A steady-state axisymmetric toroidal system
International Nuclear Information System (INIS)
Hirano, K.
1984-01-01
Conditions for achieving a steady state in an axisymmetric toroidal system are studied with emphasis on a very-high-beta field-reversed configuration. The analysis is carried out for the electromotive force produced by the Ohkawa current that is induced by neutral-beam injection. It turns out that, since the perpendicular component of the current j-vectorsub(perpendicular) to the magnetic field can be generated automatically by the diamagnetic effect, only the parallel component j-vectorsub(parallel) must be driven by the electromotive force. The drive of j-vectorsub(parallel) generates shear in the field line so that the pure toroidal field on the magnetic axis is rotated towards the plasma boundary and matched to the external field lines. This matching condition determines the necessary amount of injection beam current and power. It is demonstrated that a very-high-beta field-reversed configuration requires only a small amount of current-driving beam power because almost all the toroidal current except that close to the magnetic axis is carried by the diamagnetic current due to high beta. A low-beta tokamak, on the other hand, needs very high current-driving power since most of the toroidal current is composed of j-vectorsub(parallel) which must be driven by the beam. (author)
Optimising performance in steady state for a supermarket refrigeration system
DEFF Research Database (Denmark)
Green, Torben; Kinnaert, Michel; Razavi-Far, Roozbeh
2012-01-01
Using a supermarket refrigeration system as an illustrative example, the paper postulates that by appropriately utilising knowledge of plant operation, the plant wide performance can be optimised based on a small set of variables. Focusing on steady state operations, the total system performance...
Solution of generalized control system equations at steady state
International Nuclear Information System (INIS)
Vilim, R.B.
1987-01-01
Although a number of reactor systems codes feature generalized control system models, none of the models offer a steady-state solution finder. Indeed, if a transient is to begin from steady-state conditions, the user must provide estimates for the control system initial conditions and run a null transient until the plant converges to steady state. Several such transients may have to be run before values for control system demand signals are found that produce the desired plant steady state. The intent of this paper is (a) to present the control system equations assumed in the SASSYS reactor systems code and to identify the appropriate set of initial conditions, (b) to describe the generalized block diagram approach used to represent these equations, and (c) to describe a solution method and algorithm for computing these initial conditions from the block diagram. The algorithm has been installed in the SASSYS code for use with the code's generalized control system model. The solution finder greatly enhances the effectiveness of the code and the efficiency of the user in running it
The quasi-steady state of the valley wind system
Directory of Open Access Journals (Sweden)
Juerg eSchmidli
2015-12-01
Full Text Available The quasi-steady-state limit of the diurnal valley wind system is investigated overidealized three-dimensional topography. Although this limit is rarely attained inreality due to ever-changing forcings, the investigation of this limit canprovide valuable insight, in particular on the mass and heat fluxes associatedwith the along-valley wind. We derive a scaling relation for the quasi-steady-state along-valleymass flux as a function of valley geometry, valley size, atmospheric stratification,and surface sensible heat flux forcing. The scaling relation is tested by comparisonwith the mass flux diagnosed from numerical simulations of the valleywind system. Good agreement is found. The results also provide insight into the relationbetween surface friction and the strength of the along-valley pressure gradient.
Steady-State-Preserving Simulation of Genetic Regulatory Systems
Directory of Open Access Journals (Sweden)
Ruqiang Zhang
2017-01-01
Full Text Available A novel family of exponential Runge-Kutta (expRK methods are designed incorporating the stable steady-state structure of genetic regulatory systems. A natural and convenient approach to constructing new expRK methods on the base of traditional RK methods is provided. In the numerical integration of the one-gene, two-gene, and p53-mdm2 regulatory systems, the new expRK methods are shown to be more accurate than their prototype RK methods. Moreover, for nonstiff genetic regulatory systems, the expRK methods are more efficient than some traditional exponential RK integrators in the scientific literature.
Quantum-classical correspondence in steady states of nonadiabatic systems
International Nuclear Information System (INIS)
Fujii, Mikiya; Yamashita, Koichi
2015-01-01
We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels
Steady State Analysis of Stochastic Systems with Multiple Time Delays
Xu, W.; Sun, C. Y.; Zhang, H. Q.
In this paper, attention is focused on the steady state analysis of a class of nonlinear dynamic systems with multi-delayed feedbacks driven by multiplicative correlated Gaussian white noises. The Fokker-Planck equations for delayed variables are at first derived by Novikov's theorem. Then, under small delay assumption, the approximate stationary solutions are obtained by the probability density approach. As a special case, the effects of multidelay feedbacks and the correlated additive and multiplicative Gaussian white noises on the response of a bistable system are considered. It is shown that the obtained analytical results are in good agreement with experimental results in Monte Carlo simulations.
System studies for quasi-steady-state advanced physics tokamak
International Nuclear Information System (INIS)
Reid, R.L.; Peng, Y.K.M.
1983-11-01
Parametric studies were conducted using the Fusion Engineering Design Center (FEDC) Tokamak Systems Code to investigate the impact of veriation in physics parameters and technology limits on the performance and cost of a low q/sub psi/, high beta, quasi-steady-state tokamak for the purpose of fusion engineering experimentation. The features and characteristics chosen from each study were embodied into a single Advanced Physics Tokamak design for which a self-consistent set of parameters was generated and a value of capital cost was estimated
Ising game: Nonequilibrium steady states of resource-allocation systems
Xin, C.; Yang, G.; Huang, J. P.
2017-04-01
Resource-allocation systems are ubiquitous in the human society. But how external fields affect the state of such systems remains poorly explored due to the lack of a suitable model. Because the behavior of spins pursuing energy minimization required by physical laws is similar to that of humans chasing payoff maximization studied in game theory, here we combine the Ising model with the market-directed resource-allocation game, yielding an Ising game. Based on the Ising game, we show theoretical, simulative and experimental evidences for a formula, which offers a clear expression of nonequilibrium steady states (NESSs). Interestingly, the formula also reveals a convertible relationship between the external field (exogenous factor) and resource ratio (endogenous factor), and a class of saturation as the external field exceeds certain limits. This work suggests that the Ising game could be a suitable model for studying external-field effects on resource-allocation systems, and it could provide guidance both for seeking more relations between NESSs and equilibrium states and for regulating human systems by choosing NESSs appropriately.
Machine Control System of Steady State Superconducting Tokamak-1
Energy Technology Data Exchange (ETDEWEB)
Masand, Harish, E-mail: harish@ipr.res.in; Kumar, Aveg; Bhandarkar, M.; Mahajan, K.; Gulati, H.; Dhongde, J.; Patel, K.; Chudasma, H.; Pradhan, S.
2016-11-15
Highlights: • Central Control System. • SST-1. • Machine Control System. - Abstract: Central Control System (CCS) of the Steady State Superconducting Tokamak-1 (SST-1) controls and monitors around 25 plant and experiment subsystems of SST-1 located remotely from the Central-Control room. Machine Control System (MCS) is a supervisory system that sits on the top of the CCS hierarchy and implements the CCS state diagram. MCS ensures the software interlock between the SST-1 subsystems with the CCS, any subsystem communication failure or its local error does not prohibit the execution of the MCS and in-turn the CCS operation. MCS also periodically monitors the subsystem’s status and their vital process parameters throughout the campaign. It also provides the platform for the Central Control operator to visualize and exchange remotely the operational and experimental configuration parameters with the sub-systems. MCS remains operational 24 × 7 from the commencement to the termination of the SST-1 campaign. The developed MCS has performed robustly and flawlessly during all the last campaigns of SST-1 carried out so far. This paper will describe various aspects of the development of MCS.
Steady state security assessment in deregulated power systems
Manjure, Durgesh Padmakar
Power system operations are undergoing changes, brought about primarily due to deregulation and subsequent restructuring of the power industry. The primary intention of the introduction of deregulation in power systems was to bring about competition and improved customer focus. The underlying motive was increased economic benefit. Present day power system analysis is much different than what it was earlier, essentially due to the transformation of the power industry from being cost-based to one that is price-based and due to open access of transmission networks to the various market participants. Power is now treated as a commodity and is traded in an open market. The resultant interdependence of the technical criteria and the economic considerations has only accentuated the need for accurate analysis in power systems. The main impetus in security analysis studies is on efficient assessment of the post-contingency status of the system, accuracy being of secondary consideration. In most cases, given the time frame involved, it is not feasible to run a complete AC load flow for determining the post-contingency state of the system. Quite often, it is not warranted as well, as an indication of the state of the system is desired rather than the exact quantification of the various state variables. With the inception of deregulation, transmission networks are subjected to a host of multilateral transactions, which would influence physical system quantities like real power flows, security margins and voltage levels. For efficient asset utilization and maximization of the revenue, more often than not, transmission networks are operated under stressed conditions, close to security limits. Therefore, a quantitative assessment of the extent to which each transaction adversely affects the transmission network is required. This needs to be done accurately as the feasibility of the power transactions and subsequent decisions (execution, curtailment, pricing) would depend upon the
International Nuclear Information System (INIS)
Jarboe, T.R.
1982-01-01
A major effort is being made in the national program to make the operation of axisymmetric, toroidal confinement systems steady state by the application of expensive rf current drive. Described here is a method by which such a confinement system, the spheromak, can be refluxed indefinitely through the application of dc power. As a step towards dc sustainment we have operated the present CTX source in the slow source mode with a longer power application time (approx. 0.1 ms) and successfully generated long-lived spheromaks. If the erosion of the electrodes can be controlled as well as it is with MPD arcs then dc operation should be very clean. If only a small fraction (approx. 10% for an experiment) of the poloidal flux of the spheromak connects to the source then the dc sustainment can be very efficient. The amount of connecting flux that is necessary for sustainment needs to be determined experimentally
Zaher, Ashraf A
2008-03-01
A technique is introduced for identifying uncertain and/or unknown parameters of chaotic dynamical systems via using simple state feedback. The proposed technique is based on bringing the system into a stable steady state and then solving for the unknown parameters using a simple algebraic method that requires access to the complete or partial states of the system depending on the dynamical model of the chaotic system. The choice of the state feedback is optimized in terms of practicality and causality via employing a single feedback signal and tuning the feedback gain to ensure both stability and identifiability. The case when only a single scalar time series of one of the states is available is also considered and it is demonstrated that a synchronization-based state observer can be augmented to the state feedback to address this problem. A detailed case study using the Lorenz system is used to exemplify the suggested technique. In addition, both the Rössler and Chua systems are examined as possible candidates for utilizing the proposed methodology when partial identification of the unknown parameters is considered. Finally, the dependence of the proposed technique on the structure of the chaotic dynamical model and the operating conditions is discussed and its advantages and limitations are highlighted via comparing it with other methods reported in the literature.
Steady state flow evaluations for passive auxiliary feedwater system of APR
International Nuclear Information System (INIS)
Park, Jongha; Kim, Jaeyul; Seong, Hoje; Kang, Kyoungho
2012-01-01
This paper briefly introduces a methodology to evaluate steady state flow of APR+ Passive Auxiliary Feedwater System (PAFS). The PAFS is being developed as a safety grade passive system to completely replace the existing active Auxiliary Feedwater System (AFWS). Natural circulation cooling can be generally classified into the single-phase, two-phase, and boiling-condensation modes. The PAF is designed to be operated in a boiling-condensation natural circulation mode. The steady-state flow rate should be equal to the steady-state boiling/condensation rate determined by the steady-state energy and momentum balances in the PAFS. The determined steady-state flow rate can be used in the design optimization for the natural circulation loop of the PAFS through the steady-state momentum balance. Since the retarding force, which is to be balanced by the driving force in the natural circulation system design depends on the reliable evaluation of the success of a natural circulation system design depends on the reliable evaluation of the pressure loss coefficients. In PAFS, the core decay heat is released by natural circulation flow between the S G secondary side and the Passive Condensation Heat Exchanger (PCHX) that is immersed in the Passive Condensation Cooling Tank (PCCT). The PCCT is located on the top of Auxiliary building The driving force is determined by the difference between the S/G (heat Source) secondary water level and condensation liquid (heat sink) level. It will overcome retarding force at flowrate in the system, which is determined by vaporization and condensation of the steam which is generated at the S/G by the latent heat in system. In this study, the theoretical method to estimate the steady state flow rate in boiling-condensation natural circulation system is developed and compared with test results
Steady State Crack Propagation in Layered Material Systems Displaying Visco-plastic Behaviour
DEFF Research Database (Denmark)
Nielsen, Kim Lau
2012-01-01
The steady state fracture toughness of elastic visco-plastic materials is studied numerically, using both a conventional and a higher order model. Focus is on the combined effect of strain hardening, strain gradient hardening and strain rate hardening on cracking in layered material systems...
Efficient decoding with steady-state Kalman filter in neural interface systems.
Malik, Wasim Q; Truccolo, Wilson; Brown, Emery N; Hochberg, Leigh R
2011-02-01
The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5±0.5 s (mean ±s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25±3 single units by a factor of 7.0±0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems.
Reliable and Efficient Procedure for Steady-State Analysis of Nonautonomous and Autonomous Systems
Directory of Open Access Journals (Sweden)
J. Dobes
2012-04-01
Full Text Available The majority of contemporary design tools do not still contain steady-state algorithms, especially for the autonomous systems. This is mainly caused by insufficient accuracy of the algorithm for numerical integration, but also by unreliable steady-state algorithms themselves. Therefore, in the paper, a very stable and efficient procedure for the numerical integration of nonlinear differential-algebraic systems is defined first. Afterwards, two improved methods are defined for finding the steady state, which use this integration algorithm in their iteration loops. The first is based on the idea of extrapolation, and the second utilizes nonstandard time-domain sensitivity analysis. The two steady-state algorithms are compared by analyses of a rectifier and a C-class amplifier, and the extrapolation algorithm is primarily selected as a more reliable alternative. Finally, the method based on the extrapolation naturally cooperating with the algorithm for solving the differential-algebraic systems is thoroughly tested on various electronic circuits: Van der Pol and Colpitts oscillators, fragment of a large bipolar logical circuit, feedback and distributed microwave oscillators, and power amplifier. The results confirm that the extrapolation method is faster than a classical plain numerical integration, especially for larger circuits with complicated transients.
Development of repetitive railgun pellet accelerator and steady-state pellet supply system
International Nuclear Information System (INIS)
Oda, Y.; Onozuka, M.; Azuma, K.; Kasai, S.; Hasegawa, K.
1995-01-01
A railgun system for repetitive high-speed pellet acceleration and steady-state pellet supply system has been developed and investigated. Using a 2m-long railgun system, the hydrogen pellet was accelerated to 2.6km/sec by the supplied energy of 1.7kJ. It is expected that the hydrogen pellet can be accelerated to 3km/sec using the present pneumatic pellet accelerator and a 2m-long augment railgun. Screw-driven hydrogen-isotope filament extruding system has been fabricated and will be tested to examine its applicability to the steady-state extrusion of the solid hydrogen-isotope filament
Development of repetitive railgun pellet accelerator and steady-state pellet supply system
Energy Technology Data Exchange (ETDEWEB)
Oda, Y.; Onozuka, M.; Azuma, K. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Kasai, S.; Hasegawa, K. [Japan Atomic Energy Research Inst., Naka (Japan)
1995-12-31
A railgun system for repetitive high-speed pellet acceleration and steady-state pellet supply system has been developed and investigated. Using a 2m-long railgun system, the hydrogen pellet was accelerated to 2.6km/sec by the supplied energy of 1.7kJ. It is expected that the hydrogen pellet can be accelerated to 3km/sec using the present pneumatic pellet accelerator and a 2m-long augment railgun. Screw-driven hydrogen-isotope filament extruding system has been fabricated and will be tested to examine its applicability to the steady-state extrusion of the solid hydrogen-isotope filament.
System and method for generating steady state confining current for a toroidal plasma fusion reactor
International Nuclear Information System (INIS)
Fisch, N.J.
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma
System and method for generating steady state confining current for a toroidal plasma fusion reactor
International Nuclear Information System (INIS)
Bers, A.
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma
Steady-State and Transient Analysis for Design Validation of SMART-ITL Secondary System
Energy Technology Data Exchange (ETDEWEB)
Yun, Eunkoo; Bae, Hwang; Ryu, Sung Uk; Jeon, Byong-Guk; Yang, Jin-Hwa; Yi, Sung-Jae; Park, Hyun-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
SMART can prevent large-break loss of coolant accident (LBLOCA) inherently. SMART-ITL is an experimental simulation facility designed to perform integral effect tests for the SMART plant. In terms of the secondary system of SMART-ITL, the design has been simplified from that of reference plant by replacing several components, such as expansion device and condenser, with an appropriate device to be functional as the alternatives. In this paper, in order to understand the operational characteristics as well as design concept, the secondary system of SMRAT-ITL is analyzed in steady-state and transient aspects, and the results are compared with relevant experimental results. This study focuses on the understanding of thermal-hydraulic behavior of SMART-ITL secondary system, which is simplified from that of reference plant. To identify the behaviors of the secondary system, the steady-state and transient analysis were conducted based on experimental results. In steady-state analysis, the results clearly showed that the system pressure is related to the temperature of condensation tank which varies depending on mixture enthalpy. In transient analysis, the dynamic behavior during heat-up process has been investigated. The results reveal that we can reasonably assume the fluid filled in TK-CD-01 be in a saturated condition. The results showed that the design of SMART-ITL secondary system is appropriate, and the system is being properly operated to match the design intent.
A Method for Online Steady State Energy Minimization with Application to Refrigeration Systems
DEFF Research Database (Denmark)
Larsen, Lars Finn Slot; Thybo, Claus; Stoustrup, Jakob
2004-01-01
Energy efficiency of refrigeration systems has gradually been improved with the help of control schemes utilizing the more flexible components; the efficiency is though yet far from optimal. The flexibility initiates a higher degree of freedom in choosing the operating set points while obtaining...... applies to a broader range of process systems where the lower level set-points (in the control hierarchy) can be chosen within a degree of freedom allowing an optimization of a steady state performance index....
Dynamics and non-equilibrium steady state in a system of coupled harmonic oscillators
Energy Technology Data Exchange (ETDEWEB)
Ghesquière, Anne, E-mail: Anne.Ghesquiere@nithep.ac.za; Sinayskiy, Ilya, E-mail: sinayskiy@ukzn.ac.za; Petruccione, Francesco, E-mail: petruccione@ukzn.ac.za
2013-10-15
A system of two coupled oscillators, each of them coupled to an independent reservoir, is analysed. The analytical solution of the non-rotating wave master equation is obtained in the high-temperature and weak coupling limits. No thermal entanglement is found in the high-temperature limit. In the weak coupling limit the system converges to an entangled non-equilibrium steady state. A critical temperature for the appearance of quantum correlations is found.
New Modeling of Steady-State Modes of Complex Electrical Grids of Power Systems
Directory of Open Access Journals (Sweden)
Akhmetbayev Arman
2018-01-01
Full Text Available Classical methods for modeling the steady-state modes of complex electrical networks and systems are based on the application of nonlinear node equations. Nonlinear equations are solved by iterative methods, which are connected by known difficulties. To a certain extent, these difficulties can be weakened by applying topological methods. In this paper, we outline the theoretical foundations for the formation of the inverse form of nodal stress equations based on the topology of electrical networks and systems. A new topological method for calculating the distribution coefficients of node currents is proposed based on all possible trees of a directed graph of a complex electrical network. A complex program for calculating current distribution coefficients and forming steady-state parameters in the MATLAB environment has been developed.
Stability of periodic steady-state solutions to a non-isentropic Euler-Poisson system
Liu, Cunming; Peng, Yue-Jun
2017-06-01
We study the stability of periodic smooth solutions near non-constant steady-states for a non-isentropic Euler-Poisson system without temperature damping term. The system arises in the theory of semiconductors for which the doping profile is a given smooth function. In this stability problem, there are no special restrictions on the size of the doping profile, but only on the size of the perturbation. We prove that small perturbations of periodic steady-states are exponentially stable for large time. For this purpose, we introduce new variables and choose a non-diagonal symmetrizer of the full Euler equations to recover dissipation estimates. This also allows to make the proof of the stability result very simple and concise.
Majeed, Muhammad Usman
2017-07-19
Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.
Breden, Maxime; Castelli, Roberto
2018-05-01
In this paper, we present and apply a computer-assisted method to study steady states of a triangular cross-diffusion system. Our approach consist in an a posteriori validation procedure, that is based on using a fixed point argument around a numerically computed solution, in the spirit of the Newton-Kantorovich theorem. It allows to prove the existence of various non homogeneous steady states for different parameter values. In some situations, we obtain as many as 13 coexisting steady states. We also apply the a posteriori validation procedure to study the linear stability of the obtained steady states, proving that many of them are in fact unstable.
Analysis of the steady-state operation of vacuum systems for fusion machines
International Nuclear Information System (INIS)
Roose, T.R.; Hoffman, M.A.; Carlson, G.A.
1975-01-01
A computer code named GASBAL was written to calculate the steady-state vacuum system performance of multi-chamber mirror machines as well as rather complex conventional multichamber vacuum systems. Application of the code, with some modifications, to the quasi-steady tokamak operating period should also be possible. Basically, GASBAL analyzes free molecular gas flow in a system consisting of a central chamber (the plasma chamber) connected by conductances to an arbitrary number of one- or two-chamber peripheral tanks. Each of the peripheral tanks may have vacuum pumping capability (pumping speed), sources of cold gas, and sources of energetic atoms. The central chamber may have actual vacuum pumping capability, as well as a plasma capable of ionizing injected atoms and impinging gas molecules and ''pumping'' them to a peripheral chamber. The GASBAL code was used in the preliminary design of a large mirror machine experiment--LLL's MX
Directory of Open Access Journals (Sweden)
Lun Yang
2018-04-01
Full Text Available The existing studies on probabilistic steady-state analysis of integrated energy systems (IES are limited to integrated electricity and gas networks or integrated electricity and heating networks. This paper proposes a probabilistic steady-state analysis of integrated electricity, gas and heating networks (EGH-IES. Four typical operation modes of an EGH-IES are presented at first. The probabilistic energy flow problem of the EGS-IES considering its operation modes and correlated uncertainties in wind/solar power and electricity/gas/heat loads is then formulated and solved by the Monte Carlo method based on Latin hypercube sampling and Nataf transformation. Numerical simulations are conducted on a sample EGH-IES working in the “electricity/gas following heat” mode to verify the probabilistic analysis proposed in this paper and to study the effects of uncertainties and correlations on the operation of the EGH-IES, especially uncertainty transmissions among the subnetworks.
Methods of computing steady-state voltage stability margins of power systems
Chow, Joe Hong; Ghiocel, Scott Gordon
2018-03-20
In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.
Majeed, Muhammad Usman
2017-01-01
the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time
Cluster Mean-Field Approach to the Steady-State Phase Diagram of Dissipative Spin Systems
Directory of Open Access Journals (Sweden)
Jiasen Jin
2016-07-01
Full Text Available We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical origin, and is established only at very long times, whereas in thermodynamic equilibrium it arises from the properties of the (free energy. To this end, by combining the cluster methods extensively used in equilibrium phase transitions to quantum trajectories and tensor-network techniques, we extend them to nonequilibrium phase transitions in dissipative many-body systems. We analyze in detail a model of spin-1/2 on a lattice interacting through an XYZ Hamiltonian, each of them coupled to an independent environment that induces incoherent spin flips. In the steady-state phase diagram derived from our cluster approach, the location of the phase boundaries and even its topology radically change, introducing reentrance of the paramagnetic phase as compared to the single-site mean field where correlations are neglected. Furthermore, a stability analysis of the cluster mean field indicates a susceptibility towards a possible incommensurate ordering, not present if short-range correlations are ignored.
Steady State Shift Damage Localization
DEFF Research Database (Denmark)
Sekjær, Claus; Bull, Thomas; Markvart, Morten Kusk
2017-01-01
The steady state shift damage localization (S3DL) method localizes structural deterioration, manifested as either a mass or stiffness perturbation, by interrogating the damage-induced change in the steady state vibration response with damage patterns cast from a theoretical model. Damage is, thus...... the required accuracy when examining complex structures, an extensive amount of degrees of freedom (DOF) must often be utilized. Since the interrogation matrix for each damage pattern depends on the size of the system matrices constituting the FE-model, the computational time quickly becomes of first......-order importance. The present paper investigates two sub-structuring approaches, in which the idea is to employ Craig-Bampton super-elements to reduce the amount of interrogation distributions while still providing an acceptable localization resolution. The first approach operates on a strict super-element level...
Analysis of the steady state hydraulic behaviour of the ITER blanket cooling system
Energy Technology Data Exchange (ETDEWEB)
Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Dell’Orco, G.; Furmanek, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Garitta, S. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Spagnuolo, G.A.; Vallone, E. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)
2015-10-15
Highlights: • Nominal steady state hydraulic behaviour of ITER blanket standard sector cooling system has been investigated. • Numerical simulations have been run adopting a qualified thermal-hydraulic system code. • Hydraulic characteristic functions and coolant mass flow rates, velocities and pressure drops have been assessed. • Most of the considered circuits are able to effectively cool blanket modules, meeting ITER requirements. - Abstract: The blanket system is the ITER reactor component devoted to providing a physical boundary for plasma transients and contributing to thermal and nuclear shielding of vacuum vessel, magnets and external components. It is expected to be subjected to significant heat loads under nominal conditions and its cooling system has to ensure an adequate cooling, preventing any risk of critical heat flux occurrence while complying with pressure drop limits. At the University of Palermo a study has been performed, in cooperation with the ITER Organization, to investigate the steady state hydraulic behaviour of the ITER blanket standard sector cooling system. A theoretical–computational approach based on the finite volume method has been followed, adopting the RELAP5 system code. Finite volume models of the most critical blanket cooling circuits have been set-up, realistically simulating the coolant flow domain. The steady state hydraulic behaviour of each cooling circuit has been investigated, determining its hydraulic characteristic function and assessing the spatial distribution of coolant mass flow rates, velocities and pressure drops under reference nominal conditions. Results obtained have indicated that the investigated cooling circuits are able to provide an effective cooling to blanket modules, generally meeting ITER requirements in term of pressure drop and velocity distribution, except for a couple of circuits that are being revised.
International Nuclear Information System (INIS)
Echavarren, F.M.; Lobato, E.; Rouco, L.; Gomez, T.
2011-01-01
A steady state security margin for a particular operating point can be defined as the distance from this initial point to the secure operating limits of the system. Four of the most used steady state security margins are the power flow feasibility margin, the contingency feasibility margin, the load margin to voltage collapse, and the total transfer capability between system areas. This is the second part of a two part paper. Part I has proposed a novel framework of a general model able to formulate, compute and improve any steady state security margin. In Part II the performance of the general model is validated by solving a variety of practical situations in modern real power systems. Actual examples of the Spanish power system will be used for this purpose. The same computation and improvement algorithms outlined in Part I have been applied for the four security margins considered in the study, outlining the convenience of defining a general framework valid for the four of them. The general model is used here in Part II to compute and improve: (a) the power flow feasibility margin (assessing the influence of the reactive power generation limits in the Spanish power system), (b) the contingency feasibility margin (assessing the influence of transmission and generation capacity in maintaining a correct voltage profile), (c) the load margin to voltage collapse (assessing the location and quantity of loads that must be shed in order to be far away from voltage collapse) and (d) the total transfer capability (assessing the export import pattern of electric power between different areas of the Spanish system). (author)
Energy Technology Data Exchange (ETDEWEB)
Echavarren, F.M.; Lobato, E.; Rouco, L.; Gomez, T. [School of Engineering of Universidad Pontificia Comillas, C/Alberto Aguilera, 23, 28015 Madrid (Spain)
2011-02-15
A steady state security margin for a particular operating point can be defined as the distance from this initial point to the secure operating limits of the system. Four of the most used steady state security margins are the power flow feasibility margin, the contingency feasibility margin, the load margin to voltage collapse, and the total transfer capability between system areas. This is the second part of a two part paper. Part I has proposed a novel framework of a general model able to formulate, compute and improve any steady state security margin. In Part II the performance of the general model is validated by solving a variety of practical situations in modern real power systems. Actual examples of the Spanish power system will be used for this purpose. The same computation and improvement algorithms outlined in Part I have been applied for the four security margins considered in the study, outlining the convenience of defining a general framework valid for the four of them. The general model is used here in Part II to compute and improve: (a) the power flow feasibility margin (assessing the influence of the reactive power generation limits in the Spanish power system), (b) the contingency feasibility margin (assessing the influence of transmission and generation capacity in maintaining a correct voltage profile), (c) the load margin to voltage collapse (assessing the location and quantity of loads that must be shed in order to be far away from voltage collapse) and (d) the total transfer capability (assessing the export import pattern of electric power between different areas of the Spanish system). (author)
Impact of electric vehicles in the steady state operation of distribution systems
Erasmo Saraiva de Castro
2015-01-01
This work aims to quantify the impact in the steady state operation of a distribution system when electric vehicles are connected. It is worth noting that the connection of them may cause significant changes in the voltage profile, in the degree of voltage unbalance and in the electrical losses of the system. In order to make this analysis, a three-phase power flow program was developed in MATLAB language. This program is based on the Ladder Iterative Technique and it contains models of overh...
Controlling Unknown Saddle Type Steady States of Dynamical Systems with Latency in the Feedback Loop
DEFF Research Database (Denmark)
Tamasevicius, Arunas; Bumeliene, Skaidra; Tamaseviciute, Elena
2009-01-01
We suggest an adaptive control technique for stabilizing saddle type unstable steady states of dynamical systems. The controller is composed of an unstable and a stable high-pass filters operating in parallel. The mathematical model is considered analytically and numerically. The conjoint...... controller is sufficiently robust to time latencies in the feedback loop. In addition, it is not sensitive to the damping parameters of the system and is relatively fast. Experiments have been performed using a simplified version of the electronic Young-Silva circuit imitating behavior of the Duffing...
The steady-state modeling and optimization of a refrigeration system for high heat flux removal
International Nuclear Information System (INIS)
Zhou Rongliang; Zhang Tiejun; Catano, Juan; Wen, John T.; Michna, Gregory J.; Peles, Yoav; Jensen, Michael K.
2010-01-01
Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat transfer and higher critical heat flux (CHF), the evaporators operate with two-phase flow only. This unique operating condition necessitates the inclusion of a liquid accumulator with integrated heater for the safe operation of the compressor. Due to the projected incorporation of microchannels into the system to enhance the heat transfer in heat sinks, the momentum balance equation, rarely seen in previous vapor compression cycle heat exchangers modeling efforts, is utilized in addition to the mass and energy balance equations to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Using the steady-state model developed, a parametric study is performed to study the effect of various external inputs on the system performance. The Pareto optimization is applied to find the optimal system operating conditions for given heat loads such that the system coefficient of performance (COP) is optimized while satisfying the CHF and other system operation constraints. Initial validation efforts show the good agreement between the experimental data and model predictions.
Effect of vadose zone on the steady-state leakage rates from landfill barrier systems
International Nuclear Information System (INIS)
Celik, B.; Rowe, R.K.; Unlue, K.
2009-01-01
Leakage rates are evaluated for a landfill barrier system having a compacted clay liner (CCL) underlain by a vadose zone of variable thickness. A numerical unsaturated flow model SEEP/W is used to simulate the moisture flow regime and steady-state leakage rates for the cases of unsaturated zones with different soil types and thicknesses. The results of the simulations demonstrate that harmonic mean hydraulic conductivity of coarse textured vadose zones is 3-4 orders of magnitude less than saturated hydraulic conductivity; whereas, the difference is only one order of magnitude for fine textured vadose zones. For both coarse and fine textured vadose zones, the effective hydraulic conductivity of the barrier system and the leakage rate to an underlying aquifer increases with increasing thickness of the vadose zone and ultimately reaches an asymptotic value for a coarse textured vadose zone thickness of about 10 m and a fine textured vadose zone thickness of about 5 m. Therefore, the fine and coarse textured vadose zones thicker than about 5 m and 10 m, respectively, act as an effective part of the barrier systems examined. Although the thickness of vadose zone affects the effective hydraulic conductivity of the overall barrier system, the results demonstrated that the hydraulic conductivity of the CCL is the dominant factor controlling the steady-state leakage rates through barrier systems having single low permeability clay layers
Data acquisition system for steady state experiments at multi-sites
International Nuclear Information System (INIS)
Nakanishi, H.; Emoto, M.; Nagayama, Y.
2010-11-01
A high-performance data acquisition system (LABCOM system) has been developed for steady state fusion experiments in Large Helical Device (LHD). The most important characteristics of this system are the 110 MB/s high-speed real-time data acquisition capability and also the scalability on its performance by using unlimited number of data acquisition (DAQ) units. It can also acquire experimental data from multiple remote sites through the 1 Gbps fusion-dedicated virtual private network (SNET) in Japan. In LHD steady-state experiments, the DAQ cluster has established the world record of acquired data amount of 90 GB/shot which almost reaches the ITER data estimate. Since all the DAQ, storage, and data clients of LABCOM system are distributed on the local area network (LAN), remote experimental data can be also acquired simply by extending the LAN to the wide-area SNET. The speed lowering problem in long-distance TCP/IP data transfer has been improved by using an optimized congestion control and packet pacing method. Japan-France and Japan-US network bandwidth tests have revealed that this method actually utilize 90% of ideal throughput in both cases. Toward the fusion goal, a common data access platform is indispensable so that detailed physics data can be easily compared between multiple large and small experiments. The demonstrated bilateral collaboration scheme will be analogous to that of ITER and the supporting machines. (author)
Parametric study of the primary and secondary systems of the CAREM-25 reactor on steady state
International Nuclear Information System (INIS)
Halpert, Silvia; Vazquez, Luis
2000-01-01
In the CAREM-25 reactor the primary coolant flows by natural convection that's why the flow is established when the balance between the buoyancy force and friction pressure drop through circuit is obtained. This paper presents a parametric study on primary and secondary systems of the reactor on steady state, for different values of some thermohydraulics parameters: safety factor on friction loss pressure calculations (f), steam generator heat transfer area (A T ) and primary pressure (P P ). The ESCAREM 2.08 thermohydraulic code, which calculates the primary system behavior for steady state conditions, was used for this study. The conclusions of this study are: -) There was a variation of the 15% on the primary coolant flow when the safety factor was changed a 50 %; -) The primary and secondary systems conditions do not change when the power is less than 100 MW; -) Between 100 and 110 MW the decrease of the heat transfer area produces an important change on the secondary systems conditions: the outlet steam generator temperature decrease and there is an important rice in the flow; -) The primary pressure could decrease up to 11.4 MPa without violating turbine requirements. (author)
Reliability importance analysis of Markovian systems at steady state using perturbation analysis
Energy Technology Data Exchange (ETDEWEB)
Phuc Do Van [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France); Barros, Anne [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France)], E-mail: anne.barros@utt.fr; Berenguer, Christophe [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France)
2008-11-15
Sensitivity analysis has been primarily defined for static systems, i.e. systems described by combinatorial reliability models (fault or event trees). Several structural and probabilistic measures have been proposed to assess the components importance. For dynamic systems including inter-component and functional dependencies (cold spare, shared load, shared resources, etc.), and described by Markov models or, more generally, by discrete events dynamic systems models, the problem of sensitivity analysis remains widely open. In this paper, the perturbation method is used to estimate an importance factor, called multi-directional sensitivity measure, in the framework of Markovian systems. Some numerical examples are introduced to show why this method offers a promising tool for steady-state sensitivity analysis of Markov processes in reliability studies.
Reliability importance analysis of Markovian systems at steady state using perturbation analysis
International Nuclear Information System (INIS)
Phuc Do Van; Barros, Anne; Berenguer, Christophe
2008-01-01
Sensitivity analysis has been primarily defined for static systems, i.e. systems described by combinatorial reliability models (fault or event trees). Several structural and probabilistic measures have been proposed to assess the components importance. For dynamic systems including inter-component and functional dependencies (cold spare, shared load, shared resources, etc.), and described by Markov models or, more generally, by discrete events dynamic systems models, the problem of sensitivity analysis remains widely open. In this paper, the perturbation method is used to estimate an importance factor, called multi-directional sensitivity measure, in the framework of Markovian systems. Some numerical examples are introduced to show why this method offers a promising tool for steady-state sensitivity analysis of Markov processes in reliability studies
Current status and prospect of plasma control system for steady-state operation on QUEST
International Nuclear Information System (INIS)
Hasegawa, Makoto; Nakamura, Kazuo; Zushi, Hideki; Hanada, Kazuaki; Fujisawa, Akihide; Tokunaga, Kazutoshi; Idei, Hiroshi; Nagashima, Yoshihiko; Kawasaki, Shoji; Nakashima, Hisatoshi; Higashijima, Aki
2016-01-01
Highlights: • Overall configuration of plasma control system on QUEST are presented. • Multi core system and reflective memories are used for the real-time control. • Hall sensors are used for the identification of plasma current and its position. • Repetitive gas fueling with the feed-back control of Hα signal is implemented. - Abstract: The plasma control system (PCS) of QUEST is developed according to the progress of QUEST project. Since one of the critical goals of the project is to achieve the steady-state operation with high temperature vacuum vessel wall, the PCS is also required to have the capability to control the plasma for a long period. For the increase of the loads to processing power of the PCS, the PCS is decentralized with the use of reflective memories (RFMs). The PCS controls the plasma edge position with the real-time identification of plasma current and its position. This identification is done with not only flux loops but also hall sensors. The gas fueling method by piezo valve with monitoring the Hα signal filtered by a digital low-pass filter are proposed and suitable for the steady-state operation on QUEST. The present status and prospect of the PCS are presented with recent topics.
Current status and prospect of plasma control system for steady-state operation on QUEST
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, Makoto, E-mail: hasegawa@triam.kyushu-u.ac.jp; Nakamura, Kazuo; Zushi, Hideki; Hanada, Kazuaki; Fujisawa, Akihide; Tokunaga, Kazutoshi; Idei, Hiroshi; Nagashima, Yoshihiko; Kawasaki, Shoji; Nakashima, Hisatoshi; Higashijima, Aki
2016-11-15
Highlights: • Overall configuration of plasma control system on QUEST are presented. • Multi core system and reflective memories are used for the real-time control. • Hall sensors are used for the identification of plasma current and its position. • Repetitive gas fueling with the feed-back control of Hα signal is implemented. - Abstract: The plasma control system (PCS) of QUEST is developed according to the progress of QUEST project. Since one of the critical goals of the project is to achieve the steady-state operation with high temperature vacuum vessel wall, the PCS is also required to have the capability to control the plasma for a long period. For the increase of the loads to processing power of the PCS, the PCS is decentralized with the use of reflective memories (RFMs). The PCS controls the plasma edge position with the real-time identification of plasma current and its position. This identification is done with not only flux loops but also hall sensors. The gas fueling method by piezo valve with monitoring the Hα signal filtered by a digital low-pass filter are proposed and suitable for the steady-state operation on QUEST. The present status and prospect of the PCS are presented with recent topics.
New Tore Supra steady state operating scenario
International Nuclear Information System (INIS)
Martin, G.; Parlange, F.; van Houtte, D.; Wijnands, T.
1995-01-01
This document deals with plasma control in steady state conditions. A new plasma control systems enabling feedback control of global plasma equilibrium parameters has been developed. It also enables to operate plasma discharge in steady state regime. (TEC). 4 refs., 5 figs
Tore-Supra infrared thermography system, a real steady-state diagnostic
International Nuclear Information System (INIS)
Guilhem, D.; Bondil, J.L.; Bertrand, B.; Desgranges, C.; Lipa, M.; Messina, P.; Missirlian, M.; Portafaix, C.; Reichle, R.; Roche, H.; Saille, A.
2005-01-01
Tore-Supra Tokamak (I p = 1.5 MA, B t = 4 T) has been constructed with a steady-state magnetic field using super-conducting magnets and water-cooled plasma facing components (PFCs) for high-performance long pulse plasma discharges. When not actively cooled, plasma facing components can only accumulate a limited amount of energy since the temperature increases continuously during the discharge until radiation cooling equals the incoming heat flux. Such an environment is found in the JET Tokamak [JET Team, IAEA-CN-60/A1-3, Seville, 1994] and on TRIAM [M. Sakamoto, H. Nakashima, S. Kawasaki, A. Iyomasa, S.V. Kulkarni, M. Hasegawa, E. Jotaki, H. Zushi, K. Nakamura, K. Hanada, S. Itoh, Static and dynamic properties of wall recycling in TRIAM-1M, J. Nucl. Mater. 313-316 (2003) 519-523] [Y. Kamada, et al., Nucl. Fusion 3 (1999) 1845]. In Tore-Supra, the surface temperature of the actively cooled plasma facing components reach steady state within a second. We present here the Tore-Supra thermographic system, made of seven endoscope bodies equipped so far with eight infrared (IR) cameras. It has to be noted that this diagnostic is the first diagnostic to be actively cooled, as required for steady state. The main purpose of such a diagnostic is to prevent the plasma to damage the actively cooled plasma facing components (ACPFCs), which consist of the toroidal pumped limiter (TPL), 7 m 2 , and of five radio-frequency antennae, 1.5 m 2 each
Qin, Tao; Hofstetter, Walter
2018-03-01
Time-periodically driven systems are a versatile toolbox for realizing interesting effective Hamiltonians. Heating, caused by excitations to high-energy states, is a challenge for experiments. While most setups so far address the relatively weakly interacting regime, it is of general interest to study heating in strongly correlated systems. Using Floquet dynamical mean-field theory, we study nonequilibrium steady states (NESS) in the Falicov-Kimball model, with time-periodically driven kinetic energy or interaction. We systematically investigate the nonequilibrium properties of the NESS. For a driven kinetic energy, we show that resonant tunneling, where the interaction is an integer multiple of the driving frequency, plays an important role in the heating. In the strongly correlated regime, we show that this can be well understood using Fermi's golden rule and the Schrieffer-Wolff transformation for a time-periodically driven system. We furthermore demonstrate that resonant tunneling can be used to control the population of Floquet states to achieve "photodoping." For driven interactions introduced by an oscillating magnetic field near a widely adopted Feshbach resonance, we find that the double occupancy is strongly modulated. Our calculations apply to shaken ultracold-atom systems and to solid-state systems in a spatially uniform but time-dependent electric field. They are also closely related to lattice modulation spectroscopy. Our calculations are helpful to understand the latest experiments on strongly correlated Floquet systems.
Vacuum system problems of EBT: a steady-state fusion experiment
International Nuclear Information System (INIS)
Livesey, R.L.
1981-01-01
Many of the vacuum problems faced by EBT will soon be shared by other plasma devices as high-power microwave systems and long pulse lengths become more common. The solutions used on EBT (such as the raised lip with elastomer seal) are not unique; however, experience has shown that microwave-compatible designs must be carefully thought out. All details of the vacuum must be carefully thought out. All details of the vacuum must be carefully screened in advance to insure that microwaves do not leak into pumps or diagnostics where they can cause major damage. Sputter coating, which even now is noticeably present in most pulsed plasma systems, becomes much worse as systems approach steady state. And finally, radiation degradation of components which is presently a minor problem will become significant on high-power microwave-fed devices, such as EBT-P
Overview of time synchronization system of steady state superconducting tokamak SST-1
Energy Technology Data Exchange (ETDEWEB)
Kumar, A., E-mail: aveg@ipr.res.in; Masand, H.; Dhongde, J.; Patel, K.; Mahajan, K.; Gulati, H.; Bhandarkar, M.; Chudasama, H.; Pradhan, S.
2016-11-15
The Steady State Superconducting Tokamak (SST-1) consists of many distributed and heterogeneous plant/experiment systems viz. Water-Cooling, Power Supplies, Cryogenics, Vacuum, Magnets, Auxiliary-Heating sources, Diagnostics, Front End Electronics (FEE) & Data Acquisition systems, having their own data acquisition & control systems and control & monitor by Central Control System (CCS) during the machine operation. With distributed computing and interdependent systems, it is essential that all the data/event acquired must be with disciplined & precise time-base, so as to make the co-relation of the data/event from various plant and experiment systems easy. Hence it is important to have accurate and precise Time Synchronization in place. The two systems fulfill the requirement of the time synchronization in SST-1. The VME based Timing System (TS) provides synchronization amongst various experiment systems during the plasma discharges and works as discharge control system (DCS) while the GPS based Time Synchronization System (TSS) caters the requirement of synchronization during the continuous operation of various plant systems by feeding a central clock to all the plant systems. This paper presents the Time Synchronization System of SST-1, the results of the integrated testing and engineering validation with various SST-1 subsystems.
The steady-state ECRH-system at Wendelstein7-X
International Nuclear Information System (INIS)
Laqua, H.P.; Erckmann, V.; Brakel, R.; Braune, H.; Maassberg, H.; Marushchenko, N.; Michel, G.; Turkin, Y.; Ullrich, S.; Dammertz, G.; Thumm, M.; Brand, P.; Gantenbein, G.; Kasparek, W.
2005-01-01
Electron Cyclotron Resonance Heating (ECRH) is the main heating system for the Wendelstein7-X (W7-X) stellarator and the only one for CW-operation in the first stage. The mission of W7-X, which is presently under construction at IPP-Greifswald, is to demonstrate the inherent steady state capability of stellarators at reactor relevant plasma parameters. A modular 10 MW ECRH plant at 140 GHz with 1 MW CW-capability power for each module is under construction to meet the scientific objectives. Simulations of different ECRH scenarios, which are foreseen for W7-X operation and base on ray- tracing calculations and confinement studies, will be presented. A steady state ECRH has specific requirements on the stellarator machine itself, on the ECRH-sources, transmissions elements and on the experimental environment. In particular all elements have to be sufficiently cooled, screened and armoured against microwaves. The commissioning of the ECRH plant is well under way, the strategy and status of the project will be reported. First full power, CW integral tests of one ECRH module have been performed. A large microwave stray radiation chamber for integrated in-vessel component tests had been brought into operation. A bi-axially movable, motor driven ECRH antenna mock-up was build and is tested for reliability now. A strategy for the commissioning and the first experimental campaign at W7-X has been developed. (author)
Data system design considerations for a pseudo-steady-state device
International Nuclear Information System (INIS)
Wing, W.R.
1981-01-01
The Advanced Toroidal Facility is being designed to run in a steady state. This places stringent requirements on a data system, since it must provide steady-state support that is equivalent to the support users are accustomed to from pulsed experiments; i.e., enough capacity to reduce diagnostic data for live presentation. Parameters such as density, position, and temperature must be presented live (i.e., within 0.1 s). Quantities such as plasma shape or internal structure should be available with a minimum of delay. The traditional solution to providing such capabilities is to use distributed processing to off-load data acquisition from the analysis computers. However, this suffers in a real-time environment because of the necessity of moving large quantities of data from acquisition to analysis. We expect to solve the problem by using a pipelined design that will acquire data directly into shared memory, where any one of four CPU's (VAX 11/780's) can proceed with analysis
Steady states in conformal theories
CERN. Geneva
2015-01-01
A novel conjecture regarding the steady state behavior of conformal field theories placed between two heat baths will be presented. Some verification of the conjecture will be provided in the context of fluid dynamics and holography.
SALT [System Analysis Language Translater]: A steady state and dynamic systems code
International Nuclear Information System (INIS)
Berry, G.; Geyer, H.
1983-01-01
SALT (System Analysis Language Translater) is a lumped parameter approach to system analysis which is totally modular. The modules are all precompiled and only the main program, which is generated by SALT, needs to be compiled for each unique system configuration. This is a departure from other lumped parameter codes where all models are written by MACROS and then compiled for each unique configuration, usually after all of the models are lumped together and sorted to eliminate undetermined variables. The SALT code contains a robust and sophisticated steady-sate finder (non-linear equation solver), optimization capability and enhanced GEAR integration scheme which makes use of sparsity and algebraic constraints. The SALT systems code has been used for various technologies. The code was originally developed for open-cycle magnetohydrodynamic (MHD) systems. It was easily extended to liquid metal MHD systems by simply adding the appropriate models and property libraries. Similarly, the model and property libraries were expanded to handle fuel cell systems, flue gas desulfurization systems, combined cycle gasification systems, fluidized bed combustion systems, ocean thermal energy conversion systems, geothermal systems, nuclear systems, and conventional coal-fired power plants. Obviously, the SALT systems code is extremely flexible to be able to handle all of these diverse systems. At present, the dynamic option has only been used for LMFBR nuclear power plants and geothermal power plants. However, it can easily be extended to other systems and can be used for analyzing control problems. 12 refs
Gudmundsson, Vidar; Jonsson, Thorsteinn H.; Bernodusson, Maria Laura; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei
2017-01-01
We analyze how a multilevel many-electron system in a photon cavity approaches the steady state when coupled to external leads. When a plunger gate is used to lower cavity photon dressed one- and two-electron states below the bias window defined by the external leads, we can identify one regime with nonradiative transitions dominating the electron transport, and another regime with radiative transitions. Both transitions trap the electrons in the states below the bias bringing the system into a steady state. The order of the two regimes and their relative strength depends on the location of the bias window in the energy spectrum of the system and the initial conditions.
Directory of Open Access Journals (Sweden)
Stihi Nadjet
2012-01-01
Full Text Available For M/G/1 retrial queues with impatient customers, we review the results, concerning the steady state distribution of the system state, presented in the literature. Since the existing formulas are cumbersome (so their utilization in practice becomes delicate or the obtaining of these formulas is impossible, we apply the information theoretic techniques for estimating the above mentioned distribution. More concretely, we use the principle of maximum entropy which provides an adequate methodology for computing a unique estimate for an unknown probability distribution based on information expressed in terms of some given mean value constraints.
A rad-hard, steady state, digital imaging bolometer system for ITER
International Nuclear Information System (INIS)
Wurden, G.A.
1995-01-01
The concept and design of a new type of bolometer system which can function with excellent spatial resolution and good time resolution in the next generation of long-pulse (or steady-state), harsh-neutron environment fusion plasmas, is outlined. It uses a cooled pinhole camera design, employing a robust, passive, segmented radiation absorber, cooled from the back-side. Infrared emission from the absorber's front surface is relayed by metal mirror optics to a shielded, high-resolution IR video camera with ± 0.01 C temperature resolution. It can make thousands of simultaneous ''pixel'' measurements at up to 50--60 Hz, without any signal wires through the vacuum interface
International Nuclear Information System (INIS)
Hsiang, J.-T.; Hu, B.L.
2015-01-01
The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical anharmonic oscillators under specified conditions, definitive answers exist in the form of proven theorems. Answering this question for quantum many-body systems poses a challenge for the present. In this work we address this issue by deriving the stochastic equations for the reduced system with self-consistent backaction from the two baths, calculating the energy flow from one bath to the chain to the other bath, and exhibiting a power balance relation in the total (chain + baths) system which testifies to the existence of a NESS in this system at late times. Its insensitivity to the initial conditions of the chain corroborates to its uniqueness. The functional method we adopt here entails the use of the influence functional, the coarse-grained and stochastic effective actions, from which one can derive the stochastic equations and calculate the average values of physical variables in open quantum systems. This involves both taking the expectation values of quantum operators of the system and the distributional averages of stochastic variables stemming from the coarse-grained environment. This method though formal in appearance is compact and complete. It can also easily accommodate perturbative techniques and diagrammatic methods from field theory. Taken all together it provides a solid platform for carrying out systematic investigations into the nonequilibrium dynamics of open quantum systems and quantum thermodynamics. -- Highlights: •Nonequilibrium steady state (NESS) for interacting quantum many-body systems. •Derivation of stochastic equations for quantum oscillator chain with two heat baths. •Explicit calculation of the energy flow from one bath to the
Cyclic Steady State Refinement
DEFF Research Database (Denmark)
Bocewicz, Grzegorz; Nielsen, Peter; Banaszak, Zbigniew
2012-01-01
This paper deals with the problem of finding optimal feeding sequence in a manufacturing cell with feeders fed by a mobile robot with manipulation arm. The performance criterion is to minimize total traveling time of the robot in a given planning horizon. Besides, the robot has to be scheduled...... in order to keep production lines within the cell working without any shortage of parts fed from feeders. A mixed-integer programming (MIP) model is developed to find the optimal solution for the problem. In the MIP formulation, a method based on the (s, Q) inventory system is applied to define time...... windows for multiple-part feeding tasks. A case study is implemented at an impeller production line in a factory to demonstrate the result of the proposed MIP model....
Analytical steady-state solutions for water-limited cropping systems using saline irrigation water
Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.
2014-12-01
Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.
Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems.
Wang, Xiang-Sheng; He, Dongdong; Wylie, Jonathan J; Huang, Huaxiong
2014-02-01
We study the Poisson-Nernst-Planck (PNP) system with an arbitrary number of ion species with arbitrary valences in the absence of fixed charges. Assuming point charges and that the Debye length is small relative to the domain size, we derive an asymptotic formula for the steady-state solution by matching outer and boundary layer solutions. The case of two ionic species has been extensively studied, the uniqueness of the solution has been proved, and an explicit expression for the solution has been obtained. However, the case of three or more ions has received significantly less attention. Previous work has indicated that the solution may be nonunique and that even obtaining numerical solutions is a difficult task since one must solve complicated systems of nonlinear equations. By adopting a methodology that preserves the symmetries of the PNP system, we show that determining the outer solution effectively reduces to solving a single scalar transcendental equation. Due to the simple form of the transcendental equation, it can be solved numerically in a straightforward manner. Our methodology thus provides a standard procedure for solving the PNP system and we illustrate this by solving some practical examples. Despite the fact that for three ions, previous studies have indicated that multiple solutions may exist, we show that all except for one of these solutions are unphysical and thereby prove the existence and uniqueness for the three-ion case.
International Nuclear Information System (INIS)
Vijayan, P.K.; Nayak, A.K.; Bade, M.H.; Kumar, N.; Saha, D.; Sinha, R.K.
2002-01-01
Scaling methods for both single-phase and two-phase natural circulation systems have been presented. For single-phase systems, simulation of the steady state flow can be achieved by preserving just one nondimensional parameter. For uniform diameter two-phase systems also, it is possible to simulate the steady state behaviour with just one non-dimensional parameter. Simulation of the stability behaviour requires geometric similarity in addition to the similarity of the physical parameters appearing in the governing equations. The scaling laws proposed have been tested with experimental data in case of single-phase natural circulation. (author)
Steady-State Process Modelling
DEFF Research Database (Denmark)
Cameron, Ian; Gani, Rafiqul
2011-01-01
illustrate the “equation oriented” approach as well as the “sequential modular” approach to solving complex flowsheets for steady state applications. The applications include the Williams-Otto plant, the hydrodealkylation (HDA) of toluene, conversion of ethylene to ethanol and a bio-ethanol process....
Quantum entanglement at high temperatures? Bosonic systems in nonequilibrium steady state
International Nuclear Information System (INIS)
Hsiang, Jen-Tsung; Hu, B.L.
2015-01-01
This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state (NESS) conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures T_1>T_2. For constant bilinear inter-oscillator coupling studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting http://arxiv.org/abs/1405.7642. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal baths has a temperature higher than the critical temperature T_c, defined as the temperature above which quantum entanglement vanishes. With the Langevin equations derived we give a full display of how entanglement dynamics in this system depends on T_1, T_2, the inter-oscillator coupling and the system-bath coupling strengths. For weak oscillator-bath coupling the critical temperature T_c is about the order of the inverse oscillator frequency, but for strong oscillator-bath coupling it will depend on the bath cutoff frequency. We conclude that in most realistic circumstances, for bosonic systems in NESS with constant bilinear coupling, ‘hot entanglement’ is largely a fiction.
Stability of racemic and chiral steady states in open and closed chemical systems
Energy Technology Data Exchange (ETDEWEB)
Ribo, Josep M. [Departament de Quimica Organica, Universitat de Barcelona, c. Marti i Franques 1, Barcelona (Spain); Hochberg, David [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir Km. 4, 28850 Torrejon de Ardoz, Madrid (Spain)], E-mail: hochbergd@inta.es
2008-12-22
The stability properties of models of spontaneous mirror symmetry breaking in chemistry are characterized algebraically. The models considered here all derive either from the Frank model or from autocatalysis with limited enantioselectivity. Emphasis is given to identifying the critical parameter controlling the chiral symmetry breaking transition from racemic to chiral steady-state solutions. This parameter is identified in each case, and the constraints on the chemical rate constants determined from dynamic stability are derived.
Stability of racemic and chiral steady states in open and closed chemical systems
International Nuclear Information System (INIS)
Ribo, Josep M.; Hochberg, David
2008-01-01
The stability properties of models of spontaneous mirror symmetry breaking in chemistry are characterized algebraically. The models considered here all derive either from the Frank model or from autocatalysis with limited enantioselectivity. Emphasis is given to identifying the critical parameter controlling the chiral symmetry breaking transition from racemic to chiral steady-state solutions. This parameter is identified in each case, and the constraints on the chemical rate constants determined from dynamic stability are derived
A lower limb exoskeleton control system based on steady state visual evoked potentials
Kwak, No-Sang; Müller, Klaus-Robert; Lee, Seong-Whan
2015-10-01
Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.
Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes
Kinner, D.A.; Moody, J.A.
2010-01-01
Rainfall-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m2 north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the plots consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h-1) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h-1 for north-facing and from 17.9 to 36.0 mm h-1 for south-facing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h-1) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h-1). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. ?? 2010 Elsevier B.V.
International Nuclear Information System (INIS)
Pradhan, S.; Mahajan, K.; Gulati, H.K.; Sharma, M.; Kumar, A.; Patel, K.; Masand, H.; Mansuri, I.; Dhongde, J.; Bhandarkar, M.; Chudasama, H.
2016-01-01
Highlights: • The paper gives overview on SST-1 data acquisition and central control system and future upgrade plans. • The lossless PXI based data acquisition of SST-1 is capable of acquiring around 130 channels with sampling frequency ranging from 10 KHz to 1 MHz sampling frequency. • Design, architecture and technologies used for central control system (CCS) of SST-1. • Functions performed by CCS. - Abstract: Steady State Superconducting Tokamak (SST-1) has been commissioned successfully and has been carrying out limiter assisted ohmic plasma experiments since the beginning of 2014 achieving a maximum plasma current of 75 kA at a central field of 1.5 T and the plasma duration ∼500 ms. In near future, SST-1 looks forward to carrying out elongated plasma experiments and stretching plasma pulses beyond 1 s. The data acquisition and central control system (CCS) for SST-1 are distributed, modular, hierarchical and scalable in nature The CCS has been indigenously designed, developed, implemented, tested and validated for the operation of SST-1. The CCS has been built using well proven technologies like Redhat Linux, vxWorks RTOS for deterministic control, FPGA based hardware implementation, Ethernet, fiber optics backbone for network, DSP for real-time computation & Reflective memory for high-speed data transfer etc. CCS in SST-1 controls & monitors various heterogeneous SST-1 subsystems dispersed in the same campus. The CCS consists of machine control system, basic plasma control system, GPS time synchronization system, storage area network (SAN) for centralize data storage, SST-1 networking system, real-time networks, SST-1 control room infrastructure and many other supportive systems. Machine Control System (MCS) is a multithreaded event driven system running on Linux based servers, where each thread of the software communicates to a unique subsystem for monitoring and control from SST-1 central control room through network programming. The CCS hardware
Energy Technology Data Exchange (ETDEWEB)
Pradhan, S., E-mail: pradhan@ipr.res.in; Mahajan, K.; Gulati, H.K.; Sharma, M.; Kumar, A.; Patel, K.; Masand, H.; Mansuri, I.; Dhongde, J.; Bhandarkar, M.; Chudasama, H.
2016-11-15
Highlights: • The paper gives overview on SST-1 data acquisition and central control system and future upgrade plans. • The lossless PXI based data acquisition of SST-1 is capable of acquiring around 130 channels with sampling frequency ranging from 10 KHz to 1 MHz sampling frequency. • Design, architecture and technologies used for central control system (CCS) of SST-1. • Functions performed by CCS. - Abstract: Steady State Superconducting Tokamak (SST-1) has been commissioned successfully and has been carrying out limiter assisted ohmic plasma experiments since the beginning of 2014 achieving a maximum plasma current of 75 kA at a central field of 1.5 T and the plasma duration ∼500 ms. In near future, SST-1 looks forward to carrying out elongated plasma experiments and stretching plasma pulses beyond 1 s. The data acquisition and central control system (CCS) for SST-1 are distributed, modular, hierarchical and scalable in nature The CCS has been indigenously designed, developed, implemented, tested and validated for the operation of SST-1. The CCS has been built using well proven technologies like Redhat Linux, vxWorks RTOS for deterministic control, FPGA based hardware implementation, Ethernet, fiber optics backbone for network, DSP for real-time computation & Reflective memory for high-speed data transfer etc. CCS in SST-1 controls & monitors various heterogeneous SST-1 subsystems dispersed in the same campus. The CCS consists of machine control system, basic plasma control system, GPS time synchronization system, storage area network (SAN) for centralize data storage, SST-1 networking system, real-time networks, SST-1 control room infrastructure and many other supportive systems. Machine Control System (MCS) is a multithreaded event driven system running on Linux based servers, where each thread of the software communicates to a unique subsystem for monitoring and control from SST-1 central control room through network programming. The CCS hardware
Steady state neutral beam injector
International Nuclear Information System (INIS)
Mattoo, S.K.; Bandyopadhyay, M.; Baruah, U.K.; Bisai, N.; Chakbraborty, A.K.; Chakrapani, Ch.; Jana, M.R.; Bajpai, M.; Jaykumar, P.K.; Patel, D.; Patel, G.; Patel, P.J.; Prahlad, V.; Rao, N.V.M.; Rotti, C.; Singh, N.P.; Sridhar, B.
2000-01-01
Learning from operational reliability of neutral beam injectors in particular and various heating schemes including RF in general on TFTR, JET, JT-60, it has become clear that neutral beam injectors may find a greater role assigned to them for maintaining the plasma in steady state devices under construction. Many technological solutions, integrated in the present day generation of injectors have given rise to capability of producing multimegawatt power at many tens of kV. They have already operated for integrated time >10 5 S without deterioration in the performance. However, a new generation of injectors for steady state devices have to address to some basic issues. They stem from material erosion under particle bombardment, heat transfer > 10 MW/m 2 , frequent regeneration of cryopanels, inertial power supplies, data acquisition and control of large volume of data. Some of these engineering issues have been addressed to in the proposed neutral beam injector for SST-1 at our institute; the remaining shall have to wait for the inputs of the database generated from the actual experience with steady state injectors. (author)
Helmi Manggala Putri, Arum; Subekti, Retno; Binatari, Nikenasih
2017-06-01
Dr Yap Eye Hospital Yogyakarta is one of the most popular reference eye hospitals in Yogyakarta. There are so many patients coming from other cities and many of them are BPJS (Badan Penyelenggara Jaminan Sosial, Social Security Administrative Bodies) patients. Therefore, it causes numerous BPJS patients were in long queue at counter C of the registration section so that it needs to be analysed using queue system. Queue system analysis aims to give queue model overview and determine its effectiveness measure. The data collecting technique used in this research are by interview and observation. After getting the arrival data and the service data of BPJS patients per 5 minutes, the next steps are investigating steady-state condition, examining the Poisson distribution, determining queue models, and counting the effectiveness measure. Based on the result of data observation on Tuesday, February 16th, 2016, it shows that the queue system at counter C has (M/M/1):(GD/∞/∞) queue model. The analysis result in counter C shows that the queue system is a non-steady-state condition. Three ways to cope a non-steady-state problem on queue system are proposed in this research such as bounding the capacity of queue system, adding the servers, and doing Monte Carlo simulation. The queue system in counter C will reach steady-state if the capacity of patients is not more than 52 BPJS patients or adding one more server. By using Monte Carlo simulation, it shows that the effectiveness measure of the average waiting time for BPJS patients in counter C is 36 minutes 65 seconds. In addition, the average queue length of BPJS patients is 11 patients.
Practical steady-state enzyme kinetics.
Lorsch, Jon R
2014-01-01
Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Antonio Bracale
2010-04-01
Full Text Available Distribution networks are undergoing radical changes due to the high level of penetration of dispersed generation. Dispersed generation systems require particular attention due to their incorporation of uncertain energy sources, such as wind farms, and due to the impacts that such sources have on the planning and operation of distribution networks. In particular, the foreseeable, extensive use of wind turbine generator units in the future requires that distribution system engineers properly account for their impacts on the system. Many new technical considerations must be addressed, including protection coordination, steady-state analysis, and power quality issues. This paper deals with the very short-term, steady-state analysis of a distribution system with wind farms, for which the time horizon of interest ranges from one hour to a few hours ahead. Several wind-forecasting methods are presented in order to obtain reliable input data for the steady-state analysis. Both deterministic and probabilistic methods were considered and used in performing deterministic and probabilistic load-flow analyses. Numerical applications on a 17-bus, medium-voltage, electrical distribution system with various wind farms connected at different busbars are presented and discussed.
On some steady-state characteristics of systems with gradual repair
International Nuclear Information System (INIS)
Finkelstein, Maxim; Ludick, Zani
2014-01-01
We consider a repairable system with continuous output that alternates between states of operation and repair. The output of the system in the operating state is represented by a continuous, decreasing function of time. We assume that during the repair state, the system can produce output that is modelled by an increasing stochastic process. The repair action gradually restores the output of the system to its initial level and it returns to the operating state. We obtain and analyse expressions for the generalized availability and related characteristics of systems with gradual repair and consider several meaningful examples
Multimode optical fibers: steady state mode exciter.
Ikeda, M; Sugimura, A; Ikegami, T
1976-09-01
The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.
de la Cruz, Roberto; Guerrero, Pilar; Spill, Fabian; Alarcón, Tomás
2015-08-21
We analyse the effect of intrinsic fluctuations on the properties of bistable stochastic systems with time scale separation operating under quasi-steady state conditions. We first formulate a stochastic generalisation of the quasi-steady state approximation based on the semi-classical approximation of the partial differential equation for the generating function associated with the chemical master equation. Such approximation proceeds by optimising an action functional whose associated set of Euler-Lagrange (Hamilton) equations provides the most likely fluctuation path. We show that, under appropriate conditions granting time scale separation, the Hamiltonian can be re-scaled so that the set of Hamilton equations splits up into slow and fast variables, whereby the quasi-steady state approximation can be applied. We analyse two particular examples of systems whose mean-field limit has been shown to exhibit bi-stability: an enzyme-catalysed system of two mutually inhibitory proteins and a gene regulatory circuit with self-activation. Our theory establishes that the number of molecules of the conserved species is order parameters whose variation regulates bistable behaviour in the associated systems beyond the predictions of the mean-field theory. This prediction is fully confirmed by direct numerical simulations using the stochastic simulation algorithm. This result allows us to propose strategies whereby, by varying the number of molecules of the three conserved chemical species, cell properties associated to bistable behaviour (phenotype, cell-cycle status, etc.) can be controlled.
Energy Technology Data Exchange (ETDEWEB)
Cruz, Roberto; Alarcón, Tomás de la [Centre de Recerca Matemàtica. Edifici C, Campus de Bellaterra, 08193 Bellaterra (Barcelona) (Spain); Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Guerrero, Pilar [Department of Mathematics, University College London, Gower Street, London WC1E 6BT (United Kingdom); Spill, Fabian [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 02215 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)
2015-08-21
We analyse the effect of intrinsic fluctuations on the properties of bistable stochastic systems with time scale separation operating under quasi-steady state conditions. We first formulate a stochastic generalisation of the quasi-steady state approximation based on the semi-classical approximation of the partial differential equation for the generating function associated with the chemical master equation. Such approximation proceeds by optimising an action functional whose associated set of Euler-Lagrange (Hamilton) equations provides the most likely fluctuation path. We show that, under appropriate conditions granting time scale separation, the Hamiltonian can be re-scaled so that the set of Hamilton equations splits up into slow and fast variables, whereby the quasi-steady state approximation can be applied. We analyse two particular examples of systems whose mean-field limit has been shown to exhibit bi-stability: an enzyme-catalysed system of two mutually inhibitory proteins and a gene regulatory circuit with self-activation. Our theory establishes that the number of molecules of the conserved species is order parameters whose variation regulates bistable behaviour in the associated systems beyond the predictions of the mean-field theory. This prediction is fully confirmed by direct numerical simulations using the stochastic simulation algorithm. This result allows us to propose strategies whereby, by varying the number of molecules of the three conserved chemical species, cell properties associated to bistable behaviour (phenotype, cell-cycle status, etc.) can be controlled.
Jonsson, Thorsteinn H.; Manolescu, Andrei; Goan, Hsi-Sheng; Abdullah, Nzar Rauf; Sitek, Anna; Tang, Chi-Shung; Gudmundsson, Vidar
2017-11-01
Master equations are commonly used to describe time evolution of open systems. We introduce a general computationally efficient method for calculating a Markovian solution of the Nakajima-Zwanzig generalized master equation. We do so for a time-dependent transport of interacting electrons through a complex nano scale system in a photon cavity. The central system, described by 120 many-body states in a Fock space, is weakly coupled to the external leads. The efficiency of the approach allows us to place the bias window defined by the external leads high into the many-body spectrum of the cavity photon-dressed states of the central system revealing a cascade of intermediate transitions as the system relaxes to a steady state. The very diverse relaxation times present in the open system, reflecting radiative or non-radiative transitions, require information about the time evolution through many orders of magnitude. In our approach, the generalized master equation is mapped from a many-body Fock space of states to a Liouville space of transitions. We show that this results in a linear equation which is solved exactly through an eigenvalue analysis, which supplies information on the steady state and the time evolution of the system.
Steady-state analysis of large scale systems : the successive lumping method
Smit, L.C.
2016-01-01
The general area of research of this dissertation concerns large systems with random aspects to their behavior that can be modeled and studied in terms of the stationary distribution of Markov chains. As the state spaces of such systems become large, their behavior gets hard to analyze, either via
Directory of Open Access Journals (Sweden)
Heros Augusto Santos Lobo
2012-04-01
Full Text Available The general theory of systems is based in the integrated analysis of the spatiotemporal relations among the components, the system matrix and also the arising processes. In tourist systems, the current studies are focused on the description of its components and in some of its interaction relationships. The present contribution focuses on the processes between the components and the matrix of the tourist systems, considering the inherent complexity of open systems, its homeostasis and entropy in function of the carrying capacity of processing the received inputs, and also some questions linked to the steady state, the self-maintenance and the collapse of tourist system generated by structural-deterministic or stochastic causes. In the final considerations, the low similarity of the processes developed in different tourist systems and also in different spatiotemporal conditions in the same system are raised, highlighting the practical impossibility of universal models generation to the tourist systems.
Towards steady-state operational design for the data and PF control systems of the HT-7U
International Nuclear Information System (INIS)
Luo, J.R.; Zhu, L.; Wang, H.Z.; Ji, Z.S.; Wang, F.
2003-01-01
Fusion energy is an ultimate and inexhaustible source of energy for mankind and is expected to be obtained in controlled operation within this century. Among various possible candidates for fusion, the tokamak is presently the most qualified one, and since it uses superconducting magnetic coils, it will be adequate for steady-state operation. The HT-7U superconducting tokamak is a part of national project in China on fusion research, scheduled to become available on-line by the end of 2004 (Wan Y.X. and HT-7 and HT-7U Groups 2000 Overview of steady state operation of HT-7 and present status of the HT-7U project Nucl. Fusion 40 1057). The control system of the HT-7U is designed as a distributed control system (HT7UDCS), including many subsystems that provide the various functions of supervision, remote control, real-time monitoring, data acquisition and data handling. The major features of the HT-7U tokamak, which make long-pulse (∼1000 s) operation possible are the flexible poloidal field (PF) system, an auxiliary heating system, the current-driving system and a divertor system. In order to realize these features simultaneously, real-time data handling and analysis, along with a significant control capability is required. This paper discusses the design of the HT7UDCS. (author)
DEFF Research Database (Denmark)
Zeng, Qing; Fang, Jiakun; Li, Jinghua
2016-01-01
Nowadays, the electric power system and natural gas network are becoming increasingly coupled and interdependent. A harmonized integration of natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables in terms of system...... flexibility. This work focuses on the steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion. A unified energy flow formulation is developed to describe the nodal balance and branch flow in both systems and it is solved with the Newton......–Raphson method. Both the unification of units and the per-unit system are proposed to simplify the system description and to enhance the computation efficiency. The applicability of the proposed method is demonstrated by analyzing an IEEE-9 test system integrated with a 7-node natural gas network. Later, time...
The steady-state tokamak program
International Nuclear Information System (INIS)
Politzer, D.A.; Nevins, W.M.
1992-01-01
This paper reports on a steady-state tokamak experiment (STE) needed to develop the technology and physics data base required for construction of a steady-state fusion power demonstration reactor in the early 21st century. The STE will provide an integrated facility for the development and demonstration of steady-state and particle handling, low-activation high-heat-flux components and materials, efficient current drive, and continuous plasma performance in steady-state, with reactor-like plasma conditions under severe conditions of heat and particle bombardment of the wall. The STE facility will also be used to develop operation and control scenarios for ITER
International Nuclear Information System (INIS)
Takahashi, Toshio; Terada, Atsuhiko
2006-03-01
In the corrosive process environment of thermochemical hydrogen production Iodine-Sulfur process plant, there is a difficulty in the direct measurement of surface temperature of the structural materials. An inverse problem method can effectively be applied for this problem, which enables estimation of the surface temperature using the temperature data at the inside of structural materials. This paper shows analytical results of steady state temperature distributions in a two-dimensional cylindrical system cooled by impinging jet flow, and clarifies necessary order of multiple-valued function from the viewpoint of engineeringly satisfactory precision. (author)
Dustin, M. O.
1983-01-01
The propulsion system of the Lewis Research Center's electric propulsion system test bed vehicle was tested on the road load simulator under the DOE Electric and Hybrid Vehicle Program. This propulsion system, consisting of a series-wound dc motor controlled by an infinitely variable SCR chopper and an 84-V battery pack, is typical of those used in electric vehicles made in 1976. Steady-state tests were conducted over a wide range of differential output torques and vehicle speeds. Efficiencies of all of the components were determined. Effects of temperature and voltage variations on the motor and the effect of voltage changes on the controller were examined. Energy consumption and energy efficiency for the system were determined over the B and C driving schedules of the SAE J227a test procedure.
Antariksawan, Anhar R.; Wahyono, Puradwi I.; Taxwim
2018-02-01
Safety is the priority for nuclear installations, including research reactors. On the other hand, many studies have been done to validate the applicability of nuclear power plant based best estimate computer codes to the research reactor. This study aims to assess the applicability of the RELAP5/SCDAP code to Kartini research reactor. The model development, steady state and transient due to LOCA calculations have been conducted by using RELAP5/SCDAP. The calculation results are compared with available measurements data from Kartini research reactor. The results show that the RELAP5/SCDAP model steady state calculation agrees quite well with the available measurement data. While, in the case of LOCA transient simulations, the model could result in reasonable physical phenomena during the transient showing the characteristics and performances of the reactor against the LOCA transient. The role of siphon breaker hole and natural circulation in the reactor tank as passive system was important to keep reactor in safe condition. It concludes that the RELAP/SCDAP could be use as one of the tool to analyse the thermal-hydraulic safety of Kartini reactor. However, further assessment to improve the model is still needed.
Directory of Open Access Journals (Sweden)
Andrea De Martino
Full Text Available Within a fully microscopic setting, we derive a variational principle for the non-equilibrium steady states of chemical reaction networks, valid for time-scales over which chemical potentials can be taken to be slowly varying: at stationarity the system minimizes a global function of the reaction fluxes with the form of a Hopfield Hamiltonian with hebbian couplings, that is explicitly seen to correspond to the rate of decay of entropy production over time. Guided by this analogy, we show that reaction networks can be formally re-cast as systems of interacting reactions that optimize the use of the available compounds by competing for substrates, akin to agents competing for a limited resource in an optimal allocation problem. As an illustration, we analyze the scenario that emerges in two simple cases: that of toy (random reaction networks and that of a metabolic network model of the human red blood cell.
Hurowitz, Daniel; Rahav, Saar; Cohen, Doron
2013-12-01
We introduce an explicit solution for the nonequilibrium steady state (NESS) of a ring that is coupled to a thermal bath, and is driven by an external hot source with log-wide distribution of couplings. Having time scales that stretch over several decades is similar to glassy systems. Consequently there is a wide range of driving intensities where the NESS is like that of a random walker in a biased Brownian landscape. We investigate the resulting statistics of the induced current I. For a single ring we discuss how sign of I fluctuates as the intensity of the driving is increased, while for an ensemble of rings we highlight the fingerprints of Sinai physics on the distribution of the absolute value of I.
Steady-State Performance of Kalman Filter for DPLL
Institute of Scientific and Technical Information of China (English)
QIAN Yi; CUI Xiaowei; LU Mingquan; FENG Zhenming
2009-01-01
For certain system models, the structure of the Kalman filter is equivalent to a second-order vari-able gain digital phase-locked loop (DPLL). To apply the knowledge of DPLLs to the design of Kalman filters, this paper studies the steady-state performance of Kalman filters for these system models. The results show that the steady-state Kalman gain has the same form as the DPLL gain. An approximate simple form for the steady-state Kalman gain is used to derive an expression for the equivalent loop bandwidth of the Kalman filter as a function of the process and observation noise variances. These results can be used to analyze the steady-state performance of a Kalman filter with DPLL theory or to design a Kalman filter model with the same steady-state performance as a given DPLL.
Cryogenic system of steady state superconducting Tokamak SST-1: Operational experience and controls
International Nuclear Information System (INIS)
Sarkar, B.; Tank, Jignesh; Panchal, Pradip; Sahu, A.K.; Bhattacharya, Ritendra; Phadke, Gaurang; Gupta, N.C.; Gupta, Girish; Shah, Nitin; Shukla, Pawan; Singh, Manoj; Sonara, Dasarath; Sharma, Rajiv; Saradha, S.; Patel, J.C.; Saxena, Y.C.
2006-01-01
The cryogenic system of SST-1 consists of the helium cryogenic system and the nitrogen cryogenic system. The main components of the helium cryogenic system are (a) 1.3 kW helium refrigerator/liquefier (HRL) and (b) warm gas management system (WGM), where as, the nitrogen cryogenic system called as liquid nitrogen (LN 2 ) management system consists of storage tanks and a distribution system. The helium flow distribution and control to different sub-systems is achieved by the integrated flow distribution and control (IFDC) system. The HRL has been commissioned and operated for performing a single toroidal field coil test as well as for the first commissioning of SST-1 superconducting-magnets up to 68 K. Analysis of the results shows that the compressor and turbine parameters of the HRL, namely, the speed and pressure are very stable during operation of the HRL, confirming to the reliability in control of thermo-dynamic parameters of the system. The thermal shield of the SST-1 cryostat consists of ten different types of panels, which have been cooled down to the minimum temperature of 80 K and maintained during the first commissioning of SST-1. The operation and controls of the LN2 management system have been found to be as per the design consideration
A design of steady state fusion burner
International Nuclear Information System (INIS)
Hasegawa, Akira; Hatori, Tadatsugu; Itoh, Kimitaka; Ikuta, Takashi; Kodama, Yuji.
1975-01-01
We present a brief design of a steady state fusion burner in which a continuous burning of nuclear fuel may be achieved with output power of a gigawatt. The laser fusion is proposed to ignite the fuel. (auth.)
Pellet injectors for steady state plasma fuelling
International Nuclear Information System (INIS)
Vinyar, I.; Geraud, A.; Yamada, H.; Lukin, A.; Sakamoto, R.; Skoblikov, S.; Umov, A.; Oda, Y.; Gros, G.; Krasilnikov, I.; Reznichenko, P.; Panchenko, V.
2005-01-01
Successful steady state operation of a fusion reactor should be supported by repetitive pellet injection of solidified hydrogen isotopes in order to produce high performance plasmas. This paper presents pneumatic pellet injectors and its implementation for long discharge on the LHD and TORE SUPRA, and a new centrifuge pellet injector test results. All injectors are fitted with screw extruders well suited for steady state operation
Steady-state behaviour of a solar array system with elastic stops
Campen, D.H. van; Fey, R.H.B.; Liempt, F.P.H. van; Kraker, A. de
1999-01-01
In recent years a method was developed by the authors for efficient analysis of the long term behaviour of mechanical systems with local nonlinearities under periodic excita-tien. In this method the linear parts of the system are modelled using the finite element method. In order to keep the
Jiang, Da-Quan; Qian, Min-Ping
2004-01-01
This volume provides a systematic mathematical exposition of the conceptual problems of nonequilibrium statistical physics, such as entropy production, irreversibility, and ordered phenomena. Markov chains, diffusion processes, and hyperbolic dynamical systems are used as mathematical models of physical systems. A measure-theoretic definition of entropy production rate and its formulae in various cases are given. It vanishes if and only if the stationary system is reversible and in equilibrium. Moreover, in the cases of Markov chains and diffusion processes on manifolds, it can be expressed in terms of circulations on directed cycles. Regarding entropy production fluctuations, the Gallavotti-Cohen fluctuation theorem is rigorously proved.
Directory of Open Access Journals (Sweden)
R. Mageshvaran
2015-09-01
The proposed algorithm is tested on IEEE 14, 30 and 118 bus test systems. The viability of the proposed method in terms of solution quality and convergence properties is compared with the other conventional methods reported earlier.
Fast sweeping methods for hyperbolic systems of conservation laws at steady state II
Engquist, Björn; Froese, Brittany D.; Tsai, Yen-Hsi Richard
2015-04-01
The idea of using fast sweeping methods for solving stationary systems of conservation laws has previously been proposed for efficiently computing solutions with sharp shocks. We further develop these methods to allow for a more challenging class of problems including problems with sonic points, shocks originating in the interior of the domain, rarefaction waves, and two-dimensional systems. We show that fast sweeping methods can produce higher-order accuracy. Computational results validate the claims of accuracy, sharp shock curves, and optimal computational efficiency.
Computation of Steady State Nodal Voltages for Fast Security Assessment in Power Systems
DEFF Research Database (Denmark)
Møller, Jakob Glarbo; Jóhannsson, Hjörtur; Østergaard, Jacob
2014-01-01
Development of a method for real-time assess-ment of post-contingency nodal voltages is introduced. Linear network theory is applied in an algorithm that utilizes Thevenin equivalent representation of power systems as seen from every voltage-controlled node in a network. The method is evaluated b...
40 CFR 85.2225 - Steady state test exhaust analysis system-EPA 91.
2010-07-01
...) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment may not cause malfunctions or changes in the accuracy in the electronics of the analyzer system. The... induction devices normally found in the automotive service environment, including high energy vehicle...
Directory of Open Access Journals (Sweden)
Zhong Chen
2017-08-01
Full Text Available A conventional steady-state power flow security check only implements point-by-point assessment, which cannot provide a security margin for system operation. The concept of a steady-state security region is proposed to effectively tackle this problem. Considering that the commissioning of the increasing number of HVDC (High Voltage Direct Current and the fluctuation of renewable energy have significantly affected the operation and control of a conventional AC system, the definition of the steady-state security region of the AC/DC power system is proposed in this paper based on the AC/DC power flow calculation model including LCC/VSC (Line Commutated Converter/Voltage Sourced Converter-HVDC transmission and various AC/DC constraints, and hence the application of the security region is extended. In order to ensure that the proposed security region can accurately provide global security information of the power system under the fluctuations of renewable energy, this paper presents four methods (i.e., a screening method of effective boundary surfaces, a fitting method of boundary surfaces, a safety judging method, and a calculation method of distances and corrected distance between the steady-state operating point and the effective boundary surfaces based on the relation analysis between the steady-state security region geometry and constraints. Also, the physical meaning and probability analysis of the corrected distance are presented. Finally, a case study is demonstrated to test the feasibility of the proposed methods.
Zhao, Li; Xing, Xiao; Guo, Xuhong; Liu, Zehua; He, Yang
2014-10-01
Brain-computer interface (BCI) system is a system that achieves communication and control among humans and computers and other electronic equipment with the electroencephalogram (EEG) signals. This paper describes the working theory of the wireless smart home system based on the BCI technology. We started to get the steady-state visual evoked potential (SSVEP) using the single chip microcomputer and the visual stimulation which composed by LED lamp to stimulate human eyes. Then, through building the power spectral transformation on the LabVIEW platform, we processed timely those EEG signals under different frequency stimulation so as to transfer them to different instructions. Those instructions could be received by the wireless transceiver equipment to control the household appliances and to achieve the intelligent control towards the specified devices. The experimental results showed that the correct rate for the 10 subjects reached 100%, and the control time of average single device was 4 seconds, thus this design could totally achieve the original purpose of smart home system.
Statistical steady states in turbulent droplet condensation
Bec, Jeremie; Krstulovic, Giorgio; Siewert, Christoph
2017-11-01
We investigate the general problem of turbulent condensation. Using direct numerical simulations we show that the fluctuations of the supersaturation field offer different conditions for the growth of droplets which evolve in time due to turbulent transport and mixing. This leads to propose a Lagrangian stochastic model consisting of a set of integro-differential equations for the joint evolution of the squared radius and the supersaturation along droplet trajectories. The model has two parameters fixed by the total amount of water and the thermodynamic properties, as well as the Lagrangian integral timescale of the turbulent supersaturation. The model reproduces very well the droplet size distributions obtained from direct numerical simulations and their time evolution. A noticeable result is that, after a stage where the squared radius simply diffuses, the system converges exponentially fast to a statistical steady state independent of the initial conditions. The main mechanism involved in this convergence is a loss of memory induced by a significant number of droplets undergoing a complete evaporation before growing again. The statistical steady state is characterised by an exponential tail in the droplet mass distribution.
High resolution Thomson scattering system for steady-state linear plasma sources
Lee, K. Y.; Lee, K. I.; Kim, J. H.; Lho, T.
2018-01-01
The high resolution Thomson scattering system with 63 points along a 25 mm line measures the radial electron temperature (Te) and its density (ne) in an argon plasma. By using a DC arc source with lanthanum hexaboride (LaB6) electrode, plasmas with electron temperature of over 5 eV and densities of 1.5 × 1019 m-3 have been measured. The system uses a frequency doubled (532 nm) Nd:YAG laser with 0.25 J/pulse at 20 Hz. The scattered light is collected and sent to a triple-grating spectrometer via optical-fibers, where images are recorded by an intensified charge coupled device (ICCD) camera. Although excellent in stray-light reduction, a disadvantage comes with its relatively low optical transmission and in sampling a tiny scattering volume. Thus requires accumulating multitude of images. In order to improve photon statistics, pixel binning in the ICCD camera as well as enlarging the intermediate slit-width inside the triple-grating spectrometer has been exploited. In addition, the ICCD camera capture images at 40 Hz while the laser is at 20 Hz. This operation mode allows us to alternate between background and scattering shot images. By image subtraction, influences from the plasma background are effectively taken out. Maximum likelihood estimation that uses a parameter sweep finds best fitting parameters Te and ne with the incoherent scattering spectrum.
The Opportunities of Steady State.
Sillars, Malcolm O.
Recent restrictions in funds made available to higher education, reinforced by declining birth rates and slowing or falling enrollments, are forcing an adjustment of thinking by educators. The growth of the last 20 years was not the normal state of higher education. Educators have come to think that bigger is better as enrollments and faculty have…
Directory of Open Access Journals (Sweden)
Yusuke Yokota
2017-06-01
Full Text Available Workload in the human brain can be a useful marker of internal brain state. However, due to technical limitations, previous workload studies have been unable to record brain activity via conventional electroencephalography (EEG and magnetoencephalography (MEG devices in mobile participants. In this study, we used a wearable EEG system to estimate workload while participants walked in a naturalistic environment. Specifically, we used the auditory steady-state response (ASSR which is an oscillatory brain activity evoked by repetitive auditory stimuli, as an estimation index of workload. Participants performed three types of N-back tasks, which were expected to command different workloads, while walking at a constant speed. We used a binaural 500 Hz pure tone with amplitude modulation at 40 Hz to evoke the ASSR. We found that the phase-locking index (PLI of ASSR activity was significantly correlated with the degree of task difficulty, even for EEG data from few electrodes. Thus, ASSR appears to be an effective indicator of workload during walking in an ecologically valid environment.
Energy Technology Data Exchange (ETDEWEB)
Barnes, Charles Ashley [Iowa State Univ., Ames, IA (United States)
2014-12-20
In Chapter 2 several experimental and data analysis methods used in this thesis are described. In Chapter 3 steady-state fluorescence spectroscopy was used to determine the concentration of the efflux pump inhibitors (EPIs), pheophorbide a and pyropheophorbide a, in the feces of animals and it was found that their levels far exceed those reported to be inhibitory to efflux pumps. In Chapter 4 the solvation dynamics of 6-Propionyl-2-(N,Ndimethyl) aminonaphthalene (PRODAN) was studied in reverse micelles. The two fluorescent states of PRODAN solvate on different time scales and as such care must be exercised in solvation dynamic studies involving it and its analogs. In Chapter 5 we studied the experimental and theoretical solvation dynamics of coumarin 153 (C153) in wild-type (WT) and modified myoglobins. Based on the nuclear magnetic resonance (NMR) spectroscopy and time-resolved fluorescence studies, we have concluded that it is important to thoroughly characterize the structure of a protein and probe system before comparing the theoretical and experimental results. In Chapter 6 the photophysical and spectral properties of a derivative of the medically relevant compound curcumin called cyclocurcumin was studied. Based on NMR, fluorescence, and absorption studies, the ground- and excited-states of cyclocurcumin are complicated by the existence of multiple structural isomers. In Chapter 7 the hydrolysis of cellulose by a pure form of cellulase in an ionic liquid, HEMA, and its aqueous mixtures at various temperatures were studied with the goal of increasing the cellulose to glucose conversion for biofuel production. It was found that HEMA imparts an additional stability to cellulase and can allow for faster conversion of cellulose to glucose using a pre-treatment step in comparison to only buffer.
Fluctuations When Driving Between Nonequilibrium Steady States
Riechers, Paul M.; Crutchfield, James P.
2017-08-01
Maintained by environmental fluxes, biological systems are thermodynamic processes that operate far from equilibrium without detailed-balanced dynamics. Yet, they often exhibit well defined nonequilibrium steady states (NESSs). More importantly, critical thermodynamic functionality arises directly from transitions among their NESSs, driven by environmental switching. Here, we identify the constraints on excess heat and dissipated work necessary to control a system that is kept far from equilibrium by background, uncontrolled "housekeeping" forces. We do this by extending the Crooks fluctuation theorem to transitions among NESSs, without invoking an unphysical dual dynamics. This and corresponding integral fluctuation theorems determine how much work must be expended when controlling systems maintained far from equilibrium. This generalizes thermodynamic feedback control theory, showing that Maxwellian Demons can leverage mesoscopic-state information to take advantage of the excess energetics in NESS transitions. We also generalize an approach recently used to determine the work dissipated when driving between functionally relevant configurations of an active energy-consuming complex system. Altogether, these results highlight universal thermodynamic laws that apply to the accessible degrees of freedom within the effective dynamic at any emergent level of hierarchical organization. By way of illustration, we analyze a voltage-gated sodium ion channel whose molecular conformational dynamics play a critical functional role in propagating action potentials in mammalian neuronal membranes.
Progress towards Steady State on NSTX
International Nuclear Information System (INIS)
Gates, D.A.; Kessel, C.; Menard, J.; Taylor, G.; Wilson, J.R.
2005-01-01
In order to reduce recirculating power fraction to acceptable levels, the spherical torus concept relies on the simultaneous achievement of high toroidal β and high bootstrap fraction in steady state. In the last year, as a result of plasma control system improvements, the achievable plasma elongation on the National Spherical Torus Experiment (NSTX) has been raised from κ ∼ 2.1 to κ ∼ 2.6--approximately a 25% increase. This increase in elongation has lead to a doubling increase in the toroidal β for long-pulse discharges. The increase in β is associated with an increase in plasma current at nearly fixed poloidal β, which enables higher β t with nearly constant bootstrap fraction. As a result, for the first time in a spherical torus, a discharge with a plasma current of 1 MA has been sustained for 1 second. Data is presented from NSTX correlating the increase in performance with increased plasma shaping capability. In addition to improved shaping, H-modes induced during the current ramp phase of the plasma discharge have been used to reduce flux consumption during and to delay the onset of MHD instabilities. A modeled integrated scenario, which has 100% non-inductive current drive with very high toroidal β, will also be presented. The NSTX poloidal field coils are currently being modified to produce the plasma shape which is required for this scenario, which requires high triangularity ((delta) ∼ 0.8) at elevated elongation (κ ∼ 2.5). The other main requirement for steady state on NSTX is the ability to drive a fraction of the total plasma current with radio-frequency waves. The results of High Harmonic Fast Wave heating and current drive studies as well as electron Bernstein Wave emission studies will be presented
steady – state performance of induction and transfer state
African Journals Online (AJOL)
eobe
This paper presents paper presents paper presents the steady the steady the steady–state performance state performance state performance comparison comparison comparison between polyphase induction motor and polyphase between polyphase induction motor and polyphase. TF motor operating in. TF motor ...
Steady state and transient critical heat flux examinations
International Nuclear Information System (INIS)
Szabados, L.
1978-02-01
In steady state conditions within the P.W.R. parameter range the critical heat flux correlations based on local parameters reproduce the experimental data with less deviations than those based on system parameters. The transient experiments were restricted for the case of power transients. A data processing method for critical heat flux measurements has been developed and the applicability of quasi steady state calculation has been verified. (D.P.)
DEFF Research Database (Denmark)
Irnawan, Roni; Silva, Filipe Miguel Faria da; Bak, Claus Leth
2017-01-01
This paper deals with a radial offshore multi-terminal HVDC (MTDC) transmission system which is formed by interconnection several existing offshore wind farm (OWF) HVDC links with a shore-to-shore (StS) HVDC link. A challenge arises when deciding the steady-state DC voltage operating level...
Steady-state spheromak reactor studies
International Nuclear Information System (INIS)
Krakowski, R.A.; Hagenson, R.L.
1985-01-01
After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design points is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported
Steady-State Creep of Asphalt Concrete
Directory of Open Access Journals (Sweden)
Alibai Iskakbayev
2017-02-01
Full Text Available This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 °С and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.
Steady state compact toroidal plasma production
Turner, William C.
1986-01-01
Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.
Riyahi, Pouria
This thesis is part of current research at Center for Intelligence Systems Research (CISR) at The George Washington University for developing new in-vehicle warning systems via Brain-Computer Interfaces (BCIs). The purpose of conducting this research is to contribute to the current gap between BCI and in-vehicle safety studies. It is based on the premise that accurate and timely monitoring of human (driver) brain's signal to external stimuli could significantly aide in detection of driver's intentions and development of effective warning systems. The thesis starts with introducing the concept of BCI and its development history while it provides a literature review on the nature of brain signals. The current advancement and increasing demand for commercial and non-medical BCI products are described. In addition, the recent research attempts in transportation safety to study drivers' behavior or responses through brain signals are reviewed. The safety studies, which are focused on employing a reliable and practical BCI system as an in-vehicle assistive device, are also introduced. A major focus of this thesis research has been on the evaluation and development of the signal processing algorithms which can effectively filter and process brain signals when the human subject is subjected to Visual LED (Light Emitting Diodes) stimuli at different frequencies. The stimulated brain generates a voltage potential, referred to as Steady-State Visual Evoked Potential (SSVEP). Therefore, a newly modified analysis algorithm for detecting the brain visual signals is proposed. These algorithms are designed to reach a satisfactory accuracy rate without preliminary trainings, hence focusing on eliminating the need for lengthy training of human subjects. Another important concern is the ability of the algorithms to find correlation of brain signals with external visual stimuli in real-time. The developed analysis models are based on algorithms which are capable of generating results
Steady state of tapped granular polygons
International Nuclear Information System (INIS)
Carlevaro, Carlos M; Pugnaloni, Luis A
2011-01-01
The steady state packing fraction of a tapped granular bed is studied for different grain shapes via a discrete element method. Grains are monosized regular polygons, from triangles to icosagons. Comparisons with disc packings show that the steady state packing fraction as a function of the tapping intensity presents the same general trends in polygon packings. However, better packing fractions are obtained, as expected, for shapes that can tessellate the plane (triangles, squares and hexagons). In addition, we find a sharp transition for packings of polygons with more than 13 vertices signaled by a discontinuity in the packing fraction at a particular tapping intensity. Density fluctuations for most shapes are consistent with recent experimental findings in disc packing; however, a peculiar behavior is found for triangles and squares
Efficient steady-state solver for hierarchical quantum master equations
Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing
2017-07-01
Steady states play pivotal roles in many equilibrium and non-equilibrium open system studies. Their accurate evaluations call for exact theories with rigorous treatment of system-bath interactions. Therein, the hierarchical equations-of-motion (HEOM) formalism is a nonperturbative and non-Markovian quantum dissipation theory, which can faithfully describe the dissipative dynamics and nonlinear response of open systems. Nevertheless, solving the steady states of open quantum systems via HEOM is often a challenging task, due to the vast number of dynamical quantities involved. In this work, we propose a self-consistent iteration approach that quickly solves the HEOM steady states. We demonstrate its high efficiency with accurate and fast evaluations of low-temperature thermal equilibrium of a model Fenna-Matthews-Olson pigment-protein complex. Numerically exact evaluation of thermal equilibrium Rényi entropies and stationary emission line shapes is presented with detailed discussion.
On Steady-State Tropical Cyclones
2014-01-01
Press: London. Marks FD, Black PG, Montgomery MT, Burpee RW. 2008. Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Weather Rev. 136: 1237... hurricanes ; tropical cyclones; typhoons; steady-state Received 18 April 2013; Revised 25 November 2013; Accepted 29 December 2013; Published online in Wiley...the concept of the ‘mature stage’ of a hurricane vortex. The definition of the ‘mature stage’ is commonly based on the time period in which the maximum
Steady State versus Pulsed Tokamak DEMO
Energy Technology Data Exchange (ETDEWEB)
Orsitto, F.P., E-mail: francesco.orsitto@enea.it [Associazione EURATOM-ENEA Unita Tecnica Fusione, Frascati (Italy); Todd, T. [CCFE/Fusion Association, Culham Science Centre, Abingdon (United Kingdom)
2012-09-15
Full text: The present report deals with a Review of problems for a Steady state(SS) DEMO, related argument is treated about the models and the present status of comparison between the characteristics of DEMO pulsed versus a Steady state device.The studied SS DEMO Models (SLIM CS, PPCS model C EU-DEMO, ARIES-RS) are analyzed from the point of view of the similarity scaling laws and critical issues for a steady state DEMO. A comparison between steady state and pulsed DEMO is therefore carried out: in this context a new set of parameters for a pulsed (6 - 8 hours pulse) DEMO is determined working below the density limit, peak temperature of 20 keV, and requiring a modest improvement in the confinement factor(H{sub IPBy2} = 1.1) with respect to the H-mode. Both parameters density and confinement parameter are lower than the DEMO models presently considered. The concept of partially non-inductive pulsed DEMO is introduced since a pulsed DEMO needs heating and current drive tools for plasma stability and burn control. The change of the main parameter design for a DEMO working at high plasma peak temperatures T{sub e} {approx} 35 keV is analyzed: in this range the reactivity increases linearly with temperature, and a device with smaller major radius (R = 7.5 m) is compatible with high temperature. Increasing temperature is beneficial for current drive efficiency and heat load on divertor, being the synchrotron radiation one of the relevant components of the plasma emission at high temperatures and current drive efficiency increases with temperature. Technology and engineering problems are examined including efficiency and availability R&D issues for a high temperature DEMO. Fatigue and creep-fatigue effects of pulsed operations on pulsed DEMO components are considered in outline to define the R&D needed for DEMO development. (author)
Triple echo steady-state (TESS) relaxometry.
Heule, Rahel; Ganter, Carl; Bieri, Oliver
2014-01-01
Rapid imaging techniques have attracted increased interest for relaxometry, but none are perfect: they are prone to static (B0 ) and transmit (B1 ) field heterogeneities, and commonly biased by T2 /T1 . The purpose of this study is the development of a rapid T1 and T2 relaxometry method that is completely (T2 ) or partly (T1 ) bias-free. A new method is introduced to simultaneously quantify T1 and T2 within one single scan based on a triple echo steady-state (TESS) approach in combination with an iterative golden section search. TESS relaxometry is optimized and evaluated from simulations, in vitro studies, and in vivo experiments. It is found that relaxometry with TESS is not biased by T2 /T1 , insensitive to B0 heterogeneities, and, surprisingly, that TESS-T2 is not affected by B1 field errors. Consequently, excellent correspondence between TESS and reference spin echo data is observed for T2 in vitro at 1.5 T and in vivo at 3 T. TESS offers rapid T1 and T2 quantification within one single scan, and in particular B1 -insensitive T2 estimation. As a result, the new proposed method is of high interest for fast and reliable high-resolution T2 mapping, especially of the musculoskeletal system at high to ultra-high fields. Copyright © 2013 Wiley Periodicals, Inc.
Implications of steady-state operation on divertor design
International Nuclear Information System (INIS)
Sevier, D.L.; Reis, E.E.; Baxi, C.B.; Silke, G.W.; Wong, C.P.C.; Hill, D.N.
1996-01-01
As fusion experiments progress towards long pulse or steady state operation, plasma facing components are undergoing a significant change in their design. This change represents the transition from inertially cooled pulsed systems to steady state designs of significant power handling capacity. A limited number of Plasma Facing Component (PFC) systems are in operation or planning to address this steady state challenge at low heat flux. However in most divertor designs components are required to operate at heat fluxes at 5 MW/m 2 or above. The need for data in this area has resulted in a significant amount of thermal/hydraulic and thermal fatigue testing being done on prototypical elements. Short pulse design solutions are not adequate for longer pulse experiments and the areas of thermal design, structural design, material selection, maintainability, and lifetime prediction are undergoing significant changes. A prudent engineering approach will guide us through the transitional phase of divertor design to steady-state power plant components. This paper reviews the design implications in this transition to steady state machines and the status of the community efforts to meet evolving design requirements. 54 refs., 5 figs., 2 tabs
Energy Technology Data Exchange (ETDEWEB)
Calderon-Guizar, J.G.; Inda-Ruiz, G.A.; Tovar, G.E. [Gerencia de Analisis de Redes, Temixco, Morelos (Mexico). Inst. de Investigaciones Eleectricas
2003-10-01
This paper reports the application of a static approach for assessing the steady-state loading margin to voltage collapse of the North-West Control Area (NWCA) of the Mexican Power System. The approach uses both optimal load flow (OLF) and conventional load flow (LF) solutions, and singular value decomposition of the load flow Jacobian matrix (J). Additionally, the approach allows to determine suitable locations for corrective actions such as, the addition of new equipment or load shedding. The results shows that the combination of OLF and LF resulted in a steady-state loading margin to voltage collapse of the NWCA 7.2% higher than the case when only conventional load flow solutions were considered. (author)
Steady-state entanglement activation in optomechanical cavities
Farace, Alessandro; Ciccarello, Francesco; Fazio, Rosario; Giovannetti, Vittorio
2014-02-01
Quantum discord, and related indicators, are raising a relentless interest as a novel paradigm of nonclassical correlations beyond entanglement. Here, we discover a discord-activated mechanism yielding steady-state entanglement production in a realistic continuous-variable setup. This comprises two coupled optomechanical cavities, where the optical modes (OMs) communicate through a fiber. We first use a simplified model to highlight the creation of steady-state discord between the OMs. We show next that such discord improves the level of stationary optomechanical entanglement attainable in the system, making it more robust against temperature and thermal noise.
An accelerator based steady state neutron source
International Nuclear Information System (INIS)
Burke, R.J.; Johnson, D.L.
1985-01-01
Using high current, c.w. linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the Accelerator Based Neutron Research Facility (ABNR) would initially achieve the 10 16 n/cm 2 .s thermal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of $300-450M is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source in most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc. With the development of multi-beam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs
Principle of Entropy Maximization for Nonequilibrium Steady States
DEFF Research Database (Denmark)
Shapiro, Alexander; Stenby, Erling Halfdan
2002-01-01
The goal of this contribution is to find out to what extent the principle of entropy maximization, which serves as a basis for the equilibrium thermodynamics, may be generalized onto non-equilibrium steady states. We prove a theorem that, in the system of thermodynamic coordinates, where entropy...
A steady state model for anaerobic digestion of sewage sludges ...
African Journals Online (AJOL)
A steady state model for anaerobic digestion of sewage sludge is developed that comprises three sequential parts – a kinetic part from which the % COD removal and ... and a carbonate system weak acid/base chemistry part from which the digester pH is calculated from the partial pressure of CO2 and alkalinity generated.
Steady-State Operation in Tore Supra
Hoang, G. T.; Tore Supra, Equipe
1999-11-01
The Tore Supra superconducting tokamak is devoted to steady-state operation. The CIEL (French acronym for internal component and limiter) project( LIPA, M., et al., Proc. of the 17th IEEE/NPSS Symp. on Fus. Engineering, San Diego, USA, 1997.) consists of a complete upgrade of the inner chamber of Tore Supra, planned to be installed during the year 2000. This project will allow physics scenarios with up to 24 MW of radio frequency heating and current drive (typically 8 - 10 MW of ICRF, 10 - 12 MW of LHCD and 2 MW of ECRF) in stationary plasmas up to 1000 s, with active particle control. This paper presents an overview of the experiments planned to explore the properties, such as the confinement and MHD stability, of various heating and current drive scenarios for long duration discharges. The expected performance for the CIEL phase is also reported.
Producing a steady-state population inversion
International Nuclear Information System (INIS)
Richards, R.K.; Griffin, D.C.
1986-03-01
An observed steady-state transition at 17.5 nm is identified as the 2p 5 3s3p 4 S/sub 3/2/ → 2p 6 3p 2 P/sub 3/2/ transition in Na-like aluminum. The upper level is populated by electron inner shell ionization of metastable Mg-like aluminum. From the emission intensity, the rate coefficient for populating the upper level is calculated to be approximately 5 x 10 -10 ) cm 3 /sec. Since the upper level is quasimetastable with a lifetime 22 times longer than the lower level, it may be possible to produce a population inversion, if a competing process to populate the lower level can be reduced
Reactor kinetics - pulse and steady state
Energy Technology Data Exchange (ETDEWEB)
Estes, B F; Morris, F M [Sandia Laboratories (United States)
1974-07-01
An analytical model has been developed which couples the nuclear and thermal characteristics of the Annular Core Pulse Reactor (ACPR) into a solution which describes both the neutron kinetics of the reactor and the temperature behavior of a fuel-moderator element. The model describes both pulse and steady state operations. This paper describes the important aspects of the reactor, the fuel- moderator elements, the neutron kinetic equations of the reactor, and the time-temperature behavior of a fuel-moderator element that is being subjected to the maximum power density in the core. The parameters which are utilized in the equations are divided into two classes, those that can be measured directly and those that are assumed to be known (each is described briefly). Some of the solutions which demonstrate the versatility of the analytical model are described. (author)
Magnetic sensor for steady state tokamak
Energy Technology Data Exchange (ETDEWEB)
Neyatani, Yuzuru; Mori, Katsuharu; Oguri, Shigeru; Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1996-06-01
A new type of magnetic sensor has been developed for the measurement of steady state magnetic fields without DC-drift such as integration circuit. The electromagnetic force induced to the current which leads to the sensor was used for the measurement. For the high frequency component which exceeds higher than the vibration frequency of sensor, pick-up coil was used through the high pass filter. From the results using tokamak discharges, this sensor can measure the magnetic field in the tokamak discharge. During {approx}2 hours measurement, no DC drift was observed. The sensor can respond {approx}10ms of fast change of magnetic field during disruptions. We confirm the extension of measured range to control the current which leads to the sensor. (author).
Bonan, G. B.; Wieder, W. R.
2012-12-01
Decomposition is a large term in the global carbon budget, but models of the earth system that simulate carbon cycle-climate feedbacks are largely untested with respect to litter decomposition. Here, we demonstrate a protocol to document model performance with respect to both long-term (10 year) litter decomposition and steady-state soil carbon stocks. First, we test the soil organic matter parameterization of the Community Land Model version 4 (CLM4), the terrestrial component of the Community Earth System Model, with data from the Long-term Intersite Decomposition Experiment Team (LIDET). The LIDET dataset is a 10-year study of litter decomposition at multiple sites across North America and Central America. We show results for 10-year litter decomposition simulations compared with LIDET for 9 litter types and 20 sites in tundra, grassland, and boreal, conifer, deciduous, and tropical forest biomes. We show additional simulations with DAYCENT, a version of the CENTURY model, to ask how well an established ecosystem model matches the observations. The results reveal large discrepancy between the laboratory microcosm studies used to parameterize the CLM4 litter decomposition and the LIDET field study. Simulated carbon loss is more rapid than the observations across all sites, despite using the LIDET-provided climatic decomposition index to constrain temperature and moisture effects on decomposition. Nitrogen immobilization is similarly biased high. Closer agreement with the observations requires much lower decomposition rates, obtained with the assumption that nitrogen severely limits decomposition. DAYCENT better replicates the observations, for both carbon mass remaining and nitrogen, without requirement for nitrogen limitation of decomposition. Second, we compare global observationally-based datasets of soil carbon with simulated steady-state soil carbon stocks for both models. The models simulations were forced with observationally-based estimates of annual
Steady Particle States of Revised Electromagnetics
Directory of Open Access Journals (Sweden)
Lehnert B.
2006-07-01
Full Text Available A revised Lorentz invariant electromagnetic theory leading beyond Maxwell's equations, and to a form of extended quantum electrodynamics, has been elaborated on the basis of a nonzero electric charge density and a nonzero electric field divergence in the vacuum state. Among the applications of this theory, there are steady electromagnetic states having no counterpart in conventional theory and resulting in models of electrically charged and neutral leptons, such as the electron and the neutrino. The analysis of the electron model debouches into a point-charge-like geometry with a very small characteristic radius but having finite self-energy. This provides an alternative to the conventional renormalization procedure. In contrast to conventional theory, an integrated radial force balance can further be established in which the electron is prevented from "exploding" under the action of its net self-charge. Through a combination of variational analysis and an investigation of the radial force balance, a value of the electronic charge has been deduced which deviates by only one percent from that obtained in experiments. This deviation requires further investigation. A model of the neutrino finally reproduces some of the basic features, such as a small but nonzero rest mass, an angular momentum but no magnetic moment, and long mean free paths in solid matter.
Steady Particle States of Revised Electromagnetics
Directory of Open Access Journals (Sweden)
Lehnert B.
2006-07-01
Full Text Available A revised Lorentz invariant electromagnetic theory leading beyond Maxwell’s equations, and to a form of extended quantum electrodynamics, has been elaborated on the basis of a nonzero electric charge density and a nonzero electric field divergence in the vacuum state. Among the applications of this theory, there are steady electromagnetic states having no counterpart in conventional theory and resulting in models of electrically charged and neutral leptons, such as the electron and the neutrino. The analysis of the electron model debouches into a point-charge-like geometry with a very small characteristic radius but having finite self-energy. This provides an alternative to the conventional renormalization procedure. In contrast to conventional theory, an integrated radial force balance can further be established in which the electron is prevented from “exploding” under the action of its net self-charge. Through a combination of variational analysis and an investigation of the radial force balance, a value of the electronic charge has been deduced which deviates by only one percent from that obtained in experiments. This deviation requires further investigation. A model of the neutrino finally reproduces some of the basic features, such as a small but nonzero rest mass, an angular momentum but no magnetic moment, and long mean free paths in solid matter.
Optimal control of transitions between nonequilibrium steady states.
Directory of Open Access Journals (Sweden)
Patrick R Zulkowski
Full Text Available Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines.
Pseudo Steady-State Free Precession for MR-Fingerprinting.
Assländer, Jakob; Glaser, Steffen J; Hennig, Jürgen
2017-03-01
This article discusses the signal behavior in the case the flip angle in steady-state free precession sequences is continuously varied as suggested for MR-fingerprinting sequences. Flip angle variations prevent the establishment of a steady state and introduce instabilities regarding to magnetic field inhomogeneities and intravoxel dephasing. We show how a pseudo steady state can be achieved, which restores the spin echo nature of steady-state free precession. Based on geometrical considerations, relationships between the flip angle, repetition and echo time are derived that suffice to the establishment of a pseudo steady state. The theory is tested with Bloch simulations as well as phantom and in vivo experiments. A typical steady-state free precession passband can be restored with the proposed conditions. The stability of the pseudo steady state is demonstrated by comparing the evolution of the signal of a single isochromat to one resulting from a spin ensemble. As confirmed by experiments, magnetization in a pseudo steady state can be described with fewer degrees of freedom compared to the original fingerprinting and the pseudo steady state results in more reliable parameter maps. The proposed conditions restore the spin-echo-like signal behavior typical for steady-state free precession in fingerprinting sequences, making this approach more robust to B 0 variations. Magn Reson Med 77:1151-1161, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Progress and prospect of true steady state operation with RF
Directory of Open Access Journals (Sweden)
Jacquinot Jean
2017-01-01
Full Text Available Operation of fusion confinement experiments in full steady state is a major challenge for the development towards fusion energy. Critical to achieving this goal is the availability of actively cooled plasma facing components and auxiliary systems withstanding the very harsh plasma environment. Equally challenging are physics issues related to achieving plasma conditions and current drive efficiency required by reactor plasmas. RF heating and current drive systems have been key instruments for obtaining the progress made until today towards steady state. They hold all the records of long pulse plasma operation both in tokamaks and in stellarators. Nevertheless much progress remains to be made in particular for integrating all the requirements necessary for maintaining in steady state the density and plasma pressure conditions of a reactor. This is an important stated aim of ITER and of devices equipped with superconducting magnets. After considering the present state of the art, this review will address the key issues which remain to be solved both in physics and technology for reaching this goal. They constitute very active subjects of research which will require much dedicated experimentation in the new generation of superconducting devices which are now in operation or becoming close to it.
Theoretical analysis of steady state operating forces in control valves
Directory of Open Access Journals (Sweden)
Basavaraj Hubballi
2018-01-01
Full Text Available The controlling components, such as valves are used to regulate controlled fluid power. It is not always possible to calculate valve forces accurately, and with some types of valves even the existence of certain types of forces cannot be predicted with certainty. In many cases, however, the analysis can be made fairly completely and accurately. The assumption of steady state conditions is valid for the valve alone, but transient effects in the rest of the system may be large. These effects are particularly important with regard to the instability of valves, where the system may react on the valve in such a way as to make it squeal or oscillate, sometimes with large amplitude. The origin of the steady state flow force understood from a brief qualitative explanation. The following paper will summarize much of what is known about valve forces in the spool type controlling element.
Di Francesco, Marco
2011-04-01
The dependence of tumor on essential nutrients is known to be crucial for its evolution and has become one of the targets for medical therapies. Based on this fact a reaction-diffusion system with chemotaxis term and nutrient-based growth of tumors is presented. The formulation of the model considers also an influence of tumor and pharmacological factors on nutrient concentration. In the paper, convergence of solutions to constant, stationary states in the one-dimensional case for small perturbation of the equilibria is investigated. The nonlinear stability results are obtained by means of the classical symmetrization method and energy Sobolev estimates. © 2010 Elsevier Ltd.
Di Francesco, Marco; Twarogowska, Monika
2011-01-01
The dependence of tumor on essential nutrients is known to be crucial for its evolution and has become one of the targets for medical therapies. Based on this fact a reaction-diffusion system with chemotaxis term and nutrient-based growth of tumors is presented. The formulation of the model considers also an influence of tumor and pharmacological factors on nutrient concentration. In the paper, convergence of solutions to constant, stationary states in the one-dimensional case for small perturbation of the equilibria is investigated. The nonlinear stability results are obtained by means of the classical symmetrization method and energy Sobolev estimates. © 2010 Elsevier Ltd.
Exact fluctuations of nonequilibrium steady states from approximate auxiliary dynamics
Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T.
2017-01-01
We describe a framework to significantly reduce the computational effort to evaluate large deviation functions of time integrated observables within nonequilibrium steady states. We do this by incorporating an auxiliary dynamics into trajectory based Monte Carlo calculations, through a transformation of the system's propagator using an approximate guiding function. This procedure importance samples the trajectories that most contribute to the large deviation function, mitigating the exponenti...
DEFF Research Database (Denmark)
Tian, Yanjun; Loh, Poh Chiang; Deng, Fujin
2016-01-01
Cascaded converter is formed by connecting two subconverters together, sharing a common intermediate dc-link voltage. Regulation of this dc-link voltage is frequently realized with a proportional-integral (PI) controller, whose high gain at dc helps to force a zero steady-state tracking error....... The proposed scheme can be used with either unidirectional or bidirectional power flow, and has been verified by simulation and experimental results presented in this paper........ Such precise tracking is, however, at the expense of increasing the system type, caused by the extra pole at the origin introduced by the PI controller. The overall system may, hence, be tougher to control. To reduce the system type while preserving precise dc-link voltage tracking, this paper proposes...
Directory of Open Access Journals (Sweden)
Zaitsev D.A.
2013-08-01
Full Text Available The article deals with the integration scenario of Moldavian power system to ENTSO-E. Various options of the development of power generation on the territory of the Republic of Moldova have been proposed and analyzed in order to correspond with Energy Strategy of the Republic of Moldova until 2030. Analysis of steady-state operation has been performed regarding active power losses for entire power system, and also for the each element with differentiation on voltage levels. The computation and estimation of static stability factor for active power and for voltage were performed. Import/export of energy was estimated, and other indices of regime of energy system were analyzed as well. Technically effective variants were selected as a result of comparative analysis.
Amezquita-Sanchez, Juan P.; Valtierra-Rodriguez, Martin; Perez-Ramirez, Carlos A.; Camarena-Martinez, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.
2017-07-01
Squirrel-cage induction motors (SCIMs) are key machines in many industrial applications. In this regard, the monitoring of their operating condition aiming at avoiding damage and reducing economical losses has become a demanding task for industry. In the literature, several techniques and methodologies to detect faults that affect the integrity and performance of SCIMs have been proposed. However, they have only been focused on analyzing either the start-up transient or the steady-state operation regimes, two common operating scenarios in real practice. In this work, a novel methodology for broken rotor bar (BRB) detection in SCIMs during both start-up and steady-state operation regimes is proposed. It consists of two main steps. In the first one, the analysis of three-axis vibration signals using fractal dimension (FD) theory is carried out. Since different FD-based algorithms can give different results, three algorithms named Katz’ FD, Higuchi’s FD, and box dimension, are tested. In the second step, a fuzzy logic system for each regime is presented for automatic diagnosis. To validate the proposal, a motor with different damage levels has been tested: one with a partially BRB, a second with one fully BRB, and the third with two BRBs. The obtained results demonstrate the proposed effectiveness.
International Nuclear Information System (INIS)
Amezquita-Sanchez, Juan P; Valtierra-Rodriguez, Martin; Perez-Ramirez, Carlos A; Camarena-Martinez, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J
2017-01-01
Squirrel-cage induction motors (SCIMs) are key machines in many industrial applications. In this regard, the monitoring of their operating condition aiming at avoiding damage and reducing economical losses has become a demanding task for industry. In the literature, several techniques and methodologies to detect faults that affect the integrity and performance of SCIMs have been proposed. However, they have only been focused on analyzing either the start-up transient or the steady-state operation regimes, two common operating scenarios in real practice. In this work, a novel methodology for broken rotor bar (BRB) detection in SCIMs during both start-up and steady-state operation regimes is proposed. It consists of two main steps. In the first one, the analysis of three-axis vibration signals using fractal dimension (FD) theory is carried out. Since different FD-based algorithms can give different results, three algorithms named Katz’ FD, Higuchi’s FD, and box dimension, are tested. In the second step, a fuzzy logic system for each regime is presented for automatic diagnosis. To validate the proposal, a motor with different damage levels has been tested: one with a partially BRB, a second with one fully BRB, and the third with two BRBs. The obtained results demonstrate the proposed effectiveness. (paper)
Steady state statistical correlations predict bistability in reaction motifs.
Chakravarty, Suchana; Barik, Debashis
2017-03-28
Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.
International Nuclear Information System (INIS)
Tziourtzioumis, Dimitrios; Stamatelos, Anastassios
2012-01-01
Highlights: ► We demonstrate how the fuel injection system responds to different fuel properties. ► Improvements to the ECU maps of the engine are suggested. ► These allow operation at high biodiesel blends without loss in engine performance. ► Continued operation with high biodiesel fuel blend, resulted in fuel pump failure. - Abstract: The results of steady state and transient engine bench tests of a 2.0l common-rail passenger car diesel engine fuelled by B70 biodiesel blend are compared with the corresponding results of baseline tests with standard EN 590 diesel fuel. The macroscopic steady-state performance and emissions of the same engine has already been presented elsewhere. The current study demonstrates how the engine management system responds to different fuel properties, with focus to the fuel system dynamics and the engine’s transient response. A set of characteristic transient operation points was selected for the tests. Data acquisition of engine ECU variables was made by means of INCA software/ETAS Mac2 interface. Additional data acquisition regarding engine performance was based on external sensors. The results indicate significant differences in fuel system dynamics and transient engine operation with the B70 blend at high fuel flow rates. Certain modifications to engine ECU maps and control parameters are proposed, aimed at improvement of transient performance of modern engines run on high percentage biodiesel blends. However, a high pressure pump failure that was observed after prolonged operation with the B70 blend, hints to the use of more conservative biodiesel blending in fuel.
Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1
International Nuclear Information System (INIS)
Saxena, Y.C.
2000-01-01
SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)
Dissipative dark matter halos: The steady state solution. II.
Foot, R.
2018-05-01
Within the mirror dark matter model and dissipative dark matter models in general, halos around galaxies with active star formation (including spirals and gas-rich dwarfs) are dynamical: they expand and contract in response to heating and cooling processes. Ordinary type II supernovae (SNe) can provide the dominant heat source, which is possible if kinetic mixing interaction exists with strength ɛ ˜10-9- 10-10 . Dissipative dark matter halos can be modeled as a fluid governed by Euler's equations. Around sufficiently isolated and unperturbed galaxies the halo can relax to a steady state configuration, where heating and cooling rates locally balance and hydrostatic equilibrium prevails. These steady state conditions can be solved to derive the physical properties, including the halo density and temperature profiles, for model galaxies. Here, we consider idealized spherically symmetric galaxies within the mirror dark particle model, as in our earlier paper [Phys. Rev. D 97, 043012 (2018), 10.1103/PhysRevD.97.043012], but we assume that the local halo heating in the SN vicinity dominates over radiative sources. With this assumption, physically interesting steady state solutions arise which we compute for a representative range of model galaxies. The end result is a rather simple description of the dark matter halo around idealized spherically symmetric systems, characterized in principle by only one parameter, with physical properties that closely resemble the empirical properties of disk galaxies.
Extracting Steady State Components from Synchrophasor Data Using Kalman Filters
Directory of Open Access Journals (Sweden)
Farhan Mahmood
2016-04-01
Full Text Available Data from phasor measurement units (PMUs may be exploited to provide steady state information to the applications which require it. As PMU measurements may contain errors and missing data, the paper presents the application of a Kalman Filter technique for real-time data processing. PMU data captures the power system’s response at different time-scales, which are generated by different types of power system events; the presented Kalman Filter methods have been applied to extract the steady state components of PMU measurements that can be fed to steady state applications. Two KF-based methods have been proposed, i.e., a windowing-based KF method and “the modified KF”. Both methods are capable of reducing noise, compensating for missing data and filtering outliers from input PMU signals. A comparison of proposed methods has been carried out using the PMU data generated from a hardware-in-the-loop (HIL experimental setup. In addition, a performance analysis of the proposed methods is performed using an evaluation metric.
Understanding void fraction in steady state and dynamic environments
International Nuclear Information System (INIS)
Chexal, B.; Maulbetsch, J.; Harrison, J.; Petersen, C.; Jensen, P.; Horowitz, J.
1997-01-01
Understanding void fraction behavior in steady-state and dynamic environments is important to accurately predict the thermal-hydraulic behavior of two-phase or two-component systems. The Chexal-Lellouche (C-L) void fraction mode described herein covers the full range of pressures, flows, void fractions, and fluid types (steam-water, air-water, and refrigerants). A drift flux model formulation is used which covers the complete range of concurrent and countercurrent flows. The (1996) model revises the earlier C-L void fraction correlation, improves the capability of the model in countercurrent flow based on the incorporation of additional data, and improves the characteristics of the correlation that are important in transient programs. The model has been qualified with data from a number of steady state two-phase and two-component tests, and has been incorporated into the transient analysis code RELAP5 and RETRAN-3D and evaluated with a variety of transient and steady state tests. A 'plug-in' module for the void fraction correlation has been developed and implemented in RELAP5 and RETRAN-3D. The module is available as source code for inclusion into other thermal-hydraulic programs and can be used in any program that utilizes the same interface variables
International Nuclear Information System (INIS)
Wan Baonian; Toi, Kazuo
2005-09-01
The JSPS-CAS Core University Program (CUP) seminar on 'Production and steady-state confinement of high performance plasmas in magnetic confinement systems' was held from 27 July to 29 July 2005 in Institute of Plasma Physics, the Chinese Academy of Sciences, Hefei, China. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. About 50 persons including 20 Japanese attendees attended this seminar. Long time sustainment of high confinement and high beta plasmas is crucial for realization of an advanced nuclear fusion reactor. This seminar was motivated to summarize the results of CUP obtained in four years activities of CUP, and to extract crucial issues to be resolved near future, which must drive near and mid- term collaborations in the framework of CUP. The 32 of presented papers are indexed individually. (J.P.N.)
Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya
2005-05-01
The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.
Preliminary design study of a steady state tokamak device
International Nuclear Information System (INIS)
Miya, Naoyuki; Nakajima, Shinji; Ushigusa, Kenkichi; and athors)
1992-09-01
Preliminary design study has been made for a steady tokamak with the plasma current of 10MA, as the next to the JT-60U experimental programs. The goal of the research program is the integrated study of steady state, high-power physics and technology. Present candidate design is to use superconducting TF and PF magnet systems and long pulse operation of 100's-1000's of sec with non inductive current drive mainly by 500keV negative ion beam injection of 60MW. Low activation material such as titanium alloy is chosen for the water tank type vacuum vessel, which is also the nuclear shield for the superconducting coils. The present preliminary design study shows that the device can meet the existing JT-60U facility capability. (author)
Feasibility study of steady state magnetic field measurement
International Nuclear Information System (INIS)
Kawahata, Kazuo; Fujita, Junji; Matsuura, Kiyokata; Sakata, Masataka; Fujiwaka, Setsuya; Matoba, Tohru.
1995-08-01
A rotating magnetic probe testing system has been designed and constructed for the purpose of establishing a technique of the plasma current measurement on a steady state tokamak. An air turbine is employed to drive the rotating magnetic coil from the viewpoint of avoiding the use of an electric motor in the vicinity of the tokamak device. The signal induced on the rotating probe is transmitted to the amplifier through a transformer coupling. A long term testing on mechanical as well as electrical characteristics has been carried out to find key technical issues on this system. A continuous operation for more than one week has successfully been achieved. (author)
Bosma, T; Pikkemaat, MG; Kingma, Jacob; Dijk, J; Janssen, DB
2003-01-01
Haloalkane dehalogenase from Rhodococcus rhodochrous NCIMB 13064 (DhaA) catalyzes the hydrolysis of carbon-halogen bonds in a wide range of haloalkanes. We examined the steady-state and pre-steady-state kinetics of halopropane conversion by DhaA to illuminate mechanistic details of the
DEFF Research Database (Denmark)
Vlachogiannis, Ioannis (John); Lee, K Y
2009-01-01
In this paper the state-of-the-art extended particle swarm optimization (PSO) methods for solving multi-objective optimization problems are represented. We emphasize in those, the co-evolution technique of the parallel vector evaluated PSO (VEPSO), analysed and applied in a multi-objective problem...
Stationary Distribution and Thermodynamic Relation in Nonequilibrium Steady States
Komatsu, Teruhisa S.; Nakagawa, Naoko; Sasa, Shin-ichi; Tasaki, Hal; Ito, Nobuyasu
2010-01-01
We describe our recent attempts toward statistical mechanics and thermodynamics for nonequilibrium steady states (NESS) realized, e.g., in a heat conducting system. Our first result is a simple expression of the probability distribution (of microscopic states) of a NESS. Our second result is a natural extension of the thermodynamic Clausius relation and a definition of an accompanying entropy in NESS. This entropy coincides with the normalization constant appearing in the above mentioned microscopic expression of NESS, and has an expression similar to the Shannon entropy (with a further symmetrization). The NESS entropy proposed here is a clearly defined measurable quantity even in a system with a large degrees of freedom. We numerically measure the NESS entropy in hardsphere fluid systems with a heat current, by observing energy exchange between the system and the heat baths when the temperatures of the baths are changed according to specified protocols.
Measurement of non-steady-state free fatty acid turnover
International Nuclear Information System (INIS)
Jensen, M.D.; Heiling, V.; Miles, J.M.
1990-01-01
The accuracy of non-steady-state equations for measuring changes in free fatty acid rate of appearance (Ra) is unknown. In the present study, endogenous lipolysis (traced with [ 14 C]-linoleate) was pharmacologically suppressed in six conscious mongrel dogs. A computer-responsive infusion pump was then used to deliver an intravenous oleic acid emulsion in both constant and linear gradient infusion modes. Both non-steady-state equations with various effective volumes of distribution (V) and steady-state equations were used to measure oleate Ra [( 14 C]oleate). Endogenous lipolysis did not change during the experiment. When oleate Ra increased in a linear gradient fashion, only non-steady-state equations with a large (150 ml/kg) V resulted in erroneous values (9% overestimate, P less than 0.05). In contrast, when oleate Ra decreased in a similar fashion, steady-state and standard non-steady-state equations (V = plasma volume = 50 ml/kg) overestimated total oleate Ra (18 and 7%, P less than 0.001 and P less than 0.05, respectively). Overall, non-steady-state equations with an effective V of 90 ml/kg (1.8 x plasma volume) allowed the most accurate estimates of oleate Ra
DEFF Research Database (Denmark)
Irnawan, Roni; Silva, Filipe Miguel Faria da; Bak, Claus Leth
2017-01-01
DC grids are anticipated to grow organically with one possible initial configuration being formed by interconnecting an additional HVDC converter into an existing shore-to-shore (StS) HVDC link. In order to ensure the performance of this MTDC system, the DC voltage at each converter terminal within...
International Nuclear Information System (INIS)
Abanades, A.; Pena, A.
2009-01-01
A new innovative nuclear installation is under research in the nuclear community for its potential application to nuclear waste management and, above all, for its capability to enhance the sustainability of nuclear energy in the future as component of a new nuclear fuel cycle in which its efficiency in terms of primary Uranium ore profit and radioactive waste generation will be improved. Such new nuclear installations are called accelerator driven system (ADS) and are the result of a profitable symbiosis between accelerator technology, high-energy physics and reactor technology. Many ADS concepts are based on the utilization of heavy liquid metal (HLM) coolants due to its neutronic and thermo-physical properties. Moreover, such coolants permit the operation in free circulation mode, one of the main aims of passive systems. In this paper, such operation regime is analysed in a proposed ADS design applying computational fluid dynamics (CFD)
Steady-state solidification of aqueous ammonium chloride
Peppin, S. S. L.; Huppert, Herbert E.; Worster, M. Grae
We report on a series of experiments in which a Hele-Shaw cell containing aqueous solutions of NH4Cl was translated at prescribed rates through a steady temperature gradient. The salt formed the primary solid phase of a mushy layer as the solution solidified, with the salt-depleted residual fluid driving buoyancy-driven convection and the development of chimneys in the mushy layer. Depending on the operating conditions, several morphological transitions occurred. A regime diagram is presented quantifying these transitions as a function of freezing rate and the initial concentration of the solution. In general, for a given concentration, increasing the freezing rate caused the steady-state system to change from a convecting mushy layer with chimneys to a non-convecting mushy layer below a relatively quiescent liquid, and then to a much thinner mushy layer separated from the liquid by a region of active secondary nucleation. At higher initial concentrations the second of these states did not occur. At lower concentrations, but still above the eutectic, the mushy layer disappeared. A simple mathematical model of the system is developed which compares well with the experimental measurements of the intermediate, non-convecting state and serves as a benchmark against which to understand some of the effects of convection. Movies are available with the online version of the paper.
Adaptively locating unknown steady states: Formalism and basin of attraction
International Nuclear Information System (INIS)
Wu, Yu; Lin, Wei
2011-01-01
The adaptive technique, which includes both dynamical estimators and coupling gains, has been recently verified to be practical for locating the unknown steady states numerically. This Letter, in the light of the center manifold theory for dynamical systems and the matrix spectrum principle, establishes an analytical formalism of this adaptive technique and reveals a connection between this technique and the original adaptive controller which includes only the dynamical estimator. More interestingly, in study of the well-known Lorenz system, the selections of the estimator parameters and initial values are found to be crucial to the successful application of the adaptive technique. Some Milnor-like basins of attraction with fractal structures are found quantitatively. All the results obtained in the Letter can be further extended to more general dynamical systems of higher dimensions. -- Highlights: → Establishing a new and rigorous formalism for the adaptive stabilization technique. → Showing a close connection between the adaptive technique and the original controller. → Providing feasible algorithms for simultaneous stabilization of multiple steady states. → Finding Milnor-like basins of attraction with fractal structures in adaptive control.
Importance sampling large deviations in nonequilibrium steady states. I
Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T.
2018-03-01
Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.
Importance sampling large deviations in nonequilibrium steady states. I.
Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T
2018-03-28
Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.
Quantum thermodynamics of nanoscale steady states far from equilibrium
Taniguchi, Nobuhiko
2018-04-01
We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.
Calculation analysis on steady state natural circulation characteristics
International Nuclear Information System (INIS)
Wang Fei; Nie Changhua; Huang Yanping
2005-01-01
The calculation results of single-phase steady state natural circulation characteristics by using Retran02 code have been presented, good agreement is achieved between the verified calculation result and the experimental data which were conducted at a test facility. Based on the calculation model, some sensibility analyses were made and much deeper understanding for single-phase steady state natural circulation characteristics was obtained. (author)
Steady-state leaching of tritiated water from silica gel
DEFF Research Database (Denmark)
Das, H.A.; Hou, Xiaolin
2009-01-01
Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion.......Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion....
Selection of steady states in planar Darcy convection
International Nuclear Information System (INIS)
Tsybulin, V.G.; Karasoezen, B.; Ergenc, T.
2006-01-01
The planar natural convection of an incompressible fluid in a porous medium is considered. We study the selection of steady states under temperature perturbations on the boundary. A selection map is introduced in order to analyze the selection of a steady state from a continuous family of equilibria which exists under zero boundary conditions. The results of finite-difference modeling for a rectangular enclosure are presented
Directory of Open Access Journals (Sweden)
Zhijie Liu
2018-02-01
Full Text Available Modular multilevel converters (MMCs have shown great potential in the area of multi-megawatt wind energy conversion system (WECS based on permanent magnet synchronous generators (PMSGs. However, the studies in this area are few, and most of them refer to the MMC used in high-voltage direct current (HVDC systems, and hence the characteristics of the PMSG are not considered. This paper proposes a steady-state analysis method for MMCs connected to a PMSG-based WECS. In the proposed method, only the wind speed (operating condition is required as input, and all the electrical quantities in the MMC, including the amplitudes, phase angles and their harmonics, can be calculated step by step. The analysis method is built on the proposed d-q frame mathematical model. Interactions of electrical quantities between the MMC and PMSG are comprehensively considered. Moreover, a new way to calculate the average switching functions are adopted in order to improve the accuracy of the analysis method. Applications of the proposed method are also presented, which includes the characteristic analysis of capacitor voltage ripples and the capacitor sizing. Finally, the accuracy of the method and the correctness of the analysis are verified by simulations and experiments.
Johnsen, R. L.; Namkoong, D.; Edkin, R. A.
1971-01-01
The Brayton rotating unit (BRU), consisting of a turbine, an alternator, and a compressor, was tested as part of a Brayton cycle power conversion system over a side range of steady state operating conditions. The working fluid in the system was a mixture of helium-xenon gases. Turbine inlet temperature was varied from 1200 to 1600 F, compressor inlet temperature from 60 to 120 F, compressor discharge pressure from 20 to 45 psia, rotative speed from 32 400 to 39 600 rpm, and alternator liquid-coolant flow rate from 0.01 to 0.27 pound per second. Test results indicated that the BRU internal temperatures were highly sensitive to alternator coolant flow below the design value of 0.12 pound per second but much less so at higher values. The armature winding temperature was not influenced significantly by turbine inlet temperature, but was sensitive, up to 20 F per kVA alternator output, to varying alternator output. When only the rotational speed was changed (+ or - 10% of rated value), the BRU internal temperatures varied directly with the speed.
Numerical method for three dimensional steady-state two-phase flow calculations
International Nuclear Information System (INIS)
Raymond, P.; Toumi, I.
1992-01-01
This paper presents the numerical scheme which was developed for the FLICA-4 computer code to calculate three dimensional steady state two phase flows. This computer code is devoted to steady state and transient thermal hydraulics analysis of nuclear reactor cores 1,3 . The first section briefly describes the FLICA-4 flow modelling. Then in order to introduce the numerical method for steady state computations, some details are given about the implicit numerical scheme based upon an approximate Riemann solver which was developed for calculation of flow transients. The third section deals with the numerical method for steady state computations, which is derived from this previous general scheme and its optimization. We give some numerical results for steady state calculations and comparisons on required CPU time and memory for various meshing and linear system solvers
International Nuclear Information System (INIS)
Wu, T.; Cowan, C.L.; Lauer, A.; Schwiegk, H.J.
1982-03-01
The ASTERIX modular code package was developed at KFA Laboratory-Juelich for the steady state and xenon transient analysis of a pebble bed high temperature reactor. The code package was implemented on the Stanford Linear Accelerator Center Computer in August, 1980, and a user's manual for the current version of the code, identified as ASTERIX-2, was prepared as a cooperative effort by KFA Laboratory and GE-ARSD. The material in the manual includes the requirements for accessing the program, a description of the major subroutines, a listing of the input options, and a listing of the input data for a sample problem. The material is provided in sufficient detail for the user to carry out a wide range of analysis from steady state operations to the xenon induced power transients in which the local xenon, temperature, buckling and control feedback effects have been incorporated in the problem solution. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Prasser, H.M. [ed.
1998-11-01
The 2nd Workshop on measuring systems for steady-state and transient multiphase flows was held at Rossendorf on September 24/25, 1988. 14 Papers were presented, whose subjects ranged from optical and radiometric methods to impedance sensors, hot film probes and model-assisted methods of measurement. In the field of computer simulation of multiphase flow, a trend towards 3D models was identified which makes higher demands on the spatial and time resolution and on the information volume to be acquired and processed. [German] Vom 24.-25. September 1998 fand in Rossendorf der 2. Workshop ueber Messtechnik fuer stationaere und transiente Mehrphasenstroemungen statt. Es standen 14 Vortraege auf dem Programm, das Spektrum reichte von optischen ueber radiometrische Methoden bis hin zu verschiedenen Impedanzsensoren, Heissfilmsonden und modellgestuetzten Messverfahren. Auf dem Gebiet der Computersimulation von Mehrphasenstroemungen zeichnet sich zunehmend der Uebergang zu dreidimensionalen Modellen ab. Hieraus ergeben sich neue Anforderungen an die Messtechnik, sowohl hinsichtlich der raeumlich-zeitlichen Aufloesung als auch was den Umfang der zu erfassenden Informationen betrifft. (orig./AKF)
MARS input data for steady-state calculation of ATLAS
International Nuclear Information System (INIS)
Park, Hyun Sik; Euh, D. J.; Choi, K. Y.; Kwon, T. S.; Jeong, J. J.; Baek, W. P.
2004-12-01
An integral effect test loop for Pressurized Water Reactors (PWRs), the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), is under construction by Thermal-Hydraulics Safety Research Division in Korea Atomic Energy Research Institute (KAERI). This report includes calculation sheets of the input for the best-estimate system analysis code, the MARS code, based on the ongoing design features of ATLAS. The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400. The contents of this report are divided into three parts: (1) core and reactor vessel, (2) steam generator and steam line, and (3) primary piping, pressurizer and reactor coolant pump. The steady-state analysis for the ATLAS facility will be performed based on these calculation sheets, and its results will be applied to the detailed design of ATLAS. Additionally, the calculation results will contribute to getting optimum test conditions and preliminary operational test conditions for the steady-state and transient experiments
Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.
Fleming, R M T; Thiele, I; Provan, G; Nasheuer, H P
2010-06-07
The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Concept study of the Steady State Tokamak Reactor (SSTR)
International Nuclear Information System (INIS)
1991-06-01
The Steady State Tokamak Reactor (SSTR) concept has been proposed as a realistic fusion power reactor to be built in the near future. An overall concept of SSTR is introduced which is based on a small extension of the present day physics and technologies. The major feature of SSTR is the maximum utilization of a bootstrap current in order to reduce the power required for the steady state operation. This requirement leads to the choice of moderate current (12 MA), and high βp (2.0) for the device, which are achieved by selecting high aspect ratio (A=4) and high toroidal magnetic field (16.5 T). A negative-ion-based neutral beam injection system is used both for heating and central current drive. Notable engineering features of SSTR are: the use of a uniform vacuum vessel and periodical replacements of the first wall and blanket layers and significant reduction of the electromagnetic force with the use of functionally gradient material. It is shown that a tokamak machine comparable to ITER in size can become a power reactor capable of generating about 1 GW of electricity with a plant efficiency of ∼30%. (author)
Dark Entangled Steady States of Interacting Rydberg Atoms
DEFF Research Database (Denmark)
Dasari, Durga; Mølmer, Klaus
2013-01-01
their short-lived excited states lead to rapid, dissipative formation of an entangled steady state. We show that for a wide range of physical parameters, this entangled state is formed on a time scale given by the strengths of coherent Raman and Rabi fields applied to the atoms, while it is only weakly...
Cycle kinetics, steady state thermodynamics and motors-a paradigm for living matter physics
International Nuclear Information System (INIS)
Qian, Hong
2005-01-01
An integration of the stochastic mathematical models for motor proteins with Hill's steady state thermodynamics yields a rather comprehensive theory for molecular motors as open systems in the nonequilibrium steady state. This theory, a natural extension of Gibbs' approach to isothermal molecular systems in equilibrium, is compared with other existing theories with dissipative structures and dynamics. The theory of molecular motors might be considered as an archetype for studying more complex open biological systems such as biochemical reaction networks inside living cells
Steady state ion acceleration by a circularly polarized laser pulse
International Nuclear Information System (INIS)
Zhang Xiaomei; Shen Baifei; Cang Yu; Li Xuemei; Jin Zhangying; Wang Fengchao
2007-01-01
The steady state ion acceleration at the front of a cold solid target by a circularly polarized flat-top laser pulse is studied with one-dimensional particle-in-cell (PIC) simulation. A model that ions are reflected by a steady laser-driven piston is used by comparing with the electrostatic shock acceleration. A stable profile with a double-flat-top structure in phase space forms after ions enter the undisturbed region of the target with a constant velocity
Steady-state optimization of ore-dressing plants
International Nuclear Information System (INIS)
Niemi, A.J.
1989-01-01
The ore-dressing plant consists of the steps of grinding and flotation. Its optimization is based on steady state simulation of the mass balances with a plant model. The model data are obtained by tracer tests and analysis. An evaluation of performance of the plant has to observe the recovery of the valuable mineral, the throughput of the system and the grade of the concentrate which are outputs of the flotation plant. Simulation with the flotation plant model yields that combination of values of controllable inputs to flotation which corresponds to an optimal operation of the conditioning an flotation system, for a specified feed and its fractional composition. Simulations for other feeds and compositions advise how they should be chosen, for a better overall performance. (author)
Determining "small parameters" for quasi-steady state
Goeke, Alexandra; Walcher, Sebastian; Zerz, Eva
2015-08-01
For a parameter-dependent system of ordinary differential equations we present a systematic approach to the determination of parameter values near which singular perturbation scenarios (in the sense of Tikhonov and Fenichel) arise. We call these special values Tikhonov-Fenichel parameter values. The principal application we intend is to equations that describe chemical reactions, in the context of quasi-steady state (or partial equilibrium) settings. Such equations have rational (or even polynomial) right-hand side. We determine the structure of the set of Tikhonov-Fenichel parameter values as a semi-algebraic set, and present an algorithmic approach to their explicit determination, using Groebner bases. Examples and applications (which include the irreversible and reversible Michaelis-Menten systems) illustrate that the approach is rather easy to implement.
The Energy Budget of Steady State Photosynthesis
Energy Technology Data Exchange (ETDEWEB)
Dr. David M. Kramer
2012-11-27
Progress is reported in addressing these questions: Why do hcef mutants have increased CEF1? Is increased CEF1 caused by elevated expression or altered regulation of CEF1 components? Which metabolic pools can be regulators of CEF1? Do metabolites influence CEF1 directly or indirectly? Which CEF1 pathways are activated in high CEF1 mutants? Is PQR a proton pump? Is elevated CEF1 activated by state transitions?
Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.
Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André
2015-12-01
We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.
Nonequilibrium steady states of ideal bosonic and fermionic quantum gases
Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André
2015-12-01
We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.
Estimated combined steady state tyre slip characteristics
Fernandez, A.L.A.; Pauwelussen, J.P.
2001-01-01
Excessive behaviour of vehicles is often the subject of study, motivated by either the development of active safety systems uch as ESP, or the improvement of vehicle performance such as for racecars. In all of these cases, combined slip needs to be taken into account. In many cases however, the full
Steady state plasma operation in RF dominated regimes on EAST
Energy Technology Data Exchange (ETDEWEB)
Zhang, X. J.; Zhao, Y. P.; Gong, X. Z.; Hu, C. D.; Liu, F. K.; Hu, L. Q.; Wan, B. N., E-mail: bnwan@ipp.ac.cn; Li, J. G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)
2015-12-10
Significant progress has recently been made on EAST in the 2014 campaign, including the enhanced CW H&CD system over 20MW heating power (LHCD, ICRH and NBI), more than 70 diagnostics, ITER-like W-monoblock on upper divertor, two inner cryo-pumps and RMP coils, enabling EAST to investigate long pulse H mode operation with dominant electron heating and low torque to address the critical issues for ITER. H-mode plasmas were achieved by new H&CD system or 4.6GHz LHCD alone for the first time. Long pulse high performance H mode has been obtained by LHCD alone up to 28s at H{sub 98}∼1.2 or by combing of ICRH and LHCD, no or small ELM was found in RF plasmas, which is essential for steady state operation in the future Tokamak. Plasma operation in low collision regimes were implemented by new 4.6GHz LHCD with core Te∼4.5keV. The non-inductive scenarios with high performance at high bootstrap current fraction have been demonstrated in RF dominated regimes for long pulse operation. Near full non-inductive CD discharges have been achieved. In addition, effective heating and decoupling method under multi-transmitter for ICRF system were developed in this campaign, etc. EAST could be in operation with over 30MW CW heating and current drive power (LHCD ICRH NBI and ECRH), enhanced diagnostic capabilities and full actively-cooled metal wall from 2015. It will therefore allow to access new confinement regimes and to extend these regimes towards to steady state operation.
Evidence for forcing-dependent steady states in a turbulent swirling flow.
Saint-Michel, B; Dubrulle, B; Marié, L; Ravelet, F; Daviaud, F
2013-12-06
We study the influence on steady turbulent states of the forcing in a von Karman flow, at constant impeller speed, or at constant torque. We find that the different forcing conditions change the nature of the stability of the steady states and reveal dynamical regimes that bear similarities to low-dimensional systems. We suggest that this forcing dependence may be applicable to other turbulent systems.
Full transmission modes and steady states in defect gratings,
van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.; de Ridder, R.M; Altena, G; Geuzebroek, D.H.; Dekker, R
2003-01-01
For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the
Electron density measurement for steady state plasmas
International Nuclear Information System (INIS)
Kawano, Yasunori; Chiba, Shinichi; Inoue, Akira
2000-01-01
Electron density of a large tokamak has been measured successfully by the tangential CO 2 laser polarimeter developed in JT-60U. The tangential Faraday rotation angles of two different wavelength of 9.27 and 10.6 μm provided the electron density independently. Two-color polarimeter concept for elimination of Faraday rotation at vacuum windows is verified for the first time. A system stability for long time operation up to ∼10 hours is confirmed. A fluctuation of a signal baseline is observed with a period of ∼3 hours and an amplitude of 0.4 - 0.7deg. In order to improve the polarimeter, an application of diamond window for reduction of the Faraday rotation at vacuum windows and another two-color polarimeter concept for elimination of mechanical rotation component are proposed. (author)
Steady state quantum discord for circularly accelerated atoms
Energy Technology Data Exchange (ETDEWEB)
Hu, Jiawei, E-mail: hujiawei@nbu.edu.cn [Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn [Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China)
2015-12-15
We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptotic value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.
Contour analysis of steady state tokamak reactor performance
International Nuclear Information System (INIS)
Devoto, R.S.; Fenstermacher, M.E.
1990-01-01
A new method of analysis for presenting the possible operating space for steady state, non-ignited tokamak reactors is proposed. The method uses contours of reactor performance and plasma characteristics, fusion power gain, wall neutron flux, current drive power, etc., plotted on a two-dimensional grid, the axes of which are the plasma current I p and the normalized beta, β n = β/(I p /aB 0 ), to show possible operating points. These steady state operating contour plots are called SOPCONS. This technique is illustrated in an application to a design for the International Thermonuclear Experimental Reactor (ITER) with neutral beam, lower hybrid and bootstrap current drive. The utility of the SOPCON plots for pointing out some of the non-intuitive considerations in steady state reactor design is shown. (author). Letter-to-the-editor. 16 refs, 3 figs, 1 tab
Realizing steady-state tokamak operation for fusion energy
International Nuclear Information System (INIS)
Luce, T. C.
2011-01-01
Continuous operation of a tokamak for fusion energy has clear engineering advantages but requires conditions beyond those sufficient for a burning plasma. The fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually, and significant progress has been made in the past decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are operated routinely without disruptions near pressure limits, as needed for steady-state operation. Fully noninductive sustainment with more than half of the current from intrinsic currents has been obtained for a resistive time with normalized pressure and confinement approaching those needed for steady-state conditions. One remaining challenge is handling the heat and particle fluxes expected in a steady-state tokamak without compromising the core plasma performance.
Steady State Advanced Tokamak (SSAT): The mission and the machine
International Nuclear Information System (INIS)
Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.
1992-03-01
Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the US National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new ''Steady State Advanced Tokamak'' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO
Emergence of advance waves in a steady-state universe
Energy Technology Data Exchange (ETDEWEB)
Hobart, R.H.
1979-10-01
In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state.
Emergence of advance waves in a steady-state universe
International Nuclear Information System (INIS)
Hobart, R.H.
1979-01-01
In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state
Steady-state propagation of interface corner crack
DEFF Research Database (Denmark)
Veluri, Badrinath; Jensen, Henrik Myhre
2013-01-01
Steady-state propagation of interface cracks close to three-dimensional corners has been analyzed. Attention was focused on modeling the shape of the interface crack front and calculating the critical stress for steady-state propagation of the crack. The crack propagation was investigated...... on the finite element method with iterative adjustment of the crack front to estimate the critical delamination stresses as a function of the fracture criterion and corner angles. The implication of the results on the delamination is discussed in terms of crack front profiles and the critical stresses...... for propagation and the angle of intersection of the crack front with the free edge....
Steady state theta pinch concept for slow formation of FRC
International Nuclear Information System (INIS)
Hirano, K.
1987-05-01
A steady state high beta plasma flow through a channel along the magnetic field increasing downstream can be regarded as a ''steady state theta pinch'', because if we see the plasma riding on the flow we should observe very similar process taking place in a theta pinch. Anticipating to produce an FRC without using very high voltage technics such as the ones required in a conventional theta pinch, we have studied after the analogy a ''steady state reversed field theta pinch'' which is brought about by steady head-on collision of counter plasma streams along the channel as ejected from two identical co-axial plasma sources mounted at the both ends of the apparatus. The ideal Poisson and shock adiabatic flow models are employed for the analysis of the steady colliding process. It is demonstrated that an FRC involving large numbers of particles is produced only by the weak shock mode which is achieved in case energetic plasma flow is decelerated almost to be stagnated through Poisson adiabatic process before the streams are collided. (author)
Manifest and Subtle Cyclic Behavior in Nonequilibrium Steady States
International Nuclear Information System (INIS)
Zia, R K P; Weiss, Jeffrey B; Mandal, Dibyendu; Fox-Kemper, Baylor
2016-01-01
Many interesting phenomena in nature are described by stochastic processes with irreversible dynamics. To model these phenomena, we focus on a master equation or a Fokker-Planck equation with rates which violate detailed balance. When the system settles in a stationary state, it will be a nonequilibrium steady state (NESS), with time independent probability distribution as well as persistent probability current loops. The observable consequences of the latter are explored. In particular, cyclic behavior of some form must be present: some are prominent and manifest, while others are more obscure and subtle. We present a theoretical framework to analyze such properties, introducing the notion of “probability angular momentum” and its distribution. Using several examples, we illustrate the manifest and subtle categories and how best to distinguish between them. These techniques can be applied to reveal the NESS nature of a wide range of systems in a large variety of areas. We illustrate with one application: variability of ocean heat content in our climate system. (paper)
Burn cycle requirements comparison of pulsed and steady-state tokamak reactors
International Nuclear Information System (INIS)
Brooks, J.N.; Ehst, D.A.
1983-12-01
Burn cycle parameters and energy transfer system requirements were analyzed for an 8-m commercial tokamak reactor using four types of cycles: conventional, hybrid, internal transformer, and steady state. Not surprisingly, steady state is the best burn mode if it can be achieved. The hybrid cycle is a promising alternative to the conventional. In contrast, the internal transformer cycle does not appear attractive for the size tokamak in question
Basin stability measure of different steady states in coupled oscillators
Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar
2017-04-01
In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.
Steady state solution of the Poisson-Nernst-Planck equations
International Nuclear Information System (INIS)
Golovnev, A.; Trimper, S.
2010-01-01
The exact steady state solution of the Poisson-Nernst-Planck equations (PNP) is given in terms of Jacobi elliptic functions. A more tractable approximate solution is derived which can be used to compare the results with experimental observations in binary electrolytes. The breakdown of the PNP for high concentration and high applied voltage is discussed.
Kinematic Cosmology & a new ``Steady State'' Model of Continued Creation
Wegener, Mogens
2006-03-01
Only a new "steady state" model justifies the observations of fully mature galaxies at ever increasing distances. The basic idea behind the world model presented here, which is a synthesis of the cosmologies of Parmenides and Herakleitos, is that the invariant structure of the infinite contents of a universe in flux may be depicted as a finite hyperbolic pseudo-sphere.
Herd-Level Modeling and Steady-State Livestock Productivity ...
African Journals Online (AJOL)
... an outline of the scope for applications and addresses the prospects for refinement and model extensions. The algorithms for use in development of steady state derivations include transition of matrices in a Markov Chain approach, continuous differential equations and actuarial approach built on life and fecundity tables.
Combined Steady-State and Dynamic Heat Exchanger Experiment
Luyben, William L.; Tuzla, Kemal; Bader, Paul N.
2009-01-01
This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…
Steady State and Transient Analysis of Induction Motor Driving a ...
African Journals Online (AJOL)
The importance of using a digital computer in studying the performance of Induction machine under steady and transient states is presented with computer results which show the transient behaviour of 3-phase machine during balanced and unbalanced conditions. The computer simulation for these operating conditions is ...
steady and dynamic states analysis of induction motor: fea approach
African Journals Online (AJOL)
HOD
The flux levels at these loading conditions were also monitored. Key words: Three phase Induction Motor, Steady state and Dynamic Response, Flux Levels, FEA, Loading conditions. 1. INTRODUCTION ..... Boston: Computational Mechanics Publications;. New York: ... for Electrical Engineers, Cambridge University. Press ...
Steady and dynamic states analysis of induction motor: FEA approach
African Journals Online (AJOL)
This paper deals with the steady and dynamic states analysis of induction motor using finite element analysis (FEA) approach. The motor has aluminum rotor bars and is designed for direct-on-line operation at 50 Hz. A study of the losses occurring in the motor performed at operating frequency of 50Hz showed that stator ...
Steady-state equations of even flux and scattering
International Nuclear Information System (INIS)
Verwaerde, D.
1985-11-01
Some mathematical properties of steady-state equation of even flux are shown in variational formalism. This theoretical frame allows to study the existence of a solution and its asymptotical behavior in opaque media (i.e. the relation with scattering equation). At last it allows to qualify the convergence velocity of resolution iterative processes used practically [fr
A displacement based FE formulation for steady state problems
Yu, Y.
2005-01-01
In this thesis a new displacement based formulation is developed for elasto-plastic deformations in steady state problems. In this formulation the displacements are the primary variables, which is in contrast to the more common formulations in terms of the velocities as the primary variables. In a
Steady-state Operational Characteristics of Ghana Research ...
African Journals Online (AJOL)
Steady state operational characteristics of the 30 kW tank-in-pool type reactor named Ghana Research Reactor-1 were investigated after a successful on-site zero power critical experiments. The steadystate operational character-istics determined were the thermal neutron fluxes, maximum period of operation at nominal ...
Dust remobilization in fusion plasmas under steady state conditions
Tolias, P.; Ratynskaia, S.; de Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; I. Bykov,; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.
2016-01-01
The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic
Stabilizing the border steady-state solution of two interacting ...
African Journals Online (AJOL)
In this paper, we have successfully developed a feedback control which has been used to stabilize an unstable steady-state solution (0, 3.3534). This convergence has occurred when the values of the final time are 190, 200, 210 and 220 which corresponds to the scenario when the value of the step length of our simulation ...
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.
Three-dimensional stellarator equilibrium as an ohmic steady state
International Nuclear Information System (INIS)
Park, W.; Monticello, D.A.; Strauss, H.; Manickam, J.
1985-07-01
A stable three-dimensional stellarator equilibrium can be obtained numerically by a time-dependent relaxation method using small values of dissipation. The final state is an ohmic steady state which approaches an ohmic equilibrium in the limit of small dissipation coefficients. We describe a method to speed up the relaxation process and a method to implement the B vector . del p = 0 condition. These methods are applied to obtain three-dimensional heliac equilibria using the reduced heliac equations
Sensitivity Analysis for Steady State Groundwater Flow Using Adjoint Operators
Sykes, J. F.; Wilson, J. L.; Andrews, R. W.
1985-03-01
Adjoint sensitivity theory is currently being considered as a potential method for calculating the sensitivity of nuclear waste repository performance measures to the parameters of the system. For groundwater flow systems, performance measures of interest include piezometric heads in the vicinity of a waste site, velocities or travel time in aquifers, and mass discharge to biosphere points. The parameters include recharge-discharge rates, prescribed boundary heads or fluxes, formation thicknesses, and hydraulic conductivities. The derivative of a performance measure with respect to the system parameters is usually taken as a measure of sensitivity. To calculate sensitivities, adjoint sensitivity equations are formulated from the equations describing the primary problem. The solution of the primary problem and the adjoint sensitivity problem enables the determination of all of the required derivatives and hence related sensitivity coefficients. In this study, adjoint sensitivity theory is developed for equations of two-dimensional steady state flow in a confined aquifer. Both the primary flow equation and the adjoint sensitivity equation are solved using the Galerkin finite element method. The developed computer code is used to investigate the regional flow parameters of the Leadville Formation of the Paradox Basin in Utah. The results illustrate the sensitivity of calculated local heads to the boundary conditions. Alternatively, local velocity related performance measures are more sensitive to hydraulic conductivities.
Rowan, D J
2013-07-01
Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of (137)Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable (133)Cs) from geologic sources and the other released in pulses ((137)Cs) from reactor operations. I also compare (137)Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test (137)Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher (137)Cs BAFs than expected from (133)Cs BAFs for the same fish or (137)Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any
Chlorine decay under steady and unsteady-state hydraulic conditions
DEFF Research Database (Denmark)
Stoianov, Ivan; Aisopou, Angeliki
2014-01-01
This paper describes a simulation framework for the scale-adaptive hydraulic and chlorine decay modelling under steady and unsteady-state flows. Bulk flow and pipe wall reaction coefficients are replaced with steady and unsteady-state reaction coefficients. An unsteady decay coefficient is defined...... which depends upon the absolute value of shear stress and the rate of change of shear stress for quasi-unsteady and unsteady-state flows. A preliminary experimental and analytical investigation was carried out in a water transmission main. The results were used to model monochloramine decay...... and these demonstrate that the dynamic hydraulic conditions have a significant impact on water quality deterioration and the rapid loss of disinfectant residual. © 2013 The Authors....
Simulations of KSTAR high performance steady state operation scenarios
International Nuclear Information System (INIS)
Na, Yong-Su; Kessel, C.E.; Park, J.M.; Yi, Sumin; Kim, J.Y.; Becoulet, A.; Sips, A.C.C.
2009-01-01
We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; β N above 3, H 98 (y, 2) up to 2.0, f BS up to 0.76 and f NI equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of q min is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work
Simulation of steady-state natural convection using CFD
Energy Technology Data Exchange (ETDEWEB)
Zitzmann, T.; Pfrommer, P. [Univ. of Applied Sciences, Coberg (Germany); Cook, M.; Rees, S.; Marjanovic, L. [De Montfort Univ., Leicester (United Kingdom). Inst. of Energy and Sustainable Development
2005-07-01
Building materials play an important role in the creation of comfortable indoor environments and can reduce dependence on high energy use mechanical systems. Correct predictions between building structure and heat transfer are needed in order to achieve optimal conditions. Heat transfer is dependent on the velocity and temperature distribution in a room, particularly in the wall boundary layer. This paper discussed the modeling of air flow and heat transfer over a heated vertical plate in a differentially-heated cavity using Computational Fluid Dynamics (CFD). Guidelines on the use of CFD with unstructured meshes to model buoyancy-driven flow in a cavity were presented. Benchmark CFD results were compared with published analytical data. The finite volume method was employed using an unstructured mesh containing tetrahedral and prism elements, so that local numerical diffusion was reduced and therefore suitable for complex flows. The code was based on a couple solver for solving the differential equations using the fully implicit discretization method. Hydrodynamic equations were treated as one single system. A false time stepping method was used to reduce the number of iterations required for convergence, which also guided the solutions to a steady-state solution. It was concluded that the methodology achieves accurate predictions, and is suitable for the modeling of heat transfer optimizations. 13 refs., 7 figs.
Differences between automatically detected and steady-state fractional flow reserve.
Härle, Tobias; Meyer, Sven; Vahldiek, Felix; Elsässer, Albrecht
2016-02-01
Measurement of fractional flow reserve (FFR) has become a standard diagnostic tool in the catheterization laboratory. FFR evaluation studies were based on pressure recordings during steady-state maximum hyperemia. Commercially available computer systems detect the lowest Pd/Pa ratio automatically, which might not always be measured during steady-state hyperemia. We sought to compare the automatically detected FFR and true steady-state FFR. Pressure measurement traces of 105 coronary lesions from 77 patients with intermediate coronary lesions or multivessel disease were reviewed. In all patients, hyperemia had been achieved by intravenous adenosine administration using a dosage of 140 µg/kg/min. In 42 lesions (40%) automatically detected FFR was lower than true steady-state FFR. Mean bias was 0.009 (standard deviation 0.015, limits of agreement -0.02, 0.037). In 4 lesions (3.8%) both methods lead to different treatment recommendations, in all 4 cases instantaneous wave-free ratio confirmed steady-state FFR. Automatically detected FFR was slightly lower than steady-state FFR in more than one-third of cases. Consequently, interpretation of automatically detected FFR values closely below the cutoff value requires special attention.
Fiedler, Anna; Raeth, Sebastian; Theis, Fabian J; Hausser, Angelika; Hasenauer, Jan
2016-08-22
Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the parameters. However, implementing steady-state constraints in the optimization often results in convergence problems. In this manuscript, we propose two new methods for solving optimization problems with steady-state constraints. The first method exploits ideas from optimization algorithms on manifolds and introduces a retraction operator, essentially reducing the dimension of the optimization problem. The second method is based on the continuous analogue of the optimization problem. This continuous analogue is an ODE whose equilibrium points are the optima of the constrained optimization problem. This equivalence enables the use of adaptive numerical methods for solving optimization problems with steady-state constraints. Both methods are tailored to the problem structure and exploit the local geometry of the steady-state manifold and its stability properties. A parameterization of the steady-state manifold is not required. The efficiency and reliability of the proposed methods is evaluated using one toy example and two applications. The first application example uses published data while the second uses a novel dataset for Raf/MEK/ERK signaling. The proposed methods demonstrated better convergence properties than state-of-the-art methods employed in systems and computational biology. Furthermore, the average computation time per converged start is significantly lower. In addition to the theoretical results, the
3-D steady analysis of flow in CRDM sewerage system
International Nuclear Information System (INIS)
Sun Yan; Liang Tiebo; Chen Zhihui; Zhao Jing; Zhang Yulong
2014-01-01
In order to obtain the flow state during sewer condition in Reactor and CRDM Sewerage system (RSE), this paper analyzes the 3-D steady flow in RSE by using Computational Fluid Dynamics (CFD) method. In the premise that the pressure drop of the RSE is known, the mass flow rate, the velocity and the type of flow in the system is obtained with the inverse method, which is proposed and validated to be applicable in the paper. The result shows that in the sewerage conditions, the type of flow in the RSE is turbulence flow, which is helpful to sewer drain. The study results give an reference for the design of RSE. (authors)
Steady State Dynamic Operating Behavior of Universal Motor
Directory of Open Access Journals (Sweden)
Muhammad Khan Burdi
2015-01-01
Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known
Hydrodynamics of stratified epithelium: Steady state and linearized dynamics
Yeh, Wei-Ting; Chen, Hsuan-Yi
2016-05-01
A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.
Theory of minimum dissipation of energy for the steady state
International Nuclear Information System (INIS)
Chu, T.K.
1992-02-01
The magnetic configuration of an inductively driven steady-state plasma bounded by a surface (or two adjacent surfaces) on which B·n = 0 is force-free: ∇xB = 2αB, where α is a constant, in time and in space. α is the ratio of the Poynting flux to the magnetic helicity flux at the boundary. It is also the ratio of the dissipative rates of the magnetic energy to the magnetic helicity in the plasma. The spatial extent of the configuration is noninfinitesimal. This global constraint is a result of the requirement that, for a steady-state plasma, the rate of change of the vector potential, ∂A/∂t, is constant in time and uniform in space
The Steady State Calculation for SMART with MIDAS/SMR
International Nuclear Information System (INIS)
Park, Jong Hwa; Kim, Dong Ha; Chung, Young Jong; Park, Sun Hee; Cho, Seong Won
2010-01-01
KAERI is developing a new concept of reactor that all the main components such as the steam generator, the coolant pumps and the pressurizer are located inside the reactor vessel. Before the severe accident sequences are estimated, it is prerequisite that MIDAS code predicts the steady state conditions properly. But MIDAS code does not include the heat transfer model for the helical tube. Therefore, the heat transfer models for the helical tube from TASS/SMR-S were implemented into MIDAS code. To estimate the validity of the implemented heat transfer correlations for the helical tube and the input data, the steady state was recalculated with MIDAS/SMR based on design level 2 and compared with the design values
Internal transport barrier physics for steady state operation in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Wakatani, Masahiro [Kyoto Univ., Graduate School of Engineering, Uji, Kyoto (Japan); Fukuda, Takeshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Connor, Jack W. [Culham Science Centre, EURATOM/UKAEA Association (United Kingdom); Garbet, Xavier [Culham Science Centre, EFDA-JET CSU (United Kingdom); Gormezano, Claude [Associazone EURATOM-ENEA sulla Fusione C.R. Frascati (Italy); Mukhovatov, Vladimir [ITER Naka Joint Work Site, ITER Physics Unit, Naka, Ibaraki (Japan)
2003-07-01
Experimental results for the ITB (Internal Transport Barrier) formation and sustainment are compiled in a unified manner to find common features of ITBs in tokamaks. Global scaling laws for threshold power to obtain the ITBs are discussed. Theoretical models for plasmas with ITBs are summarized from stability and transport point of view. Finally possibility to obtain steady-state ITBs will be discussed in addition to extrapolation to ITER. (author)
Steady state magnetic field configurations for the earth's magnetotail
Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.
1989-01-01
A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).
Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard
2014-06-26
A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for
Flavour fields in steady state: stress tensor and free energy
International Nuclear Information System (INIS)
Banerjee, Avik; Kundu, Arnab; Kundu, Sandipan
2016-01-01
The dynamics of a probe brane in a given gravitational background is governed by the Dirac-Born-Infeld action. The corresponding open string metric arises naturally in studying the fluctuations on the probe. In Gauge-String duality, it is known that in the presence of a constant electric field on the worldvolume of the probe, the open string metric acquires an event horizon and therefore the fluctuation modes on the probe experience an effective temperature. In this article, we bring together various properties of such a system to a formal definition and a subsequent narration of the effective thermodynamics and the stress tensor of the corresponding flavour fields, also including a non-vanishing chemical potential. In doing so, we point out a potentially infinitely-degenerate scheme-dependence of regularizing the free energy, which nevertheless yields a universal contribution in certain cases. This universal piece appears as the coefficient of a log-divergence in free energy when a space-filling probe brane is embedded in AdS d+1 -background, for d=2,4, and is related to conformal anomaly. For the special case of d=2, the universal factor has a striking resemblance to the well-known heat current formula in (1+1)-dimensional conformal field theory in steady-state, which endows a plausible physical interpretation to it. Interestingly, we observe a vanishing conformal anomaly in d=6.
Continuous cryopump for steady state mirror fusion reactors
International Nuclear Information System (INIS)
Batzer, T.H.; Call, W.R.
1983-01-01
The characteristics of mirror fusion reactors, i.e., steady state operation, a low neutral gas density, and a large gas throughput require unique vacuum pumping capabilities. One approach that appears to meet these requirements is a liquid helium-cooled cryopump system in which a fixed portion can be isolated and degassed while the remainder continues to pump. The time to degas a rotating, fixed portion of the pumping area and the ratio of that area to the total area fixes the gas inventory in the chamber. It follows that the active pump area maintains the required neutral gas density and the time-averaged degassing rate equals the gas throughput. We have built such a cryopump whereby the gas condensed (deuterium) on the liquid helium-cooled panel can be transferred to a collector pump and subsequently to an exterior mechanical pump and exhausted. At panel loadings as high as 0.55 Torr-/lcm 2 the gas leakage during degassing is less than 8% and the degassing time is less than 10 min. Scaling to reactor size appears to be feasible
Quasi-steady state thermal performances of a solar air heater with ...
African Journals Online (AJOL)
Quasi-steady state thermal performance of a solar air heater with a combined absorber is studied. The whole energy balance equations related to the system were articulated as a linear system of temperature equations. Solutions to this linear system were assessed from program based on an iterative process. The mean ...
Steady-state oxygen-solubility in niobium
International Nuclear Information System (INIS)
Schulze, K.; Jehn, H.
1977-01-01
During annealing of niobium in oxygen in certain temperature and pressure ranges steady states are established between the absorption of molecular oxygen and the evaporation of volatile oxides. The oxygen concentration in the niobium-oxygen α-solid solution is a function of oxygen pressure and temperature and has been redetermined in the ranges 10 -5 - 10 -2 Pa O 2 and 2,070 - 2,470 K. It follows differing from former results the equation csub(o) = 9.1 x 10 -6 x sub(po2) x exp (502000/RT) with csub(o) in at.-ppm, sub(po2) in Pa, T in K, R = 8.31 J x mol -1 x K -1 . The existence of steady states is limited to a temperature range from 1870 to 2470 K and to oxygen concentrations below the solubility limit given by solidus and solvus lines in the T-c diagram. In the experiments high-purity niobium wires with a specific electrical ratio rho (273 K)/rho(4.2 K) > 5,000 have been gassed under isothermal-isobaric conditions until the steady state has been reached. The oxygen concentration has been determined analytically by vacuum fusion extraction with platinum-flux technique as well as by electrical residual resistivity measurements at 4.2 K. (orig.) [de
Toroidal visco-resistive magnetohydrodynamic steady states contain vortices
International Nuclear Information System (INIS)
Bates, J.W.; Montgomery, D.C.
1998-01-01
Poloidal velocity fields seem to be a fundamental feature of resistive toroidal magnetohydrodynamic (MHD) steady states. They are a consequence of force balance in toroidal geometry, do not require any kind of instability, and disappear in the open-quotes straight cylinderclose quotes (infinite aspect ratio) limit. If a current density j results from an axisymmetric toroidal electric field that is irrotational inside a torus, it leads to a magnetic field B such that ∇x(jxB) is nonvanishing, so that the Lorentz force cannot be balanced by the gradient of any scalar pressure in the equation of motion. In a steady state, finite poloidal velocity fields and toroidal vorticity must exist. Their calculation is difficult, but explicit solutions can be found in the limit of low Reynolds number. Here, existing calculations are generalized to the more realistic case of no-slip boundary conditions on the velocity field and a circular toroidal cross section. The results of this paper strongly suggest that discussions of confined steady states in toroidal MHD must include flows from the outset. copyright 1998 American Institute of Physics
Transient and steady-state currents in epoxy resin
International Nuclear Information System (INIS)
Guillermin, Christophe; Rain, Pascal; Rowe, Stephen W
2006-01-01
Charging and discharging currents have been measured in a diglycidyl ether of bisphenol-A epoxy resin with and without silica fillers, below and above its glass transition temperature T g = 65 deg. C. Both transient and steady-state current densities have been analysed. The average applied fields ranged from 3 to 35 kV mm -1 with a sample thickness of 0.5 mm. Above T g , transient currents suggested a phenomenon of charge injection forming trapped space charges even at low fields. Steady-state currents confirmed that the behaviour was not Ohmic and suggested Schottky-type injection. Below T g , the current is not controlled by the metal-dielectric interface but by the conduction in the volume: the current is Ohmic at low fields and both transient and steady-state currents suggest a phenomenon of space-charge limited currents at high fields. The field threshold is similar in the filler-free and the filled resin. Values in the range 12-17 kV mm -1 have been measured
Transient and steady-state currents in epoxy resin
Energy Technology Data Exchange (ETDEWEB)
Guillermin, Christophe [Schneider Electric Industries S.A.S., 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France); Rain, Pascal [Laboratoire d' Electrostatique et de Materiaux Dielectriques (LEMD), CNRS, 25 avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Rowe, Stephen W [Schneider Electric Industries S.A.S., 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France)
2006-02-07
Charging and discharging currents have been measured in a diglycidyl ether of bisphenol-A epoxy resin with and without silica fillers, below and above its glass transition temperature T{sub g} = 65 deg. C. Both transient and steady-state current densities have been analysed. The average applied fields ranged from 3 to 35 kV mm{sup -1} with a sample thickness of 0.5 mm. Above T{sub g}, transient currents suggested a phenomenon of charge injection forming trapped space charges even at low fields. Steady-state currents confirmed that the behaviour was not Ohmic and suggested Schottky-type injection. Below T{sub g}, the current is not controlled by the metal-dielectric interface but by the conduction in the volume: the current is Ohmic at low fields and both transient and steady-state currents suggest a phenomenon of space-charge limited currents at high fields. The field threshold is similar in the filler-free and the filled resin. Values in the range 12-17 kV mm{sup -1} have been measured.
Directory of Open Access Journals (Sweden)
Pankaj Thakur
2014-01-01
Full Text Available Thermal stress and strain rates in a thick walled rotating cylinder under steady state temperature has been derived by using Seth’s transition theory. For elastic-plastic stage, it is seen that with the increase of temperature, the cylinder having smaller radii ratios requires lesser angular velocity to become fully plastic as compared to cylinder having higher radii ratios The circumferential stress becomes larger and larger with the increase in temperature. With increase in thickness ratio stresses must be decrease. For the creep stage, it is seen that circumferential stresses for incompressible materials maximum at the internal surface as compared to compressible material, which increase with the increase in temperature and measure n.
Time Reversibility, Correlation Decay and the Steady State Fluctuation Relation for Dissipation
Directory of Open Access Journals (Sweden)
Denis J. Evans
2013-04-01
Full Text Available Steady state fluctuation relations for nonequilibrium systems are under intense investigation because of their important practical implications in nanotechnology and biology. However the precise conditions under which they hold need clarification. Using the dissipation function, which is related to the entropy production of linear irreversible thermodynamics, we show time reversibility, ergodic consistency and a recently introduced form of correlation decay, called T-mixing, are sufficient conditions for steady state fluctuation relations to hold. Our results are not restricted to a particular model and show that the steady state fluctuation relation for the dissipation function holds near or far from equilibrium subject to these conditions. The dissipation function thus plays a comparable role in nonequilibrium systems to thermodynamic potentials in equilibrium systems.
Feasibility study for improved steady-state initialization algorithms for the RELAP5 computer code
International Nuclear Information System (INIS)
Paulsen, M.P.; Peterson, C.E.; Katsma, K.R.
1993-04-01
A design for a new steady-state initialization method is presented that represents an improvement over the current method used in RELAP5. Current initialization methods for RELAP5 solve the transient fluidflow balance equations simulating a transient to achieve steady-state conditions. Because the transient solution is used, the initial conditions may change from the desired values requiring the use of controllers and long transient running times to obtain steady-state conditions for system problems. The new initialization method allows the user to fix thermal-hydraulic values in volumes and junctions where the conditions are best known and have the code compute the initial conditions in other areas of the system. The steady-state balance equations and solution methods are presented. The constitutive, component, and specialpurpose models are reviewed with respect to modifications required for the new steady-state initialization method. The requirements for user input are defined and the feasibility of the method is demonstrated with a testbed code by initializing some simple channel problems. The initialization of the sample problems using, the old and the new methods are compared
Local wettability reversal during steady-state two-phase flow in porous media.
Sinha, Santanu; Grøva, Morten; Ødegården, Torgeir Bryge; Skjetne, Erik; Hansen, Alex
2011-09-01
We study the effect of local wettability reversal on remobilizing immobile fluid clusters in steady-state two-phase flow in porous media. We consider a two-dimensional network model for a porous medium and introduce a wettability alteration mechanism. A qualitative change in the steady-state flow patterns, destabilizing the percolating and trapped clusters, is observed as the system wettability is varied. When capillary forces are strong, a finite wettability alteration is necessary to move the system from a single-phase to a two-phase flow regime. When both phases are mobile, we find a linear relationship between fractional flow and wettability alteration.
ATC calculation with steady-state security constraints using Benders decomposition
International Nuclear Information System (INIS)
Shaaban, M.; Yan, Z.; Ni, Y.; Wu, F.; Li, W.; Liu, H.
2003-01-01
Available transfer capability (ATC) is an important indicator of the usable amount of transmission capacity accessible by assorted parties for commercial trading, ATC calculation is nontrivial when steady-state security constraints are included. In hie paper, Benders decomposition method is proposed to partition the AC problem with steady-state security constraints into a base case master problem and a series of subproblems relevant to various contingencies to include their impacts on ATC. The mathematical model is formulated and the two solution schemes are presented. Computer testing on the 4-bus system and IEEE 30-bus system shows the effectiveness of the proposed method and the solution schemes. (Author)
International Nuclear Information System (INIS)
Pryor, R.J.; Maloney, K.J.
1990-10-01
This document contains the steady-state and loss-of-pumping accident analysis of the representative design for the Savannah River heavy water new production reactor. A description of the reactor system and computer input model, the results of the steady-state analysis, and the results of four loss-of-pumping accident calculations are presented. 5 refs., 37 figs., 4 tabs
The Markov process admits a consistent steady-state thermodynamic formalism
Peng, Liangrong; Zhu, Yi; Hong, Liu
2018-01-01
The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.
Rapid mixing and short storage timescale in the magma dynamics of a steady-state volcano
Petrone, Chiara Maria; Braschi, Eleonora; Francalanci, Lorella; Casalini, Martina; Tommasini, Simone
2018-06-01
Steady-state volcanic activity implies equilibrium between the rate of magma replenishment and eruption of compositionally homogeneous magmas, lasting for tens to thousands of years in an open conduit system. The Present-day activity of Stromboli volcano (Aeolian Islands, Southern Italy) has long been recognised as typical of a steady-state volcano, with a shallow magmatic reservoir (highly porphyritic or hp-magma) continuously refilled by more mafic magma (with low phenocryst content or lp-magma) at a constant rate and accompanied by mixing, crystallisation and eruption. Our aim is to clarify the timescale and dynamics of the plumbing system at the establishment of the Present-day steady-state activity (volcanoes.
Steady-state entanglement and thermalization of coupled qubits in two common heat baths
Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie
2018-03-01
In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.
Identification of Steady and Non-Steady Gait of Humanexoskeleton Walking System
Żur, K. K.
2013-08-01
In this paper a method of analysis of exoskeleton multistep locomotion was presented by using a computer with the preinstalled DChC program. The paper also presents a way to analytically calculate the ",motion indicator", as well as the algorithm calculating its two derivatives. The algorithm developed by the author processes data collected from the investigation and then a program presents the obtained final results. Research into steady and non-steady multistep locomotion can be used to design two-legged robots of DAR type and exoskeleton control system
A steady state tokamak operation by use of magnetic monopoles
International Nuclear Information System (INIS)
Narihara, K.
1991-12-01
A steady state tokamak operation based on a magnetic monopole circuit is considered. Circulation of a chain of iron cubes which trap magnetic monopoles generates the needed loop voltage. The monopole circuit is enclosed by a series of solenoid coils in which magnetic field is feedback controlled so that the force on the circuit balance against the mechanical friction. The driving power is supplied through the current sources of poloidal, ohmic and solenoid coils. The current drive efficiency is same as that of the ohmic current drive. (author)
Steady state heat transfer of helium cooled cable bundles
International Nuclear Information System (INIS)
Khalil, A.
1982-01-01
In the present study nucleate and film boiling heat transfer characteristics of horizontal conductor bundles are investigated at steady state conditions. The effect of gaps between wires, number of wires, wire position, wire size and bundle orientation on the departure from nucleate boiling and transition to film boiling is studied. For gaps close to the bubble departure diameter, the critical heat flux can approach up to 90% of the single wire value. Consequently, the maximum stable current for a given bundle can be significantly increased above the single conductor value for the same cross-sectional area. (author)
Visual steady state in relation to age and cognitive function
DEFF Research Database (Denmark)
Horwitz, Anna; Dyhr Thomsen, Mia; Wiegand, Iris
2017-01-01
Neocortical gamma activity is crucial for sensory perception and cognition. This study examines the value of using non-task stimulation-induced EEG oscillations to predict cognitive status in a birth cohort of healthy Danish males (Metropolit) with varying cognitive ability. In particular, we...... examine the steady-state VEP power response (SSVEP-PR) in the alpha (8Hz) and gamma (36Hz) bands in 54 males (avg. age: 62.0 years) and compare these with 10 young healthy participants (avg. age 27.6 years). Furthermore, we correlate the individual alpha-to-gamma difference in relative visual-area power...
On the minimum circulating power of steady state tokamaks
International Nuclear Information System (INIS)
Itoh, K.; Itoh, S.; Fukuyama, A.; Yagi, M.
1995-07-01
Circulating power for the sustenance and profile control of the steady state tokamak plasmas is discussed. The simultaneous fulfillment of the MHD stability at high beta value, the improved confinement and the stationary equilibrium requires the rotation drive as well as the current drive. In addition to the current drive efficiency, the efficiency for the rotation drive is investigated. The direct rotation drive by the external torque, such as the case of beam injection, is not efficient enough. The mechanism and the magnitude of the spontaneous plasma rotation are studied. (author)
Steady-state capabilities for hydroturbines with OpenFOAM
Page, M.; Beaudoin, M.; Giroux, A. M.
2010-08-01
The availability of a high quality Open Source CFD simulation platform like OpenFOAM offers new R&D opportunities by providing direct access to models and solver implementation details. Efforts have been made by Hydro-Québec to adapt OpenFOAM to hydroturbines for the development of steady-state capabilities. The paper describes the developments that have been made to implement new turbomachinery related capabilities: Multiple Frame of Reference solver, domain coupling interfaces (GGI, cyclicGGI and mixing plane) and specialized boundary conditions. Practical use of the new turbomachinery capabilities are demonstrated for the analysis of a 195-MW Francis hydroturbine.
Steady-state capabilities for hydroturbines with OpenFOAM
Energy Technology Data Exchange (ETDEWEB)
Page, M; Beaudoin, M; Giroux, A M, E-mail: page.maryse@ireq.c [Hydro-Quebec, Institut de recherche 1800 Lionel-Boulet, Varennes, Quebec J3X 1S1 (Canada)
2010-08-15
The availability of a high quality Open Source CFD simulation platform like OpenFOAM offers new R and D opportunities by providing direct access to models and solver implementation details. Efforts have been made by Hydro-Quebec to adapt OpenFOAM to hydroturbines for the development of steady-state capabilities. The paper describes the developments that have been made to implement new turbomachinery related capabilities: Multiple Frame of Reference solver, domain coupling interfaces (GGI, cyclicGGI and mixing plane) and specialized boundary conditions. Practical use of the new turbomachinery capabilities are demonstrated for the analysis of a 195-MW Francis hydroturbine.
Full steady state LH scenarios in Tore Supra
International Nuclear Information System (INIS)
Kazarian-Vibert, F.; Litaudon, X.; Arslanbekov, R.; Hoang, G.T.; Moreau, D.; Peysson, Y.
1995-01-01
Lower Hybrid discharge have been realised in Tore Supra using feed-back control of the primary circuit voltage such that the loop voltage was maintained exactly to zero near the plasma surface. This new scenario allows the plasma current to float and quickly reach an equilibrium value determined by the current drive efficiency and Lower Hybrid power. Recent experimental results show that, with the new constant flux scenario the coupled plasma and primary currents reach a steady state in less than 10 s which is a good agreement with theoretical expectations. A complete analysis of this scenario is presented. (authors). 8 refs., 3 figs
Steady State Stokes Flow Interpolation for Fluid Control
DEFF Research Database (Denmark)
Bhatacharya, Haimasree; Nielsen, Michael Bang; Bridson, Robert
2012-01-01
— suffer from a common problem. They fail to capture the rotational components of the velocity field, although extrapolation in the normal direction does consider the tangential component. We address this problem by casting the interpolation as a steady state Stokes flow. This type of flow captures......Fluid control methods often require surface velocities interpolated throughout the interior of a shape to use the velocity as a feedback force or as a boundary condition. Prior methods for interpolation in computer graphics — velocity extrapolation in the normal direction and potential flow...
Steady-state capabilities for hydroturbines with OpenFOAM
International Nuclear Information System (INIS)
Page, M; Beaudoin, M; Giroux, A M
2010-01-01
The availability of a high quality Open Source CFD simulation platform like OpenFOAM offers new R and D opportunities by providing direct access to models and solver implementation details. Efforts have been made by Hydro-Quebec to adapt OpenFOAM to hydroturbines for the development of steady-state capabilities. The paper describes the developments that have been made to implement new turbomachinery related capabilities: Multiple Frame of Reference solver, domain coupling interfaces (GGI, cyclicGGI and mixing plane) and specialized boundary conditions. Practical use of the new turbomachinery capabilities are demonstrated for the analysis of a 195-MW Francis hydroturbine.
Pre-steady-state Kinetics for Hydrolysis of Insoluble Cellulose by Cellobiohydrolase Cel7A
DEFF Research Database (Denmark)
Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil
2012-01-01
The transient kinetic behavior of enzyme reactions prior to the establishment of steady state is a major source of mechanistic information, yet this approach has not been utilized for cellulases acting on their natural substrate, insoluble cellulose. Here, we elucidate the pre-steady-state regime...... for the exo-acting cellulase Cel7A using amperometric biosensors and an explicit model for processive hydrolysis of cellulose. This analysis allows the identification of a pseudo-steady-state period and quantification of a processivity number as well as rate constants for the formation of a threaded enzyme...... to unveil fundamental reasons for the distinctive variability in hydrolytic activity found in different cellulase-substrate systems....
Current drive efficiency requirements for an attractive steady-state reactor
Energy Technology Data Exchange (ETDEWEB)
Tonon, G
1994-12-31
The expected values of the figure of merit and the electrical efficiency of various non-inductive current drive methods are considered. The main experimental results achieved today with neutral beams and radiofrequency systems are summarized. Taking into account the simplified energy flow diagram of a steady state reactor, the figure of merit and the electrical efficiency values which are necessary in order to envisage an attractive steady-state reactor are determined. These values are compared to the theoretical predictions. (author). 16 refs., 11 figs., 2 tabs.
Transient and steady-state analyses of an electrically heated Topaz-II Thermionic Fuel Element
International Nuclear Information System (INIS)
El-Genk, M.S.; Xue, H.
1992-01-01
Transient and steady-state analyses of electrically heated, Thermionic Fuel Elements (TFEs) for Topaz-II space power system are performed. The calculated emitter and collector temperatures, load electric power and conversion efficiency are in good agreement with reported data. In this paper the effects or Cs pressure, thermal power input, and load resistance on the steady-state performance of the TFE are also investigated. In addition, the thermal response of the ZrH moderator during a startup transient and following a change in the thermal power input is examined
Current drive efficiency requirements for an attractive steady-state reactor
International Nuclear Information System (INIS)
Tonon, G.
1994-01-01
The expected values of the figure of merit and the electrical efficiency of various non-inductive current drive methods are considered. The main experimental results achieved today with neutral beams and radiofrequency systems are summarized. Taking into account the simplified energy flow diagram of a steady state reactor, the figure of merit and the electrical efficiency values which are necessary in order to envisage an attractive steady-state reactor are determined. These values are compared to the theoretical predictions. (author). 16 refs., 11 figs., 2 tabs
Steady state magnetic field configurations for the earth's magnetotail
International Nuclear Information System (INIS)
Hau, L.N.; Wolf, R.A.; Voigt, G.H.; Wu, C.C.
1989-01-01
The authors present a two-dimensional, force-balanced magnetic field model in which flux tubes have constant pVγ throughout an extended region of the nightside plasma sheet, between approximately 36 R E geocentric distance and the region of the inner edge of the plasma sheet. They have thus demonstrated the theoretical existence of a steady state magnetic field configuration that is force-balanced and also consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD (isotropic pressure, perfect conductivity). The numerical solution was constructed for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The primary characteristics of the steady state convection solution are (1) a pressure maximum just tailward of the inner edge of the plasma sheet and (2) a deep, broad minimum in equatorial magnetic field strength B ze , also just tailward of the inner edge. The results are consistent with Erickson's (1985) convection time sequences, which exhibited analogous pressure peaks and B ze minima. Observations do not indicate the existence of a B ze minimum, on the average. They suggest that the configurations with such deep minima in B ze may be tearing-mode unstable, thus leading to substorm onset in the inner plasma sheet
Steady-state operation of spheromaks by inductive techniques
International Nuclear Information System (INIS)
Janos, A.
1984-04-01
A method to maintain a steady-state spheromak configuration inductively using the S-1 Spheromak device is described. The S-1 Spheromak formation apparatus can be utilized to inject magnetic helicity continuously (C.W., not pulsed or D.C.) into the spheromak configuration after equilibrium is achieved in the linked mode of operation. Oscillation of both poloidal- and toroidal-field currents in the flux core (psi-phi Pumping), with proper phasing, injects a net time-averaged helicity into the plasma. Steady-state maintenance relies on flux conversion, which has been earlier identified. Relevant experimental data from the operation of S-1 are described. Helicity flow has been measured and the proposed injection scheme simulated. In a reasonable time practical voltages and frequencies can inject an amount of helicity comparable to that in the initial plasma. Plasma currents can be maintained or increased. This pumping technique is similar to F-THETA Pumping of a Reversed-Field-Pinch but is applied to this inverse-pinch formation
Diffusion-driven steady states of the Z-pinch
International Nuclear Information System (INIS)
Lehnert, B.
1988-01-01
Steady states of a Z-pinch where no electric field is imposed along the pinch axis by external means are investigated. In this case, diffusion-driven states become possible when imposed volume sources of particles and heat drive a radial diffusion velocity that, in its turn, generates the electric plasma current. The particle sources can be from pellet injection or a neutral gas blanket, and the heat sources provided by thermonuclear reactions or auxiliary heating. The present analysis and associated kinetic considerations indicate that steady diffusion-driven operation should become possible for certain classes of plasma profiles, without running into singularity problems at the pinch axis. Such operation leads to higher axial currents in a Z-pinch without an axial magnetic field than in a tokamaklike case under similar plasma conditions. The technical difficulty in realizing a volume distribution of particle sinks introduces certain constraints on the plasma and current profiles. This fact has to be taken into account in a stability analysis. Neoclassical or anomalous diffusion will increase the diffusion velocity of the plasma but is not expected to affect the main physical features of the present results
Steady-state creep of discontinuous fibre composites
International Nuclear Information System (INIS)
Boecker Pedersen, O.
1975-07-01
A review is given of the relevant literature on creep of composites, including a presentation of existing models for the steady-state creep of composites containing aligned discontinuous fibres where creep of the matrix and fibres is assumed to follow a power law. A model is suggested for predicting the composite creep law from a matrix creep law given in a general form, in the case where the fibres do not creep. The composite creep law predicted by this model is compared with those predicted by previous models, when these are extended to comprise a general matrix creep law. Experimentally, pure copper and composites consisting of aligned discontinuous tungsten fibres in a copper matrix were creep tested at a temperature of 500 deg C. The results indicate a relatively low stress sensitivity of the steady-state creep-rate for pure copper and relatively high stress sensitivity for the composites. This may be explained by the creep models based upon a general matrix creep law. A quantitative prediction shows promising agreement with the present experimental results. (author)
Dissipative dark matter halos: The steady state solution
Foot, R.
2018-02-01
Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter, is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that contain massless dark photons [unbroken U (1 ) gauge interactions]. Such dark matter not only features dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae (facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where heating and cooling rates locally balance. Here, we take into account the major cooling and heating processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry, negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark radiation. For the parameters considered, and assumptions made, we were unable to find a physically realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark matter models, and we discuss a specific example in some detail.
Plasma control issues for an advanced steady state tokamak reactor
International Nuclear Information System (INIS)
Moreau, D.
2001-01-01
This paper deals with specific control issues related to the advanced tokamak scenarios in which rather accurate tailoring of the current density profile is a requirement in connection with the steady state operation of a reactor in a high confinement optimized shear mode. It is found that adequate current profile control can be performed if real-time magnetic flux reconstruction is available through a set of dedicated diagnostics and computers, with sufficient accuracy to deduce the radial profile of the safety factor and of the internal plasma loop voltage. It is also shown that the safety factor can be precisely controlled in the outer half of the plasma through the surface loop voltage and the off-axis current drive power, but that a compromise must be made between the accuracy of the core safety factor control and the total duration of the current and fuel density ramp-up phases, so that the demonstration of the steady state reactor potential of the optimized/reversed shear concept in the Next Step device will demand pulse lengths of the order of one thousand seconds (or more for an ITER-size machine). (author)
Plasma control issues for an advanced steady state tokamak reactor
International Nuclear Information System (INIS)
Moreau, D.; Voitsekhovitch, I.
1999-01-01
This paper deals with specific control issues related to the advanced tokamak scenarios in which rather accurate tailoring of the current density profile is a requirement in connection with the steady state operation of a reactor in a high confinement optimized shear mode. It is found that adequate current profile control can be performed if real-time magnetic flux reconstruction is available through a set of dedicated diagnostics and computers, with sufficient accuracy to deduce the radial profile of the safety factor and of the internal plasma loop voltage. It is also shown that the safety factor can be precisely controlled in the outer half of the plasma through the surface loop voltage and the off-axis current drive power, but that a compromise must be made between the accuracy of the core safety factor control and the total duration of the current and fuel density ramp-up phases, so that the demonstration of the steady state reactor potential of the optimized/reversed shear concept in the Next Step device will demand pulse lengths of the order of one thousand seconds (or more for an ITER-size machine). (author)
Steady state operation of the superconducting tokamak TRIAM-1M
International Nuclear Information System (INIS)
Hanada, K.; Itoh, S.; Sato, K.; Nakamura, K.; Zushi, H.; Sakamoto, M.; Jotaki, E.; Makino, K.
2000-01-01
A 2-hour limiter discharge in circular configuration was successfully maintained using both Hall generators to be free from the drift of integrator and position control by TV image to avoid the concentration of heat load. The property of wall saturation is discussed as the serious issue for steady state operation, which strongly depends on electron density. In the high density region, the discharges sometimes terminate due to uncontrollable increase in electron density caused by wall saturation. The plasmas with high k ∼1.5 can be demonstrated for longer than 1 min. The duration of discharge is limited by vertical displacement event (VDE). The avoidance of VDE is a crucial point to achieve long discharges with high k. A new technique to monitor the accurate magnetic field with high time resolution for a long time is required to achieve the longer discharge with high k. A high ion temperature (HIT) discharge characterized by high ion temperature up to 5 keV and by steep temperature gradient up to 85 keV/m is successfully sustained for longer than 30 sec by 2.45 GHz LHCD on single null divertor configuration. This indicates that the transport barrier of ion temperature can be maintained in steady state. (author)
Transient and steady-state selection in the striatal microcircuit
Directory of Open Access Journals (Sweden)
Adam eTomkins
2014-01-01
Full Text Available Although the basal ganglia have been widely studied and implicated in signal processing and action selection, little information is known about the active role the striatal microcircuit plays in action selection in the basal ganglia-thalamo-cortical loops. To address this knowledge gap we use a large scale three dimensional spiking model of the striatum, combined with a rate coded model of the basal ganglia-thalamo-cortical loop, to asses the computational role the striatum plays in action selection. We identify a robust transient phenomena generated by the striatal microcircuit, which temporarily enhances the difference between two competing cortical inputs. We show that this transient is sufficient to modulate decision making in the basal ganglia-thalamo-cortical circuit. We also find that the transient selection originates from a novel adaptation effect in single striatal projection neurons, which is amenable to experimental testing. Finally, we compared transient selection with models implementing classical steady-state selection. We challenged both forms of model to account for recent reports of paradoxically enhanced response selection in Huntington's Disease patients. We found that steady-state selection was uniformly impaired under all simulated Huntington's conditions, but transient selection was enhanced given a sufficient Huntington's-like increase in NMDA receptor sensitivity. Thus our models provide an intriguing hypothesis for the mechanisms underlying the paradoxical cognitive improvements in manifest Huntington's patients.
MHD stability regimes for steady state and pulsed reactors
International Nuclear Information System (INIS)
Jardin, S.C.; Kessel, C.E.; Pomphrey, N.
1994-02-01
A tokamak reactor will operate at the maximum value of β≡2μ 0 /B 2 that is compatible with MHD stability. This value depends upon the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near one, I bs /I p ∼ 1, which constrains the product of the inverse aspect ratio and the plasma poloidal beta to be near unity, ε β p ∼ 1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during the ARIES I, II/IV, and III and the PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements on the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies is also discussed
Magnetohydrodynamic stability regimes for steady state and pulsed reactors
International Nuclear Information System (INIS)
Jardin, S.C.; Kessel, C.E.; Pomphrey, N.
1994-01-01
A tokamak reactor will operate at the maximum value of β≡2μ 0 left angle p right angle /B 2 that is compatible with magnetohydrodynamic (MHD) stability. This value depends on the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near unity, I BS /I P ∼1, which constrains the product of the inverse aspect ratio and the plasma poloidal β to be near unity, arepsilonβ P ∼1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during ARIES I, II/IV, and III and PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements in the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies, is also discussed. ((orig.))
Energy Technology Data Exchange (ETDEWEB)
Tanaka, H; Okumiya, M [Nagoya University, Nagoya (Japan)
1997-11-25
A study was made of the periodic steady state of the annual cycle solar energy system with seasonal heat storage at a practical operation. Cold heat in winter and warm heat in summer are stored in the seasonal storage tank, and these are each used in shift until when demand for cold/warm heat appears. Moreover, gap in quantity of cold/warm heat going in/out of the heat storage tank during a year is filled by natural energy such as solar energy, so that the system can be operated in annual cycles. Studies were conducted of the periodic unsteady term and the problem on lowering of performance during the term such as the periodic unsteady term of water temperature inside the seasonal heat storage tank and temperature of the soil around the storage tank, and the level of lowering of performance during the term, necessity of additional operation/control at the start of operation and aged deterioration of the system. Within the assumption, even if starting operation in any time of the year, the system could show the performance almost expected from the first operation year with no additional system operation and control required only at the start of operation. It is thought that the heat source selection control of heat pump largely contributes to this. 4 refs., 5 figs., 3 tabs.
Transient and Steady-State Responses of an Asymmetric Nonlinear Oscillator
Directory of Open Access Journals (Sweden)
Alex Elías-Zúñiga
2013-01-01
oscillator that describes the motion of a damped, forced system supported symmetrically by simple shear springs on a smooth inclined bearing surface. We also use the percentage overshoot value to study the influence of damping and nonlinearity on the transient and steady-state oscillatory amplitudes.
Robust periodic steady state analysis of autonomous oscillators based on generalized eigenvalues
Mirzavand, R.; Maten, ter E.J.W.; Beelen, T.G.J.; Schilders, W.H.A.; Abdipour, A.
2011-01-01
In this paper, we present a new gauge technique for the Newton Raphson method to solve the periodic steady state (PSS) analysis of free-running oscillators in the time domain. To find the frequency a new equation is added to the system of equations. Our equation combines a generalized eigenvector
Robust periodic steady state analysis of autonomous oscillators based on generalized eigenvalues
Mirzavand, R.; Maten, ter E.J.W.; Beelen, T.G.J.; Schilders, W.H.A.; Abdipour, A.; Michielsen, B.; Poirier, J.R.
2012-01-01
In this paper, we present a new gauge technique for the Newton Raphson method to solve the periodic steady state (PSS) analysis of free-running oscillators in the time domain. To find the frequency a new equation is added to the system of equations. Our equation combines a generalized eigenvector
Incorporation of wind generation to the Mexican power grid: Steady state analysis
Energy Technology Data Exchange (ETDEWEB)
Tovar, J.H.; Guardado, J.L.; Cisneros, F. [Inst. Tecnologico de Morelia (Mexico); Cadenas, R.; Lopez, S. [Comision Federal de Electricidad, Morelia (Mexico)
1997-09-01
This paper describes a steady state analysis related with the incorporation of large amounts of eolic generation into the Mexican power system. An equivalent node is used to represent individual eolic generators in the wind farm. Possible overloads, losses, voltage and reactive profiles and estimated severe contingencies are analyzed. Finally, the conclusions of this study are presented.
Steady-State Ion Beam Modeling with MICHELLE
Petillo, John
2003-10-01
There is a need to efficiently model ion beam physics for ion implantation, chemical vapor deposition, and ion thrusters. Common to all is the need for three-dimensional (3D) simulation of volumetric ion sources, ion acceleration, and optics, with the ability to model charge exchange of the ion beam with a background neutral gas. The two pieces of physics stand out as significant are the modeling of the volumetric source and charge exchange. In the MICHELLE code, the method for modeling the plasma sheath in ion sources assumes that the electron distribution function is a Maxwellian function of electrostatic potential over electron temperature. Charge exchange is the process by which a neutral background gas with a "fast" charged particle streaming through exchanges its electron with the charged particle. An efficient method for capturing this is essential, and the model presented is based on semi-empirical collision cross section functions. This appears to be the first steady-state 3D algorithm of its type to contain multiple generations of charge exchange, work with multiple species and multiple charge state beam/source particles simultaneously, take into account the self-consistent space charge effects, and track the subsequent fast neutral particles. The solution used by MICHELLE is to combine finite element analysis with particle-in-cell (PIC) methods. The basic physics model is based on the equilibrium steady-state application of the electrostatic particle-in-cell (PIC) approximation employing a conformal computational mesh. The foundation stems from the same basic model introduced in codes such as EGUN. Here, Poisson's equation is used to self-consistently include the effects of space charge on the fields, and the relativistic Lorentz equation is used to integrate the particle trajectories through those fields. The presentation will consider the complexity of modeling ion thrusters.
An implicit steady-state initialization package for the RELAP5 computer code
International Nuclear Information System (INIS)
Paulsen, M.P.; Peterson, C.E.; Odar, F.
1995-08-01
A direct steady-state initialization (DSSI) method has been developed and implemented in the RELAP5 hydrodynamic analysis program. It provides a means for users to specify a small set of initial conditions which are then propagated through the remainder of the system. The DSSI scheme utilizes the steady-state form of the RELAP5 balance equations for nonequilibrium two-phase flow. It also employs the RELAP5 component models and constitutive model packages for wall-to-phase and interphase momentum and heat exchange. A fully implicit solution of the linearized hydrodynamic equations is implemented. An implicit coupling scheme is used to augment the standard steady-state heat conduction solution for steam generator use. It solves the primary-side tube region energy equations, heat conduction equations, wall heat flux boundary conditions, and overall energy balance equation as a coupled system of equations and improves convergence. The DSSI method for initializing RELAP5 problems to steady-state conditions has been compared with the transient solution scheme using a suite of test problems including; adiabatic single-phase liquid and vapor flow through channels with and without healing and area changes; a heated two-phase test bundle representative of BWR core conditions; and a single-loop PWR model
Steady State Thermal Analyses of SCEPTOR X-57 Wingtip Propulsion
Schnulo, Sydney L.; Chin, Jeffrey C.; Smith, Andrew D.; Dubois, Arthur
2017-01-01
Electric aircraft concepts enable advanced propulsion airframe integration approaches that promise increased efficiency as well as reduced emissions and noise. NASA's fully electric Maxwell X-57, developed under the SCEPTOR program, features distributed propulsion across a high aspect ratio wing. There are 14 propulsors in all: 12 high lift motor that are only active during take off and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The power electronics involved in the wingtip propulsion are temperature sensitive and therefore require thermal management. This work focuses on the high and low fidelity heat transfer analysis methods performed to ensure that the wingtip motor inverters do not reach their temperature limits. It also explores different geometry configurations involved in the X-57 development and any thermal concerns. All analyses presented are performed at steady state under stressful operating conditions, therefore predicting temperatures which are considered the worst-case scenario to remain conservative.
Analysis of steady-state ductile crack growth
DEFF Research Database (Denmark)
Niordson, Christian
1999-01-01
The fracture strength under quasi-static steady-state crack growth in an elastic-plastic material joined by a laser weld is analyzed. Laser welding gives high mismatch between the yield stress within the weld and the yield stress in the base material. This is due to the fast termic cycle, which...... the finite element mesh remains fixed relative to the tip of the growing crack. Fracture is modelled using two different local crack growth criteria. One is a crack opening displacement criterion, while the other is a model in which a cohesive zone is imposed in front of the crack tip along the fracture zone....... Both models predict that in general a thinner laser weld gives higher interface strength. Furthermore, both fracture criteria show, that the preferred path of the crack is close outside the weld material; a phenomenon also observed in experiments....
Steady state and transient power handling in JET
International Nuclear Information System (INIS)
Matthews, G.F.
2002-01-01
Recent JET experiments and analysis have demonstrated the importance of edge collisionality for the physics of divertor power loading both during and between ELMs. Since collisionality decreases strongly with machine size, JET routinely operates in an ITER relevant regime which is difficult or impossible to access in smaller devices. This new understanding has enabled us to develop more physically justifiable scalings for static and transient power deposition in ITER and demonstrates a need for kinetic models when simulating edge behaviour in JET and ITER. Steady state power loading in ITER is likely to be within limits provided that the divertor plasma is kept in the high recycling or detached regime. Extrapolations of the typical type I ELMs found in JET to ITER highlight the importance of developing regimes characterised by small ELMs, if surface ablation is to be avoided. Disruptive power loads measured in the JET divertor appear far more benign than would be expected from current ITER assumptions. (author)
BR2 reactor core steady state transient modeling
International Nuclear Information System (INIS)
Makarenko, A.; Petrova, T.
2000-01-01
A coupled neutronics/hydraulics/heat-conduction model of the BR2 reactor core is under development at SCK-CEN. The neutron transport phenomenon has been implemented as steady state and time dependent nodal diffusion. The non-linear heat conduction equation in-side fuel elements is solved with a time dependent finite element method. To allow coupling between functional modules and to simulate subcooled regimes, a simple single-phase hydraulics has been introduced, while the two-phase hydraulics is under development. Multiple tests, general benchmark cases as well as calculation/experiment comparisons demonstrated a good accuracy of both neutronic and thermal hydraulic models, numerical reliability and full code portability. A refinement methodology has been developed and tested for better neutronic representation in hexagonal geometry. Much effort is still needed to complete the development of an extended cross section library with kinetic data and two-phase flow representation. (author)
Fueling Requirements for Steady State high butane current fraction discharges
International Nuclear Information System (INIS)
R.Raman
2003-01-01
The CT injector originally used for injecting CTs into 1T toroidal field discharges in the TdeV tokamak was shipped PPPL from the Affiliated Customs Brokers storage facility in Montreal during November 2002. All components were transported safely, without damage, and are currently in storage at PPPL, waiting for further funding in order to begin advanced fueling experiments on NSTX. The components are currently insured through the University of Washington. Several technical presentations were made to investigate the feasibility of the CT injector installation on NSTX. These technical presentations, attached to this document, were: (1) Motivation for Compact Toroida Injection in NSTX; (2) Assessment of the Engineering Feasibility of Installing CTF-II on NSTX; (3) Assessment of the Cost for CT Installation on NSTX--A Peer Review; and (4) CT Fueling for NSTX FY 04-08 steady-state operation needs
Steady States in SIRS Epidemical Model of Mobile Individuals
International Nuclear Information System (INIS)
Zhang Duanming; He Minhua; Yu Xiaoling; Pan Guijun; Sun Hongzhang; Su Xiangying; Sun Fan; Yin Yanping; Li Rui; Liu Dan
2006-01-01
We consider an epidemical model within socially interacting mobile individuals to study the behaviors of steady states of epidemic propagation in 2D networks. Using mean-field approximation and large scale simulations, we recover the usual epidemic behavior with critical thresholds δ c and p c below which infectious disease dies out. For the population density δ far above δ c , it is found that there is linear relationship between contact rate λ and the population density δ in the main. At the same time, the result obtained from mean-field approximation is compared with our numerical result, and it is found that these two results are similar by and large but not completely the same.
Modular first wall concept for steady state operation
International Nuclear Information System (INIS)
Kotzlowski, H.E.
1981-01-01
On the basis of the limiter design proposed for ZEPHYR a first wall concept has been developed which can also be used as a large area limiter, heat shield or beam pump. Its specific feature is the thermal contact of the wall armour elements with the water-cooled base plates. The combination of radiation and contact cooling, compared with radiation only, helps to lower the steady state temperatures of the first wall by approximately 50 % and to reduce the cooling-time between discharges. Particulary the lower wall temperature give a larger margin for additional heating of the wall by plasma disruption or neutral beams until excessive erosion or damage of the armour takes place
Active ideal sedimentation: exact two-dimensional steady states.
Hermann, Sophie; Schmidt, Matthias
2018-02-28
We consider an ideal gas of active Brownian particles that undergo self-propelled motion and both translational and rotational diffusion under the influence of gravity. We solve analytically the corresponding Smoluchowski equation in two space dimensions for steady states. The resulting one-body density is given as a series, where each term is a product of an orientation-dependent Mathieu function and a height-dependent exponential. A lower hard wall is implemented as a no-flux boundary condition. Numerical evaluation of the suitably truncated analytical solution shows the formation of two different spatial regimes upon increasing Peclet number. These regimes differ in their mean particle orientation and in their variation of the orientation-averaged density with height.
Transient and steady-state flows in shock tunnels
Energy Technology Data Exchange (ETDEWEB)
Hannemann, K. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany); Jacobs, P.A. [Queensland Univ., Brisbane (Australia). Dept. of Mechanical Engineering; Thomas, A.; McIntyre, T.J. [Queensland Univ., Brisbane, QLD. (Australia). Dept. of Physics
1999-12-01
Due to the difficulty of measuring all necessary flow quantities in the nozzle reservoir and the test section of high enthalpy shock tunnels, indirect computational methods are necessary to estimate the required flow parameters. In addition to steady state flow computations of the nozzle flow and the flow past wind tunnel models it is necessary to investigate the transient flow in the facility in order to achieve a better understanding of its performance. These transient effects include the nozzle starting flow, the interaction of the shock tube boundary layers and the reflected shock, thermal losses in the shock reflection region and the developing boundary layers in the expanding section of the nozzle. Additionally, the nonequilibrium chemical and thermal relaxation models which are used to compute high enthalpy flows have to be validated with appropriate experimental data. (orig.)
Transient and steady-state flows in shock tunnels
Energy Technology Data Exchange (ETDEWEB)
Hannemann, K. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany)); Jacobs, P.A. (Queensland Univ., Brisbane (Australia). Dept. of Mechanical Engineering); Thomas, A.; McIntyre, T.J. (Queensland Univ., Brisbane, QLD. (Australia). Dept. of Physics)
1999-01-01
Due to the difficulty of measuring all necessary flow quantities in the nozzle reservoir and the test section of high enthalpy shock tunnels, indirect computational methods are necessary to estimate the required flow parameters. In addition to steady state flow computations of the nozzle flow and the flow past wind tunnel models it is necessary to investigate the transient flow in the facility in order to achieve a better understanding of its performance. These transient effects include the nozzle starting flow, the interaction of the shock tube boundary layers and the reflected shock, thermal losses in the shock reflection region and the developing boundary layers in the expanding section of the nozzle. Additionally, the nonequilibrium chemical and thermal relaxation models which are used to compute high enthalpy flows have to be validated with appropriate experimental data. (orig.)
An Adsorption Equilibria Model for Steady State Analysis
Ismail, Azhar Bin
2016-02-29
The investigation of adsorption isotherms is a prime factor in the ongoing development of adsorption cycles for a spectrum of advanced, thermally-driven engineering applications, including refrigeration, natural gas storage, and desalination processes. In this work, a novel semi-empirical mathematical model has been derived that significantly enhances the prediction of the steady state uptake in adsorbent surfaces. This model, a combination of classical Langmuir and a novel modern adsorption isotherm equation, allows for a higher degree of regression of both energetically homogenous and heterogeneous adsorbent surfaces compared to several isolated classical and modern isotherm models, and has the ability to regress isotherms for all six types under the IUPAC classification. Using a unified thermodynamic framework, a single asymmetrical energy distribution function (EDF) has also been proposed that directly relates the mathematical model to the adsorption isotherm types. This fits well with the statistical rate theory approach and offers mechanistic insights into adsorption isotherms.
Nuclide Importance and the Steady-State Burnup Equation
International Nuclear Information System (INIS)
Sekimoto, Hiroshi; Nemoto, Atsushi
2000-01-01
Conventional methods for evaluating some characteristic values of nuclides relating to burnup in a given neutron spectrum are reviewed in a mathematically systematic way, and a new method based on the importance theory is proposed. In this method, these characteristic values of a nuclide are equivalent to the importances of the nuclide. By solving the equation adjoint to the steady-state burnup equation with a properly chosen source term, the importances for all nuclides are obtained simultaneously.The fission number importance, net neutron importance, fission neutron importance, and absorbed neutron importance are evaluated and discussed. The net neutron importance is a measure directly estimating neutron economy, and it can be evaluated simply by calculating the fission neutron importance minus the absorbed neutron importance, where only the absorbed neutron importance depends on the fission product. The fission neutron importance and absorbed neutron importance are analyzed separately, and detailed discussions of the fission product effects are given for the absorbed neutron importance
Conceptual design of the steady state tokamak reactor (SSTR)
International Nuclear Information System (INIS)
Oikawa, A.; Kikuchi, M.; Seki, Y.; Nishio, S.; Ando, T.; Ohara, Y.; Takizuka, Tani, K.; Ozeki, T.; Koizumi, K.; Ikeda, B.; Suzuki, Y.; Ueda, N.; Kageyama, T.; Yamada, M.; Mizoguchi, T.; Iida, F.; Ozawa, Y.; Mori, S.; Yamazaki, S.; Kobayashi, T.; Adachi, H.J.; Shinya, K.; Ozaki, A.; Asahara, M.; Konishi, K.; Yokogawa, N.
1992-01-01
This paper reports that on the basis of a high bootstrap current fraction observation with JT-60, the concept of steady state tokamak reactor , the SSTR, was conceived and was evolved with the design activity of the SSTR at JAERI. Also results of ITER/FER design activities has enhanced the SSTR design. Moreover the remarkable progress of R and D for fusion reactor engineering, especially in the development of superconducting coils and negative ion based NBI at JAERI have promoted the SSTR conceptual design as a realistic power reactor. Although present fusion power reactor designs are currently considered to be too large and costly, results of the SSTR conceptual design suggest that an efficient and promising tokamak reactor will be feasible. The conceptual design of the SSTR provides a realistic reference for a demo tokamak reactor
Fast Prediction Method for Steady-State Heat Convection
Wáng, Yì
2012-03-14
A reduced model by proper orthogonal decomposition (POD) and Galerkin projection methods for steady-state heat convection is established on a nonuniform grid. It was verified by thousands of examples that the results are in good agreement with the results obtained from the finite volume method. This model can also predict the cases where model parameters far exceed the sample scope. Moreover, the calculation time needed by the model is much shorter than that needed for the finite volume method. Thus, the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering and technology, such as reaction and turbulence. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Lewis Steady-State Heat Pipe Code Architecture
Mi, Ye; Tower, Leonard K.
2013-01-01
NASA Glenn Research Center (GRC) has developed the LERCHP code. The PC-based LERCHP code can be used to predict the steady-state performance of heat pipes, including the determination of operating temperature and operating limits which might be encountered under specified conditions. The code contains a vapor flow algorithm which incorporates vapor compressibility and axially varying heat input. For the liquid flow in the wick, Darcy s formula is employed. Thermal boundary conditions and geometric structures can be defined through an interactive input interface. A variety of fluid and material options as well as user defined options can be chosen for the working fluid, wick, and pipe materials. This report documents the current effort at GRC to update the LERCHP code for operating in a Microsoft Windows (Microsoft Corporation) environment. A detailed analysis of the model is presented. The programming architecture for the numerical calculations is explained and flowcharts of the key subroutines are given
Quasi-steady state natural convection in a tilted porous layer
Energy Technology Data Exchange (ETDEWEB)
Robillard, L.; Vasseur, P. (Ecole Polytechnique, Montreal, PQ (Canada))
1992-12-01
Natural convection in an inclined porous layer heated or cooled on one side, when its other walls are insulated, has several important engineering applications. These include solar power collection, regenerative heat exchangers, and high performance insulation for buildings and cold storage. Although the problem is basically an unsteady state one, it is known that if the heating (or cooling) process is maintained for a sufficiently long time, a quasi-steady state is approached. Quasi-steady state laminar natural convection in an inclined porous layer is studied analytically and numerically. On the basis of the Darcy-Oberbeck-Boussinesq equations, the problem is solved analytically in the limit of a thin porous layer heated on one side by a heat flux while the other boundaries are maintained adiabatic. For quasi-steady state, the flow and temperature fields overall heat transfer rates are obtained in terms of the controlling parameters and the onset of convection in a bottom heated horizantal system is predicted. It is also demonstrated for the case of a bottom-heated layer that for sufficiently small inclinations, multiple unicellular quasi-steady states exist, some of which are unstable. A numerical study of the same phenomenon, obtained by solving the complete set of governing equations, is conducted. Good agreement is found between the analytical predictions and the numerical simulation. 22 refs., 6 figs.
Perez-Benito, Joaquin F.
2017-01-01
The elementary reaction sequence A ? I ? Products is the simplest mechanism for which the steady-state and quasi-equilibrium kinetic approximations can be applied. The exact integrated solutions for this chemical system allow inferring the conditions that must fulfill the rate constants for the different approximations to hold. A graphical…
Astumian, R D
2018-01-11
In the absence of input energy, a chemical reaction in a closed system ineluctably relaxes toward an equilibrium state governed by a Boltzmann distribution. The addition of a catalyst to the system provides a way for more rapid equilibration toward this distribution, but the catalyst can never, in and of itself, drive the system away from equilibrium. In the presence of external fluctuations, however, a macromolecular catalyst (e.g., an enzyme) can absorb energy and drive the formation of a steady state between reactant and product that is not determined solely by their relative energies. Due to the ubiquity of non-equilibrium steady states in living systems, the development of a theory for the effects of external fluctuations on chemical systems has been a longstanding focus of non-equilibrium thermodynamics. The theory of stochastic pumping has provided insight into how a non-equilibrium steady-state can be formed and maintained in the presence of dissipation and kinetic asymmetry. This effort has been greatly enhanced by a confluence of experimental and theoretical work on synthetic molecular machines designed explicitly to harness external energy to drive non-equilibrium transport and self-assembly.
Steady-state coupled transport of HNO3 through a hollow-fiber supported liquid membrane
International Nuclear Information System (INIS)
Noble, R.D.; Danesi, P.R.
1987-01-01
Nitric acid removal from an aqueous stream was accomplished by continuously passing the fluid through a hollow fiber supported liquid membrane (SLM). The nitric acid was extracted through the membrane wall by coupled transport. The system was modeled as a series of (SLM)-continuous stirred tank reactor (CSTR) pairs. An approximate technique was used to predict the steady state nitric acid concentration in the system. The comparison with experimental data was very good
On the relationship of steady states of continuous and discrete models arising from biology.
Veliz-Cuba, Alan; Arthur, Joseph; Hochstetler, Laura; Klomps, Victoria; Korpi, Erikka
2012-12-01
For many biological systems that have been modeled using continuous and discrete models, it has been shown that such models have similar dynamical properties. In this paper, we prove that this happens in more general cases. We show that under some conditions there is a bijection between the steady states of continuous and discrete models arising from biological systems. Our results also provide a novel method to analyze certain classes of nonlinear models using discrete mathematics.
Neu, C P; Hull, M L
2003-04-01
Recent magnetic resonance imaging (MRI) techniques have shown potential for measuring non-uniform deformations throughout the volume (i.e. three-dimensional (3D) deformations) in small orthopedic tissues such as articular cartilage. However, to analyze cartilage deformation using MRI techniques, a system is required which can construct images from multiple acquisitions of MRI signals from the cartilage in both the underformed and deformed states. The objectives of the work reported in this article were to 1) design an apparatus that could apply highly repeatable cyclic compressive loads of 400 N and operate in the bore of an MRI scanner, 2) demonstrate that the apparatus and MRI scanner can be successfully integrated to observe 3D deformations in a phantom material, 3) use the apparatus to determine the load cycle necessary to achieve a steady-state deformation response in normal bovine articular cartilage samples using a flat-surfaced and nonporous indentor in unconfined compression. Composed of electronic and pneumatic components, the apparatus regulated pressure to a double-acting pneumatic cylinder so that (1) load-controlled compression cycles were applied to cartilage samples immersed in a saline bath, (2) loading and recovery periods within a cycle varied in time duration, and (3) load magnitude varied so that the stress applied to cartilage samples was within typical physiological ranges. In addition the apparatus allowed gating for MR image acquisition, and operation within the bore of an MRI scanner without creating image artifacts. The apparatus demonstrated high repeatability in load application with a standard deviation of 1.8% of the mean 400 N load applied. When the apparatus was integrated with an MRI scanner programmed with appropriate pulse sequences, images of a phantom material in both the underformed and deformed states were constructed by assembling data acquired through multiple signal acquisitions. Additionally, the number of cycles to reach
Development of repetitive railgun pellet accelerator and steady-state solid hydrogen extruder
International Nuclear Information System (INIS)
Oda, Y.; Azuma, K.; Onozuka, M.; Kasai, S.; Hasegawa, K.
1995-01-01
Development of a railgun pellet accelerator and a steady-state solid hydrogen extruder has been conducted. A railgun accelerator has been investigated for a high-speed repetitive pellet acceleration. The final objective is to develop a railgun system that can achieve a 5km/s speed-class repetitive (2Hz) pellet injection. Improvement in the acceleration efficiency showed a pellet velocity of more than 2km/s using augment rails and a ceramic insulator applied to a 1m-long railgun. The other investigation focused on the development of a steady-state solid hydrogen extruder for continuous pellet injection. Screw-driven extruding system has been chosen to extrude the solid hydrogen filament continuously. Theoretical considerations suggest that temperature control of the system is important in future research. (orig.)
Development of repetitive railgun pellet accelerator and steady-state solid hydrogen extruder
Energy Technology Data Exchange (ETDEWEB)
Oda, Y. [Mitsubishi Heavy Industries Ltd., Kobe (Japan); Azuma, K. [Mitsubishi Heavy Industries Ltd., Kobe (Japan); Onozuka, M. [Mitsubishi Heavy Industries Ltd., Kobe (Japan); Kasai, S. [Japan Atomic Energy Research Inst., Ibaraki (Japan); Hasegawa, K. [Japan Atomic Energy Research Inst., Ibaraki (Japan)
1995-12-31
Development of a railgun pellet accelerator and a steady-state solid hydrogen extruder has been conducted. A railgun accelerator has been investigated for a high-speed repetitive pellet acceleration. The final objective is to develop a railgun system that can achieve a 5km/s speed-class repetitive (2Hz) pellet injection. Improvement in the acceleration efficiency showed a pellet velocity of more than 2km/s using augment rails and a ceramic insulator applied to a 1m-long railgun. The other investigation focused on the development of a steady-state solid hydrogen extruder for continuous pellet injection. Screw-driven extruding system has been chosen to extrude the solid hydrogen filament continuously. Theoretical considerations suggest that temperature control of the system is important in future research. (orig.).
Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou
2015-07-01
Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.
Model study on steady heat capacity in driven stochastic systems
Czech Academy of Sciences Publication Activity Database
Pešek, Jiří; Boksenbojm, E.; Netočný, Karel
2012-01-01
Roč. 10, č. 3 (2012), 692-701 ISSN 1895-1082 Institutional research plan: CEZ:AV0Z10100520 Keywords : nonequilibrium steady state * quasistatic process * heat capacity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.905, year: 2012
Loss less real-time data compression based on LZO for steady-state Tokamak DAS
International Nuclear Information System (INIS)
Pujara, H.D.; Sharma, Manika
2008-01-01
The evolution of data acquisition system (DAS) for steady-state operation of Tokamak has been technology driven. Steady-state Tokamak demands a data acquisition system which is capable enough to acquire data losslessly from diagnostics. The needs of loss less continuous acquisition have a significant effect on data storage and takes up a greater portion of any data acquisition systems. Another basic need of steady state of nature of operation demands online viewing of data which loads the LAN significantly. So there is strong demand for something that would control the expansion of both these portion by a way of employing compression technique in real time. This paper presents a data acquisition systems employing real-time data compression technique based on LZO. It is a data compression library which is suitable for data compression and decompression in real time. The algorithm used favours speed over compression ratio. The system has been rigged up based on PXI bus and dual buffer mode architecture is implemented for loss less acquisition. The acquired buffer is compressed in real time and streamed to network and hard disk for storage. Observed performance of measure on various data type like binary, integer float, types of different type of wave form as well as compression timing overheads has been presented in the paper. Various software modules for real-time acquiring, online viewing of data on network nodes have been developed in LabWindows/CVI based on client server architecture
How should we understand non-equilibrium many-body steady states?
Maghrebi, Mohammad; Gorshkov, Alexey
: Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under non-equilibrium dynamics. In this talk, I use a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in such models. I show that an effective temperature generically emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is described by a thermodynamic universality class. In the end, I will also discuss possibilities that go beyond the paradigm of an effective thermodynamic behavior.
The effect of time-dependent coupling on non-equilibrium steady states
DEFF Research Database (Denmark)
Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin
Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define...... and compute the non equilibrium steady state (NESS) generated by this evolution. We show that when restricted to the subspace of absolute continuity of the fully coupled system, the state does not depend at all on the switching. Moreover, we show that the stationary charge current has the same invariant...
The effect of time-dependent coupling on non-equilibrium steady states
DEFF Research Database (Denmark)
Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin A.
2009-01-01
Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define...... and compute the non equilibrium steady state (NESS) generated by this evolution. We show that when restricted to the subspace of absolute continuity of the fully coupled system, the state does not depend at all on the switching. Moreover, we show that the stationary charge current has the same invariant...
Steady-state growth of the marine diatom Thalassiosira pseudonana
International Nuclear Information System (INIS)
Olson, R.J.; SooHoo, J.B.; Kiefer, D.A.
1980-01-01
Seasonal studies of the vertical distribution of nitrate, nitrite, and phytoplankton in the oceans and studies using 15 N as a tracer of nitrate metabolism indicate that the reduction of nitrate by phytoplankton is a source of nitrite in the upper waters of the ocean. To better understand this process, the relationship between nitrate uptake and nitrite production has been examined with continuous cultures of the small marine diatom Thalassiosira pseudonana. In a turbidostat culture, the rates of nitrite production by T. Pseudonana increase with light intensity. This process is only loosely coupled to rates of nitrate assimilation since the ratio of net nitrite production to total nitrate assimilation increases with increased rates of growth. In continuous cultures where steady-state concentrations of nitrate and nitrite were varied, T. pseudonana produced nitrite at rates which increased with increasing concentrations of nitrate. Again, the rates of nitrite production were uncoupled from rates of nitrate assimilation. The study was used to derive a mathematical description of nitrate and nitrite metabolism by T. pseudonana. The validity of this model was supported by the results of a study in which 15 N-labeled nitrite was introduced into the continuous culture, and the model was used to examine patterns in distribution of nitrite in the Antarctic Ocean and the Sargasso Sea
NASA Lewis steady-state heat pipe code users manual
International Nuclear Information System (INIS)
Tower, L.K.
1992-06-01
The NASA Lewis heat pipe code has been developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or, with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which the monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user
Quasi-steady state aerodynamics of the cheetah tail.
Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily
2016-08-15
During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. © 2016. Published by The Company of Biologists Ltd.
Attentional Modulation of Auditory Steady-State Responses
Mahajan, Yatin; Davis, Chris; Kim, Jeesun
2014-01-01
Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex. PMID:25334021
Steady state and transient power handling in JET
International Nuclear Information System (INIS)
Matthews, G.F.
2003-01-01
Steady state and transient power deposition profiles have been measured in the JET MIIGB divertor using improved diagnostics techniques involving the use of fast infra-red, thermocouples and Langmuir probe arrays. In unfuelled type I ELMy H-modes a very narrow power profile is observed at the outer target which we associate with the ion channel. Systematic parameter scans have been carried out and our analysis shows that the average power width scaling is consistent with a classical dependence of perpendicular transport in the SOL. Using the fast IR capability the factors such as rise time, broadening, variability and in/out asymmetry have been studied and lead to the conclusion that type I ELMs in ITER may fall just below the material ablation limits. JET disruptions are very different from type I ELMs in that only a small fraction of the thermal energy reaches the divertor and what does arrive is distributed uniformly over the divertor area. This is very different from the current ITER assumption which puts most of the energy from the thermal quench onto the divertor strike points. (author)
Steady-state VEP responses to uncomfortable stimuli.
O'Hare, Louise
2017-02-01
Periodic stimuli, such as op-art, can evoke a range of aversive sensations included in the term visual discomfort. Illusory motion effects are elicited by fixational eye movements, but the cortex might also contribute to effects of discomfort. To investigate this possibility, steady-state visually evoked responses (SSVEPs) to contrast-matched op-art-based stimuli were measured at the same time as discomfort judgements. On average, discomfort reduced with increasing spatial frequency of the pattern. In contrast, the peak amplitude of the SSVEP response was around the midrange spatial frequencies. Like the discomfort judgements, SSVEP responses to the highest spatial frequencies were lowest amplitude, but the relationship breaks down between discomfort and SSVEP for the lower spatial frequency stimuli. This was not explicable by gross eye movements as measured using the facial electrodes. There was a weak relationship between the peak SSVEP responses and discomfort judgements for some stimuli, suggesting that discomfort can be explained in part by electrophysiological responses measured at the level of the cortex. However, there is a breakdown of this relationship in the case of lower spatial frequency stimuli, which remains unexplained. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Attentional modulation of auditory steady-state responses.
Mahajan, Yatin; Davis, Chris; Kim, Jeesun
2014-01-01
Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.
3D steady-state MR cisternography in CSF rhinorrhoea
International Nuclear Information System (INIS)
Jayakumar, P.N.; Kovoor, J.M.E.; Srikanth, S.G.; Praharaj, S.S.
2001-01-01
Purpose: To determine the utility of 3D steady-state MR cisternography in the demonstration and localisation of cerebrospinal fluid (CSF) leak in patients with clinically suspected CSF rhinorrhoea. Material and Methods: Six consecutive patients with clinically suspected CSF rhinorrhoea were examined with routine MR evaluation and MR cisternography (MRC). All MR examinations included fast spin-echo (SE) T1WI in axial and sagittal planes, fast SE T2WI in axial and coronal planes and fluid attenuated inversion recovery (FLAIR) images in the axial plane. 3D evaluation was done using the CISS technique with 0.7-mm thickness in the sagittal and coronal planes. The site and extent of the defect, and any brain herniation detected on MRC were correlated with surgical findings. Results: In the 6 patients who underwent surgical exploration and repair, intraoperative findings correlated with the defect revealed by MRC in all cases. Conclusion: In clinically suspected CSF rhinorrhoea, MRC is highly accurate in localising the site and extent of CSF fistula and may be used as the first investigation due to its efficacy and non-invasive nature
Attentional modulation of auditory steady-state responses.
Directory of Open Access Journals (Sweden)
Yatin Mahajan
Full Text Available Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR. The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence. The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.
Fault Wear by Damage Evolution During Steady-State Slip
Lyakhovsky, Vladimir; Sagy, Amir; Boneh, Yuval; Reches, Ze'ev
2014-11-01
Slip along faults generates wear products such as gouge layers and cataclasite zones that range in thickness from sub-millimeter to tens of meters. The properties of these zones apparently control fault strength and slip stability. Here we present a new model of wear in a three-body configuration that utilizes the damage rheology approach and considers the process as a microfracturing or damage front propagating from the gouge zone into the solid rock. The derivations for steady-state conditions lead to a scaling relation for the damage front velocity considered as the wear-rate. The model predicts that the wear-rate is a function of the shear-stress and may vanish when the shear-stress drops below the microfracturing strength of the fault host rock. The simulated results successfully fit the measured friction and wear during shear experiments along faults made of carbonate and tonalite. The model is also valid for relatively large confining pressures, small damage-induced change of the bulk modulus and significant degradation of the shear modulus, which are assumed for seismogenic zones of earthquake faults. The presented formulation indicates that wear dynamics in brittle materials in general and in natural faults in particular can be understood by the concept of a "propagating damage front" and the evolution of a third-body layer.
Steady-state deformation of some lithium ceramics
International Nuclear Information System (INIS)
Poeppel, R.B.; Routbort, J.L.; Billone, M.C.; Applegate, D.S.; Buchmann, E.; Londschien, B.
1987-05-01
The stress-strain behavior of Li 2 O, LiAlO 2 and Li 2 ZrO 3 polycrystals, with densities varying from 0.70 to 0.95 of the theoretical, has been measured in constant-crosshead-speed compression tests at temperatures of 700 to 1000 0 C with strain rates ranging from about 10 -6 to 10 -4 s -1 . A steady-state stress, σ/sub s/, for which the work-hardening rate becomes zero, was achieved. These results, therefore, yield information equivalent to that obtained from creep experiments. Limited data on LiAlO 2 and Li 2 ZrO 3 were obtained. Nevertheless, under comparable conditions the lithium aluminate and zirconate were considerably stronger than the Li 2 O. This finding may be related to differences in crystal structure. It is, however, likely that in operation as a function breeder blanket material, the oxide will swell whereas the aluminate and the zirconate will crack. 5 refs., 6 figs., 1 tab
Steady-state operation requirements of tokamak fusion reactor concepts
International Nuclear Information System (INIS)
Knobloch, A.F.
1991-06-01
In the last two decades tokamak conceptual reactor design studies have been deriving benefit from progressing plasma physics experiments, more depth in theory and increasing detail in technology and engineering. Recent full-scale reactor extrapolations such as the US ARIES-I and the EC Reference Reactor study provide information on rather advanced concepts that are called for when economic boundary conditions are imposed. The ITER international reactor design activity concentrated on defining the next step after the JET generation of experiments. For steady-state operation as required for any future commercial tokamak fusion power plants it is essential to have non-inductive current drive. The current drive power and other internal power requirements specific to magnetic confinement fusion have to be kept as low as possible in order to attain a competitive overall power conversion efficiency. A high plasma Q is primarily dependent on a high current drive efficiency. Since such conditions have not yet been attained in practice, the present situation and the degree of further development required are characterized. Such development and an appropriately designed next-step tokamak reactor make the gradual realization of high-Q operation appear feasible. (orig.)
Models of steady state cooling flows in elliptical galaxies
International Nuclear Information System (INIS)
Vedder, P.W.; Trester, J.J.; Canizares, C.R.
1988-01-01
A comprehensive set of steady state models for spherically symmetric cooling flows in early-type galaxies is presented. It is found that a reduction of the supernova (SN) rate in ellipticals produces a decrease in the X-ray luminosity of galactic cooling flows and a steepening of the surface brightness profile. The mean X-ray temperature of the cooling flow is not affected noticeably by a change in the SN rate. The external pressure around a galaxy does not markedly change the luminosity of the gas within the galaxy but does change the mean temperature of the gas. The presence of a dark matter halo in a galaxy only changes the mean X-ray temperature slightly. The addition of a distribution of mass sinks which remove material from the general accretion flow reduces L(X) very slightly, flattens the surface brightness profile, and reduces the central surface brightness level to values close to those actually observed. A reduction in the stellar mass-loss rate only slightly reduces the X-ray luminosity of the cooling flow and flattens the surface brightness by a small amount. 37 references
Quasi-steady state aerodynamics of the cheetah tail
Directory of Open Access Journals (Sweden)
Amir Patel
2016-08-01
Full Text Available During high-speed pursuit of prey, the cheetah (Acinonyx jubatus has been observed to swing its tail while manoeuvring (e.g. turning or braking but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities.
Steady State Turbulent Transport in Magnetic Fusion Plasmas
International Nuclear Information System (INIS)
Lee, W.W.; Ethier, S.; Kolesnikov, R.; Wang, W.X.; Tang, W.M.
2007-01-01
For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers
Visual steady state in relation to age and cognitive function.
Horwitz, Anna; Dyhr Thomsen, Mia; Wiegand, Iris; Horwitz, Henrik; Klemp, Marc; Nikolic, Miki; Rask, Lene; Lauritzen, Martin; Benedek, Krisztina
2017-01-01
Neocortical gamma activity is crucial for sensory perception and cognition. This study examines the value of using non-task stimulation-induced EEG oscillations to predict cognitive status in a birth cohort of healthy Danish males (Metropolit) with varying cognitive ability. In particular, we examine the steady-state VEP power response (SSVEP-PR) in the alpha (8Hz) and gamma (36Hz) bands in 54 males (avg. age: 62.0 years) and compare these with 10 young healthy participants (avg. age 27.6 years). Furthermore, we correlate the individual alpha-to-gamma difference in relative visual-area power (ΔRV) with cognitive scores for the older adults. We find that ΔRV decrease with age by just over one standard deviation when comparing young with old participants (pintelligence is significantly negatively correlated with ΔRV in the older adult cohort, even when processing speed, global cognition, executive function, memory, and education (pincrease in ΔRV of one standard deviation is associated with a reduction in intelligence of 48% of a standard deviation (p<0.01). Finally, we conclude that the difference in cerebral rhythmic activity between the alpha and gamma bands is associated with age and cognitive status, and that ΔRV therefore provide a non-subjective clinical tool with which to examine cognitive status in old age.
Visual steady state in relation to age and cognitive function.
Directory of Open Access Journals (Sweden)
Anna Horwitz
Full Text Available Neocortical gamma activity is crucial for sensory perception and cognition. This study examines the value of using non-task stimulation-induced EEG oscillations to predict cognitive status in a birth cohort of healthy Danish males (Metropolit with varying cognitive ability. In particular, we examine the steady-state VEP power response (SSVEP-PR in the alpha (8Hz and gamma (36Hz bands in 54 males (avg. age: 62.0 years and compare these with 10 young healthy participants (avg. age 27.6 years. Furthermore, we correlate the individual alpha-to-gamma difference in relative visual-area power (ΔRV with cognitive scores for the older adults. We find that ΔRV decrease with age by just over one standard deviation when comparing young with old participants (p<0.01. Furthermore, intelligence is significantly negatively correlated with ΔRV in the older adult cohort, even when processing speed, global cognition, executive function, memory, and education (p<0.05. In our preferred specification, an increase in ΔRV of one standard deviation is associated with a reduction in intelligence of 48% of a standard deviation (p<0.01. Finally, we conclude that the difference in cerebral rhythmic activity between the alpha and gamma bands is associated with age and cognitive status, and that ΔRV therefore provide a non-subjective clinical tool with which to examine cognitive status in old age.
Maximum Entropy Production Is Not a Steady State Attractor for 2D Fluid Convection
Directory of Open Access Journals (Sweden)
Stuart Bartlett
2016-12-01
Full Text Available Multiple authors have claimed that the natural convection of a fluid is a process that exhibits maximum entropy production (MEP. However, almost all such investigations were limited to fixed temperature boundary conditions (BCs. It was found that under those conditions, the system tends to maximize its heat flux, and hence it was concluded that the MEP state is a dynamical attractor. However, since entropy production varies with heat flux and difference of inverse temperature, it is essential that any complete investigation of entropy production allows for variations in heat flux and temperature difference. Only then can we legitimately assess whether the MEP state is the most attractive. Our previous work made use of negative feedback BCs to explore this possibility. We found that the steady state of the system was far from the MEP state. For any system, entropy production can only be maximized subject to a finite set of physical and material constraints. In the case of our previous work, it was possible that the adopted set of fluid parameters were constraining the system in such a way that it was entirely prevented from reaching the MEP state. Hence, in the present work, we used a different set of boundary parameters, such that the steady states of the system were in the local vicinity of the MEP state. If MEP was indeed an attractor, relaxing those constraints of our previous work should have caused a discrete perturbation to the surface of steady state heat flux values near the value corresponding to MEP. We found no such perturbation, and hence no discernible attraction to the MEP state. Furthermore, systems with fixed flux BCs actually minimize their entropy production (relative to the alternative stable state, that of pure diffusive heat transport. This leads us to conclude that the principle of MEP is not an accurate indicator of which stable steady state a convective system will adopt. However, for all BCs considered, the quotient of
Composing problem solvers for simulation experimentation: a case study on steady state estimation.
Leye, Stefan; Ewald, Roland; Uhrmacher, Adelinde M
2014-01-01
Simulation experiments involve various sub-tasks, e.g., parameter optimization, simulation execution, or output data analysis. Many algorithms can be applied to such tasks, but their performance depends on the given problem. Steady state estimation in systems biology is a typical example for this: several estimators have been proposed, each with its own (dis-)advantages. Experimenters, therefore, must choose from the available options, even though they may not be aware of the consequences. To support those users, we propose a general scheme to aggregate such algorithms to so-called synthetic problem solvers, which exploit algorithm differences to improve overall performance. Our approach subsumes various aggregation mechanisms, supports automatic configuration from training data (e.g., via ensemble learning or portfolio selection), and extends the plugin system of the open source modeling and simulation framework James II. We show the benefits of our approach by applying it to steady state estimation for cell-biological models.
International Nuclear Information System (INIS)
Matsuda, Shinzaburo
2000-01-01
This paper reports on the progress of the fusion reactor technologies developed at the Japan Atomic Energy Research Institute (JAERI) and expected to lead to a future steady state operation reactor. In particular, superconducting coil technology for plasma confinement, NBI and RF systems technology for plasma control and current drive, fueling and pumping systems technology for particle control, heat removal technology, and development of long life materials are highlighted as the important key elements for the future steady state operation. It will be discussed how these key technologies have already been developed by the ITER (International Thermonuclear Experimental Reactor) technology R and D as well as by the Japanese domestic program, and which technologies are planned for the near future
Non-equilibrium steady state of a driven levitated particle with feedback cooling
International Nuclear Information System (INIS)
Gieseler, Jan; Novotny, Lukas; Moritz, Clemens; Dellago, Christoph
2015-01-01
Laser trapped nanoparticles have been recently used as model systems to study fundamental relations holding far from equilibrium. Here we study a nanoscale silica sphere levitated by a laser in a low density gas. The center of mass motion of the particle is subjected, at the same time, to feedback cooling and a parametric modulation driving the system into a non-equilibrium steady state. Based on the Langevin equation of motion of the particle, we derive an analytical expression for the energy distribution of this steady state showing that the average and variance of the energy distribution can be controlled separately by appropriate choice of the friction, cooling and modulation parameters. Energy distributions determined in computer simulations and measured in a laboratory experiment agree well with the analytical predictions. We analyze the particle motion also in terms of the quadratures and find thermal squeezing depending on the degree of detuning. (paper)
Investigation of hydrocephalus with three-dimensional constructive interference in steady state MRI
International Nuclear Information System (INIS)
Kurihara, N.; National Sendai Hospital; Takahashi, S.; Higano, S.; Furuta, S.; Umetsu, A.; Tamura, H.; Research Inst. of Brain and Blood Vessels, Akita; Jokura, H.
2000-01-01
We report four patients with various types of hydrocephalus in whom constructive interference in steady state (CISS) MRI disclosed the cause of the hydrocephalus. The imaging clearly delineated an abnormal contour of the ventricular system and intraventricular septa, essential information for surgical planning, including endoscopic surgery. Postoperative CISS images were useful for showing not only regression of hydrocephalus but also the patency of small fenestrations. (orig.)
Steady-state tokamak reactor with non-divertor impurity control: STARFIRE
International Nuclear Information System (INIS)
Baker, C.C.
1980-01-01
STARFIRE is a conceptual design study of a commercial tokamak fusion electric power plant. Particular emphasis has been placed on simplifying the reactor concept by developing design concepts to produce a steady-state tokamak with non-divertor impurity control and helium ash removal. The concepts of plasma current drive using lower hybrid rf waves and a limiter/vacuum system for reactor applications are described
Ashworth, J. R.; Birdi, J. J.; Emmett, T. F.
1992-01-01
Retrograde coronas of Caledonian age, between clinopyroxene and plagioclase in the Jotun Nappe Complex, Norway, illustrate the effects of diffusion kinetics on mineral distributions among layers and on the compositions of hornblende-actinolite. One corona type comprises a symplectite of epidote + quartz adjacent to plagioclase, and a less well-organized intergrowth of amphibole + quartz replacing clinopyroxene. The observed mineral proportions imply an open-system reaction, but the similarity of Al/Si ratios in reactant plagioclase and product symplectite indicates approximate conservation of Al2O3 and SiO2. The largest inferred open-system flux is a loss of CaO, mostly derived from consumption of clinopyroxene. The approximate layer structure, Pl|Ep + Qtz|Hbl + Qtz|Act±Hbl + Qtz|Cpx, is modelled using the theory of steady-state diffusion-controlled growth with local equilibrium. To obtain a solution, it is necessary to use a reactant plagioclase composition which takes into account aluminous (epidote) inclusions. The results indicate that, in terms of Onsager diffusion coefficients L ii , Ca is more mobile than AL ( L CaCa/ L AlAl≳3.) (where ≳ means greater than or approximately equal to). This behaviour of Ca is comparable with that of Mg in previously studied coronas around olivine. Si is non-diffusing in the present modelling, because of silica saturation. Oxidation of some Fe2+ to Fe3+ occurs within the corona. Mg diffuses towards its source (clinopyroxene) to maintain local equilibrium. Other coronas consist of two layers, hornblende adjacent to plagioclase and zoned amphibole + quartz adjacent to clinopyroxene. In the zoned layer, actinolitic hornblende forms relict patches, separated from quartz blebs by more aluminous hornblende. A preliminary steady-state, local-equilibrium model of grain-boundary diffusion explains the formation of low-Al and high-Al layers as due to Al immobility. Zoning and replacement are qualitatively explained in terms of
International Nuclear Information System (INIS)
1988-05-01
The Steady-state Tokamak (STE) Experiment is a proposed superconducting-coil, hydrogen-plasma tokamak device intended to address the integrated non-nuclear issues of steady state, high-power tokamak physics and technology. Such a facility has been called for in the US program plan for the mid 1990's, and will play a unique role in the world-wide fusion effort. Information from STE on steady-state current drive, plasma control, and high power technology will contribute significantly to the operating capabilities of future steady-state devices. This paper reviews preliminary designs and expected technological contributions to the US and world fusion reactor research from each of the above mentioned reactor systems. This document is intended as a proposal and feasibility discussion and does not include exhaustive technical reviews. 12 figs., 3 tabs
LANSCE steady state unperturbed thermal neutron fluxes at 100 μA
International Nuclear Information System (INIS)
Russell, G.J.
1989-01-01
The ''maximum'' unperturbed, steady state thermal neutron flux for LANSCE is calculated to be 2 /times/ 10 13 n/cm 2 -s for 100 μA of 800-MeV protons. This LANSCE neutron flux is a comparable entity to a steady state reactor thermal neutron flux. LANSCE perturbed steady state thermal neutron fluxes have also been calculated. Because LANSCE is a pulsed neutron source, much higher ''peak'' (in time) neutron fluxes can be generated than at a steady state reactor source. 5 refs., 5 figs
Rod Bundle Heat Transfer: Steady-State Steam Cooling Experiments
International Nuclear Information System (INIS)
Spring, J.P.; McLaughlin, D.M.
2006-01-01
Through the joint efforts of the Pennsylvania State University and the United States Nuclear Regulatory Commission, an experimental rod bundle heat transfer (RBHT) facility was designed and built. The rod bundle consists of a 7 x 7 square pitch array with spacer grids and geometry similar to that found in a modern pressurized water reactor. From this facility, a series of steady-state steam cooling experiments were performed. The bundle inlet Reynolds number was varied from 1 400 to 30 000 over a pressure range from 1.36 to 4 bars (20 to 60 psia). The bundle inlet steam temperature was controlled to be at saturation for the specified pressure and the fluid exit temperature exceeded 550 deg. C in the highest power tests. One important quantity of interest is the local convective heat transfer coefficient defined in terms of the local bulk mean temperature of the flow, local wall temperature, and heat flux. Steam temperatures were measured at the center of selected subchannels along the length of the bundle by traversing miniaturized thermocouples. Using an analogy between momentum and energy transport, a method was developed for relating the local subchannel centerline temperature measurement to the local bulk mean temperature. Wall temperatures were measured using internal thermocouples strategically placed along the length of each rod and the local wall heat flux was obtained from an inverse conduction program. The local heat transfer coefficient was calculated from the data at each rod thermocouple location. The local heat transfer coefficients calculated for locations where the flow was fully developed were compared against several published correlations. The Weisman and El-Genk correlations were found to agree best with the RBHT steam cooling data, especially over the range of turbulent Reynolds numbers. The effect of spacer grids on the heat transfer enhancement was also determined from instrumentation placed downstream of the spacer grid locations. The local
COOLOD, Steady-State Thermal Hydraulics of Research Reactors
International Nuclear Information System (INIS)
Kaminaga, Masanori
1997-01-01
1 - Description of program or function: The COOLOD-N2 code provides a capability for the analyses of the steady-state thermal-hydraulics of research reactors. This code is a revised version of the COOLOD-N code, and is applicable not only for research reactors in which plate-type fuel is adopted, but also for research reactors in which rod-type fuel is adopted. In the code, subroutines to calculate temperature distribution in rod-type fuel have been newly added to the COOLOD-N code. The COOLOD-N2 code can calculate fuel temperatures under both forced convection cooling mode and natural convection cooling mode. A 'Heat Transfer package' is used for calculating heat transfer coefficient, DNB heat flux etc. The 'Heat Transfer package' is a subroutine program and is especially developed for research reactors in which plate-type fuel is adopted. In case of rod-type fuel, DNB heat flux is calculated by both the 'Heat Transfer package' and Lund DNB heat flux correlation which is popular for TRIGA reactor. The COOLOD-N2 code also has a capability of calculating ONB temperature, the heat flux at onset of flow instability as well as DNB heat flux. 2 - Method of solution: The 'Heat Transfer Package' is a subprogram for calculating heat transfer coefficients, ONB temperature, heat flux at onset of flow instability and DNB heat flux. The 'Heat transfer package' was especially developed for research reactors which are operated under low pressure and low temperature conditions using plate-type fuel, just like the JRR-3M. Heat transfer correlations adopted in the 'Heat Transfer Package' were obtained or estimated based on the heat transfer experiments in which thermal-hydraulic features of the upgraded JRR-3 core were properly reflected. The 'Heat Transfer Package' is applicable to upward and downward flow
Phencyclidine Disrupts the Auditory Steady State Response in Rats.
Directory of Open Access Journals (Sweden)
Emma Leishman
Full Text Available The Auditory Steady-State Response (ASSR in the electroencephalogram (EEG is usually reduced in schizophrenia (SZ, particularly to 40 Hz stimulation. The gamma frequency ASSR deficit has been attributed to N-methyl-D-aspartate receptor (NMDAR hypofunction. We tested whether the NMDAR antagonist, phencyclidine (PCP, produced similar ASSR deficits in rats. EEG was recorded from awake rats via intracranial electrodes overlaying the auditory cortex and at the vertex of the skull. ASSRs to click trains were recorded at 10, 20, 30, 40, 50, and 55 Hz and measured by ASSR Mean Power (MP and Phase Locking Factor (PLF. In Experiment 1, the effect of different subcutaneous doses of PCP (1.0, 2.5 and 4.0 mg/kg on the ASSR in 12 rats was assessed. In Experiment 2, ASSRs were compared in PCP treated rats and control rats at baseline, after acute injection (5 mg/kg, following two weeks of subchronic, continuous administration (5 mg/kg/day, and one week after drug cessation. Acute administration of PCP increased PLF and MP at frequencies of stimulation below 50 Hz, and decreased responses at higher frequencies at the auditory cortex site. Acute administration had a less pronounced effect at the vertex site, with a reduction of either PLF or MP observed at frequencies above 20 Hz. Acute effects increased in magnitude with higher doses of PCP. Consistent effects were not observed after subchronic PCP administration. These data indicate that acute administration of PCP, a NMDAR antagonist, produces an increase in ASSR synchrony and power at low frequencies of stimulation and a reduction of high frequency (> 40 Hz ASSR activity in rats. Subchronic, continuous administration of PCP, on the other hand, has little impact on ASSRs. Thus, while ASSRs are highly sensitive to NMDAR antagonists, their translational utility as a cross-species biomarker for NMDAR hypofunction in SZ and other disorders may be dependent on dose and schedule.
Very high flux steady state reactor and accelerator based sources
International Nuclear Information System (INIS)
Ludewig, H.; Todosow, M.; Simos, N.; Shapiro, S.; Hastings, J.
2004-01-01
With the number of steady state neutron sources in the US declining (including the demise of the Bnl HFBR) the remaining intense sources are now in Europe (i.e. reactors - ILL and FMR, accelerator - PSI). The intensity of the undisturbed thermal flux for sources currently in operation ranges from 10 14 n/cm 2 *s to 10 15 n/cm 2 *s. The proposed Advanced Neutron Source (ANS) was to be a high power reactor (about 350 MW) with a projected undisturbed thermal flux of 7*10 15 n/cm 2 *s but never materialized. The objective of the current study is to explore the requirements and implications of two source concepts with an undisturbed flux of 10 16 n/cm 2 *s. The first is a reactor based concept operating at high power density (10 MW/l - 15 MW/l) and a total power of 100 MW - 250 MW, depending on fissile enrichment. The second is an accelerator based concept relying on a 1 GeV - 1.5 GeV proton Linac with a total beam power of 40 MW and a liquid lead-bismuth eutectic target. In the reactor source study, the effects of fissile material enrichment, coolant temperature and pressure drop, and estimates of pressure vessel stress levels will be investigated. The fuel form for the reactor will be different from all other operating source reactors in that it is proposed to use an infiltrated graphitic structure, which has been developed for nuclear thermal propulsion reactor applications. In the accelerator based source the generation of spallation products and their activation levels, and the material damage sustained by the beam window will be investigated. (authors)
Human auditory steady state responses to binaural and monaural beats.
Schwarz, D W F; Taylor, P
2005-03-01
Binaural beat sensations depend upon a central combination of two different temporally encoded tones, separately presented to the two ears. We tested the feasibility to record an auditory steady state evoked response (ASSR) at the binaural beat frequency in order to find a measure for temporal coding of sound in the human EEG. We stimulated each ear with a distinct tone, both differing in frequency by 40Hz, to record a binaural beat ASSR. As control, we evoked a beat ASSR in response to both tones in the same ear. We band-pass filtered the EEG at 40Hz, averaged with respect to stimulus onset and compared ASSR amplitudes and phases, extracted from a sinusoidal non-linear regression fit to a 40Hz period average. A 40Hz binaural beat ASSR was evoked at a low mean stimulus frequency (400Hz) but became undetectable beyond 3kHz. Its amplitude was smaller than that of the acoustic beat ASSR, which was evoked at low and high frequencies. Both ASSR types had maxima at fronto-central leads and displayed a fronto-occipital phase delay of several ms. The dependence of the 40Hz binaural beat ASSR on stimuli at low, temporally coded tone frequencies suggests that it may objectively assess temporal sound coding ability. The phase shift across the electrode array is evidence for more than one origin of the 40Hz oscillations. The binaural beat ASSR is an evoked response, with novel diagnostic potential, to a signal that is not present in the stimulus, but generated within the brain.
Steady state operation of tokamaks. Proceedings of a technical committee meeting
International Nuclear Information System (INIS)
2000-10-01
The first IAEA Technical Committee Meeting (TCM) on Steady State Operation of Tokamaks was organized to discuss the operations of present long-pulse tokamaks (TRIAM-1M, TORE SUPRA, MT-7, HT-7M, HL-1M) and the plans for future steady-state tokamaks such as SST-1, CIEL, and HT-7U. This meeting, held from 13-15 October 1998, was hosted by the Academia Sinica Institute of Plasma Physics (ASIPP), Hefei, China. Participants from China, France, India, Japan, the Russian Federation, and the IAEA participated in the meeting. There were 18 individual presentations plus general discussions on many topics, including superconducting magnet systems, cryogenics, plasma position control, non-inductive current drive, auxiliary heating, plasma-wall interactions, high heat flux components, particle control, and data acquisition
Theoretical studying the stability of steady-state regime of a channel with a coolant condensation
International Nuclear Information System (INIS)
Savikhin, O.G.
1987-01-01
Based on the boiling channel stability theory, the channel steady-state stability with the coolant condensation is studied. Condensable coolants are used in the NPP steam-separator superheaters as well as in cryogenic technique. Under certain conditions the coolant flow rate and temperature fluctuations may be excited in the parallel channel system with coolant condensation, which produce a sufficient effect on the heat exchange equipment operation reliability. To describe unsteady processes of heat and mass transfer in the channel, a homogeneous two-phase flow one dimensional model is used. The results obtained allow one to make a conclusion concerning the effect of some parameters on condensing channel steady-state regime stability: reduction of inlet and outlet unheated communication length, pressure drop increase at the outlet plate and its reduction at the inlet one lead to the increase of stability margin
Steady-state and dynamic models for particle engulfment during solidification
Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.
2016-06-01
Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.
Coherent control of long-distance steady-state entanglement in lossy resonator arrays
Angelakis, D. G.; Dai, L.; Kwek, L. C.
2010-07-01
We show that coherent control of the steady-state long-distance entanglement between pairs of cavity-atom systems in an array of lossy and driven coupled resonators is possible. The cavities are doped with atoms and are connected through waveguides, other cavities or fibers depending on the implementation. We find that the steady-state entanglement can be coherently controlled through the tuning of the phase difference between the driving fields. It can also be surprisingly high in spite of the pumps being classical fields. For some implementations where the connecting element can be a fiber, long-distance steady-state quantum correlations can be established. Furthermore, the maximal of entanglement for any pair is achieved when their corresponding direct coupling is much smaller than their individual couplings to the third party. This effect is reminiscent of the establishment of coherence between otherwise uncoupled atomic levels using classical coherent fields. We suggest a method to measure this entanglement by analyzing the correlations of the emitted photons from the array and also analyze the above results for a range of values of the system parameters, different network geometries and possible implementation technologies.
Steady-state evoked potentials possibilities for mental-state estimation
Junker, Andrew M.; Schnurer, John H.; Ingle, David F.; Downey, Craig W.
1988-01-01
The use of the human steady-state evoked potential (SSEP) as a possible measure of mental-state estimation is explored. A method for evoking a visual response to a sum-of-ten sine waves is presented. This approach provides simultaneous multiple frequency measurements of the human EEG to the evoking stimulus in terms of describing functions (gain and phase) and remnant spectra. Ways in which these quantities vary with the addition of performance tasks (manual tracking, grammatical reasoning, and decision making) are presented. Models of the describing function measures can be formulated using systems engineering technology. Relationships between model parameters and performance scores during manual tracking are discussed. Problems of unresponsiveness and lack of repeatability of subject responses are addressed in terms of a need for loop closure of the SSEP. A technique to achieve loop closure using a lock-in amplifier approach is presented. Results of a study designed to test the effectiveness of using feedback to consciously connect humans to their evoked response are presented. Findings indicate that conscious control of EEG is possible. Implications of these results in terms of secondary tasks for mental-state estimation and brain actuated control are addressed.
Differential equation methods for simulation of GFP kinetics in non-steady state experiments.
Phair, Robert D
2018-03-15
Genetically encoded fluorescent proteins, combined with fluorescence microscopy, are widely used in cell biology to collect kinetic data on intracellular trafficking. Methods for extraction of quantitative information from these data are based on the mathematics of diffusion and tracer kinetics. Current methods, although useful and powerful, depend on the assumption that the cellular system being studied is in a steady state, that is, the assumption that all the molecular concentrations and fluxes are constant for the duration of the experiment. Here, we derive new tracer kinetic analytical methods for non-steady state biological systems by constructing mechanistic nonlinear differential equation models of the underlying cell biological processes and linking them to a separate set of differential equations governing the kinetics of the fluorescent tracer. Linking the two sets of equations is based on a new application of the fundamental tracer principle of indistinguishability and, unlike current methods, supports correct dependence of tracer kinetics on cellular dynamics. This approach thus provides a general mathematical framework for applications of GFP fluorescence microscopy (including photobleaching [FRAP, FLIP] and photoactivation to frequently encountered experimental protocols involving physiological or pharmacological perturbations (e.g., growth factors, neurotransmitters, acute knockouts, inhibitors, hormones, cytokines, and metabolites) that initiate mechanistically informative intracellular transients. When a new steady state is achieved, these methods automatically reduce to classical steady state tracer kinetic analysis. © 2018 Phair. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Evaluating steady-state soil thickness by coupling uranium series and 10Be cosmogenic radionuclides
Vanacker, Veerle; Schoonejans, Jerome; Opfergelt, Sophie; Granet, Matthieu; Christl, Marcus; Chabaux, Francois
2017-04-01
Within the Critical Zone, the development of the regolith mantle is controlled by the downwards propagation of the weathering front into the bedrock and denudation at the surface of the regolith by mass movements, water and wind erosion. When the removal of surface material is approximately balanced by the soil production, the soil system is assumed to be in steady-state. The steady state soil thickness (or so-called SSST) can be considered as a dynamic equilibrium of the system, where the thickness of the soil mantle stays relatively constant over time. In this study, we present and compare analytical data from two independent isotopic techniques: in-situ produced cosmogenic nuclides and U-series disequilibria to constrain soil development under semi-arid climatic conditions. The Spanish Betic Cordillera (Southeast Spain) was selected for this study, as it offers us a unique opportunity to analyze soil thickness steady-state conditions for thin soils of semiarid environments. Three soil profiles were sampled across the Betic Ranges, at the ridge crest of zero-order catchments with distinct topographic relief, hillslope gradient and 10Be-derived denudation rate. The magnitude of soil production rates determined based on U-series isotopes (238U, 234U, 230Th and 226Ra) is in the same order of magnitude as the 10Be-derived denudation rates, suggesting steady state soil thickness in two out of three sampling sites. The results suggest that coupling U-series isotopes with in-situ produced radionuclides can provide new insights in the rates of soil development; and also illustrate the potential frontiers in applying U-series disequilibria to track soil production in rapidly eroding landscapes characterized by thin weathering depths.
Structural evaluation of FHX for PGSFR at steady state condition
Energy Technology Data Exchange (ETDEWEB)
Kim, Nak-Hyun; Lee, S. Y.; Kim, S. K. [KAERI, Daejeon (Korea, Republic of)
2016-05-15
Liquid sodium flows inside the heat transfer tubes and atmospheric air flows over the finned tubes. The configuration and overall shape of the unit are shown in Figure 1. The unit is placed in the upper region of the reactor building and has function of dumping the system heat load into the final heat sink, i.e., the atmosphere. Heat is transmitted from the primary cold sodium pool into the ADHRS sodium loop via DHX (Decay Heat Exchanger), and a direct heat exchange occurs between the tube-side sodium and the shell-side air through the FHX tube wall. Cold atmospheric air is introduced into the air inlet duct at the lower part of the unit by using an electrically operated air blower or by the natural circulation force. Air flows across the finned tube bank rising upward direction to make uniform air flow with perfect mixing across the tubes. The finned tube bundle is placed inside a well-insulated casing. The air heated at the tube bank region is collected at the top of the unit and then is discharged through the air stack above the unit. Although a blower supplies atmospheric cooling air into the FHX unit, a tall air stack of 30 m in height is also provided to secure natural draft head of natural circulation air flow against a loss of power supply. The structural analysis of a FHX are carried out and its structural integrity under the given service levels is evaluated per ASME Code rule. The design loads according to design condition and normal operating steady condition are classified and stresses calculated from stress analyses are linearized and summarized in their stress components.
Energy Technology Data Exchange (ETDEWEB)
Paulsson, L; Silva, A; Thorvaldsson, B [ABB Power Systems AB, Vaesteraas (Sweden); Gonzalez, R [Northern States Power Co., Minneapolis, MN (United States)
1994-12-31
One efficient way to improve the power transmission performance is to provide appropriate reactive power balance and control in the network. Reactive power compensation by means of static var compensation (SVC) and series compensation (SC) are well established ways to achieve such improvement. The SVC, which is a relatively new concept, has now been used successfully for more than 15 years in EHV systems. This paper discusses a more general type of shunt compensation, designated Static var System (SVS), which may include breaker switched capacitor banks and other special features besides conventional SVC technology. (author) 4 figs.
El Serafy, G.Y.H.; Mynett, A.E.
2008-01-01
Numerical models of a water system are always based on assumptions and simplifications that may result in errors in the model's predictions. Such errors can be reduced through the use of data assimilation and thus can significantly improve the success rate of the predictions and operational
Energy Technology Data Exchange (ETDEWEB)
1978-12-04
The following appendices are included; Dynamic Simulation Program (ODSP-3); sample results of dynamic simulation; trip report - NH/sub 3/ safety precautions/accident records; trip report - US Coast Guard Headquarters; OTEC power system development, preliminary design test program report; medium turbine generator inspection point program; net energy analysis; bus bar cost of electricity; OTEC technical specifications; and engineer drawings. (WHK)
Feedback control of plasma density and heating power for steady state operation in LHD
Energy Technology Data Exchange (ETDEWEB)
Kamio, Shuji, E-mail: kamio@nifs.ac.jp; Kasahara, Hiroshi; Seki, Tetsuo; Saito, Kenji; Seki, Ryosuke; Nomura, Goro; Mutoh, Takashi
2015-12-15
Highlights: • We upgraded a control system for steady state operation in LHD. • This system contains gas fueling system and ICRF power control system. • Automatic power boost system is also attached for stable operation. • As a result, we achieved the long pulse up to 48 min in the electron density of more than 1 × 10{sup 19} m{sup −3}. - Abstract: For steady state operation, the feedback control of plasma density and heating power system was developed in the Large Helical Device (LHD). In order to achieve a record of the long pulse discharge, stable plasma density and heating power are needed. This system contains the radio frequency (RF) heating power control, interlocks, gas fueling, automatic RF phase control, ion cyclotron range of frequency (ICRF) antenna position control, and graphical user interface (GUI). Using the density control system, the electron density was controlled to the target density and using the RF heating power control system, the RF power injection could be stable. As a result of using this system, we achieved the long pulse up to 48 min in the electron density of more than 1 × 10{sup 19} m{sup −3}. Further, the ICRF hardware experienced no critical accidents during the 17th LHD experiment campaign in 2013.
Lower bounds for ballistic current and noise in non-equilibrium quantum steady states
Directory of Open Access Journals (Sweden)
Benjamin Doyon
2015-03-01
Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.
On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow.
Zhu, Zhongfan; Wang, Hongrui; Yu, Jingshan; Dou, Jie
2016-01-01
The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size.
Progress Towards High Performance, Steady-state Spherical Torus
International Nuclear Information System (INIS)
Ono, M.; Bell, M.G.; Bell, R.E.; Bigelow, T.; Bitter, M.; Blanchard, W.; Boedo, J.; Bourdelle, C.; Bush, C.; Choe, W.; Chrzanowski, J.; Darrow, D.S.; Diem, S.J.; Doerner, R.; Efthimion, P.C.; Ferron, J.R.; Fonck, R.J.; Fredrickson, E.D.; Garstka, G.D.; Gates, D.A.; Gray, T.; Grisham, L.R.; Heidbrink, W.; Hill, K.W.; Hoffman, D.; Jarboe, T.R.; Johnson, D.W.; Kaita, R.; Kaye, S.M.; Kessel, C.; Kim, J.H.; Kissick, M.W.; Kubota, S.; Kugel, H.W.; LeBlanc, B.P.; Lee, K.; Lee, S.G.; Lewicki, B.T.; Luckhardt, S.; Maingi, R.; Majeski, R.; Manickam, J.; Maqueda, R.; Mau, T.K.; Mazzucato, E.; Medley, S.S.; Menard, J.; Mueller, D.; Nelson, B.A.; Neumeyer, C.; Nishino, N.; Ostrander, C.N.; Pacella, D.; Paoletti, F.; Park, H.K.; Park, W.; Paul, S.F.; Peng, Y.-K. M.; Phillips, C.K.; Pinsker, R.; Probert, P.H.; Ramakrishnan, S.; Raman, R.; Redi, M.; Roquemore, A.L.; Rosenberg, A.; Ryan, P.M.; Sabbagh, S.A.; Schaffer, M.; Schooff, R.J.; Seraydarian, R.; Skinner, C.H.; Sontag, A.C.; Soukhanovskii, V.; Spaleta, J.; Stevenson, T.; Stutman, D.; Swain, D.W.; Synakowski, E.; Takase, Y.; Tang, X.; Taylor, G.; Timberlake, J.; Tritz, K.L.; Unterberg, E.A.; Von Halle, A.; Wilgen, J.; Williams, M.; Wilson, J.R.; Xu, X.; Zweben, S.J.; Akers, R.; Barry, R.E.; Beiersdorfer, P.; Bialek, J.M.; Blagojevic, B.; Bonoli, P.T.; Carter, M.D.; Davis, W.; Deng, B.; Dudek, L.; Egedal, J.; Ellis, R.; Finkenthal, M.; Foley, J.; Fredd, E.; Glasser, A.; Gibney, T.; Gilmore, M.; Goldston, R.J.; Hatcher, R.E.; Hawryluk, R.J.; Houlberg, W.; Harvey, R.; Jardin, S.C.; Hosea, J.C.; Ji, H.; Kalish, M.; Lowrance, J.; Lao, L.L.; Levinton, F.M.; Luhmann, N.C.; Marsala, R.; Mastravito, D.; Menon, M.M.; Mitarai, O.; Nagata, M.; Oliaro, G.; Parsells, R.; Peebles, T.; Peneflor, B.; Piglowski, D.; Porter, G.D.; Ram, A.K.; Rensink, M.; Rewoldt, G.; Roney, P.; Shaing, K.; Shiraiwa, S.; Sichta, P.; Stotler, D.; Stratton, B.C.; Vero, R.; Wampler, W.R.; Wurden, G.A.
2003-01-01
Research on the Spherical Torus (or Spherical Tokamak) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect-ratio devices, such as the conventional tokamak. The Spherical Tours (ST) experiments are being conducted in various U.S. research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium-size ST research facilities: Pegasus at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the U.S., an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high-performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (B), noninductive sustainment, ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bT of up to 35% with the near unity central betaT have been obtained. NSTX will be exploring advanced regimes where bT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for noninductive sustainment in NSTX is the high beta-poloidal regime, where discharges with a high noninductive fraction (∼60% bootstrap current + neutral-beam-injected current drive) were sustained over the resistive skin time. Research on radio-frequency-based heating and current drive utilizing HHFW (High Harmonic Fast Wave) and EBW (Electron Bernstein Wave) is also pursued on NSTX, Pegasus, and CDX-U. For noninductive start-up, the Coaxial Helicity Injection (CHI), developed in HIT/HIT-II, has been adopted
40 CFR 86.1363-2007 - Steady-state testing with a discrete-mode cycle.
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Steady-state testing with a discrete-mode cycle. 86.1363-2007 Section 86.1363-2007 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Exhaust Test Procedures § 86.1363-2007 Steady-state testing with a discrete-mode cycle. This section...
40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix..., App. II Appendix II to Part 1042—Steady-State Duty Cycles (a) The following duty cycles apply as specified in § 1042.505(b)(1): (1) The following duty cycle applies for discrete-mode testing: E3 mode No...
40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed engines: (1) The following duty cycle applies for discrete-mode testing: D2 mode number Engine speed...
Steady-state models in electrophoresis: from isotachophoresis to capillary zone electrophoresis
Beckers, J.L.
1995-01-01
Although all electrophoretic techniques are closely allied and controlled by the same rules, we often distinguish between steady-state and dynamic models in the modeling of electrophoretic processes, whereby steady-state models are applied for isotachophoresis (ITP) and dynamic models are applied
The study of a NaK-water exchanger in steady and transient states (1962)
International Nuclear Information System (INIS)
List, D.; Schwab, B.
1962-01-01
During this study on a NaK-water exchanger, it was desired to know the temperature variations, in the transient states, along the metallic wall separating the two fluids. The basic equations, which are partial differential equations, are established and are then transformed into a differential equation system for which the various coefficients are calculated. These equations, after certain modifications, can be set up on an analogic computer and the exchanger behaviour can then be studied. The steady states of the exchanger are studied first and it is then submitted to various types of perturbations. (authors) [fr
Development of synchronous generator saturation model from steady-state operating data
Energy Technology Data Exchange (ETDEWEB)
Jadric, Martin; Despalatovic, Marin; Terzic, Bozo [FESB University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split (Croatia)
2010-11-15
A new method to estimate and model the saturated synchronous reactances of hydroturbine generators from operating data is presented. For the estimation process, measurements of only the generator steady-state variables are required. First, using a specific procedure, the field to armature turns ratio is estimated from measured steady-state variables at constant power generation and various excitation conditions. Subsequently, for each set of steady-state operating data, saturated synchronous reactances are identified. Fitting surfaces, defined as polynomial functions in two variables, are later used to model these saturated reactances. It is shown that the simpler polynomial functions may be used to model saturation at the steady-state than at the dynamic conditions. The developed steady-state model is validated with measurements performed on the 34 MVA hydroturbine generator. (author)
Sambataro, Domenico; Sambataro, Gianluca; Zaccara, Eleonora; Maglione, Wanda; Polosa, Riccardo; Afeltra, Antonella M V; Vitali, Claudio; Del Papa, Nicoletta
2014-10-09
Nailfold videocapillaroscopy (NVC) in systemic sclerosis (SSc) is a procedure commonly used for patient classification and subsetting, but not to define disease activity (DA). This study aimed to evaluate whether the number of micro-haemorrhages (MHE), micro-thrombosis (MT), giant capillaries (GC), and normal/dilated capillaries (Cs) in NVC could predict DA in SSc. Eight-finger NVC was performed in 107 patients with SSc, and the total number of MHE/MT, GC, and the mean number of Cs were counted and defined as number of micro-haemorrhages (NEMO), GC and Cs scores, respectively. The European Scleroderma Study Group (ESSG) index constituted the gold standard for DA assessment, and scores ≥ 3.5 and = 3 were considered indicative of high and moderate activity, respectively. NEMO and GC scores were positively correlated with ESSG index (R = 0.65, P < 0.0001, and R = 0.47, P <0.0001, respectively), whilst Cs score showed a negative correlation with that DA index (R = -0.30, P <0.001). The area under the curve (AUC) of receiver operating characteristic plots, obtained by NEMO score sensitivity and specificity values in classifying patients with ESSG index ≥ 3.5, was significantly higher than the corresponding AUC derived from either GC or Cs scores (P <0.03 and P <0.0006, respectively). A modified score, defined by the presence of a given number of MHE/MT and GC, had a good performance in classifying active patients (ESSG index ≥ 3, sensitivity 95.1%, specificity 84.8%, accuracy 88.7%). MHE/MT and GC appear to be good indicators of DA in SSc, and enhances the role of NVC as an easy technique to identify active patients.
Recent results on steady state and confinement improvement research on JT-60U
International Nuclear Information System (INIS)
Ide, Shunsuke
2000-01-01
On the JT-60U tokamak, fusion plasma research for realization of a steady state tokamak reactor has been pursued. Towards that goal, confinement improved plasmas such as H-mode, high β p , reversed magnetic shear (RS) and latter two combined with H-mode edge pedestal have been developed and investigated intensively. A key issue to achieve non-inductive current drive relevant to a steady state fusion reactor is to increase the fraction of the bootstrap current and match the spatial profile to the optimum. In 1999, as the result of the optimization, the equivalent deuterium-tritium (D-T) fusion gain (Q DT eq ) of 0.5 was sustained for 0.8 s, which is roughly equal to the energy confinement time, in a RS plasma. In order to achieve a RS plasma in steady state two approach have been explored. One is to use external current driver such as lower hybrid current drive (LHCD), and by optimizing LHCD a quasi-steady RS discharge was obtained. The other approach is to utilize bootstrap current as much as possible, and with highly increased fraction of the bootstrap current, a confinement enhancement factor of 3.6 was maintained for 2.7 s in a RS plasma with H-mode edge. A heating and current drive system in the electron cyclotron range of frequency for localized heating and current drive has been installed on JT-60U, and in initial experiments a clear increase of the central electron temperature in a RS high density central region was confirmed only with injected power of 0.75 MW. (author)
Energy Technology Data Exchange (ETDEWEB)
Garcia Velarde, M
1977-07-01
Thermo convective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Bernard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (Author) 105 refs.
International Nuclear Information System (INIS)
Garcia Velarde, M.
1977-01-01
Thermoconvective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Benard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (author) [es
International Nuclear Information System (INIS)
Garcia Velarde, M.
1977-01-01
Thermo convective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Bernard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (Author) 105 refs
Erpelding, Marion; Sinha, Santanu; Tallakstad, Ken Tore; Hansen, Alex; Flekkøy, Eirik Grude; Måløy, Knut Jørgen
2013-11-01
It is well known that the transient behavior during drainage or imbibition in multiphase flow in porous media strongly depends on the history and initial condition of the system. However, when the steady-state regime is reached and both drainage and imbibition take place at the pore level, the influence of the evolution history and initial preparation is an open question. Here, we present an extensive experimental and numerical work investigating the history dependence of simultaneous steady-state two-phase flow through porous media. Our experimental system consists of a Hele-Shaw cell filled with glass beads which we model numerically by a network of disordered pores transporting two immiscible fluids. From measurements of global pressure evolution, histograms of saturation, and cluster-size distributions, we find that when both phases are flowing through the porous medium, the steady state does not depend on the initial preparation of the system or on the way it has been reached.
1992-01-01
This study is concerned with the relationship between the Na/K/Cl cotransport system and the steady-state volume (MCV) of red blood cells. Cotransport rate was determined in unfractionated and density- separated red cells of different MCV from different donors to see whether cotransport differences contribute to the difference in the distribution of MCVs. Cotransport, studied in cells at their original MCVs, was determined as the bumetanide (10 microM)-sensitive 22Na efflux in the presence of ouabain (50 microM) after adjusting cellular Na (Nai) and Ki to achieve near maximal transport rates. This condition was chosen to rule out MCV-related differences in Nai and Ki that might contribute to differences in the net chemical driving force for cotransport. We found that in both unfractionated and density-separated red cells the cotransport rate was inversely correlated with MCV. MCV was correlated directly with red cell 2,3-diphosphoglycerate (DPG), whereas total red cell Mg was only slightly elevated in cells with high MCV. Thus intracellular free Mg (Mgifree) is evidently lower in red cells with high 2,3-DPG (i.e., high MCV) and vice versa. Results from flux measurements at their original MCVs, after altering Mgifree with the ionophore A23187, indicated a high Mgi sensitivity of cotransport: depletion of Mgifree inhibited and an elevation of Mgifree increased the cotransport rate. The apparent K0.5 for Mgifree was approximately 0.4 mM. Maximizing Mgifree at optimum Nai and Ki minimized the differences in cotransport rates among the different donors. It is concluded that the relative cotransport rate is regulated for cells in the steady state at their original cell volume, not by the number of copies of the cotransporter but by differences in Mgifree. The interindividual differences in Mgifree, determined primarily by differences in the 2,3-DPG content, are responsible for the differences in the relative cotransport activity that results in an inverse relationship
International Nuclear Information System (INIS)
Tagliafico, Luca A.; Scarpa, Federico; Valsuani, Federico
2014-01-01
Traditional thermal solar panel technologies have limited efficiency and the required economic investments make them noncompetitive in the space heating market. The greatest limit to the diffusion of thermal solar systems is the characteristic temperatures they can reach: the strong connection between the user temperature and the collector temperature makes it possible to achieve high thermal (collector) efficiency only at low, often useless, user temperatures. By using solar collectors as thermal exchange units (evaporators) in a heat pump system (direct expansion solar assisted heat pump, DX-SAHP), the overall efficiency greatly increases with a significative cut of the associated investment in terms of pay-back time. In this study, an approach is proposed to the steady state analysis of DX-SAHP, which is based on the simplified inverse Carnot cycle and on the second law efficiency concept. This method, without the need of calculating the refrigerant fluid properties and the detailed processes occurring in the refrigeration device, allows us to link the main features of the plant to its relevant interactions with the surroundings. The very nature of the proposed method makes the relationship explicit and meaningful among all the involved variables. The paper, after the description of the method, presents an explanatory application of this technique by reviewing various aspects of the performance of a typical DX-SAHP in which the savings on primary energy consumption is regarded as the main feature of the plant and highlighted in a monthly averaged analysis. Results agree to those coming from a common standard steady state thermodynamic analysis. The application to a typical DX-SAHP system demonstrates that a mean saved primary energy of about 50% with respect to standard gas burner can be achieved for the same user needs. Such a result is almost independent from the type of flat plate solar panel used (double or single glazed, or even bare panels) as a result of
Assessing Quasi-Steady State in Evaporation of Sessile Drops by Diffusion Models
Martin, Cameron; Nguyen, Hoa; Kelly-Zion, Peter; Pursell, Chris
2017-11-01
The vapor distributions surrounding sessile drops of methanol are modeled as the solutions of the steady-state and transient diffusion equations using Matlab's PDE Toolbox. The goal is to determine how quickly the transient diffusive transport reaches its quasi-steady state as the droplet geometry is varied between a Weber's disc, a real droplet shape, and a spherical cap with matching thickness or contact angle. We assume that the only transport mechanism at work is diffusion. Quasi-steady state is defined using several metrics, such as differences between the transient and steady-state solutions, and change in the transient solution over time. Knowing the vapor distribution, the gradient is computed to evaluate the diffusive flux. The flux is integrated along the surface of a control volume surrounding the drop to obtain the net rate of diffusion out of the volume. Based on the differences between the transient and steady-state diffusive fluxes at the discrete points along the control-volume surface, the time to reach quasi-steady state evaporation is determined and is consistent with other proposed measurements. By varying the dimensions of the control volume, we can also assess what regimes have equivalent or different quasi-steady states for different droplet geometries. Petroleum Research Fund.
Energy management in multi stage evaporator through a steady and dynamic state analysis
Energy Technology Data Exchange (ETDEWEB)
Verma, Om Prakash; Manik, Gaurav; Mohammed, Toufiq Haji [Indian Institute of Technology Roorkee, Roorkee (India)
2017-10-15
Increasing energy demand, high cost of energy and global warming issues across the globe require energy intensive industries, such as paper mills to improve energy efficiency. Multi-stage evaporators used to concentrate the black liquor in such mills form its most energy consuming unit and require a strong understanding of steady and unsteady state behavior to ensure energy savings. The modeling of nonlinear heptads’ effect system yielded a set of complex nonlinear algebraic and differential equations that are analyzed using Interior-point method and state space representation. Dynamic response of product concentration and system vapor temperatures along with system stability and controllability have been explored by disturbing the flow rate, concentration and temperature of feed, and fresh steam flow rate. Simulations predict that steam flow rate, feed flow rate and its concentration invariably are major controlling factors (in decreasing order) of vapor temperature and product concentration. The interactive behavior between different effects translates into slower responses of the effects with increasing separation from disturbance source. This steady state and transient study opens many new explanations to this relatively less explored area and helps to propose and implement industrial PID controllers to reduce steam consumption and control product quality.
International Nuclear Information System (INIS)
Lauer, A.; Schwiegk, H.J.; Wu, T.; Cowan, C.L.
1982-03-01
The ASTERIX modular code package was developed at KFA Laboratory-Juelich for the steady state and xenon transient analysis of a pebble bed high temperature reactor. The code package was implemented on the Stanford Linear Accelerator Center Computer in August, 1980, and a user's manual for the current version of the code, identified as ASTERIX-2, was prepared as a cooperative effort by KFA Laboratory and GE-ARSD. The material in the manual includes the requirements for accessing the program, a description of the major subroutines, a listing of the input options, and a listing of the input data for a sample problem. The material is provided in sufficient detail for the user to carry out a wide range of analyses from steady state operations to the xenon induced power transients in which the local xenon, temperature, buckling and control feedback effects have been incorporated in the problem solution
Is steady-state capitalism viable? A review of the issues and an answer in the affirmative.
Lawn, Philip
2011-02-01
Most ecological economists believe that the transition to a steady-state economy is necessary to ensure ecological sustainability and to maximize a nation's economic welfare. While some observers agree with the necessity of the steady-state economy, they are nonetheless critical of the suggestion made by ecological economists-in particular, Herman Daly-that a steady-state economy is compatible with a capitalist system. First, they believe that steady-state capitalism is based on the untenable assumption that growth is an optional rather than in-built element of capitalism. Second, they argue that capitalist notions of efficient resource allocation are too restrictive to facilitate the transition to an "ecological" or steady-state economy. I believe these observers are outright wrong with their first criticism and, because they misunderstand Daly's vision of a steady-state economy, are misplaced with their second criticism. The nature of a capitalist system depends upon the institutional framework that supports and shapes it. Hence, a capitalist system can exist in a wide variety of forms. Unfortunately, many observers fail to recognize that the current "growth imperative" is the result of capitalist systems everywhere being institutionally designed to grow. They need not be designed this way to survive and thrive. Indeed, because continued growth is both existentially undesirable and ecologically unsustainable, redesigning capitalist systems through the introduction of Daly-like institutions would prove to be capitalism's savior. What's more, it would constitute humankind's best hope of achieving sustainable development. © 2011 New York Academy of Sciences.
X-Ray Spectral Analysis of the Steady States of GRS1915+105
Peris, Charith S.; Remillard, Ronald A.; Steiner, James F.; Vrtilek, Saeqa D.; Varnière, Peggy; Rodriguez, Jerome; Pooley, Guy
2016-05-01
We report on the X-ray spectral behavior within the steady states of GRS1915+105. Our work is based on the full data set of the source obtained using the Proportional Counter Array (PCA) on the Rossi X-ray Timing Explorer (RXTE) and 15 GHz radio data obtained using the Ryle Telescope. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to these regions as steady-soft and steady-hard. GRS1915+105 displays significant curvature in the coronal component in both the soft and hard data within the RXTE/PCA bandpass. A majority of the steady-soft observations displays a roughly constant inner disk radius ({R}{{in}}), while the steady-hard observations display an evolving disk truncation which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations, we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes η ˜ 0.68+/- 0.35 and η ˜ 1.12+/- 0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of the model parameters to the state definitions shows that almost all of the steady-soft observations match the criteria of either a thermal or steep power-law state, while a large portion of the steady-hard observations match the hard-state criteria when the disk fraction constraint is neglected.
Investigation of component failure rates for pulsed versus steady state tokamak operation
International Nuclear Information System (INIS)
Cadwallader, L.C.
1992-07-01
This report presents component failure rate data sources applicable to magnetic fusion systems, and defines multiplicative factors to adjust these data for specific use on magnetic fusion experiment designs. The multipliers address both long pulse and steady state tokamak operation. Thermal fatigue and radiation damage are among the leading reasons for large multiplier values in pulsed operation applications. Field failure rate values for graphite protective tiles are presented, and beryllium tile failure rates in laboratory testing are also given. All of these data can be used for reliability studies, safety analyses, design tradeoff studies, and risk assessments
Stochastic Galerkin methods for the steady-state Navier–Stokes equations
Energy Technology Data Exchange (ETDEWEB)
Sousedík, Bedřich, E-mail: sousedik@umbc.edu [Department of Mathematics and Statistics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Elman, Howard C., E-mail: elman@cs.umd.edu [Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742 (United States)
2016-07-01
We study the steady-state Navier–Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion. For the resulting stochastic problem, we formulate the model and linearization schemes using Picard and Newton iterations in the framework of the stochastic Galerkin method, and we explore properties of the resulting stochastic solutions. We also propose a preconditioner for solving the linear systems of equations arising at each step of the stochastic (Galerkin) nonlinear iteration and demonstrate its effectiveness for solving a set of benchmark problems.
A new perspective on steady-state cosmology: from Einstein to Hoyle
O'Raifeartaigh, Cormac; Mitton, Simon
2015-01-01
We recently reported the discovery of an unpublished manuscript by Albert Einstein in which he attempted a 'steady-state' model of the universe, i.e., a cosmic model in which the expanding universe remains essentially unchanged due to a continuous formation of matter from empty space. The manuscript was apparently written in early 1931, many years before the steady-state models of Fred Hoyle, Hermann Bondi and Thomas Gold. We compare Einstein’s steady-state cosmology with that of Hoyle, Bondi...
Dynamical tides in highly eccentric binaries: chaos, dissipation, and quasi-steady state
Vick, Michelle; Lai, Dong
2018-05-01
Highly eccentric binary systems appear in many astrophysical contexts, ranging from tidal capture in dense star clusters, precursors of stellar disruption by massive black holes, to high-eccentricity migration of giant planets. In a highly eccentric binary, the tidal potential of one body can excite oscillatory modes in the other during a pericentre passage, resulting in energy exchange between the modes and the binary orbit. These modes exhibit one of three behaviours over multiple passages: low-amplitude oscillations, large-amplitude oscillations corresponding to a resonance between the orbital frequency and the mode frequency, and chaotic growth, with the mode energy reaching a level comparable to the orbital binding energy. We study these phenomena with an iterative map that includes mode dissipation, fully exploring how the mode evolution depends on the orbital and mode properties of the system. The dissipation of mode energy drives the system towards a quasi-steady state, with gradual orbital decay punctuated by resonances. We quantify the quasi-steady state and the long-term evolution of the system. A newly captured star around a black hole can experience significant orbital decay and heating due to the chaotic growth of the mode amplitude and dissipation. A giant planet pushed into a high-eccentricity orbit may experience a similar effect and become a hot or warm Jupiter.
Steady-state and accident analyses of PBMR with the computer code SPECTRA
International Nuclear Information System (INIS)
Stempniewicz, Marek M.
2002-01-01
The SPECTRA code is an accident analysis code developed at NRG. It is designed for thermal-hydraulic analyses of nuclear or conventional power plants. The code is capable of analysing the whole power plant, including reactor vessel, primary system, various control and safety systems, containment and reactor building. The aim of the work presented in this paper was to prepare a preliminary thermal-hydraulic model of PBMR for SPECTRA, and perform steady state and accident analyses. In order to assess SPECTRA capability to model the PBMR reactors, a model of the INCOGEN system has been prepared first. Steady state and accident scenarios were analyzed for INCOGEN configuration. Results were compared to the results obtained earlier with INAS and OCTOPUS/PANTHERMIX. A good agreement was obtained. Results of accident analyses with PBMR model showed qualitatively good results. It is concluded that SPECTRA is a suitable tool for analyzing High Temperature Reactors, such as INCOGEN or for example PBMR (Pebble Bed Modular Reactor). Analyses of INCOGEN and PBMR systems showed that in all analyzed cases the fuel temperatures remained within the acceptable limits. Consequently there is no danger of release of radioactivity to the environment. It may be concluded that those are promising designs for future safe industrial reactors. (author)
Unsteady steady-states: central causes of unintentional force drift.
Ambike, Satyajit; Mattos, Daniela; Zatsiorsky, Vladimir M; Latash, Mark L
2016-12-01
We applied the theory of synergies to analyze the processes that lead to unintentional decline in isometric fingertip force when visual feedback of the produced force is removed. We tracked the changes in hypothetical control variables involved in single fingertip force production based on the equilibrium-point hypothesis, namely the fingertip referent coordinate (R FT ) and its apparent stiffness (C FT ). The system's state is defined by a point in the {R FT ; C FT } space. We tested the hypothesis that, after visual feedback removal, this point (1) moves along directions leading to drop in the output fingertip force, and (2) has even greater motion along directions that leaves the force unchanged. Subjects produced a prescribed fingertip force using visual feedback and attempted to maintain this force for 15 s after the feedback was removed. We used the "inverse piano" apparatus to apply small and smooth positional perturbations to fingers at various times after visual feedback removal. The time courses of R FT and C FT showed that force drop was mostly due to a drift in R FT toward the actual fingertip position. Three analysis techniques, namely hyperbolic regression, surrogate data analysis, and computation of motor-equivalent and non-motor-equivalent motions, suggested strong covariation in R FT and C FT stabilizing the force magnitude. Finally, the changes in the two hypothetical control variables {R FT ; C FT } relative to their average trends also displayed covariation. On the whole, the findings suggest that unintentional force drop is associated with (a) a slow drift of the referent coordinate that pulls the system toward a low-energy state and (b) a faster synergic motion of R FT and C FT that tends to stabilize the output fingertip force about the slowly drifting equilibrium point.
International Nuclear Information System (INIS)
Lyra, Wladimir; Lin, Min-Kai
2013-01-01
The Atacama Large Millimeter Array has returned images of transitional disks in which large asymmetries are seen in the distribution of millimeter sized dust in the outer disk. The explanation in vogue borrows from the vortex literature and suggests that these asymmetries are the result of dust trapping in giant vortices, excited via Rossby wave instabilities at planetary gap edges. Due to the drag force, dust trapped in vortices will accumulate in the center and diffusion is needed to maintain a steady state over the lifetime of the disk. While previous work derived semi-analytical models of the process, in this paper we provide analytical steady-steady solutions. Exact solutions exist for certain vortex models. The solution is determined by the vortex rotation profile, the gas scale height, the vortex aspect ratio, and the ratio of dust diffusion to gas-dust friction. In principle, all of these quantities can be derived from observations, which would validate the model and also provide constrains on the strength of the turbulence inside the vortex core. Based on our solution, we derive quantities such as the gas-dust contrast, the trapped dust mass, and the dust contrast at the same orbital location. We apply our model to the recently imaged Oph IRS 48 system, finding values within the range of the observational uncertainties
Chaotic and steady state behaviour of a nonlinear controlled gyro subjected to harmonic disturbances
International Nuclear Information System (INIS)
Perez Polo, Manuel F.; Perez Molina, Manuel
2007-01-01
Chaotic and steady state motions of a nonlinear controlled gimbals suspension gyro used to stabilize an external body are studied in this paper. The equations of the gyro without nonlinear control are deduced from the Euler-Lagrange equations by using the nutation theory. The equations of the system show that a cyclic variable appears. Its elimination allows us to find an auxiliary nonlinear system from which it is possible to deduce a nonlinear control law in order to obtain a desired equilibrium point. From the analysis of the nonlinear control law it is possible to show that due to both harmonic disturbances in the platform of the gyro and in the body to stabilize, regular and chaotic motions can appear. The chaotic motion is researched by means of chaos maps, bifurcation diagrams, sensitivity to initial conditions, Lyapunov exponents and Fourier spectrum density. The transition from chaotic to steady state motion by eliminating the harmonic disturbances from the modification of the initial nonlinear control law is also researched. Next, the paper shows how to use the chaotic motion in order to obtain small input signals so that the desired equilibrium state of the gyro can be reached. The developed methodology and its compared performance are evaluated through analytical methods and numerical simulations
Chaotic and steady state behaviour of a nonlinear controlled gyro subjected to harmonic disturbances
Energy Technology Data Exchange (ETDEWEB)
Perez Polo, Manuel F. [Department of Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Escuela Politecnica Superior, Campus de San Vicente, 03071 Alicante (Spain)]. E-mail: manolo@dfists.ua.es; Perez Molina, Manuel [Facultad de Ciencias Matematicas, Universidad Nacional de Educacion a Distancia, UNED, C/Boyero 12-1A, Alicante 03007 (Spain)]. E-mail: ma_perez_m@hotmail.com
2007-07-15
Chaotic and steady state motions of a nonlinear controlled gimbals suspension gyro used to stabilize an external body are studied in this paper. The equations of the gyro without nonlinear control are deduced from the Euler-Lagrange equations by using the nutation theory. The equations of the system show that a cyclic variable appears. Its elimination allows us to find an auxiliary nonlinear system from which it is possible to deduce a nonlinear control law in order to obtain a desired equilibrium point. From the analysis of the nonlinear control law it is possible to show that due to both harmonic disturbances in the platform of the gyro and in the body to stabilize, regular and chaotic motions can appear. The chaotic motion is researched by means of chaos maps, bifurcation diagrams, sensitivity to initial conditions, Lyapunov exponents and Fourier spectrum density. The transition from chaotic to steady state motion by eliminating the harmonic disturbances from the modification of the initial nonlinear control law is also researched. Next, the paper shows how to use the chaotic motion in order to obtain small input signals so that the desired equilibrium state of the gyro can be reached. The developed methodology and its compared performance are evaluated through analytical methods and numerical simulations.
Characterizing steady states of genome-scale metabolic networks in continuous cell cultures.
Directory of Open Access Journals (Sweden)
Jorge Fernandez-de-Cossio-Diaz
2017-11-01
Full Text Available In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.
Quasi-steady State Reduction of Molecular Motor-Based Models of Directed Intermittent Search
Newby, Jay M.
2010-02-19
We present a quasi-steady state reduction of a linear reaction-hyperbolic master equation describing the directed intermittent search for a hidden target by a motor-driven particle moving on a one-dimensional filament track. The particle is injected at one end of the track and randomly switches between stationary search phases and mobile nonsearch phases that are biased in the anterograde direction. There is a finite possibility that the particle fails to find the target due to an absorbing boundary at the other end of the track. Such a scenario is exemplified by the motor-driven transport of vesicular cargo to synaptic targets located on the axon or dendrites of a neuron. The reduced model is described by a scalar Fokker-Planck (FP) equation, which has an additional inhomogeneous decay term that takes into account absorption by the target. The FP equation is used to compute the probability of finding the hidden target (hitting probability) and the corresponding conditional mean first passage time (MFPT) in terms of the effective drift velocity V, diffusivity D, and target absorption rate λ of the random search. The quasi-steady state reduction determines V, D, and λ in terms of the various biophysical parameters of the underlying motor transport model. We first apply our analysis to a simple 3-state model and show that our quasi-steady state reduction yields results that are in excellent agreement with Monte Carlo simulations of the full system under physiologically reasonable conditions. We then consider a more complex multiple motor model of bidirectional transport, in which opposing motors compete in a "tug-of-war", and use this to explore how ATP concentration might regulate the delivery of cargo to synaptic targets. © 2010 Society for Mathematical Biology.
Steady States in SIRS Epidemical Model of Mobile Individuals
Institute of Scientific and Technical Information of China (English)
ZHANG Duan-Ming; LIU Dan; HE Min-Hua; YU Xiao-Ling; PAN Gui-Jun; SUN Hong-Zhang; SU Xiang-Ying; SUN Fan; YIN Yan-Ping; LI Rui
2006-01-01
We consider an epidemical model within socially interacting mobile individuals to study the behaviors of steady statesof epidemic propagation in 2D networks. Using mean-field approximation and large scale simulations, we recover the usual epidemic behavior with critical thresholds δc and pc below which infectious disease dies out. For the population density δ far above δc, it is found that there is linear relationship between contact rate λ and the population density δ in the main. At the same time, the result obtained from mean-field approximation is compared with our numerical result, and it is found that these two results are similar by and large but not completely the same.
High Beta Steady State Research and Future Directions on JT-60U and JFT-2M
Ishida, Shinichi
2003-10-01
JT-60U and JFT-2M research is focused on high beta steady state operation towards economically and environmentally attractive reactors. In JT-60U, a high-βp H-mode plasma was sustained with βN 2.7 for 7.4 s in which neoclassical tearing modes (NTMs) limited the attainable β_N. Real-time tracking NTM stabilization system using ECCD demonstrated complete suppression of NTM leading to recovery of βN before onset of NTM. Performance in a fully non-inductive H-mode plasma was improved up to n_i(0) τE T_i(0) = 3.1 x 10^20 keV s m-3 using N-NBCD with βN 2.4, HH_y,2=1.2 and bootstrap fraction f_BS 0.5. ECH experiments extended the confinement enhancement for dominantly electron heated reversed shear plasmas up to HH_y,2 2 at T_e/Ti 1.25. A world record ECCD efficiency, 4.2 x 10^18 A/W/m^2, was achieved at Te 23 keV with a highly localized central current density. Innovative initiation and current build-up without center solenoid currents were established by LHCD/ECH and bootstrap current up to f_BS 0.9. In JFT-2M, the inside of the vacuum vessel wall was fully covered with low-activation ferritic steel plates to investigate their use in plasmas near fusion conditions. High βN plasmas were produced up to βN = 3.3 with an internal transport barrier (ITB) and a steady H-mode edge. A new H-mode regime with steady high recycling (HRS) and an ITB was exploited leading to βN H_89P 6.2 at n_e/nG 0.7. In 2003, JT-60U will be able to operate for the duration up to 65 s at 1 MA/2.7 T and the heating/current-drive duration up to 30 s at 17 MW to prolong high-βN and/or high-f_BS discharges with feedback controls. JFT-2M is planning to implement wall stabilization experiments in 2004 to pursue plasmas above the ideal no-wall limit using a ferritic wall. The modification of JT-60 to a fully superconducting tokamak is under discussion to explore high-β steady state operation in collision-less plasmas well above no-wall limit with ferritic wall in a steady state.
Simon, Donald L.; Litt, Jonathan S.
2010-01-01
This paper presents an algorithm that automatically identifies and extracts steady-state engine operating points from engine flight data. It calculates the mean and standard deviation of select parameters contained in the incoming flight data stream. If the standard deviation of the data falls below defined constraints, the engine is assumed to be at a steady-state operating point, and the mean measurement data at that point are archived for subsequent condition monitoring purposes. The fundamental design of the steady-state data filter is completely generic and applicable for any dynamic system. Additional domain-specific logic constraints are applied to reduce data outliers and variance within the collected steady-state data. The filter is designed for on-line real-time processing of streaming data as opposed to post-processing of the data in batch mode. Results of applying the steady-state data filter to recorded helicopter engine flight data are shown, demonstrating its utility for engine condition monitoring applications.
Characterization of steady streaming for a particle manipulation system.
Amit, Roni; Abadi, Avi; Kosa, Gabor
2016-04-01
Accurate positioning of biological cells or microscopic particle without directly contacting them is a challenging task in biomedical engineering. Various trapping methods for controlling the position of a particle have been suggested. The common driving methods are based on laser and ultrasonic actuation principles. In this work we suggest a design for a hydrodynamic particle manoeuvring system. The system operates using steady streaming in a viscous fluid media induced by high frequency vibration of piezoelectric cantilevers. A particle within the workspace of the system can be trapped and manipulated to a desired position by the fairly unidirectional flow field created by the beams. In this paper, the flow field in the particle manipulation system is characterized numerically and experimentally. We find that the flow field resembles the analytical solutions of a flow field created by an oscillating sphere. Furthermore, we validate numerically the quadratic relation between the steady streaming velocity and the vibration amplitude of the beam. The calibration of the piezoelectric actuator's oscillation amplitudes enables effective positioning of particles with a diameter of 20 um to 1 mm. We find that a 30X0.8X2 mm(3) piezoelectric beam vibrating at its first resonance frequency, 200 Hz, is able to move a particle at a typical flow velocity ranging between 0.05 mm/sec and 0.13 mm/s in 430 cSt Si oil (Re=0.2).
On the steady-state structure of shock waves in elastic media and dielectrics
International Nuclear Information System (INIS)
Kulikovskii, A. G.; Chugainova, A. P.
2010-01-01
A simplified system of equations describing small-amplitude nonlinear quasi-transverse waves in an elastic weakly anisotropic medium with complicated dissipation and dispersion is considered. A simplified system of equations derived for describing the propagation and evolution of one-dimensional weakly nonlinear electromagnetic waves in a weakly anisotropic dielectric is found to be of the same type as the system of equations for quasi-transverse waves in an elastic medium. The steady-state structure of small-amplitude quasi-transverse discontinuities and a large number of admissible discontinuity types is studied using this system of equations. Viscous dissipation is traditionally assumed to be described in terms of the next differentiation order as compared to those constituting the hyperbolic system describing long waves, while the terms responsible for dispersion have an even higher differentiation order.
Natural equilibria in steady-state neutron diffusion with temperature feedback
International Nuclear Information System (INIS)
Pounders, J. M.; Ingram, R.
2013-01-01
The critical diffusion equation with feedback is investigated within the context of steady-state multiphysics. It is proposed that for critical configurations there is no need to include the multiplication factor k in the formulation of the diffusion equation. This is notable because exclusion of k from the coupled system of equations precludes the mathematically tenuous notion of a nonlinear eigenvalue problem. On the other hand, it is shown that if the factor k is retained in the diffusion equation, as is currently common practice, then the resulting problem is equivalent to the constrained minimization of a functional representing the critical equilibrium of neutron and temperature distributions. The unconstrained solution corresponding to k = 1 represents the natural equilibrium of a critical system at steady-state. Computational methods for solving the constrained problem (with k) are briefly reviewed from the literature and a method for the unconstrained problem (without k) is outlined. A numerical example is studied to examine the effects of the constraint in the nonlinear system. (authors)
Pfoh, Jamie R; Tymko, Michael M; Abrosimova, Maria; Boulet, Lindsey M; Foster, Glen E; Bain, Anthony R; Ainslie, Philip N; Steinback, Craig D; Bruce, Christina D; Day, Trevor A
2016-03-01
What is the central question of this study? We aimed to characterize the cardiorespiratory and cerebrovascular responses to transient and steady-state tests of the peripheral chemoreflex and to compare the hypoxic ventilatory responses (HVRs) between these tests. What is the main finding and its importance? The cardiovascular and cerebrovascular responses to transient tests were small in magnitude and short in duration. The steady-state isocapnic hypoxia test elicited a larger HVR than the transient 100% N(2) test, but the response magnitudes were correlated within individuals. The transient test of the HVR elicits fewer systemic effects than steady-state techniques and may have greater experimental utility than previously appreciated. Carotid chemoreceptors detect changes in arterial PO(2) and PCO(2), eliciting a peripheral chemoreflex (PCR). Steady-state (SS) hypoxia tests using dynamic end-tidal forcing (DEF) have been used to assess the hypoxic ventilatory response (HVR) but may be confounded by concomitant systemic effects. Transient tests of the PCR have also been developed but are not widely used, nor have the cardiovascular and cerebrovascular responses been characterized. We characterized the cardiorespiratory and cerebrovascular responses to transient tests of the PCR and compared the HVR between transient and SS-DEF tests. We hypothesized that the cardiovascular and cerebrovascular responses to the transient tests would be minimal and that the respiratory responses elicited from the transient and SS-DEF tests would be different in magnitude and not well correlated within individuals. Participants underwent five consecutive trials of two transient tests [three-breath 100% N(2) (TT-N(2)) and a single-breath 13% CO(2), in air] and two 10 min SS-DEF tests [isocapnic (SS-ISO) and poikilocapnic (SS-POI) hypoxia]. In response to the transient tests, heart rate, mean arterial pressure and the middle and posterior cerebral artery blood velocity increased (all P
Vulcan: A steady-state tokamak for reactor-relevant plasma–material interaction science
International Nuclear Information System (INIS)
Olynyk, G.M.; Hartwig, Z.S.; Whyte, D.G.; Barnard, H.S.; Bonoli, P.T.; Bromberg, L.; Garrett, M.L.; Haakonsen, C.B.; Mumgaard, R.T.; Podpaly, Y.A.
2012-01-01
Highlights: ► A new scaling for obtaining reactor similarity in the divertor of scaled tokamaks. ► Conceptual design for a tokamak (“Vulcan”) to implement this new scaling. ► Demountable superconducting coils and compact neutron shielding. ► Helium-cooled high-temperature vacuum vessel and first wall. ► High-field-side lower hybrid current drive for non-inductive operation. - Abstract: An economically viable magnetic-confinement fusion reactor will require steady-state operation and high areal power density for sufficient energy output, and elevated wall/blanket temperatures for efficient energy conversion. These three requirements frame, and couple to, the challenge of plasma–material interaction (PMI) for fusion energy sciences. Present and planned tokamaks are not designed to simultaneously meet these criteria. A new and expanded set of dimensionless figures of merit for PMI have been developed. The key feature of the scaling is that the power flux across the last closed flux surface P/S ≃ 1 MW m −2 is to be held constant, while scaling the core volume-averaged density weakly with major radius, n ∼ R −2/7 . While complete similarity is not possible, this new “P/S” or “PMI” scaling provides similarity for the most critical reactor PMI issues, compatible with sufficient current drive efficiency for non-inductive steady-state core scenarios. A conceptual design is developed for Vulcan, a compact steady-state deuterium main-ion tokamak which implements the P/S scaling rules. A zero-dimensional core analysis is used to determine R = 1.2 m, with a conventional reactor aspect ratio R/a = 4.0, as the minimum feasible size for Vulcan. Scoping studies of innovative fusion technologies to support the Vulcan PMI mission were carried out for three critical areas: a high-temperature, helium-cooled vacuum vessel and divertor design; a demountable superconducting toroidal field magnet system; and a steady-state lower hybrid current drive system
A steady-state fluid model of the coaxial plasma gun
International Nuclear Information System (INIS)
Herziger, G.; Krompholz, H.; Schneider, W.; Schoenbach, K.
1979-01-01
The plasma layer in a coaxial plasma gun is considered as a shock front driven by expanding magnetic fields. Analytical steady-state solutions of the fluid equations yield the plasma properties, allowing the scaling of plasma focus devices. (Auth.)
Quasi steady-state aerodynamic model development for race vehicle simulations
Mohrfeld-Halterman, J. A.; Uddin, M.
2016-01-01
Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.
Navier-Stokes Predictions of Dynamic Stability Derivatives: Evaluation of Steady-State Methods
National Research Council Canada - National Science Library
DeSpirito, James; Silton, Sidra I; Weinacht, Paul
2008-01-01
The prediction of the dynamic stability derivatives-roll-damping, Magnus, and pitch-damping moments-were evaluated for three spin-stabilized projectiles using steady-state computational fluid dynamic (CFD) calculations...
A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution
Directory of Open Access Journals (Sweden)
Mitsuru Kikuchi
2010-11-01
Full Text Available Providing a historical overview of 50 years of fusion research, a review of the fundamentals and concepts of fusion and research efforts towards the implementation of a steady state tokamak reactor is presented. In 1990, a steady-state tokamak reactor (SSTR best utilizing the bootstrap current was developed. Since then, significant efforts have been made in major tokamaks, including JT-60U, exploring advanced regimes relevant to the steady state operation of tokamaks. In this paper, the fundamentals of fusion and plasma confinement, and the concepts and research on current drive and MHD stability of advanced tokamaks towards realization of a steady-state tokamak reactor are reviewed, with an emphasis on the contributions of the JAEA. Finally, a view of fusion energy utilization in the 21st century is introduced.
A generalised correlation for the steady state flow in single-phase natural circulation loops
International Nuclear Information System (INIS)
Vijayan, P.K.; Bade, M.H.; Saha, D.; Sinha, R.K.; Venkat Raj, V.
2000-08-01
To establish the heat transport capability of natural circulation loops, it is essential to know the flow rate. A generalized correlation for steady state flow valid for uniform and non-uniform diameter loops has been theoretically derived
International Nuclear Information System (INIS)
Payne, M. G.; Deng, L.; Jiang, K. J.
2006-01-01
We consider a two-state system driven by an on-resonance, continuous wave pump laser and a much weaker pulsed probe laser that is slightly detuned from the pump laser frequency (usually this detuning is about ω p -ω P =Δ≅1 kHz). The upper state population is assumed to be slowly decaying, but the off-diagonal element of the density matrix decays rapidly due to homogeneous broadening. This model has been solved by others in rare-earth-element-doped fibers and crystals in a usual steady state approximation for slow optical wave propagation. We show that in general the usual steady state approximation does not apply unless either Δτ>>1 or (2S+1)γ 2 τ>>1 where γ 2 is the decay rate of the excited state population, τ is the pulse length of the probe field, and 2S is the saturation parameter. Both conditions, however, are not satisfied in many population-oscillation- and corresponding group-velocity-reduction-related studies. Our theory and corresponding numerical simulations have indicated that for probe pulses that are much shorter than the lifetime of the upper state, there is no analytical theory for the amplitude, pulse shape, and group velocity of the probe field. In addition, there is no reason to assume that the group velocity remains small when γ 2 τ<<1 and there is no reason to believe that many pulse length decays can be obtained for such short pulses
A novel multivariate STeady-state index during general ANesthesia (STAN).
Castro, Ana; de Almeida, Fernando Gomes; Amorim, Pedro; Nunes, Catarina S
2017-08-01
The assessment of the adequacy of general anesthesia for surgery, namely the nociception/anti-nociception balance, has received wide attention from the scientific community. Monitoring systems based on the frontal EEG/EMG, or autonomic state reactions (e.g. heart rate and blood pressure) have been developed aiming to objectively assess this balance. In this study a new multivariate indicator of patients' steady-state during anesthesia (STAN) is proposed, based on wavelet analysis of signals linked to noxious activation. A clinical protocol was designed to analyze precise noxious stimuli (laryngoscopy/intubation, tetanic, and incision), under three different analgesic doses; patients were randomized to receive either remifentanil 2.0, 3.0 or 4.0 ng/ml. ECG, PPG, BP, BIS, EMG and [Formula: see text] were continuously recorded. ECG, PPG and BP were processed to extract beat-to-beat information, and [Formula: see text] curve used to estimate the respiration rate. A combined steady-state index based on wavelet analysis of these variables, was applied and compared between the three study groups and stimuli (Wilcoxon signed ranks, Kruskal-Wallis and Mann-Whitney tests). Following institutional approval and signing the informed consent thirty four patients were enrolled in this study (3 excluded due to signal loss during data collection). The BIS index of the EEG, frontal EMG, heart rate, BP, and PPG wave amplitude changed in response to different noxious stimuli. Laryngoscopy/intubation was the stimulus with the more pronounced response [Formula: see text]. These variables were used in the construction of the combined index STAN; STAN responded adequately to noxious stimuli, with a more pronounced response to laryngoscopy/intubation (18.5-43.1 %, [Formula: see text]), and the attenuation provided by the analgesic, detecting steady-state periods in the different physiological signals analyzed (approximately 50 % of the total study time). A new multivariate approach for
Directory of Open Access Journals (Sweden)
Ling Feng
2016-01-01
Full Text Available This study aims at developing a simulation system that predicts the optimal study design for attaining tracer steady-state conditions in brain and blood rapidly. Tracer kinetics was determined from bolus studies and used to construct the system. Subsequently, the system was used to design inputs for bolus infusion (BI or programmed infusion (PI experiments. Steady-state quantitative measurements can be made with one short scan and venous blood samples. The GABAA receptor ligand [C11]Flumazenil (FMZ was chosen for this purpose, as it lacks a suitable reference region. Methods. Five bolus [C11]FMZ-PET scans were conducted, based on which population-based PI and BI schemes were designed and tested in five additional healthy subjects. The design of a PI was assisted by an offline feedback controller. Results. The system could reproduce the measurements in blood and brain. With PI, [C11]FMZ steady state was attained within 40 min, which was 8 min earlier than the optimal BI (B/I ratio = 55 min. Conclusions. The system can design both BI and PI schemes to attain steady state rapidly. For example, subjects can be [C11]FMZ-PET scanned after 40 min of tracer infusion for 40 min with venous sampling and a straight-forward quantification. This simulation toolbox is available for other PET-tracers.
Poiseuille flow of soft glasses in narrow channels: from quiescence to steady state.
Chaudhuri, Pinaki; Horbach, Jürgen
2014-10-01
Using numerical simulations, the onset of Poiseuille flow in a confined soft glass is investigated. Starting from the quiescent state, steady flow sets in at a time scale which increases with a decrease in applied forcing. At this onset time scale, a rapid transition occurs via the simultaneous fluidization of regions having different local stresses. In the absence of steady flow at long times, creep is observed even in regions where the local stress is larger than the bulk yielding threshold. Finally, we show that the time scale to attain steady flow depends strongly on the history of the initial state.
High-power and steady-state operation of ICRF heating in the large helical device
Energy Technology Data Exchange (ETDEWEB)
Mutoh, T., E-mail: mutoh@nifs.ac.jp; Seki, T.; Saito, K.; Kasahara, H.; Seki, R.; Kamio, S.; Kumazawa, R.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ii, T.; Makino, R.; Nagaoka, K.; Nomura, G. [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki, Gifu, 509-5292 (Japan); Shinya, T. [The University of Tokyo, Kashiwa 2777-8561 (Japan)
2015-12-10
Recent progress in an ion cyclotron range of frequencies (ICRF) heating system and experiment results in a Large Helical Device (LHD) are reported. Three kinds of ICRF antenna pairs were installed in the LHD, and the operation power regimes were extended up to 4.5 MW; also, the steady-state operation was extended for more than 45 min in LHD at a MW power level. We studied ICRF heating physics in heliotron configuration using a Hand Shake type (HAS) antenna, Field Aligned Impedance Transforming (FAIT) antenna, and Poloidal Array (PA) antenna, and established the optimum minority-ion heating scenario in an LHD. The FAIT antenna having a novel impedance transformer inside the vacuum chamber could reduce the VSWR and successfully injected a higher power to plasma. We tested the PA antennas completely removing the Faraday-shield pipes to avoid breakdown and to increase the plasma coupling. The heating performance was almost the same as other antennas; however, the heating efficiency was degraded when the gap between the antenna and plasma surface was large. Using these three kinds of antennas, ICRF heating could contribute to raising the plasma beta with the second- and third-harmonic cyclotron heating mode, and also to raising the ion temperature as discharge cleaning tools. In 2014, steady-state operation plasma with a line-averaged electron density of 1.2 × 10{sup 19} m{sup −3}, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen. In 2015, the higher-power steady-state operation with a heating power of up to 3 MW was tested with higher density of 3 × 10{sup 19} m{sup −3}.
Accuracy of the calculations of the ionization-state densities in a steady-state plasma
International Nuclear Information System (INIS)
Salzmann, D.
1980-01-01
A quantitative definition is given to the accuracy of the computation of the partial densities of the ionization states in a steady-state plasma when there is an inaccuracy in the rate coefficients used in the rate equation. It is found that the partial density of the most abundant ion species is almost independent of the exact form of the rate coefficients, but large errors may occur for the rare species. The effect of the variation of the total ion density on the partial densities is also calculated. For low-ion densities the partial ionization-state densities grow proportionally to the change of the total density, but at high densities there is an alteration of the charge-state distribution as well
Shaparin, Naum; Mehta, Neel; Kunkel, Frank; Stripp, Richard; Borg, Damon; Kolb, Elizabeth
2017-11-01
Interpretation limitations of urine drug testing and the invasiveness of blood toxicology have motivated the desire for the development of simpler methods to assess biologically active drug levels on an individualized patient basis. Oral fluid is a matrix well-suited for the challenge because collections are based on simple noninvasive procedures and drug concentrations better correlate to blood drug levels as oral fluid is a filtrate of the blood. Well-established pharmacokinetic models were utilized to generate oral fluid steady state concentration ranges to assess the interpretive value of the alternative matrix to monitor steady state plasma oxycodone levels. Paired oral fluid and plasma samples were collected from patients chronically prescribed oxycodone and quantitatively analyzed by liquid chromatography tandem mass spectrometry. Steady state plasma concentration ranges were calculated for each donor and converted to an equivalent range in oral fluid. Measured plasma and oral fluid oxycodone concentrations were compared with respective matrix-matched steady state ranges, using each plasma steady state classification as the control. A high degree of correlation was observed between matrices when classifying donors according to expected steady state oxycodone concentration. Agreement between plasma and oral fluid steady state classifications was observed in 75.6% of paired samples. This study supports novel application of basic pharmacokinetic knowledge to the pain management industry, simplifying and improving individualized drug monitoring and risk assessment through the use of oral fluid drug testing. Many benefits of established therapeutic drug monitoring in plasma can be realized in oral fluid for patients chronically prescribed oxycodone at steady state. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
International Nuclear Information System (INIS)
Tamai, H.; Kurita, G.; Matsukawa, M.; Urata, K.; Sakurai, S.; Tsuchiya, K.; Morioka, A.; Miura, Y.M.; Kizu, K.; Kamada, Y.; Sakasai, A.; Ishida, S.
2004-01-01
Plasma control on high-β N steady-state operation for JT-60 superconducting modification is discussed. Accessibility to high-β N exceeding the free-boundary limit is investigated with the stabilising wall of reduced-activated ferritic steel and the active feedback control of the in-vessel non-axisymmetric field coils. Taking the merit of superconducting magnet, advanced plasma control for steady-state high performance operation could be expected. (authors)
Finite element modelling of creep process - steady state stresses and strains
Directory of Open Access Journals (Sweden)
Sedmak Aleksandar S.
2014-01-01
Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.
Carl Foster, Courtney V. Farland, Flavia Guidotti, Michelle Harbin, Brianna Roberts, Jeff Schuette, Andrew Tuuri, Scott T. Doberstein, John P. Porcari
2015-01-01
High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ...
Determination of the Steady State Leakage Current in Structures with Ferroelectric Ceramic Films
Podgornyi, Yu. V.; Vorotilov, K. A.; Sigov, A. S.
2018-03-01
Steady state leakage currents have been investigated in capacitor structures with ferroelectric solgel films of lead zirconate titanate (PZT) formed on silicon substrates with a lower Pt electrode. It is established that Pt/PZT/Hg structures, regardless of the PZT film thickness, are characterized by the presence of a rectifying contact similar to p-n junction. The steady state leakage current in the forward direction increases with a decrease in the film thickness and is determined by the ferroelectric bulk conductivity.
Steady states of a diode with counterstreaming electron and positron beams
Energy Technology Data Exchange (ETDEWEB)
Ender, A. Ya.; Kuznetsov, V. I., E-mail: victor.kuznetsov@mail.ioffe.ru; Gruzdev, A. A. [Russian Academy of Sciences, Ioffe Institute (Russian Federation)
2016-10-15
Steady states of a plasma layer with counterstreaming beams of oppositely charged particles moving without collisions in a self-consistent electric field are analyzed. The study is aimed at clarifying the mechanism of generation and reconstruction of pulsar radiation. Such a layer also models the processes occurring in Knudsen plasma diodes with counterstreaming electron and ion beams. The steady-state solutions are exhaustively classified. The existence of several solutions at the same external parameters is established.
Constructive interference in steady-state/FIESTA-C clinical applications in neuroimaging
International Nuclear Information System (INIS)
Kulkami, Makarand
2011-01-01
Full text: High spatial resolution is one of the major problems in neuroimaging, par ticularly in cranial and spinal nerve imaging. Constructive interference in steady-state/fast imaging employing steady-state acquisition with phase cycling is a robust sequence in imaging the cranial and spinal nerve patholo gies. This pictorial review is a concise article about the applications of this sequence in neuroimaging with clinical examples.
Implications of rf current drive theory for next step steady-state tokamak design
International Nuclear Information System (INIS)
Schultz, J.H.
1985-06-01
Two missions have been identified for a next-step tokamak experiment in the United States. The more ambitious Mission II device would be a superconducting tokamak, capable of doing long-pulse ignition demonstrations, and hopefully capable of also being able to achieve steady-state burn. A few interesting lines of approach have been identified, using a combination of logical design criteria and parametric system scans [SC85]. These include: (1) TIBER: A point-design suggested by Lawrence Livermore, that proposes a machine with the capability of demonstrating ignition, high beta (10%) and high Q (=10), using high frequency, fast-wave current drive. The TIBER topology uses moderate aspect ratio and high triangularity to achieve high beta. (2) JET Scale-up. (3) Magic5: It is argued here that an aspect ratio of 5 is a magic number for a good steady-state current drive experiment. A moderately-sized machine that achieves ignition and is capable of high Q, using either fast wave or slow wave current drive is described. (4) ET-II: The concept of a highly elongated tokamak (ET) was first proposed as a low-cost approach to Mission I, because of the possibility of achieving ohmic ignition with low-stress copper magnets. We propose that its best application is really for commercial tokamaks, using fast-wave current drive, and suggest a Mission II experiment that would be prototypical of such a reactor
Institute of Scientific and Technical Information of China (English)
吴金平
1991-01-01
The relation between the excess entropy production criterion of thermodynamic stabilityfor nonequilibrium states and kinetic linear stability principle is discussed. It is shown thatthe condition required by the excess entropy production criterion generally is sufficient, butnot necessary to judge the system stability. The condition required by the excess entropyproduction criterion is stronger than that of the linear stability principle. Only when theproduct matrix between the linearized matrix of kinetic equations and matrix of quadraticform of second-order excess entropy is symmetric, is the condition required by the excessentropy production criterion that the steady steate is asymptotically stable (δ_xP>0) necessaryand sufficient. The counterexample given by Fox to prove that the excess entropy, (δ~2S)ss,is not a Liapunov function is incorrect. Contradictory to his conclusion, the counterexampleis just a positive one that proves that the excess entropy is a Liapunov function. Moreover,the excess entropy production criterion is not limited by symmetric conditions of the linear-ized matrix of kinetic equations. The excess entropy around nonequilibrium steady states,(δ~2S)ss, is a Liapunov function of thermodynamic system.
Numerical investigation of steady-state thermal behavior of an infrared detector cryo chamber
Directory of Open Access Journals (Sweden)
Singhal Mayank
2017-01-01
Full Text Available An infrared (IR detector is simply a transducer of radiant energy, converting radiant energy into a measurable form. Since radiation does not rely on visible light, it offers the possibility of seeing in the dark or through obscured conditions, by detecting the IR energy emitted by objects. One of the prime applications of IR detector systems for military use is in target acquisition and tracking of projectile systems. The IR detectors also have great potential in commercial market. Typically, IR detectors perform best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes makes the application of IR detectors extremely complex. Further, prior to proceeding on to a full blown transient thermal analysis it is worthwhile to perform a steady-state numerical analysis for ascertaining the effect of variation in viz., material, gas conduction coefficient, h, emissivity, ε, on the temperature profile along the cryo chamber length. This would enable understanding the interaction between the cryo chamber and its environment. Hence, the present work focuses on the development of steady-state numerical models for thermal analysis of IR cryo chamber using MATLAB. The numerical results show that gas conduction coefficient has marked influence on the temperature profile of the cryo chamber whereas the emissivity has a weak effect. The experimental validation of numerical results has also been presented.
Robust method for determining steady state initial values for MSS plant models
International Nuclear Information System (INIS)
Ringham, M.R.; Carlson, J.R.
1987-01-01
Results of an EPRI sponsored project (RP 2504-3 amend i) demonstrated that the methodology embodied in the existing System Performance and Analysis Code (SPANC) can be employed to provide initial values for MSS plant models. An EASY5 version of the TMI plant two loop approximation with primary coolant flow recirculation through a failed pump was selected for demonstration purposes. The project entailed replacing the 1967 ASME steam properties in SPANC with the simplified MSS functions. The MSS component models were then recast into equivalent steady state models compatible with the SPANC executive system. A special input routine was written to modify the MSS data to the SPANC data format. The accuracy of the obtained initial values was approximately four significant figures, sufficient to converge on the EASY5 steady state algorithms. Convergence is relatively insensitive to the initial guess in SPANC and are obtained at a computer cost of approximately two minutes on the UNIVAC 1100/60. Since plant configuration is established by data input in SPANC, it can easily be altered to provide initial values for an MMS simulation of all TMI type plants
Thermodynamic Analysis of Closed Steady or Cyclic Systems
Directory of Open Access Journals (Sweden)
Jim McGovern
2015-09-01
Full Text Available Closed, steady or cyclic thermodynamic systems, which have temperature variations over their boundaries, can represent an extremely large range of plants, devices or natural objects, such as combined heating, cooling and power plants, computers and data centres, and planets. Energy transfer rates can occur across the boundary, which are characterized as heat or work. We focus on the finite time thermodynamics aspects, on energy-based performance parameters, on rational efficiency and on the environmental reference temperature. To do this, we examine the net work rate of a closed, steady or cyclic system bounded by thermal resistances linked to isothermal reservoirs in terms of the first and second laws of thermodynamics. Citing relevant references from the literature, we propose a methodology that can improve the thermodynamic analysis of an energy-transforming or an exergy-destroying plant. Through the reflections and analysis presented, we have found an explanation of the second law that clarifies the link between the Clausius integral of heat over temperature and the reference temperature of the Gouy–Stodola theorem. With this insight and approach, the specification of the environmental reference temperature in exergy analysis becomes more solid. We have explained the relationship between the Curzon Ahlborn heat engine and an irreversible Carnot heat engine. We have outlined the nature of subsystem rational efficiencies and have found Rant’s anergy to play an important role. We postulate that heat transfer through thermal resistance is the sole basis of irreversibility.
Design criteria of the bolometer diagnostic for steady-state operation of the W7-X stellaratora
Zhang, D.; Burhenn, R.; König, R.; Giannone, L.; Grodzki, P.A.; Klein, B.; Grosser, K.; Baldzuhn, J.; Ewert, K.; Erckmann, V.; Hirsch, M.; Laqua, H.P.; Oosterbeek, J.W.
2010-01-01
A bolometric diagnostic system with features necessary for steady-state operation in the superconducting stellarator W7-X was designed. During a pulse length of 1800 s with an ECRH (electron cyclotron resonance heating) power of 10 MW, the components suffer not only from a large thermal load but
DEFF Research Database (Denmark)
Lassen, N A
1992-01-01
The approaches hitherto used for measuring the kinetic constants Kd and Bmax of neuroreceptors in vivo all violate the steady state of the system. This complicates the kinetic analysis as approximations must be made, introducing errors of unknown magnitude. The present study presents the theory...
40 CFR 1033.515 - Discrete-mode steady-state emission tests of locomotives and locomotive engines.
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Discrete-mode steady-state emission... Procedures § 1033.515 Discrete-mode steady-state emission tests of locomotives and locomotive engines. This... a warm-up followed by a sequence of nominally steady-state discrete test modes, as described in...
Guo, Wan-Yuo; Ono, Shigeki; Oi, Shizuo; Shen, Shu-Huei; Wong, Tai-Tong; Chung, Hsiao-Wen; Hung, Jeng-Hsiu
2006-08-01
The authors present a novel cine magnetic resonance (MR) imaging, two-dimensional (2D) fast imaging employing steady-state acquisition (FIESTA) technique with parallel imaging. It achieves temporal resolution at less than half a second as well as high spatial resolution cine imaging free of motion artifacts for evaluating the dynamic motion of fetuses in utero. The information obtained is used to predict postnatal outcome. Twenty-five fetuses with anomalies were studied. Ultrasonography demonstrated severe abnormalities in five of the fetuses; the other 20 fetuses constituted a control group. The cine fetal MR imaging demonstrated fetal head, neck, trunk, extremity, and finger as well as swallowing motions. Imaging findings were evaluated and compared in fetuses with major central nervous system (CNS) anomalies in five cases and minor CNS, non-CNS, or no anomalies in 20 cases. Normal motility was observed in the latter group. For fetuses in the former group, those with abnormal motility failed to survive after delivery, whereas those with normal motility survived with functioning preserved. The power deposition of radiofrequency, presented as specific absorption rate (SAR), was calculated. The SAR of FIESTA was approximately 13 times lower than that of conventional MR imaging of fetuses obtained using single-shot fast spin echo sequences. The following conclusions are drawn: 1) Fetal motion is no longer a limitation for prenatal imaging after the implementation of parallel imaging with 2D FIESTA, 2) Cine MR imaging illustrates fetal motion in utero with high clinical reliability, 3) For cases involving major CNS anomalies, cine MR imaging provides information on extremity motility in fetuses and serves as a prognostic indicator of postnatal outcome, and 4) The cine MR used to observe fetal activity is technically 2D and conceptually three-dimensional. It provides four-dimensional information for making proper and timely obstetrical and/or postnatal management
Control, data acquisition and remote participation for steady-state operation in LHD
International Nuclear Information System (INIS)
Sudo, S.; Nagayama, Y.; Emoto, M.; Nakanishi, H.; Chikaraishi, H.; Imazu, S.; Iwata, C.; Kogi, Y.; Kojima, M.; Komada, S.; Kubo, S.; Kumazawa, R.; Mase, A.; Miyazawa, J.; Mutoh, T.; Nakamura, Y.; Nonomura, M.; Ohsuna, M.; Saito, K.; Sakamoto, R.; Seki, T.; Shoji, M.; Tsuda, K.; Yoshida, M.
2006-01-01
Control, data acquisition, plasma monitoring and remote participation for steady state operation in the large helical device (LHD) are reviewed. By controlling the impedance matching of ICH, the plasma position and the electron density, high temperature plasma is confined for 1905s. The plasma parameters are monitored in real time. Data are continuously sampled by the YOKOGAWA WE7000 system and by the NATIONAL INSTRUMENTS CompactPCI system. Those data are managed by the object-oriented database system based on ObjectStore in distributed servers with mass storage. By using the multi protocol label switching-virtual private network (MPLS-VPN) technology, the local area network of LHD is expanded to the Japanese fusion community. This provides the remote participants with the same environment of the LHD control room
Steady State Visual Evoked Potential Based Brain-Computer Interface for Cognitive Assessment
DEFF Research Database (Denmark)
Westergren, Nicolai; Bendtsen, Rasmus L.; Kjær, Troels W.
2016-01-01
decline is important. Cognitive decline may be detected using fullyautomated computerized assessment. Such systems will provide inexpensive and widely available screenings of cognitive ability. The aim of this pilot study is to develop a real time steady state visual evoked potential (SSVEP) based brain-computer...... interface (BCI) for neurological cognitive assessment. It is intended for use by patients who suffer from diseases impairing their motor skills, but are still able to control their gaze. Results are based on 11 healthy test subjects. The system performance have an average accuracy of 100% ± 0%. The test...... subjects achieved an information transfer rate (ITR) of 14:64 bits/min ± 7:63 bits=min and a subject test performance of 47:22% ± 34:10%. This study suggests that BCI may be applicable in practice as a computerized cognitive assessment tool. However, many improvements are required for the system...
Control, data acquisition and remote participation for steady-state operation in LHD
Energy Technology Data Exchange (ETDEWEB)
Sudo, S. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan)]. E-mail: sudo@nifs.ac.jp; Nagayama, Y. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Emoto, M. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Nakanishi, H. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Chikaraishi, H. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Imazu, S. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Iwata, C. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Kogi, Y. [KASTEC, Kyushu University, Kasuga 816-8580 (Japan); Kojima, M. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Komada, S. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Kubo, S. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Kumazawa, R. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Mase, A. [KASTEC, Kyushu University, Kasuga 816-8580 (Japan); Miyazawa, J. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Mutoh, T. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Nakamura, Y. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Nonomura, M. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Ohsuna, M. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Saito, K. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Sakamoto, R.; Seki, T.; Shoji, M.; Tsuda, K.; Yoshida, M. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan)
2006-07-15
Control, data acquisition, plasma monitoring and remote participation for steady state operation in the large helical device (LHD) are reviewed. By controlling the impedance matching of ICH, the plasma position and the electron density, high temperature plasma is confined for 1905s. The plasma parameters are monitored in real time. Data are continuously sampled by the YOKOGAWA WE7000 system and by the NATIONAL INSTRUMENTS CompactPCI system. Those data are managed by the object-oriented database system based on ObjectStore in distributed servers with mass storage. By using the multi protocol label switching-virtual private network (MPLS-VPN) technology, the local area network of LHD is expanded to the Japanese fusion community. This provides the remote participants with the same environment of the LHD control room.
Martin, Catherine; Naidoo, Nicolette P; Venter, W D Francois; Jaffer, Ambereen; Barker, Pierre M
2014-05-12
Target setting is useful in planning, assessing and improving antiretroviral treatment (ART) programmes. In the past 4 years, the ART initiation environment has been transformed due to the change in eligibility criteria (starting ART at a CD4+ count ART. To describe and illustrate the use of a target-setting model for estimating district-based targets in the era of an expanding ART programme and changing CD4+ count thresholds for ART initiation. Using previously described models and data for annual new HIV infections, we estimated both steady-state need for ART initiation and backlog in a North West Province district, accounting for the shift in eligibility. Comparison of actual v. targeted ART initiations was undertaken. The change in CD4+ count threshold adds a once-off group of newly eligible patients to the pool requiring ART - the backlog. The steady-state remains unchanged as it is determined by the annual rate of new HIV infections in previous years. The steady-state need for the district was 639 initiations/month, and the backlog was ~15,388 patients. After the shift in eligibility in September 2011, the steady-state target was exceeded over several months with some backlog addressed. Of the total backlog for this district, 72% remains to be cleared. South Africa has two pools of patients who need ART: the steady-state of HIV-infected patients entering the programme each year, determined by historical infection rates; and the backlog created by the shift in eligibility. The healthcare system needs to build long- term capacity to meet the steady-state need for ART and additional capacity to address the backlog.
International Nuclear Information System (INIS)
Belcher, W.R.; Faunt, C.C.; D'Agnese, F.A.
2002-01-01
The U.S. Geological Survey, in cooperation with the Department of Energy and other Federal, State, and local agencies, is evaluating the hydrogeologic characteristics of the Death Valley regional ground-water flow system. The ground-water flow system covers and area of about 100,000 square kilometers from latitude 35 degrees to 38 degrees 15 minutes North to longitude 115 degrees to 118 degrees West, with the flow system proper comprising about 45,000 square kilometers. The Death Valley regional ground-water flow system is one of the larger flow systems within the Southwestern United States and includes in its boundaries the Nevada Test Site, Yucca Mountain, and much of Death Valley. Part of this study includes the construction of a three-dimensional hydrogeologic framework model to serve as the foundation for the development of a steady-state regional ground-water flow model. The digital framework model provides a computer-based description of the geometry and composition of the hydro geologic units that control regional flow. The framework model of the region was constructed by merging two previous framework models constructed for the Yucca Mountain Project and the Environmental Restoration Program Underground Test Area studies at the Nevada Test Site. The hydrologic characteristics of the region result from a currently arid climate and complex geology. Interbasinal regional ground-water flow occurs through a thick carbonate-rock sequence of Paleozoic age, a locally thick volcanic-rock sequence of Tertiary age, and basin-fill alluvium of Tertiary and Quaternary age. Throughout the system, deep and shallow ground-water flow may be controlled by extensive and pervasive regional and local faults and fractures. The framework model was constructed using data from several sources to define the geometry of the regional hydrogeologic units. These data sources include (1) a 1:250,000-scale hydrogeologic-map compilation of the region; (2) regional-scale geologic cross
Steady state and linear stability analysis of a supercritical water natural circulation loop
International Nuclear Information System (INIS)
Sharma, Manish; Pilkhwal, D.S.; Vijayan, P.K.; Saha, D.; Sinha, R.K.
2010-01-01
Supercritical water (SCW) has excellent heat transfer characteristics as a coolant for nuclear reactors. Besides it results in high thermal efficiency of the plant. However, the flow can experience instabilities in supercritical water reactors, as the density change is very large for the supercritical fluids. A computer code SUCLIN using supercritical water properties has been developed to carry out the steady state and linear stability analysis of a SCW natural circulation loop. The conservation equations of mass, momentum and energy have been linearized by imposing small perturbation in flow rate, enthalpy, pressure and specific volume. The equations have been solved analytically to generate the characteristic equation. The roots of the equation determine the stability of the system. The code has been qualitatively assessed with published results and has been extensively used for studying the effect of diameter, height, heater inlet temperature, pressure and local loss coefficients on steady state and stability behavior of a Supercritical Water Natural Circulation Loop (SCWNCL). The present paper describes the linear stability analysis model and the results obtained in detail.
Heating and current drive requirements towards steady state operation in ITER
Energy Technology Data Exchange (ETDEWEB)
Poli, F. M.; Kessel, C. E.; Gorelenkova, M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Bonoli, P. T. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Batchelor, D. B. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Harvey, B.; Petrov, Y. [CompX, Box 2672, Del Mar, CA 92014 (United States)
2014-02-12
Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.
Heating and current drive requirements towards steady state operation in ITER
Poli, F. M.; Bonoli, P. T.; Kessel, C. E.; Batchelor, D. B.; Gorelenkova, M.; Harvey, B.; Petrov, Y.
2014-02-01
Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.
Ma, Yonggang; Mouton, Alan J.; Lindsey, Merry L.
2018-01-01
Macrophages play critical roles in homeostatic maintenance of the myocardium under normal conditions and in tissue repair after injury. In the steady-state heart, resident cardiac macrophages remove senescent and dying cells and facilitate electrical conduction. In the aging heart, the shift in macrophage phenotype to a proinflammatory subtype leads to inflammaging. Following myocardial infarction (MI), macrophages recruited to the infarct produce both proinflammatory and anti-inflammatory mediators (cytokines, chemokines, matrix metalloproteinases, and growth factors), phagocytize dead cells, and promote angiogenesis and scar formation. These diverse properties are attributed to distinct macrophage subtypes and polarization status. Infarct macrophages exhibit a proinflammatory M1 phenotype early and become polarized toward an anti-inflammatory M2 phenotype later post- MI. Although this classification system is oversimplified and needs to be refined to accommodate the multiple different macrophage subtypes that have been recently identified, general concepts on macrophage roles are independent of subtype classification. This review summarizes current knowledge about cardiac macrophage origins, roles, and phenotypes in the steady state, with aging, and after MI, as well as highlights outstanding areas of investigation. PMID:29106912
Stochastic theory of nonequilibrium steady states and its applications. Part I
International Nuclear Information System (INIS)
Zhang Xuejuan; Qian Hong; Qian Min
2012-01-01
The concepts of equilibrium and nonequilibrium steady states are introduced in the present review as mathematical concepts associated with stationary Markov processes. For both discrete stochastic systems with master equations and continuous diffusion processes with Fokker–Planck equations, the nonequilibrium steady state (NESS) is characterized in terms of several key notions which are originated from nonequilibrium physics: time irreversibility, breakdown of detailed balance, free energy dissipation, and positive entropy production rate. After presenting this NESS theory in pedagogically accessible mathematical terms that require only a minimal amount of prerequisites in nonlinear differential equations and the theory of probability, it is applied, in Part I, to two widely studied problems: the stochastic resonance (also known as coherent resonance) and molecular motors (also known as Brownian ratchet). Although both areas have advanced rapidly on their own with a vast amount of literature, the theory of NESS provides them with a unifying mathematical foundation. Part II of this review contains applications of the NESS theory to processes from cellular biochemistry, ranging from enzyme catalyzed reactions, kinetic proofreading, to zeroth-order ultrasensitivity.
STEADY STATE AND PSEUDO-TRANSIENT ELECTRIC POTENTIAL USING THE POISSONBOLTZMANN EQUATION
Directory of Open Access Journals (Sweden)
L. C. dos Santos
2015-03-01
Full Text Available A method for analysis of the electric potential profile in saline solutions was developed for systems with one or two infinite flat plates. A modified Poisson-Boltzmann equation, taking into account nonelectrostatic interactions between ions and surfaces, was used. To solve the stated problem in the steady-state approach the finite-difference method was used. For the formulated pseudo-transient problem, we solved the set of ordinary differential equations generated from the algebraic equations of the stationary case. A case study was also carried out in relation to temperature, solution concentration, surface charge and salt-type. The results were validated by the stationary problem solution, which had also been used to verify the ionic specificity for different salts. The pseudo-transient approach allowed a better understanding of the dynamic behavior of the ion-concentration profile and other properties due to the surface charge variation.
Transcriptional regulation and steady-state modeling of metabolic networks
DEFF Research Database (Denmark)
Zelezniak, Aleksej
Biological systems are characterized by a high degree of complexity wherein the individual components (e.g. proteins) are inter-linked in a way that leads to emergent behaviors that are difficult to decipher. Uncovering system complexity requires, at least, answers to the following three questions......: what are the components of the systems, how are the different components interconnected and how do these networks perform the functions that make the resulting system behavior? Modern analytical technologies allow us to unravel the constituents and interactions happening in a given system; however......, the third question is the ultimate challenge for systems biology. The work of this thesis systematically addresses this question in the context of metabolic networks, which are arguably the most well characterized cellular networks in terms of their constituting components and interactions among them...
Steady-state organization of binary mixtures by active impurities
DEFF Research Database (Denmark)
Sabra, Mads Christian; Gilhøj, Henriette; Mouritsen, Ole G.
1998-01-01
The structural reorganization of a phase-separated binary mixture in the presence of an annealed dilution of active impurities is studied by computer-simulation techniques via a simple two-dimensional lattice-gas model. The impurities, each of which has two internal states with different affinity...
Development of steady-state scenarios compatible with ITER-like wall conditions
Energy Technology Data Exchange (ETDEWEB)
Litaudon, X [Association Euratom-CEA, CEA/DSM/DRFC-Cadarache 13108, St Paul Durance (France); Arnoux, G [Association Euratom-CEA, CEA/DSM/DRFC-Cadarache 13108, St Paul Durance (France); Beurskens, M [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)] (and others)
2007-12-15
A key issue for steady-state tokamak operation is to determine the edge conditions that are compatible both with good core confinement and with the power handling and plasma exhaust capabilities of the plasma facing components (PFCs) and divertor systems. A quantitative response to this open question will provide a robust scientific basis for reliable extrapolation of present regimes to an ITER compatible steady-state scenario. In this context, the JET programme addressing steady-state operation is focused on the development of non-inductive, high confinement plasmas with the constraints imposed by the PFCs. A new beryllium main chamber wall and tungsten divertor together with an upgrade of the heating/fuelling capability are currently in preparation at JET. Operation at higher power with this ITER-like wall will impose new constraints on non-inductive scenarios. Recent experiments have focused on the preparation for this new phase of JET operation. In this paper, progress in the development of advanced tokamak (AT) scenarios at JET is reviewed keeping this long-term objective in mind. The approach has consisted of addressing various critical issues separately during the 2006-2007 campaigns with a view to full scenario integration when the JET upgrades are complete. Regimes with internal transport barriers (ITBs) have been developed at q{sub 95} {approx} 5 and high triangularity, {delta} (relevant to the ITER steady-state demonstration) by applying more than 30 MW of additional heating power reaching {beta}{sub N} {approx} 2 at B{sub o} {approx} 3.1 T. Operating at higher {delta} has allowed the edge pedestal and core densities to be increased pushing the ion temperature closer to that of the electrons. Although not yet fully integrated into a performance enhancing ITB scenario, Neon seeding has been successfully explored to increase the radiated power fraction (up to 60%), providing significant reduction of target tile power fluxes (and hence temperatures) and
Fundamental aspects of steady-state conversion of heat to work at the nanoscale
Benenti, Giuliano; Casati, Giulio; Saito, Keiji; Whitney, Robert S.
2017-06-01
In recent years, the study of heat to work conversion has been re-invigorated by nanotechnology. Steady-state devices do this conversion without any macroscopic moving parts, through steady-state flows of microscopic particles such as electrons, photons, phonons, etc. This review aims to introduce some of the theories used to describe these steady-state flows in a variety of mesoscopic or nanoscale systems. These theories are introduced in the context of idealized machines which convert heat into electrical power (heat-engines) or convert electrical power into a heat flow (refrigerators). In this sense, the machines could be categorized as thermoelectrics, although this should be understood to include photovoltaics when the heat source is the sun. As quantum mechanics is important for most such machines, they fall into the field of quantum thermodynamics. In many cases, the machines we consider have few degrees of freedom, however the reservoirs of heat and work that they interact with are assumed to be macroscopic. This review discusses different theories which can take into account different aspects of mesoscopic and nanoscale physics, such as coherent quantum transport, magnetic-field induced effects (including topological ones such as the quantum Hall effect), and single electron charging effects. It discusses the efficiency of thermoelectric conversion, and the thermoelectric figure of merit. More specifically, the theories presented are (i) linear response theory with or without magnetic fields, (ii) Landauer scattering theory in the linear response regime and far from equilibrium, (iii) Green-Kubo formula for strongly interacting systems within the linear response regime, (iv) rate equation analysis for small quantum machines with or without interaction effects, (v) stochastic thermodynamic for fluctuating small systems. In all cases, we place particular emphasis on the fundamental questions about the bounds on ideal machines. Can magnetic-fields change the
Pasch, James Jay
2017-02-07
A method of resolving a balanced condition that generates control parameters for start-up and steady state operating points and various component and cycle performances for a closed split flow recompression cycle system. The method provides for improved control of a Brayton cycle thermal to electrical power conversion system. The method may also be used for system design, operational simulation and/or parameter prediction.
Buhagiar, Daniel; Sant, Tonio
2014-01-01
A system for using offshore wind energy to generate electricity and simultaneously extract thermal energy is proposed. This concept is based on an offshore wind turbine driven hydraulic pump supplying deep seawater under high pressure to a land based plant consisting of a hydroelectric power generation unit and heat exchanger. A steady-state system model is developed using empirical formulae. The mathematical model comprises the fundamental system sub-models that are categoris...
International Nuclear Information System (INIS)
Wernsman, Bernard
1997-01-01
A comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element (TFE) is made. The single-cell TFE used in this study is the prototype for the 40 kW e space nuclear power system that is similar to the 6 kW e TOPAZ-II. The steady-state I-V measurements influence the emitter temperature due to electron cooling. Therefore, to eliminate the steady-state I-V measurement influence on the TFE and provide a better understanding of the behavior of the thermionic energy converter and TFE characteristics, dynamic I-V measurements are made. The dynamic I-V measurements are made at various input power levels, cesium pressures, collector temperatures, and steady-state current levels. From these measurements, it is shown that the dynamic I-V's do not change the TFE characteristics at a given operating point. Also, the evaluation of the collector work function from the dynamic I-V measurements shows that the collector optimization is not due to a minimum in the collector work function but due to an emission optimization. Since the dynamic I-V measurements do not influence the TFE characteristics, it is believed that these measurements can be done at a system level to understand the influence of TFE placement in the reactor as a function of the core thermal distribution
A steady state model for anaerobic digestion of sewage sludges
African Journals Online (AJOL)
2005-10-04
Oct 4, 2005 ... While not validated for dynamic flow and load ... rate that governs the overall behaviour of the system and relates ... for a given % COD removal, the digester gas composition, ammonia released, alkalinity generated and ...
Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions
International Nuclear Information System (INIS)
Carlon, Elisa; Verma, Vijay Kumar; Schwarz, Markus; Golicza, Laszlo; Prada, Alessandro; Baratieri, Marco; Haslinger, Walter; Schmidl, Christoph
2015-01-01
Highlights: • Laboratory tests on two commercially available pellet boilers. • Steady state and a dynamic load cycle tests. • Pellet boiler model calibration based on data registered in stationary operation. • Boiler model validation with reference to both stationary and dynamic operation. • Validated model suitable for coupled simulation of building and heating system. - Abstract: Nowadays dynamic building simulation is an essential tool for the design of heating systems for residential buildings. The simulation of buildings heated by biomass systems, first of all needs detailed boiler models, capable of simulating the boiler both as a stand-alone appliance and as a system component. This paper presents the calibration and validation of a boiler model by means of laboratory tests. The chosen model, i.e. TRNSYS “Type 869”, has been validated for two commercially available pellet boilers of 6 and 12 kW nominal capacities. Two test methods have been applied: the first is a steady state test at nominal load and the second is a load cycle test including stationary operation at different loads as well as transient operation. The load cycle test is representative of the boiler operation in the field and characterises the boiler’s stationary and dynamic behaviour. The model had been calibrated based on laboratory data registered during stationary operation at different loads and afterwards it was validated by simulating both the stationary and the dynamic tests. Selected parameters for the validation were the heat transfer rates to water and the water temperature profiles inside the boiler and at the boiler outlet. Modelling results showed better agreement with experimental data during stationary operation rather than during dynamic operation. Heat transfer rates to water were predicted with a maximum deviation of 10% during the stationary operation, and a maximum deviation of 30% during the dynamic load cycle. However, for both operational regimes the
Nonlinear steady-state coupling of LH waves
International Nuclear Information System (INIS)
Ko, K.; Krapchev, V.B.
1981-02-01
The coupling of lower hybrid waves at the plasma edge by a two waveguide array with self-consistent density modulation is solved numerically. For a linear density profile, the governing nonlinear Klein-Gordon equation for the electric field can be written as a system of nonlinearly modified Airy equations in Fourier k/sub z/-space. Numerical solutions to the nonlinear system satisfying radiation condition are obtained. Spectra broadening and modifications to resonance cone trajectories are observed with increase of incident power
On the precision of quasi steady state assumptions in stochastic dynamics
Agarwal, Animesh; Adams, Rhys; Castellani, Gastone C.; Shouval, Harel Z.
2012-07-01
Many biochemical networks have complex multidimensional dynamics and there is a long history of methods that have been used for dimensionality reduction for such reaction networks. Usually a deterministic mass action approach is used; however, in small volumes, there are significant fluctuations from the mean which the mass action approach cannot capture. In such cases stochastic simulation methods should be used. In this paper, we evaluate the applicability of one such dimensionality reduction method, the quasi-steady state approximation (QSSA) [L. Menten and M. Michaelis, "Die kinetik der invertinwirkung," Biochem. Z 49, 333369 (1913)] for dimensionality reduction in case of stochastic dynamics. First, the applicability of QSSA approach is evaluated for a canonical system of enzyme reactions. Application of QSSA to such a reaction system in a deterministic setting leads to Michaelis-Menten reduced kinetics which can be used to derive the equilibrium concentrations of the reaction species. In the case of stochastic simulations, however, the steady state is characterized by fluctuations around the mean equilibrium concentration. Our analysis shows that a QSSA based approach for dimensionality reduction captures well the mean of the distribution as obtained from a full dimensional simulation but fails to accurately capture the distribution around that mean. Moreover, the QSSA approximation is not unique. We have then extended the analysis to a simple bistable biochemical network model proposed to account for the stability of synaptic efficacies; the substrate of learning and memory [J. E. Lisman, "A mechanism of memory storage insensitive to molecular turnover: A bistable autophosphorylating kinase," Proc. Natl. Acad. Sci. U.S.A. 82, 3055-3057 (1985)], 10.1073/pnas.82.9.3055. Our analysis shows that a QSSA based dimensionality reduction method results in errors as big as two orders of magnitude in predicting the residence times in the two stable states.
Nonequilibrium steady state of biochemical cycle kinetics under non-isothermal conditions
Jin, Xiao; Ge, Hao
2018-04-01
The nonequilibrium steady state of isothermal biochemical cycle kinetics has been extensively studied, but that under non-isothermal conditions has been much less extensively investigated. When the heat exchange between subsystems is slow, the isothermal assumption of the whole system breaks down, as is true for many types of living organisms. Here, starting with a four-state model of molecular transporter across the cell membrane, we generalize the nonequilibrium steady-state theory of isothermal biochemical cycle kinetics to the circumstances with non-uniform temperatures of subsystems in terms of general master equation models. We obtain a new thermodynamic relationship between the chemical reaction rates and thermodynamic potentials in non-isothermal circumstances, based on the overdamped dynamics along the continuous reaction coordinate. We show that the entropy production can vary up to 3% in real cells, even when the temperature difference across the cell membrane is only approximately 1 K. We then decompose the total thermodynamic driving force into its thermal and chemical components and predict that the net flux of molecules transported by the molecular transporter can potentially go against the temperature gradient in the absence of a chemical driving force. Furthermore, we demonstrate that the simple application of the isothermal transition-state rate formula for each chemical reaction in terms of only the reactant’ temperature is not thermodynamically consistent. Therefore, we mathematically derive several revised reaction rate formulas that are not only consistent with the new thermodynamic relationship but also approximate the exact reaction rate better than Kramers’ rate formula under isothermal conditions.
Steady-state heat transfer in an inverted U-tube steam generator
International Nuclear Information System (INIS)
Boucher, T.J.
1986-01-01
Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during steady-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K hot-leg fluid temperatures, 6.2 MPa secondary pressure). The MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations
The non-local Fisher–KPP equation: travelling waves and steady states
International Nuclear Information System (INIS)
Berestycki, Henri; Nadin, Grégoire; Perthame, Benoit; Ryzhik, Lenya
2009-01-01
We consider the Fisher–KPP equation with a non-local saturation effect defined through an interaction kernel φ(x) and investigate the possible differences with the standard Fisher–KPP equation. Our first concern is the existence of steady states. We prove that if the Fourier transform φ-circumflex(ξ) is positive or if the length σ of the non-local interaction is short enough, then the only steady states are u ≡ 0 and u ≡ 1. Next, we study existence of the travelling waves. We prove that this equation admits travelling wave solutions that connect u = 0 to an unknown positive steady state u ∞ (x), for all speeds c ≥ c * . The travelling wave connects to the standard state u ∞ (x) ≡ 1 under the aforementioned conditions: φ-circumflex(ξ) > 0 or σ is sufficiently small. However, the wave is not monotonic for σ large
Diagnostics Development towards Steady State Operation in Fusion Devices
Energy Technology Data Exchange (ETDEWEB)
Burhenn, R.; Baldzuhn, J.; Dreier, H.; Endler, M.; Hartfuss, H.J.; Hildebrandt, D.; Hirsch, M.; Koenig, R.; Kornejev, P.; Krychowiak, M.; Laqua, H.P.; Laux, M.; Oosterbeek, J.W.; Pasch, E.; Schneider, W.; Thomsen, H.; Weller, A.; Werner, A.; Wolf, R.; Zhang, D. [Max-Planck-Institute fuer Plasmaphysik, EURATOM Association, D-17491 Greifswald (Germany); Biel, W. [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich GmbH EURATOM Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany)
2011-07-01
The stellarator Wendelstein 7-X (W7-X) is being presently under construction and is already equipped with superconducting coil systems and principally is capable of quasi-continuous operation. However, W7-X is faced with new enhanced technical requirements which have to be met by plasma facing components as well as the diagnostic systems in general. Depending on the available heating power, the continuous heat flux to plasma facing components during long pulse operation might lead to unacceptable local thermal overload and necessitates sufficient but often complicate active cooling precautions. Fusion devices with electron cyclotron frequency heating (ECRH) are concerned with significant stray radiation, depending on the chosen heating scheme and the plasma parameters. The required shielding is often not compatible with optimal UHV-consistent design and high intensity throughput. For machine safety, diagnostics are required which are able to identify enhanced plasma wall interaction on a fast time scale in order to prevent damage in time. For W7-X, video camera systems covering most of the inner wall, fast IR-camera systems with coating-resistant pinhole-optics for the observation of the divertor surface temperature and spectrometers with large spectral survey covering relevant spectral lines of all intrinsic impurities with sufficient spectral resolution and sensitivity are necessary. In combination with energy integrating but spatially resolving diagnostics like bolometers and soft-X cameras slow impurity accumulation phenomena on a time scale much larger than flat-top times typically achieved in short-pulse operation can be identified and a radiative plasma collapse possibly be avoided by counteractive measures. Longer port dimensions due to thermal insulation of the cryogenic coil system and high density operation with strong density gradients necessitate the choice of shorter wavelengths for interferometer laser beams. This complicates the avoidance of fringe
Foster, Carl; Farland, Courtney V; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T; Porcari, John P
2015-12-01
High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. There were significant (p Tabata protocol was significantly less enjoyable (p HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults. Key pointsSteady state training equivalent to HIIT in untrained studentsMild interval training presents very similar physiologic challenge compared to steady state trainingHIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval trainingEnjoyment of training decreases across the course of an 8 week experimental training program.
A quaternionic map for the steady states of the Heisenberg spin-chain
Energy Technology Data Exchange (ETDEWEB)
Mehta, Mitaxi P., E-mail: mitaxi.mehta@ahduni.edu.in [IICT, Ahmedabad University, Opp. IIM, Navrangpura, Ahmedabad (India); Dutta, Souvik; Tiwari, Shubhanshu [BITS-Pilani, K.K. Birla Goa campus, Goa (India)
2014-01-17
We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.
A quaternionic map for the steady states of the Heisenberg spin-chain
International Nuclear Information System (INIS)
Mehta, Mitaxi P.; Dutta, Souvik; Tiwari, Shubhanshu
2014-01-01
We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.
Cell kinetics of GM-CFC in the steady state
International Nuclear Information System (INIS)
Hagan, M.P.; MacVittie, T.J.; Dodgen, D.P.
1985-01-01
The kinetics of cell turnover for myeloid/monocyte cells that form colonies in agar (GM-CFC) were measured through the progressive increase in their sensitivity to 313-nm light during a period of cell labeling with BrdCyd. Two components of cell killing with distinctly separate labeling kinetics revealed both the presence of two generations within the GM-CFC compartment and the properties of the kinetics of the precursors of the GM-CFC. These precursors of the GM-CFC were not assayable in a routine GM-CFC assay when pregnant mouse uterus extract and mouse L-cell-conditioned medium were used to stimulate colony formation but were revealed by the labeling kinetics of the assayable GM-CFC. Further, these precursor cells appeared to enter the assayable GM-CFC population from a noncycling state. This was evidenced by the failure of the majority of these cells to incorporate BrdCyd during five days of infusion. The half-time for cell turnover within this precursor compartment was measured to be approximately 5.5 days. Further, these normally noncycling cells proliferated rapidly in response to endotoxin. High-proliferative-potential colony-forming cells (HPP-CFC) were tested as a candidate for this precursor population. The results of the determination of the kinetics for these cells showed that the HPP-CFC exist largely in a Go state, existing at an average rate of once every four days. The slow turnover time for these cells and their response to endotoxin challenge are consistent with a close relationship between the HPP-CFC and the Go pool of cells that is the direct precursor of the GM-CFC
Steady state operation and control experiments on Tore Supra
International Nuclear Information System (INIS)
Saint-Laurent, F.
2000-01-01
The main programme of the Tore Supra tokamak is to investigate the route towards long pulse plasma discharges. Tore Supra is thus equipped with a superconducting toroidal magnet, a full set of actively cooled plasma facing components, and a heating and current drive capability based on high power RF systems connected to actively cooled antennas. After pioneering investigations using the LHCD system alone (2 min and zero loop voltage discharges), recent efforts have concentrated on finding scenarios to couple the two RF heating systems in order to perform high power, long duration discharges. To this aim, 6.5 MW, 25 s as well as 4 MW, 60 s discharges have been successfully achieved. At these high power levels, the plasma-wall interaction becomes a critical issue, and recycling fluxes must be controlled to maintain density and to avoid plasma contamination. All these results contributed to the validation of the upgrade of the Tore Supra first wall components (CIEL project) scheduled for 2000. (author)
International Nuclear Information System (INIS)
Kovařík, Karel; Ďuran, Ivan; Sentkerestiová, Jana; Šesták, David
2013-01-01
Highlights: •Prepared test bench for calibration of steady state magnetic sensors. •Test-bench design optimized for calibration up to 300 °C. •Test-bench is remotely controllable and allows long term measurements. •Construction allows easy manipulation with even irradiated samples. -- Abstract: Magnetic sensors in ITER tokamak and in other future fusion devices will face an environment with temperature often elevated well above 200 °C. Dedicated test benches are needed to allow characterization of performance of magnetic sensors at such elevated temperatures. This contribution describes realization of test bench for calibration of steady state magnetic sensors based on Hall effect. The core of the set-up is the coil providing DC calibration magnetic field. Optimization of coils design to ensure its compatibility with elevated temperature up to 300 °C is described. Optimized coil was manufactured, and calibrated both at room temperature and at temperature of 250 °C. Measured calibration magnetic field of the coil biased by a 30 A commercial laboratory power supplies is 224 mT. The coil is supplemented by PID regulated air cooling system for fine control of sensors temperature during measurements. Data acquisition system is composed from PC A/D converter boards with resolution below 1 μV. The key parameters of the test bench are remotely controllable and the system allows long term continuous measurements including tests of irradiated samples. The performance of the test bench is demonstrated on recent measurements with metal Hall sensors based on thin copper sensing layers
Coagulation profile of children with sickle cell anemia in steady state ...
African Journals Online (AJOL)
Background: Sickle cell anemia is associated with a hypercoagulable state that may lead to alterations in a coagulation profile. Measurements of coagulation factors are known to have some predictive value for clinical outcome. Objectives: To determine the coagulation profile of children with SCA in steady state and crisis ...
Steady-state emission of blazars at very high energies
International Nuclear Information System (INIS)
Hoehne-Moench, Daniel
2010-01-01
One key scientific program of the MAGIC telescope project is the discovery and detection of blazars. They constitute the most prominent extragalactic source class in the very high energy (VHE) γ-ray regime with 29 out of 34 known objects. Therefore a major part of the available observation time was spent in the last years on high-frequency peaked blazars. The selection criteria were chosen to increase the detection probability. As the X-ray flux is believed to be correlated to the VHE γ-ray flux, only X-ray selected sources with a flux F X >2 μJy at 1 keV were considered. To avoid strong attenuation of the -rays in the extragalactic infrared background, the redshift was restricted to values between z X-γ between the X-ray range at 1 keV and the VHE γ-ray regime at 200 GeV were calculated. The majority of objects show a spectral behaviour as expected from the source class of HBLs: The energy output in the VHE regime is in general lower than in X-rays. For the stacked blazar sample the broad-band spectral index was calculated to α X-γ =1.09, confirming the result found for the individual objects. Another evidence for the revelation of the baseline emission is the broad-band spectral energy distribution (SED) comprising archival as well as contemporaneous multi-wavelength data from the radio to the VHE band. The SEDs of known VHE γ-ray sources in low flux states matches well the SED of the stacked blazar sample. (orig.)
On feasibility boundaries of electrical power grids in steady state
Energy Technology Data Exchange (ETDEWEB)
Krause, O.; Handschin, E.; Rehtanz, C. [Institute of Power Systems and Power Economicy, Technische Universitaet Dortmund, Emil-Figge-Str. 70, 44227 Dortmund (Germany); Lehnhoff, S.; Wedde, H.F. [Chair 3, School of Computer Science, Technische Universitaet Dortmund, August-Schmidt-Str. 12, 44227 Dortmund (Germany)
2009-10-15
Both the coordination of international energy transfer and the integration of a rapidly growing number of decentralized energy resources (DER) throughout most countries cause novel problems for avoiding voltage band violations and line overloads. Traditional approaches are typically based on global off-line scheduling under globally available information and rely on iterative procedures that can guarantee neither convergence nor execution time. In this paper, we focus on operational limitation problems in power grids based on widely dispersed (renewable) energy sources. We introduce an extension to the DEZENT algorithm, a multi-agent based coordination system for DER, that allows for the feasibility verification in constant and predetermined time. We give a numerical example showing the legitimacy of our approach and mention ongoing and future work regarding its implementation and utilization. (author)
Anisotropic plasma with flows in tokamak: Steady state and stability
International Nuclear Information System (INIS)
Ilgisonis, V.I.
1996-01-01
An adequate description of equilibrium and stability of anisotropic plasma with macroscopic flows in tokamaks is presented. The Chew-Goldberger-Low (CGL) approximation is consistently used to analyze anisotropic plasma dynamics. The admissible structure of a stationary flow is found to be the same as in the ideal magnetohydrodynamics with isotropic pressure (MHD), which means an allowance for the same relabeling symmetry as in ideal MHD systems with toroidally nested magnetic surfaces. A generalization of the Grad-Shafranov equation for the case of anisotropic plasma with flows confined in the axisymmetric magnetic field is derived. A variational principle was obtained, which allows for a stability analysis of anisotropic pressure plasma with flows, and takes into account the conservation laws resulting from the relabeling symmetry. This principle covers the previous stability criteria for static CGL plasma and for ideal MHD flows in isotropic plasma as well. copyright 1996 American Institute of Physics
Qin, Wei; Miranowicz, Adam; Li, Peng-Bo; Lü, Xin-You; You, J. Q.; Nori, Franco
2018-03-01
We propose an experimentally feasible method for enhancing the atom-field coupling as well as the ratio between this coupling and dissipation (i.e., cooperativity) in an optical cavity. It exploits optical parametric amplification to exponentially enhance the atom-cavity interaction and, hence, the cooperativity of the system, with the squeezing-induced noise being completely eliminated. Consequently, the atom-cavity system can be driven from the weak-coupling regime to the strong-coupling regime for modest squeezing parameters, and even can achieve an effective cooperativity much larger than 100. Based on this, we further demonstrate the generation of steady-state nearly maximal quantum entanglement. The resulting entanglement infidelity (which quantifies the deviation of the actual state from a maximally entangled state) is exponentially smaller than the lower bound on the infidelities obtained in other dissipative entanglement preparations without applying squeezing. In principle, we can make an arbitrarily small infidelity. Our generic method for enhancing atom-cavity interaction and cooperativities can be implemented in a wide range of physical systems, and it can provide diverse applications for quantum information processing.
Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States
De Nardis, Jacopo; Panfil, Miłosz
2018-05-01
The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.
Nonequilibrium current-carrying steady states in the anisotropic X Y spin chain
Lancaster, Jarrett L.
2016-05-01
Out-of-equilibrium behavior is explored in the one-dimensional anisotropic X Y model. Initially preparing the system in the isotropic X X model with a linearly varying magnetic field to create a domain-wall magnetization profile, dynamics is generated by rapidly changing the exchange interaction anisotropy and external magnetic field. Relaxation to a nonequilibrium steady state is studied analytically at the critical transverse Ising point, where correlation functions may be computed in closed form. For arbitrary values of anisotropy and external field, an effective generalized Gibbs' ensemble is shown to accurately describe observables in the long-time limit. Additionally, we find spatial oscillations in the exponentially decaying, transverse spin-spin correlation functions with wavelength set by the magnetization jump across the initial domain wall. This wavelength depends only weakly on anisotropy and magnetic field in contrast to the current, which is highly dependent on these parameters.
Computer simulation of the steam--graphite reaction under isothermal and steady-state conditions
International Nuclear Information System (INIS)
Joy, D.S.; Stem, S.C.
1975-05-01
A mathematical model was formulated to describe the isothermal, steady-state diffusion and reaction of steam in a graphite matrix. A generalized Langmuir-Hinshelwood equation is used to represent the steam-graphite reaction rate. The model also includes diffusion in the gas phase adjacent to the graphite matrix. A computer program, written to numerically integrate the resulting differential equations, is described. The coupled nonlinear differential equations in the graphite phase are solved using the IBM Continuous System Modeling Program. Classical finite difference techniques are used for the gas-phase calculations. An iterative procedure is required to couple the two sets of calculations. Several sample problems are presented to demonstrate the utility of the model. (U.S.)
Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos.
Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi
2014-09-01
Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.
Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R; Crowhurst, Jonathan C; Weisz, David G; Zaug, Joseph M; Dai, Zurong; Radousky, Harry B; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L; Cappelli, Mark A; Rose, Timothy P
2017-09-01
We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.
Analysis of Steady-State Error in Torque Current Component Control of PMSM Drive
Directory of Open Access Journals (Sweden)
BRANDSTETTER, P.
2017-05-01
Full Text Available The paper presents dynamic properties of a vector controlled permanent magnet synchronous motor drive supplied by a voltage source inverter. The paper deals with a control loop for the torque producing stator current. There is shown fundamental mathematical description for the vector control structure of the permanent magnet synchronous motor drive with respect to the current control for d-axis and q-axis of the rotor rotating coordinate system. The derivations of steady-state deviation for schemes with and without decoupling circuits are described for q-axis. The properties of both schemes are verified by MATLAB-SIMULINK program considering a lower and a higher value of inertia and by experimental measurements in our laboratory. The simulation and experimental results are presented and discussed at the end of the paper.
Steady-state emission of blazars at very high energies
Energy Technology Data Exchange (ETDEWEB)
Hoehne-Moench, Daniel
2010-07-01
One key scientific program of the MAGIC telescope project is the discovery and detection of blazars. They constitute the most prominent extragalactic source class in the very high energy (VHE) {gamma}-ray regime with 29 out of 34 known objects. Therefore a major part of the available observation time was spent in the last years on high-frequency peaked blazars. The selection criteria were chosen to increase the detection probability. As the X-ray flux is believed to be correlated to the VHE {gamma}-ray flux, only X-ray selected sources with a flux F{sub X}>2 {mu}Jy at 1 keV were considered. To avoid strong attenuation of the -rays in the extragalactic infrared background, the redshift was restricted to values between z<0.15 and z<0.4, depending on the declination of the objects. The latter determines the zenith distance during culmination which should not exceed 30 (for z<0.4) and 45 (for z<0.15), respectively. Between August 2005 and April 2009, a sample of 24 X-ray selected high-frequency peaked blazars has been observed with the MAGIC telescope. Three of them were detected including 1ES 1218+304 being the first high-frequency peaked BL Lacertae object (HBL) to be discovered with MAGIC in VHE {gamma}-rays. One previously detected object was not confirmed as VHE emitter in this campaign by MAGIC. A set of 20 blazars previously not detected is treated more closely in this work. In this campaign, during almost four years {proportional_to}450 hrs or {proportional_to}22% of the available observation time for extragalactic objects were dedicated to investigate the baseline emission of blazars and their broadband spectral properties in this emission state. For the sample of 20 objects in a redshift range of 0.018
International Nuclear Information System (INIS)
Roberts, H.A.; Smith, C.P.
1976-02-01
Provision of capability for performing steady-state calculations in RELAP-UK has led to the possibility of the wider use of this code for steady-state assessments of the behaviour of commercial systems with complicated circuit arrangements. In the studies discussed in this report, the first objective is to demonstrate the performance of the RELAP-UK code in a steady-state role, and to make comparisons with the CUSH code, and with measurements obtained on the Winfrith Steam-Generating Heavy Water Reactor. (U.K.)
DEFF Research Database (Denmark)
Gastrup, Sandra; Stage, Tore Bjerregaard; Fruekilde, Palle Bach Nielsen
2016-01-01
AIM: Patients receiving lamotrigine therapy frequently use paracetamol concomitantly. While one study suggests a possible, clinically relevant drug-drug interaction, practical recommendations of the concomitant use are inconsistent. We performed a systematic pharmacokinetic study in healthy...... volunteers to quantify the effect of 4-day treatment of paracetamol on the metabolism of steady-state lamotrigine. METHODS: Twelve healthy, male volunteers participated in an open-label, sequential interaction study. Lamotrigine was titrated to steady state (100 mg daily) over 36 days, and blood and urine...... sampling was performed in a non-randomised order with and without paracetamol (1 g four times daily). The primary endpoint was change in steady-state area under the plasma concentration-time curve of lamotrigine. Secondary endpoints were changes in total apparent oral clearance, renal clearance...
Kitazumi, Yuki; Hamamoto, Katsumi; Noda, Tatsuo; Shirai, Osamu; Kano, Kenji
2015-01-01
The fabrication of ultrathin-ring electrodes with a diameter of 2 mm and a thickness of 100 nm is established. The ultrathin-ring electrodes provide a large density of pseudo-steady-state currents, and realize pseudo-steady-state amperometry under quiescent conditions without a Faraday cage. Under the limiting current conditions, the current response at the ultrathin-ring electrode can be well explained by the theory of the microband electrode response. Cyclic voltammograms at the ultrathin-ring electrode show sigmoidal characteristics with some hysteresis. Numerical simulation reveals that the hysteresis can be ascribed to the time-dependence of pseudo-steady-state current. The performance of amperometry with the ultrathin-ring electrode has been verified in its application to redox enzyme kinetic measurements.
Exact steady state manifold of a boundary driven spin-1 Lai–Sutherland chain
International Nuclear Information System (INIS)
Ilievski, Enej; Prosen, Tomaž
2014-01-01
We present an explicit construction of a family of steady state density matrices for an open integrable spin-1 chain with bilinear and biquadratic interactions, also known as the Lai–Sutherland model, driven far from equilibrium by means of two oppositely polarizing Markovian dissipation channels localized at the boundary. The steady state solution exhibits n+1 fold degeneracy, for a chain of length n, due to existence of (strong) Liouvillian U(1) symmetry. The latter can be exploited to introduce a chemical potential and define a grand canonical nonequilibrium steady state ensemble. The matrix product form of the solution entails an infinitely-dimensional representation of a non-trivial Lie algebra (semidirect product of sl 2 and a non-nilpotent radical) and hints to a novel Yang–Baxter integrability structure
Exact steady state manifold of a boundary driven spin-1 Lai–Sutherland chain
Energy Technology Data Exchange (ETDEWEB)
Ilievski, Enej; Prosen, Tomaž
2014-05-15
We present an explicit construction of a family of steady state density matrices for an open integrable spin-1 chain with bilinear and biquadratic interactions, also known as the Lai–Sutherland model, driven far from equilibrium by means of two oppositely polarizing Markovian dissipation channels localized at the boundary. The steady state solution exhibits n+1 fold degeneracy, for a chain of length n, due to existence of (strong) Liouvillian U(1) symmetry. The latter can be exploited to introduce a chemical potential and define a grand canonical nonequilibrium steady state ensemble. The matrix product form of the solution entails an infinitely-dimensional representation of a non-trivial Lie algebra (semidirect product of sl{sub 2} and a non-nilpotent radical) and hints to a novel Yang–Baxter integrability structure.
Steady-state magnetohydrodynamic flow around an unmagnetized conducting sphere
Energy Technology Data Exchange (ETDEWEB)
Romanelli, N.; Gómez, D.; Bertucci, C. [Group of Astrophysical Flows, Instituto de Astronomía y Física del Espacio, Buenos Aires (Argentina); Delva, M., E-mail: nromanelli@iafe.uba.ar, E-mail: Magda.Delva@oeaw.ac.at [Space Research Institute, Graz (Austria)
2014-07-01
The noncollisional interaction between conducting obstacles and magnetized plasma winds can be found in different scenarios, from the interaction occurring between regions inside galaxy clusters to the interaction between the solar wind and Mars, Venus, and active comets, or even the interaction between Titan and the Saturnian magnetospheric flow. These objects generate, through several current systems, perturbations in the streaming magnetic field leading to its draping around the obstacle's effective conducting surface. Recent observational results suggest that several properties associated with magnetic field draping, such as the location of the polarity reversal layer of the induced magnetotail, are affected by variations in the conditions of the streaming magnetic field. To improve our understanding of these phenomena, we perform a characterization of several magnetic field draping signatures by analytically solving an ideal problem in which a perfectly conducting magnetized plasma (with frozen-in magnetic field conditions) flows around a spherical body for various orientations of the streaming magnetic field. In particular, we compute the shift of the inverse polarity reversal layer as the orientation of the background magnetic field is changed.
Directory of Open Access Journals (Sweden)
Ruben Perez-Carrasco
2016-10-01
Full Text Available During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules-morphogens-guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cell types is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses have emphasised the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, the dramatic increase in patterning time close to the boundary predicted from the deterministic case is substantially reduced. The resulting stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source with a velocity determined by the intrinsic noise. The wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can
Page, Karen M.
2016-01-01
During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules—morphogens—guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cell types is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses have emphasised the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, the dramatic increase in patterning time close to the boundary predicted from the deterministic case is substantially reduced. The resulting stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source with a velocity determined by the intrinsic noise. The wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can qualitatively
Photosynthetic complex LH2 – Absorption and steady state fluorescence spectra
International Nuclear Information System (INIS)
Zapletal, David; Heřman, Pavel
2014-01-01
Nowadays, much effort is devoted to the study of photosynthesis which could be the basis for an ideal energy source in the future. To be able to create such an energy source – an artificial photosynthetic complex, the first step is a detailed understanding of the function of photosynthetic complexes in living organisms. Photosynthesis starts with the absorption of a solar photon by one of the LH (light-harvesting) pigment–protein complexes and transferring the excitation energy to the reaction center where a charge separation is initiated. The geometric structure of some LH complexes is known in great detail, e.g. for the LH2 complexes of purple bacteria. For understanding of photosynthesis first stage efficiency, it is necessary to study especially optical properties of LH complexes. In this paper we present simulated absorption and steady-state fluorescence spectra for ring molecular system within full Hamiltonian model. Such system can model bacteriochlorophyll ring of peripheral light-harvesting complex LH2 from purple bacterium Rhodopseudomonas acidophila (Rhodoblastus acidophilus). Dynamic disorder (coupling with phonon bath) simultaneously with uncorrelated static disorder (transfer integral fluctuations) is used in our present simulations. We compare and discuss our new results with our previously published ones and of course with experimental data. - Highlights: • We model absorption and steady state fluorescence spectra for B850 ring from LH2. • Fluctuations of environment is modelled by static and dynamic disorder. • Full Hamiltonian model is compared with the nearest neighbour approximation one. • Simulated fluorescence spectrum is compared with experimental data
Metzger, Fabian; Mischek, Daniel; Stoffers, Frédéric
2017-01-01
Here we show that the hydrodynamic radii-dependent entry of blood proteins into cerebrospinal fluid (CSF) can best be modeled with a diffusional system of consecutive interdependent steady states between barrier-restricted molecular flux and bulk flow of CSF. The connected steady state model fits precisely to experimental results and provides the theoretical backbone to calculate the in-vivo hydrodynamic radii of blood-derived proteins as well as individual barrier characteristics. As the experimental reference set we used a previously published large-scale patient cohort of CSF to serum quotient ratios of immunoglobulins in relation to the respective albumin quotients. We related the inter-individual variances of these quotient relationships to the individual CSF flow time and barrier characteristics. We claim that this new concept allows the diagnosis of inflammatory processes with Reibergrams derived from population-based thresholds to be shifted to individualized judgment, thereby improving diagnostic sensitivity. We further use the source-dependent gradient patterns of proteins in CSF as intrinsic tracers for CSF flow characteristics. We assume that the rostrocaudal gradient of blood-derived proteins is a consequence of CSF bulk flow, whereas the slope of the gradient is a consequence of the unidirectional bulk flow and bidirectional pulsatile flow of CSF. Unlike blood-derived proteins, the influence of CSF flow characteristics on brain-derived proteins in CSF has been insufficiently discussed to date. By critically reviewing existing experimental data and by reassessing their conformity to CSF flow assumptions we conclude that the biomarker potential of brain-derived proteins in CSF can be improved by considering individual subproteomic dynamics of the CSF system.
Transient and steady state creep response of ice I and magnesium sulfate hydrate eutectic aggregates
McCarthy, C.; Cooper, R.F.; Goldsby, D.L.; Durham, W.B.; Kirby, S.H.
2011-01-01
Using uniaxial compression creep experiments, we characterized the transient and steady state deformation behaviors of eutectic aggregates of system ice I and MgSO4 11H2O (MS11; meridianiite), which has significance because of its likely presence on moons of the outer solar system. Synthetic samples of eutectic liquid bulk composition, which produce eutectic colonies containing 0.35-0.50 volume fraction MS11, were tested as functions of colony size and lamellar spacing, temperature (230-250 K), and confining pressure (0.1 and 50 MPa) to strains ???0.2. Up to a differential stress of 6 MPa, the ice I-MS11 aggregates display an order of magnitude higher effective viscosity and higher stress sensitivity than do aggregates of pure polycrystalline ice at the same conditions. The creep data and associated microstructural observations demonstrate, however, that the aggregates are additionally more brittle than pure ice, approaching rate-independent plasticity that includes rupture of the hydrate phase at 6-8 MPa, depending on the scale of the microstructure. Microstructures of deformed samples reveal forms of semibrittle flow in which the hydrate phase fractures while the ice phase deforms plastically. Semibrittle flow in the icy shell of a planetary body would truncate the lithospheric strength envelope and thereby decrease the depth to the brittle-ductile transition by 55% and reduce the failure limit for compressional surface features from 10 to ???6 MPa. A constitutive equation that includes eutectic colony boundary sliding and intracolony flow is used to describe the steady state rheology of the eutectic aggregates. Copyright ?? 2011 by the American Geophysical Union.
International Nuclear Information System (INIS)
Mbagwu, J.S.C.
1993-10-01
A knowledge of physical properties influencing the steady-state infiltration rates (ic) of soils is needed for the hydrologic modelling of the infiltration process. In this study evidence is provided to show that effective porosity (Pe) (i.e. the proportion of macro pore spaces with equivalent radius of > 15 μm) and dry bulk density are the most important soil physical properties controlling the steady-state infiltration rates on a tropical savannah with varying land use histories. At a macro porosity value of ≤ 5.0% the steady-state infiltration rate is zero. Total porosity and the proportion of water-retaining pores explained only a small fraction of the variation in this property. Steady-state infiltration rates can also be estimated from either the saturated hydraulic conductivity (Ks) by the equation, i c = 31.1 + 1.06 (Ks), (R 2 = 0.8104, p ≤ 0.001) or the soil water transmissivity (A) by the equation, i c = 30.0 + 29.9(A), (R 2 = 0.8228, ρ ≤ 0.001). The Philip two-parameter model under predicted steady-state infiltration rates generally. Considering the ease of determination and reliability it is suggested that effective porosity be used to estimate the steady-state infiltration rates of these other soils with similar characteristics. The model is, i c 388.7(Pe) - 10.8(R 2 = 0.7265, p ≤ 0.001) where i c is in (cm/hr) and Pe in (cm 3 /cm 3 ). (author). 20 refs, 3 figs, 4 tabs
Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state
Culver, Adrian; Andrei, Natan
We present an exact method of calculating the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t = 0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. This exact, non-perturbative solution describes the non-equilibrium steady state of the system. We describe how to use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, which would yield the I-V characteristic of the dot. Research supported by NSF Grant DMR 1410583.
International Nuclear Information System (INIS)
Gormezano, C.
1999-01-01
The seventh meeting of the ITER Physics Group on energetic particles, heating and steady state operation was held at CEN/Cadarache from 14 to 18 September 1999. This was the first meeting following the redefinition of the Expert Group structure and it was also the first meeting without participation of US physicists. The main topics covered were: 1. Energetic Particles, 2. Ion Cyclotron Resonance Heating, 3. Lower Hybrid Current Drive, 4. Electron Cyclotron Resonance Heating and Current Drive, 5. Neutral Beam Injection, 6. Steady-State Aspects
SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis
Energy Technology Data Exchange (ETDEWEB)
Basehore, K.L.; Todreas, N.E.
1980-08-01
Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.
DEFF Research Database (Denmark)
Olsen, M H; Andersen, U B; Wachtell, K
1999-01-01
We wanted to investigate whether time to steady state was reached within 2 h of insulin infusion during isoglycemic hyperinsulinemic clamp, comparing the glucose uptake index (M/IG) with Bergman's insulin sensitivity index (Sip). We performed a 2-h oral glucose tolerance test and a 3-h isoglycemic....... Because the 2-h M/IG correlated strongly with the 3-h Sip with relatively narrow limits of agreement, it is a good measure of insulin sensitivity. However, a 2-h clamp results in lower insulin sensitivity values in elderly, hypertensive patients due to the fact that steady state is not reached...
International Nuclear Information System (INIS)
2015-01-01
This meeting has provided an appropriate forum to discuss current issues covering a wide range of technical topics related to the steady state operation issues and also to encourage forecast of the ITER performances. The technical meeting includes invited and contributed papers. The topics that have been dealt with are: 1) Superconducting devices (ITER, KSTAR, Tore-Supra, HT-7U, EAST, LHD, Wendelstein-7-X,...); 2) Long-pulse operation and advanced tokamak physics; 3) steady state fusion technologies; 4) Long pulse heating and current drive; 5) Particle control and power exhaust, and 6) ITER-related research and development issues. This document gathers the abstracts
S3C: EBT Steady-State Shooting code description and user's guide
International Nuclear Information System (INIS)
Downum, W.B.
1983-09-01
The Oak Ridge National Laboratory (ORNL) one-dimensional (1-D) Steady-State Shooting code (S3C) for ELMO Bumpy Torus (EBT) plasmas is described. Benchmark calculations finding the steady-state density and electron and ion temperature profiles for a known neutral density profile and known external energy sources are carried out. Good agreement is obtained with results from the ORNL Radially Resolved Time Dependent 1-D Transport code for an EBT-Q type reactor. The program logic is described, along with the physics models in each code block and the variable names used. Sample input and output files are listed, along with the main code
Analysis on the steady-state coherent synchrotron radiation with strong shielding
International Nuclear Information System (INIS)
Li, R.; Bohn, C.L.; Bisognano, J.J.
1997-01-01
There are several papers concerning shielding of coherent synchrotron radiation (CSR) emitted by a Gaussian line charge on a circular orbit centered between two parallel conducting plates. Previous asymptotic analyses in the frequency domain show that shielded steady-state CSR mainly arises from harmonics in the bunch frequency exceeding the threshold harmonic for satisfying the boundary conditions at the plates. In this paper the authors extend the frequency-domain analysis into the regime of strong shielding, in which the threshold harmonic exceeds the characteristic frequency of the bunch. The result is then compared to the shielded steady-state CSR power obtained using image charges
International Nuclear Information System (INIS)
Faiz, J.; Shafagh, E.
1999-01-01
In order to obtain more accurate predicted dynamic steady-state performance with shorter computation time, an available mathematical model is modified and presented. Using this modified model, performance of a typical switched reluctance motor under a wide range of variations of operating conditions is obtained and discussed. These include variations of speed, voltage, load and switching angle. The static test characteristics of the motor are carefully measured and measured flux-linkage data are then used to predict the steady-state performance
SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis
International Nuclear Information System (INIS)
Basehore, K.L.; Todreas, N.E.
1980-08-01
Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries
Shao, X. Q.; Wu, J. H.; Yi, X. X.; Long, Gui-Lu
2017-12-01
Inspired by a recent work [F. Reiter, D. Reeb, and A. S. Sørensen, Phys. Rev. Lett. 117, 040501 (2016), 10.1103/PhysRevLett.117.040501], we present a simplified proposal for dissipatively preparing a Greenberger-Horne-Zeilinger (GHZ) state of three Rydberg atoms in a cavity. The Z pumping is implemented under the action of the spontaneous emission of Λ -type atoms and the quantum Zeno dynamics induced by strong continuous coupling. In the meantime, a dissipative Rydberg pumping breaks up the stability of the state | GHZ+〉 in the process of Z pumping, making | GHZ-〉 the unique steady state of the system. Compared with the former scheme, the number of driving fields acting on atoms is greatly reduced and only a single-mode cavity is required. The numerical simulation of the full master equation reveals that a high fidelity ˜98 % can be obtained with the currently achievable parameters in the Rydberg-atom-cavity system.
Determining the Impact of Steady-State PV Fault Current Injections on Distribution Protection
Energy Technology Data Exchange (ETDEWEB)
Seuss, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grijalva, Santiago [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
This report investigates the fault current contribution from a single large PV system and the impact it has on existing distribution overcurrent protection devices. Assumptions are made about the modeling of the PV system under fault to perform exhaustive steady - state fault analyses throughout distribution feeder models. Each PV interconnection location is tested to determine how the size of the PV system affects the fault current measured by each protection device. This data is then searched for logical conditions that indicate whether a protection device has operated in a manner that will cause more customer outages due to the addition of the PV system. This is referred to as a protection issue , and there are four unique types of issues that have been identified in the study. The PV system size at which any issues occur are recorded to determine the feeder's PV hosting capacity limitations due to interference with protection settings. The analysis is carried out on six feeder models. The report concludes with a discussion of the prevalence and cause of each protection issue caused by PV system fault current.
An equation oriented approach to steady state flowsheeting of methanol synthesis loop
International Nuclear Information System (INIS)
Fathikalajahi, J.; Baniadam, M.; Rahimpour, M.R.
2008-01-01
An equation-oriented approach was developed for steady state flowsheeting of a commercial methanol plant. The loop consists of fixed bed reactor, flash separator, preheater, coolers, and compressor. For steady sate flowsheeting of the plant mathematical model of reactor and other units are needed. Reactor used in loop is a Lurgi type and its configuration is rather complex. Previously reactor and flash separator are modeled as two important units of plant. The model is based on mass and energy balances in each equipment and utilizing some auxiliary equations such as rate of reaction and thermodynamics model for activity coefficients of liquid. In order to validate the mathematical model for the synthesis loop, some simulation data were performed using operating conditions and characteristics of the commercial plant. The good agreement between the steady state simulation results and the plant data shows the validity of the model
International Nuclear Information System (INIS)
Lewis, A.E.; Khodabocus, F.; Dhokun, V.; Khalife, M.
2010-01-01
In a sugar refinery, the juice is concentrated through evaporation, with the objective of concentrating the juice to syrup as rapidly as possible. Because the heat of vaporization of water is relatively high, the evaporation process can be highly energy intensive, and therefore the economical use of steam is important in the refinery. This paper reports on the development of a simulation model for the evaporation sections of two Mauritian sugar refineries. The first objective was to use the simulation model to carry out an energy balance over the evaporators in order to assess the economy of steam usage over the refinery. The second objective was to examine to what extent a fundamental steady state model, based on thermodynamics (not kinetics) was capable of predicting the material and energy flows in two operating sugar refineries and thereby to evaluate the applicability of the modelling framework. The simulation model was validated using historical data as well as data from the plant DCS system. The simulation results generally correlated well with the measured values, except for one of the evaporators on one refinery. Some suggestions were made as to the cause of the discrepancy. On balance, it was found that both refineries are extremely efficient in terms of steam and equipment usage and that there is not much scope for energy optimisation within the present configuration - nor for much spare steam capacity for an additional refinery. It was also shown that steady state process simulation, using thermodynamic models, can generate a very useful representation of a working refinery. Besides being able to use the model to 'benchmark' the operation and thus evaluate its performance as a whole as well as across individual units, it could also be used to evaluate refinery performance across refineries, nationally as well as globally.
Development of Data Acquisition Set-up for Steady-state Experiments
Srivastava, Amit K.; Gupta, Arnab D.; Sunil, S.; Khan, Ziauddin
2017-04-01
For short duration experiments, generally digitized data is transferred for processing and storage after the experiment whereas in case of steady-state experiment the data is acquired, processed, displayed and stored continuously in pipelined manner. This requires acquiring data through special techniques for storage and on-the-go viewing data to display the current data trends for various physical parameters. A small data acquisition set-up is developed for continuously acquiring signals from various physical parameters at different sampling rate for long duration experiment. This includes the hardware set-up for signal digitization, Field Programmable Gate Arrays (FPGA) based timing system for clock synchronization and event/trigger distribution, time slicing of data streams for storage of data chunks to enable viewing of data during acquisition and channel profile display through down sampling etc. In order to store a long data stream of indefinite/long time duration, the data stream is divided into data slices/chunks of user defined time duration. Data chunks avoid the problem of non-access of server data until the channel data file is closed at the end of the long duration experiment. A graphical user interface has been developed in Lab VIEW application development environment for configuring the data acquisition hardware and storing data chunks on local machine as well as at remote data server through Python for further data access. The data plotting and analysis utilities have been developed with Python software, which provides tools for further data processing. This paper describes the development and implementation of data acquisition for steady-state experiment.
Characterization of the TRIGA Mark II reactor full-power steady state
Energy Technology Data Exchange (ETDEWEB)
Cammi, Antonio, E-mail: antonio.cammi@polimi.it [Politecnico di Milano – Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via La Masa 34, 20156 Milano (Italy); Zanetti, Matteo [Politecnico di Milano – Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via La Masa 34, 20156 Milano (Italy); Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica [University of Milano-Bicocca, Physics Department “G. Occhialini” and INFN Section, Piazza dell’Ateneo Nuovo, 20126 Milan (Italy); Magrotti, Giovanni; Prata, Michele; Salvini, Andrea [University of Pavia, Applied Nuclear Energy Laboratory (L.E.N.A.), Via Gaspare Aselli 41, 27100 Pavia (Italy)
2016-04-15
Highlights: • Full-power steady state characterization of the TRIGA Mark II reactor. • Monte Carlo and Multiphysics simulation of the TRIGA Mark II reactor. • Sub-cooled boiling effects in the TRIGA Mark II reactor. • Thermal feedback effects in the TRIGA Mark II reactor. • Experimental data based validation. - Abstract: In this paper, the characterization of the full-power steady state of the TRIGA Mark II nuclear reactor at the University of Pavia is achieved by coupling the Monte Carlo (MC) simulation for neutronics with the “Multiphysics” model for thermal-hydraulics. Neutronic analyses have been carried out with a MCNP5 based MC model of the entire reactor system, already validated in fresh fuel and zero-power configurations (in which thermal effects are negligible) and using all available experimental data as a benchmark. In order to describe the full-power reactor configuration, the temperature distribution in the core must be established. To evaluate this, a thermal-hydraulic model has been developed, using the power distribution results from the MC simulation as input. The thermal-hydraulic model is focused on the core active region and takes into account sub-cooled boiling effects present at full reactor power. The obtained temperature distribution is then entered into the MC model and a benchmark analysis is carried out to validate the model in fresh fuel and full-power configurations. An acceptable correspondence between experimental data and simulation results concerning full-power reactor criticality proves the reliability of the adopted methodology of analysis, both from the perspective of neutronics and thermal-hydraulics.
Major progress on tore supra toward steady state operation of tokamaks
International Nuclear Information System (INIS)
Saoutic, Y.
2003-01-01
During winter 2000-2001, a major upgrade of the internal components of Tore Supra has been completed that increased the heat extraction capability to 25 MW in steady state. Operating Tore Supra in this new configuration has produced a wealth of new results. The highlights of the 2002 long duration discharges campaign are: 4 minutes 25 seconds long discharges with an integrated energy of 0.75 GJ, which is three time higher than the old Tore Supra world record; recharge of the primary transformer by Lower Hybrid Current Drive (LHCD) for about 1 minute; 4 minutes long LHCD pulses; 1 minute long Ion Cyclotron Resonant Heating (ICRH) pulse (0.11 GJ of ICRH injected energy). Beyond the quantitative step, significant qualitative progress in the steady state nature of the discharge has been accomplished: contrary to the situation in the old Tore Supra configuration, the plasma density is perfectly controlled by active pumping over the overall shot duration. The duration of Tore Supra discharges is sufficient to allow the complete diffusion of the resistive current. Surprising new physics is revealed in such discharges when approaching zero loop voltage. Slow central electron temperature oscillations have been observed in a variety of situations. Such oscillations are not likely to be linked to any MHD instabilities and probably results from an interplay between current profile shape, LHCD power deposition and transport. Analysis of the temperature gradient in the core region shows a very interesting behaviour and the normalised temperature gradient length is compared to the critical thresholds. Finally, the performance of heating and current drive systems and the observations made of the interior of Tore Supra after the long duration discharges campaign are reported. (author)
International Nuclear Information System (INIS)
Thingna, Juzar; Zhou, Hangbo; Wang, Jian-Sheng
2014-01-01
We present a general theory to calculate the steady-state heat and electronic currents for nonlinear systems using a perturbative expansion in the system-bath coupling. We explicitly demonstrate that using the truncated Dyson-series leads to divergences in the steady-state limit, thus making it impossible to be used for actual applications. In order to resolve the divergences, we propose a unique choice of initial condition for the reduced density matrix, which removes the divergences at each order. Our approach not only allows us to use the truncated Dyson-series, with a reasonable choice of initial condition, but also gives the expected result that the steady-state solutions should be independent of initial preparations. Using our improved Dyson series we evaluate the heat and electronic currents up to fourth-order in system-bath coupling, a considerable improvement over the standard quantum master equation techniques. We then numerically corroborate our theory for archetypal settings of linear systems using the exact nonequilibrium Green's function approach. Finally, to demonstrate the advantage of our approach, we deal with the nonlinear spin-boson model to evaluate heat current up to fourth-order and find signatures of cotunnelling process
Steady state likelihood ratio sensitivity analysis for stiff kinetic Monte Carlo simulations.
Núñez, M; Vlachos, D G
2015-01-28
Kinetic Monte Carlo simulation is an integral tool in the study of complex physical phenomena present in applications ranging from heterogeneous catalysis to biological systems to crystal growth and atmospheric sciences. Sensitivity analysis is useful for identifying important parameters and rate-determining steps, but the finite-difference application of sensitivity analysis is computationally demanding. Techniques based on the likelihood ratio method reduce the computational cost of sensitivity analysis by obtaining all gradient information in a single run. However, we show that disparity in time scales of microscopic events, which is ubiquitous in real systems, introduces drastic statistical noise into derivative estimates for parameters affecting the fast events. In this work, the steady-state likelihood ratio sensitivity analysis is extended to singularly perturbed systems by invoking partial equilibration for fast reactions, that is, by working on the fast and slow manifolds of the chemistry. Derivatives on each time scale are computed independently and combined to the desired sensitivity coefficients to considerably reduce the noise in derivative estimates for stiff systems. The approach is demonstrated in an analytically solvable linear system.
Advances in multi-megawatt lower hybrid technology in support of steady-state tokamak operation
Delpech, L.; Achard, J.; Armitano, A.; Artaud, J. F.; Bae, Y. S.; Belo, J. H.; Berger-By, G.; Bouquey, F.; Cho, M. H.; Corbel, E.; Decker, J.; Do, H.; Dumont, R.; Ekedahl, A.; Garibaldi, P.; Goniche, M.; Guilhem, D.; Hillairet, J.; Hoang, G. T.; Kim, H. S.; Kim, J. H.; Kim, H.; Kwak, J. G.; Magne, R.; Mollard, P.; Na, Y. S.; Namkung, W.; Oh, Y. K.; Park, S.; Park, H.; Peysson, Y.; Poli, S.; Prou, M.; Samaille, F.; Yang, H. L.; The Tore Supra Team
2014-10-01
It has been demonstrated that lower hybrid current drive (LHCD) systems play a crucial role for steady-state tokamak operation, owing to their high current drive (CD) efficiency and hence their capability to reduce flux consumption. This paper describes the extensive technology programmes developed for the Tore Supra (France) and the KSTAR (Korea) tokamaks in order to bring continuous wave (CW) LHCD systems into operation. The Tore Supra LHCD generator at 3.7 GHz is fully CW compatible, with RF power PRF = 9.2 MW available at the generator to feed two actively water-cooled launchers. On Tore Supra, the most recent and novel passive active multijunction (PAM) launcher has sustained 2.7 MW (corresponding to its design value of 25 MW m-2 at the launcher mouth) for a 78 s flat-top discharge, with low reflected power even at large plasma-launcher gaps. The fully active multijunction (FAM) launcher has reached 3.8 MW of coupled power (24 MW m-2 at the launcher mouth) with the new TH2103C klystrons. By combining both the PAM and FAM launchers, 950 MJ of energy, using 5.2 MW of LHCD and 1 MW of ICRH (ion cyclotron resonance heating), was injected for 160 s in 2011. The 3.7 GHz CW LHCD system will be a key element within the W (for tungsten) environment in steady-state Tokamak (WEST) project, where the aim is to test ITER technologies for high heat flux components in relevant heat flux density and particle fluence conditions. On KSTAR, a 2 MW LHCD system operating at 5 GHz is under development. Recently the 5 GHz prototype klystron has reached 500 kW/600 s on a matched load, and studies are ongoing to design a PAM launcher. In addition to the studies of technology, a combination of ray-tracing and Fokker-Planck calculations have been performed to evaluate the driven current and the power deposition due to LH waves, and to optimize the N∥ spectrum for the future launcher design. Furthermore, an LHCD system at 5 GHz is being considered for a future upgrade of the ITER
Spear, Tyler J; Stromp, Tori A; Leung, Steve W; Vandsburger, Moriel H
2017-11-01
Emerging quantitative cardiac magnetic resonance imaging (CMRI) techniques use cine balanced steady-state free precession (bSSFP) to measure myocardial signal intensity and probe underlying physiological parameters. This correlation assumes that steady-state is maintained uniformly throughout the heart in space and time. To determine the effects of longitudinal cardiac motion and initial slice position on signal deviation in cine bSSFP imaging by comparing two-dimensional (2D) and three-dimensional (3D) acquisitions. Nine healthy volunteers completed cardiac MRI on a 1.5-T scanner. Short axis images were taken at six slice locations using both 2D and 3D cine bSSFP. 3D acquisitions spanned two slices above and below selected slice locations. Changes in myocardial signal intensity were measured across the cardiac cycle and compared to longitudinal shortening. For 2D cine bSSFP, 46% ± 9% of all frames and 84% ± 13% of end-diastolic frames remained within 10% of initial signal intensity. For 3D cine bSSFP the proportions increased to 87% ± 8% and 97% ± 5%. There was no correlation between longitudinal shortening and peak changes in myocardial signal. The initial slice position significantly impacted peak changes in signal intensity for 2D sequences ( P cine bSSFP that is only restored at the center of a 3D excitation volume. During diastole, a transient steady-state is established similar to that achieved with 3D cine bSSFP regardless of slice location.
Directory of Open Access Journals (Sweden)
Juwairia Obaid
2017-02-01
Full Text Available This study investigates the emissions of various industrial facilities under start-up, shut-down, and normal operations. The industries that have been investigated include power and/or heat generation, energy-from-waste generation, nuclear power generation, sulphuric acid production, ethylene production, petrochemical production, and waste incineration. The study investigated multiple facilities worldwide for each of these industrial categories. The different potential contaminants characteristic of each industry type have been investigated and the emissions of these contaminants under non-steady state have been compared to the steady state emissions. Where available, trends have been developed to identify the circumstances, i.e., the industrial sector and contaminant, under which the assessment and consideration of emissions from start-up and shut-down events is necessary for each industry. These trends differ by industrial sector and contaminant. For example, the study shows that sulphur dioxide (SO2 emissions should be assessed for the start-up operations of sulphuric acid production plants, but may not need to be assessed for the start-up operations of a conventional power generation facility. The trends developed as part of this research paper will help air permit applicants to effectively allocate their resources when assessing emissions related to non-steady state operations. Additionally, it will ensure that emissions are assessed for the worst-case scenario. This is especially important when emissions under start-up and shut-down operations have the potential to exceed enforceable emission limits. Thus, assessing emissions for the worst-case scenario can help in preventing the emissions from adversely impacting public health and the environment.
Simulation of steady states of an integral PWR and power change transients using RELAP5 MOD3
International Nuclear Information System (INIS)
Aronne, Ivan Dionysio Aronne; Palmieri, Elcio Tadeu; Azwvedo, Carlos Vicente Goulart de; Baptista Filho, Benedito Dias; Barroso, Antonio Carlos de Oliveira
2005-01-01
An integral pressurized water reactor presents several differences in relation to conventional PWRs. The metal and cooling fluid masses of integral reactors are larger than those of a conventional reactor and, on the other hand, bombs tend to be smaller and the pressurizer should present characteristics proper of that arrangement. These characteristics, representing inertias different from the usual ones, makes obtaining the stationary state of the integral reactor a task with particularities that demand strategies different from the usually employed. This paper presents, initially, the main physical characteristics of the reactor in study and then the options adopted in developing the model and that were used to obtain the simulation of stationary states with the code RELAP5-MOD3. The results of the simulation of the steady state show the effects of the fore mentioned differences, where the times lags are significantly larger, as well as the suitability and efficiency of the defined approach. Two transients were simulated for changing the reactor power from steady state power of 100% to steady state power of 90%. The power change of these transients were one in step and the other in ramp with a rate of 5%/min. These calculations represent a first step for the definition and tests of parts of a preliminary control system for this reactor. The two transient simulated were based on plausible control hypotheses whose results are presented and commented. The final objective of this study is the use of results of simulations of steady states as much as of transients in support to the development of a transient identification and classification system, based on a neural network using self organizing maps whose basic proposition is presented in this paper. (author)
Physical design of MW-class steady-state spherical tokamak, QUEST
International Nuclear Information System (INIS)
Hanada, K.; Sato, K.N.; Zushi, H.; Nakamura, K.; Sakamoto, M.; Idei, H.; Hasegawa, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Higashizono, Y.; Yoshida, N.; Takase, Y.; Ejiri, A.; Ogawa, Y.; Ono, Y.; Yoshida, Z.; Mitarai, O.; Maekawa, T.; Kishimoto, Y.; Ishiguro, M.; Yoshinaga, T.; Igami, H.; Hirooka, Y.; Komori, A.; Motojima, O.; Sudo, S.; Yamada, H.; Ando, A.; Asakura, Nobuyuki; Matsukawa, Makoto; Ishida, A.; Ohno, N.; Peng, M.
2008-10-01
QUEST (R=0.68 m, a=0.4 m) focuses on the steady state operation of the spherical tokamak (ST) by controlled PWI and electron Bernstain wave (EBW) current drive (CD). The QUEST project will be developed along two phases, phase I: steady state operation with plasma current, I p =20-30 kA on open divertor configuration and phase II: steady state operation with I p = 100 kA and β of 10% in short pulse on closed divertor configuration. Feasibility of the missions on QUEST was investigated and the suitable machine size of QUEST was decided based on the physical view of plasma parameters. Electron Bernstein wave (EBW) current drive are planned to establish the maintenance of plasma current in steady state. Mode conversion efficiency to EBW was calculated and the conversion of 95% will be expected. A new type antenna for QUEST has been fabricated to excite EBW effectively. The situation of heat and particle handling is challenging, and W and high temperature wall is adopted. The start-up scenario of plasma current was investigated based on the driven current by energetic electron and the most favorable magnetic configuration for start-up is proposed. (author)
Steady-state pharmacokinetics of pravastatin in children with familial hypercholesterolaemia
Wiersma, Heleen E.; Wiegman, Albert; Koopmans, Richard P.; Bakker, Henk D.; Kastelein, John J. P.; van Boxtel, Chris J.
2004-01-01
Objective: To determine pharmacokinetic data for pravastatin in children, since current data are insufficient in this age group. Subjects and methods: A 2-week, multiple-dose, steady-state pharmacokinetic study was carried out with pravastatin 20mg daily in 24 children with familial
DEFF Research Database (Denmark)
Christrup, Lona Louring; Bonde, J; Rasmussen, S N
1992-01-01
Single-dose and steady state pharmacokinetics of diltiazem administered in two different oral formulations were assessed with particular reference to rate and extent of absorption. Following single dose administration a significant difference in tmax was observed (2.9 +/- 1.9 and 6.8 +/- 2.6 hr r...