science.gov (United States)

    Bartnik, Daniel J.; Rymut, Russell A.

    1995-05-01

    We describe a bedside arterial blood gas (ABG) monitoring system which uses fluorescent optical sensors in the measurement of blood pH, PCO2 and PO2. The Point-of-Care Arterial Blood Gas Monitoring System consists of the SensiCathTM optical sensor unit manufactured by Optical Sensors Incorporated and the TramTM Critical Care Monitoring System with ABG Module manufactured by Marquette Electronics Incorporated. Current blood gas measurement techniques require a blood sample to be removed from the patient and transported to an electrochemical analyzer for analysis. The ABG system does not require removal of blood from the patient or transport of the sample. The sensor is added to the patient's existing arterial line. ABG measurements are made by drawing a small blood sample from the arterial line in sufficient quantity to ensure an undiluted sample at the sensor. Measurements of pH, PCO2 and PO2 are made within 60 seconds. The blood is then returned to the patient, the line flushed and results appear on the bedside monitor. The ABG system offers several advantages over traditional electrochemical analyzers. Since the arterial line remains closed during the blood sampling procedure the patient's risk of infection is reduced and the caregiver's exposure to blood is eliminated. The single-use, disposable sensor can be measure 100 blood samples over 72 hours after a single two-point calibration. Quality Assurance checks are also available and provide the caregiver the ability to assess system performance even after the sensor is patient attached. The ABG module integrates with an existing bedside monitoring system. This allows ABG results to appear on the same display as ECG, respiration, blood pressure, cardiac output, SpO2, and other clinical information. The small module takes up little space in the crowded intensive care unit. Performance studies compare the ABG system with an electrochemical blood gas analyzer. Study results demonstrated accurate and precise blood

  6. Cleanable sintered metal filters in hot off-gas systems

    International Nuclear Information System (INIS)

    Schurr, G.A.

    1981-01-01

    Filters with sintered metal elements, arranged as tube bundles with backflush air cleaning, are the equivalent of bag filters for high-temperature, harsh environments. They are virtually the only alternative for high-temperature off-gas systems where a renewable, highly efficient particle trap is required. Tests were conducted which show that the sintered metal elements installed in a filter system provide effective powder collection in high-temperature atmospheres over thousands of cleaning cycles. Such a sintered metal filter system is now installed on the experimental defense waste calciner at the Savannah River Laboratory. The experimental results included in this paper were used as the basis for its design

  7. A purification process for an inert gas system

    International Nuclear Information System (INIS)

    Raj, S.S.; Samanta, S.K.; Jain, N.G.; Deshingkar, D.S.; Ramaswamy, M.

    1984-01-01

    Special inert atmosphere is desired inside hot cells used for handling radioactive materials. In this report, details of experiments conducted to generate data required for the design of a system for maintaining very low levels of organic and acid vapours, oxygen and moisture in a nitrogen gas inert atmosphere, are described. Several grades of activated charcoals impregnated with 1% KOH were studied for the adsorption of acidic and organic vapours. A Pd/Al 2 O 3 catalyst was developed to remove oxygen with greater than 90% efficiency. For the removal of moisture, a regenerable molecular sieve 4A dual-bed was provided. Based on the performance data thus generated, an integrated purification system for nitrogen gas is proposed. (author)

  8. The RPI-X system of regulation and British Gas

    International Nuclear Information System (INIS)

    Spring, P.

    1992-01-01

    The RPI-X system of regulation was subject to a theoretical examination in a previous paper 'The RPI-X system of price-capping regulation re-examined'. The practical example of British Gas shows that what started out as a simple formula can become a complex hybrid lacking in transparency. The formula has properties which mean that its impact can be harsher or lighter depending on exogenous factors which the regulated company cannot be entirely or reasonably expected to predict or control. In the first five years - 1987 to 1992 -of the formula's application, when X was set at a very undemanding 2%, the surge in the RPI, resulted in a virtual windfall increase in profits. In the second five years 1992 to 1997 - X has been reset at a much more demanding 5%. Also, new terms for gas costs (GPI-Z) and energy efficiency (E) have been introduced which are quite lacking in transparency. (author)

  9. Functional requirements for gas characterization system computer software

    International Nuclear Information System (INIS)

    Tate, D.D.

    1996-01-01

    This document provides the Functional Requirements for the Computer Software operating the Gas Characterization System (GCS), which monitors the combustible gasses in the vapor space of selected tanks. Necessary computer functions are defined to support design, testing, operation, and change control. The GCS requires several individual computers to address the control and data acquisition functions of instruments and sensors. These computers are networked for communication, and must multi-task to accommodate operation in parallel

  10. ERP System Implementation: An Oil and Gas Exploration Sector Perspective

    Science.gov (United States)

    Mishra, Alok; Mishra, Deepti

    Enterprise Resource Planning (ERP) systems provide integration and optimization of various business processes which leads to improved planning and decision quality, smoother coordination between business units resulting in higher efficiency, and quicker response time to customer demands and inquiries. This paper reports challenges, opportunities and outcome of ERP implementation in Oil & Gas exploration sector. This study will facilitate in understanding transition, constraints and implementation of ERP in this sector and also provide guidelines from lessons learned in this regard.

  11. Greenhouse Gas Emissions From Energy Systems: Comparison And Overview

    International Nuclear Information System (INIS)

    Dones, R.; Heck, T.; Hirschberg, S.

    2004-01-01

    The paper provides an overview and comparison of Greenhouse Gas Emissions associated with fossil, nuclear and renewable energy systems. In this context both the direct technology-specific emissions and the contributions from full energy chains within the Life Cycle Assessment framework are considered. Examples illustrating the differences between countries and regional electricity mixes are also provided. Core results presented here are based on the work performed at PSI, and by partners within the Swiss Centre for Life-Cycle Inventories. (author)

  12. Variable speed gas engine-driven air compressor system

    Science.gov (United States)

    Morgan, J. R.; Ruggles, A. E.; Chen, T. N.; Gehret, J.

    1992-11-01

    Tecogen Inc. and Ingersoll-Rand Co. as a subcontractor have designed a nominal 150-hp gas engine-driven air compressor utilizing the TECODRIVE 8000 engine and the Ingersoll-Rand 178.5-mm twin screw compressor. Phase 1 included the system engineering and design, economic and applications studies, and a draft commercialization plan. Phase 2 included controls development, laboratory prototype construction, and performance testing. The testing conducted verified that the compressor meets all design specifications.

  13. Greenhouse Gas Emissions From Energy Systems: Comparison And Overview

    Energy Technology Data Exchange (ETDEWEB)

    Dones, R.; Heck, T.; Hirschberg, S

    2004-03-01

    The paper provides an overview and comparison of Greenhouse Gas Emissions associated with fossil, nuclear and renewable energy systems. In this context both the direct technology-specific emissions and the contributions from full energy chains within the Life Cycle Assessment framework are considered. Examples illustrating the differences between countries and regional electricity mixes are also provided. Core results presented here are based on the work performed at PSI, and by partners within the Swiss Centre for Life-Cycle Inventories. (author)

  14. Synthesis maps: visual knowledge translation for the CanIMPACT clinical system and patient cancer journeys

    OpenAIRE

    Jones, P.H.; Shakdher, S.; Singh, P.

    2017-01-01

    Salient findings and interpretations from the canimpact clinical cancer research study are visually represented in two synthesis maps for the purpose of communicating an integrated presentation of the study to clinical cancer researchers and policymakers. Synthesis maps integrate evidence and expertise into a visual narrative for knowledge translation and communication. A clinical system synthesis map represents the current Canadian primary care and cancer practice systems, proposed as a visu...

  15. Tracer gas evaluations of push-pull ventilation system performance.

    Science.gov (United States)

    Ojima, Jun

    2009-01-01

    A push-pull ventilation system is effective for hazardous material exhaustion. Although a push-pull ventilation system has advantages over a local exhaust hood, some laborious adjustments are required. The pertinence of the adjustments is uncertain because it is difficult to evaluate the performance of a push-pull ventilation system quantitatively. In this study, a measurement of the capture efficiency of a push-pull ventilation system was carried out by means of a tracer gas method. The capture efficiency decreased to 39.3-78.5% when blockage material, a dummy worker and a cross draft, were set in the ventilation zone, but the efficiency was 95.1-97.9% when the cross draft was stopped. The results suggest that the uniform flow of a push-pull ventilation system will detour a blockage and the performance of the system will not be reduced unless a cross draft disturbs the uniform flow.

  16. A new chemical system solution for acid gas removal

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, M.; Rolker, J.; Witthaut, D.; Schulze, S. [Evonik Industries AG, Hanau (Germany); Buchholz, S. [Evonik Industries AG, Marl (Germany)

    2012-07-01

    An energy-efficient absorbent formulation fors eparating acid gases (e.g. CO{sub 2}, H2S) from gas streams such as natural gas, syngas or flue gas is important for a number of industrial applications. In many cases, a substantial share of their costs is driven by the operational expenditure (OPEX) of the CO{sub 2} separation unit. One possible strategy for reducing OPEX is the improvement of the absorbent performance. Although a number of absorbents for the separation of CO{sub 2} from gas streams exist, there is still a need to develop CO{sub 2} absorbents with an improved absorption performance, less corrosion and foaming, no nitrosamine formation, lower energy requirement and therefore less OPEX. This contribution aims at giving a brief state-of-the-art overview followed by an introduction and performance characterization of a new family of amine-based CO{sub 2} absorbents. High cyclic capacities in the range of 2.9 to 3.2 mol CO{sub 2} kg{sup -1} absorbent and low absorption enthalpies of about -30 kJ mol{sup -1} allow for significant savings in the regeneration energy of the new absorbent system. Calculations with the modified Kremser model indicate a reduction in the specific reboiler heat duty of 45 %. Moreover, the high-performance absorbents developed show much lower corrosion rates than state-of-the-art solutions that are currently employed. (orig.)

  17. The evaluation study of high performance gas target system

    International Nuclear Information System (INIS)

    Hur, Min Goo; Yang, Seung Dae; Kim, Sang Wook

    2008-06-01

    The object of this study is a improvement of a gas target and targetry for increasing the radioisotope production yields. The main results are as follows 1. Improvement of beam entrance of the gas target : In this work, deep hole grid was designed for improvement of beam entrance. Using FEM(Finite Elements Method) analysis, it was verified that this design is more effective than the old one. 2. Improvement of target gas loading and withdrawing system : For the targetry, Helium gas and vacuum lines was installed for evaluating the production yields. Using these lines, it was proved that the recovery yields was improved and the residual impurity was reduced. 3. Improvement of target cooling efficiency : In case of the cylindrical target, it is more effective to use short length of target cavity for the high production yields. For improving the cooling efficiency, cooling fin was suggested to the target design. It is more effective to put the cooling fins inside the target cavity for the suppressed target pressure and density reduction effect during the proton beam irradiation. In conclusion, the target with fins inside the target cavity was better for high current irradiation and mass RI production

  18. The evaluation study of high performance gas target system

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Min Goo; Yang, Seung Dae; Kim, Sang Wook

    2008-06-15

    The object of this study is a improvement of a gas target and targetry for increasing the radioisotope production yields. The main results are as follows 1. Improvement of beam entrance of the gas target : In this work, deep hole grid was designed for improvement of beam entrance. Using FEM(Finite Elements Method) analysis, it was verified that this design is more effective than the old one. 2. Improvement of target gas loading and withdrawing system : For the targetry, Helium gas and vacuum lines was installed for evaluating the production yields. Using these lines, it was proved that the recovery yields was improved and the residual impurity was reduced. 3. Improvement of target cooling efficiency : In case of the cylindrical target, it is more effective to use short length of target cavity for the high production yields. For improving the cooling efficiency, cooling fin was suggested to the target design. It is more effective to put the cooling fins inside the target cavity for the suppressed target pressure and density reduction effect during the proton beam irradiation. In conclusion, the target with fins inside the target cavity was better for high current irradiation and mass RI production.

  19. Nitrogen Gas Heating and Supply System for SST-1 Tokamak

    International Nuclear Information System (INIS)

    Khan, Ziauddin; Pathan, Firozkhan; Paravastu, Yuvakiran; George, Siju; Ramesh, Gattu; Bindu, Hima; Raval, Dilip C.; Thankey, Prashant; Dhanani, Kalpesh; Pradhan, Subrata

    2013-01-01

    Steady State Tokamak (SST-1) vacuum vessel baking as well as baking of the first wall components of SST-1 are essential to plasma physics experiments. Under a refurbishment spectrum of SST-1, the nitrogen gas heating and supply system has been fully refurbished. The SST-1 vacuum vessel consists of ultra-high vacuum (UHV) compatible eight modules and eight sectors. Rectangular baking channels are embedded on each of them. Similarly, the SST-1 plasma facing components (PFC) are comprised of modular graphite diverters and movable graphite based limiters. The nitrogen gas heating and supply system would bake the plasma facing components at 350°C and the SST-1 vacuum vessel at 150°C over an extended duration so as to remove water vapour and other absorbed gases. An efficient PLC based baking facility has been developed and implemented for monitoring and control purposes. This paper presents functional and operational aspects of a SST-1 nitrogen gas heating and supply system. Some of the experimental results obtained during the baking of SST-1 vacuum modules and sectors are also presented here. (fusion engineering)

  20. Synthesis, characterization and gas sensitivity of MoO3 nanoparticles

    Indian Academy of Sciences (India)

    TECS

    Sol–gel citrate; metal oxide; gas sensing; nanoparticles; SEM. 1. Introduction ... et al (2005) demonstrated the advantageous use of nano- structured cerium oxide .... Hoffheins B, Taylor R F and Schultz J S (eds) 1996 Solid state resistive gas ...

  1. Synthesis of the report on the french gas market opening 24 october 2002

    International Nuclear Information System (INIS)

    Syrota, J.

    2002-10-01

    This document takes stock on the french gas market opening since august 2000, date of putting into force of the Directive 98/30/CE and proposes recommendations, after taking concerned parties opinion, on the the main questions relative to the future gas regulation: the market, the european harmonization, the tariffs, the distribution access, the transparency. (A.L.B.)

  2. Managing of gas sensing characteristic of a reduced graphene oxide based gas sensor by the change in synthesis condition: A new approach for electronic nose design

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Taher, E-mail: talizadeh@ut.ac.ir [Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran (Iran, Islamic Republic of); Hamedsoltani, Leyla [Department of Applied Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2016-11-01

    Natural graphite was oxidized and exfoliated via two different methods, leading to two types of graphene oxide (GO) materials. The obtained materials were reduced by three different reducing agents including: hydrazine hydrate, ascorbic acid and sodium borohydride, giving thus six kinds of reduced graphene oxide (RGO) materials. The obtained materials were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The RGOs were then used to fabricate different gas sensors and their electrical resistances were recorded upon exposing to various volatile organic compounds vapors (VOCs). Gas sensing selectivity of each RGO was significantly affected by the synthesis condition. The RGO-based sensor array was fabricated and its capability for discrimination of seven kinds of VOCs was evaluated, utilizing principal component analysis and cluster analysis methods. Loading plot indicated that the presence of five RGO-based sensors could effectively discriminate the aimed vapors. The electronic nose, containing five kinds of RGOs, was used for the classification of seven kinds of VOCs at their different concentrations. - Highlights: • Two oxidation procedures and three reducing agents were utilized to produce six kinds of RGOs. • The synthesized different RGOs exhibited significantly different sensing behaviors. • Seven kinds of organic vapors were chosen for the evaluation of discrimination power of EN. • Using PCA, it was found that seven of six RFGOs were appropriate number to use in final EN. • The developed EN was capable of properly discrimination of tested vapors.

  3. Risk and integrity management system for PETRONAS Gas Berhad's gas and liquid hydrocarbon pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Tuan Hj. Ahmad Nadzri bin; Nasir, Osman; Napiah, Mohd Nazmi Mohd Ali [PETRONAS Gas Berhad, Johor (Malaysia); Choong, Evelyn

    2005-07-01

    PETRONAS Gas Berhad (PGB), Malaysia currently operates one of Southeast Asia's largest onshore pipeline systems comprising more than 2,500 km of large diameter high pressure gas and liquid transmission, supply and lateral pipelines. Recognizing the value of a risk based approach to pipeline integrity management program, in 2002 PGB implemented a customized and fully integrated Risk and Integrity Management System (RIMS) which included software modules for: data management; semi-quantitative risk assessment; risk control cost benefit analyses; defect assessment; corrosion growth modeling; and reporting. As part of this project, a benchmarking study performed jointly with the contractor, PGB's pipeline integrity programs were also compared with a broad group of international pipeline operators. This study compared the relative ranking position of PGB pre- and post implementation of RIMS. It demonstrated that implementation of RIMS places PGB in a select group of first quartile international pipeline operators, with respect to the implementation of pipeline integrity management best practice. This paper describes the functionalities of RIMS system and how it has benefited PGB, which have been realized to date from its implementation. (author)

  4. A new gas stripper system for BARC-TIFR Pelletron Accelerator facility: installation and preliminary results

    International Nuclear Information System (INIS)

    Sharma, S.C.; Ninawe, N.G.; Yadav, M.L.; Ekambaram, M.; Ramjilal; Matkar, U.V.; Ansari, Q.N.; Lokare, R.N.; Ramlal; Gupta, A.K.; Bhagwat, P.V.; Pillay, R.G.

    2009-01-01

    The gas-stripper plays a key role in stripping the heavy and molecular ion beams in a tandem accelerator. Efficiency of gas stripper depends on its supporting vacuum pumps. A new recirculating turbo molecular pump-based gas stripper has been installed in the high voltage terminal of Pelletron Accelerator. Re-circulating the stripper gas reduces the flow of gas into the accelerating tubes reducing the transmission losses. Preliminary results obtained using the new gas stripper system are discussed. (author)

  5. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  6. AutoBayes Program Synthesis System Users Manual

    Science.gov (United States)

    Schumann, Johann; Jafari, Hamed; Pressburger, Tom; Denney, Ewen; Buntine, Wray; Fischer, Bernd

    2008-01-01

    Program synthesis is the systematic, automatic construction of efficient executable code from high-level declarative specifications. AutoBayes is a fully automatic program synthesis system for the statistical data analysis domain; in particular, it solves parameter estimation problems. It has seen many successful applications at NASA and is currently being used, for example, to analyze simulation results for Orion. The input to AutoBayes is a concise description of a data analysis problem composed of a parameterized statistical model and a goal that is a probability term involving parameters and input data. The output is optimized and fully documented C/C++ code computing the values for those parameters that maximize the probability term. AutoBayes can solve many subproblems symbolically rather than having to rely on numeric approximation algorithms, thus yielding effective, efficient, and compact code. Statistical analysis is faster and more reliable, because effort can be focused on model development and validation rather than manual development of solution algorithms and code.

  7. Survey and Down-Selection of Acid Gas Removal Systems for the Thermochemical Conversion of Biomass to Ethanol with a Detailed Analysis of an MDEA System

    Energy Technology Data Exchange (ETDEWEB)

    Nexant, Inc., San Francisco, California

    2011-05-01

    The first section (Task 1) of this report by Nexant includes a survey and screening of various acid gas removal processes in order to evaluate their capability to meet the specific design requirements for thermochemical ethanol synthesis in NREL's thermochemical ethanol design report (Phillips et al. 2007, NREL/TP-510-41168). MDEA and selexol were short-listed as the most promising acid-gas removal agents based on work described in Task 1. The second report section (Task 2) describes a detailed design of an MDEA (methyl diethanol amine) based acid gas removal system for removing CO2 and H2S from biomass-derived syngas. Only MDEA was chosen for detailed study because of the available resources.

  8. Design layout for gas monitoring system II, GMS-2, computer system

    International Nuclear Information System (INIS)

    Vo, V.; Philipp, B.L.; Manke, M.P.

    1995-01-01

    This document provides a general overview of the computer systems software that perform the data acquisition and control for the 241-SY-101 Gas Monitoring System II (GMS-2). It outlines the system layout, and contains descriptions of components and the functions they perform. The GMS-2 system was designed and implemented by Los Alamos National Laboratory and supplied to Westinghouse Hanford Company

  9. A secure and synthesis tele-ophthalmology system.

    Science.gov (United States)

    Wei, Zhuo; Wu, Yongdong; Deng, Robert H; Yu, Shengsheng; Yao, Haixia; Zhao, Zhigang; Ngoh, Lek Heng; Han, Lim Tock; Poh, Eugenie W T

    2008-10-01

    This paper describes a secure and synthesis ophthalmology telemedicine system, referred to as TeleOph. Under a Secure Socket Layer (SSL) channel, patient prerecorded data can be safely transferred via the Internet. With encrypted videoconference and white-board, the system not only supports hospital-to-clinic consultation, but also supplies hospital-tohospital joint discussion. Based on Directshow technology (Microsoft Corporation, Redmond, WA), video cameras connected to the computer by firewire can be captured and controlled to sample video data. By using TWAIN technology, the system automatically identifies networked still cameras (on fundus and slitlamp devices) and retrieves images. All the images are stored in a selected format (such as JPEG, DICOM, BMP). Besides offline-transferring prerecorded data, the system also supplies online sampling of patient data (real-time capturing from remote places). The system was deployed at Tan Tock Seng Hospital, Singapore and Ang Mo Kio, Singapore, where 100 patients were enrolled in the system for examination. TeleOph can be successfully used for patient consultation, and hospital joint discussion. Meanwhile, TeleOph can supply both offline and online sampling of patient data.

  10. Gas-phase plasma synthesis of free-standing silicon nanoparticles for future energy applications

    NARCIS (Netherlands)

    Doğan, I.; van de Sanden, M.C.M.

    2016-01-01

    Silicon nanoparticles (Si-NPs) are considered as possible candidates for a wide spectrum of future technological applications. Research in the last decades has shown that plasmas are one of the most suitable environments for the synthesis of Si-NPs. This review discusses the unique size-dependent

  11. Gas-Phase Plasma Synthesis of Free-Standing Silicon Nanoparticles for Future Energy Applications

    NARCIS (Netherlands)

    Dogan, I.; van de Sanden, M. C. M.

    2016-01-01

    Silicon nanoparticles (Si-NPs) are considered as possible candidates for a wide spectrum of future technological applications. Research in the last decades has shown that plasmas are one of the most suitable environments for the synthesis of Si-NPs. This review discusses the unique size-dependent

  12. Refueling system for the gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Hawke, B.C.

    1980-05-01

    Criteria specifically related to the handling of Gas-Cooled Fast Breeder Reactor (GCFR) fuel are briefly reviewed, and the most significant requirements with which the refueling system must comply are discussed. Each component of the refueling system is identified, and a functional description of the fuel handling machine is presented. An illustrated operating sequence describing the various functions involved in a typical refueling cycle is presented. The design status of components and subsystems selected for conceptual development is reviewed, and anticipated refueling time frames are given

  13. GeoCEGAS: natural gas distribution management system

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Lorena C.J. [Companhia de Gas do Ceara (CEGAS), Fortaleza, CE (Brazil); Targa, Fernando O. [Gestao Empresarial e Informatica Ltda. (GEMPI), Sao Paulo, SP (Brazil)

    2009-07-01

    This Technical Paper approach the conception, architecture, design, construction, and implementation of GeoCEGAS, a spatially enabled corporate management information system, oriented to store and provide Web access, to information associated with the natural gas distribution network, owned by CEGAS. This paper reports business processes, business entities and business intelligence approached on the project, as well as an overview of system architecture, applications, and technology used on the implementation of GeoCEGAS. Finally, is presented an introduction to the work methodology used, as well a synopsis of benefits achievements. (author)

  14. New challenges to air/gas cleaning systems

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.L. [NUCON International, Inc., Columbus, OH (United States)

    1997-08-01

    This paper discusses the need for changes in the design and manufacturing of air and gas cleaning systems to meet waste management and site remediation requirements. Current design and manufacturing practices are primarily directed toward evaluating operational problems with existing systems in nuclear reactor facilities. However, nuclear waste management needs have developed which are much broader in scope and have different processing conditions. Numerous examples of air cleaning needs for waste management activities are provided; the major differences from operating facility needs are the requirement for continuous effluent treatment under widely different processing conditions. Related regulatory issues are also discussed briefly. 1 ref.

  15. Tritiated hydrogen gas storage systems for a fusion plant

    International Nuclear Information System (INIS)

    Bramy, W.; Hircq, B.; Peyrat, M.; Leger, D.

    1992-01-01

    This paper reports that USSI INGENIERIE has carried out a study financed by European Communities Commission concerning the NET/ITER project, on tritium Fuel Management and Storage systems of the International Thermonuclear Experimental Reactor. A processing block diagram for hydrogen isotopes represents all interfaces and possible links between these systems and tritiated gas mixtures flowing through the Fusion plant. Large quantities of hydrogen isotopes (up to several thousand moles of protium, deuterium and tritium) in gaseous form associated with torus fuelling and exhaust pellet injection, and neutral beam injection, must be stored and managed in such a plant

  16. Water augmented indirectly-fired gas turbine systems and method

    Science.gov (United States)

    Bechtel, Thomas F.; Parsons, Jr., Edward J.

    1992-01-01

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  17. Exhaust gas purifying system for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Minami, H; Saito, Z

    1976-10-07

    The exhaust gas purification system is a so-called three-way catalytic converter. It consists of an oxidation converter, a reduction converter, or a thermal converter. An exhaust sensor made up of an oxygen sensor, a carbon sensor, a carbon monoxide sensor, hydrocarbon sensor, or a nitrogen peroxide sensor, tests the composition of the exhaust and controls the air-fuel feed system in dependence of the exhaust mixture in such a manner that in the intake system an air-fuel mixture is taken in which the stoichiometric air-fuel relation is produced. Moreover, a thermostatically controlled air intake device is built into the fuel injection system which supplies the air of the fuel injection system with a relatively consistent temperature.

  18. Close loop gas recirculation and purification system for INO RPC system

    International Nuclear Information System (INIS)

    Joshi, A.V.; Kalmani, S.D.; Mondal, N.K.; Satyanarayana, B.; Verma, P.

    2013-01-01

    Close loop gas recirculation system (CLS) is designed to overcome problems. The present system is a pilot unit catering to about 12 RPC detectors of 2m ÃâĂŤ 2m size. The gas mixture is prepared in required concentration, in-situ, and circulated throughout the loop at controlled flow rates. The pressure band is adjusted to be within 20mm of water column. A Programmable Logic Controller (PLC) keeps track of pressure and flow rates, process sequence and safety conditions. The loss of gas is continuously monitored to assess effectiveness of CLS. The concentration of gas components in the mixtures is monitored by sampling through Residual Gas Analyzer (RGA). The RPC performance parameters, such as leakage current, noise rate, efficiency and cross-talk are monitored vis-a-vis CLS parameters. It has been found that RPC parameters respond in coordination with CLS functioning. Room pressure and temperature also seem to have influence on both of them

  19. Synthesis of Plate-Like Nanoalumina and Its Effect on Gas Permeability of Carbon Fiber Epoxy Composite

    Directory of Open Access Journals (Sweden)

    Ghadamali Karimi Khozani

    2017-03-01

    Full Text Available In recent years considerable efforts have been made to develop gas impermeable polymer systems. Compared with metal system counterparts they have advantages such as low density and production costs. The most important challenge in development of impermeable polymer systems is to reduce their gas permeability by proper selection of system composition and process conditions. In this work, nanoparticles were initially synthesized using Al (NO33•9H2O and sodium dodecyl sulfate as a structure-directing agent via hydrothermal method and a plate-like structure was characterized by FESEM and EDAX analyses. In the second step, epoxy/plate-like nanoalumina nanocomposites and epoxy-carbon fiber composites containing 1, 2.5, and 5 wt% nanoalumina were prepared. The effect of nanoparticle loading level on permeability of nitrogen, argon, and carbon dioxide in epoxy/plate-like nanoalumina nanocomposites was investigated. It was observed that the permeability of epoxy/plate-like nanoalumina nanocomposites toward nitrogen, argon, and carbon dioxide gases reduced 83%, 74%, and 50%, respectively. It was deduced that the permeability reduction was clearly associated with the diameter of gas molecules. Generally speaking, the results showed that the incorporation of plate-like nanoalumina particles significantly reduced the gas permeability. Also, carbon dioxide gas permeability of carbon fiber epoxy composites containing plate-like nanoalumina was investigated to show the effect of ingredients on the gas permeability of the system. The results indicated that carbon dioxide gas permeability of epoxy carbon fiber composite containing 5 wt% of plate-like nanoalumina was totally reduced 84%.

  20. Analytical modeling of wet compression of gas turbine systems

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Ko, Hyung-Jong; Perez-Blanco, Horacio

    2011-01-01

    Evaporative gas turbine cycles (EvGT) are of importance to the power generation industry because of the potential of enhanced cycle efficiencies with moderate incremental cost. Humidification of the working fluid to result in evaporative cooling during compression is a key operation in these cycles. Previous simulations of this operation were carried out via numerical integration. The present work is aimed at modeling the wet-compression process with approximate analytical solutions instead. A thermodynamic analysis of the simultaneous heat and mass transfer processes that occur during evaporation is presented. The transient behavior of important variables in wet compression such as droplet diameter, droplet mass, gas and droplet temperature, and evaporation rate is investigated. The effects of system parameters on variables such as droplet evaporation time, compressor outlet temperature and input work are also considered. Results from this work exhibit good agreement with those of previous numerical work.

  1. Scalable fractionation of iron oxide nanoparticles using a CO2 gas-expanded liquid system

    International Nuclear Information System (INIS)

    Vengsarkar, Pranav S.; Xu, Rui; Roberts, Christopher B.

    2015-01-01

    Iron oxide nanoparticles exhibit highly size-dependent physicochemical properties that are important in applications such as catalysis and environmental remediation. In order for these size-dependent properties to be effectively harnessed for industrial applications scalable and cost-effective techniques for size-controlled synthesis or size separation must be developed. The synthesis of monodisperse iron oxide nanoparticles can be a prohibitively expensive process on a large scale. An alternative involves the use of inexpensive synthesis procedures followed by a size-selective processing technique. While there are many techniques available to fractionate nanoparticles, many of the techniques are unable to efficiently fractionate iron oxide nanoparticles in a scalable and inexpensive manner. A scalable apparatus capable of fractionating large quantities of iron oxide nanoparticles into distinct fractions of different sizes and size distributions has been developed. Polydisperse iron oxide nanoparticles (2–20 nm) coated with oleic acid used in this study were synthesized using a simple and inexpensive version of the popular coprecipitation technique. This apparatus uses hexane as a CO 2 gas-expanded liquid to controllably precipitate nanoparticles inside a 1L high-pressure reactor. This paper demonstrates the operation of this new apparatus and for the first time shows the successful fractionation results on a system of metal oxide nanoparticles, with initial nanoparticle concentrations in the gram-scale. The analysis of the obtained fractions was performed using transmission electron microscopy and dynamic light scattering. The use of this simple apparatus provides a pathway to separate large quantities of iron oxide nanoparticles based upon their size for use in various industrial applications.

  2. Synthesis of dexterity measure of mechanisms by evolution of dissipative system

    Directory of Open Access Journals (Sweden)

    Grešl M.

    2007-11-01

    Full Text Available The paper deals with the new approach of solving traditional kinematical synthesis of mechanisms. The kinematical synthesis is reformulated as nonlinear dynamical problem. All searched parameters of the mechanism are in this dynamical dissipative system introduced as time-varying during motion of mechanism’s dimension iteration. The synthesis process is realized as the time evolution of such system. One of the most important objectives of the machine synthesis is the dexterity measure. The new approach is applied to optimization of this property.

  3. Controlled Synthesis of Hierarchically Assembled Porous ZnO Microspheres with Enhanced Gas-Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shengsheng You

    2015-01-01

    Full Text Available The ZnO microspheres constructed by porous nanosheets were successfully synthesized by calcinating zinc hydroxide carbonate (ZHC microspheres obtained by a sample hydrothermal method. The samples were characterized in detail with scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and thermogravimetric and differential scanning calorimetry (TG-DSC. The results indicated that the prepared ZnO microspheres were well crystalline with wurtzite hexagonal phase. The effects of reaction time, temperature, the amount of trisodium citrate, and urea on the morphology of ZnO microspheres were studied. The formation mechanism of porous ZnO microspheres was discussed. Furthermore, the gas-sensing properties for detection of organic gas of the prepared porous ZnO microspheres were investigated. The results indicated that the prepared porous ZnO microspheres exhibited high gas-sensing properties for detection of ethanol gas.

  4. Integrated Biorefinery for Conversion of Biomass to Ethanol, Synthesis Gas, and Heat

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Gerson [Abengoa Bioenergy, Hugoton, KS (United States)

    2017-06-20

    Goal of the project was to Design, build and operate a commercial scale bioethanol facility that uses sustainable biomass feedstock, drastically reduces greenhouse gas (GHG) emissions while achieving output production, yield and cost targets.

  5. Synthesis and Characterization of Quaternary Metal Chalcogenide Aerogels for Gas Separation and Volatile Hydrocarbon Adsorption

    KAUST Repository

    Edhaim, Fatimah A.

    2017-01-01

    as sorbents for selective gas separation and volatile organic compounds adsorption. They showed preferential adsorption of polarizable gases (CO2) and organic compounds (toluene). Ion exchange and heavy metal remediation properties have also been demonstrated

  6. TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties

    Directory of Open Access Journals (Sweden)

    Giorgio Sberveglieri

    2013-10-01

    Full Text Available Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes

  7. Copper nanoparticles synthesis by gamma irradiation in chitosan aqueous system

    International Nuclear Information System (INIS)

    Shahrul Izwan Ahmad; Md Soot Ahmad; Shahidan Radiman

    2009-01-01

    A study on effect of chitosan concentration on the copper nanoparticles synthesis using gamma irradiation as source of reducing agent has been done at total absorbed dose of 50 kGy. The addition of ethanol is vital as scavenger of oxidation radical that eliminate the function of reducing agent produced by radiolysis process of gamma ray in water system. Transmission electron microscopy observations show the formation of copper nanoparticles embedded in chitosan matrix. As the concentration of chitosan increase the solution become darker and nanoparticles produced are densely, in order form with polydisperse size. While at the low concentration of chitosan, the color of solution become more reddish and the particles produced are monodisperse in size with regular shape and more orderly. The phase of pure copper nanoparticles embedded in the chitosan matrix was confirmed by X-ray diffraction. (Author)

  8. EBR-II Cover Gas Cleanup System upgrade process control system structure

    International Nuclear Information System (INIS)

    Carlson, R.B.; Staffon, J.D.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) Cover Gas Cleanup System (CGCS) control system was upgraded in 1991 to improve control and provide a graphical operator interface. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper briefly describes the Cover Gas Cleanup System and the overall control system; describes the main control computer hardware and system software features in more detail; and, then, describes the real-time control tasks, and how they interact with each other, and how they interact with the operator interface task

  9. EBR-II Cover Gas Cleanup System upgrade distributed control and front end computer systems

    International Nuclear Information System (INIS)

    Carlson, R.B.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) Cover Gas Cleanup System (CGCS) control system was upgraded in 1991 to improve control and provide a graphical operator interface. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper briefly describes the Cover Gas Cleanup System and the overall control system; gives reasons behind the computer system structure; and then gives a detailed description of the distributed control computer, the front end computer, and how these computers interact with the main control computer. The descriptions cover both hardware and software

  10. Interdependency Assessment of Coupled Natural Gas and Power Systems in Energy Market

    Science.gov (United States)

    Yang, Hongzhao; Qiu, Jing; Zhang, Sanhua; Lai, Mingyong; Dong, Zhao Yang

    2015-12-01

    Owing to the technological development of natural gas exploration and the increasing penetration of gas-fired power generation, gas and power systems inevitably interact with each other from both physical and economic points of view. In order to effectively assess the two systems' interdependency, this paper proposes a systematic modeling framework and constructs simulation platforms for coupled gas and power systems in an energy market environment. By applying the proposed approach to the Australian national electricity market (NEM) and gas market, the impacts of six types of market and system factors are quantitatively analyzed, including power transmission limits, gas pipeline contingencies, gas pipeline flow constraints, carbon emission constraints, power load variations, and non-electric gas load variations. The important interdependency and infrastructure weakness for the two systems are well studied and identified. Our work provides a quantitative basis for grid operators and policy makers to support and guide operation and investment decisions for electric power and natural gas industries.

  11. A Review of Study on Thermal Energy Transport System by Synthesis and Decomposition Reactions of Methanol

    Science.gov (United States)

    Liu, Qiusheng; Yabe, Akira; Kajiyama, Shiro; Fukuda, Katsuya

    The study on thermal energy transport system by synthesis and decomposition reactions of methanol was reviewed. To promote energy conservation and global environment protection, a two-step liquid-phase methanol synthesis process, which starts with carbonylation of methanol to methyl formate, then followed by the hydrogenolysis of the formate, was studied to recover wasted or unused discharged heat from industrial sources for the thermal energy demands of residential and commercial areas by chemical reactions. The research and development of the system were focused on the following three points. (1) Development of low-temperature decomposition and synthetic catalysts, (2) Development of liquid phase reactor (heat exchanger accompanying chemical reaction), (3) Simulation of the energy transport efficiency of entire system which contains heat recovery and supply sections. As the result of the development of catalyst, promising catalysts which agree with the development purposes for the methyl formate decomposition reaction and the synthetic reaction are being developed though some studies remain for the methanol decomposition and synthetic reactions. In the fundamental development of liquid phase reactor, the solubilities of CO and H2 gases in methanol and methyl formate were measured by the method of total pressure decrease due to absorption under pressures up to 1500kPa and temperatures up to 140°C. The diffusivity of CO gas in methanol was determined by measuring the diameter and solution time of single CO bubbles in methanol. The chemical reaction rate of methanol synthesis by hydrogenolysis of methyl formate was measured using a plate-type of Raney copper catalyst in a reactor with rectangular channel and in an autoclave reactor. The reaction characteristics were investigated by carrying out the experiments at various temperatures, flow rates and at various catalyst development conditions. We focused on the effect of Raney copper catalyst thickness on the liquid

  12. Optimal synthesis and operation of advanced energy supply systems for standard and domotic home

    International Nuclear Information System (INIS)

    Buoro, Dario; Casisi, Melchiorre; Pinamonti, Piero; Reini, Mauro

    2012-01-01

    Highlights: ► Definition of an optimization model for a home energy supply system. ► Optimization of the energy supply system for standard and domotic home. ► Strong improvement can be achieved adopting the optimal system in standard and domotic home. ► The improvements are consistent if supply side and demand side strategies are applied together. ► Solutions with internal combustion engines are less sensible to market price of electricity and gas. - Abstract: The paper deals with the optimization of an advanced energy supply systems for two dwellings: a standard home and an advanced domotic home, where some demand side energy saving strategies have been implemented. In both cases the optimal synthesis, design and operation of the whole energy supply system have been obtained and a sensitivity analysis has been performed, by introducing different economic constraints. The optimization model is based on a Mixed Integer Linear Program (MILP) and includes different kinds of small-scale cogenerators, geothermal heat pumps, boilers, heat storages, solar thermal and photovoltaic panels. In addition, absorption machines, supplied with cogenerated heat, can be used instead of conventional electrical chiller to face the cooling demand. The aim of the analysis is to address the question if advanced demand strategies and supply strategies have to be regarded as alternatives, or if they have to be simultaneously applied, in order to obtain the maximum energy and economic benefit.

  13. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  14. Commercialization of residential fuel cell systems at Tokyo Gas

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hisao; Kameyama, Hiromichi; Okamura, Kiyoshi; Nishizaki, Kunihiro

    2007-07-01

    Increased affluence at homes may inevitably bring about increased energy consumption with it and hence increased CO2 emission from the residential sector, which accounts for a substantial share in the overall CO2 emission. Technologies that can reduce CO2 emission without sacrificing comfort of living at home will be critically important to achieve economic prosperity and preservation of the global environment at the same time. The residential fuel cell system is one of those technologies. Tokyo Gas has been engaging in its development cooperating with the manufacturers and has been playing an important role in the design, development and promotion of fuel cell systems with its vast knowledge and experience of end users' energy consumption. The development, demonstration and promotion of fuel cell systems have been strongly supported by the Japanese Government. In 'the Large Scale Demonstration Project', more than 1000 units of polymer electrolyte fuel cells have been installed to existing homes and have demonstrated their energy saving and CO2 emission reduction potential. This paper reports the status of the development of residential fuel cell systems in Japan and the role Tokyo Gas plays in it.

  15. Towards a Global Greenhouse Gas Information System (GHGIS)

    Science.gov (United States)

    Duren, Riley; Butler, James; Rotman, Doug; Miller, Charles; Decola, Phil; Sheffner, Edwin; Tucker, Compton; Mitchiner, John; Jonietz, Karl; Dimotakis, Paul

    2010-05-01

    Over the next few years, an increasing number of entities ranging from international, national, and regional governments, to businesses and private land-owners, are likely to become more involved in efforts to limit atmospheric concentrations of greenhouse gases. In such a world, geospatially resolved information about the location, amount, and rate of greenhouse gas (GHG) emissions will be needed, as well as the stocks and flows of all forms of carbon through terrestrial ecosystems and in the oceans. The ability to implement policies that limit GHG concentrations would be enhanced by a global, open, and transparent greenhouse gas information system (GHGIS). An operational and scientifically robust GHGIS would combine ground-based and space-based observations, carbon-cycle modeling, GHG inventories, meta-analysis, and an extensive data integration and distribution system, to provide information about sources, sinks, and fluxes of greenhouse gases at policy-relevant temporal and spatial scales. The GHGIS effort was initiated in 2008 as a grassroots inter-agency collaboration intended to rigorously identify the needs for such a system, assess the capabilities of current assets, and suggest priorities for future research and development. We will present a status of the GHGIS effort including our latest analysis and ideas for potential near-term pilot projects with potential relevance to European initiatives including the Global Monitoring for Environment and Security (GMES) and the Integrated Carbon Observing System (ICOS).

  16. Dual Layer Monolith ATR of Pyrolysis Oil for Distributed Synthesis Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Adeniyi [Stevens Institute of Technology, Castle Point Hoboken NJ 07030

    2012-09-29

    We have successfully demonstrated a novel reactor technology, based on BASF dual layer monolith catalyst, for miniaturizing the autothermal reforming of pyrolysis oil to syngas, the second and most critical of the three steps for thermochemically converting biomass waste to liquid transportation fuel. The technology was applied to aged as well as fresh samples of pyrolysis oil derived from five different biomass feedstocks, namely switch-grass, sawdust, hardwood/softwood, golden rod and maple. Optimization of process conditions in conjunction with innovative reactor system design enabled the minimization of carbon deposit and control of the H2/CO ratio of the product gas. A comprehensive techno-economic analysis of the integrated process using in part, experimental data from the project, indicates (1) net energy recovery of 49% accounting for all losses and external energy input, (2) weight of diesel oil produced as a percent of the biomass to be ~14%, and (3) for a demonstration size biomass to Fischer-Tropsch liquid plant of ~ 2000 daily barrels of diesel, the price of the diesel produced is ~$3.30 per gallon, ex. tax. However, the extension of catalyst life is critical to the realization of the projected economics. Catalyst deactivation was observed and the modes of deactivation, both reversible and irreversible were identified. An effective catalyst regeneration strategy was successfully demonstrated for reversible catalyst deactivation while a catalyst preservation strategy was proposed for preventing irreversible catalyst deactivation. Future work should therefore be focused on extending the catalyst life, and a successful demonstration of an extended (> 500 on-stream hours) catalyst life would affirm the commercial viability of the process.

  17. Microbiological community in biogas systems and evaluation of microbial risks from gas usage

    Energy Technology Data Exchange (ETDEWEB)

    Vinneraas, B.; Nordin, A. [Swedish Univ. of Agricultural Sciences, Dept. of Biometry and Engineering, Uppsala (Sweden); Schoenning, C. [Swedish Inst. for Infectious Disease Control, Dept. of Parasitology, Mycology, Environmental Mirobiology and Water, Solna (Sweden)

    2007-12-15

    The plans for introducing biogas produced from organic waste to the pipe system for natural gas have raised concerns about the risk of transmitting disease via the gas. To assess this risk, condensate water from gas pipes and gas from different parts of biogas upgrading systems were sampled and cultured for microbial content. The number of microorganisms found in the biogas correspond to the densities in sampled natural gas. Since no pathogens were identified and since the exposure to gas from e. g. cookers and refueling of cars may only result in the inhalation of small volumes of gas, the risk of spreading disease via biogas was judged to be very low. (orig.)

  18. Assessment of corrosion in the flue gas cleaning system using on-line monitoring

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vendelbo Nielsen, Lars; Berggreen Petersen, Michael

    2015-01-01

    Amager unit 1 is a 350 MW multifuel suspension-fired plant commissioned in 2009 to fire biomass (straw and wood pellets). Increasing corrosion problems in the flue gas cleaning system were observed in the gas-gas preheater (GAFO), the booster fan and flue gas ducts. Chlorine containing corrosion ...

  19. Indoor air quality inspection and analysis system based on gas sensor array

    Science.gov (United States)

    Gao, Xiang; Wang, Mingjiang; Fan, Binwen

    2017-08-01

    A detection and analysis system capable of measuring the concentration of four major gases in indoor air is designed. It uses four gas sensors constitute a gas sensor array, to achieve four indoor gas concentration detection, while the detection of data for further processing to reduce the cross-sensitivity between the gas sensor to improve the accuracy of detection.

  20. 75 FR 18607 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Science.gov (United States)

    2010-04-12

    ...: Petroleum and Natural Gas Systems; Proposed Rule #0;#0;Federal Register / Vol. 75 , No. 69 / Monday, April... Natural Gas Systems AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is... natural gas systems. Specifically, the proposed supplemental rulemaking would require emissions reporting...

  1. 75 FR 74457 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Science.gov (United States)

    2010-11-30

    ...: Petroleum and Natural Gas Systems; Final Rule #0;#0;Federal Register / Vol. 75 , No. 229 / Tuesday, November... Natural Gas Systems AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is... natural gas systems. This action adds this source category to the list of source categories already...

  2. 21 CFR 862.2250 - Gas liquid chromatography system for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas liquid chromatography system for clinical use... Instruments § 862.2250 Gas liquid chromatography system for clinical use. (a) Identification. A gas liquid chromatography system for clinical use is a device intended to separate one or more drugs or compounds from a...

  3. Bench-scale demonstration of biological production of ethanol from coal synthesis gas. Quarterly report, October 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This project describes a new approach to coal liquefaction, the biological conversion of coal synthesis gas into a liquid fuel, ethanol. A new bacterium, Clostridium Ijungdahlii, strain PETC, has been discovered and developed for this conversion, which also produces acetate as a by-product. Based upon the results of an exhaustive literature search and experimental data collected in the ERI laboratories, secondary and/or branched alcohols have been selected for ethanol extraction from the fermentation broth. 2,6 Methyl 4-heptanol has a measured distribution coefficient of 0.44 and a separation factor of 47. Methods to improve the results from extraction by removing water prior to distillation are under consideration. Several runs were performed in the two-stage CSTR system with Clostridium Ijungdahlii, strain PETC, with and without cell recycle between stages. Reduced gas flow rate, trypticase limitation and ammonia limitation as methods of maximizing ethanol production were the focus of the studies. With ammonia limitation, the ethanol:acetate product ratio reached 4.0.

  4. Magnesium carbide synthesis from methane and magnesium oxide - a potential methodology for natural gas conversion to premium fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, A.F.; Modestino, A.J.; Howard, J.B. [Massachusetts Institute of Technology, Cambridge, MA (United States)] [and others

    1995-12-31

    Diversification of the raw materials base for manufacturing premium fuels and chemicals offers U.S. and international consumers economic and strategic benefits. Extensive reserves of natural gas in the world provide a valuable source of clean gaseous fuel and chemical feedstock. Assuming the availability of suitable conversion processes, natural gas offers the prospect of improving flexibility in liquid fuels and chemicals manufacture, and thus, the opportunity to complement, supplement, or displace petroleum-based production as economic and strategic considerations require. The composition of natural gas varies from reservoir to reservoir but the principal hydrocarbon constituent is always methane (CH{sub 4}). With its high hydrogen-to-carbon ratio, methane has the potential to produce hydrogen or hydrogen-rich products. However, methane is a very chemically stable molecule and, thus, is not readily transformed to other molecules or easily reformed to its elements (H{sub 2} and carbon). In many cases, further research is needed to augment selectivity to desired product(s), increase single-pass conversions, or improve economics (e.g. there have been estimates of $50/bbl or more for liquid products) before the full potential of these methodologies can be realized on a commercial scale. With the trade-off between gas conversion and product selectivity, a major challenge common to many of these technologies is to simultaneously achieve high methane single-pass conversions and high selectivity to desired products. Based on the results of the scoping runs, there appears to be strong indications that a breakthrough has finally been achieved in that synthesis of magnesium carbides from MgO and methane in the arc discharge reactor has been demonstrated.

  5. A novel zinc(II) metal–organic framework with a diamond-like structure: synthesis, study of thermal robustness and gas adsorption properties

    Czech Academy of Sciences Publication Activity Database

    Almáši, M.; Zeleňák, V.; Zukal, Arnošt; Kuchár, J.; Čejka, Jiří

    2016-01-01

    Roč. 45, č. 3 (2016), s. 1233-1242 ISSN 1477-9226 R&D Projects: GA ČR GA14-07101S Institutional support: RVO:61388955 Keywords : synthesis * gas adsorption properties * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.029, year: 2016

  6. Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells

    NARCIS (Netherlands)

    Smet, de C.R.H.; Croon, de M.H.J.M.; Berger, R.J.; Marin, G.B.M.M.; Schouten, J.C.

    2001-01-01

    Adiabatic fixed-bed reactors for the catalytic partial oxidn. (CPO) of methane to synthesis gas were designed at conditions suitable for the prodn. of methanol and hydrogen-for-fuel-cells. A steady-state, one-dimensional heterogeneous reactor model was applied in the simulations. Intra-particle

  7. The reaction mechanism of the partial oxidation of methane to synthesis gas: a transient kinetic study over rhodium and a comparison with platinum

    NARCIS (Netherlands)

    Mallens, E.P.J.; Hoebink, J.H.B.J.; Marin, G.B.M.M.

    1997-01-01

    The partial oxidation of methane to synthesis gas over rhodium sponge has been investigated by admitting pulses of pure methane and pure oxygen as well as mixtures of methane and oxygen to rhodium sponge at temperatures from 873 to 1023 K. Moreover, pulses of oxygen followed by methane and vice

  8. Consideration on developing of leaked inflammable gas detection system for HTGR hydrogen production system

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo; Nakamura, Masashi

    1999-09-01

    One of most important safety design issues for High Temperature Gas-cooled Reactor (HTGR) - Hydrogen Production System (HTGR-HPS) is to ensure reactor safety against fire and explosion at the hydrogen production plant. The inflammable gas mixture in the HTGR-HPS does not use oxygen in any condition and are kept in high pressure in the normal operation. The piping system and/or heat transfer tubes which have the potential possibility of combustible materials ingress into the Reactor Building (R/B) due to the failure are designed to prevent the failure against any events. Then, it is not necessary to consider their self-combustion in vessels nor leakage in the R/B. The only one case which we must consider is the ex-building fire or explosion caused by their leakage from piping or vessel. And it is important to mitigate their effects by means of early detection of gas leakage. We investigated our domestic standards on gas detection, applications of gas detectors, their detection principles, performance, sensitivity, reliability, their technical trends, and so on. We proposed three gas detection systems which may be applied in HTGR-HPS. The first one is the universal solid sensor system; it may be applied when there is no necessity to request their safety credits. The second is the combination of the improved solid sensor system and enhanced beam detector system; it may be applied when it is necessary to request their safety credit. And the third is the combination of the universal solid sensor system and the existing beam detector system; it may be applied when the plant owner request higher detector sensitivity than usual, from the view point of public acceptance, though there is not necessity to request their safety credits. To reduce the plant cost by refusing of safety credits to the gas leakage detection system, we proposed that the equipment required to isolate from others should be installed in the inertrized compartments. (author)

  9. Advanced Combustion Systems for Next Generation Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program

  10. Evaluation of an active humidification system for inspired gas.

    Science.gov (United States)

    Roux, Nicolás G; Plotnikow, Gustavo A; Villalba, Darío S; Gogniat, Emiliano; Feld, Vivivana; Ribero Vairo, Noelia; Sartore, Marisa; Bosso, Mauro; Scapellato, José L; Intile, Dante; Planells, Fernando; Noval, Diego; Buñirigo, Pablo; Jofré, Ricardo; Díaz Nielsen, Ernesto

    2015-03-01

    The effectiveness of the active humidification systems (AHS) in patients already weaned from mechanical ventilation and with an artificial airway has not been very well described. The objective of this study was to evaluate the performance of an AHS in chronically tracheostomized and spontaneously breathing patients. Measurements were quantified at three levels of temperature (T°) of the AHS: level I, low; level II, middle; and level III, high and at different flow levels (20 to 60 L/minute). Statistical analysis of repeated measurements was performed using analysis of variance and significance was set at a P<0.05. While the lowest temperature setting (level I) did not condition gas to the minimum recommended values for any of the flows that were used, the medium temperature setting (level II) only conditioned gas with flows of 20 and 30 L/minute. Finally, at the highest temperature setting (level III), every flow reached the minimum absolute humidity (AH) recommended of 30 mg/L. According to our results, to obtain appropiate relative humidity, AH and T° of gas one should have a device that maintains water T° at least at 53℃ for flows between 20 and 30 L/m, or at T° of 61℃ at any flow rate.

  11. Industrial Raman gas sensing for real-time system control

    Science.gov (United States)

    Buric, M.; Mullen, J.; Chorpening, B.; Woodruff, S.

    2014-06-01

    Opportunities exist to improve on-line process control in energy applications with a fast, non-destructive measurement of gas composition. Here, we demonstrate a Raman sensing system which is capable of reporting the concentrations of numerous species simultaneously with sub-percent accuracy and sampling times below one-second for process control applications in energy or chemical production. The sensor is based upon a hollow-core capillary waveguide with a 300 micron bore with reflective thin-film metal and dielectric linings. The effect of using such a waveguide in a Raman process is to integrate Raman photons along the length of the sample-filled waveguide, thus permitting the acquisition of very large Raman signals for low-density gases in a short time. The resultant integrated Raman signals can then be used for quick and accurate analysis of a gaseous mixture. The sensor is currently being tested for energy applications such as coal gasification, turbine control, well-head monitoring for exploration or production, and non-conventional gas utilization. In conjunction with an ongoing commercialization effort, the researchers have recently completed two prototype instruments suitable for hazardous area operation and testing. Here, we report pre-commercialization testing of those field prototypes for control applications in gasification or similar processes. Results will be discussed with respect to accuracy, calibration requirements, gas sampling techniques, and possible control strategies of industrial significance.

  12. Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei.

    Science.gov (United States)

    Saxena, Jyotisna; Tanner, Ralph S

    2012-04-01

    Fermentation of biomass derived synthesis gas to ethanol is a sustainable approach that can provide more usable energy and environmental benefits than food-based biofuels. The effects of various medium components on ethanol production by Clostridium ragsdalei utilizing syngas components (CO:CO(2)) were investigated, and corn steep liquor (CSL) was used as an inexpensive nutrient source for ethanol production by C. ragsdalei. Elimination of Mg(2+), NH(4) (+) and PO(4) (3-) decreased ethanol production from 38 to 3.7, 23 and 5.93 mM, respectively. Eliminating Na(+), Ca(2+), and K(+) or increasing Ca(2+), Mg(2+), K(+), NH(4) (+) and PO(4) (3-) concentrations had no effect on ethanol production. However, increased Na(+) concentration (171 mM) inhibited growth and ethanol production. Yeast extract (0.5 g l(-1)) and trace metals were necessary for growth of C. ragsdalei. CSL alone did not support growth and ethanol production. Nutrients limiting in CSL were trace metals, NH(4) (+) and reducing agent (Cys: cysteine sulfide). Supplementation of trace metals, NH(4) (+) and CyS to CSL (20 g l(-1), wet weight basis) yielded better growth and similar ethanol production as compared to control medium. Using 10 g l(-1), the nutritional limitation led to reduced ethanol production. Higher concentrations of CSL (50 and 100 g l(-1)) were inhibitory for cell growth and ethanol production. The CSL could replace yeast extract, vitamins and minerals (excluding NH(4) (+)). The optimized CSL medium produced 120 and 50 mM of ethanol and acetate, respectively. The CSL could provide as an inexpensive source of most of the nutrients required for the syngas fermentation, and thus could improve the economics of ethanol production from biomass derived synthesis gas by C. ragsdalei.

  13. Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties

    KAUST Repository

    Liu, Yunyang; Zeng, Gaofeng; Pan, Yichang; Lai, Zhiping

    2011-01-01

    A seeded growth procedure was successfully developed to synthesize highly c-oriented and well-intergrown zeolitic imidazolate framework-69 (ZIF-69) membranes on porous α-alumina substrates. The synthesis conditions were optimized both for seed preparation and for secondary growth. For seeding, a facile method was developed to prepare smaller and flat ZIF-69 microcrystals in order to make thin and c-oriented seed layers. While for secondary growth, a synthesis condition that favored the growth along the c-direction was chosen in order to form highly c-oriented ZIF-69 membranes after growth. As a result, the majority of ZIF-69 grains inside the membrane have their straight channels along the crystallographic c-axis aligned perpendicularly to the substrate surface. Such alignment was confirmed by both XRD and pole figure analysis. The mixture-gas separation studies that were carried out at room temperature and 1atm gave separation factors of 6.3, 5.0, 4.6 for CO2/N2, CO2/CO and CO2/CH4 respectively, and a permeance of ∼1.0×10-7molm-2s-1Pa-1 for CO2 in almost all mixtures. Both the separation factor and permeance were better than the performance of the ZIF-69 membranes prepared by the in situ solvothermal method due to improvement in the membrane microstructure by the seeded growth method. © 2011 Elsevier B.V.

  14. Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties

    KAUST Repository

    Liu, Yunyang

    2011-09-01

    A seeded growth procedure was successfully developed to synthesize highly c-oriented and well-intergrown zeolitic imidazolate framework-69 (ZIF-69) membranes on porous α-alumina substrates. The synthesis conditions were optimized both for seed preparation and for secondary growth. For seeding, a facile method was developed to prepare smaller and flat ZIF-69 microcrystals in order to make thin and c-oriented seed layers. While for secondary growth, a synthesis condition that favored the growth along the c-direction was chosen in order to form highly c-oriented ZIF-69 membranes after growth. As a result, the majority of ZIF-69 grains inside the membrane have their straight channels along the crystallographic c-axis aligned perpendicularly to the substrate surface. Such alignment was confirmed by both XRD and pole figure analysis. The mixture-gas separation studies that were carried out at room temperature and 1atm gave separation factors of 6.3, 5.0, 4.6 for CO2/N2, CO2/CO and CO2/CH4 respectively, and a permeance of ∼1.0×10-7molm-2s-1Pa-1 for CO2 in almost all mixtures. Both the separation factor and permeance were better than the performance of the ZIF-69 membranes prepared by the in situ solvothermal method due to improvement in the membrane microstructure by the seeded growth method. © 2011 Elsevier B.V.

  15. Synthesis maps: visual knowledge translation for the CanIMPACT clinical system and patient cancer journeys.

    Science.gov (United States)

    Jones, P H; Shakdher, S; Singh, P

    2017-04-01

    Salient findings and interpretations from the canimpact clinical cancer research study are visually represented in two synthesis maps for the purpose of communicating an integrated presentation of the study to clinical cancer researchers and policymakers. Synthesis maps integrate evidence and expertise into a visual narrative for knowledge translation and communication. A clinical system synthesis map represents the current Canadian primary care and cancer practice systems, proposed as a visual knowledge translation from the mixed-methods canimpact study to inform Canadian clinical research, policy, and practice discourses. Two synthesis maps, drawn together from multiple canimpact investigations and sources, were required to articulate critical differences between the clinical system and patient perspectives. The synthesis map of Canada-wide clinical cancer systems illustrates the relationships between primary care and the full cancer continuum. A patient-centred map was developed to represent the cancer (and primary care) journeys as experienced by breast and colorectal cancer patients.

  16. Gas and Gas Pains

    Science.gov (United States)

    ... to produce gas. Often, relatively simple changes in eating habits can lessen bothersome gas. Certain digestive system disorders, ... such as soda and beer, increase stomach gas. Eating habits, such as eating too quickly, drinking through a ...

  17. Economics of Undiscovered Oil and Gas in the North Slope of Alaska: Economic Update and Synthesis

    Science.gov (United States)

    Attanasi, E.D.; Freeman, P.A.

    2009-01-01

    The U.S. Geological Survey (USGS) has published assessments by geologists of undiscovered conventional oil and gas accumulations in the North Slope of Alaska; these assessments contain a set of scientifically based estimates of undiscovered, technically recoverable quantities of oil and gas in discrete oil and gas accumulations that can be produced with conventional recovery technology. The assessments do not incorporate economic factors such as recovery costs and product prices. The assessors considered undiscovered conventional oil and gas resources in four areas of the North Slope: (1) the central North Slope, (2) the National Petroleum Reserve in Alaska (NPRA), (3) the 1002 Area of the Arctic National Wildlife Refuge (ANWR), and (4) the area west of the NPRA, called in this report the 'western North Slope'. These analyses were prepared at different times with various minimum assessed oil and gas accumulation sizes and with slightly different assumptions. Results of these past studies were recently supplemented with information by the assessment geologists that allowed adjustments for uniform minimum assessed accumulation sizes and a consistent set of assumptions. The effort permitted the statistical aggregation of the assessments of the four areas composing the study area. This economic analysis is based on undiscovered assessed accumulation distributions represented by the four-area aggregation and incorporates updates of costs and technological and fiscal assumptions used in the initial economic analysis that accompanied the geologic assessment of each study area.

  18. Zinc oxide hollow micro spheres and nano rods: Synthesis and applications in gas sensor

    International Nuclear Information System (INIS)

    Jamil, Saba; Janjua, Muhammad Ramzan Saeed Ashraf; Ahmad, Tauqeer; Mehmood, Tahir; Li, Songnan; Jing, Xiaoyan

    2014-01-01

    Zinc oxide nano rods and micro hollow spheres are successfully fabricated by adopting a simple solvo-thermal approach without employing any surfactant/template by keeping heating time as variable. The prepared products are characterized by using different instruments such as X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). In order to investigate the morphological dependence on the reaction time, analogous experiments with various reaction times are carried out. Depending upon heating time, different morphological forms have been identified such as hollow microsphere (4 μm to 5 μm) and nano rods with an average diameter of approximately 100 nm. The fabricated materials are also tested for ethanol gas sensor applications and zinc oxide hollow microsphere proven to be an efficient gas sensing materials. Nitrogen adsorption–desorption measurement was performed to understand better performance of zinc oxide micro hollow spheres as effective ethanol gas sensing material. - Graphical abstract: Graphical abstract is represented by zinc oxide sphere (prepared by simple solvothermal approach), its XRD pattern(characterization) and finally its application in gas sensing. - Highlights: • Zinc oxide spheres were prepared by using solvothermal method. • Detailed description of the morphology of microspheres assembled by nano rods. • Formation mechanism of zinc oxide spheres assembled by nano rods. • Zinc oxide spheres and nano rods displayed very good gas sensing ability

  19. Neural network models for biological waste-gas treatment systems.

    Science.gov (United States)

    Rene, Eldon R; Estefanía López, M; Veiga, María C; Kennes, Christian

    2011-12-15

    This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression

  20. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.