Studies on the power systems stability; Estudios de estabilidad en sistemas de potencia
Energy Technology Data Exchange (ETDEWEB)
Inda Ruiz, Adrian; Calderon Guizar, Jorge Guillermo; Friaga Vargas, Jose Raul [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1987-12-31
One of the everyday problems that the electric power systems (EPS), is related to the dynamic response of these in face of the occurrence of disturbs. The computer tool needed to perform studies of this kind in the current EPS, requires the efficient conjunction of advanced modeling, simulation and programming techniques to make its use practical and useful. In this article are presented the advances achieved by the Power Nets Analysis Department in the development of a digital package for the stability analysis of the electric power systems [Espanol] Uno de los problemas cotidianos que el ingeniero de potencia debe enfrentar tanto en la fase de planeacion como en la de operacion de los sistemas electricos de potencia (SEP) es el relacionado con la respuesta dinamica de estos ante la ocurrencia de disturbios. La herramienta computacional necesaria para realizar estudios de esta naturaleza en los actuales SEP requiere de la conjugacion eficiente de tecnicas avanzadas de modelacion, simulacion y programacion para hacer su empleo practico y util. En este articulo se presentan los avances logrados por el Departamento de Analisis de Redes en el desarrollo de un paquete digital para el analisis de estabilidad en los sistemas electricos de potencia.
Studies on the power systems stability; Estudios de estabilidad en sistemas de potencia
Energy Technology Data Exchange (ETDEWEB)
Inda Ruiz, Adrian; Calderon Guizar, Jorge Guillermo; Friaga Vargas, Jose Raul [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1986-12-31
One of the everyday problems that the electric power systems (EPS), is related to the dynamic response of these in face of the occurrence of disturbs. The computer tool needed to perform studies of this kind in the current EPS, requires the efficient conjunction of advanced modeling, simulation and programming techniques to make its use practical and useful. In this article are presented the advances achieved by the Power Nets Analysis Department in the development of a digital package for the stability analysis of the electric power systems [Espanol] Uno de los problemas cotidianos que el ingeniero de potencia debe enfrentar tanto en la fase de planeacion como en la de operacion de los sistemas electricos de potencia (SEP) es el relacionado con la respuesta dinamica de estos ante la ocurrencia de disturbios. La herramienta computacional necesaria para realizar estudios de esta naturaleza en los actuales SEP requiere de la conjugacion eficiente de tecnicas avanzadas de modelacion, simulacion y programacion para hacer su empleo practico y util. En este articulo se presentan los avances logrados por el Departamento de Analisis de Redes en el desarrollo de un paquete digital para el analisis de estabilidad en los sistemas electricos de potencia.
Stability of dynamical systems
Liao, Xiaoxin; Yu, P 0
2007-01-01
The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems.ʺ Presents
Directory of Open Access Journals (Sweden)
Zaid García Sánchez
2011-05-01
Full Text Available En Cuba desde la década del 70 se empezaron a desarrollar algoritmos para realizar el estudio de los regímenes estacionarios y transitorios del Sistema Eléctrico Nacional (SEN. Particular énfasis se hizo sobre el desarrollo de algoritmos y programas para computadoras para realizar el estudio de la estabilidad transitoria. Actualmente se utiliza ampliamente el programa Power System Explorer (PSX, el que posee amplias facilidades para realizar estudios sobre regímenes estaciones y transitorios de los sistemas eléctricos de potencia. A través de los estudios realizados para la planificación y la experiencia alcanzada sobre la explotación del SEN, con su estructura actual, se ha revelado la necesidad de estudiar en detalles los problemas relacionados con el voltaje, en particular el problema de la estabilidad del voltaje del SEN. En este artículo se realiza una primera revisión sobre algunos de los métodos matemáticos estáticos y dinámicos que se han desarrollado y que recoge la bibliografía sobre el tema de la Estabilidad del Voltaje en los Sistemas Eléctricos de Potencia. In Cuba, from the seventies of the past century, different algorithms to study stationary and transient regimes of the Cuban Electric System were developed. Those algorithms and computer programs were focused in the study of transient stability. Currently, we use widely the computer program “Power System Explorer” (PSX which have a lot of facilities to make studies about stationary and transient regimes of electric power systems. Due to the studies about planning of electric power systems and the accumulated experience working with Cuban Electric System, the need of study the problems related with voltage stability of Cuban Electric System has arisen. In this paper, we make a first review about some static and dynamic mathematical methods included in bibliography about voltage stability of electric power systems.
Convergent systems vs. incremental stability
Rüffer, B.S.; Wouw, van de N.; Mueller, M.
2013-01-01
Two similar stability notions are considered; one is the long established notion of convergent systems, the other is the younger notion of incremental stability. Both notions require that any two solutions of a system converge to each other. Yet these stability concepts are different, in the sense
Dynamic Stability of Maglev Systems,
1992-04-01
AD-A259 178 ANL-92/21 Materials and Components Dynamic Stability of Technology Division Materials and Components Maglev Systems Technology Division...of Maglev Systems Y. Cai, S. S. Chen, and T. M. Mulcahy Materials and Components Technology Division D. M. Rote Center for Transportation Research...of Maglev System with L-Shaped Guideway ......................................... 6 3 Stability of M aglev System s
Zhao, Yuejin
1996-06-01
In this paper, a new method for image stabilization with a three-axis image- stabilizing reflecting prism assembly is presented, and the principle of image stabilization in this prism assembly, formulae for image stabilization and working formulae with an approximation up to the third power are given in detail. In this image-stabilizing system, a single chip microcomputer is used to calculate value of compensating angles and thus to control the prism assembly. Two gyroscopes act as sensors from which information of angular perturbation is obtained, three stepping motors drive the prism assembly to compensate for the movement of image produced by angular perturbation. The image-stabilizing device so established is a multifold system which involves optics, mechanics, electronics and computer.
Interval stability for complex systems
Klinshov, Vladimir V.; Kirillov, Sergey; Kurths, Jürgen; Nekorkin, Vladimir I.
2018-04-01
Stability of dynamical systems against strong perturbations is an important problem of nonlinear dynamics relevant to many applications in various areas. Here, we develop a novel concept of interval stability, referring to the behavior of the perturbed system during a finite time interval. Based on this concept, we suggest new measures of stability, namely interval basin stability (IBS) and interval stability threshold (IST). IBS characterizes the likelihood that the perturbed system returns to the stable regime (attractor) in a given time. IST provides the minimal magnitude of the perturbation capable to disrupt the stable regime for a given interval of time. The suggested measures provide important information about the system susceptibility to external perturbations which may be useful for practical applications. Moreover, from a theoretical viewpoint the interval stability measures are shown to bridge the gap between linear and asymptotic stability. We also suggest numerical algorithms for quantification of the interval stability characteristics and demonstrate their potential for several dynamical systems of various nature, such as power grids and neural networks.
Plutonium stabilization and packaging system
International Nuclear Information System (INIS)
1996-01-01
This document describes the functional design of the Plutonium Stabilization and Packaging System (Pu SPS). The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements of the DOE standard for safe storage of these materials for 50 years. This system will support completion of stabilization and packaging campaigns of the inventory at a number of affected sites before the year 2002. The package will be standard for all sites and will provide a minimum of two uncontaminated, organics free confinement barriers for the packaged material
Directory of Open Access Journals (Sweden)
María Olga Valdés Bendoyro
2010-03-01
Full Text Available Se desarrolló el estudio de estabilidad de las tabletas de propiltiouracilo 50 mg y se determinó su fecha de vencimiento. Este estudio se realizó por los métodos de vida de estante y de estabilidad acelerada mediante cromatografía líquida de alta eficiencia, validados en el Centro de Investigación y Desarrollo de Medicamentos. El estudio de vida de estante se desarrolló por un periodo de 24 meses a temperatura ambiente; mientras que el estudio de estabilidad acelerada se efectuó sometiendo el producto a la influencia de la luz, la humedad y la temperatura; se realizó el análisis durante 3 meses, para los 2 primeros y durante 6 meses para el estudio de la temperatura. La formulación de propiltiouracilo tabletas 50 mg cumplió con las especificaciones de calidad descritas en la farmacopea. Los resultados del estudio de estabilidad por vida de estante después de transcurridos los 24 meses indicaron que el producto mantenía los parámetros que determinan su calidad durante ese tiempo, y en los estudios acelerados no se observó degradación significativa del producto. Se estableció 2 años como fecha de vencimiento en las condiciones señaladas.Autors developed a stability study of 50 mg Propylthiouracil tablets and determination of its expiry date. This study was conducted by fixed life methods and of accelerated stability by high-performance liquid chromatography, validated in Drugs Research and Development Center. Fixed life study was conducted during 24 months at room temperature; whereas the accelerated stability study was conducted exposing the product to light influence, humidity and temperature; during 3 months a analysis was performed for the two first ones and over 6 months in the case of temperature study. Propylthiouracil formula (50 mg tablets fulfilled the quality specifications described in Pharmacopeia. Results of stability study by fixed life after 24 monhts showed that thr product maintain the parameter determining
Morocco; Financial System Stability Assessment
International Monetary Fund
2003-01-01
The Financial System Stability Assessment of Morocco reviews the reform program that is aimed at establishing a modern, market-oriented financial system that optimizes the mobilization of savings and the allocation of financial resources. It reviews the modernization of the banking sector and the development of competition within the sector, development of financial markets, and removal of constraints on financial system activity. It also provides reports on the Observance of Standards and Co...
STABILITY SYSTEMS VIA HURWITZ POLYNOMIALS
Directory of Open Access Journals (Sweden)
BALTAZAR AGUIRRE HERNÁNDEZ
2017-01-01
Full Text Available To analyze the stability of a linear system of differential equations ẋ = Ax we can study the location of the roots of the characteristic polynomial pA(t associated with the matrix A. We present various criteria - algebraic and geometric - that help us to determine where the roots are located without calculating them directly.
Energy Technology Data Exchange (ETDEWEB)
Calderon Guizar, J.G. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: jgc@iie.org.mx
2010-10-15
Aiming to ensure continuity in the electrical supply to critical processes, the electrical systems of large industrial plants, i.e. gas, and petrochemical industries usually posses local generation. Should the local generation be enough to satisfy the demand of the plant, then the interconnection with the public grid is commonly used as an important support for emergency conditions. This paper is concerned with the dynamical performance of two interconnected industrial power systems tied to the transmission system. Simulation results indicate that the frequency performance of one of the industrial plants, after the transients caused by the loss of the tie with the transmission system have died out, is greatly improved if both industrial plants remain connected after the disturbance. [Spanish] La continuidad en el suministro de energia electrica a procesos criticos de grandes complejos industriales, tales como plantas petroquimicas, procesadoras de gas, etc., es un aspecto de fundamental importancia para garantizar una operacion adecuada de este tipo de complejos. Con el proposito de mejorar la confiabilidad en el suministro de energia a los procesos criticos, los sistemas electricos de estos complejos industriales, generalmente cuentan con generacion propia. Si la capacidad de generacion instalada en los sistemas industriales es suficiente para satisfacer el total de la carga del complejo, la interconexion con el sistema de transmision es utilizada principalmente como respaldo durante condiciones de emergencia. En este articulo se analiza el comportamiento dinamico de dos sistemas industriales con generacion propia, disenados para operar en forma aislada, interconectados entre si, a traves de un enlace de 115 kV y con el sistema de transmision. Los resultados obtenidos indican que el comportamiento de la frecuencia en estado estable en uno de los complejos, posterior a la perdida del enlace con el sistema de transmision, mejora de manera considerable cuando estos
Long term stability of power systems
Energy Technology Data Exchange (ETDEWEB)
Kundur, P; Gao, B [Powertech Labs. Inc., Surrey, BC (Canada)
1994-12-31
Power system long term stability is still a developing subject. In this paper we provide our perspectives and experiences related to long term stability. The paper begins with the description of the nature of the long term stability problem, followed by the discussion of issues related to the modeling and solution techniques of tools for long term stability analysis. Cases studies are presented to illustrate the voltage stability aspect and plant dynamics aspect of long term stability. (author) 20 refs., 11 figs.
New stability and stabilization for switched neutral control systems
International Nuclear Information System (INIS)
Xiong Lianglin; Zhong Shouming; Ye Mao; Wu Shiliang
2009-01-01
This paper concerns stability and stabilization issues for switched neutral systems and presents new classes of piecewise Lyapunov functionals and multiple Lyapunov functionals, based on which, two new switching rules are introduced to stabilize the neutral systems. One switching rule is designed from the solution of the so-called Lyapunov-Metzler linear matrix inequalities. The other is based on the determination of average dwell time computed from a new class of linear matrix inequalities (LMIs). And then, state-feedback control is derived for the switched neutral control system mainly based on the state switching rules. Finally, three examples are given to demonstrate the effectiveness of the proposed method.
Stability in dynamical systems I
International Nuclear Information System (INIS)
Courant, E.D.; Ruth, R.D.; Weng, W.T.
1984-08-01
We have reviewed some of the basic techniques which can be used to analyze stability in nonlinear dynamical systems, particularly in circular particle accelerators. We have concentrated on one-dimensional systems in the examples in order to simply illustrate the general techniques. We began with a review of Hamiltonian dynamics and canonical transformations. We then reviewed linear equations with periodic coefficients using the basic techniques from accelerator theory. To handle nonlinear terms we developed a canonical perturbation theory. From this we calculated invariants and the amplitude dependence of the frequency. This led us to resonances. We studied the cubic resonance in detail by using a rotating coordinate system in phase space. We then considered a general isolated nonlinear resonance. In this case we calculated the width of the resonance and estimated the spacing of resonances in order to use the Chirikov criterion to restrict the validity of the analysis. Finally the resonance equation was reduced to the pendulum equation, and we examined the motion on a separatrix. This brought us to the beginnings of stochastic behavior in the neighborhood of the separatrix. It is this complex behavior in the neighborhood of the separatrix which causes the perturbation theory used here to diverge in many cases. In spite of this the methods developed here have been and are used quite successfully to study nonlinear effects in nearly integrable systems. When used with caution and in conjunction with numerical work they give tremendous insight into the nature of the phase space structure and the stability of nonlinear differential equations. 14 references
Tritium systems test assembly stabilization
International Nuclear Information System (INIS)
Jasen, William G.; Michelotti, Roy A.; Anast, Kurt R.; Tesch, Charles
2004-01-01
The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium technology Research and Development (R and D) primarily for future fusion power reactors. The facility was conceived in mid 1970's, operations commenced in early 1980's, stabilization and deactivation began in 2000 and were completed in 2003. The facility will remain in a Surveillance and Maintenance (S and M) mode until the Department of Energy (DOE) funds demolition of the facility, tentatively in 2009. A safe and stable end state was achieved by the TSTA Facility Stabilization Project (TFSP) in anticipation of long term S and M. At the start of the stabilization project, with an inventory of approximately 140 grams of tritium, the facility was designated a Hazard Category (HC) 2 Non-Reactor Nuclear facility as defined by US Department of Energy standard DOE-STD-1027-92 (1997). The TSTA facility comprises a laboratory area, supporting rooms, offices and associated laboratory space that included more than 20 major tritium handling systems. The project's focus was to reduce the tritium inventory by removing bulk tritium, tritiated water wastes, and tritium-contaminated high-inventory components. Any equipment that remained in the facility was stabilized in place. All of the gloveboxes and piping were rendered inoperative and vented to atmosphere. All equipment, and inventoried tritium contamination, remaining in the facility was left in a safe-and-stable state. The project used the End Points process as defined by the DOE Office of Environmental Management (web page http://www.em.doe.- gov/deact/epman.htmtlo) document and define the end state required for the stabilization of TSTA Facility. The End Points process added structure that was beneficial through virtually all phases of the project. At completion of the facility stabilization project the residual tritium inventory was approximately 3,000 curies, considerably less than the 1.6-gram threshold for a HC 3 facility. TSTA is now
Financial stability of banking system in China
Jiang, B
2014-01-01
This thesis aims at investigating the financial stability of China's banking system. Since the banking system is one of the most important financial intermediaries in the financial systems, the financial soundness of banks could secure the stability of the whole financial system. Two of the factors that may significantly increase imbalance of the banking system, and hence affect financial stability of an economy is the accumulated non-performing loans of banks and the macro-economic turbulenc...
Stabilization of classic and quantum systems
International Nuclear Information System (INIS)
Buts, V.A.
2012-01-01
It is shown that the mechanism of quantum whirligig can be successfully used for stabilization of classical systems. In particular, the conditions for stabilization of charged particles and radiation fluxes in plasma are found.
Stability problems for linear hyperbolic systems
International Nuclear Information System (INIS)
Eckhoff, K.S.
1975-05-01
The stability properties for the trivial solution of a general linear hyperbolic system of partial differential equations of the first order are studied. It is shown that results may be obtained by studying the stability properties of certain systems of ordinary differential equations which can be constructed from the hyperbolic system (the so-called transport equations). In some cases the associated stability problem for the transport equations can in fact be shown to be equivalent to the stability problem for the hyperbolic system, but in general the transport equations will only give the necessary conditions for stability. (Auth.)
Stabilized imploding liner fusion systems
International Nuclear Information System (INIS)
Book, D.L.; Cooper, A.L.; Ford, R.; Gerber, K.A.; Hammer, D.A.; Jenkins, D.J.; Robson, A.E.; Turchi, P.J.
1977-01-01
A new concept in imploding liner plasma compression is described in which a liquid metal liner is imploded by pistons driven by high-pressure gas, and stability of the inner surface against Rayleigh-Taylor modes is achieved by rotation. The principle has been demonstrated by using a water liner to compress air. This 'captive liner' offers the possibility of stable, reversible implosion-expansion cycles in which the plasma energy is recovered into the driving system, leading to reactor cycles with low Q and, hence, small size. A new method of setting up closed-field confinement geometries inside a liner using a rotating electron beam is described. Plasma currents induced by the beam provide initial plasma heating and generate the containment geometry. Persistence of plasma currents 100 times longer than the beam duration has been observed. Development of these methods could lead to a very compact thermonuclear reactor operating in the manner of a reciprocating engine. (author)
The stability of protoplanet systems
Yoshinaga, K; Makino, J
1999-01-01
The authors investigated the stability of 10 protoplanet systems using three-dimensional N-body simulations. They found that the time scale of instability T depends strongly on the initial random velocities nu (eccentricities e and inclinations i) and orbital separations Delta a. For zero initial random velocities, they confirmed the result of Chambers et al. (1996, Icarus 119, 261-268) that T is proportional to exp( Delta a). For finite random velocities, they found that T depends strongly on the initial random velocities. The relation between T and Delta a is still expressed as log T=b+c Delta a. However, both b and c depend on initial random velocities and the slope, b, becomes smaller for larger nu . Even for relatively small initial eccentricities such as e~2r/sub H//a, where r/sub H/ is the Hill radius, the time scale can be reduced by a factor of 10 compared with the case of the zero random velocity. Therefore, the time scale of the formation of inner planets might be much shorter than what implied by ...
Stability and stabilization of linear systems with saturating actuators
Tarbouriech, Sophie; Gomes da Silva Jr, João Manoel; Queinnec, Isabelle
2011-01-01
Gives the reader an in-depth understanding of the phenomena caused by the more-or-less ubiquitous problem of actuator saturation. Proposes methods and algorithms designed to avoid, manage or overcome the effects of actuator saturation. Uses a state-space approach to ensure local and global stability of the systems considered. Compilation of fifteen years' worth of research results.
Fuzzy stability and synchronization of hyperchaos systems
International Nuclear Information System (INIS)
Wang Junwei; Xiong Xiaohua; Zhao Meichun; Zhang Yanbin
2008-01-01
This paper studies stability and synchronization of hyperchaos systems via a fuzzy-model-based control design methodology. First, we utilize a Takagi-Sugeno fuzzy model to represent a hyperchaos system. Second, we design fuzzy-model-based controllers for stability and synchronization of the system, based on so-called 'parallel distributed compensation (PDC)'. Third, we reduce a question of stabilizing and synchronizing hyperchaos systems to linear matrix inequalities (LMI) so that convex programming techniques can solve these LMIs efficiently. Finally, the generalized Lorenz hyperchaos system is employed to illustrate the effectiveness of our designing controller
Exponential Stability of Switched Positive Homogeneous Systems
Directory of Open Access Journals (Sweden)
Dadong Tian
2017-01-01
Full Text Available This paper studies the exponential stability of switched positive nonlinear systems defined by cooperative and homogeneous vector fields. In order to capture the decay rate of such systems, we first consider the subsystems. A sufficient condition for exponential stability of subsystems with time-varying delays is derived. In particular, for the corresponding delay-free systems, we prove that this sufficient condition is also necessary. Then, we present a sufficient condition of exponential stability under minimum dwell time switching for the switched positive nonlinear systems. Some results in the previous literature are extended. Finally, a numerical example is given to demonstrate the effectiveness of the obtained results.
Dynamic Stability Experiment of Maglev Systems,
1995-04-01
This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also... maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments...on maglev systems and compares their numerical simulation with predictions calculated by a nonlinear dynamic computer code. Instabilities of an
MHD stability analysis of helical system plasmas
International Nuclear Information System (INIS)
Nakamura, Yuji
2000-01-01
Several topics of the MHD stability studies in helical system plasmas are reviewed with respect to the linear and ideal modes mainly. Difference of the method of the MHD stability analysis in helical system plasmas from that in tokamak plasmas is emphasized. Lack of the cyclic (symmetric) coordinate makes an analysis more difficult. Recent topic about TAE modes in a helical system is also described briefly. (author)
Stability of digital feedback control systems
Directory of Open Access Journals (Sweden)
Larkin Eugene
2018-01-01
Lag time characteristics are used for investigation of stability of linear systems. Digital PID controller is divided onto linear part, which is realized with a soft and pure lag unit, which is realized with both hardware and software. With use notions amplitude and phase margins, condition for stability of system functioning are obtained. Theoretical results are confirm with computer experiment carried out on the third-order system.
Some results on stability of difference systems
Directory of Open Access Journals (Sweden)
Xiao-Song Yang
2002-01-01
Full Text Available This paper presents some new results on existence and stability of equilibrium or periodic points for difference systems. First sufficient conditions of existence of asymptotically stable equilibrium point as well as the asymptotic stability of given equilibrium point are given for second order or delay difference systems. Then some similar results on existence of asymptotically stable periodic (equilibrium points to general difference systems are presented.
Boundary feedback stabilization of distributed parameter systems
DEFF Research Database (Denmark)
Pedersen, Michael
1988-01-01
The author introduces the method of pseudo-differential stabilization. He notes that the theory of pseudo-differential boundary operators is a fruitful approach to problems arising in control and stabilization theory of distributed-parameter systems. The basic pseudo-differential calculus can...
System design description PFP thermal stabilization
International Nuclear Information System (INIS)
RISENMAY, H.R.
1998-01-01
The purpose of this document is to provide a system design description and design basis for the Plutonium Finishing P1ant (PFP) Thermal Stabilization project. The sources of material for this project are residues scraped from glovebox floors and materials already stored in vault storage that need further stabilizing to meet the 3013 storage requirements. Stabilizing this material will promote long term storage and reduced worker exposure. This document addresses: function design, equipment, and safety requirements for thermal stabilization of plutonium residues and oxides
The Nature of Stability in Replicating Systems
Directory of Open Access Journals (Sweden)
Addy Pross
2011-02-01
Full Text Available We review the concept of dynamic kinetic stability, a type of stability associated specifically with replicating entities, and show how it differs from the well-known and established (static kinetic and thermodynamic stabilities associated with regular chemical systems. In the process we demonstrate how the concept can help bridge the conceptual chasm that continues to separate the physical and biological sciences by relating the nature of stability in the animate and inanimate worlds, and by providing additional insights into the physicochemical nature of abiogenesis.
STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS
Directory of Open Access Journals (Sweden)
Jorge Enrique Mayta Guillermo
2016-12-01
Full Text Available In this work we will analyze the stability of linear systems governed by a Markov chain, this family is known in the specialized literature as linear systems with Markov jumps or by its acronyms in English MJLS as it is denoted in [1]. Linear systems governed by a Markov chain are dynamic systems with abrupt changes. We give some denitions of stability for the MJLS system, where these types of stability are equivalent as long as the state space of the Markov chain is nite. Finally we present a theorem that characterizes the stochastic stability by means of an equation of the Lyapunov type. The result is a generalization of a theorem in classical theory.
Stability and boundary stabilization of 1-D hyperbolic systems
Bastin, Georges
2016-01-01
This monograph explores the modeling of conservation and balance laws of one-dimensional hyperbolic systems using partial differential equations. It presents typical examples of hyperbolic systems for a wide range of physical engineering applications, allowing readers to understand the concepts in whichever setting is most familiar to them. With these examples, it also illustrates how control boundary conditions may be defined for the most commonly used control devices. The authors begin with the simple case of systems of two linear conservation laws and then consider the stability of systems under more general boundary conditions that may be differential, nonlinear, or switching. They then extend their discussion to the case of nonlinear conservation laws and demonstrate the use of Lyapunov functions in this type of analysis. Systems of balance laws are considered next, starting with the linear variety before they move on to more general cases of nonlinear ones. They go on to show how the problem of boundary...
Stability analysis of fuzzy parametric uncertain systems.
Bhiwani, R J; Patre, B M
2011-10-01
In this paper, the determination of stability margin, gain and phase margin aspects of fuzzy parametric uncertain systems are dealt. The stability analysis of uncertain linear systems with coefficients described by fuzzy functions is studied. A complexity reduced technique for determining the stability margin for FPUS is proposed. The method suggested is dependent on the order of the characteristic polynomial. In order to find the stability margin of interval polynomials of order less than 5, it is not always necessary to determine and check all four Kharitonov's polynomials. It has been shown that, for determining stability margin of FPUS of order five, four, and three we require only 3, 2, and 1 Kharitonov's polynomials respectively. Only for sixth and higher order polynomials, a complete set of Kharitonov's polynomials are needed to determine the stability margin. Thus for lower order systems, the calculations are reduced to a large extent. This idea has been extended to determine the stability margin of fuzzy interval polynomials. It is also shown that the gain and phase margin of FPUS can be determined analytically without using graphical techniques. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Stability of large scale interconnected dynamical systems
International Nuclear Information System (INIS)
Akpan, E.P.
1993-07-01
Large scale systems modelled by a system of ordinary differential equations are considered and necessary and sufficient conditions are obtained for the uniform asymptotic connective stability of the systems using the method of cone-valued Lyapunov functions. It is shown that this model significantly improves the existing models. (author). 9 refs
Meniscus Stability in Rotating Systems
Reichel, Yvonne; Dreyer, Michael
2013-11-01
In this study, the stability of free surfaces of fluid between two rotating coaxial, circular disks is examined. Radially mounted baffles are used to form menisci of equal size. To the center of the upper disk, a tube is connected in which a separate meniscus is formed. Assuming solid-body rotation and ignoring dynamic effects, it is observed that the free surfaces between the disks fail to remain stable once the rotation speed exceeds a critical value. In other words, Rayleigh-Taylor instability ensues when the capillary forces fail to balance centrifugal forces. Dimensionless critical rotation speeds are studied by means of the Surface Evolver via SE-FIT for varied number of baffles, the normalized distance between the disks, and the normalized central tube radius. Drop tower tests are performed to confirm some of the numerical results. The computation also reveals that there are different modes of instability as a function of the relevant parameters. This study was funded by the space agency of the German Aerospace Center with resources of the Federal Ministry of Economics and Technology on the basis of a resolution of the German Bundestag under grant number 50 RL 1320.
On Stabilization of Nonautonomous Nonlinear Systems
International Nuclear Information System (INIS)
Bogdanov, A. Yu.
2008-01-01
The procedures to obtain the sufficient conditions of asymptotic stability for nonlinear nonstationary continuous-time systems are discussed. We consider different types of the following general controlled system: x = X(t,x,u) = F(t,x)+B(t,x)u, x(t 0 ) = x 0 . (*) The basis of investigation is limiting equations, limiting Lyapunov functions, etc. The improved concept of observability of the pair of functional matrices is presented. By these results the problem of synthesis of asymptotically stable control nonlinear nonautonomous systems (with linear parts) involving the quadratic time-dependent Lyapunov functions is solved as well as stabilizing a given unstable system with nonlinear control law.
System and method for determining stability of a neural system
Curtis, Steven A. (Inventor)
2011-01-01
Disclosed are methods, systems, and computer-readable media for determining stability of a neural system. The method includes tracking a function world line of an N element neural system within at least one behavioral space, determining whether the tracking function world line is approaching a psychological stability surface, and implementing a quantitative solution that corrects instability if the tracked function world line is approaching the psychological stability surface.
Simplified Stability Criteria for Delayed Neutral Systems
Directory of Open Access Journals (Sweden)
Xinghua Zhang
2014-01-01
Full Text Available For a class of linear time-invariant neutral systems with neutral and discrete constant delays, several existing asymptotic stability criteria in the form of linear matrix inequalities (LMIs are simplified by using matrix analysis techniques. Compared with the original stability criteria, the simplified ones include fewer LMI variables, which can obviously reduce computational complexity. Simultaneously, it is theoretically shown that the simplified stability criteria and original ones are equivalent; that is, they have the same conservativeness. Finally, a numerical example is employed to verify the theoretic results investigated in this paper.
Functional stability of cerebral circulatory system
Moskalenko, Y. Y.
1980-01-01
The functional stability of the cerebral circulation system seems to be based on the active mechanisms and on those stemming from specific of the biophysical structure of the system under study. This latter parameter has some relevant criteria for its quantitative estimation. The data obtained suggest that the essential part of the mechanism for active responses of cerebral vessels which maintains the functional stability of this portion of the vascular system, consists of a neurogenic component involving central nervous structures localized, for instance, in the medulla oblongata.
Uruguay; Financial System Stability Assessment
International Monetary Fund
2013-01-01
The buffers built in the aftermath of Uruguay’s 2002 banking crisis have shielded the financial sector from the effects of the global financial turmoil. Growth has been robust and the outlook continues to be favorable. However, inflation persists but capital inflows have improved, and policy measures have been taken in response. Uruguay exhibits no obvious signs of near-term domestic macrofinancial vulnerability. The external risks to the economy and the financial system come from a fragile g...
Sensitivity of system stability to model structure
Hosack, G.R.; Li, H.W.; Rossignol, P.A.
2009-01-01
A community is stable, and resilient, if the levels of all community variables can return to the original steady state following a perturbation. The stability properties of a community depend on its structure, which is the network of direct effects (interactions) among the variables within the community. These direct effects form feedback cycles (loops) that determine community stability. Although feedback cycles have an intuitive interpretation, identifying how they form the feedback properties of a particular community can be intractable. Furthermore, determining the role that any specific direct effect plays in the stability of a system is even more daunting. Such information, however, would identify important direct effects for targeted experimental and management manipulation even in complex communities for which quantitative information is lacking. We therefore provide a method that determines the sensitivity of community stability to model structure, and identifies the relative role of particular direct effects, indirect effects, and feedback cycles in determining stability. Structural sensitivities summarize the degree to which each direct effect contributes to stabilizing feedback or destabilizing feedback or both. Structural sensitivities prove useful in identifying ecologically important feedback cycles within the community structure and for detecting direct effects that have strong, or weak, influences on community stability. The approach may guide the development of management intervention and research design. We demonstrate its value with two theoretical models and two empirical examples of different levels of complexity. ?? 2009 Elsevier B.V. All rights reserved.
Impacts of Wind Power on Power System Stability
Vittal, E.; Keane, A.; Slootweg, J.G.; Kling, W.L.; Ackermann, T.
2012-01-01
This chapter examines how wind power will impact the stability of power systems. It focuses on the three aspects of power system stability: voltage stability, rotor angle stability and frequency stability. It completes a detailed analysis as to how wind power in power systems will impact the
Power system stabilizer control for wind power to enhance power system stability
Domínguez García, José Luís; Gomis Bellmunt, Oriol; Bianchi, Fernando Daniel; Sumper, Andreas
2011-01-01
The paper presents a small signal stability analysis for power systems with wind farm interaction. Power systems have damping oscillation modes that can be excited by disturbance or fault in the grid. The power converters of the wind farms can be used to reduce these oscillations and make the system more stable. These ideas are explored to design a power system stabilized (PSS) for a network with conventional generators and a wind farm in order to increase the damping of the oscillation...
Morocco; Financial System Stability Assessment: Update
International Monetary Fund
2008-01-01
This paper presents an update to the Financial System Stability Assessment on Morocco. Major reforms have been achieved since the 2002 Financial Sector Assessment Program (FSAP) within a policy of actively promoting economic and financial sector opening. The 2002 FSAP recommendations have been largely implemented. Although the financial system is stable and considerably more robust than in the past, the liberalization of capital flows and increased exchange rate flexibility present challenges...
Siswanto, Agus; Gunadin, Indar Chaerah; Said, Sri Mawar; Suyuti, Ansar
2018-03-01
The purpose of this research is to improve the stability of interconnection of South Sulawesi system caused by penetration new wind turbine in Sidrap area on bus 2 and in Jeniponto area on bus 34. The method used in this research was via software Power System analysis Toolbox (PSAT) under MATLAB. In this research, there are two problems that are evaluated, the stability of the system before and after penetration wind turbine into the system South Sulawesi system. From the simulation result shows that penetration of wind turbine on bus 2 Sidrap, bus 37 Jeniponto give effect oscillation on the system. The oscillation was damped by installation of Power System Stabilizer (PSS) on bus 29 area Sungguminasa, that South Sulawesi system stable according to normal condition.
Energy Technology Data Exchange (ETDEWEB)
Leguey, S; Cuevas, J; Garralon, A [Universidad Autonoma de Madrid, Facultad de Ciencias, Departamento de Quimica Agricola, Geologia y Geoquimica, Madrid (Spain)
1996-10-01
The report studies the lifetime of bentonite and the hydrothermal stability of saponites. The testing comprised determination of physical and chemical properties of clays, the stability of the mineral porosity, lifetime and the wall of clay.
Power stability methods for parallel systems
International Nuclear Information System (INIS)
Wallach, Y.
1988-01-01
Parallel-Processing Systems are already commercially available. This paper shows that if one of them - the Alternating Sequential Parallel, or ASP system - is applied to network stability calculations it will lead to a higher speed of solution. The ASP system is first described and is then shown to be cheaper, more reliable and available than other parallel systems. Also, no deadlock need be feared and the speedup is normally very high. A number of ASP systems were already assembled (the SMS systems, Topps, DIRMU etc.). At present, an IBM Local Area Network is being modified so that it too can work in the ASP mode. Existing ASP systems were programmed in Fortran or assembly language. Since newer systems (e.g. DIRMU) are programmed in Modula-2, this language can be used. Stability analysis is based on solving nonlinear differential and algebraic equations. The algorithm for solving the nonlinear differential equations on ASP, is described and programmed in Modula-2. The speedup is computed and is shown to be almost optimal
System Design Description PFP Thermal Stabilization
International Nuclear Information System (INIS)
RISENMAY, H.R.
2000-01-01
The purpose of this document is to provide a system design description (SDD) and design basis for the Plutonium Finishing Plant (PFP) Thermal Stabilization project. The chief objective of the SDD is to document the Structures, Systems, and Components (SSCs) that establish and maintain the facility Safety Envelope necessary for normal safe operation of the facility; as identified in the FSAR, the OSRs, and Safety Assessment Documents (SADs). This safety equipment documentation should satisfy guidelines for the SDD given in WHC-SD-CP-TI-18 1, Criteria for Identification and Control of Equipment Necessary for Preservation of the Safety Envelope and Safe Operation of PFP. The basis for operational, alarm response, maintenance, and surveillance procedures are also identified and justified in this document. This document and its appendices address the following elements of the PFP Thermal Stabilization project: Functional and design requirements; Design description; Safety Envelope Analysis; Safety Equipment Class; and Operational, maintenance and surveillance procedures
Microprocessor system for temperature regulation and stabilization
International Nuclear Information System (INIS)
Nguyen Nhi Dien; Rodionov, K.G.
1989-01-01
Microprocessor based system for temperature regulation and stabilization of an operation external object is described. The system has the direct current amplifier working according to modulator-demodulator principle. The overal gain is 100, 1000, 2000. The maximum output signal is ±10 V. The power amplifier is a thyristor one and its line voltage is 220 V, 50 Hz. The output power is 0-2 kVA. The microcontroller has a remote display terminal. Data input is 8 and data output is one. Input and output voltage is ±(0-10) V. The preselection time for stabilization is within 1 s - 18 h. The program algorithm is given. 5 figs.; 1 tab
Nonlinear physical systems spectral analysis, stability and bifurcations
Kirillov, Oleg N
2013-01-01
Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems.Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynam
GOLD NETTING TO STRENGTHEN FINANCIAL SYSTEM STABILITY
Directory of Open Access Journals (Sweden)
Ahamed Kameel Mydin Meera
2017-08-01
Full Text Available Economic and financial crises seem to occur with increased frequency. Indeed now most countries, including several advanced economies like the US, Europe and Japan, are in serious economic recession. Employment and business opportunities have been much dampened. Inflation seems to be soaring globally and nations are witnessing widening gaps in income and wealth distribution. Many of these advanced economies are also facing shrinking population sizes that translate into aging problems and labor shortages. On top of those, there are environmental issues, including global warming. All these, in turn, have caused regional and global political conflicts and turmoil. The Arab Spring and the sovereign debt problems faced by some European countries like Greece are examples of this. Sustainability of economics and environment is thus of paramount concern of today. This paper considers those problems and suggests Interest-free Gold-based Electronic Netting System (IGENS as an effective way of injecting liquidity into the economy, practically free, that can spur business and employment while bringing about structural stability, inflation checked with both economic and environmental sustainability. Netting or muqassah is a transaction allowed in shari’ah and is practiced worldwide in different forms. Examples include the highly successful WIR Bank of Switzerland, various Local Exchange Trading Schemes (LETS and Bilateral and Multilateral Payment Arrangements between central banks. Keywords: Global crisis, Payment system, Gold, Netting, Muqassah, Liquidity, Sustainability, Financial system stability JEL Classification: E40, E42, E51
Vibrations and stability of complex beam systems
Stojanović, Vladimir
2015-01-01
This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It...
Stability and response bounds of non-conservative linear systems
DEFF Research Database (Denmark)
Pommer, Christian
2003-01-01
For a linear system of second order differential equations the stability is studied by Lyapunov's direct method. The Lyapunov matrix equation is solved and a sufficient condition for stability is expressed by the system matrices. For a system which satisfies the condition for stability the Lyapunov...
System specification for the plutonium stabilization and packaging system
International Nuclear Information System (INIS)
1996-01-01
This document describes functional design requirements for the Plutonium Stabilization and Packaging System (Pu SPS), as required by DOE contract DE-AC03-96SF20948 through contract modification 9 for equipment in Building 707 at Rocky Flats Environmental Technology Site (RFETS)
Bank, Banking System, Macroprudential Supervision, Stability of Banking System
Directory of Open Access Journals (Sweden)
Tetiana Vasilyeva
2016-10-01
Full Text Available Intensification of financial development during last decade causes transformation of banking sector functioning. In particular, among the most significant changes over this period should be noted the next ones: convergence of financial market segments and appearance of cross-sector financial products, an increase of prevailing of financial sector in comparison with real economy and level of their interdependent, an intensification of crisis processes in financial and especially banking sector and a significant increase of the scale of the crisis consequences etc. thus, in such vulnerable conditions it is become very urgent to identify the relevant factors that can influence on the stability of banking sector, because its maintenance seems to be one of the most important preconditions of the stability of the national economy as a whole. Purpose of the article is to analyze key performance indicators of the Ukrainian banking system, clarify its main problems, identify relevant factors of the stability of the Ukrainian banking system and the character of their influence on the dependent variable. Realization of the mentioned above tasks was ensured by regression analysis (OLS regression. Analysis of key indicators that characterize current situation in the Ukrainian banking system found out the existence of numerous endogenous and exogenous problems, which, in turn, cause worsening most of analyzed indicators during 2013-2015. Unfavorable situation in Ukrainian banking system determined the necessity of identification of relevant factors of banking system stability to avoid transmission of financial shocks. According to the results of regression analysis on the stability of banking sector positively influence such factors as increase of interest margin to gross income ratio, reserves to assets ratio, number of branches, ratio of non-performing loans to total loans. Meanwhile, negative impact on stability of banking system has an increase of liquid
Stability analysis of distributed order fractional chen system.
Aminikhah, H; Refahi Sheikhani, A; Rezazadeh, H
2013-01-01
We first investigate sufficient and necessary conditions of stability of nonlinear distributed order fractional system and then we generalize the integer-order Chen system into the distributed order fractional domain. Based on the asymptotic stability theory of nonlinear distributed order fractional systems, the stability of distributed order fractional Chen system is discussed. In addition, we have found that chaos exists in the double fractional order Chen system. Numerical solutions are used to verify the analytical results.
Stability Analysis of Distributed Order Fractional Chen System
Aminikhah, H.; Refahi Sheikhani, A.; Rezazadeh, H.
2013-01-01
We first investigate sufficient and necessary conditions of stability of nonlinear distributed order fractional system and then we generalize the integer-order Chen system into the distributed order fractional domain. Based on the asymptotic stability theory of nonlinear distributed order fractional systems, the stability of distributed order fractional Chen system is discussed. In addition, we have found that chaos exists in the double fractional order Chen system. Numerical solutions are used to verify the analytical results. PMID:24489508
Stabilization of Teleoperation Systems with Communication Delays: An IMC Approach
Directory of Open Access Journals (Sweden)
Yuling Li
2018-01-01
Full Text Available The presence of time delays in communication introduces a limitation to the stability of bilateral teleoperation systems. This paper considers internal model control (IMC design of linear teleoperation system with time delays, and the stability of the closed-loop system is analyzed. It is shown that the stability is guaranteed delay-independently. The passivity assumption for external forces is removed for the proposed design of teleoperation systems. The behavior of the resulting teleoperation system is illustrated by simulations.
Stability of impulsive systems driven by renewal processes
Guerreiro Tome Antunes, D.J.; Hespanha, J.P.; Silvestre, C.J.
2009-01-01
Necessary and sufficient conditions are provided for stochastic stability and mean exponential stability of impulsive systems with jumps triggered by a renewal process, that is, the intervals between jumps are independent and identically distributed. The conditions for stochastic stability can be
Polynomial stabilization of some dissipative hyperbolic systems
Czech Academy of Sciences Publication Activity Database
Ammari, K.; Feireisl, Eduard; Nicaise, S.
2014-01-01
Roč. 34, č. 11 (2014), s. 4371-4388 ISSN 1078-0947 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : exponential stability * polynomial stability * observability inequality Subject RIV: BA - General Mathematics Impact factor: 0.826, year: 2014 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=9924
Power system stability modelling, analysis and control
Sallam, Abdelhay A
2015-01-01
This book provides a comprehensive treatment of the subject from both a physical and mathematical perspective and covers a range of topics including modelling, computation of load flow in the transmission grid, stability analysis under both steady-state and disturbed conditions, and appropriate controls to enhance stability.
Stability of neutral type descriptor system with mixed delays
International Nuclear Information System (INIS)
Li Hong; Li Houbiao; Zhong Shouming
2007-01-01
In this paper, the stability problems of general neutral type descriptor system with mixed delays are considered. Some new delay-independent stability and robust stability criteria, which are simpler and less conservative than existing results, are derived in terms of the stability of a new operator I and linear matrix inequalities (LMIs). Therefore, criteria can be easily checked by utilizing the Matlab LMI toolbox
System design document for the plutonium stabilization and packaging system
International Nuclear Information System (INIS)
1996-01-01
The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements for DOE standards for safe storage of these materials for 50 years. This document describes the highest level design information and user characteristics from an operational perspective. It provides guidance for developing procurement and installation specifications, interface requirements, and test plans
System design document for the plutonium stabilization and packaging system
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-05-08
The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements for DOE standards for safe storage of these materials for 50 years. This document describes the highest level design information and user characteristics from an operational perspective. It provides guidance for developing procurement and installation specifications, interface requirements, and test plans.
Stability of miniature electromagnetic tracking systems
International Nuclear Information System (INIS)
Schicho, Kurt; Figl, Michael; Donat, Markus; Birkfellner, Wolfgang; Seemann, Rudolf; Wagner, Arne; Bergmann, Helmar; Ewers, Rolf
2005-01-01
This study aims at a comparative evaluation of two recently introduced electromagnetic tracking systems under reproducible simulated operating-room (OR) conditions: the recently launched Medtronic StealthStation TM Treon-EM TM and the NDI Aurora TM . We investigate if and to what extent these systems provide improved performance and stability in the presence of surgical instruments as possible sources of distortions compared with earlier reports on electromagnetic tracking technology. To investigate possible distortions under pseudo-realistic OR conditions, a large Langenbeck hook, a dental drill with its handle and an ultrasonic (US) scanhead are fixed on a special measurement rack at variable distances from the navigation sensor. The position measurements made by the Treon-EM TM were least affected by the presence of the instruments. The lengths of the mean deviation vectors were 0.21 mm for the Langenbeck hook, 0.23 mm for the drill with handle and 0.56 mm for the US scanhead. The Aurora TM was influenced by the three sources of distortion to a higher degree. A mean deviation vector of 1.44 mm length was observed in the vicinity of the Langenbeck hook, 0.53 mm length with the drill and 2.37 mm due to the US scanhead. The maximum of the root mean squared error (RMSE) for all coordinates in the presence of the Langenbeck hook was 0.3 mm for the Treon TM and 2.1 mm for the Aurora TM ; the drill caused a maximum RMSE of 0.2 mm with the Treon TM and 1.2 mm with the Aurora TM . In the presence of the US scanhead, the maximum RMSE was 1.4 mm for the Treon TM and 5.1 mm for the Aurora TM . The new generation of electromagnetic tracking systems has significantly improved compared to common systems that were available in the middle of the 1990s and has reached a high level of technical development. We conclude that, in general, both systems are suitable for routine clinical application
A Gimbal-Stabilized Compact Hyperspectral Imaging System, Phase II
National Aeronautics and Space Administration — The Gimbal-stabilized Compact Hyperspectral Imaging System (GCHIS) fully integrates multi-sensor spectral imaging, stereovision, GPS and inertial measurement,...
Model predictive control of hybrid systems : stability and robustness
Lazar, M.
2006-01-01
This thesis considers the stabilization and the robust stabilization of certain classes of hybrid systems using model predictive control. Hybrid systems represent a broad class of dynamical systems in which discrete behavior (usually described by a finite state machine) and continuous behavior
Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems with Jumps
Directory of Open Access Journals (Sweden)
Minsong Zhang
2014-01-01
Full Text Available This paper investigates the problems of finite-time stability and finite-time stabilization for nonlinear quadratic systems with jumps. The jump time sequences here are assumed to satisfy some given constraints. Based on Lyapunov function and a particular presentation of the quadratic terms, sufficient conditions for finite-time stability and finite-time stabilization are developed to a set containing bilinear matrix inequalities (BLIMs and linear matrix inequalities (LMIs. Numerical examples are given to illustrate the effectiveness of the proposed methodology.
System evaluation of improved thermal stability jet fuels
Energy Technology Data Exchange (ETDEWEB)
Binns, K.E.; Dieterle, G.L.; Williams, T. [Univ. of Dayton Research Institute, OH (United States)
1995-05-01
A single-pass, single-tube heat exchanger device called the Phoenix rig and a single-pass, dual-heat exchanger system called the Extended Duration Thermal Stability Test system are specific devices/systems developed for evaluating jet fuel thermal stability. They have been used extensively in the evaluation of various jet fuels and thermal stability additives. The test results have indicated that additives can substantially improve the thermal stability of conventional jet fuels. Relationships of oxygen consumption, residence time, bulk, and wetted wall temperatures on coking deposits that form in the heated tubes have also been investigated.
Stability improvement of induction generator-based wind turbine systems
DEFF Research Database (Denmark)
Chen, Zhe; Hu, Y.; Blaabjerg, Frede
2007-01-01
The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors...... affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated...
The algebraic criteria for the stability of control systems
Cremer, H.; Effertz, F. H.
1986-01-01
This paper critically examines the standard algebraic criteria for the stability of linear control systems and their proofs, reveals important previously unnoticed connections, and presents new representations. Algebraic stability criteria have also acquired significance for stability studies of non-linear differential equation systems by the Krylov-Bogoljubov-Magnus Method, and allow realization conditions to be determined for classes of broken rational functions as frequency characteristics of electrical network.
Effects of SMES units on power system stability
International Nuclear Information System (INIS)
Byerly, R.T.; Juves, J.A.
1980-01-01
A mathematical model suitable for representing SMES units in power system stability studies has been developed and incorporated into an existing large-scale stability program. Demonstration studies have been performed which emphasize the use of SMES units to improve the damping of oscillations associated with synchronizing power flow among generators. The capability exists to conduct stability studies of large systems which include SMES units
Assessing Power System Stability Following Load Changes and Considering Uncertainty
Directory of Open Access Journals (Sweden)
D. V. Ngo
2018-04-01
Full Text Available An increase in load capacity during the operation of a power system usually causes voltage drop and leads to system instability, so it is necessary to monitor the effect of load changes. This article presents a method of assessing the power system stability according to the load node capacity considering uncertainty factors in the system. The proposed approach can be applied to large-scale power systems for voltage stability assessment in real-time.
Milanović, Jovica V
2017-08-13
Future power systems will be significantly different compared with their present states. They will be characterized by an unprecedented mix of a wide range of electricity generation and transmission technologies, as well as responsive and highly flexible demand and storage devices with significant temporal and spatial uncertainty. The importance of probabilistic approaches towards power system stability analysis, as a subsection of power system studies routinely carried out by power system operators, has been highlighted in previous research. However, it may not be feasible (or even possible) to accurately model all of the uncertainties that exist within a power system. This paper describes for the first time an integral approach to probabilistic stability analysis of power systems, including small and large angular stability and frequency stability. It provides guidance for handling uncertainties in power system stability studies and some illustrative examples of the most recent results of probabilistic stability analysis of uncertain power systems.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
NSRL 200 MeV linac beam energy stabilization system
International Nuclear Information System (INIS)
Huang Guirong; Pei Yuanji; Dong Sai
2001-01-01
By using the computer image processing technology and RF phase auto-shifting system, the ESS (Energy Stabilization System) was applied to 200 MeV Linac. the ESS adjusts beam energy automatically in a range of +-4 MeV. After adjustment beam energy stability is improved to +-6%
Learning and Understanding System Stability Using Illustrative Dynamic Texture Examples
Liu, Huaping; Xiao, Wei; Zhao, Hongyan; Sun, Fuchun
2014-01-01
System stability is a basic concept in courses on dynamic system analysis and control for undergraduate students with computer science backgrounds. Typically, this was taught using a simple simulation example of an inverted pendulum. Unfortunately, many difficult issues arise in the learning and understanding of the concepts of stability,…
Harmonics and voltage stability analysis in power systems including ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
two parameters affecting power quality – harmonics and voltage stability. ... is necessary to pay attention to energy system stability in the planning, management, and ... where k ∈ {m, m + 1,... ,n} and n is total number of the buses in the system.
System identification on two-phase flow stability
International Nuclear Information System (INIS)
Wu Shaorong; Zhang Youjie; Wang Dazhong; Bo Jinghai; Wang Fei
1996-01-01
The theoretical principle, experimental method and results of interrelation analysis identification for the instability of two-phase flow are described. A completely new concept of test technology and method on two-phase flow stability was developed by using he theory of information science on system stability and system identification for two-phase flow stability in thermo-physics field. Application of this method would make it possible to identify instability boundary of two-phase flow under stable operation conditions of two-phase flow system. The experiment was carried out on the thermohydraulic test system HRTL-5. Using reverse repeated pseudo-random sequences of heating power as input signal sources and flow rate as response function in the test, the two-phase flow stability and stability margin of the natural circulation system are investigated. The effectiveness and feasibility of identifying two-phase flow stability by using this system identification method were experimentally demonstrated. Basic data required for mathematics modeling of two-phase flow and analysis of two-phase flow stability were obtained, which are useful for analyzing, monitoring of the system operation condition, and forecasting of two-phase flow stability in engineering system
Development of a terminal voltage stabilization system for the FOTIA ...
Indian Academy of Sciences (India)
Abstract. A terminal voltage stabilization system for the folded tandem ion accelerator (FOTIA) was developed and is in continuous use. The system achieves good voltage stabilization, eliminates ground loops and noise interference. It incorporates a correcting circuit for compensating the mains frequency variations in the ...
On Robust Stability of Systems of Differential-Algebraic Equations
Directory of Open Access Journals (Sweden)
A. Shcheglova
2016-06-01
The sufficient conditions of robust stability for index-one and index-two systems are obtained. We use the values of real and complex stability radii obtained for system of ordinary differential equations solved with respect to the derivatives. We consider the example illustrating the obtained results.
Stability Analysis of Fractional-Order Nonlinear Systems with Delay
Directory of Open Access Journals (Sweden)
Yu Wang
2014-01-01
Full Text Available Stability analysis of fractional-order nonlinear systems with delay is studied. We propose the definition of Mittag-Leffler stability of time-delay system and introduce the fractional Lyapunov direct method by using properties of Mittag-Leffler function and Laplace transform. Then some new sufficient conditions ensuring asymptotical stability of fractional-order nonlinear system with delay are proposed firstly. And the application of Riemann-Liouville fractional-order systems is extended by the fractional comparison principle and the Caputo fractional-order systems. Numerical simulations of an example demonstrate the universality and the effectiveness of the proposed method.
Toluene stability Space Station Rankine power system
Havens, V. N.; Ragaller, D. R.; Sibert, L.; Miller, D.
1987-01-01
A dynamic test loop is designed to evaluate the thermal stability of an organic Rankine cycle working fluid, toluene, for potential application to the Space Station power conversion unit. Samples of the noncondensible gases and the liquid toluene were taken periodically during the 3410 hour test at 750 F peak temperature. The results obtained from the toluene stability loop verify that toluene degradation will not lead to a loss of performance over the 30-year Space Station mission life requirement. The identity of the degradation products and the low rates of formation were as expected from toluene capsule test data.
Decentralized linear quadratic power system stabilizers for multi ...
Indian Academy of Sciences (India)
Introduction. Modern excitation systems considerably enhance the overall transient stability of power systems ..... to the local bus rather than the angle δ measured with respect to the remote bus. ... With this in view, the linear and nonlinear per-.
Advances in power system modelling, control and stability analysis
Milano, Federico
2016-01-01
Advances in Power System Modelling, Control and Stability Analysis captures the variety of new methodologies and technologies that are changing the way modern electric power systems are modelled, simulated and operated.
Wind energy systems solutions for power quality and stabilization
Ali, Mohd Hasan
2012-01-01
Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases--and wind energy is a free, renewable resource. However, the induction machines commonly used as wind generators have stability problems similar to the transient stability of synchronous machines. To minimize power, frequency, and voltage fluctuations caused by network faults or random wind speed variations, control mechanisms are necessary. Wind Energy Systems: Solutions for Power Quality and Stabilization clearly explains how to solve stability and power quality issues of wind generator systems. Covering
Solving the stability-accuracy-diversity dilemma of recommender systems
Hou, Lei; Liu, Kecheng; Liu, Jianguo; Zhang, Runtong
2017-02-01
Recommender systems are of great significance in predicting the potential interesting items based on the target user's historical selections. However, the recommendation list for a specific user has been found changing vastly when the system changes, due to the unstable quantification of item similarities, which is defined as the recommendation stability problem. To improve the similarity stability and recommendation stability is crucial for the user experience enhancement and the better understanding of user interests. While the stability as well as accuracy of recommendation could be guaranteed by recommending only popular items, studies have been addressing the necessity of diversity which requires the system to recommend unpopular items. By ranking the similarities in terms of stability and considering only the most stable ones, we present a top- n-stability method based on the Heat Conduction algorithm (denoted as TNS-HC henceforth) for solving the stability-accuracy-diversity dilemma. Experiments on four benchmark data sets indicate that the TNS-HC algorithm could significantly improve the recommendation stability and accuracy simultaneously and still retain the high-diversity nature of the Heat Conduction algorithm. Furthermore, we compare the performance of the TNS-HC algorithm with a number of benchmark recommendation algorithms. The result suggests that the TNS-HC algorithm is more efficient in solving the stability-accuracy-diversity triple dilemma of recommender systems.
Stability of molecular dynamics simulations of classical systems
DEFF Research Database (Denmark)
Toxværd, Søren
2012-01-01
The existence of a shadow Hamiltonian for discrete classical dynamics, obtained by an asymptotic expansion for a discrete symplectic algorithm, is employed to determine the limit of stability for molecular dynamics (MD) simulations with respect to the time-increment h of the discrete dynamics....... The investigation is based on the stability of the shadow energy, obtained by including the first term in the asymptotic expansion, and on the exact solution of discrete dynamics for a single harmonic mode. The exact solution of discrete dynamics for a harmonic potential with frequency ω gives a criterion...... for the limit of stability h ⩽ 2/ω. Simulations of the Lennard-Jones system and the viscous Kob-Andersen system show that one can use the limit of stability of the shadow energy or the stability criterion for a harmonic mode on the spectrum of instantaneous frequencies to determine the limit of stability of MD...
Power system stabilizers based on modern control techniques
Energy Technology Data Exchange (ETDEWEB)
Malik, O P; Chen, G P; Zhang, Y; El-Metwally, K [Calgary Univ., AB (Canada). Dept. of Electrical and Computer Engineering
1994-12-31
Developments in digital technology have made it feasible to develop and implement improved controllers based on sophisticated control techniques. Power system stabilizers based on adaptive control, fuzzy logic and artificial networks are being developed. Each of these control techniques possesses unique features and strengths. In this paper, the relative performance of power systems stabilizers based on adaptive control, fuzzy logic and neural network, both in simulation studies and real time tests on a physical model of a power system, is presented and compared to that of a fixed parameter conventional power system stabilizer. (author) 16 refs., 45 figs., 3 tabs.
Research on Design of MUH Attitude Stability Augmentation Control System
Fan, Shigang
2017-09-01
Attitude stability augmentation control system with a lower cost need to be designed so that MUH (Mini Unmanned Helicopter) can adapt to different types of geographic environment and fly steadily although the weather may be bad. Attitude feedback was calculated mainly by filtering estimation within attitude acquisition module in this system. Stability augmentation can be improved mainly by PI. This paper will depict running principle and designing process of MUH attitude stability augmentation control system and algorithm that is considered as an important part in this system.
Solar Dynamic Power System Stability Analysis and Control
Momoh, James A.; Wang, Yanchun
1996-01-01
The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.
Stabilization of Neutral Systems with Saturating Actuators
Directory of Open Access Journals (Sweden)
F. El Haoussi
2012-01-01
to determine stabilizing state-feedback controllers with large domain of attraction, expressed as linear matrix inequalities, readily implementable using available numerical tools and with tuning parameters that make possible to select the most adequate solution. These conditions are derived by using a Lyapunov-Krasovskii functional on the vertices of the polytopic description of the actuator saturations. Numerical examples demonstrate the effectiveness of the proposed technique.
Stability and Hopf bifurcation analysis of a new system
International Nuclear Information System (INIS)
Huang Kuifei; Yang Qigui
2009-01-01
In this paper, a new chaotic system is introduced. The system contains special cases as the modified Lorenz system and conjugate Chen system. Some subtle characteristics of stability and Hopf bifurcation of the new chaotic system are thoroughly investigated by rigorous mathematical analysis and symbolic computations. Meanwhile, some numerical simulations for justifying the theoretical analysis are also presented.
Review of Power System Stability with High Wind Power Penetration
DEFF Research Database (Denmark)
Hu, Rui; Hu, Weihao; Chen, Zhe
2015-01-01
analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical......This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...
Probabilistic assessment of power system transient stability incorporating SMES
Energy Technology Data Exchange (ETDEWEB)
Fang, Jiakun, E-mail: Jiakun.Fang@gmail.com [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Yao, Wei [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Wen, Jinyu, E-mail: jinyu.wen@hust.edu.cn [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Cheng, Shijie; Tang, Yuejin; Cheng, Zhuo [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China)
2013-01-15
Highlights: ► Probabilistic study of power system with wind farm and SMES is proposed. ► Quantitative relationship between system stability and SMES capacity is given. ► System stability increases with the capacity of the SMES. ► System stability decreases with the penetration of wind power. ► Together with the cost function, the coil size is optimized. -- Abstract: This paper presents a stochastic-based approach to evaluate the probabilistic transient stability index of the power system incorporating the wind farm and the SMES. Uncertain factors include both sequence of disturbance in power grid and stochastic generation of the wind farm. The spectrums of disturbance in the grid as the fault type, the fault location, the fault clearing time and the automatic reclosing process with their probabilities of occurrence are used to calculate the probability indices, while the wind speed statistics and parameters of the wind generator are used in a Monte Carlo simulation to generate samples for the studies. With the proposed method, system stability is ”measured”. Quantitative relationship of penetration level, SMES coil size and system stability is established. Considering the stability versus coil size to be the production curve, together with the cost function, the coil size is optimized economically.
Probabilistic assessment of power system transient stability incorporating SMES
International Nuclear Information System (INIS)
Fang, Jiakun; Yao, Wei; Wen, Jinyu; Cheng, Shijie; Tang, Yuejin; Cheng, Zhuo
2013-01-01
Highlights: ► Probabilistic study of power system with wind farm and SMES is proposed. ► Quantitative relationship between system stability and SMES capacity is given. ► System stability increases with the capacity of the SMES. ► System stability decreases with the penetration of wind power. ► Together with the cost function, the coil size is optimized. -- Abstract: This paper presents a stochastic-based approach to evaluate the probabilistic transient stability index of the power system incorporating the wind farm and the SMES. Uncertain factors include both sequence of disturbance in power grid and stochastic generation of the wind farm. The spectrums of disturbance in the grid as the fault type, the fault location, the fault clearing time and the automatic reclosing process with their probabilities of occurrence are used to calculate the probability indices, while the wind speed statistics and parameters of the wind generator are used in a Monte Carlo simulation to generate samples for the studies. With the proposed method, system stability is ”measured”. Quantitative relationship of penetration level, SMES coil size and system stability is established. Considering the stability versus coil size to be the production curve, together with the cost function, the coil size is optimized economically
Stability analysis of linear switching systems with time delays
International Nuclear Information System (INIS)
Li Ping; Zhong Shouming; Cui Jinzhong
2009-01-01
The issue of stability analysis of linear switching system with discrete and distributed time delays is studied in this paper. An appropriate switching rule is applied to guarantee the stability of the whole switching system. Our results use a Riccati-type Lyapunov functional under a condition on the time delay. So, switching systems with mixed delays are developed. A numerical example is given to illustrate the effectiveness of our results.
Decentralized linear quadratic power system stabilizers for multi ...
Indian Academy of Sciences (India)
Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not ...
An equilibrium point stabilization strategy for the Chen system
International Nuclear Information System (INIS)
Alvarez-Ramirez, Jose; Cevantes, Ilse; Femat, Ricardo
2004-01-01
The aim of this Letter is to address the equilibrium point stabilization problem of the Chen system by employing a simple linear feedback controller derived from time-scaling the dynamics of a single variable. The controller has the advantage of being easy to implement and a rigorous stability proof is provided based on singular perturbation arguments. Results are illustrated via numerical simulations
A Methodology to Efficiently Compare Operating System Stability
van der Kouwe, E.; Giuffrida, C.; Ghitulete, R.; Tanenbaum, A.S.
2015-01-01
Despite decades of advances in software engineering, operating systems (OSes) are still plagued by crashes due to software faults, calling for techniques to improve OS stability when faults occur. Evaluating such techniques requires a way to compare the stability of different OSes that is both
New Results of Global Exponential Stabilization for BLDCMs System
Fengxia Tian; Fangchao Zhen; Guopeng Zhou; Xiaoxin Liao
2015-01-01
The global exponential stabilization for brushless direct current motor (BLDCM) system is studied. Four linear and simple feedback controllers are proposed to realize the global stabilization of BLDCM with exponential convergence rate; the control law used in each theorem is less conservative and more concise. Finally, an example is given to demonstrate the correctness of the proposed results.
Electrostatic stabilizer for a passive magnetic bearing system
Post, Richard F.
2015-11-24
Electrostatic stabilizers are provided for passive bearing systems composed of annular magnets having a net positive stiffness against radial displacements and that have a negative stiffness for vertical displacements, resulting in a vertical instability. Further embodiments are shown of a radial electrostatic stabilizer geometry (using circuitry similar to that employed in the vertical stabilizer). This version is suitable for stabilizing radial (lateral) displacements of a rotor that is levitated by annular permanent magnets that are stable against vertical displacements but are unstable against radial displacements.
On the stability of some systems of exponential difference equations
Directory of Open Access Journals (Sweden)
N. Psarros
2018-01-01
Full Text Available In this paper we prove the stability of the zero equilibria of two systems of difference equations of exponential type, which are some extensions of an one-dimensional biological model. The stability of these systems is investigated in the special case when one of the eigenvalues is equal to -1 and the other eigenvalue has absolute value less than 1, using centre manifold theory. In addition, we study the existence and uniqueness of positive equilibria, the attractivity and the global asymptotic stability of these equilibria of some related systems of difference equations.
Stabilization at almost arbitrary points for chaotic systems
International Nuclear Information System (INIS)
Huang, C.-S.; Lian, K.-Y.; Su, C.-H.; Wu, J.-W.
2008-01-01
We consider how to design a feasible control input for chaotic systems via a suitable input channel to achieve the stabilization at arbitrary points. Regarding the nonlinear systems without naturally defined input vectors, we propose a local stabilization controller which works for almost arbitrary points. Subsequently, according to topologically transitive property for chaotic systems, the feedback control force is activated only when the trajectory passes through the neighboring region of the regulated point. Hence the global stabilization is achieved whereas the control effort of the hybrid controller is extremely low
Performance of the PBX-M passive plate stabilization system
International Nuclear Information System (INIS)
Kugel, H.W.; Bell, R.; Bernabei, S.
1994-02-01
The PBX-M passive plate stabilization system provides significant stabilization of long-wavelength external kink modes, the slowing of vertical instability growth rates, and the amelioration of disruption characteristics. The passive plate stabilization system has allowed the use of LHCD and IBW to induce current density and pressure profile modifications, and m = 1 divertor biasing for modifying edge plasma transport. Improvements in the passive plate system insulators and support structures have provided reliable operation. Impurity influxes with the close-fitting passive plates are low. Solid target boronization is applied routinely to reduce conditioning time and maintain clean conditions
On the stability of non-linear systems
International Nuclear Information System (INIS)
Guelman, M.
1968-09-01
A study is made of the absolute stability of nonlinear systems, using Liapounov's second method and taking into account the results obtained from V.M. Popov's work. The results already established are first presented, in particular concerning the frequency domain criterions for absolute stability of automatic control systems containing one single non linearity. The results have been extended to show the existence of a limiting parabola. New use is then made of the methods studied for deriving absolute stability criterions for a system containing a different type of non linearity. Finally, the results obtained are considered from the point of view of Aizerman's conjecture. (author) [fr
Recent Progress in Stability and Stabilization of Systems with Time-Delays
Directory of Open Access Journals (Sweden)
Magdi S. Mahmoud
2017-01-01
Full Text Available This paper overviews the research investigations pertaining to stability and stabilization of control systems with time-delays. The prime focus is the fundamental results and recent progress in theory and applications. The overview sheds light on the contemporary development on the linear matrix inequality (LMI techniques in deriving both delay-independent and delay-dependent stability results for time-delay systems. Particular emphases will be placed on issues concerned with the conservatism and the computational complexity of the results. Key technical bounding lemmas and slack variable introduction approaches will be presented. The results will be compared and connections of certain delay-dependent stability results are also discussed.
Computation of robustly stabilizing PID controllers for interval systems.
Matušů, Radek; Prokop, Roman
2016-01-01
The paper is focused on the computation of all possible robustly stabilizing Proportional-Integral-Derivative (PID) controllers for plants with interval uncertainty. The main idea of the proposed method is based on Tan's (et al.) technique for calculation of (nominally) stabilizing PI and PID controllers or robustly stabilizing PI controllers by means of plotting the stability boundary locus in either P-I plane or P-I-D space. Refinement of the existing method by consideration of 16 segment plants instead of 16 Kharitonov plants provides an elegant and efficient tool for finding all robustly stabilizing PID controllers for an interval system. The validity and relatively effortless application of presented theoretical concepts are demonstrated through a computation and simulation example in which the uncertain mathematical model of an experimental oblique wing aircraft is robustly stabilized.
Stability design considerations for mirror support systems in ICF lasers
International Nuclear Information System (INIS)
Tietbohl, G.L.; Sommer, S.C.
1996-10-01
Some of the major components of laser systems used for Inertial Confinement Fusion (ICF) are the large aperture mirrors which direct the path of the laser. These mirrors are typically supported by systems which consist of mirror mounts, mirror enclosures, superstructures, and foundations. Stability design considerations for the support systems of large aperture mirrors have been developed based on the experience of designing and evaluating similar systems at the Lawrence Livermore National Laboratory (LLNL). Examples of the systems developed at LLNL include Nova, the Petawatt laser, Beamlet, and the National Ignition Facility (NIF). The structural design of support systems of large aperture mirrors has typically been controlled by stability considerations in order for the large laser system to meet its performance requirements for alignment and positioning. This paper will discuss the influence of stability considerations and will provide guidance on the structural design and evaluation of mirror support systems in ICF lasers so that this information can be used on similar systems
Power system small signal stability analysis and control
Mondal, Debasish; Sengupta, Aparajita
2014-01-01
Power System Small Signal Stability Analysis and Control presents a detailed analysis of the problem of severe outages due to the sustained growth of small signal oscillations in modern interconnected power systems. The ever-expanding nature of power systems and the rapid upgrade to smart grid technologies call for the implementation of robust and optimal controls. Power systems that are forced to operate close to their stability limit have resulted in the use of control devices by utility companies to improve the performance of the transmission system against commonly occurring power system
Earth System Stability Through Geologic Time
Rothman, D.; Bowring, S. A.
2015-12-01
Five times in the past 500 million years, mass extinctions haveresulted in the loss of greater than three-fourths of living species.Each of these events is associated with significant environmentalchange recorded in the carbon-isotopic composition of sedimentaryrocks. There are also many such environmental events in the geologicrecord that are not associated with mass extinctions. What makes themdifferent? Two factors appear important: the size of theenvironmental perturbation, and the time scale over which it occurs.We show that the natural perturbations of Earth's carbon cycle during thepast 500 million years exhibit a characteristic rate of change overtwo orders of magnitude in time scale. This characteristic rate isconsistent with the maximum rate that limits quasistatic (i.e., nearsteady-state) evolution of the carbon cycle. We identify this rate withmarginal stability, and show that mass extinctions occur on the fast,unstable side of the stability boundary. These results suggest thatthe great extinction events of the geologic past, and potentially a"sixth extinction" associated with modern environmental change, arecharacterized by common mechanisms of instability.
Stability and delay sensitivity of neutral fractional-delay systems.
Xu, Qi; Shi, Min; Wang, Zaihua
2016-08-01
This paper generalizes the stability test method via integral estimation for integer-order neutral time-delay systems to neutral fractional-delay systems. The key step in stability test is the calculation of the number of unstable characteristic roots that is described by a definite integral over an interval from zero to a sufficient large upper limit. Algorithms for correctly estimating the upper limits of the integral are given in two concise ways, parameter dependent or independent. A special feature of the proposed method is that it judges the stability of fractional-delay systems simply by using rough integral estimation. Meanwhile, the paper shows that for some neutral fractional-delay systems, the stability is extremely sensitive to the change of time delays. Examples are given for demonstrating the proposed method as well as the delay sensitivity.
Stability Analysis of a Reaction-Diffusion System Modeling Atherogenesis
Ibragimov, Akif; Ritter, Laura; Walton, Jay R.
2010-01-01
This paper presents a linear, asymptotic stability analysis for a reaction-diffusionconvection system modeling atherogenesis, the initiation of atherosclerosis, as an inflammatory instability. Motivated by the disease paradigm articulated by Ross
Stabilization of Networked Control Systems Under Feedback-based Communication
National Research Council Canada - National Science Library
Zhang, Lei; Hristu-Varsakelis, Dimitrios
2004-01-01
We study the stabilization of a networked control system (NSC) in which multiple sensors and actuators of a physical plant share a communication medium to exchange information with a remote controller...
Stability of position control system in JIPP T-II
International Nuclear Information System (INIS)
Sakurai, Keiichi; Tanahashi, Shygo
1980-01-01
Computations and experiments on the stability of a feedback control system for maintaining a plasma column in equilibrium are described. The time response of the displacement of the plasma to the desired position is examined by solving the equation of motion of the plasma column. We show that the stability of the feedback control system is improved by using an additional term which represents the shift velocity of the plasma column. (author)
Stability of magnetic tip/superconductor levitation systems
International Nuclear Information System (INIS)
Alqadi, M. K.
2015-01-01
The vertical stability of a magnetic tip over a superconducting material is investigated by using the critical state and the frozen image models. The analytical expressions of the stiffness and the vibration frequency about the equilibrium position are derived in term of the geometrical parameters of the magnet/superconductor system. It is found that the stability of the system depends on the shape of the superconductor as well as its thickness. (paper)
ON THE STABILIZATION OF THE LINEAR HYBRID SYSTEM STRUCTURE
Directory of Open Access Journals (Sweden)
Kirillov
2014-11-01
Full Text Available The linear control hybrid system, consisting of a fi- nite set of subsystems (modes having different dimensions, is considered. The moments of reset time are determined by some complementary function – evolutionary time. This function satisfies the special complementary ordinary differential equation. The mode stabilization problem is solved for some class of piecewise linear controls. The method of stabilization relies on the set of invariant planes, the existence of which is due to the special form of the hybrid system.
Preservation of stability and synchronization in nonlinear systems
Energy Technology Data Exchange (ETDEWEB)
Fernandez-Anaya, G. [Departamento de Fisica y Matematicas, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Mexico, D.F. 01210 (Mexico)], E-mail: guillermo.fernandez@uia.mx; Flores-Godoy, J.J. [Departamento de Fisica y Matematicas, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Mexico, D.F. 01210 (Mexico)], E-mail: job.flores@uia.mx; Femat, R. [Division de Matematicas Aplicadas y Sistemas Computacionales, IPICyT, Camino a la Presa San Jose 2055, Col. Lomas 4a. seccion, San Luis Potosi, San Luis Potosi 78216 (Mexico)], E-mail: rfemat@ipicyt.edu.mx; Alvarez-Ramirez, J.J. [Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico, D.F. 09340 (Mexico)], E-mail: jjar@xanum.uam.mx
2007-11-12
Preservation of stability in the presence of structural and/or parametric changes is an important issue in the study of dynamical systems. A specific case is the synchronization of chaos in complex networks where synchronization should be preserved in spite of changes in the network parameters and connectivity. In this work, a methodology to establish conditions for preservation of stability in a class of dynamical system is given in terms of Lyapunov methods. The idea is to construct a group of dynamical transformations under which stability is retained along certain manifolds. Some synchronization examples illustrate the results.
Preservation of stability and synchronization in nonlinear systems
International Nuclear Information System (INIS)
Fernandez-Anaya, G.; Flores-Godoy, J.J.; Femat, R.; Alvarez-Ramirez, J.J.
2007-01-01
Preservation of stability in the presence of structural and/or parametric changes is an important issue in the study of dynamical systems. A specific case is the synchronization of chaos in complex networks where synchronization should be preserved in spite of changes in the network parameters and connectivity. In this work, a methodology to establish conditions for preservation of stability in a class of dynamical system is given in terms of Lyapunov methods. The idea is to construct a group of dynamical transformations under which stability is retained along certain manifolds. Some synchronization examples illustrate the results
Theoretical bases on thermal stability of layered metallic systems
International Nuclear Information System (INIS)
Kadyrzhanov, K.K.; Rusakov, V.S.; Turkebaev, T.Eh.; Zhankadamova, A.M.; Ensebaeva, M.Z.
2003-01-01
The paper is dedicated to implementation of the theoretical bases for layered metallic systems thermal stabilization. The theory is based on the stabilization mechanism expense of the intermediate two-phase field formation. As parameters of calculated model are coefficients of mutual diffusion and inclusions sizes of generated phases in two-phase fields. The stabilization time dependence for beryllium-iron (Be (1.1 μm)-Fe(5.5 μm)) layered system from iron and beryllium diffusion coefficients, and inclusions sizes is shown as an example. Conclusion about possible mechanisms change at transition from microscopic consideration to the nano-crystal physics level is given
Stability of a slotted ALOHA system with capture effect
Onozato, Yoshikuni; Liu, Jin; Noguchi, Shoichi
1989-02-01
The stability of a slotted ALOHA system with capture effect is investigated under a general communication environment where terminals are divided into two groups (low-power and high-power) and the capture effect is modeled by capture probabilities. An approximate analysis is developed using catastrophe theory, in which the effects of system and user parameters on the stability are characterized by the cusp catastrophe. Particular attention is given to the low-power group, since it must bear the strain under the capture effect. The stability conditions of the two groups are given explicitly by bifurcation sets.
Stabilization of model-based networked control systems
Energy Technology Data Exchange (ETDEWEB)
Miranda, Francisco [CIDMA, Universidade de Aveiro, Aveiro (Portugal); Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); Abreu, Carlos [Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); CMEMS-UMINHO, Universidade do Minho, Braga (Portugal); Mendes, Paulo M. [CMEMS-UMINHO, Universidade do Minho, Braga (Portugal)
2016-06-08
A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtain an optimal feedback control is also presented.
Stability properties of nonlinear dynamical systems and evolutionary stable states
Energy Technology Data Exchange (ETDEWEB)
Gleria, Iram, E-mail: iram@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió-AL (Brazil); Brenig, Leon [Faculté des Sciences, Université Libre de Bruxelles, 1050 Brussels (Belgium); Rocha Filho, Tarcísio M.; Figueiredo, Annibal [Instituto de Física and International Center for Condensed Matter Physics, Universidade de Brasília, 70919-970 Brasília-DF (Brazil)
2017-03-18
Highlights: • We address the problem of equilibrium stability in a general class of non-linear systems. • We link Evolutionary Stable States (ESS) to stable fixed points of square quasi-polynomial (QP) systems. • We show that an interior ES point may be related to stable interior fixed points of QP systems. - Abstract: In this paper we address the problem of stability in a general class of non-linear systems. We establish a link between the concepts of asymptotic stable interior fixed points of square Quasi-Polynomial systems and evolutionary stable states, a property of some payoff matrices arising from evolutionary games.
Preparation of Astaxanthin Nanodispersions Using Gelatin-Based Stabilizer Systems
Directory of Open Access Journals (Sweden)
Navideh Anarjan
2014-09-01
Full Text Available The incorporation of lipophilic nutrients, such as astaxanthin (a fat soluble carotenoid in nanodispersion systems can either increase the water solubility, stability and bioavailability or widen their applications in aqueous food and pharmaceutical formulations. In this research, gelatin and its combinations with sucrose oleate as a small molecular emulsifier, sodium caseinate (SC as a protein and gum Arabic as a polysaccharide were used as stabilizer systems in the formation of astaxanthin nanodispersions via an emulsification-evaporation process. The results indicated that the addition of SC to gelatin in the stabilizer system could increase the chemical stability of astaxanthin nanodispersions significantly, while using a mixture of gelatin and sucrose oleate as a stabilizer led to production of nanodispersions with the smallest particle size (121.4 ± 8.6 nm. It was also shown that a combination of gelatin and gum Arabic could produce optimal astaxanthin nanodispersions in terms of physical stability (minimum polydispersity index (PDI and maximum zeta-potential. This study demonstrated that the mixture of surface active compounds showed higher emulsifying and stabilizing functionality compared to using them individually in the preparation of astaxanthin nanodispersions.
Stabilization of switched nonlinear systems with unstable modes
Yang, Hao; Cocquempot, Vincent
2014-01-01
This book provides its reader with a good understanding of the stabilization of switched nonlinear systems (SNS), systems that are of practical use in diverse situations: design of fault-tolerant systems in space- and aircraft; traffic control; and heat propagation control of semiconductor power chips. The practical background is emphasized throughout the book; interesting practical examples frequently illustrate the theoretical results with aircraft and spacecraft given particular prominence. Stabilization of Switched Nonlinear Systems with Unstable Modes treats several different subclasses of SNS according to the characteristics of the individual system (time-varying and distributed parameters, for example), the state composition of individual modes and the degree and distribution of instability in its various modes. Achievement and maintenance of stability across the system as a whole is bolstered by trading off between individual modes which may be either stable or unstable, or by exploiting areas of part...
A study of offshore wind HVDC system stability and control
Energy Technology Data Exchange (ETDEWEB)
Liu, Hanchao; Sun, Jian [Rensselaer Polytechnic Institute, Troy, NY (United States). Dept. of Electrical, Computer and Systems Engineering
2011-07-01
This work is concerned with the stability and control of ac power collection buses in offshore wind farms with high-voltage dc (HVDC) transmission connection to onshore power grid. The focus of the work is high-frequency interactions among the wind turbines, the ac collection bus and the filters, as well as the HVDC rectifier. Both voltage-source converter and line-commutated converter based HVDC systems are considered. To study high-frequency stability, particularly harmonic resonance in the ac bus, small-signal impedance models are developed for the wind inverters and the HVDC rectifier by using harmonic linearization techniques. An impedance-based stability criterion is applied to assess system stability in both positive- and negative-sequence domain. Small-signal stability conditions and requirements are developed from analytical impedance models. Detailed system-level simulation is used to validated the small-signal analysis. The goal of the study is to develop system design and control techniques that minimize the cost of the offshore infrastructure while guaranteeing system stability and power quality. (orig.)
Experimental study of flame stability in biogas premix system
International Nuclear Information System (INIS)
Diaz G, Carlos A; Amell A Andres; Cardona Luis F
2008-01-01
Utilization of new renewable energy sources have had a special interest in last years looking for decrease the dependence of fossil fuels and the environmental impact generated for them. This work studies experimentally the flame stability of a simulated biogas with a volumetric composition of 60% methane and 40% carbon dioxide. The objective of this study is to obtain information about design and interchangeability of gases in premixed combustion systems that operate with different fuel gases. The critical velocity gradient was the stability criteria used. Utilization of this criteria and the experimental method followed, using a partial premixed burner, stability flame diagram of biogas studied had been obtained. Presence of carbon dioxide has a negative effect in flame stability, decreasing significantly the laminar flame speed and consequently, the stability range of biogas burners because of apparition of blow off.
Stability analysis of switched linear systems defined by graphs
Athanasopoulos, N.; Lazar, M.
2014-01-01
We present necessary and sufficient conditions for global exponential stability for switched discrete-time linear systems, under arbitrary switching, which is constrained within a set of admissible transitions. The class of systems studied includes the family of systems under arbitrary switching,
The electric power engineering handbook power system stability and control
Grisby, Leonard L
2012-01-01
With contributions from worldwide leaders in the field, Power System Stability and Control, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) updates coverage of recent developments and rapid technological growth in essential aspects of power systems. Edited by L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Miroslav Begovic, Prabha Kundur, and Bruce Wollenberg, this reference presents substantially new and revised content. Topics covered include: * Power System Protection * Power System Dynamics and Stability *
Stability and stabilisation of a class of networked dynamic systems
Liu, H. B.; Wang, D. Q.
2018-04-01
We investigate the stability and stabilisation of a linear time invariant networked heterogeneous system with arbitrarily connected subsystems. A new linear matrix inequality based sufficient and necessary condition for the stability is derived, based on which the stabilisation is provided. The obtained conditions efficiently utilise the block-diagonal characteristic of system parameter matrices and the sparseness of subsystem connection matrix. Moreover, a sufficient condition only dependent on each individual subsystem is also presented for the stabilisation of the networked systems with a large scale. Numerical simulations show that these conditions are computationally valid in the analysis and synthesis of a large-scale networked system.
Optimal Parameter Selection of Power System Stabilizer using Genetic Algorithm
Energy Technology Data Exchange (ETDEWEB)
Chung, Hyeng Hwan; Chung, Dong Il; Chung, Mun Kyu [Dong-AUniversity (Korea); Wang, Yong Peel [Canterbury Univeristy (New Zealand)
1999-06-01
In this paper, it is suggested that the selection method of optimal parameter of power system stabilizer (PSS) with robustness in low frequency oscillation for power system using real variable elitism genetic algorithm (RVEGA). The optimal parameters were selected in the case of power system stabilizer with one lead compensator, and two lead compensator. Also, the frequency responses characteristics of PSS, the system eigenvalues criterion and the dynamic characteristics were considered in the normal load and the heavy load, which proved usefulness of RVEGA compare with Yu's compensator design theory. (author). 20 refs., 15 figs., 8 tabs.
Frequency Stability Improvement of Low Inertia Systems Using Synchronous Condensers
DEFF Research Database (Denmark)
Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde
2016-01-01
of converter interfaced components (wind turbine, HVDC, and Photovoltaic) may have negative effects on the stability of the power system. These components do not have enough inertia response to control frequency excursion, so the power grid can depend on few synchronous machines for frequency regulation...... and reduce the system inertia. Consequently, the frequency stability of the system will be easily jeopardized. To address these issues, the paper studies frequency characteristics of future Western Danish renewable-based system that uses a majority of wind turbine generators. Different scenarios of wind...
Stability Analysis for a Multi-Camera Photogrammetric System
Directory of Open Access Journals (Sweden)
Ayman Habib
2014-08-01
Full Text Available Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction.
Nuclear Hybrid Energy System Model Stability Testing
Energy Technology Data Exchange (ETDEWEB)
Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-04-01
A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.
Optimal boundary control and boundary stabilization of hyperbolic systems
Gugat, Martin
2015-01-01
This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary. The wave equation is used as a typical example of a linear system, through which the author explores initial boundary value problems, concepts of exact controllability, optimal exact control, and boundary stabilization. Nonlinear systems are also covered, with the Korteweg-de Vries and Burgers Equations serving as standard examples. To keep the presentation as accessible as possible, the author uses the case of a system with a state that is defined on a finite space interval, so that there are only two boundary points where the system can be controlled. Graduate and post-graduate students as well as researchers in the field will find this to be an accessible introduction to problems of optimal control and stabilization.
Dynamic postural stability in blind athletes using the biodex stability system.
Aydoğ, E; Aydoğ, S T; Cakci, A; Doral, M N
2006-05-01
Three systems affect the upright standing posture in humans - visual, vestibular, and somatosensory. It is well known that the visually impaired individuals have bad postural balance. On the other hand, it is a well documented fact that some sports can improve postural balance. Therefore, it is aimed in this study to evaluate the dynamic postural stability in goal-ball athletes. Twenty blind goal-ball players, 20 sighted and 20 sedentary blind controls were evaluated using the Biodex Stability System. Three adaptation trials and three test evaluations (a 20-second balance test at a platform stability of 8) were applied to the blind people, and to the sighted with eyes open and closed. Dynamic postural stability was measured on the basis of three indices: overall, anteroposterior, and mediolateral. Means of each test score were calculated. The tests results were compared for the blind athletes, sighted (with eyes open and closed) subjects, and sedentary blind people. There were significant differences between the results of the blind people and the sighted subjects with regards to all of the three indices. Although the stability of goal-ball players was better than sedentary blinds', only ML index values were statistically different (4.47 +/- 1.24 in the goal-ball players; 6.46 +/- 3.42 in the sedentary blind, p = 0.04). Dynamic postural stability was demonstrated to be affected by vision; and it was found that blind people playing goal-ball 1 - 2 days per week have higher ML stability than the sedentary sighted people.
Stability analysis of switched linear systems defined by graphs
Athanasopoulos, Nikolaos; Lazar, Mircea
2015-01-01
We present necessary and sufficient conditions for global exponential stability for switched discrete-time linear systems, under arbitrary switching, which is constrained within a set of admissible transitions. The class of systems studied includes the family of systems under arbitrary switching, periodic systems, and systems with minimum and maximum dwell time specifications. To reach the result, we describe the set of rules that define the admissible transitions with a weighted directed gra...
Stability Analysis of Neural Networks-Based System Identification
Directory of Open Access Journals (Sweden)
Talel Korkobi
2008-01-01
Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.
FINANCIAL SYSTEM STRUCTURE AND STABILITY DURING TRANSITION
Directory of Open Access Journals (Sweden)
Firtescu Bogdan
2012-07-01
Full Text Available The process of transition from socialist economy to market economy was not considered an end in itself, but a necessity, and standing proof to achieve high levels of sustainable development. All former socialist countries are characterized by an early transition recession transformation result of the restructuring, loss of markets, tough competition from foreign products, best quality, or in other cases cheaper. To express the financial system structure in transition we take into discussion data that reflects representatives mutations and restructuring in Central and Eastern European countries, such Bulgaria, Czech Republic, Hungary, Poland and Romania. For all countries we show some important changes of financial system during transition and construct an image matrix that illustrates important indicators of financial system structure and their adjustment.
INERTIAL TECHNOLOGIES IN SYSTEMS FOR STABILIZATION OF GROUND VEHICLES EQUIPMENT
Directory of Open Access Journals (Sweden)
Olha Sushchenko
2016-12-01
Full Text Available Purpose: The vibratory inertial technology is a recent modern inertial technology. It represents the most perspective approach to design of inertial sensors, which can be used in stabilization and tracking systems operated on vehicles of the wide class. The purpose of the research is to consider advantages of this technology in comparison with laser and fiber-optic ones. Operation of the inertial sensors on the ground vehicles requires some improvement of the Coriolis vibratory gyroscope with the goal to simplify information processing, increase reliability, and compensate bias. Methods: Improvement of the Coriolis vibratory gyroscope includes introducing of the phase detector and additional excitation unit. The possibility to use the improved Coriolis vibratory gyroscope in the stabilization systems operated on the ground vehicles is shown by means of analysis of gyroscope output signal. To prove efficiency of the Coriolis vibratory gyroscope in stabilization system the simulation technique is used. Results: The scheme of the improved Coriolis vibratory gyroscope including the phase detector and additional excitation unit is developed and analyzed. The way to compensate bias is determined. Simulation of the stabilization system with the improved Coriolis vibratory gyroscope is carried out. Expressions for the output signals of the improved Coriolis vibratory gyroscope are derived. The error of the output signal is estimated and the possibility to use the modified Coriolis vibratory gyroscope in stabilization systems is proved. The results of stabilization system simulation are given. Their analysis is carried out. Conclusions: The represented results prove efficiency of the proposed technical decisions. They can be useful for design of stabilization platform with instrumental equipment operated on moving vehicles of the wide class.
Robust stability bounds for multi-delay networked control systems
Seitz, Timothy; Yedavalli, Rama K.; Behbahani, Alireza
2018-04-01
In this paper, the robust stability of a perturbed linear continuous-time system is examined when controlled using a sampled-data networked control system (NCS) framework. Three new robust stability bounds on the time-invariant perturbations to the original continuous-time plant matrix are presented guaranteeing stability for the corresponding discrete closed-loop augmented delay-free system (ADFS) with multiple time-varying sensor and actuator delays. The bounds are differentiated from previous work by accounting for the sampled-data nature of the NCS and for separate communication delays for each sensor and actuator, not a single delay. Therefore, this paper expands the knowledge base in multiple inputs multiple outputs (MIMO) sampled-data time delay systems. Bounds are presented for unstructured, semi-structured, and structured perturbations.
Transient stability risk assessment of power systems incorporating wind farms
DEFF Research Database (Denmark)
Miao, Lu; Fang, Jiakun; Wen, Jinyu
2013-01-01
fed induction generator has been established. Wind penetration variation and multiple stochastic factors of power systems have been considered. The process of transient stability risk assessment based on the Monte Carlo method has been described and a comprehensive risk indicator has been proposed......Large-scale wind farm integration has brought several aspects of challenges to the transient stability of power systems. This paper focuses on the research of the transient stability of power systems incorporating with wind farms by utilizing risk assessment methods. The detailed model of double....... An investigation has been conducted into an improved 10-generator 39-bus system with a wind farm incorporated to verify the validity and feasibility of the risk assessment method proposed....
Competition and system stability -- The reward and the penalty
International Nuclear Information System (INIS)
Mansour, Y.
2000-01-01
The business protocols and rules of the competitive electricity market are resulting in fragmentation of the historical vertically integrated structures. Electric services are offered at either cost or market-based prices depending on their type and the level of competition in a particular product. System stabilizing measures are essential for maintaining system security, yet their value is either underestimated or not understood. This paper describes practical methods to quantify the value of some of the stabilizing measures and ways to ensure maintaining the dynamic security of the power systems through business procedures and monetary sanctions
FINANCIAL STABILITY OF THE UKRAINE NATIONAL SYSTEM OF PENSION INSURANCE
Directory of Open Access Journals (Sweden)
A. Khemii
2014-03-01
Full Text Available The system of pension insurance is a combination of created by the state legal, economic and organizational institutions and norms, providing financial support to citizens in the form of pensions. In the article analyzing the demographic situation and the condition of pension payments in the country today. In the terms of economic and social reforms, the level of financial stability the pension system is low. Therefore important is the analysis and exploring new methods to ensure financial stability of the Ukraine national system of pension insurance. The main institution of the national pension insurance is the National Pension Fund of Ukraine.
On stability of accelerator driven systems
International Nuclear Information System (INIS)
Makai, Mihaly
2003-01-01
An unsolved problem of energy production in nuclear reactors is the waste management. A large portion of the nuclear waste is the spent fuel. At present, two possibilities are seen. The first one is to 'wrap up' all the radioactive waste safely and to bury it at a remote quiet place where it can rest undisturbed until its activity decreases to a tolerable level. The second one is to exploit the excitation energy still present in the nuclear waste. In order to release that energy, the spent fuel is bombarded by high energy particles obtained from an accelerator. The resulting system is called accelerator driven system (ADS). In an ADS, the spent fuel forms a subcritical reactor, which is driven by an external source. (author)
Stability of time-delay systems via Lyapunov functions
Directory of Open Access Journals (Sweden)
Carlos F. Alastruey
2002-01-01
Full Text Available In this paper, a Lyapunov function candidate is introduced for multivariable systems with inner delays, without assuming a priori stability for the nondelayed subsystem. By using this Lyapunov function, a controller is deduced. Such a controller utilizes an input–output description of the original system, a circumstance that facilitates practical applications of the proposed approach.
On stability of fixed points and chaos in fractional systems
Edelman, Mark
2018-02-01
In this paper, we propose a method to calculate asymptotically period two sinks and define the range of stability of fixed points for a variety of discrete fractional systems of the order 0 logistic maps. Based on our analysis, we make a conjecture that chaos is impossible in the corresponding continuous fractional systems.
A real-time BWR stability measurement system
International Nuclear Information System (INIS)
March-Leuba, J.; King, W.T.
1988-01-01
This paper describes the characteristics of a portable, real-time system used for nonperturbational measurements of stability in boiling water reactors. The algorithm used in this system estimates the closed-loop asymptotic decay ratio using only the naturally occurring neutron noise and it is based on the univariate autoregressive methodology. (author)
Criteria for stability of linear dynamical systems with multiple delays ...
African Journals Online (AJOL)
In this study we considered a linear Dynamical system with multiple delays and find suitable conditions on the systems parameters such that for a given initial function, we can define a mapping in a carefully chosen complete metric space on which the mapping has a unique fixed point. An asymptotic stability theory for the ...
On stability of fixed points and chaos in fractional systems.
Edelman, Mark
2018-02-01
In this paper, we propose a method to calculate asymptotically period two sinks and define the range of stability of fixed points for a variety of discrete fractional systems of the order 0chaos is impossible in the corresponding continuous fractional systems.
Stabilization of third-order bilinear systems using constant controls
Directory of Open Access Journals (Sweden)
A. E. Golubev
2014-01-01
Full Text Available This paper deals with the zero equilibrium stabilization for dynamical systems that have control input singularities. A dynamical system with scalar control input is called nonregular if the coefficient of input becomes null on a subset of the phase space that contains the origin. One of the classes of nonregular dynamical systems is represented by bilinear systems. In case of second-order bilinear systems the necessary and sufficient conditions for the zero equilibrium stabilizability are known in the literature. However, in general case the stabilization problem in the presence of control input singularities has not been solved yet.In this note we solve the problem of the zero equilibrium stabilization for the third-order bilinear dynamical systems given in a canonical form. The solution is found in the class of constant controls. The necessary and sufficient conditions are obtained for the zero equilibrium stabilizability of the bilinear systems in question.The dependence of the zero equilibrium stabilizability on system parameter values is analyzed. The general criteria of stabilizability by means of constant controls are given for the bilinear systems in question. In case when all the system parameters have nonzero values the necessary and sufficient stabilizability conditions are proved. The case when some of the parameters are equal to zero is also considered.Further research can be focused on extending the obtained results to a higher-order case of bilinear and affine dynamical systems. The solution of the considered stabilization problem should also be found not only within constant controls but also in a class of state feedbacks, particularly, in the case when stabilizing constant control does not exist.One of the potential application areas for the obtained theoretical results is automatic control of technical plants like unmanned aerial vehicles and mobile robots.
Directory of Open Access Journals (Sweden)
Jeevanandham Arumugam
2009-01-01
Full Text Available In this paper a classical lead-lag power system stabilizer is used for demonstration. The stabilizer parameters are selected in such a manner to damp the rotor oscillations. The problem of selecting the stabilizer parameters is converted to a simple optimization problem with an eigen value based objective function and it is proposed to employ simulated annealing and particle swarm optimization for solving the optimization problem. The objective function allows the selection of the stabilizer parameters to optimally place the closed-loop eigen values in the left hand side of the complex s-plane. The single machine connected to infinite bus system and 10-machine 39-bus system are considered for this study. The effectiveness of the stabilizer tuned using the best technique, in enhancing the stability of power system. Stability is confirmed through eigen value analysis and simulation results and suitable heuristic technique will be selected for the best performance of the system.
Gyroscopic stabilization and indefimite damped systems
DEFF Research Database (Denmark)
Pommer, Christian
a class of feasibel skew-Hermitian matrices A depending on the choise of M. The theory can be applied to dynamical systems of the form x''(t) + ( dD + g G) x'(t) + K x(t) = 0 where G is a skew symmetric gyrocopic matrix, D is a symmetric indefinite damping matrix and K > 0 is a positive definite stiffness......An important issue is how to modify a given unstable matrix in such a way that the resulting matrix is stable. We investigate in general under which condition a matrix M+A is stable,where M is an arbitrary matrix and A is skew-Hermitian. We show that if trace(M) > 0 it is always possible to find...
Robust stabilization of nonlinear systems: The LMI approach
Directory of Open Access Journals (Sweden)
iljak D. D.
2000-01-01
Full Text Available This paper presents a new approach to robust quadratic stabilization of nonlinear systems within the framework of Linear Matrix Inequalities (LMI. The systems are composed of a linear constant part perturbed by an additive nonlinearity which depends discontinuously on both time and state. The only information about the nonlinearity is that it satisfies a quadratic constraint. Our major objective is to show how linear constant feedback laws can be formulated to stabilize this type of systems and, at the same time, maximize the bounds on the nonlinearity which the system can tolerate without going unstable. We shall broaden the new setting to include design of decentralized control laws for robust stabilization of interconnected systems. Again, the LMI methods will be used to maximize the class of uncertain interconnections which leave the overall system connectively stable. It is useful to learn that the proposed LMI formulation “recognizes” the matching conditions by returning a feedback gain matrix for any prescribed bound on the interconnection terms. More importantly, the new formulation provides a suitable setting for robust stabilization of nonlinear systems where the nonlinear perturbations satisfy the generalized matching conditions.
Power system stability enhancement using facts controllers: a review
International Nuclear Information System (INIS)
Abido, M. A
2009-01-01
In recent years, power demand has increased substantially while the expansion of power generation and transmission has been severely limited due to limited resources and environmental restrictions. As a consequence, some transmission lines are heavily loaded and the system stability becomes a power transfer-limiting factor. Flexible AC transmission systems (FACTS) controllers have been mainly used for solving various power system steady state control problems. However, recent studies reveal that FACTS controllers could be employed to enhance power system stability in addition to their main function of power flow control. The literature shows an increasing interest in this subject for the last two decades, where the enhancement of system stability using FACTS controllers has been extensively investigated. This paper presents a comprehensive review on the research and developments in the power system stability enhancement using FACTS damping controllers. Several technical issues related to FACTS installations have been highlighted and performance comparison of different FACTS controllers has been discussed. In addition, some of the utility experience, real-world installations, and semiconductor technology development have been reviewed and summarized. Applications of FACTS to other power system studies have also been discussed. About two hundred twenty seven research publications have been classified and appended for a quick reference. (author)
Differentiable dynamical systems an introduction to structural stability and hyperbolicity
Wen, Lan
2016-01-01
This is a graduate text in differentiable dynamical systems. It focuses on structural stability and hyperbolicity, a topic that is central to the field. Starting with the basic concepts of dynamical systems, analyzing the historic systems of the Smale horseshoe, Anosov toral automorphisms, and the solenoid attractor, the book develops the hyperbolic theory first for hyperbolic fixed points and then for general hyperbolic sets. The problems of stable manifolds, structural stability, and shadowing property are investigated, which lead to a highlight of the book, the \\Omega-stability theorem of Smale. While the content is rather standard, a key objective of the book is to present a thorough treatment for some tough material that has remained an obstacle to teaching and learning the subject matter. The treatment is straightforward and hence could be particularly suitable for self-study. Selected solutions are available electronically for instructors only. Please send email to textbooks@ams.org for more informatio...
A digital intensity stabilization system for HeNe laser
Wei, Zhimeng; Lu, Guangfeng; Yang, Kaiyong; Long, Xingwu; Huang, Yun
2012-02-01
A digital intensity stabilization system for HeNe laser is developed. Based on a switching power IC to design laser power supply and a general purpose microcontroller to realize digital PID control, the system constructs a closed loop to stabilize the laser intensity by regulating its discharge current. The laser tube is made of glass ceramics and its integrated structure is steady enough to eliminate intensity fluctuations at high frequency and attenuates all intensity fluctuations, and this makes it easy to tune the control loop. The control loop between discharge current and photodiode voltage eliminates the long-term drifts. The intensity stability of the HeNe laser with this system is 0.014% over 12 h.
Symmetry and stability of open quantum systems
International Nuclear Information System (INIS)
Scutaru, H.
1979-01-01
The presentation of the thesis involves an introduction and six chapters. Chapter 1 presents notions and results used in the other chpaters. Chapters 2-6 present our results which are focused on two notions: generalized observable and dynamic semigroup. These notions characterize a specific research domain (set up during the last 10 years) which is currently called quantum mechanics of open systems. The two notions (generalized observable and dynamic semigroup) are mathematically correlated. They belong to the set of completely positive linear applications among observable algebras. This fact, associated with that formulation of quantum mechanics according to which it is a special case of quantum mechanics namely, that for which the observable algebra is commutative, help to understand the similar essence of the results presented in chapter 2-6. Thus, the natural mathematical background has been achieved for our results; it is represented by that category whose objects are the observable algebras and whose morphisms are completely positive linear contractions generating unity within unity. These ideas are extensively presented in the introduction. The fact that the relations between classical mechanics and quantum mechanics can be rigorously treated as positive linear applications between classical observable algebras commutative and quantum observable algebras non-commutative, which are automatically fully positive, has been initially shown in our paper. (author)
Robust Stabilization of Nonlinear Systems with Uncertain Varying Control Coefficient
Directory of Open Access Journals (Sweden)
Zaiyue Yang
2014-01-01
Full Text Available This paper investigates the stabilization problem for a class of nonlinear systems, whose control coefficient is uncertain and varies continuously in value and sign. The study emphasizes the development of a robust control that consists of a modified Nussbaum function to tackle the uncertain varying control coefficient. By such a method, the finite-time escape phenomenon has been prevented when the control coefficient is crossing zero and varying its sign. The proposed control guarantees the asymptotic stabilization of the system and boundedness of all closed-loop signals. The control performance is illustrated by a numerical simulation.
Stability of DC Voltage Droop Controllers in VSC HVDC Systems
DEFF Research Database (Denmark)
Thams, Florian; Suul, Jon Are; D’Arco, Salvatore
2015-01-01
Future multi-terminal HVDC systems are expected to utilize dc voltage droop controllers and several control implementations have been proposed in literature. This paper first classifies possible dc droop implementations in a simple framework. Then, the small-signal stability of a VSC-based conver......Future multi-terminal HVDC systems are expected to utilize dc voltage droop controllers and several control implementations have been proposed in literature. This paper first classifies possible dc droop implementations in a simple framework. Then, the small-signal stability of a VSC...
Indefinite damping in mechanical systems and gyroscopic stabilization
DEFF Research Database (Denmark)
Kliem, Wolfhard; Pommer, Christian
2009-01-01
This paper deals with gyroscopic stabilization of the unstable system Mx + D(x) over dot + K-x = 0, with positive definite mass and stiffness matrices M and K, respectively, and an indefinite damping matrix D. The main question if for which skew-symmetric matrices G the system Mx (D+ G)(x) over dot...... + K-x = 0 can become stable? After investigating special cases we find an appropriat solution of the Lyapunov matrix equation for the general case. Examples show the deviation of the stability limit found by the Lyapunov method from the exact value....
On the stability of boundary layers in gas mantle systems
International Nuclear Information System (INIS)
Ohlsson, D.
1978-10-01
In this thesis a systematic investigation of the stability properties of the partially ionized boundary regions of gas mantle systems for a large class of dissipative magneto-hydrodynamic modes is presented. In the partially ionized boundary regions of gas mantle systems several strong stabilizing mechanisms arise due to coupling between various dissipative effects in certain parameter regions. The presence of neutral gas strongly enhances the stabilizing effects in a dual fashion. First in an indirect way by cooling the edge region and second in a direct way by enhancing viscous and heat conduction effects. It has, however, to be pointed out that exceptions from this general picture may be found. The stabilizing influence of neutral gas on a large class of electrostatic as well as electromagnetic modes in the boundary regions of gas blanket systems is contrary to what has been found in low density weakly ionized plasmas. In these latter cases presence of neutral gas has even been found to be responsible for the onset of entirely new classes of instabilities. Thus there is no universal stabilizing or destabilizing effect associated with plasma-neutral gas interaction effects. (author)
Congestion management enhancing transient stability of power systems
International Nuclear Information System (INIS)
Esmaili, Masoud; Shayanfar, Heidar Ali; Amjady, Nima
2010-01-01
In a competitive electricity market, where market parties try to maximize their profits, it is necessary to keep an acceptable level of power system security to retain the continuity of electricity services to customers at a reasonable cost. Congestion in a power system is turned up due to network limits. After relieving congestion, the network may be operated with a reduced transient stability margin because of increasing the contribution of risky participants. In this paper, a novel congestion management method based on a new transient stability criterion is introduced. Using the sensitivity of corrected transient stability margin with respect to generations and demands, the proposed method so alleviates the congestion that the network can more retain its transient security compared with earlier methods. The proposed transient stability index is constructed considering the likelihood of credible faults. Indeed, market parties participate by their security-effective bids rather than raw bids. Results of testing the proposed method along with the earlier ones on the New-England test system elaborate the efficiency of the proposed method from the viewpoint of providing a better transient stability margin with a lower security cost. (author)
PWL approximation of nonlinear dynamical systems, part I: structural stability
International Nuclear Information System (INIS)
Storace, M; De Feo, O
2005-01-01
This paper and its companion address the problem of the approximation/identification of nonlinear dynamical systems depending on parameters, with a view to their circuit implementation. The proposed method is based on a piecewise-linear approximation technique. In particular, this paper describes the approximation method and applies it to some particularly significant dynamical systems (topological normal forms). The structural stability of the PWL approximations of such systems is investigated through a bifurcation analysis (via continuation methods)
AC system stabilization via phase shift transformer with thyristor commutation
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Jose Carlos de; Guimaraes, Geraldo Caixeta; Moraes, Adelio Jose [Uberlandia Univ., MG (Brazil); Abreu, Jose Policarpo G. de [Escola Federal de Engenharia de Itajuba, MG (Brazil); Oliveira, Edimar Jose de [Juiz de Fora Univ., MG (Brazil)
1994-12-31
This article aims to present initially the constructive and operative forms of a phase-shift autotransformer which provides both magnitude and phase angle change through thyristor commutation, including a technic to reduce the number of thyristors. Following, it is proposed a control system to make such equipment an efficient AC system stabilizing tool. It is presented some simulation results to show the operation of this transformer in an electrical system. (author) 3 refs., 11 figs., 3 tabs.
Stabilization of discrete-time LTI positive systems
Directory of Open Access Journals (Sweden)
Krokavec Dušan
2017-12-01
Full Text Available The paper mitigates the existing conditions reported in the previous literature for control design of discrete-time linear positive systems. Incorporating an associated structure of linear matrix inequalities, combined with the Lyapunov inequality guaranteing asymptotic stability of discrete-time positive system structures, new conditions are presented with which the state-feedback controllers and the system state observers can be designed. Associated solutions of the proposed design conditions are illustrated by numerical illustrative examples.
Passivity Based Stabilization of Non-minimum Phase Nonlinear Systems
Czech Academy of Sciences Publication Activity Database
Travieso-Torres, J.C.; Duarte-Mermoud, M.A.; Zagalak, Petr
2009-01-01
Roč. 45, č. 3 (2009), s. 417-426 ISSN 0023-5954 R&D Projects: GA ČR(CZ) GA102/07/1596 Institutional research plan: CEZ:AV0Z10750506 Keywords : nonlinear systems * stabilisation * passivity * state feedback Subject RIV: BC - Control Systems Theory Impact factor: 0.445, year: 2009 http://library.utia.cas.cz/separaty/2009/AS/zagalak-passivity based stabilization of non-minimum phase nonlinear systems.pdf
Wavelength stabilized multi-kW diode laser systems
Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens
2015-03-01
We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.
A Recursive Fuzzy System for Efficient Digital Image Stabilization
Directory of Open Access Journals (Sweden)
Nikolaos Kyriakoulis
2008-01-01
Full Text Available A novel digital image stabilization technique is proposed in this paper. It is based on a fuzzy Kalman compensation of the global motion vector (GMV, which is estimated in the log-polar plane. The GMV is extracted using four local motion vectors (LMVs computed on respective subimages in the logpolar plane. The fuzzy Kalman system consists of a fuzzy system with the Kalman filter's discrete time-invariant definition. Due to this inherited recursiveness, the output results into smoothed image sequences. The proposed stabilization system aims to compensate any oscillations of the frame absolute positions, based on the motion estimation in the log-polar domain, filtered by the fuzzy Kalman system, and thus the advantages of both the fuzzy Kalman system and the log-polar transformation are exploited. The described technique produces optimal results in terms of the output quality and the level of compensation.
Directory of Open Access Journals (Sweden)
Lilia Suárez Batista
1999-08-01
Full Text Available Los estudios de estabilidad de los reactivos fabricados a partir de anticuerpos monoclonales (AcM de origen murino, son esenciales para obtener resultados adecuados en su aplicación práctica y constituyen un requisito indispensable en las buenas prácticas de producción, lo que permite establecer adecuadamente la vida de estos productos. Se usaron los métodos de hemaglutinación recomendados para medir la actividad biológica del producto Hemo-CIM anti-A expresada en la potencia, la avidez y la intensidad frente a un panel de eritrocitos del grupo A1 y A2B, que se incluyó por su baja expresión del antígeno A para demostrar más efectivamente cualquier deterioro que sufriera el reactivo. Se estableció que la vida útil del reactivo hemoclasificador producido en el Centro de Inmunología Molecular es de 2 años y se determinó que la temperatura de almacenamiento del producto está entre 2 y 8 °C. Además, los lotes que se colocaron diariamente en la meseta de trabajo durante 5 horas a 21 °C a partir del mes 0 y a los 8, 14 y 22 meses después de su producción, simulando las condiciones a la que los usuarios someten a estos reactivos, mantuvieron las características de calidad que se requieren para su uso, lo que demostró que con este producto se puede trabajar en esas condicionesThe stability studies of the reactives obtained from monoclonal antibodies of murine origin are essential to attain adequate results in their practical application and are also an indispensable requirement for good production practices, which allow to establish the life of these products adequately. The hemagglutination methods were used to measure the biological activity of the anti-A Hemo-CIM product expressed in power, avidity and intesity against a set of erythrocytes of group A1 and A2B that was included due to its low antigen A expression to show more effectively any deterioration suffered by the reagent. It was determined that the useful life of the
Harmonics and voltage stability analysis in power systems including
Indian Academy of Sciences (India)
In this study, non-sinusoidal quantities and voltage stability, both known as power quality criteria, are examined together in detail. The widespread use of power electronics elements cause the existence of signiﬁcant non-sinusoidal quantities in the system. These non-sinusoidal quantities can create serious harmonic ...
Stability analysis of nonlinear systems with slope restricted nonlinearities.
Liu, Xian; Du, Jiajia; Gao, Qing
2014-01-01
The problem of absolute stability of Lur'e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP) lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.
Stability Analysis of Nonlinear Systems with Slope Restricted Nonlinearities
Directory of Open Access Journals (Sweden)
Xian Liu
2014-01-01
Full Text Available The problem of absolute stability of Lur’e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.
Asymptotic stability results for retarded differential systems | Igobi ...
African Journals Online (AJOL)
... matrices are used in formulating a Lyapunov functional. The introduction of convex set segment of a symmetric matrix is explored to establish boundedness of the first derivative of the formulated functional. The integral-differential equation is utilized in computing the maximum delay interval for the system to attain stability.
Stability of Rotor Systems: A Complex Modelling Approach
DEFF Research Database (Denmark)
Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob
1996-01-01
A large class of rotor systems can be modelled by a complex matrix differential equation of secondorder. The angular velocity of the rotor plays the role of a parameter. We apply the Lyapunov matrix equation in a complex setting and prove two new stability results which are compared...
Stability Analysis for Multi-Parameter Linear Periodic Systems
DEFF Research Database (Denmark)
Seyranian, A.P.; Solem, Frederik; Pedersen, Pauli
1999-01-01
This paper is devoted to stability analysis of general linear periodic systems depending on real parameters. The Floquet method and perturbation technique are the basis of the development. We start out with the first and higher-order derivatives of the Floquet matrix with respect to problem...
Robust stabilization of nonlinear systems by quantized and ternary control
Persis, Claudio De
2009-01-01
Results on the problem of stabilizing a nonlinear continuous-time minimum-phase system by a finite number of control or measurement values are presented. The basic tool is a discontinuous version of the so-called semi-global backstepping lemma. We derive robust practical stabilizability results by
Stochastic stability of four-wheel-steering system
International Nuclear Information System (INIS)
Huang Dongwei; Wang Hongli; Zhu Zhiwen; Feng Zhang
2007-01-01
A four-wheel-steering system subjected to white noise excitations was reduced to a two-degree-of-freedom quasi-non-integrable-Hamiltonian system. Subsequently we obtained an one-dimensional Ito stochastic differential equation for the averaged Hamiltonian of the system by using the stochastic averaging method for quasi-non-integrable-Hamiltonian systems. Thus, the stochastic stability of four-wheel-steering system was analyzed by analyzing the sample behaviors of the averaged Hamiltonian at the boundary H = 0 and calculating its Lyapunov exponent. An example given at the end demonstrated that the conclusion obtained is of considerable significance
Junaidi, Agus; Hamid, K. Abdul
2018-03-01
This paper will discuss the use of optimal control and Power System Stabilizer (PSS) in improving the oscillation of electric power system. Oscillations in the electric power system can occur due to the sudden release of the load (Switcing-Off). The oscillation of an unstable system for a long time causes the equipment to work in an interruption. To overcome this problem, a control device is required that can work effectively in repairing the oscillation. The power system is modeled from the Single Machine Infinite Bus Model (SMIB). The state space equation is used to mathematically model SMIB. SMIB system which is a plant will be formed togetherness state variables (State-Space), using riccati equation then determined the optimal gain as controller plant. Plant is also controlled by Power Stabilizer System using phase compensation method. Using Matlab Software based simulation will be observed response of rotor speed change and rotor angle change for each of the two controlling methods. Simulation results using the Simulink-MATLAB 6.1 software will compare the analysis of the plant state in Open loop state and use the controller. The simulation response shows that the optimal control and PSS can improve the stability of the power system in terms of acceleration to achieve settling-time and Over Shoot improvement. From the results of both methods are able to improve system performance.
A field experiment on power line stabilization by SMES system
International Nuclear Information System (INIS)
Irie, F.; Takeo, M.; Sato, S.; Katahira, O.; Fukui, F.; Takamatsu, M.
1992-01-01
In this paper field experiments on stabilization of a hydro power plant by a SMES system are reported, where a generator having a rating of 60 kW at 3.3kV is connected to a 6.6kV power distribution line. The SMES system is composed of two 30kVA GTO convertors and a superconducting magnet system with an energy of 30kJ at 100A. Experiments of stabilization for the generator fluctuation caused by a sudden insertion of inductors in the line are successfully performed for some control modes. The value of the SMES system to compensate for a short period voltage dip is also confirmed
Stabilization of computational procedures for constrained dynamical systems
Park, K. C.; Chiou, J. C.
1988-01-01
A new stabilization method of treating constraints in multibody dynamical systems is presented. By tailoring a penalty form of the constraint equations, the method achieves stabilization without artificial damping and yields a companion matrix differential equation for the constraint forces; hence, the constraint forces are obtained by integrating the companion differential equation for the constraint forces in time. A principal feature of the method is that the errors committed in each constraint condition decay with its corresponding characteristic time scale associated with its constraint force. Numerical experiments indicate that the method yields a marked improvement over existing techniques.
QFT Framework for Robust Tuning of Power System Stabilizers
DEFF Research Database (Denmark)
Alavi, Seyyed Mohammad Mahdi; Izadi-Zamanabadi, Roozbeh
2005-01-01
This paper discusses the use of conventional quantitative feedback design for Power System Stabilizer (PSS). An appropriate control structure of the PSS that is directly applicable to PSS, is described. Two desired performances are also proposed in order to achieve an overall improvement in damping...... and robustness. The efficiency of the proposed method is demonstrated on Single Machine Infinite Bus (SMIB) power system with level of uncertainty....
The Use of Nuclear Generation to Provide Power System Stability
Heather Wyman-Pain; Yuankai Bian; Furong Li
2016-01-01
The decreasing use of fossil fuel power stations has a negative effect on the stability of the electricity systems in many countries. Nuclear power stations have traditionally provided minimal ancillary services to support the system but this must change in the future as they replace fossil fuel generators. This paper explains the development of the four most popular reactor types still in regular operation across the world which have formed the basis for most reactor dev...
Stability properties of cold blanket systems for current driven modes
International Nuclear Information System (INIS)
Ohlsson, D.
1977-12-01
The stability problem of the boundary regions of cold blanket systems with induced currents parallel to the lines of force is formulated. Particular interest is focused on two types of modes: first electrostatic modes driven by the combined effects of a transverse resistivity gradient due to a spatially non-uniform electron temperature and a longitudinal current, second electromagnetic kink like modes driven by the torque arising from a transverse current density gradient and magnetic field perturbations. It is found that the combination of various dissipative and neutral gas effects introduces strong stabilizing effects within specific parameter ranges. For particular steady-state models investigated it is shown that these effects become of importance in laboratory plasmas at relatively high densities, low temperatures and moderate magnetic field strengths. Stability diagrams based on specific steady-state cold plasma blanket models will be presented
Stability Analysis of Periodic Systems by Truncated Point Mappings
Guttalu, R. S.; Flashner, H.
1996-01-01
An approach is presented deriving analytical stability and bifurcation conditions for systems with periodically varying coefficients. The method is based on a point mapping(period to period mapping) representation of the system's dynamics. An algorithm is employed to obtain an analytical expression for the point mapping and its dependence on the system's parameters. The algorithm is devised to derive the coefficients of a multinominal expansion of the point mapping up to an arbitrary order in terms of the state variables and of the parameters. Analytical stability and bifurcation condition are then formulated and expressed as functional relations between the parameters. To demonstrate the application of the method, the parametric stability of Mathieu's equation and of a two-degree of freedom system are investigated. The results obtained by the proposed approach are compared to those obtained by perturbation analysis and by direct integration which we considered to the "exact solution". It is shown that, unlike perturbation analysis, the proposed method provides very accurate solution even for large valuesof the parameters. If an expansion of the point mapping in terms of a small parameter is performed the method is equivalent to perturbation analysis. Moreover, it is demonstrated that the method can be easily applied to multiple-degree-of-freedom systems using the same framework. This feature is an important advantage since most of the existing analysis methods apply mainly to single-degree-of-freedom systems and their extension to higher dimensions is difficult and computationally cumbersome.
Asymptotic stabilization of nonlinear systems using state feedback
International Nuclear Information System (INIS)
D'Attellis, Carlos
1990-01-01
This paper studies the design of state-feedback controllers for the stabilization of single-input single-output nonlinear systems x = f(x) + g(x)u, y = h(x). Two approaches for the stabilization problem are given; the asymptotic stability is achieved by means of: a) nonlinear state feedback: two nonlinear feedbacks are used; the first separates the system in a controllable linear part and in the zeros-dynamic part. The second feedback generates an asymptotically stable equilibrium on the manifold where this dynamics evolves; b) nonlinear dynamic feedback: conditions are established under which the system can follow the output of a completely controllable bilinear system which uses bounded controls. This fact enables the system to reach, using bounded controls too, a desired output value in finite time. As this value corresponds to a state that lays in the attraction basin of a stable equilibrium with the same output, the system evolves to that point. The two methods are illustrated by examples. (Author) [es
An Effective Distributed Model for Power System Transient Stability Analysis
Directory of Open Access Journals (Sweden)
MUTHU, B. M.
2011-08-01
Full Text Available The modern power systems consist of many interconnected synchronous generators having different inertia constants, connected with large transmission network and ever increasing demand for power exchange. The size of the power system grows exponentially due to increase in power demand. The data required for various power system applications have been stored in different formats in a heterogeneous environment. The power system applications themselves have been developed and deployed in different platforms and language paradigms. Interoperability between power system applications becomes a major issue because of the heterogeneous nature. The main aim of the paper is to develop a generalized distributed model for carrying out power system stability analysis. The more flexible and loosely coupled JAX-RPC model has been developed for representing transient stability analysis in large interconnected power systems. The proposed model includes Pre-Fault, During-Fault, Post-Fault and Swing Curve services which are accessible to the remote power system clients when the system is subjected to large disturbances. A generalized XML based model for data representation has also been proposed for exchanging data in order to enhance the interoperability between legacy power system applications. The performance measure, Round Trip Time (RTT is estimated for different power systems using the proposed JAX-RPC model and compared with the results obtained using traditional client-server and Java RMI models.
Handbook of electrical power system dynamics modeling, stability, and control
Eremia, Mircea
2013-01-01
Complete guidance for understanding electrical power system dynamics and blackouts This handbook offers a comprehensive and up-to-date treatment of power system dynamics. Addressing the full range of topics, from the fundamentals to the latest technologies in modeling, stability, and control, Handbook of Electrical Power System Dynamics provides engineers with hands-on guidance for understanding the phenomena leading to blackouts so they can design the most appropriate solutions for a cost-effective and reliable operation. Focusing on system dynamics, the book details
Stability of detecting system using NaI(Tl)
International Nuclear Information System (INIS)
Zhuo Yunshang; Lei Zhangyun; Zen Yu; Gong Hua
1996-01-01
A detecting system using NaI(Tl) is widely used in research and industry of nuclear science and other fields. For providing the high accuracy and working well under inclement environment, the stability of detecting system using NaI(Tl) is very important. The variation of environment temperature, the change of counting rate and long time continuous working of detector will cause un-negligible effect on the measurement. Three approaches were used. They are: 1) temperature control (It makes the effect of the variation of environment temperature on the measurement negligible.); 2) spectrum stabilizing (It adjust the peak position of the spectrum when the counting rate changes.); and 3) auto-checking and adjusting (It adjusts the drift of the NaI(Tl) detecting system when it works continuously)
Distributed-Order Dynamic Systems Stability, Simulation, Applications and Perspectives
Jiao, Zhuang; Podlubny, Igor
2012-01-01
Distributed-order differential equations, a generalization of fractional calculus, are of increasing importance in many fields of science and engineering from the behaviour of complex dielectric media to the modelling of nonlinear systems. This Brief will broaden the toolbox available to researchers interested in modeling, analysis, control and filtering. It contains contextual material outlining the progression from integer-order, through fractional-order to distributed-order systems. Stability issues are addressed with graphical and numerical results highlighting the fundamental differences between constant-, integer-, and distributed-order treatments. The power of the distributed-order model is demonstrated with work on the stability of noncommensurate-order linear time-invariant systems. Generic applications of the distributed-order operator follow: signal processing and viscoelastic damping of a mass–spring set up. A new general approach to discretization of distributed-order derivatives and integrals ...
Fixed-Time Stability of the Hydraulic Turbine Governing System
Directory of Open Access Journals (Sweden)
Caoyuan Ma
2018-01-01
Full Text Available This paper studies the problem of fixed-time stability of hydraulic turbine governing system with the elastic water hammer nonlinear model. To control and improve the quality of hydraulic turbine governing system, a new fixed-time control strategy is proposed, which can stabilize the water turbine governing system within a fixed time. Compared with the finite-time control strategy where the convergence rate depends on the initial state, the settling time of the fixed-time control scheme can be adjusted to the required value regardless of the initial conditions. Finally, we numerically show that the fixed-time control is more effective than and superior to the finite-time control.
Stability properties of a general class of nonlinear dynamical systems
Gléria, I. M.; Figueiredo, A.; Rocha Filho, T. M.
2001-05-01
We establish sufficient conditions for the boundedness of the trajectories and the stability of the fixed points in a class of general nonlinear systems, the so-called quasi-polynomial vector fields, with the help of a natural embedding of such systems in a family of generalized Lotka-Volterra (LV) equations. A purely algebraic procedure is developed to determine such conditions. We apply our method to obtain new results for LV systems, by a reparametrization in time variable, and to study general nonlinear vector fields, originally far from the LV format.
Stability properties of a general class of nonlinear dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Gleria, I.M. [Filho Instituto de Fisica, Universidade de Brasilia, Campus Universitario Darcy Ribeiro, Brasilia (Brazil). E-mail: iram@ucb.br; Figueiredo, A. [Filho Instituto de Fisica, Universidade de Brasilia, Campus Universitario Darcy Ribeiro, Brasilia (Brazil). E-mail: annibal@helium.fis.unb.br; Rocha, T.M. [Filho Instituto de Fisica, Universidade de Brasilia, Campus Universitario Darcy Ribeiro, Brasilia (Brazil). E-mail: marciano@helium.fis.unb.br
2001-05-04
We establish sufficient conditions for the boundedness of the trajectories and the stability of the fixed points in a class of general nonlinear systems, the so-called quasi-polynomial vector fields, with the help of a natural embedding of such systems in a family of generalized Lotka-Volterra (LV) equations. A purely algebraic procedure is developed to determine such conditions. We apply our method to obtain new results for LV systems, by a reparametrization in time variable, and to study general nonlinear vector fields, originally far from the LV format. (author)
Optimal Subinterval Selection Approach for Power System Transient Stability Simulation
Directory of Open Access Journals (Sweden)
Soobae Kim
2015-10-01
Full Text Available Power system transient stability analysis requires an appropriate integration time step to avoid numerical instability as well as to reduce computational demands. For fast system dynamics, which vary more rapidly than what the time step covers, a fraction of the time step, called a subinterval, is used. However, the optimal value of this subinterval is not easily determined because the analysis of the system dynamics might be required. This selection is usually made from engineering experiences, and perhaps trial and error. This paper proposes an optimal subinterval selection approach for power system transient stability analysis, which is based on modal analysis using a single machine infinite bus (SMIB system. Fast system dynamics are identified with the modal analysis and the SMIB system is used focusing on fast local modes. An appropriate subinterval time step from the proposed approach can reduce computational burden and achieve accurate simulation responses as well. The performance of the proposed method is demonstrated with the GSO 37-bus system.
The pointer basis and the feedback stabilization of quantum systems
International Nuclear Information System (INIS)
Li, L; Chia, A; Wiseman, H M
2014-01-01
The dynamics for an open quantum system can be ‘unravelled’ in infinitely many ways, depending on how the environment is monitored, yielding different sorts of conditioned states, evolving stochastically. In the case of ideal monitoring these states are pure, and the set of states for a given monitoring forms a basis (which is overcomplete in general) for the system. It has been argued elsewhere (Atkins et al 2005 Europhys. Lett. 69 163) that the ‘pointer basis’ as introduced by Zurek et al (1993 Phys. Rev. Lett. 70 1187), should be identified with the unravelling-induced basis which decoheres most slowly. Here we show the applicability of this concept of pointer basis to the problem of state stabilization for quantum systems. In particular we prove that for linear Gaussian quantum systems, if the feedback control is assumed to be strong compared to the decoherence of the pointer basis, then the system can be stabilized in one of the pointer basis states with a fidelity close to one (the infidelity varies inversely with the control strength). Moreover, if the aim of the feedback is to maximize the fidelity of the unconditioned system state with a pure state that is one of its conditioned states, then the optimal unravelling for stabilizing the system in this way is that which induces the pointer basis for the conditioned states. We illustrate these results with a model system: quantum Brownian motion. We show that even if the feedback control strength is comparable to the decoherence, the optimal unravelling still induces a basis very close to the pointer basis. However if the feedback control is weak compared to the decoherence, this is not the case. (paper)
Research on Handling Stability of Steering-by-wire System
Directory of Open Access Journals (Sweden)
Yuan Ying
2017-01-01
Full Text Available The main function of steer-by-wire (SBW system are improving steering characteristics, security and stability of the vehicle. In this paper, the variable steering ratio of SBW system is analyzed, and the method of steering ratio based on fuzzy control and neural network are researched. In order to solve the actual working condition, the wheel angle may not reach the expected value, this paper establishes a twodegree-of-freedom (2-DOF vehicle model, and a Matlab/Simulink simulation model, in which a control strategy based on PID controller is put forward to control the front wheel steering angle. Simulation results show that proposed control strategy based on fuzzy neural network can effectively reduce lateral deviation and improve the handling stability and comfortability of the vehicle.
Linear Quantum Systems: Non-Classical States and Robust Stability
2016-06-29
modulation and entanglement in a compound gradient echo memory, Physical Review A 93(2) 023809 2016. We present a theoretical model for a Kerr...Carvalho, M. Hedges and M R James, Analysis of the operation of gradient echo memories using a quantum input-output model, New Journal of Physics , 15...new structured uncertainty methods that ensure robust stability of quantum systems based on nominal linear models, and (v) physical realizability
Stability of Bifurcating Stationary Solutions of the Artificial Compressible System
Teramoto, Yuka
2018-02-01
The artificial compressible system gives a compressible approximation of the incompressible Navier-Stokes system. The latter system is obtained from the former one in the zero limit of the artificial Mach number ɛ which is a singular limit. The sets of stationary solutions of both systems coincide with each other. It is known that if a stationary solution of the incompressible system is asymptotically stable and the velocity field of the stationary solution satisfies an energy-type stability criterion, then it is also stable as a solution of the artificial compressible one for sufficiently small ɛ . In general, the range of ɛ shrinks when the spectrum of the linearized operator for the incompressible system approaches to the imaginary axis. This can happen when a stationary bifurcation occurs. It is proved that when a stationary bifurcation from a simple eigenvalue occurs, the range of ɛ can be taken uniformly near the bifurcation point to conclude the stability of the bifurcating solution as a solution of the artificial compressible system.
An alternative soil nailing system for slope stabilization: Akarpiles
Lim, Chun-Lan; Chan, Chee-Ming
2017-11-01
This research proposes an innovative solution for slope stabilization with less environmental footprint: AKARPILES. In Malaysia, landslide has become common civil and environmental problems that cause impacts to the economy, safety and environment. Therefore, effective slope stabilization method helps to improve the safety of public and protect the environment. This study focused on stabilizing surfacial slope failure. The idea of AKARPILES was generated from the tree roots system in slope stabilization. After the piles are installed in the slope and intercepting the slip plane, grout was pumped in and discharged through holes on the piles. The grout then filled the pores in the soil with random flow within the slip zone. SKW mixture was used to simulate the soil slope. There were two designs being proposed in this study and the prototypes were produced by a 3D printer. Trial mix of the grout was carried out to obtain the optimum mixing ratio of bentonite: cement: water. A series of tests were conducted on the single-pile-reinforced slope under vertical slope crest loading condition considering different slope gradients and nail designs. Parameters such as ultimate load, failure time and failure strain were recorded and compared. As comparison with the unreinforced slope, both designs of AKARPILES showed better but different performances in the model tests.
Dynamical stability of the holographic system with two competing orders
Energy Technology Data Exchange (ETDEWEB)
Du, Yiqiang [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Lan, Shan-Quan [Department of Physics, Beijing Normal University,Beijing 100875 (China); Tian, Yu [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Science,Beijing 100190 (China); Zhang, Hongbao [Department of Physics, Beijing Normal University,Beijing 100875 (China); Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)
2016-01-04
We investigate the dynamical stability of the holographic system with two order parameters, which exhibits competition and coexistence of condensations. In the linear regime, we have developed the gauge dependent formalism to calculate the quasi-normal modes by gauge fixing, which turns out be considerably convenient. Furthermore, by giving different Gaussian wave packets as perturbations at the initial time, we numerically evolve the full nonlinear system until it arrives at the final equilibrium state. Our results show that the dynamical stability is consistent with the thermodynamical stability. Interestingly, the dynamical evolution, as well as the quasi-normal modes, shows that the relaxation time of this model is generically much longer than the simplest holographic system. We also find that the late time behavior can be well captured by the lowest lying quasi-normal modes except for the non-vanishing order towards the single ordered phase. To our knowledge, this exception is the first counter example to the general belief that the late time behavior towards a final stable state can be captured by the lowest lying quasi-normal modes. In particular, a double relation is found for this exception in certain cases.
Modeling and Stability Analysis of Wedge Clutch System
Directory of Open Access Journals (Sweden)
Jian Yao
2014-01-01
Full Text Available A wedge clutch with unique features of self-reinforcement and small actuation force was designed. Its self-reinforcement feature, associated with different factors such as the wedge angle and friction coefficient, brings different dynamics and unstable problem with improper parameters. To analyze this system, a complete mathematical model of the actuation system is built, which includes the DC motor, the wedge mechanism, and the actuated clutch pack. By considering several nonlinear factors, such as the slip-stick friction and the contact or not of the clutch plates, the system is piecewise linear. Through the stability analysis of the linearized system in clutch slipping phase, the stable condition of the designed parameters is obtained as α>arctan(μc. The mathematical model of the actuation system is validated by prototype testing. And with the validated model, the system dynamics in both stable and unstable conditions is investigated and discussed in engineering side.
Stabilization of Electromagnetic Suspension System Behavior by Genetic Algorithm
Directory of Open Access Journals (Sweden)
Abbas Najar Khoda Bakhsh
2012-07-01
Full Text Available Electromagnetic suspension system with a nonlinear and unstable behavior, is used in maglev trains. In this paper a linear mathematical model of system is achieved and the state feedback method is used to improve the system stability. The control coefficients are tuned by two different methods, Riccati and a new method based on Genetic algorithm. In this new proposed method, we use Genetic algorithm to achieve the optimum values of control coefficients. The results of the system simulation by Matlab indicate the effectiveness of new proposed system. When a new reference of air gap is needed or a new external force is added, the proposed system could omit the vibration and shake of the train coupe and so, passengers feel more comfortable.
Directory of Open Access Journals (Sweden)
Martín Morales A
2010-12-01
Full Text Available INTRODUCCIÓN Los farmacéuticos comunitarios pueden ser un importante primer punto de contacto con los pacientes con disfunción eréctil (DE, pero hasta la fecha no hay ningún estudio sobre las características de los hombres que acuden a un farmacéutico solicitando consejo o tratamiento para la DE. OBJETIVO Caracterizar los perfiles de los hombres que solicitan tratamiento para la DE en la farmacia, con o sin receta de inhibidores de la fosfodiesterasa tipo 5 (iPDE5. MÉTODOS Entre septiembre y noviembre de 2008 se realizó un estudio observacional, transversal y multicéntrico en farmacias comunitarias de España. De aquellos hombres que solicitaban consejo o tratamiento para la DE, cada investigador reclutó un paciente que tenía receta médica de iPDE5 y otro que acudía sin receta médica. Los farmacéuticos del estudio completaron un cuestionario de datos demográficos, clínicos y conductuales del paciente, incluido el Cuestionario de salud sexual para varones (Sexual Health Inventory for Men. VARIABLES PRINCIPALES Características demográficas y respuestas a los cuestionarios. RESULTADOS 574 farmacéuticos seleccionaron a 1.147 pacientes, de los cuales 1.113 fueron incluidos en el análisis. No se observaron diferencias estadísticas entre los grupos en cuanto al peso, la hipertensión, la diabetes mellitus, la hipercolesterolemia, la dislipidemia, la depresión o el estrés. Tampoco se observaron diferencias estadísticas respecto a la gravedad de la DE (p = 0,7892 ni a la proporción de hombres sin DE en cada grupo (p = 0,5755. En ambos grupos, los pacientes habían presentado síntomas de DE durante una media de veintiséis meses antes de la primera consulta a un profesional sanitario. Para el 60,2% de los pacientes incluidos en el grupo sin receta, la visita a la farmacia fue la primera ocasión en la que habían hablado de su DE con un profesional sanitario, y el 50% de aquellos que habían hablado previamente de la DE lo hab
Directory of Open Access Journals (Sweden)
Caridad M García Peña
2013-03-01
Full Text Available Introducción: las gotas orales de Paracetamol, están indicadas a la población infantil hasta los 5 años para el alivio de la fiebre, dolor de cabeza, dolores dentales y proporciona alivio sintomático del resfriado común. Objetivo: validar dos métodos analíticos, para el control de la calidad y el estudio de estabilidad y estudiar la estabilidad de las gotas orales de producción nacional. Métodos: para cuantificar el principio activo para el estudio de estabilidad, la separación se realizó a través de una columna cromatográfica Lichrosorb RP - 18 (5µm (250 x 4 mm, con detección ultravioleta a 243 nm, empleando una fase móvil compuesta por Agua destilada: Metanol (3:1. Mientras que el método para el control de la calidad se utilizó un Espectrofotómetro SPECTRONIC GENESYS 2.Para el estudio de estabilidad, se emplearon los métodos de vida de estante (a temperatura inferior a 30 º C y de estabilidad acelerada (40 ± 2ºC mediante cromatografía líquida de alta eficiencia. Resultados: los resultados obtenidos de los parámetros evaluados en las validaciones se encontraron dentro de los límites establecidos. Los resultados del estudio de estabilidad realizado, demuestran que el producto terminado cumplió con las especificaciones de calidad durante el estudio. Conclusiones: los métodos analíticos por espectrofotometría UV y cromatografía líquida de alta resolución, son válidos para el control de la calidad y estudio de estabilidad de las gotas orales de Paracetamol 100 mg/mL, ya que resultaron lineales, precisos, exactos y específicos. Se demostró la estabilidad física, química y microbiológica del producto por espacio de 12 meses a temperatura inferior a 30 ºC, envasados en frascos de vidrio ámbar por 15 mL, boca 18 mm, calidad hidrolítica III. Además se evidenció que el producto es estable durante 30 días después de abierto el frasco.Introduction: paracetamol is an effective analgesic and antipyretic drug of
Directory of Open Access Journals (Sweden)
Muhammad H. Al-Malack
2016-07-01
Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.
Algorithm for Stabilizing a POD-Based Dynamical System
Kalb, Virginia L.
2010-01-01
This algorithm provides a new way to improve the accuracy and asymptotic behavior of a low-dimensional system based on the proper orthogonal decomposition (POD). Given a data set representing the evolution of a system of partial differential equations (PDEs), such as the Navier-Stokes equations for incompressible flow, one may obtain a low-dimensional model in the form of ordinary differential equations (ODEs) that should model the dynamics of the flow. Temporal sampling of the direct numerical simulation of the PDEs produces a spatial time series. The POD extracts the temporal and spatial eigenfunctions of this data set. Truncated to retain only the most energetic modes followed by Galerkin projection of these modes onto the PDEs obtains a dynamical system of ordinary differential equations for the time-dependent behavior of the flow. In practice, the steps leading to this system of ODEs entail numerically computing first-order derivatives of the mean data field and the eigenfunctions, and the computation of many inner products. This is far from a perfect process, and often results in the lack of long-term stability of the system and incorrect asymptotic behavior of the model. This algorithm describes a new stabilization method that utilizes the temporal eigenfunctions to derive correction terms for the coefficients of the dynamical system to significantly reduce these errors.
Characterization and stability studies of emulsion systems containing pumice
Directory of Open Access Journals (Sweden)
Marilene Estanqueiro
2014-04-01
Full Text Available Emulsions are the most common form of skin care products. However, these systems may exhibit some instability. Therefore, when developing emulsions for topical application it is interesting to verify whether they have suitable physical and mechanical characteristics and further assess their stability. The aim of this work was to study the stability of emulsion systems, which varied in the proportion of the emulsifying agent cetearyl alcohol (and sodium lauryl sulfate (and sodium cetearyl sulfate (LSX, the nature of the oily phase (decyl oleate, cyclomethicone or dimethicone and the presence or absence of pumice (5% w/w. While maintaining the samples at room temperature, rheology studies, texture analysis and microscopic observation of formulations with and without pumice were performed. Samples were also submitted to an accelerated stability study by centrifugation and to a thermal stress test. Through the testing, it was found that the amount of emulsifying agent affects the consistency and textural properties such as firmness and adhesiveness. So, formulations containing LSX (5% w/w and decyl oleate or dimethicone as oily phase had a better consistency and remained stable with time, so exhibited the best features to be used for skin care products.
Stability Analysis of a Reaction-Diffusion System Modeling Atherogenesis
Ibragimov, Akif
2010-01-01
This paper presents a linear, asymptotic stability analysis for a reaction-diffusionconvection system modeling atherogenesis, the initiation of atherosclerosis, as an inflammatory instability. Motivated by the disease paradigm articulated by Ross, atherogenesis is viewed as an inflammatory spiral with a positive feedback loop involving key cellular and chemical species interacting and reacting within the intimal layer of muscular arteries. The inflammatory spiral is initiated as an instability from a healthy state which is defined to be an equilibrium state devoid of certain key inflammatory markers. Disease initiation is studied through a linear, asymptotic stability analysis of a healthy equilibrium state. Various theorems are proved, giving conditions on system parameters guaranteeing stability of the health state, and a general framework is developed for constructing perturbations from a healthy state that exhibit blow-up, which are interpreted as corresponding to disease initiation. The analysis reveals key features that arterial geometry, antioxidant levels, and the source of inflammatory components (through coupled third-kind boundary conditions or through body sources) play in disease initiation. © 2010 Society for Industrial and Applied Mathematics.
Investigation on flow stability of supercritical water cooled systems
International Nuclear Information System (INIS)
Cheng, X.; Kuang, B.
2006-01-01
Research activities are ongoing worldwide to develop nuclear power plants with supercritical water cooled reactor (SCWR) with the purpose to achieve a high thermal efficiency and to improve their economical competitiveness. However, the strong variation of the thermal-physical properties of water in the vicinity of the pseudo-critical line results in challenging tasks in various fields, e.g. thermal-hydraulic design of a SCWR. One of the challenging tasks is to understand and to predict the dynamic behavior of supercritical water cooled systems. Although many thermal-hydraulic research activities were carried out worldwide in the past as well as in the near present, studies on dynamic behavior and flow stability of SC water cooled systems are scare. Due to the strong density variation, flow stability is expected to be one of the key items which need to be taken into account in the design of a SCWR. In the present work, the dynamic behavior and flow stability of SC water cooled systems are investigated using both numerical and theoretical approaches. For this purpose a new computer code SASC was developed, which can be applied to analysis the dynamic behavior of systems cooled by supercritical fluids. In addition, based on the assumptions of a simplified system, a theoretical model was derived for the prediction of the onset of flow instability. A comparison was made between the results obtained using the theoretical model and those from the SASC code. A good agreement was achieved. This gives the first evidence of the reliability of both the SASC code and the theoretical model
Evaluation of constraint stabilization procedures for multibody dynamical systems
Park, K. C.; Chiou, J. C.
1987-01-01
Comparative numerical studies of four constraint treatment techniques for the simulation of general multibody dynamic systems are presented, and results are presented for the example of a classical crank mechanism and for a simplified version of the seven-link manipulator deployment problem. The staggered stabilization technique (Park, 1986) is found to yield improved accuracy and robustness over Baumgarte's (1972) technique, the singular decomposition technique (Walton and Steeves, 1969), and the penalty technique (Lotstedt, 1979). Furthermore, the staggered stabilization technique offers software modularity, and the only data each solution module needs to exchange with the other is a set of vectors plus a common module to generate the gradient matrix of the constraints, B.
Stability and Bifurcation in Magnetic Flux Feedback Maglev Control System
Directory of Open Access Journals (Sweden)
Wen-Qing Zhang
2013-01-01
Full Text Available Nonlinear properties of magnetic flux feedback control system have been investigated mainly in this paper. We analyzed the influence of magnetic flux feedback control system on control property by time delay and interfering signal of acceleration. First of all, we have established maglev nonlinear model based on magnetic flux feedback and then discussed hopf bifurcation’s condition caused by the acceleration’s time delay. The critical value of delayed time is obtained. It is proved that the period solution exists in maglev control system and the stable condition has been got. We obtained the characteristic values by employing center manifold reduction theory and normal form method, which represent separately the direction of hopf bifurcation, the stability of the period solution, and the period of the period motion. Subsequently, we discussed the influence maglev system on stability of by acceleration’s interfering signal and obtained the stable domain of interfering signal. Some experiments have been done on CMS04 maglev vehicle of National University of Defense Technology (NUDT in Tangshan city. The results of experiments demonstrate that viewpoints of this paper are correct and scientific. When time lag reaches the critical value, maglev system will produce a supercritical hopf bifurcation which may cause unstable period motion.
Methods to assess the stability of a bicycle rider system
Cooke, A.G.; Bulsink, Vera Elisabeth; Beusenberg, Mark; Dubbeldam, Rosemary; Bonnema, Gerrit Maarten; Poelman, Wim; Koopman, Hubertus F.J.M.
2012-01-01
The SOFIE (Intelligent Assisted Bicycles) project wishes to create performance and design guidelines for mechatronic appliances which improve the stability of electric bicycles, so-called intelligent stability assist devices (IAD). To achieve this goal, a stability hypothesis, an advanced
Automotive mechatronics automotive networking, driving stability systems, electronics
2015-01-01
As the complexity of automotive vehicles increases this book presents operational and practical issues of automotive mechatronics. It is a comprehensive introduction to controlled automotive systems and provides detailed information of sensors for travel, angle, engine speed, vehicle speed, acceleration, pressure, temperature, flow, gas concentration etc. The measurement principles of the different sensor groups are explained and examples to show the measurement principles applied in different types. Contents Basics of mechatronics.- Architecture.- Electronic control unit.- Software development.- Basic principles of networking.- Automotive networking.- Bus systems.- Automotive sensors.- Sensor measuring principles.- Sensor types.- Electric actuators.- Electrohydraulic actuators.- Electronic transmission control.- Electronic transmission control unit.- Modules for transmission control.- Antilock braking system.- Traction control system.- Electronic stability program.- Automatic brake functions.- Hydraulic modu...
A MARTe based simulator for the JET Vertical Stabilization system
Energy Technology Data Exchange (ETDEWEB)
Bellizio, Teresa, E-mail: teresa.bellizio@unina.it [Associazione EURATOM-ENEA-CREATE, University di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); De Tommasi, Gianmaria; Risoli, Nicola; Albanese, Raffaele [Associazione EURATOM-ENEA-CREATE, University di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Neto, Andre [Associacao EURATOM/IST, Inst. de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior, Tecnico, P-1049-001 Lisboa (Portugal)
2011-10-15
Validation by means of simulation is a crucial step when developing real-time control systems. Modeling and simulation are an essential tool since the early design phase, when the control algorithms are designed and tested. This phase is commonly carried out in off-line environments such as Matlab and Simulink. A MARTe-based simulator has been recently developed to validate the new JET Vertical Stabilization (VS) system. MARTe is the multi-thread framework used at JET to deploy hard real-time control systems. This paper presents the software architecture of the MARTe-based simulator and it shows how this tool has been effectively used to evaluate the effects of Edge Localized Modes (ELMs) on the VS system. By using the simulator it is possible to analyze different plasma configurations, extrapolating the limit of the new vertical amplifier in terms of the energy of the largest rejectable ELM.
Absorbed energy for radiation crosslinking in stabilized PE systems
International Nuclear Information System (INIS)
Novakovic, Lj.; Gal, O.; Charlesby, A.
1990-01-01
A quantitative consideration on the absorbed energy consumption in various γ-irradiated polyethylene systems is given. On the base of the increased gel dose values for the PE systems containing antioxidant, relative to the gel doses for the pure polymers, the surplus of the absorbed energy due to the presence of the particular antioxidant is calculated. The increasing of the energy consumption in the stabilized systems depends on both the type and the content of the basic polymer. The surplus in the absorbed energy decreases with the radiation dose increasing, reflecting both the diminishing of the antioxidant concentration in the irradiating PE systems and the crosslinking level. The findings can be of interest in the estimation of the absorbed doses for the specific radiation crosslinking processes. (author)
Absorbed energy for radiation crosslinking in stabilized PE systems
Energy Technology Data Exchange (ETDEWEB)
Novakovic, Lj; Gal, O [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia); Charlesby, A
1990-01-01
A quantitative consideration on the absorbed energy consumption in various {gamma}-irradiated polyethylene systems is given. On the base of the increased gel dose values for the PE systems containing antioxidant, relative to the gel doses for the pure polymers, the surplus of the absorbed energy due to the presence of the particular antioxidant is calculated. The increasing of the energy consumption in the stabilized systems depends on both the type and the content of the basic polymer. The surplus in the absorbed energy decreases with the radiation dose increasing, reflecting both the diminishing of the antioxidant concentration in the irradiating PE systems and the crosslinking level. The findings can be of interest in the estimation of the absorbed doses for the specific radiation crosslinking processes. (author).
Measurement and protocol for evaluating video and still stabilization systems
Cormier, Etienne; Cao, Frédéric; Guichard, Frédéric; Viard, Clément
2013-01-01
This article presents a system and a protocol to characterize image stabilization systems both for still images and videos. It uses a six axes platform, three being used for camera rotation and three for camera positioning. The platform is programmable and can reproduce complex motions that have been typically recorded by a gyroscope mounted on different types of cameras in different use cases. The measurement uses a single chart for still image and videos, the texture dead leaves chart. Although the proposed implementation of the protocol uses a motion platform, the measurement itself does not rely on any specific hardware. For still images, a modulation transfer function is measured in different directions and is weighted by a contrast sensitivity function (simulating the human visual system accuracy) to obtain an acutance. The sharpness improvement due to the image stabilization system is a good measurement of performance as recommended by a CIPA standard draft. For video, four markers on the chart are detected with sub-pixel accuracy to determine a homographic deformation between the current frame and a reference position. This model describes well the apparent global motion as translations, but also rotations along the optical axis and distortion due to the electronic rolling shutter equipping most CMOS sensors. The protocol is applied to all types of cameras such as DSC, DSLR and smartphones.
MHD-Stabilization of Axisymmetric Mirror Systems Using Pulsed ECRH
International Nuclear Information System (INIS)
Post, R.F.
2010-01-01
This paper, part of a continuing study of means for the stabilization of MHD interchange modes in axisymmertric mirror-based plasma confinement systems, is aimed at a preliminary look at a technique that would employ a train of plasma pressure pulses produced by ECRH to accomplish the stabilization. The purpose of using sequentially pulsed ECRH rather than continuous-wave ECRH is to facilitate the localization of the heated-electron plasma pulses in regions of the magnetic field with a strong positive field-line curvature, e. g. in the 'expander' region of the mirror magnetic field, outside the outermost mirror, or in other regions of the field with positive field-line curvature. The technique proposed, of the class known as 'dynamic stabilization,' relies on the time-averaged effect of plasma pressure pulses generated in regions of positive field-line curvature to overcome the destabilizing effect of plasma pressure in regions of negative field-line curvature within the confinement region. As will also be discussed in the paper, the plasma pulses, when produced in regions of the confining having a negative gradient, create transient electric potentials of ambipolar origin, an effect that was studied in 1964 in The PLEIDE experiment in France. These electric fields preserve the localization of the hot-electron plasma pulses for a time determined by ion inertia. It is suggested that it may be possible to use this result of pulsed ECRH not only to help to stabilize the plasma but also to help plug mirror losses in a manner similar to that employed in the Tandem Mirror.
Feedback stabilization system for pulsed single longitudinal mode tunable lasers
Esherick, Peter; Raymond, Thomas D.
1991-10-01
A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.
Linear local stability of electrostatic drift modes in helical systems
International Nuclear Information System (INIS)
Yamagishi, O.; Nakajima, N.; Sugama, H.; Nakamura, Y.
2003-01-01
We investigate the stability of the drift wave in helical systems. For this purpose, we solve the linear local gyrokinetic-Poisson equation, in the electrostatic regime. As a model of helical plasmas, Large helical Device (LHD) is considered. The equation we apply is rather exact in the framework of linear gyrokinetic theory, where only the approximation is the ballooning representation. In this paper, we consider only collisionless cases. All the frequency regime can be naturally reated without any assumptions, and in such cases, ion temperature gradient modes (ITG), trapped electron modes (TEM), and electron temperature gradient modes (ETG) are expected to become unstable linearly independently. (orig.)
Preliminary hazards analysis of thermal scrap stabilization system. Revision 1
International Nuclear Information System (INIS)
Lewis, W.S.
1994-01-01
This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment
Stability Tests of Positive Fractional Continuous-time Linear Systems with Delays
Directory of Open Access Journals (Sweden)
Tadeusz Kaczorek
2013-06-01
Full Text Available Necessary and sufficient conditions for the asymptotic stability of positive fractional continuous-time linear systems with many delays are established. It is shown that: 1 the asymptotic stability of the positive fractional system is independent of their delays, 2 the checking of the asymptotic stability of the positive fractional systems with delays can be reduced to checking of the asymptotic stability of positive standard linear systems without delays.
On the asymptotic stability of nonlinear mechanical switched systems
Platonov, A. V.
2018-05-01
Some classes of switched mechanical systems with dissipative and potential forces are considered. The case, where either dissipative or potential forces are essentially nonlinear, is studied. It is assumed that the zero equilibrium position of the system is asymptotically stable at least for one operating mode. We will look for sufficient conditions which guarantee the preservation of asymptotic stability of the equilibrium position under the switching of modes. The Lyapunov direct method is used. A Lyapunov function for considered system is constructed, which satisfies the differential inequality of special form for every operating mode. This inequality is nonlinear for the chosen mode with asymptotically stable equilibrium position, and it is linear for the rest modes. The correlations between the intervals of activity of the pointed mode and the intervals of activity of the rest modes are obtained which guarantee the required properties.
Breaking Dense Structures: Proving Stability of Densely Structured Hybrid Systems
Directory of Open Access Journals (Sweden)
Eike Möhlmann
2015-06-01
Full Text Available Abstraction and refinement is widely used in software development. Such techniques are valuable since they allow to handle even more complex systems. One key point is the ability to decompose a large system into subsystems, analyze those subsystems and deduce properties of the larger system. As cyber-physical systems tend to become more and more complex, such techniques become more appealing. In 2009, Oehlerking and Theel presented a (de-composition technique for hybrid systems. This technique is graph-based and constructs a Lyapunov function for hybrid systems having a complex discrete state space. The technique consists of (1 decomposing the underlying graph of the hybrid system into subgraphs, (2 computing multiple local Lyapunov functions for the subgraphs, and finally (3 composing the local Lyapunov functions into a piecewise Lyapunov function. A Lyapunov function can serve multiple purposes, e.g., it certifies stability or termination of a system or allows to construct invariant sets, which in turn may be used to certify safety and security. In this paper, we propose an improvement to the decomposing technique, which relaxes the graph structure before applying the decomposition technique. Our relaxation significantly reduces the connectivity of the graph by exploiting super-dense switching. The relaxation makes the decomposition technique more efficient on one hand and on the other allows to decompose a wider range of graph structures.
Stability of power systems coupled with market dynamics
Meng, Jianping
This Ph.D. thesis presented here spans two relatively independent topics. The first part, Chapter 2 is self-contained, and is dedicated to studies of new algorithms for power system state estimation. The second part, encompassing the remaining chapters, is dedicated to stability analysis of power system coupled with market dynamics. The first part of this thesis presents improved Newton's methods employing efficient vectorized calculations of higher order derivatives in power system state estimation problems. The improved algorithms are proposed based on an exact Newton's method using the second order terms. By efficiently computing an exact gain matrix, combined with a special optimal multiplier method, the new algorithms show more reliable convergence compared with the existing methods of normal equations, orthogonal decomposition, and Hachtel's sparse tableau. Our methods are able to handle ill-conditioned problems, yet show minimal penalty in computational cost for well-conditioned cases. These claims are illustrated through the standard IEEE 118 and 300 bus test examples. The second part of the thesis focuses on stability analysis of market/power systems. The work presented is motivated by an emerging problem. As the frequency of market based dispatch updates increases, there will inevitably be interaction between the dynamics of markets determining the generator dispatch commands, and the physical response of generators and network interconnections, necessitating the development of stability analysis for such coupled systems. We begin with numeric tests using different market models, with detailed machine/exciter/turbine/governor dynamics, in the New England 39 bus test system. A progression of modeling refinements are introduced, including such non-ideal effects as time delays. Electricity market parameter identification algorithms are also studied based on real time data from the PJM electricity market. Finally our power market model is augmented by optimal
Steam Turbine Control Valve Stiction Effect on Power System Stability
International Nuclear Information System (INIS)
Halimi, B.
2010-01-01
One of the most important problems in power system dynamic stability is low frequency oscillations. This kind of oscillation has significant effects on the stability and security of the power system. In some previous papers, a fact was introduced that a steam pressure continuous fluctuation in turbine steam inlet pipeline may lead to a kind of low frequency oscillation of power systems. Generally, in a power generation plant, steam turbine system composes of some main components, i.e. a boiler or steam generator, stop valves, control valves and turbines that are connected by piping. In the conventional system, the turbine system is composed with a lot of stop and control valves. The steam is provided by a boiler or steam generator. In an abnormal case, the stop valve shuts of the steal flow to the turbine. The steam flow to the turbine is regulated by controlling the control valves. The control valves are provided to regulate the flow of steam to the turbine for starting, increasing or decreasing the power, and also maintaining speed control with the turbine governor system. Unfortunately, the control valve has inherent static friction (stiction) nonlinearity characteristics. Industrial surveys indicated that about 20-30% of all control loops oscillate due to valve problem caused by this nonlinear characteristic. In this paper, steam turbine control valve stiction effect on power system oscillation is presented. To analyze the stiction characteristic effect, firstly a model of control valve and its stiction characteristic are derived by using Newton's laws. A complete tandem steam prime mover, including a speed governing system, a four-stage steam turbine, and a shaft with up to for masses is adopted to analyze the performance of the steam turbine. The governor system consists of some important parts, i.e. a proportional controller, speed relay, control valve with its stiction characteristic, and stem lift position of control valve controller. The steam turbine has
Intraoperative computed tomography with integrated navigation system in spinal stabilizations.
Zausinger, Stefan; Scheder, Ben; Uhl, Eberhard; Heigl, Thomas; Morhard, Dominik; Tonn, Joerg-Christian
2009-12-15
STUDY DESIGN.: A prospective interventional case-series study plus a retrospective analysis of historical patients for comparison of data. OBJECTIVE.: To evaluate workflow, feasibility, and clinical outcome of navigated stabilization procedures with data acquisition by intraoperative computed tomography. SUMMARY OF BACKGROUND DATA.: Routine fluoroscopy to assess pedicle screw placement is not consistently reliable. Our hypothesis was that image-guided spinal navigation using an intraoperative CT-scanner can improve the safety and precision of spinal stabilization surgery. METHODS.: CT data of 94 patients (thoracolumbar [n = 66], C1/2 [n = 12], cervicothoracic instability [n = 16]) were acquired after positioning the patient in the final surgical position. A sliding gantry 40-slice CT was used for image acquisition. Data were imported to a frameless infrared-based neuronavigation workstation. Intraoperative CT was obtained to assess the accuracy of instrumentation and, if necessary, the extent of decompression. All patients were clinically evaluated by Odom-criteria after surgery and after 3 months. RESULTS.: Computed accuracy of the navigation system reached /=2 mm without persistent neurologic or vascular damage in 20/414 screws (4.8%) leading to immediate correction of 10 screws (2.4%). Control-iCT changed the course of surgery in 8 cases (8.5% of all patients). The overall revision rate was 8.5% (4 wound revisions, 2 CSF fistulas, and 2 epidural hematomas). There was no reoperation due to implant malposition. According to Odom-criteria all patients experienced a clinical improvement. A retrospective analysis of 182 patients with navigated thoracolumbar transpedicular stabilizations in the preiCT era revealed an overall revision rate of 10.4% with 4.4% of patients requiring screw revision. CONCLUSION.: Intraoperative CT in combination with neuronavigation provides high accuracy of screw placement and thus safety for patients undergoing spinal stabilization
Verifying Stability of Dynamic Soft-Computing Systems
Wen, Wu; Napolitano, Marcello; Callahan, John
1997-01-01
Soft computing is a general term for algorithms that learn from human knowledge and mimic human skills. Example of such algorithms are fuzzy inference systems and neural networks. Many applications, especially in control engineering, have demonstrated their appropriateness in building intelligent systems that are flexible and robust. Although recent research have shown that certain class of neuro-fuzzy controllers can be proven bounded and stable, they are implementation dependent and difficult to apply to the design and validation process. Many practitioners adopt the trial and error approach for system validation or resort to exhaustive testing using prototypes. In this paper, we describe our on-going research towards establishing necessary theoretic foundation as well as building practical tools for the verification and validation of soft-computing systems. A unified model for general neuro-fuzzy system is adopted. Classic non-linear system control theory and recent results of its applications to neuro-fuzzy systems are incorporated and applied to the unified model. It is hoped that general tools can be developed to help the designer to visualize and manipulate the regions of stability and boundedness, much the same way Bode plots and Root locus plots have helped conventional control design and validation.
Multistage position-stabilized vibration isolation system for neutron interferometry
Arif, Muhammad; Brown, Dennis E.; Greene, Geoffrey L.; Clothier, R.; Littrell, K.
1994-10-01
A two stage, position stabilized vibration isolation system has been constructed and is now in operation at the Cold Neutron Research Facility of the National Institute of Standards and Technology, Gaithersburg, MD. The system employs pneumatic isolators with a multiple input/multiple output pneumatic servo system based upon pulse width modulation control loops. The first stage consists of a 40,000 kg reinforced concrete table supported by pneumatic isolators. A large environmentally isolated laboratory enclosure rests on the concrete table. The second stage consists of a 3000 kg granite optical table located within the enclosure and supported by another set of pneumatic isolators. The position of the two stages is monitored by proximity sensors and inclinometers with 12 degrees of freedom. The system controls 12 independent pneumatic airsprings. The signals from these sensors are fed into a personal computer based control system. The control system has maintained the position of the two stages to better than 1 micrometers in translation and 5 (mu) rad in orientation for a period of a few months. A description of the system and its characteristics is given.
Currency System and Its Impact on Economic Stability
Directory of Open Access Journals (Sweden)
Desmadi Saharuddin
2017-05-01
Full Text Available A number of economic problems that occurred during the power of Mamluk (1250-1517 AD was considered as a result of the change to currency system, namely from the system of commodity-based money (gold and silver into paper-based money (fiat. Instability prices, decrease of trading activities, high of unemployment number were a number of economic indicators that occurred at that time. This issue of macro-economy was considered as a result of changes in the money system. This study analyzes the dynamic relationship between the price of gold as a representation of commodity money system and M2 as a representation of fiat money against the stability of economic indicators such as inflation, economic growth, stock prices, and unemployment and interest rates. This study found that both systems not vary significantly against each other in its influence on macroeconomic variables. It means that the two systems do not have contrast distinction. Indeed, it was found that the commodity-based money system is not free of inflation, as propagated by the supporters of the dinar and dirham (dinarist. DOI: 10.15408/aiq.v9i2.4749
A very high performance stabilization system for large mass bolometerexperiments
Energy Technology Data Exchange (ETDEWEB)
Arnaboldi, C. [Sezione INFN di Milano Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Universita di Milano Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Giachero, A., E-mail: Andrea.Giachero@mib.infn.it [Sezione INFN di Milano Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Universita di Milano Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Gotti, C. [Sezione INFN di Milano Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Universita di Firenze, Dipartimento di Elettronica e Telecomunicazioni, Via S. Marta 3, I-50139 Firenze (Italy); Pessina, G. [Sezione INFN di Milano Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Universita di Milano Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy)
2011-10-01
CUORE is a large mass bolometric experiment, composed of 988 crystals, under construction in Hall A of the Gran Sasso Underground Laboratories (LNGS). Its main aim is the study of neutrinoless double beta decay of {sup 130}Te. Each bolometer is a 760 g crystal of Tellurium dioxide on which a Nuclear Transmutation Doped Ge thermistor, Ge NTD, is glued with proper thermal contact. The stability of the system is mandatory over many years of data taking. To accomplish this requirement a heating resistor is glued on each detector across which a voltage pulse can be injected at will, to develop a known calibrated heating power. We present the design solution for a pulse generator system to be used for the injection of such a small and short voltage pulse across the heaters. This system is composed by different custom PCB boards each of them having multi-channel independent outputs completely remotely programmable from the acquisition system, in pulse width and amplitude, through an on-board ARM7 microcontroller. Pulse amplitudes must be selectable, in order to handle each detector on its full dynamic range. The resolution of the output voltage is 12 bits over 10 V range. An additional 4 steps programmable voltage attenuator is added at every output. The width of any pulse can range from 100{mu}s to 25.5 ms. The main features of the final system are: stability and precision in pulses generation (at the level of less than a ppm/{sup o}C), low cost (thanks to the use of commercial components) and compact implementation.
Stability considerations of packed multi-planet systems
Gratia, Pierre; Lissauer, Jack
2018-04-01
I will present our first results of the outcomes of five packed, Earth-mass planetary simulations around a Sun-like star, whose initial separations in terms of their semi-major axes is determined by a multiple of their mutual Hill radius, the parameter beta. In our simulations, we will vary beta between 3.5 and and 9, with a special emphasis on the region around 8.5, where stability times are wildly different for small increments of beta. While the zero initial eccentricity case has been investigated before, we expand on it by allowing for initial nonzero eccentricities of one or more planets. Furthermore, we increase the simulated time by up to one order of magnitude reaching billions of orbits. This of course will determine more accurately the fate of systems that take a long time to go unstable. Both of these investigations have not been done before, thus our findings improve our understanding of the stabilities of closely-spaced planetary systems.
International Nuclear Information System (INIS)
1996-01-01
A meeting was held between DOE personnel and the BNFL team to review the proposed resolutions to DOE comments on the initial issue of the system specification and system design document for the Plutonium Stabilization and Packaging System. The objectives of this project are to design, fabricate, install, and start up a glovebox system for the safe repackaging of plutonium oxide and metal, with a requirement of a 50-year storage period. The areas discussed at the meeting were: nitrogen in can; moisture instrumentation; glovebox atmosphere; can marking bar coding; weld quality; NFPA-101 references; inner can swabbing; ultimate storage environment; throughput; convenience can screw-top design; furnacetrays; authorization basis; compactor safety; schedule for DOE review actions; fire protection; criticality safety; applicable standards; approach to MC and A; homogeneous oxide; resistance welder power; and tray overfill. Revised resolutions were drafted and are presented
Directory of Open Access Journals (Sweden)
Yuanhua Li
2015-01-01
Full Text Available Stability and stabilization of fractional-order interval system is investigated. By adding parameters to linear matrix inequalities, necessary and sufficient conditions for stability and stabilization of the system are obtained. The results on stability check for uncertain FO-LTI systems with interval coefficients of dimension n only need to solve one 4n-by-4n LMI. Numerical examples are presented to shown the effectiveness of our results.
Modified Schur-Cohn Criterion for Stability of Delayed Systems
Directory of Open Access Journals (Sweden)
Juan Ignacio Mulero-Martínez
2015-01-01
Full Text Available A modified Schur-Cohn criterion for time-delay linear time-invariant systems is derived. The classical Schur-Cohn criterion has two main drawbacks; namely, (i the dimension of the Schur-Cohn matrix generates some round-off errors eventually resulting in a polynomial of s with erroneous coefficients and (ii imaginary roots are very hard to detect when numerical errors creep in. In contrast to the classical Schur-Cohn criterion an alternative approach is proposed in this paper which is based on the application of triangular matrices over a polynomial ring in a similar way as in the Jury test of stability for discrete systems. The advantages of the proposed approach are that it halves the dimension of the polynomial and it only requires seeking real roots, making this modified criterion comparable to the Rekasius substitution criterion.
A fuzzy logic pitch angle controller for power system stabilization
Energy Technology Data Exchange (ETDEWEB)
Jauch, Clemens; Cronin, Tom; Sorensen, Poul [Wind Energy Department, Riso National Laboratory, PO Box 49, DK-4000 Roskilde, (Denmark); Jensen, Birgitte Bak [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East, (Denmark)
2006-07-12
In this article the design of a fuzzy logic pitch angle controller for a fixed speed, active-stall wind turbine, which is used for power system stabilization, is presented. The system to be controlled, which is the wind turbine and the power system to which the turbine is connected, is described. The advantages of fuzzy logic control when applied to large-signal control of active-stall wind turbines are outlined. The general steps of the design process for a fuzzy logic controller, including definition of the controller inputs, set-up of the fuzzy rules and the method of defuzzification, are described. The performance of the controller is assessed by simulation, where the wind turbine's task is to dampen power system oscillations. In the scenario simulated for this work, the wind turbine has to ride through a transient short-circuit fault and subsequently contribute to the damping of the grid frequency oscillations that are caused by the transient fault. It is concluded that the fuzzy logic controller enables the wind turbine to dampen power system oscillations. It is also concluded that, owing to the inherent non-linearities in a wind turbine and the unpredictability of the whole system, the fuzzy logic controller is very suitable for this application. (Author).
International Nuclear Information System (INIS)
Yeghiazaryan, L.V.; Hakobyan, S.G.; Gharibyan, G.V.; Harutyunyan, G.S.; Galstyan, G.H.
2010-01-01
The description of the power systems operation stability failure caused by the system significant emergency states occurred during the last working period in Armenian and USA power systems is performed. With the use of PSSTME-31 software portfolio of Siemens Firm a design model is developed and transient electromechanical process calculations for Armenian power system are performed. The accuracy of the model is checked by comparing real-time transient state parameters and their reproduction calculation results.The Armenia - Iran current power transmission lines permissible limit under the condition of the static and dynamic stability requirements and in case of the new thermal power units maintenance are defined
On a program manifold's stability of one contour automatic control systems
Zumatov, S. S.
2017-12-01
Methodology of analysis of stability is expounded to the one contour systems automatic control feedback in the presence of non-linearities. The methodology is based on the use of the simplest mathematical models of the nonlinear controllable systems. Stability of program manifolds of one contour automatic control systems is investigated. The sufficient conditions of program manifold's absolute stability of one contour automatic control systems are obtained. The Hurwitz's angle of absolute stability was determined. The sufficient conditions of program manifold's absolute stability of control systems by the course of plane in the mode of autopilot are obtained by means Lyapunov's second method.
Improving Power System Stability Using Transfer Function: A Comparative Analysis
Directory of Open Access Journals (Sweden)
G. Shahgholian
2017-10-01
Full Text Available In this paper, a small-signal dynamic model of a single-machine infinite-bus (SMIB power system that includes IEEE type-ST1 excitation system and PSS based on transfer fu¬n¬c¬¬tion structure is presented. The changes in the operating co¬n¬dition of a power system on dynamic performance have been exa¬m¬ined. The dynamic performance of the closed-loop system is ana¬lyzed base on its eigenvalues. The effectiveness of the par¬a¬m¬e¬t¬ers changes on dynamic stability is verified by simulation res¬u¬l¬ts. Three types of PSS have been considered for analysis: (a the derivative PSS, (b the lead-lag PSS or conventional PSS, and (c the proportional-integral-derivative PSS. The objective fu¬nc¬t¬i¬o¬n is formulated to increase the dam¬¬ping ratio of the electromechanical mode eigenvalues. Simu¬la¬tion results show that the PID-PSS performs better for less ov¬e¬r¬shoot and less settling time comp¬ared with the CPSS and DPSS un¬der different load ope¬ration and the significant system pa¬r¬am¬eter variation conditions.
Complex systems of biological interest stability under ionising radiations
International Nuclear Information System (INIS)
Maclot, Sylvain
2014-01-01
This PhD work presents the study of stability of molecular systems of biological interest in the gas phase after interaction with ionising radiations. The use of ionising radiation can probe the physical chemistry of complex systems at the molecular scale and thus consider their intrinsic properties. Beyond the fundamental aspect, this work is part of the overall understanding of radiation effects on living organisms and in particular the use of ionizing radiation in radiotherapy. Specifically, this study focused on the use of low-energy multiply charged ions (tens of keV) provided by the GANIL (Caen), which includes most of the experiments presented. In addition, experiments using VUV photons were also conducted at synchrotron ELETTRA (Trieste, Italy). The bio-molecular systems studied are amino acids and nucleic acid constituents. Using an experimental crossed beams device allows interaction between biomolecules and ionising radiation leads mainly to the ionization and fragmentation of the system. The study of its relaxation dynamics is by time-of-flight mass spectrometry coupled to a coincidences measurements method. It is shown that an approach combining experiment and theory allows a detailed study of the fragmentation dynamics of complex systems. The results indicate that fragmentation is generally governed by the Coulomb repulsion but the intramolecular rearrangements involve specific relaxation mechanisms. (author) [fr
Vehicle rollover risk and electronic stability control systems.
MacLennan, P A; Marshall, T; Griffin, R; Purcell, M; McGwin, G; Rue, L W
2008-06-01
Electronic stability control (ESC) systems were developed to reduce motor vehicle collisions (MVCs) caused by loss of control. Introduced in Europe in 1995 and in the USA in 1996, ESC is designed to improve vehicle lateral stability by electronically detecting and automatically assisting drivers in unfavorable situations. To examine the relationship between vehicle rollover risk and presence of ESC using a large national database of MVCs. A retrospective cohort study for the period 1995 through 2006 was carried out using data obtained from the National Automotive Sampling System General Estimates System. All passenger cars and sport utility vehicles (SUVs)/vans of model year 1996 and later were eligible. Vehicle ESC (unavailable, optional, standard) was determined on the basis of make, model, and model year. Risk ratios (RRs) and 95% CIs were calculated to compare rollover risk by vehicle ESC group. For all crashes, vehicles equipped with standard ESC had decreased risk of rollover (RR = 0.62, 95% CI 0.50 to 0.77) compared with vehicles with ESC unavailable. The association was consistent for single-vehicle MVCs (RR = 0.61, 95% CI 0.46 to 0.82); passenger cars had decreased rollover risk (RR = 0.77, 95% CI 0.52 to 1.12), but SUVs/vans had a more dramatically decreased risk (RR = 0.40, 95% CI 0.26 to 0.61). This study supports previous results showing ESC to be effective in reducing the risk of rollover. ESC is more effective in SUVs/vans for rollovers related to single-vehicle MVCs.
Byzantine-fault tolerant self-stabilizing protocol for distributed clock synchronization systems
Malekpour, Mahyar R. (Inventor)
2010-01-01
A rapid Byzantine self-stabilizing clock synchronization protocol that self-stabilizes from any state, tolerates bursts of transient failures, and deterministically converges within a linear convergence time with respect to the self-stabilization period. Upon self-stabilization, all good clocks proceed synchronously. The Byzantine self-stabilizing clock synchronization protocol does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period.
STABILITY OF SATELLITES IN CLOSELY PACKED PLANETARY SYSTEMS
International Nuclear Information System (INIS)
Payne, Matthew J.; Holman, Matthew J.; Deck, Katherine M.; Perets, Hagai B.
2013-01-01
We perform numerical integrations of four-body (star, planet, planet, satellite) systems to investigate the stability of satellites in planetary systems with tightly packed inner planets (STIPs). We find that the majority of closely spaced stable two-planet systems can stably support satellites across a range of parameter-space which is only slightly decreased compared to that seen for the single-planet case. In particular, circular prograde satellites remain stable out to ∼0.4 R H (where R H is the Hill radius) as opposed to 0.5 R H in the single-planet case. A similarly small restriction in the stable parameter-space for retrograde satellites is observed, where planetary close approaches in the range 2.5-4.5 mutual Hill radii destabilize most satellites orbits only if a ∼ 0.65 R H . In very close planetary pairs (e.g., the 12:11 resonance) the addition of a satellite frequently destabilizes the entire system, causing extreme close approaches and the loss of satellites over a range of circumplanetary semi-major axes. The majority of systems investigated stably harbored satellites over a wide parameter-space, suggesting that STIPs can generally offer a dynamically stable home for satellites, albeit with a slightly smaller stable parameter-space than the single-planet case. As we demonstrate that multi-planet systems are not a priori poor candidates for hosting satellites, future measurements of satellite occurrence rates in multi-planet systems versus single-planet systems could be used to constrain either satellite formation or past periods of strong dynamical interaction between planets
Absolute stability of nonlinear systems with time delays and applications to neural networks
Directory of Open Access Journals (Sweden)
Xinzhi Liu
2001-01-01
Full Text Available In this paper, absolute stability of nonlinear systems with time delays is investigated. Sufficient conditions on absolute stability are derived by using the comparison principle and differential inequalities. These conditions are simple and easy to check. In addition, exponential stability conditions for some special cases of nonlinear delay systems are discussed. Applications of those results to cellular neural networks are presented.
Canister positioning. Influence of fracture system on deposition hole stability
International Nuclear Information System (INIS)
Hoekmark, Harald
2003-11-01
The study concerns the mechanical behaviour of rock surrounding tunnels and deposition holes in a nuclear waste repository. The mechanical effects of tunnel excavation and deposition hole excavation are investigated by use of a tunnel scale numerical model representing a part of a KBS-3 type repository. The excavation geometry, the initial pre-mining state of stress, and the geometrical features of the fracture system are defined according to conditions that prevail in the TBM tunnel rock mass in Aespoe HRL. Comparisons are made between results obtained without consideration of fractures and results obtained with inclusion of the fracture system. The focus is on the region around the intersection of a tunnel and a deposition hole. A general conclusion is that a fracture system of the type found in the TBM rock mass does not have a decisive influence on the stability of the deposition holes. To estimate the expected extent of spalling, information about other conditions, e.g. the orientation of the initial stresses and the strength properties of the intact rock, is more important than detailed information about the fracture system
Finite-Time Stability and Controller Design of Continuous-Time Polynomial Fuzzy Systems
Directory of Open Access Journals (Sweden)
Xiaoxing Chen
2017-01-01
Full Text Available Finite-time stability and stabilization problem is first investigated for continuous-time polynomial fuzzy systems. The concept of finite-time stability and stabilization is given for polynomial fuzzy systems based on the idea of classical references. A sum-of-squares- (SOS- based approach is used to obtain the finite-time stability and stabilization conditions, which include some classical results as special cases. The proposed conditions can be solved with the help of powerful Matlab toolbox SOSTOOLS and a semidefinite-program (SDP solver. Finally, two numerical examples and one practical example are employed to illustrate the validity and effectiveness of the provided conditions.
An equivalent condition for stability properties of Lotka-Volterra systems
International Nuclear Information System (INIS)
Chu Tianguang
2007-01-01
We give a solvable Lie algebraic condition for the equivalence of four typical stability notions (asymptotic stability, D-stability, total stability, and Volterra-Lyapunov stability) concerning Lotka-Volterra systems. Our approach makes use of the decomposition of the interaction matrix into symmetric and skew-symmetric parts, which may be related to the cooperative and competitive interaction pattern of a Lotka-Volterra system. The present result covers a known condition and can yield a larger set of interaction matrices for equivalence of the stability properties
Energy Technology Data Exchange (ETDEWEB)
Gruzdev, I.A.; Ekimova, M.M.; Truspekova, G.A.
1982-01-01
Expressions are derived for an idealized model of a complex electric power system; these expressions define the greatest level of stability of an electric power system and the optimum combination of stabilization factors with automatic excitation control in a single power system. The possibility of increasing the level of stability of an electric power system with simultaneous strict automatic excitation control of the synychronous generators in several power systems is analyzed.
Co-simulation of heavy truck tire dynamics and electronic stability control systems (phase A).
2009-07-01
Electronic stability control (ESC) systems have been proven to be an effective means of preventing instability and loss of control on both passenger vehicles and heavy trucks. In addition, roll stability algorithms are an effective means of reducing ...
Stability and complexity of small random linear systems
Hastings, Harold
2010-03-01
We explore the stability of the small random linear systems, typically involving 10-20 variables, motivated by dynamics of the world trade network and the US and Canadian power grid. This report was prepared as an account of work sponsored by an agency of the US Government. Neither the US Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the US Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the US Government or any agency thereof.
Preliminary safety evaluation for the plutonium stabilization and packaging system
International Nuclear Information System (INIS)
Shapley, J.E.
1997-01-01
This Preliminary Safety Evaluation (PSE) describes and analyzes the installation and operation of the Plutonium Stabilization and Packaging System (SPS) at the Plutonium Finishing Plant (PFP). The SPS is a combination of components required to expedite the safe and timely storage of Plutonium (Pu) oxide. The SPS program will receive site Pu packages, process the Pu for storage, package the Pu into metallic containers, and safely store the containers in a specially modified storage vault. The location of the SPS will be in the 2736- ZB building and the storage vaults will be in the 2736-Z building of the PFP, as shown in Figure 1-1. The SPS will produce storage canisters that are larger than those currently used for Pu storage at the PFP. Therefore, the existing storage areas within the PFP secure vaults will require modification. Other modifications will be performed on the 2736-ZB building complex to facilitate the installation and operation of the SPS
A Pseudodifferential Approach to Distributed Parameter Systems and Stabilization
DEFF Research Database (Denmark)
Pedersen, Michael
1993-01-01
The recent developments in microlocal analysis and pdeudodifferential boundary calculus are well suited tools in the investigation of a large number of problems occurring in control theory for partial differential equations. We explain some of the basic ideas of a pseudodifferential model....... Differential Equations47 (1983); Appl. Math. Optim.10 (1983)). So far, this work seems to have simplified or unified many of the previous works cited above. We hope that in the future it will even provide stronger and newer results in the boundary control of distributed parameter systems....... (SIAM J. Control Optim.29 (1991)). The pseudo-differential techniques apply easily in the proof of existence of a feedback semigroup for the parabolic and hyperbolic evolution problems, and we reprove in this new setting some of the stabilization results of Lasiecka and Triggiani (see, e.g., J...
Stability and stabilization of nonlinear systems and Takagi-Sugeno's fuzzy models
Directory of Open Access Journals (Sweden)
Blanco Yann
2001-01-01
Full Text Available This paper outlines a methodology to study the stability of Takagi-Sugeno's (TS fuzzy models. The stability analysis of the TS model is performed using a quadratic Liapunov candidate function. This paper proposes a relaxation of Tanaka's stability condition: unlike related works, the equations to be solved are not Liapunov equations for each rule matrix, but a convex combination of them. The coefficients of this sums depend on the membership functions. This method is applied to the design of continuous controllers for the TS model. Three different control structures are investigated, among which the Parallel Distributed Compensation (PDC. An application to the inverted pendulum is proposed here.
Wu, Guo-Cheng; Baleanu, Dumitru; Zeng, Sheng-Da
2018-04-01
This study investigates finite-time stability of Caputo delta fractional difference equations. A generalized Gronwall inequality is given on a finite time domain. A finite-time stability criterion is proposed for fractional differential equations. Then the idea is extended to the discrete fractional case. A linear fractional difference equation with constant delays is considered and finite-time stable conditions are provided. One example is numerically illustrated to support the theoretical result.
Plasma control system upgrade and increased plasma stability in NSTX
Energy Technology Data Exchange (ETDEWEB)
Mastrovito, D., E-mail: dmastrovito@pppl.go [Princeton Plasma Physics Laboratory, P.O. Box 451 Princeton, NJ 08543 (United States); Gates, D.; Gerhard, S.; Lawson, J.; Ludescher-Furth, C.; Marsala, R. [Princeton Plasma Physics Laboratory, P.O. Box 451 Princeton, NJ 08543 (United States)
2010-07-15
Plasma control on the National Spherical Torus Experiment (NSTX) was previously accomplished using eight 333 MHz G4 processors built by Sky computers. Several planned improvements and additional control algorithms required significant upgrades to our real-time control computers and real-time data acquisition infrastructure. Several in-house modules have been designed and implemented including: the digital time stamp module (DITS) and for digital/analog front panel data port (FPDP) output, the FPDP output module digital/analog (FOMD/A). Standard Linux based Intel computers perform the real-time control tasks and InfiniBand as been employed for communication between a user-accessible 'host' server and the real-time computer. In addition to several independent real-time processes the General Atomics developed PCS (Bell (2006) ) system infrastructure continues to be used on NSTX. While maintaining previous functionality, improvements in the control system software include: an RWM feedback algorithm, beta feedback NBI control, more comprehensive error logging and trapping, more user-friendly interface, more complete archiving and restoring functionality, and better status reporting and diagnostic tools. Once completed, we succeeded in increasing overall plasma stability and decreasing control system latency by several times.
The mathematical model of dynamic stabilization system for autonomous car
Saikin, A. M.; Buznikov, S. E.; Shabanov, N. S.; Elkin, D. S.
2018-02-01
Leading foreign companies and domestic enterprises carry out extensive researches and developments in the field of control systems for autonomous cars and in the field of improving driver assistance systems. The search for technical solutions, as a rule, is based on heuristic methods and does not always lead to satisfactory results. The purpose of this research is to formalize the road safety problem in the terms of modern control theory, to construct the adequate mathematical model for solving it, including the choice of software and hardware environment. For automatic control of the object, it is necessary to solve the problem of dynamic stabilization in the most complete formulation. The solution quality of the problem on a finite time interval is estimated by the value of the quadratic functional. Car speed, turn angle and additional yaw rate (during car drift or skidding) measurements are performed programmatically by the original virtual sensors. The limit speeds at which drift, skidding or rollover begins are calculated programmatically taking into account the friction coefficient identified in motion. The analysis of the results confirms both the adequacy of the mathematical models and the algorithms and the possibility of implementing the system in the minimal technical configuration.
Performance of Power System Stabilizer (UNITROL D) in Benghazi North Power Plant
T. Hussein
2011-01-01
The use of power system stabilizers (PSSs) to damp power system swing mode of oscillations is practical important. Our purpose is to retune the power system stabilizer (PSS1A) parameters in Unitrol D produced by ABB– was installed in 1995in Benghazi North Power Plants (BNPPs) at General Electricity Company of Libya (GECOL). The optimal values of the power system stabilizer (PSS1A) parameters are determined off-line by a particle swarm optimization technique (PSO). The obj...
14 CFR 27.672 - Stability augmentation, automatic, and power-operated systems.
2010-01-01
... power-operated systems. 27.672 Section 27.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 27.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show...
14 CFR 25.672 - Stability augmentation and automatic and power-operated systems.
2010-01-01
... power-operated systems. 25.672 Section 25.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 25.672 Stability augmentation and automatic and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show...
14 CFR 29.672 - Stability augmentation, automatic, and power-operated systems.
2010-01-01
... power-operated systems. 29.672 Section 29.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 29.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated system is necessary to show...
Directory of Open Access Journals (Sweden)
Chen Qin
2013-01-01
Full Text Available This paper considers the problems of the robust stability and robust H∞ controller design for time-varying delay switched systems using delta operator approach. Based on the average dwell time approach and delta operator theory, a sufficient condition of the robust exponential stability is presented by choosing an appropriate Lyapunov-Krasovskii functional candidate. Then, a state feedback controller is designed such that the resulting closed-loop system is exponentially stable with a guaranteed H∞ performance. The obtained results are formulated in the form of linear matrix inequalities (LMIs. Finally, a numerical example is provided to explicitly illustrate the feasibility and effectiveness of the proposed method.
Stability and control of wind farms in power systems
Energy Technology Data Exchange (ETDEWEB)
Jauch, C.
2006-10-15
The Ph.D. project 'Stability and Control of Wind Farms in Power Systems' deals with some selected problems related to wind power in power systems. With increasing wind power penetration, wind turbines substitute the power production of conventional power plants. Therefore, wind turbines also have to take over the power system stabilisation and control tasks, that were traditionally carried out by conventional power plants. Out of the many aspects related to this problem, this project focuses on transient fault ride-through and power system stabilisation. The selection of turbine types considered in this project is limited to active-stall turbines and variable speed, variable pitch turbines with gearboxes and full-scale converter-connected synchronous generators. As a basis for the project, a study into the state of the art is conducted at the beginning of the project. Grid connection requirements that were in force, or published as drafts, at the time, and scientific literature related to the topic, are studied. The project is based on simulations of wind turbines in a power system simulations tool. Some of the models used in this project were readily available prior to the project; the development of others is part of the project. The most extensive modelling work deals with the design of the electrical part of the variable speed turbine and its controls. To simulate realistic grid operation the wind turbine models are connected to an aggregated model of the Nordic power system. For that purpose the Nordic power system model, which was available prior to the project, is extended with a realistic feeder configuration. It is commonly demanded from modern wind turbines, that they must not disconnect in case of transient faults. Therefore, controllers are designed that enable the two turbine types to ride through transient faults. With these transient fault controllers the wind turbines can stay connected to the grid, such that their generation capacity is
Car drivers' perceptions of electronic stability control (ESC) systems.
Vadeby, Anna; Wiklund, Mats; Forward, Sonja
2011-05-01
As a way to reduce the number of car crashes different in-car safety devices are being introduced. In this paper one such application is being investigated, namely the electronic stability control system (ESC). The study used a survey method, including 2000 private car drivers (1000 driving a car with ESC and 1000 driving a car without ESC). The main objective was to investigate the effect of ESC on driver behaviour. Results show that drivers report that they drive even more carelessly when they believe that they have ESC, than when they do not. Men are more risk prone than women and young drivers more than older drivers. Using the theory of planned behaviour the results show that attitude, subjective norm and perceived control explain between 62% and 67% of driver's variation of intentions to take risks. When descriptive norm was added to the model a small but statistically significant increase was found. The study also shows that more than 35% erroneously believe that their car is equipped with an ESC system. These findings may suggest that driver behaviour could reduce the positive effect ESC has on accidents. It also shows that drivers who purchase a new car are not well informed about what kind of safety devices the car is equipped with. These findings highlight the need for more targeted information to drivers. Copyright © 2010 Elsevier Ltd. All rights reserved.
Stability and Control of Large-Scale Dynamical Systems A Vector Dissipative Systems Approach
Haddad, Wassim M
2011-01-01
Modern complex large-scale dynamical systems exist in virtually every aspect of science and engineering, and are associated with a wide variety of physical, technological, environmental, and social phenomena, including aerospace, power, communications, and network systems, to name just a few. This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, and presents the most complete treatment on vector Lyapunov function methods, vector dissipativity theory, and decentralized control architectures. Large-scale dynami
Improvement of Transient Stability of Power System by System Damping Series Resistor (SDSR)
上里, 勝実; 千住, 智信; 当銘, 秀之; 高原, 景滋; Uezato, Katsumi; Senjyu, Tomonobu; Toume, Hideyuki; Takahara, Keiji
1990-01-01
The system damping resistor is one of the method for improving the transient stability of power systems. The main circuit is the simple construction so that is low cost and is few abnormal surge, and is superior in ability of economy, reliability and maintenance. Conventionally, most of all system damping resistors have adopted the paralleled resistor, whereas the series resistor is used little.In this paper, we investigate the characteristics of the series resistor by comparing with the para...
A stability identification system for boiling water nuclear reactors
International Nuclear Information System (INIS)
Belblidia, L.A.; Chevrier, A.
1994-01-01
Boiling water reactors are subject to instabilities under low-flow, high-power operating conditions. These instabilities are a safety concern and it is therefore important to determine stability margins. This paper describes a method to estimate a measure of stability margin, called the decay ratio, from autoregressive modelling of time series data. A phenomenological model of a boiling water reactor with known stability characteristics is used to generate time series to validate the program. The program is then applied to signals from local power range monitors from the cycle 7 stability tests at the Leibstadt plant. (author) 7 figs., 2 tabs., 12 refs
LMI optimization approach to stabilization of time-delay chaotic systems
International Nuclear Information System (INIS)
Park, Ju H.; Kwon, O.M.
2005-01-01
Based on the Lyapunov stability theory and linear matrix inequality (LMI) technique, this paper proposes a novel control method for stabilization of a class of time-delay chaotic systems. A stabilization criterion is derived in terms of LMIs which can be easily solved by efficient convex optimization algorithms. A numerical example is included to show the advantage of the result derived
Energy Technology Data Exchange (ETDEWEB)
Vachirasricirikul, Sitthidet [Department of Electrical Engineering, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Ngamroo, Issarachai; Kaitwanidvilai, Somyot [Center of Excellence for Innovative Energy Systems, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)
2009-09-15
It is well known that the power output of microturbine can be controlled to compensate for load change and alleviate the system frequency fluctuations. Nevertheless, the microturbine may not adequately compensate rapid load change due to its slow dynamic response. Moreover, when the intermittent power generations from wind power and photovoltaic are integrated into the system, they may cause severe frequency fluctuation. In order to study the fast dynamic response, this paper applies electrolyzer system to absorb these power fluctuations and enhance the frequency control effect of microturbine in the microgrid system. The robust coordinated controller of electrolyzer and microturbine for frequency stabilization is designed based on a fixed-structure H{sub {infinity}} loop shaping control. Simulation results exhibit the robustness and stabilizing effects of the proposed coordinated electrolyzer and microturbine controllers against system parameters variation and various operating conditions. (author)
Transient stability probability evaluation of power system incorporating with wind farm and SMES
DEFF Research Database (Denmark)
Fang, Jiakun; Miao, Lu; Wen, Jinyu
2013-01-01
Large scale renewable power generation brings great challenges to the power system operation and stabilization. Energy storage is one of the most important technologies to face the challenges. This paper proposes a method for transient stability probability evaluation of power system with wind farm...... and SMES. Firstly, a modified 11-bus test system with both wind farm and SMES has been implemented. The wind farm is represented as a doubly fed induction generator (DFIG). Then a stochastic-based approach to evaluate the probabilistic transient stability index of the power system is presented. Uncertain...... the probability indices. With the proposed method based on Monte-Carlo simulation and bisection method, system stability is "measured". Quantitative relationship of penetration level, SMES coil size and system stability is established. Considering the stability versus coil size to be the production curve...
Analysis of the gyroscopic stabilization of a system of rigid bodies
DEFF Research Database (Denmark)
Kliem, Wolfhard; Seyranian, Alexander P.
1997-01-01
We study the gyroscopic stability of a three-body system. A new method of finding stability regions, based on mechanism and criteria for gyroscopic stabilization, is presented. Of particular interest in this connection is the theory of interaction of eigenvalues. This leads to a complete 3......-dimensional analysis, which shows the regions of stability, divergence, and flutter of a simple model of a rotating spaceship....
Energy Technology Data Exchange (ETDEWEB)
Salinas H, J.G.; Espinosa P, G. [Universidad Autonoma Metropolitana-Iztapalapa, 09000 Mexico D.F. (Mexico); Gonzalez M, V.M. [Comision Nacional de Seguridad Nuclear y Salvaguardias, 04000 Mexico D.F. (Mexico)
2000-07-01
The Technology, Regulation and Services Management of the National Commission of Nuclear Safety and Safeguards financed and in coordinate form with the I.P.H. Department of the Metropolitan Autonomous-Iztapalapa University developed the present project with the purpose of studying the effect of the recycling system on the linear stability of a BWR reactor whose reference central is the Laguna Verde power station. The present project forms part of a work series focused to the linear stability of the nuclear reactor of the Unit 1 at Laguna Verde power station. The components of the recycling system considered for the study of stability are the recycling external circuit (recycling pumps, valves) and the internal circuit (downcomer, jet pumps, lower full, driers, separators). The mathematical model is obtained applying mass balances and movement quantity in each one of the mentioned circuits. With respect to the nucleus model two regions are considered, the first one is made of a flow in one phase and the second one of a flow in two phases. For modelling the biphasic region it is considered homogenous flow. Generally it is studied the system behavior in the frequency domain starting from the transfer function applied to four operational states which correspond to the lower stability zone in the map power-flow of the Unit 1 of Laguna Verde power station. The Nyquist diagrams corresponding to each state as well as their characteristic frequency were determined. The results show that exists a very clear dependence of the power-flow relation on the stability of the system. It was found that the boiling length is an important parameter for the linear stability of the system. The obtained results show that the characteristic frequencies in unstability zones are similar to the reported data of the Unit 1 of the Laguna Verde power station in the event of power oscillations carried out in January 1995. (Author)
Stabilization and synchronization of Genesio-Tesi system via single variable feedback controller
International Nuclear Information System (INIS)
Wang Guangming
2010-01-01
This Letter investigates the stabilization and synchronization of Genesio-Tesi systems. Firstly, modifying the previous method, we stabilize the Genesio-Tesi system. Then, we synchronize two identical Genesio chaotic system by extending the obtained stabilization results. To the best of our knowledge, the above controllers obtained in this Letter are simpler than those obtained in the existing results. Finally, numerical simulations verify the effectiveness and the validity of the above theoretical results.
Simulation for transient stability study of the Taiwan power system - a nuclear majority system
International Nuclear Information System (INIS)
Huang, J.C.C.
1984-01-01
A transient stability program was developed for the Taiwan Power Company, which has a high proportion of nuclear generation in its power system. This program offers a new territory to investigate nuclear plant effects on the power system transient stability. This program also provides a high speed tool for the Taipower system operational planning. A generalized procedure of synchronous machine modeling for a large-scale stability study is presented. The merits and weaknesses of machine modeling can be comprehended through each item of this procedure. Three types of nonlinear synchronous machine modeling implemented into this stability program are derived by following this procedure. A robust subroutine was derived to perform the fourth order Runge-Kutta integration method, making the software programming neat and systematical. For simulating the nuclear plant influence on the system, this program implemented an additional four functions: load-limit operation simulated by a low-value gate in the governor model, bypass valve capacity monitored by sending out a warning message, rotor overspeed protection relay, and generator anti-motoring relay
Improvement of the transient stability using SFCL in Korean power systems
International Nuclear Information System (INIS)
Hwang, Intae; Lee, Seung Ryul; Seo, Sangsoo; Yoon, Jaeyoung; Kim, Chul-Hwan
2013-01-01
Highlights: •In Korea, the Special Protection System is applied for protecting the power system. •Hybrid SFCL is protecting the power system from viewpoint of the transient stability. •Basic hybrid SFCL system cannot recover during the auto-reclosing operation. •This paper performs analysis of transient stability using the novel hybrid SFCL. -- Abstract: This paper proposed a novel hybrid SFCL system for the enhancement of the transient stability in Korean power transmission system with auto-reclosing operation. The proposed SFCL system has an operation mechanism that the current limiting impedance is eliminated from the power system in a fault clearing time for the enhancement of the transient stability. Also, the system can cover the auto-reclosing operation of the transmission power system. This study analyzed an improvement of the special protection system by applying the proposed SFCL system to real power system in Korea
Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron
Shen, Yi; Posavec, Lidija; Bolisetty, Sreenath; Hilty, Florentine M.; Nyström, Gustav; Kohlbrecher, Joachim; Hilbe, Monika; Rossi, Antonella; Baumgartner, Jeannine; Zimmermann, Michael B.; Mezzenga, Raffaele
2017-07-01
Iron-deficiency anaemia (IDA) is a major global public health problem. A sustainable and cost-effective strategy to reduce IDA is iron fortification of foods, but the most bioavailable fortificants cause adverse organoleptic changes in foods. Iron nanoparticles are a promising solution in food matrices, although their tendency to oxidize and rapidly aggregate in solution severely limits their use in fortification. Amyloid fibrils are protein aggregates initially known for their association with neurodegenerative disorders, but recently described in the context of biological functions in living organisms and emerging as unique biomaterial building blocks. Here, we show an original application for these protein fibrils as efficient carriers for iron fortification. We use biodegradable amyloid fibrils from β-lactoglobulin, an inexpensive milk protein with natural reducing effects, as anti-oxidizing nanocarriers and colloidal stabilizers for iron nanoparticles. The resulting hybrid material forms a stable protein-iron colloidal dispersion that undergoes rapid dissolution and releases iron ions during acidic and enzymatic in vitro digestion. Importantly, this hybrid shows high in vivo iron bioavailability, equivalent to ferrous sulfate in haemoglobin-repletion and stable-isotope studies in rats, but with reduced organoleptic changes in foods. Feeding the rats with these hybrid materials did not result in abnormal iron accumulation in any organs, or changes in whole blood glutathione concentrations, inferring their primary safety. Therefore, these iron-amyloid fibril hybrids emerge as novel, highly effective delivery systems for iron in both solid and liquid matrices.
On-line tuning of a fuzzy-logic power system stabilizer
International Nuclear Information System (INIS)
Hossein-Zadeh, N.; Kalam, A.
2002-01-01
A scheme for on-line tuning of a fuzzy-logic power system stabilizer is presented. firstly, a fuzzy-logic power system stabilizer is developed using speed deviation and accelerating power as the controller input variables. The inference mechanism of fuzzy-logic controller is represented by a decision table, constructed of linguistic IF-THEN rules. The Linguistic rules are available from experts and the design procedure is based on these rules. It assumed that an exact model of the plant is not available and it is difficult to extract the exact parameters of the power plant. Thus, the design procedure can not be based on an exact model. This is an advantage of fuzzy logic that makes the design of a controller possible without knowing the exact model of the plant. Secondly, two scaling parameters are introduced to tune the fuzzy-logic power system stabilizer. These scaling parameters are the outputs of another fuzzy-logic system, which gets the operating conditions of power system as inputs. These mechanism of tuning the fuzzy-logic power system stabilizer makes the fuzzy-logic power system stabilizer adaptive to changes in the operating conditions. Therefore, the degradation of the system response, under a wide range of operating conditions, is less compared to the system response with a fixed-parameter fuzzy-logic power system stabilizer and a conventional (linear) power system stabilizer. The tuned stabilizer has been tested by performing nonlinear simulations using a synchronous machine-infinite bus model. The responses are compared with a fixed parameters fuzzy-logic power system stabilizer and a conventional (linear) power system stabilizer. It is shown that the tuned fuzzy-logic power system stabilizer is superior to both of them
On stabilization of linear systems with stochastic disturbances and input saturation
Stoorvogel, A.A.; Weiland, S.; Saberi, A.
2004-01-01
It is well-known that for linear systems internal asymptotic stability implies external stability in the sense that when the external input is in Lp then also the state will be in Lp. However, for the control of linear systems with saturation where the controlled system is nonlinear this implication
DEFF Research Database (Denmark)
Yoon, Changwoo; Bai, Haofeng; Wang, Xiongfei
2015-01-01
Stability analysis of distributed power generation system becomes complex when there are many numbers of grid inverters in the system. In order to analyze system stability, the overall network impedance will be lumped and needs to be analyzed one by one. However, using a unified bulky transfer-fu...... and then it is expanded for generalizing its concept to an overall radial structured network....
On the stability of non-linear systems; Sur la stabilite des systemes non-lineaires
Energy Technology Data Exchange (ETDEWEB)
Guelman, M [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, services scientifiques
1968-09-01
A study is made of the absolute stability of nonlinear systems, using Liapounov's second method and taking into account the results obtained from V.M. Popov's work. The results already established are first presented, in particular concerning the frequency domain criterions for absolute stability of automatic control systems containing one single non linearity. The results have been extended to show the existence of a limiting parabola. New use is then made of the methods studied for deriving absolute stability criterions for a system containing a different type of non linearity. Finally, the results obtained are considered from the point of view of Aizerman's conjecture. (author) [French] Dans ce travail, on etudie la stabilite absolue des systemes non lineaires utilisant la deuxieme methode de Liapounov en tenant compte des resultats acquis a partir des travaux de V.M. Popov. On fait d'abord un expose des resultats deja etablis, en particulier en ce qui concerne les criteres frequentiels de stabilite absolue pour le cas d'un systeme de commande automatique comportant une seule non linearite. On a prolonge ces resultats jusqu'a l'etablissement de l'existence d'une parabole limite. On fait ensuite une nouvelle utilisation des methodes etudiees, etablissant des criteres de stabilite absolue pour un systeme comportant un type different de non linearite. On etudie enfin les resultats obtenus, dans l'optique de la conjecture de Aizerman. (auteur)
Thermal stability of α-amylase in aqueous cosolvent systems
Indian Academy of Sciences (India)
Prakash
The activity and thermal stability of α-amylase were studied in the presence of different concentrations of ... 2.1 Materials ..... unfavourable free energy of transfer of amino acid side ..... folded protein with a hydrophobic dye: evidence that molten.
Thermal stability of α-amylase in aqueous cosolvent systems
Indian Academy of Sciences (India)
Prakash
Department of Protein Chemistry and Technology, Central Food Technological Research ... Keywords. α-Amylase; cosolvents; preferential interaction parameters; thermal stability ...... simulations of trehalose as a 'dynamic reducer' for solvent.
Power system dynamics and stability with synchrophasor measurement and power system toolbox
Sauer, Peter W; Chow, Joe H
2017-01-01
This new edition addresses the needs of dynamic modeling and simulation relevant to power system planning, design, and operation, including a systematic derivation of synchronous machine dynamic models together with speed and voltage control subsystems. Reduced-order modeling based on integral manifolds is used as a firm basis for understanding the derivations and limitations of lower-order dynamic models. Following these developments, a multi-machine model interconnected through the transmission network is formulated and simulated using numerical simulation methods. Energy function methods are discussed for direct evaluation of stability. Small-signal analysis is used for determining the electromechanical modes and mode-shapes, and for power system stabilizer design. Time-synchronized high-sampling-rate phasor measurement units (PMUs) to monitor power system disturbances ave been implemented throughout North America and many other countries. In this second edition, new chapters on synchrophasor measurement ...
Salgotra, Aprajita; Pan, Somnath
2018-05-01
This paper explores a two-level control strategy by blending local controller with centralized controller for the low frequency oscillations in a power system. The proposed control scheme provides stabilization of local modes using a local controller and minimizes the effect of inter-connection of sub-systems performance through a centralized control. For designing the local controllers in the form of proportional-integral power system stabilizer (PI-PSS), a simple and straight forward frequency domain direct synthesis method is considered that works on use of a suitable reference model which is based on the desired requirements. Several examples both on one machine infinite bus and multi-machine systems taken from the literature are illustrated to show the efficacy of the proposed PI-PSS. The effective damping of the systems is found to be increased remarkably which is reflected in the time-responses; even unstable operation has been stabilized with improved damping after applying the proposed controller. The proposed controllers give remarkable improvement in damping the oscillations in all the illustrations considered here and as for example, the value of damping factor has been increased from 0.0217 to 0.666 in Example 1. The simulation results obtained by the proposed control strategy are favourably compared with some controllers prevalent in the literature. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Midterm Stability Evaluation of Wide-area Power System by using Synchronized Phasor Measurements
Ota, Yutaka; Ukai, Hiroyuki; Nakamura, Koichi; Fujita, Hideki
In recent years, the PMU (Phasor Measurement Unit) receives a great deal of attention as a synchronized measurement system of power systems. Synchronized phasor angles obtained by the PMU provide the effective information for evaluating the stability of a bulk power system. The aspect of instability phenomena during midterm tends to be more complicated, and the stability analysis using the synchronized phasor measurements is significant in order to keep a complicated power system stable. This paper proposes a midterm stability evaluation method of the wide-area power system by using the synchronized phasor measurements. By clustering and aggregating the power system to some coherent groups, the step-out is effectively predicted on the basis of the two-machine equivalent power system model. The midterm stability of a longitudinal power system model of Japanese 60Hz systems constructed by the PSA, which is a hybrid-type power system simulator, is practically evaluated using the proposed method.
Energy Technology Data Exchange (ETDEWEB)
Alonso Garcia, A. M.; Aviles Garcia, J.; Gonzalez Ramos, M. E.; Diago Sanchez, I.
2010-07-01
The Spanish government is developing several plans and programmes in order to introduce the quality culture and instruments in the various institutions, looking for efficient and committed public organizations, providers of quality services. To achieve the commitment to improve and modernize the Administration, the Centro de Estudios y Experimentacion de Obras Publicas (CEDEX) has decided the implementation and certification of a Quality Management System according to ISO 9001: standard at the Centro de Estudios Hidrograficos as pilot experience. (Author) 5 refs.
Self-organizing dynamic stability of far-from-equilibrium biological systems
Ivanitskii, G. R.
2017-10-01
One indication of the stability of a living system is the variation of the system’s characteristic time scales. Underlying the stability mechanism are the structural hierarchy and self-organization of systems, factors that give rise to a positive (accelerating) feedback and a negative (braking) feedback. Information processing in the brain cortex plays a special role in highly organized living organisms.
CISM Session on Bifurcation and Stability of Dissipative Systems
1993-01-01
The first theme concerns the plastic buckling of structures in the spirit of Hill’s classical approach. Non-bifurcation and stability criteria are introduced and post-bifurcation analysis performed by asymptotic development method in relation with Hutchinson’s work. Some recent results on the generalized standard model are given and their connection to Hill’s general formulation is presented. Instability phenomena of inelastic flow processes such as strain localization and necking are discussed. The second theme concerns stability and bifurcation problems in internally damaged or cracked colids. In brittle fracture or brittle damage, the evolution law of crack lengths or damage parameters is time-independent like in plasticity and leads to a similar mathematical description of the quasi-static evolution. Stability and non-bifurcation criteria in the sense of Hill can be again obtained from the discussion of the rate response.
Stability of superconducting cables for use in large magnet systems
International Nuclear Information System (INIS)
Tateishi, Hiroshi; Schmidt, C.
1992-01-01
The construction of large superconducting magnets requires the development of complicated conductor types, which can fulfill the specific requirements of different types of magnets. A rather hard boundary condition for large magnets is the presence of fast changing magnetic fields. In the Institute of Technical Physics of the Karlsruhe Nuclear Research Center, Germany, a superconducting cable was developed for use in poloidal field coils in Tokamak experiments. This 'POLO'-cable exhibits low losses in a magnetic ac-field and a high stability margin. In the present article the requirements on a superconducting cable are described, as well as the mechanisms of ac-losses and the calculation of the stability limit. Calculated values are compared with experimental data. Some unresolved problems concerning the stability of large magnets are discussed taking the example of the POLO-cable. (author)
Frequency scanning-based stability analysis method for grid-connected inverter system
DEFF Research Database (Denmark)
Wang, Yanbo; Wang, Xiongfei; Blaabjerg, Frede
2017-01-01
This paper proposes a frequency scanning-based impedance analysis for stability assessment of grid-connected inverter system, which is able to perform stability assessment without using system mathematical models and inherit the superior feature of impedance-based stability criterion with conside......This paper proposes a frequency scanning-based impedance analysis for stability assessment of grid-connected inverter system, which is able to perform stability assessment without using system mathematical models and inherit the superior feature of impedance-based stability criterion...... with consideration of the inverter nonlinearities. Small current disturbance is injected into grid-connected inverter system in a particular frequency range, and the impedance is computed according to the harmonic-frequency response using Fourier analysis, and then the stability is predicted on the basis...... of the impedance stability criterion. The stability issues of grid-connected inverters with grid-current feedback and the converter-current feedback are addressed using the proposed method. The results obtained from simulation and experiments validate the effectiveness of the method. The frequency scanning...
Synchrophasor-Assisted Prediction of Stability/Instability of a Power System
Saha Roy, Biman Kumar; Sinha, Avinash Kumar; Pradhan, Ashok Kumar
2013-05-01
This paper presents a technique for real-time prediction of stability/instability of a power system based on synchrophasor measurements obtained from phasor measurement units (PMUs) at generator buses. For stability assessment the technique makes use of system severity indices developed using bus voltage magnitude obtained from PMUs and generator electrical power. Generator power is computed using system information and PMU information like voltage and current phasors obtained from PMU. System stability/instability is predicted when the indices exceeds a threshold value. A case study is carried out on New England 10-generator, 39-bus system to validate the performance of the technique.
Very high stability systems: LMJ target alignment system and MTG imager test setup
Compain, Eric; Maquet, Philippe; Kunc, Thierry; Marque, Julien; Lauer-Solelhac, Maxime; Delage, Laurent; Lanternier, Catherine
2015-09-01
Most of space instruments and research facilities require test equipment with demanding opto-mechanical stability. In some specific cases, when the stability performance directly drives the final performance of the scientific mission and when feasibility is questionable, specific methods must be implemented for the associated technical risk management. In present paper, we will present our heritage in terms of methodology, design, test and the associated results for two specific systems : the SOPAC-POS and the MOTA, generating new references for future developments. From a performance point of view, we will emphasis on following key parameters : design symmetry, thermal load management, and material and structural choices. From a method point of view the difficulties arise first during design, from the strong coupling between the thermal, mechanical and optical performance models, and then during testing, from the difficulty of conceiving test setup having appropriate performance level. We will present how these limitations have been overcome. SOPAC-POS is the target alignment system of the LMJ, Laser Mega Joule, the French inertial confinement fusion research center. Its stability has been demonstrated by tests in 2014 after 10 years of research and development activities, achieving 1μm stability @ 6m during one hour periods. MOTA is an Optical Ground Support Equipment aiming at qualifying by tests the Flexible Combined Imager (FCI). FCI is an instrument for the meteorological satellite MTG-I, a program of and funded by the European Space Agency and under prime contractorship of Thales Alenia Space. Optimized design will allow to get better than 0.2 μrad stability for one hour periods, as required for MTF measurement.
Design of rapid prototype of UAV line-of-sight stabilized control system
Huang, Gang; Zhao, Liting; Li, Yinlong; Yu, Fei; Lin, Zhe
2018-01-01
The line-of-sight (LOS) stable platform is the most important technology of UAV (unmanned aerial vehicle), which can reduce the effect to imaging quality from vibration and maneuvering of the aircraft. According to the requirement of LOS stability system (inertial and optical-mechanical combined method) and UAV's structure, a rapid prototype is designed using based on industrial computer using Peripheral Component Interconnect (PCI) and Windows RTX to exchange information. The paper shows the control structure, and circuit system including the inertial stability control circuit with gyro and voice coil motor driven circuit, the optical-mechanical stability control circuit with fast-steering-mirror (FSM) driven circuit and image-deviation-obtained system, outer frame rotary follower, and information-exchange system on PC. Test results show the stability accuracy reaches 5μrad, and prove the effectiveness of the combined line-of-sight stabilization control system, and the real-time rapid prototype runs stable.
On a program manifold’s stability of one contour automatic control systems
Directory of Open Access Journals (Sweden)
Zumatov S. S.
2017-12-01
Full Text Available Methodology of analysis of stability is expounded to the one contour systems automatic control feedback in the presence of non-linearities. The methodology is based on the use of the simplest mathematical models of the nonlinear controllable systems. Stability of program manifolds of one contour automatic control systems is investigated. The sufficient conditions of program manifold’s absolute stability of one contour automatic control systems are obtained. The Hurwitz’s angle of absolute stability was determined. The sufficient conditions of program manifold’s absolute stability of control systems by the course of plane in the mode of autopilot are obtained by means Lyapunov’s second method.
Stabilization and tracking controller for a class of nonlinear discrete-time systems
International Nuclear Information System (INIS)
Sharma, B.B.; Kar, I.N.
2011-01-01
Highlights: → We present recursive design of stabilizing controller for nonlinear discrete-time systems. → Problem of stabilizing and tracking control of single link manipulator system is addressed. → We extend the proposed results to output tracking problems. → The proposed methodology is applied satisfactorily to discrete-time chaotic maps. - Abstract: In this paper, stabilization and tracking control problem for parametric strict feedback class of discrete time systems is addressed. Recursive design of control function based on contraction theory framework is proposed instead of traditional Lyapunov based method. Explicit structure of controller is derived for the addressed class of nonlinear discrete-time systems. Conditions for exponential stability of system states are derived in terms of controller parameters. At each stage of recursive procedure a specific structure of Jacobian matrix is ensured so as to satisfy conditions of stability. The closed loop dynamics in this case remains nonlinear in nature. The proposed algorithm establishes global stability results in quite a simple manner as it does not require formulation of error dynamics. Problem of stabilization and output tracking control in case of single link manipulator system with actuator dynamics is analyzed using the proposed strategy. The proposed results are further extended to stabilization of discrete time chaotic systems. Numerical simulations presented in the end show the effectiveness of the proposed approach.
Energy Technology Data Exchange (ETDEWEB)
Berdnikov, V I; Birgel, E R; Kovalev, V D; Kuznestov, A N
1994-12-31
The development of the 500 kV UPS of Middle Volga, the complication of its configuration and operating conditions particularly in connection with concentration of the generating power at Balakovo NPS have aggravated the problem of stability of the Middle Volga UPS when high power is transmitted along the 500 kV transient system. In this case the necessity for improving control actions` dosage accuracy has also appeared. This work discusses solution to the above mentioned issue. (author) 3 figs.
Experimental research of "microcable in a microconduct" system stability to effect of freezing water
Andreev, Vladimir A.; Burdin, Vladimir A.; Nikulina, Tatiana G.; Alekhin, Ivan N.; Gavryushin, Sergey A.; Nikulin, Aleksey G.; Praporshchikov, Denis E.
2011-12-01
Results of experimental researches of "optical microcable in a microduct" system stability to effect of freezing water are presented. It is shown this system is steadier to water freezing in comparison to lighten optical cable in protective polymer tube.
Preliminary Results on Asymptotic Stabilization of Hamiltonian Systems with Nonholonomic Constraints
Khennouf, H.; Canudas de Wit, C.; Schaft, A.J. van der
1995-01-01
This paper presents some preliminary results on asymptotic stabilization of nonholonomic mechanical systems using the Hamiltonian formulation proposed previously. Our work seeks to establish a general formulation for designing time-varying controllers for some mechanical system described in the
Faria, Teresa; Oliveira, José J.
This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.
Interferometric system for PM-level stability characterization
Verlaan, A.L.; Ellis, J.D.; Voigt, D.; Spronck, J.W.; Munnig Schmidt, R.H.
2010-01-01
We present a double sided, single pass Michelson heterodyne interferometer for dimensional stability measurements. In preliminary measurements, the double deadpath configuration (no sample) showed better than ±1.5 nm (2/) over 13 hours. A 30 mm stainless gauge block was then measured with a
Visual Neuroscience: Unique Neural System for Flight Stabilization in Hummingbirds.
Ibbotson, M R
2017-01-23
The pretectal visual motion processing area in the hummingbird brain is unlike that in other birds: instead of emphasizing detection of horizontal movements, it codes for motion in all directions through 360°, possibly offering precise visual stability control during hovering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect Mechanism of Penstock on Stability and Regulation Quality of Turbine Regulating System
Directory of Open Access Journals (Sweden)
Wencheng Guo
2014-01-01
Full Text Available This paper studies the effect mechanism of water inertia and head loss of penstock on stability and regulation quality of turbine regulating system with surge tank or not and proposes the construction method of equivalent model of regulating system. Firstly, the complete linear mathematical model of regulating system is established. Then, the free oscillation equation and time response of the frequency that describe stability and regulation quality, respectively, are obtained. Finally, the effects of penstock are analysed by using stability region and response curves. The results indicate that the stability and regulation quality of system without surge tank are determined by time response of frequency which only depends on water hammer wave in penstock, while, for system with surge tank, the time response of frequency depending on water hammer wave in penstock and water-level fluctuation in surge tank jointly determines the stability and regulation quality. Water inertia of penstock mainly affects the stability and time response of frequency of system without surge tank as well as the stability and head wave of time response of frequency with surge tank. Head loss of penstock mainly affects the stability and tail wave of time response of frequency with surge tank.
Krook, Melanie A.; Hagerman, Ann E.
2012-01-01
Polyphenols found in foods and beverages are under intense scrutiny for their potential beneficial effects on human health. We examined the stability of two bioactive polyphenols, epigallocatechin-O-gallate (EGCg) and 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG), in a model digestive system at low oxygen tension with and without added digestive components and foods. Both compounds were stable at pH values of 5–6 and below, indicating gastric stability. Both compounds decomposed at pH 7.0. PGG was stabilized in a model system containing pepsin, pancreatin, bile and lipase, and/or baby food, but was not stabilized by dry cereal. EGCg was not stabilized by the addition of any biomolecule. The effects of polyphenols on human health should be evaluated in the context of their stability in the digestive tract with and without added digestive components and/or food. PMID:23028206
Stability Analysis of Interconnected Fuzzy Systems Using the Fuzzy Lyapunov Method
Directory of Open Access Journals (Sweden)
Ken Yeh
2010-01-01
Full Text Available The fuzzy Lyapunov method is investigated for use with a class of interconnected fuzzy systems. The interconnected fuzzy systems consist of J interconnected fuzzy subsystems, and the stability analysis is based on Lyapunov functions. Based on traditional Lyapunov stability theory, we further propose a fuzzy Lyapunov method for the stability analysis of interconnected fuzzy systems. The fuzzy Lyapunov function is defined in fuzzy blending quadratic Lyapunov functions. Some stability conditions are derived through the use of fuzzy Lyapunov functions to ensure that the interconnected fuzzy systems are asymptotically stable. Common solutions can be obtained by solving a set of linear matrix inequalities (LMIs that are numerically feasible. Finally, simulations are performed in order to verify the effectiveness of the proposed stability conditions in this paper.
Transient Stability Improvement of IEEE 9 Bus System Using Power World Simulator
Directory of Open Access Journals (Sweden)
Kaur Ramandeep
2016-01-01
Full Text Available The improvement of transient stability of power system was one of the most challenging research areas in power engineer.The main aim of this paper was transient stability analysis and improvement of IEEE 9 bus system. These studies were computed using POWER WORLD SIMULATOR. The IEEE 9 bus system was modelled in power world simulator and load flow studies were performed to determine pre-fault conditions in the system using Newton-Raphson method. The transient stability analysis was carried out using Runga method during three-phase balanced fault. For the improvement transient stability, the general methods adopted were fast acting exciters, FACT devices and addition of parallel transmission line. These techniques play an important role in improving the transient stability, increasing transmission capacity and damping low frequency oscillations.
Transient Stability Assessment of Power System with Large Amount of Wind Power Penetration
DEFF Research Database (Denmark)
Liu, Leo; Chen, Zhe; Bak, Claus Leth
2012-01-01
Recently, the security and stability of power system with large amount of wind power are the concerned issues, especially the transient stability. In Denmark, the onshore and offshore wind farms are connected to distribution system and transmission system respectively. The control and protection...... methodologies of onshore and offshore wind farms definitely affect the transient stability of power system. In this paper, the onshore and offshore wind farms are modeled in detail in order to assess the transient stability of western Danish power system. Further, the computation of critical clearing time (CCT...... plants, load consumption level and high voltage direct current (HVDC) transmission links are taken into account. The results presented in this paper are able to provide an early awareness of power system security condition of the western Danish power system....
Directory of Open Access Journals (Sweden)
Stefanov Predrag Č.
2014-01-01
Full Text Available This paper deals with inter-area power oscillations damping enhancement by distributed energy resources contained in typical micro grid. Main idea behind this work is to use distributed generation and distributed storage, such as battery energy storage to mimic conventional power system stabilizer, but with regulating active power output, rather than reactive power, as in standard power system stabilizer realization. The analysis of the small signal stability is established for four-machine, two-area system, with inverter based micro grids in each area. Dynamic simulation results are included in this work and they show that proposed controller provides additional damping effect to this test system.
Goto, Tomoko; Zheng, Xiaodong; Klyce, Stephen D; Kataoka, Hisashi; Uno, Toshihiko; Yamaguchi, Masahiko; Karon, Mike; Hirano, Sumie; Okamoto, Shigeki; Ohashi, Yuichi
2004-01-01
To evaluate the tear film stability of patients before and after laser in situ keratomileusis (LASIK) using the tear film stability analysis system (TSAS). Prospective observational case series. New videokeratography software for a topographic modeling system (TMS-2N) was developed that can automatically capture consecutive corneal surface images every second for 10 seconds. Thirty-four subjects (64 eyes) who underwent myopia LASIK were enrolled in this study. All subjects were examined with the new system before LASIK and at 1 week, 1 month, 3 months, and 6 months after the surgery. Corneal topographs were analyzed for tear breakup time (TMS breakup time) and breakup area (TMS breakup area). Based on pre-LASIK TSAS analysis, subjects were separated into normal and abnormal TSAS value groups. The criteria for the normal group were either TMS breakup time more than 5 seconds or TMS breakup area less than 0.2. The percentage of the occurrence of superficial punctuate keratitis was compared between the two groups with regard to subject's dry eye signs and symptoms. Tear film stability decreased significantly during the early period after LASIK, as indexed by decreased TMS breakup time and increased TMS breakup area. Tear film instability resolved at 6 months after surgery. Before LASIK, 22 subjects (43 eyes) had normal TSAS evaluation and 12 subjects (21 eyes) were abnormal. After LASIK, among normal TSAS value eyes, 8 of 43 (18.6%) eyes developed superficial punctuate keratitis. In sharp contrast, 14 of 21 (66.7%) eyes in the abnormal group displayed superficial punctuate keratitis, correlating well with the patients' dry eye symptoms. The difference in the presence of superficial punctuate keratitis after LASIK between normal and abnormal TSAS value groups was statistically significant (P <.001). Subjects with abnormal TSAS evaluation also displayed resistance to dry eye treatment and had extended period of recovery. Tear film stability analysis can be a useful
Stability Analysis for Fractional-Order Linear Singular Delay Differential Systems
Directory of Open Access Journals (Sweden)
Hai Zhang
2014-01-01
Full Text Available We investigate the delay-independently asymptotic stability of fractional-order linear singular delay differential systems. Based on the algebraic approach, the sufficient conditions are presented to ensure the asymptotic stability for any delay parameter. By applying the stability criteria, one can avoid solving the roots of transcendental equations. An example is also provided to illustrate the effectiveness and applicability of the theoretical results.
International Nuclear Information System (INIS)
Druzhinina, O V; Shestakov, A A
2002-01-01
A generalized direct Lyapunov method is put forward for the study of stability and attraction in general time systems of the following types: the classical dynamical system in the sense of Birkhoff, the general system in the sense of Zubov, the general system in the sense of Seibert, the general system with delay, and the general 'input-output' system. For such systems, with the help of generalized Lyapunov functions with respect to two filters, two quasifilters, or two filter bases, necessary and sufficient conditions for stability and attraction are obtained under minimal assumptions about the mathematical structure of the general system
Stabilization of the RF system at the SPring-8 linac
Asaka, T; Hori, T; Kobayashi, T; Mizuno, A; Sakaki, H; Suzuki, S; Taniuchi, T; Yanagida, K; Yokomizo, H; Yoshikawa, H
2002-01-01
Beam energy variation of the SPring-8 linac was 1% or more at the start of beam commissioning. Depending on fluctuation, beam transmission efficiency from the linac to the booster synchrotron was significantly affected, and beam intensity in the booster synchrotron changed 20-30%. This caused delay of optimization of the various parameters in the booster synchrotron. More problematic, the beam intensities stored in each RF (radio frequency) bucket of the storage ring at SPring-8 were all different from each other. The users utilizing synchrotron radiation requested that the beam intensity in each RF bucket be as uniform as possible. It was thus a pressing necessity to stabilize the beam energy in the linac. Investigation of the cause has clarified that the various apparatuses installed in the linac periodically changed depending on circumstances and utilities such as the air conditioner, cooling water and electric power. After various improvements, beam energy stability in the linac of <0.06% rms was attai...
Directory of Open Access Journals (Sweden)
Ghouraf Djamel Eddine
2016-05-01
Full Text Available Power system stability considered a necessary condition for normal functioning of an electrical network. The role of regulation and control systems is to ensure that stability by determining the essential elements that influence it. This paper proposes a Particle Swarm Optimization (PSO based multiobjective function to tuning optimal parameters of Power System Stabilizer (PSS; this later is used as auxiliary to generator excitation system in order to damp electro mechanicals oscillations of the rotor and consequently improve Power system stability. The computer simulation results obtained by developed graphical user interface (GUI have proved the efficiency of PSS optimized by a Particle Swarm Optimization, in comparison with a conventional PSS, showing stable system responses almost insensitive to large parameter variations.Our present study was performed using a GUI realized under MATLAB in our work.
Stabilization and regulation of nonlinear systems a robust and adaptive approach
Chen, Zhiyong
2015-01-01
The core of this textbook is a systematic and self-contained treatment of the nonlinear stabilization and output regulation problems. Its coverage embraces both fundamental concepts and advanced research outcomes and includes many numerical and practical examples. Several classes of important uncertain nonlinear systems are discussed. The state-of-the art solution presented uses robust and adaptive control design ideas in an integrated approach which demonstrates connections between global stabilization and global output regulation allowing both to be treated as stabilization problems. Stabilization and Regulation of Nonlinear Systems takes advantage of rich new results to give students up-to-date instruction in the central design problems of nonlinear control, problems which are a driving force behind the furtherance of modern control theory and its application. The diversity of systems in which stabilization and output regulation become significant concerns in the mathematical formulation of practical contr...
Fast simulation of wind generation for frequency stability analysis in island power systems
Energy Technology Data Exchange (ETDEWEB)
Conroy, James [EirGrid, Dublin (Ireland)
2010-07-01
Frequency stability is a major issue for power system planning and operation in an island power system such as Ireland. As increasing amounts of variable speed wind generation are added to the system, this issue becomes more prominent, as variable speed wind generation does not provide an inherent inertial response. This lack of an inertial response means that simplified models for variable speed wind farms can be used for investigating frequency stability. EirGrid uses DIgSILENT Power Factory (as well as other software tools) to investigate frequency stability. In PowerFactory, an automation program has been created to convert detailed wind farm representation (as necessary for other types of analysis) to negative load models for frequency stability analysis. The advantage of this approach is much-improved simulation speed without loss of accuracy. This approach can also be to study future wind energy targets, and long-term simulation of voltage stability. (orig.)
Some stability and boundedness criteria for a class of Volterra integro-differential systems
Directory of Open Access Journals (Sweden)
Jito Vanualailai
2002-01-01
Full Text Available Using Lyapunov and Lyapunov-like functionals, we study the stability and boundedness of the solutions of a system of Volterra integrodifferential equations. Our results, also extending some of the more well-known criteria, give new sufficient conditions for stability of the zero solution of the nonperturbed system, and prove that the same conditions for the perturbed system yield boundedness when the perturbation is $L^2$.
A summary of impacts of wind power integration on power system small-signal stability
Yan, Lei; Wang, Kewen
2017-05-01
Wind power has been increasingly integrated into power systems over the last few decades because of the global energy crisis and the pressure on environmental protection, and the stability of the system connected with wind power is becoming more prominent. This paper summaries the research status, achievements as well as deficiencies of the research on the impact of wind power integration on power system small-signal stability. In the end, the further research needed are discussed.
ANALYSIS OF PERTURBED MOTION STABILITY OF WHEELER VEHICLES BRAKES CONTROL SYSTEM
Directory of Open Access Journals (Sweden)
V. Verbytskiyi
2011-01-01
Full Text Available The analysis of the perturbed motion stability of the brake automatic control system on the basis of Lyapunov’s second method is carried out. Using transformations of Lurie there has been ob-tained the canonical form of the system of equations of automatic control. It allowed determining the necessary and sufficient conditions of the asymptotic stability of the system irrespective of its initial condition and a definite choice of the admissible characteristic of the regulator.
A comparative study of voltage stability indices in a power system
Energy Technology Data Exchange (ETDEWEB)
Sinha, A.K. [I.I.T., Kharagpur (India). Dept. of Electrical Engineering; Hazarika, D. [Assam Engineering College (India)
2000-11-01
The paper compares the effectiveness of voltage stability indices in providing information about the proximity of voltage instability of a power system. Three simple voltage stability indices are proposed and their effectiveness is compared with some of the recently proposed indices. The comparison is carried out over a wide range of system operating conditions by changing the load power factor and feeder X/R ratios. Test results for the IEEE 57 bus and IEEE 118 bus system are presented. (author)
Mittag-Leffler Stability Theorem for Fractional Nonlinear Systems with Delay
Directory of Open Access Journals (Sweden)
S. J. Sadati
2010-01-01
Full Text Available Fractional calculus started to play an important role for analysis of the evolution of the nonlinear dynamical systems which are important in various branches of science and engineering. In this line of taught in this paper we studied the stability of fractional order nonlinear time-delay systems for Caputo's derivative, and we proved two theorems for Mittag-Leffler stability of the fractional nonlinear time delay systems.
Directory of Open Access Journals (Sweden)
Carlos Mario Zapata Jaramillo
2009-07-01
Full Text Available Los sistemas de información geográfica (SIG requieren interoperabilidad (capacidad para compartir datos y procesos porque contienen grandes cantidades de información que se debe complementar para realizar procesos de análisis, predicción y estudios socioeconómicos, entre otros. Pese a existir estándares para el desarrollo de SIG, la interoperabilidad entre sistemas ya desarrollados es un problema, ya que la estructura de datos y procesos es propia de cada sistema y la gran cantidad de datos dificulta su migración a las estructuras estándar. Por ello, en este artículo de investigación científica y tecnológica se elabora un caso de estudio que permita comprender los elementos subyacentes a la interoperabilidad entre SIG.Geographic Information Systems (GIS require interoperability (capacity for sharing data and processes due to the big amount of information. This information should be supplemented in order to make analysis, prediction processes, and socioeconomic studies, among others. Despite the efforts for standardizing GIS development, interoperability between ancient GIS still has problems: data and process structure are different for every GIS and data size makes the migration of data to standard structures difficult. The above reasons lead us to propose, in this scientific and technological research paper, a case study for better understanding GIS interoperability.
Results on stabilization of nonlinear systems under finite data-rate constraints
Persis, Claudio De
2004-01-01
We discuss in this paper a result concerning the stabilization problem of nonlinear systems under data-rate constraints using output feedback. To put the result in a broader context, we shall first review a number of recent contributions on the stabilization problem under data-rate constraints when
Investigation of external and internal shock in the stability of Indonesia’s financial system
Directory of Open Access Journals (Sweden)
Maulina Vinus
2017-07-01
Full Text Available The objective of this research is to develop a financial system stability index and analyze the internal and external factors that we expect to affect the stability of the Indonesian financial system. We measured the single model of financial system stability index (FSSI from year 2004M03 to2014M09 in Indonesia, and compiled a single quantitative measure based on aggregate internal factors and external factors to capture and predict the shocks of the financial system stability. Stability parameters were composed of composite indicators on different bases. In addition, we developed a comprehensive index component associated with the relevant market conditions, including banking soundness index, financial vulnerability index, and regional economic climate index. Results stated that US economic growth and economic growth of ASEAN countries positively affected financial stability. In addition, current account, exchange rate, inflation, interest rate were shown to negatively affect financial stability. The results of this study imply that internal factors have a strong influence on the financial stability. Therefore, the central bank should give a fast and correct response to the changes of external and internal financial environment, especially for internal factors through monetary policy.
International Nuclear Information System (INIS)
Chen, S.-F.
2009-01-01
The asymptotic stability problem for discrete-time systems with time-varying delay subject to saturation nonlinearities is addressed in this paper. In terms of linear matrix inequalities (LMIs), a delay-dependent sufficient condition is derived to ensure the asymptotic stability. A numerical example is given to demonstrate the theoretical results.
Analysis of the Gyroscopic Stabilization of a System of Rigid Bodies
DEFF Research Database (Denmark)
Kliem, Wolfhard; Kliem, Wolfhard
1996-01-01
We study the gyroscopic of a three-body system. A new method offinding stability regions, based on mechanism and criteria for gyroscopicstabilization, is presented. Of particular interest in this connection isthe theory of interaction of eigenvalues. This leads to a complete 3-dimensionalanalysis......, which shows the regions of stability, divergence, and flutter ofa simple model of a rotating spaceship....
Students' Understanding of Equilibrium and Stability: The Case of Dynamic Systems
Canu, Michaël; de Hosson, Cécile; Duque, Mauricio
2016-01-01
Engineering students in control courses have been observed to lack an understanding of equilibrium and stability, both of which are crucial concepts in this discipline. The introduction of these concepts is generally based on the study of classical examples from Newtonian mechanics supplemented with a control system. Equilibrium and stability are…
Equilibrium and stability of high-beta plasma in a finite l=+-1 toroidal system
International Nuclear Information System (INIS)
Shiina, S.; Saito, K.; Todoroki, J.; Hamada, S.; Gesso, H.; Nogi, Y.; Osanai, Y.; Yoshimura, H.
1983-01-01
The equilibrium and stability are theoretically and experimentally investigated of high-beta plasma in the Modified Bumpy Torus, which is an asymmetric closed-line system with fairly large l=0 and l=+-1 field components. The finiteness of the l=+-1 component induces significant stabilizing effects due both to self formation of a magnetic well and to the conducting wall. (author)
Exponential stability of switched linear systems with time-varying delay
Directory of Open Access Journals (Sweden)
Satiracoo Pairote
2007-11-01
Full Text Available We use a Lyapunov-Krasovskii functional approach to establish the exponential stability of linear systems with time-varying delay. Our delay-dependent condition allows to compute simultaneously the two bounds that characterize the exponential stability rate of the solution. A simple procedure for constructing switching rule is also presented.
Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delays
International Nuclear Information System (INIS)
Song Yongli; Han Maoan; Peng Yahong
2004-01-01
We consider a Lotka-Volterra competition system with two delays. We first investigate the stability of the positive equilibrium and the existence of Hopf bifurcations, and then using the normal form theory and center manifold argument, derive the explicit formulas which determine the stability, direction and other properties of bifurcating periodic solutions
The beauty of simple adaptive control and new developments in nonlinear systems stability analysis
Energy Technology Data Exchange (ETDEWEB)
Barkana, Itzhak, E-mail: ibarkana@gmail.com [BARKANA Consulting, Ramat Hasharon (Israel)
2014-12-10
Although various adaptive control techniques have been around for a long time and in spite of successful proofs of stability and even successful demonstrations of performance, the eventual use of adaptive control methodologies in practical real world systems has met a rather strong resistance from practitioners and has remained limited. Apparently, it is difficult to guarantee or even understand the conditions that can guarantee stable operations of adaptive control systems under realistic operational environments. Besides, it is difficult to measure the robustness of adaptive control system stability and allow it to be compared with the common and widely used measure of phase margin and gain margin that is utilized by present, mainly LTI, controllers. Furthermore, customary stability analysis methods seem to imply that the mere stability of adaptive systems may be adversely affected by any tiny deviation from the pretty idealistic and assumably required stability conditions. This paper first revisits the fundamental qualities of customary direct adaptive control methodologies, in particular the classical Model Reference Adaptive Control, and shows that some of their basic drawbacks have been addressed and eliminated within the so-called Simple Adaptive Control methodology. Moreover, recent developments in the stability analysis methods of nonlinear systems show that prior conditions that were customarily assumed to be needed for stability are only apparent and can be eliminated. As a result, sufficient conditions that guarantee stability are clearly stated and lead to similarly clear proofs of stability. As many real-world applications show, once robust stability of the adaptive systems can be guaranteed, the added value of using Add-On Adaptive Control along with classical Control design techniques is pushing the desired performance beyond any previous limits.
ℋ∞ constant gain state feedback stabilization of stochastic hybrid systems with Wiener process
Directory of Open Access Journals (Sweden)
E. K. Boukas
2004-01-01
Full Text Available This paper considers the stabilization problem of the class of continuous-time linear stochastic hybrid systems with Wiener process. The ℋ∞ state feedback stabilization problem is treated. A state feedback controller with constant gain that does not require access to the system mode is designed. LMI-based conditions are developed to design the state feedback controller with constant gain that stochastically stabilizes the studied class of systems and, at the same time, achieve the disturbance rejection of a desired level. The minimum disturbance rejection is also determined. Numerical examples are given to show the usefulness of the proposed results.
Stability and Bifurcation Analysis in a Maglev System with Multiple Delays
Zhang, Lingling; Huang, Jianhua; Huang, Lihong; Zhang, Zhizhou
This paper considers the time-delayed feedback control for Maglev system with two discrete time delays. We determine constraints on the feedback time delays which ensure the stability of the Maglev system. An algorithm is developed for drawing a two-parametric bifurcation diagram with respect to two delays τ1 and τ2. Direction and stability of periodic solutions are also determined using the normal form method and center manifold theory by Hassard. The complex dynamical behavior of the Maglev system near the domain of stability is confirmed by exhaustive numerical simulation.
Mean Square Exponential Stability of Stochastic Switched System with Interval Time-Varying Delays
Directory of Open Access Journals (Sweden)
Manlika Rajchakit
2012-01-01
Full Text Available This paper is concerned with mean square exponential stability of switched stochastic system with interval time-varying delays. The time delay is any continuous function belonging to a given interval, but not necessary to be differentiable. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, a switching rule for the mean square exponential stability of switched stochastic system with interval time-varying delays and new delay-dependent sufficient conditions for the mean square exponential stability of the switched stochastic system are first established in terms of LMIs. Numerical example is given to show the effectiveness of the obtained result.
Energy Technology Data Exchange (ETDEWEB)
Shaorong, Wu; Dazhong, Wang; Meisheng, Yao; Jinhai, Bo; Yunxian, Tong; Shengyao, Jiang; Bing, Han [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)
1997-09-01
Appropriately scaled ``Loop Stability`` tests and ``Channel Stability`` tests were performed with single heated channel system and two parallel channel system separately at the Institute of Nuclear Energy Technology (INET) of the Tsinghua University in China. A broad range of several operational parameters such as heating power, system pressure, test inlet subcooling and resistance coefficient were investigated. It was found that under certain geometric conditions and operating parameters a self-sustaining, low frequency, even amplitude mass flow oscillation may be excited at very low steam qualities and subcooling conditions. Stability maps under different conditions have been provided to assist the design of the NHR. (author). 6 refs, 15 figs.
A Design of Power System Stabilization for SVC System Using a RVEGA
Energy Technology Data Exchange (ETDEWEB)
Chung, Hyeng Hwan; Hur, Dong Ryol; Lee, Jeong Phil; Wang, Yong Peel [Dong-A University, Pusan (Korea)
2001-07-01
In this paper, it is suggested that the selection method of parameter of Power System Stabilizer (PSS) with robustness in low frequency oscillation for Static VAR Compensator (SVC) using a Real Variable Elitism Genetic Algorithm (RVEGA). A SVE, one of the Flexible AC Transmission System (FACTS), constructed by a fixed capacitor (FC) and a thyristor controlled reactor (TCR), is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage. The proposed PSS parameters are optimized using RVEGA in order to maintain optimal operation of generator under the various operating conditions. To decrease the computational time, real variable string is adopted. To verify the robustness of the proposed method, we considered the dynamic response of generator speed deviation and generator terminal voltage by applying a power fluctuation and three-phase fault at heavy load, normal load and light load. Thus, we prove the usefulness of proposed method to improve the stability of single machine-infinite bus with SVC system. (author). 20 refs., 14 figs., 3 tabs.
Security region-based small signal stability analysis of power systems with FSIG based wind farm
Qin, Chao; Zeng, Yuan; Yang, Yang; Cui, Xiaodan; Xu, Xialing; Li, Yong
2018-02-01
Based on the Security Region approach, the impact of fixed-speed induction generator based wind farm on the small signal stability of power systems is analyzed. Firstly, the key factors of wind farm on the small signal stability of power systems are analyzed and the parameter space for small signal stability region is formed. Secondly, the small signal stability region of power systems with wind power is established. Thirdly, the corresponding relation between the boundary of SSSR and the dominant oscillation mode is further studied. Results show that the integration of fixed-speed induction generator based wind farm will cause the low frequency oscillation stability of the power system deteriorate. When the output of wind power is high, the oscillation stability of the power system is mainly concerned with the inter-area oscillation mode caused by the integration of the wind farm. Both the active power output and the capacity of reactive power compensation of the wind farm have a significant influence on the SSSR. To improve the oscillation stability of power systems with wind power, it is suggested to reasonably set the reactive power compensation capacity for the wind farm through SSSR.
Energy Technology Data Exchange (ETDEWEB)
Blass Amador, Georgina; Panama Tirado, Luz Angelica [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1992-11-01
In Mexico, the largest part of the generated electric energy comes from the use of residual heavy oils known as fuel oils which have suffered quality degradation due to a combination of factors, among which stands out the changes in the refining process. It is necessary to develop methods capable of indicating the instability (formation of sediment or viscosity increase during storage or heating) or incompatibility (formation of sediment in mixing two or more fuel oils) of the fuel oils employed in fossil fuel power plants. This work objective was to develop an alternative test for the study of the compatibility and/or stability of Mexican fuel oils using high resolution liquid chromatography (CLAR) and so to determine structural aspects of the fuel oil that determine its stability. Since the formation of sediments occurs when the dissolving ability of the fuel is inadequate to keep the asphaltenes in solution, it is important to know the solvent power degree or aromaticity of the diluent; so, in the first part of this work the attention was centered in the determination of the profile of aromatic compounds of the fuel oil diluents, the other part was dedicated to the determination of the distribution profile the molecular weights of the asphaltenes present in the fuel oils. The profiles of the aromatic fraction, as well as of the molecular weight distribution were determined using liquid chromatography, in which a variety of columns and solvents were used. A combination of routine tests was accomplished, such as asphaltenes content, toluene equivalence, viscosity, etc., in order to obtain correlation with the chromatographic method developed. In this article it is only discussed the section corresponding to the obtainment of the profile of aromatics content in the fuel oils. It has been found a correlation among the asphaltenes content, toluene equivalence, aromaticity profiles and stability. As a direct consequence, it is expected to be able to predict the
Power system stabilization by SMES using current-fed pwm power conditioner
International Nuclear Information System (INIS)
Ishikawa, T.; Akita, S.; Taniguchi, H.; Kosho, S.; Tanaka, T.
1988-01-01
A superconducting magnetic energy storage (SMES) unit, consisted of superconducting coil and AC/DC power conditioner, can be used to suppress various kinds of instability that may cause service interruption in electric power system as it has high controllability of input/output electric power. Power system stabilizing ability of SMES has been examined experimentally by using model power system and small SMES unit. Current-fed PWM power conditioner was used to obtain maximum stabilizing effect by controlling active and reactive power simultaneously and independently. Power conditioner configuration, operating characteristics and control scheme for power system stabilization are also described. Results from experiments show the effectiveness of SMES on power system stabilization
Directory of Open Access Journals (Sweden)
Huang Tingwen
2009-01-01
Full Text Available This paper studies the exponential stability of a class of periodically time-switched nonlinear systems. Three cases of such systems which are composed, respectively, of a pair of unstable subsystems, of both stable and unstable subsystems, and of a pair of stable systems, are considered. For the first case, the proposed result shows that there exists periodically switching rule guaranteeing the exponential stability of the whole system with (sufficient small switching period if there is a Hurwitz linear convex combination of two uncertain linear systems derived from two subsystems by certain linearization. For the second case, we present two general switching criteria by means of multiple and single Lyapunov function, respectively. We also investigate the stability issue of the third case, and the switching criteria of exponential stability are proposed. The present results for the second case are further applied to the periodically intermittent control. Several numerical examples are also given to show the effectiveness of theoretical results.
Stability of limit cycles in autonomous nonlinear systems
Czech Academy of Sciences Publication Activity Database
Náprstek, Jiří; Fischer, Cyril
2014-01-01
Roč. 49, č. 8 (2014), s. 1929-1943 ISSN 0025-6455 R&D Projects: GA AV ČR(CZ) IAA200710902; GA ČR(CZ) GA103/09/0094; GA ČR(CZ) GC13-34405J Institutional support: RVO:68378297 Keywords : limit cycle * nonlinear oscillator * stability Subject RIV: JM - Building Engineering Impact factor: 1.949, year: 2014 http://link.springer.com/article/10.1007/s11012-014-9899-8
A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA
Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao
2015-10-01
Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.
L2-stability of the Vlasov-Maxwell-Boltzmann system near global Maxwellians
International Nuclear Information System (INIS)
Ha, Seung-Yeal; Xiao, Qinghua; Xiong, Linjie; Zhao, Huijiang
2013-01-01
We present a L 2 -stability theory of the Vlasov-Maxwell-Boltzmann system for the two-species collisional plasma. We show that in a perturbative regime of a global Maxwellian, the L 2 -distance between two strong solutions can be controlled by that between initial data in a Lipschitz manner. Our stability result extends earlier results [Ha, S.-Y. and Xiao, Q.-H., “A revisiting to the L 2 -stability theory of the Boltzmann equation near global Maxwellians,” (submitted) and Ha, S.-Y., Yang, X.-F., and Yun, S.-B., “L 2 stability theory of the Boltzmann equation near a global Maxwellian,” Arch. Ration. Mech. Anal. 197, 657–688 (2010)] on the L 2 -stability of the Boltzmann equation to the Boltzmann equation coupled with self-consistent external forces. As a direct application of our stability result, we show that classical solutions in Duan et al. [“Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,” Commun. Pure Appl. Math. 24, 1497–1546 (2011)] and Guo [“The Vlasov-Maxwell-Boltzmann system near Maxwellians,” Invent. Math. 153(3), 593–630 (2003)] satisfy a uniform L 2 -stability estimate. This is the first result on the L 2 -stability of the Boltzmann equation coupled with self-consistent field equations in three dimensions
Stability of dynamical systems on the role of monotonic and non-monotonic Lyapunov functions
Michel, Anthony N; Liu, Derong
2015-01-01
The second edition of this textbook provides a single source for the analysis of system models represented by continuous-time and discrete-time, finite-dimensional and infinite-dimensional, and continuous and discontinuous dynamical systems. For these system models, it presents results which comprise the classical Lyapunov stability theory involving monotonic Lyapunov functions, as well as corresponding contemporary stability results involving non-monotonicLyapunov functions.Specific examples from several diverse areas are given to demonstrate the applicability of the developed theory to many important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, and artificial neural networks. The authors cover the following four general topics: - Representation and modeling of dynamical systems of the types described above - Presentation of Lyapunov and Lagrange stability theory for dynamical sy...
Short term outcome of posterior dynamic stabilization system in degenerative lumbar diseases
Directory of Open Access Journals (Sweden)
Mingyuan Yang
2014-01-01
Conclusion: Dynamic stabilization system treating lumbar degenerative disease showed clinical benefits with motion preservation of the operated segments, but does not have the significant advantage on motion preservation at adjacent segments, to avoid the degeneration of adjacent intervertebral disk.
Directory of Open Access Journals (Sweden)
G. Kondrat'ev
1999-10-01
Full Text Available In this article some ideas of Hamilton mechanics and differential-algebraic Geometry are used to exact definition of the potential function (Bellman-Lyapunov function in the optimal stabilization problem of smooth finite-dimensional systems.
General Output Feedback Stabilization for Fractional Order Systems: An LMI Approach
Directory of Open Access Journals (Sweden)
Yiheng Wei
2014-01-01
Full Text Available This paper is concerned with the problem of general output feedback stabilization for fractional order linear time-invariant (FO-LTI systems with the fractional commensurate order 0<α<2. The objective is to design suitable output feedback controllers that guarantee the stability of the resulting closed-loop systems. Based on the slack variable method and our previous stability criteria, some new results in the form of linear matrix inequality (LMI are developed to the static and dynamic output feedback controllers synthesis for the FO-LTI system with 0<α<1. Furthermore, the results are extended to stabilize the FO-LTI systems with 1≤α<2. Finally, robust output feedback control is discussed. Numerical examples are given to illustrate the effectiveness of the proposed design methods.
Analysis and improvement of digital control stability for master-slave manipulator system
International Nuclear Information System (INIS)
Yoshida, Koichi; Yabuta, Tetsuro
1992-01-01
Some bilateral controls of master-slave system have been designed, which can realize high-fidelity telemanipulation as if the operator were manipulating the object directly. While usual robot systems are controlled by software-servo system using digital computer, little work has been published on design and analysis for digital control of these systems, which must consider time-delay of sensor signals and zero order hold effect of command signals on actuators. This paper presents a digital control analysis for single degree of freedom master-slave system including impedance models of both the human operator and the task object, which clarifies some index for the stability. The stability result shows a virtual master-slave system concepts, which improve the digital control stability. We first analyze a dynamic control method of master-slave system in discrete-time system for the stability problem, which can realize high-fidelity telemanipulation in the continuous-time. Secondly, using the results of the stability analysis, the robust control scheme for master-slave system is proposed, and the validity of this scheme is finally confirmed by the simulation. Consequently, it would be considered that any combination of master and slave modules with dynamic model of these manipulators is possible to construct the stable master-slave system. (author)
Application of a Modal Approach in Solving the Static Stability Problem for Electric Power Systems
Sharov, J. V.
2017-12-01
Application of a modal approach in solving the static stability problem for power systems is examined. It is proposed to use the matrix exponent norm as a generalized transition function of the power system disturbed motion. Based on the concept of a stability radius and the pseudospectrum of Jacobian matrix, the necessary and sufficient conditions for existence of the static margins were determined. The capabilities and advantages of the modal approach in designing centralized or distributed control and the prospects for the analysis of nonlinear oscillations and rendering the dynamic stability are demonstrated.
Stabilization of periodic solutions in a tethered satellite system by damping injection
DEFF Research Database (Denmark)
Larsen, Martin Birkelund; Blanke, Mogens
2009-01-01
presents a control design for stabilizing these periodic solutions. The design consists of a control law for stabilizing the open-loop equilibrium and a bias term which forces the system trajectory away from the equilibrium. The tether needs to be positioned away from open-loop equilibrium for the tether...... to affect the orbit parameters. An approximation of the periodic solutions of the closed loop system is found as a series expansion in the parameter plane spanned by the controller gain and the bias term. The stability of the solutions is investigated using linear Floquet analysis of the variational...
Wind Power Impact to Transient and Voltage Stability of the Power System in Eastern Denmark
DEFF Research Database (Denmark)
Rasmussen, Joana; Jørgensen, Preben; Palsson, Magni Thor
2005-01-01
Voltage stability, transient stability and reactive power compensation are extremely important issues for largescale integration of wind power in areas distant from the main transmission system in Eastern Denmark. This paper describes the application of a dynamic wind farm model in simulation...... studies for assessments of a large wind power penetration. The simulation results reveal problems with voltage stability due to the characteristic of wind turbine generation as well as the inability of the power system to meet the reactive power demand. Furthermore, the established model is applied...
Stability of underground excavations in a repository system
International Nuclear Information System (INIS)
Calash, A.Y.; Greer, J.C.; Andrea, S.J.; Chowdhury, A.H.; Nguyen, V.V.
1988-01-01
The DOE is investigating the feasibility of constructing a deep geologic repository at the Hanford Site, Washington, for the permanent disposal of nuclear waste. The underground openings associated with the repository design include shafts, tunnels, emplacement rooms and boreholes. The stability of these underground openings, the extent and characteristics of the disturbed zones due to excavation, and their effects on groundwater flow path and travel time have a primary influence on the performance assessment of the Hanford Site as a nuclear waste repository. This study is being done in accordance with the requirements of the NRC. Results of structural analyses of shafts and tunnels under in situ stresses and/or medium weight are presented in this paper. Four different analyses were carried out to analyze the shaft: a plane strain model, axisymmetric model, 3-D model of a single material medium, and 3-D model of a three material medium
Classical stability of direct products of spheres in gravitational systems
International Nuclear Information System (INIS)
Yasuda, O.
1984-01-01
Classical stability of Einstein spaces Ssup(d1) x x x x x Ssup(dn) (dsub(j) >= 2) against all fluctuations is investigated in euclidean gravity with a cosmological constant. It is shown that Ssup(d) is classically stable, while Ssup(d1) x x x x x Ssup(dn) (n >= 2) is classically unstable. As a generalization of this analysis it is proved that a compact Einstein space B 1 x x x x x Bsub(n) (n >= 2) which is a direct product of each Einstein space is classically unstable. Non-Einstein spaces M 2 x S 4 (M 2 x S 2 x S 2 ) are also considered in six-dimensional Einstein-Maxwell theory and are shown to be classically stable (unstable). (orig.)
Dynamic Voltage Stability Studies using a Modified IEEE 30-Bus System
Directory of Open Access Journals (Sweden)
Oluwafemi Emmanuel Oni
2016-09-01
Full Text Available Power System stability is an essential study in the planning and operation of an efficient, economic, reliable and secure electric power system because it encompasses all the facet of power systems operations, from planning, to conceptual design stages of the project as well as during the systems operating life span. This paper presents different scenario of power system stability studies on a modified IEEE 30-bus system which is subjected to different faults conditions. A scenario whereby the longest high voltage alternating current (HVAC line is replaced with a high voltage direct current (HVDC line was implemented. The results obtained show that the HVDC line enhances system stability more compared to the contemporary HVAC line. Dynamic analysis using RMS simulation tool was used on DigSILENT PowerFactory.
Energy Technology Data Exchange (ETDEWEB)
Fiscal Escalante, Raul [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)
2007-07-01
An analysis methodology followed in the development of technique-economic feasibility studies of systems of electrical generation in offshore electrical installations is presented, including the obtaining of the curves of the turbine and generator performance, the technical considerations for the formulation of the operation scenes and the calculations of the economic evaluation of a real scenario. [Spanish] Se muestra una metodologia de analisis seguida en el desarrollo de estudios de factibilidad tecnica-economica de sistemas de generacion electrica en instalaciones electricas costa fuera, incluyendo la obtencion de las curvas de comportamiento de la turbina y el generador, las consideraciones tecnicas para la formulacion de los escenarios de operacion y los calculos de la evaluacion economica de un escenario real.
Thermal Stabilization of Cryogenic System in Superconducting Cyclotron
International Nuclear Information System (INIS)
Shin, Seung Jae; Kim, Kyung Min; Cho, Hyung Hee; Hong, Bong Hwan; Kang, Joon Sun; Ahn, Dong Hyun
2011-01-01
Radiology has some useful applications for medical purpose. For cancer therapy, the superconducting cyclotron should generate heavy ion beams. It radiates heavy ion beams to cancer patients. In order to make cyclotron system stable, the cryogenic system which makes superconducting state should work constantly. However, radiation heat transfer of cryogenic system should be considered because liquid helium's boiling point is extremely low and there is huge temperature difference between the cryogenic system and ambient temperature. Accordingly, thermal analysis should be carried out. In this paper, the numerical analysis of the cryogenic system in practical superconducting cyclotron show temperature distribution and suggest the number of coolers using ANSYS Workbench program
International Nuclear Information System (INIS)
Amjady, Nima; Ansari, Mohammad Reza
2008-01-01
The introduction of liberalized electricity markets in many countries has resulted in more highly stressed power systems. On the other hand, operating points of a power system are acceptable in the feasible region, which is surrounded by the borders of different stabilities. Power system instability is critical for all participants of the electricity market. Determination of different stability margins can result in the optimum utilization of power system with minimum risk. This paper focuses on the small disturbance voltage stability, which is an important subset of the power system global stability. This kind of voltage stability is usually evaluated by static analysis tools such as continuation power flow, while it essentially has dynamic nature. Besides, a combination of linear and nonlinear analysis tools is required to correctly analyze it. In this paper, a hybrid evaluation method composed of static, dynamic, linear, and nonlinear analysis tools is proposed for this purpose. Effect of load scenario, generation pattern, branch and generator contingency on the small disturbance voltage stability are evaluated by the hybrid method. The test results are given for New England and IEEE68 bus test systems. (author)
Wu, Bing-Fei; Ma, Li-Shan; Perng, Jau-Woei
This study analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur'e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Finally, the comparisons are also given to show the effectiveness of the analysis method.
Directory of Open Access Journals (Sweden)
Mohammadtaghi Hamidi Beheshti
2010-01-01
Full Text Available We propose a fractional-order controller to stabilize unstable fractional-order open-loop systems with interval uncertainty whereas one does not need to change the poles of the closed-loop system in the proposed method. For this, we will use the robust stability theory of Fractional-Order Linear Time Invariant (FO-LTI systems. To determine the control parameters, one needs only a little knowledge about the plant and therefore, the proposed controller is a suitable choice in the control of interval nonlinear systems and especially in fractional-order chaotic systems. Finally numerical simulations are presented to show the effectiveness of the proposed controller.
Directory of Open Access Journals (Sweden)
L. F. Araghi
2014-01-01
Full Text Available Stability of switching systems with an infinite number of subsystems is important in some structure of systems, like fuzzy systems, neural networks, and so forth. Because of the relationship between stability of a set of matrices and switching systems, this paper first studies the stability of a set of matrices, then and the results are applied for stability of switching systems. Some new conditions for globally uniformly asymptotically stability (GUAS of discrete-time switched linear systems with an infinite number of subsystems are proposed. The paper considers some examples and simulation results.
Evaluation of Laser Stabilization and Imaging Systems for LCLS-II - Final Paper
Energy Technology Data Exchange (ETDEWEB)
Barry, Matthew [Auburn Univ., AL (United States)
2015-08-20
By combining the top performing commercial laser beam stabilization system with the most ideal optical imaging configuration, the beamline for the Linear Accelerator Coherent Light Source II (LCLS-II) will deliver the highest quality and most stable beam to the cathode. To determine the optimal combination, LCLS-II beamline conditions were replicated and the systems tested with a He-Ne laser. The Guidestar-II and MRC active laser beam stabilization systems were evaluated for their ideal positioning and stability. Both a two and four lens optical imaging configuration was then evaluated for beam imaging quality, magnification properties, and natural stability. In their best performances when tested over fifteen hours, Guidestar-II kept the beam stable over approximately 70-110um while the MRC system kept it stable over approximately 90-100um. During short periods of time, Guidestar-II kept the beam stable between 10-20um, but was more susceptible to drift over time, while the MRC system maintained the beam between 30-50um with less overall drift. The best optical imaging configuration proved to be a four lens system that images to the iris located in the cathode room and from there, imaged to the cathode. The magnification from the iris to the cathode was 2:1, within an acceptable tolerance to the expected 2.1:1 magnification. The two lens configuration was slightly more stable in small periods of time (less than 10 minutes) without the assistance of a stability system, approximately 55um compared to approximately 70um, but the four lens configurations beam image had a significantly flatter intensity distribution compared to the two lens configuration which had a Gaussian distribution. A final test still needs to be run with both stability systems running at the same time through the four lens system. With this data, the optimal laser beam stabilization system can be determined for the beamline of LCLS-II.
Interpreting Popov criteria in Lure´ systems with complex scaling stability analysis
Zhou, J.
2018-06-01
The paper presents a novel frequency-domain interpretation of Popov criteria for absolute stability in Lure´ systems by means of what we call complex scaling stability analysis. The complex scaling technique is developed for exponential/asymptotic stability in LTI feedback systems, which dispenses open-loop poles distribution, contour/locus orientation and prior frequency sweeping. Exploiting the technique for alternatively revealing positive realness of transfer functions, re-interpreting Popov criteria is explicated. More specifically, the suggested frequency-domain stability conditions are conformable both in scalar and multivariable cases, and can be implemented either graphically with locus plotting or numerically without; in particular, the latter is suitable as a design tool with auxiliary parameter freedom. The interpretation also reveals further frequency-domain facts about Lure´ systems. Numerical examples are included to illustrate the main results.
Delay-dependent asymptotic stability of mobile ad-hoc networks: A descriptor system approach
International Nuclear Information System (INIS)
Yang Juan; Yang Dan; Zhang Xiao-Hong; Huang Bin; Luo Jian-Lu
2014-01-01
In order to analyze the capacity stability of the time-varying-propagation and delay-dependent of mobile ad-hoc networks (MANETs), in this paper, a novel approach is proposed to explore the capacity asymptotic stability for the delay-dependent of MANETs based on non-cooperative game theory, where the delay-dependent conditions are explicitly taken into consideration. This approach is based on the Lyapunov—Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) technique. A corresponding Lyapunov—Krasovskii functional is introduced for the stability analysis of this system with use of the descriptor and “neutral-type” model transformation without producing any additional dynamics. The delay-dependent stability criteria are derived for this system. Conditions are given in terms of linear matrix inequalities, and for the first time referred to neutral systems with the time-varying propagation and delay-dependent stability for capacity analysis of MANETs. The proposed criteria are less conservative since they are based on an equivalent model transformation. Furthermore, we also provide an effective and efficient iterative algorithm to solve the constrained stability control model. Simulation experiments have verified the effectiveness and efficiency of our algorithm. (general)
Asymptotic stability and disturbance attenuation properties for a class of networked control systems
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In this paper, stability and disturbance attenuation issues for a class of Networked Control Systems (NCSs)under uncertain access delay and packet dropout effects are considered. Our aim is to find conditions on the delay and packet dropout rate, under which the system stability and H∞ disturbance attenuation properties are preserved to a desired level. The basic idea in this paper is to formulate such Networked Control System as a discrete-time switched system. Then the NCSs' stability and performance problems can be reduced to the corresponding problems for switched systems, which have been studied for decades and for which a number of results are available in the literature. The techniques in this paper are based on recent progress in the discrete-time switched systems and piecewise Lyapunov functions.
Robust stability analysis of large power systems using the structured singular value theory
Energy Technology Data Exchange (ETDEWEB)
Castellanos, R.; Sarmiento, H. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Messina, A.R. [Cinvestav, Graduate Program in Electrical Engineering, Guadalajara, Jalisco (Mexico)
2005-07-01
This paper examines the application of structured singular value (SSV) theory to analyse robust stability of complex power systems with respect to a set of structured uncertainties. Based on SSV theory and the frequency sweep method, techniques for robust analysis of large-scale power systems are developed. The main interest is focused on determining robust stability for varying operating conditions and uncertainties in the structure of the power system. The applicability of the proposed techniques is verified through simulation studies on a large-scale power system. In particular, results for the system are considered for a wide range of uncertainties of operating conditions. Specifically, the developed technique is used to estimate the effect of variations in the parameters of a major system inter-tie on the nominal stability of a critical inter-area mode. (Author)
Predictor-based stabilization for chained form systems with input time delay
Directory of Open Access Journals (Sweden)
Mnif Faïçal
2016-12-01
Full Text Available This note addresses the stabilization problem of nonlinear chained-form systems with input time delay. We first employ the so-called σ-process transformation that renders the feedback system under a linear form. We introduce a particular transformation to convert the original system into a delay-free system. Finally, we apply a state feedback control, which guarantees a quasi-exponential stabilization to all the system states, which in turn converge exponentially to zero. Then we employ the so-called -type control to achieve a quasi-exponential stabilization of the subsequent system. A simulation example illustrated on the model of a wheeled mobile robot is provided to demonstrate the effectiveness of the proposed approach.
Impact of PSS and SVC on the Power System Transient Stability
Directory of Open Access Journals (Sweden)
Mohammed Omar Benaissa
2017-06-01
Full Text Available The Static Var Compensator (SVC is used to improve the stability of the power system because of its role in injecting or absorbing the reactive power in the electrical transmission lines. The Power System Stabilizer (PSS is also a control device which ensures maximum power transfer and thus the stability of the power system enhancement. The PSS has been widely used to damp electromechanical oscillations occur in power systems. If no adequate damping is available, the oscillations will increase leading to instability. The present work is an original contribution to the problem of transient stability in the electrical power system, the authors have made some efforts to illustrate the flexibility and the importance of inserting the SVC alone or with the PSS the fact that maintain the characteristics of the system within acceptable limits in a very short time. The results show that the system has been developed successfully in terms of transient stability in a bi-machine transmission system only with the presence of PSS when a single-phase fault has been occurred, while the presence of SVC is more than essential when a three-phase fault is occurred.
[Study on relationship between emotional stability in flight and nerve system excitability].
Liu, Fang; Huang, Wei-fen; Jing, Xiao-lu; Zhang, Ping
2003-06-01
To study the related factors of emotional stability in flight. Based on the operable definition of emotional stability in flight and the related literature review, 63 experienced pilots and flight coaches were investigated and the other-rating questionnaire of emotional stability in flight was established. To test the senior nerve system, Uchida Kraeplin (UK) test was administrated on 153 19-21 years old male student pilots of the second grade in the department of flight technique in China Civil Aviation College, who were selected through 13 h flight, 35 h solo flight, and acted as the standardization group. In the end, the correlation was explored between the testing results and their emotional behavioral characteristics in flight. Significant positive correlation was found between emotional feature indexes of emotional stability in flight and excitability in UK test. The excitability in UK test are good predictors for emotional stability in flight.
van der Schaft, Arjan
1995-01-01
The approach to robust stabilization of linear systems using normalized left coprime factorizations with H∞ bounded uncertainty is generalized to nonlinear systems. A nonlinear perturbation model is derived, based on the concept of a stable kernel representation of nonlinear systems. The robust
14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.
2010-01-01
... power-operated systems. 23.672 Section 23.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show compliance with the flight characteristics requirements of this part...
Asymptotic Stabilization of Non-holonomic Port-controlled Hamiltonian Systems
DEFF Research Database (Denmark)
Sørensen, Mathias Jesper; Bendtsen, Jan Dimon; Andersen, Palle
2004-01-01
A novel method for asymptotic stabilization of a class of non-holonomic systems is presented. The method is based on the port-controlled Hamiltonian description of electro-mechanical systems. The general system is augmented with so-called kinematic inputs, thus representing a special class of mob...
Fault Tolerant Emergency Control to Preserve Power System Stability
DEFF Research Database (Denmark)
Pedersen, Andreas Søndergaard; Richter, Jan H.; Tabatabaeipour, Mojtaba
2016-01-01
This paper introduces a method for fault-masking and system reconfiguration in power transmission systems. The paper demonstrates how faults are handled by reconfiguring remaining controls through utilisation of wide-area measurement in real time. It is shown how reconfiguration can be obtained u...
Electric grid stability and the design of sustainable energy systems
DEFF Research Database (Denmark)
Lund, Henrik
2005-01-01
The article presents technical designs of potential future flexible energy systems, which will be able both to balance production and demand and to secure voltage and frequency requirements on the grid.......The article presents technical designs of potential future flexible energy systems, which will be able both to balance production and demand and to secure voltage and frequency requirements on the grid....
Stability analysis of transmission system with high penetration of distributed generation
Energy Technology Data Exchange (ETDEWEB)
Reza, M.
2006-12-21
Nowadays, interest in generating electricity using decentralized generators of relatively small scale ('distributed generation', DG) is increasing. This work deals with the impact of implementing DG on the transmission system transient stability, with the emphasis on a potential transition from a 'vertical power system' to a 'horizontal power system. A problem in power systems is maintaining synchronous operation of all (centralized) synchronous machines. This stability problem associated is called rotor angle stability. In this work, the impact of the DG implementation on this is investigated. The impact of DG levels on the system transient stability when the increasing DG level is followed by a reduction of centralized generators in service resulting in a 'vertical to horizontal' transformation of the power system is also investigated. Furthermore, a stochastic analysis is used to study the transient stability of the power systems. The results show that including the stochastic behavior of DG leads to a more complete and detailed view of the system performance. Finally, the situation when the power system is pushed towards a scenario, where DG penetration reaches a level that covers the total load of the original power system (100% DG level) is investigated. The research performed in this work indicates that from the transmission system stability point of view, if higher DG penetration levels are coming up, sufficient inertia and voltage support must be installed. Furthermore, one should be aware of the fact that the system behaves stochastically, especially with DG. To a certain extent regional balancing of power can be performed by local voltage control.
Stability analysis of multiple-robot control systems
Wen, John T.; Kreutz, Kenneth
1989-01-01
In a space telerobotic service scenario, cooperative motion and force control of multiple robot arms are of fundamental importance. Three paradigms to study this problem are proposed. They are distinguished by the set of variables used for control design. They are joint torques, arm tip force vectors, and an accelerated generalized coordinate set. Control issues related to each case are discussed. The latter two choices require complete model information, which presents practical modeling, computational, and robustness problems. Therefore, focus is on the joint torque control case to develop relatively model independent motion and internal force control laws. The rigid body assumption allows the motion and force control problems to be independently addressed. By using an energy motivated Lyapunov function, a simple proportional derivative plus gravity compensation type of motion control law is always shown to be stabilizing. The asymptotic convergence of the tracing error to zero requires the use of a generalized coordinate with the contact constraints taken into account. If a non-generalized coordinate is used, only convergence to a steady state manifold can be concluded. For the force control, both feedforward and feedback schemes are analyzed. The feedback control, if proper care has been taken, exhibits better robustness and transient performance.
Theory of the dynamic stability of plasma systems
International Nuclear Information System (INIS)
Bud'ko, A.B.; Velikovich, A.L.; Kleev, A.I.; Liberman, M.A.; Felber, F.S.
1989-01-01
Internal instabilities of the plasma of a diffuse pinch result from the acceleration of the plasma in the course of its compression and the expansion of the current channel. The spectra of the growth rates σ m,k of the hydromagnetic instabilities responsible for the disruption of the initial cylindrical symmetry during compression are calculated. For a Z-pinch with a Gaussian density profile, the major instabilities in the course of the compression are the small-scale sausage and kink instabilities with kR >> 1 (R is a typical radius of the pinch). Superimposed on these small-scale instabilities is a filamentation instability with m >> 1, which develops more slowly. If the density instead has a power-law profile, the filamentation instabilities will develop more rapidly than the sausage and kink instabilities. Dynamic stabilization of a pinch by a longitudinal magnetic field makes it possible to maintain symmetry up to radial compressions of the plasma significantly higher than in the absence of a field
Investigation of the stability of melt flow in gating systems
DEFF Research Database (Denmark)
Tiedje, Niels Skat; Larsen, Per
2011-01-01
Melt flow in four different gating systems designed for production of brake discs was analysed experimentally and by numerical modelling. In the experiments moulds were fitted with glass fronts and melt flow was recorded on video. The video recordings were compared with modelling of melt flow...... in the gating systems. Particular emphasis was on analysing local pressure and formation of pressure waves in the gating system. It was possible to compare melt flow patterns in experiments directly to modelled flow patterns. Generally there was good agreement between flow patterns and filling times. However...... description of free liquid surfaces proved to be incorrect in the numerical model. Modelled pressure fields served to explain how specific parts of the gating systems cause instability and are a good tool to describe the quality of a gating system. The results shows clearly that sharp changes in the geometry...
Stability and control of wind farms in power systems
DEFF Research Database (Denmark)
Jauch, Clemens
is part of the project. The mostextensive modelling work deals with the design of the electrical part of the variable speed turbine and its controls. To simulate realistic grid operation the wind turbine models are connected to an aggregated model of the Nordic power system. For thatpurpose the Nordic...... through transient faults. With these transient fault controllers the wind turbines can stay connected to the grid, such that their generation capacity is sustained, and normal gridoperation can resume, after the fault is cleared. Transient faults in the transmission system often cause power system...... oscillations. To further support the grid, a situation is assumed, where in future, wind turbines will be required to contribute to thedamping of these power system oscillations. Power system oscillations are counteracted with a controlled injection of oscillating active power. With an active-stall turbine...
Bias-Voltage Stabilizer for HVHF Amplifiers in VHF Pulse-Echo Measurement Systems.
Choi, Hojong; Park, Chulwoo; Kim, Jungsuk; Jung, Hayong
2017-10-23
The impact of high-voltage-high-frequency (HVHF) amplifiers on echo-signal quality is greater with very-high-frequency (VHF, ≥100 MHz) ultrasound transducers than with low-frequency (LF, ≤15 MHz) ultrasound transducers. Hence, the bias voltage of an HVHF amplifier must be stabilized to ensure stable echo-signal amplitudes. We propose a bias-voltage stabilizer circuit to maintain stable DC voltages over a wide input range, thus reducing the harmonic-distortion components of the echo signals in VHF pulse-echo measurement systems. To confirm the feasibility of the bias-voltage stabilizer, we measured and compared the deviations in the gain of the HVHF amplifier with and without a bias-voltage stabilizer. Between -13 and 26 dBm, the measured gain deviations of a HVHF amplifier with a bias-voltage stabilizer are less than that of an amplifier without a bias-voltage stabilizer. In order to confirm the feasibility of the bias-voltage stabilizer, we compared the pulse-echo responses of the amplifiers, which are typically used for the evaluation of transducers or electronic components used in pulse-echo measurement systems. From the responses, we observed that the amplitudes of the echo signals of a VHF transducer triggered by the HVHF amplifier with a bias-voltage stabilizer were higher than those of the transducer triggered by the HVHF amplifier alone. The second, third, and fourth harmonic-distortion components of the HVHF amplifier with the bias-voltage stabilizer were also lower than those of the HVHF amplifier alone. Hence, the proposed scheme is a promising method for stabilizing the bias voltage of an HVHF amplifier, and improving the echo-signal quality of VHF transducers.
Fast feedback system for energy and beam stabilization
International Nuclear Information System (INIS)
R. Dickson; V. Lebedev
1999-01-01
The electron beams being delivered to targets of the Continuous Electron Beam Accelerator Facility (CEBAF) at Thomas Jefferson National Accelerator Facility (Jefferson Lab) are plagued with undesirable positional and energy fluctuations. These fluctuations primarily occur at harmonics of the power line frequency (60, 120, 180, etc. hertz), and their cause is rooted in electromagnetic fields generated by accelerator electronic equipment. It is possible to largely nullify these deviations by applying real time corrections to electromagnets and RF verniers along the beam line. This concept has been successfully applied at Jefferson Lab by extensively modifying the existing Beam Position Monitor (BPM) system with the integration of an algorithm that computes correction signals targeted at the power line harmonics. Many of the modifications required were due to the existing CEBAF BPM system not having the data acquisition bandwidth needed for this type of feedback system. This paper will describe the techniques required to transform the CEBAF standard BPM system into a high speed practical fast feedback system that coexists with the large scale control system--the Experimental Physics and Industrial Control System (EPICS)--that runs the CEBAF accelerator in daily operation
Zhao, Shouwei
2011-06-01
A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.
Transient Stability Assessment of Power Systems With Uncertain Renewable Generation: Preprint
Energy Technology Data Exchange (ETDEWEB)
Villegas Pico, Hugo Nestor [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Aliprantis, Dionysios C. [Purdue University; Lin, Xiaojun [Purdue University
2017-08-09
The transient stability of a power system depends heavily on its operational state at the moment of a fault. In systems where the penetration of renewable generation is significant, the dispatch of the conventional fleet of synchronous generators is uncertain at the time of dynamic security analysis. Hence, the assessment of transient stability requires the solution of a system of nonlinear ordinary differential equations with unknown initial conditions and inputs. To this end, we set forth a computational framework that relies on Taylor polynomials, where variables are associated with the level of renewable generation. This paper describes the details of the method and illustrates its application on a nine-bus test system.
Calculation and Simulation Study on Transient Stability of Power System Based on Matlab/Simulink
Directory of Open Access Journals (Sweden)
Shi Xiu Feng
2016-01-01
Full Text Available The stability of the power system is destroyed, will cause a large number of users power outage, even cause the collapse of the whole system, extremely serious consequences. Based on the analysis in single machine infinite system as an example, when at the f point two phase ground fault occurs, the fault lines on either side of the circuit breaker tripping resection at the same time,respectively by two kinds of calculation and simulation methods of system transient stability analysis, the conclusion are consistent. and the simulation analysis is superior to calculation analysis.
Truong-Le, Vu; Lovalenti, Phillip M; Abdul-Fattah, Ahmad M
2015-10-01
Delivery of proteins to mucosal tissues of GI tract typically utilize formulations which protect against proteolysis and target the mucosal tissues. Using case studies from literature and the authors' own work, the in-process stability and solid state storage stability of biopharmaceuticals formulated in delivery systems designed for oral delivery to the GI tract will be reviewed. Among the range of delivery systems, biodegradable polymer systems for protection and controlled release of proteins have been the most studied; hence these systems will be covered in greater depth. These delivery systems include polymeric biodegradable microspheres or nanospheres that contain proteins or vaccines, which are designed to reduce the number of administrations/inoculations and the total protein dose required to achieve the desired biological effect. Specifically, this review will include a landscape survey of the systems that have been studied, the manufacturing processes involved, stability through the manufacturing process, key pharmaceutical formulation parameters that impact stability of the encased proteins, and storage stability of the encapsulated proteins in these delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Stabilization and Control Models of Systems With Hysteresis Nonlinearities
Directory of Open Access Journals (Sweden)
Mihail E. Semenov
2012-05-01
Full Text Available Mechanical and economic systems with hysteresis nonlinearities are studied in article. Dissipativity condition of inverted pendulum under the hysteresis control is obtained. The solution of the optimal production strategy problem was found where price has hysteresis behaviour.
Stability of rotor systems: A complex modelling approach
DEFF Research Database (Denmark)
Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob
1998-01-01
The dynamics of a large class of rotor systems can be modelled by a linearized complex matrix differential equation of second order, Mz + (D + iG)(z) over dot + (K + iN)z = 0, where the system matrices M, D, G, K and N are real symmetric. Moreover M and K are assumed to be positive definite and D...... approach applying bounds of appropriate Rayleigh quotients. The rotor systems tested are: a simple Laval rotor, a Laval rotor with additional elasticity and damping in the bearings, and a number of rotor systems with complex symmetric 4 x 4 randomly generated matrices.......The dynamics of a large class of rotor systems can be modelled by a linearized complex matrix differential equation of second order, Mz + (D + iG)(z) over dot + (K + iN)z = 0, where the system matrices M, D, G, K and N are real symmetric. Moreover M and K are assumed to be positive definite and D...
DEFF Research Database (Denmark)
Hu, Weihao; Wang, Chunqi; Chen, Zhe
2012-01-01
Since the hourly spot market price is available one day ahead in Denmark, the price could be transferred to the consumers and they may shift some of their loads from high price periods to the low price periods in order to save their energy costs. The optimal load response to an electricity price...... for demand side management generates different load profiles and may provide an opportunity to improve the transient stability of power systems with high wind power penetrations. In this paper, the idea of the power system transient stability improvement by using optimal load response to the electricity...... price is proposed. A 102-bus power system which represents a simplified model of the western Danish power system is chosen as the study case. Simulation results show that the optimal load response to electricity prices is an effective measure to improve the power system transient stability with high...
DEFF Research Database (Denmark)
Pedersen, Michael
1991-01-01
The stabilization problems for parabolic and hyperbolic partial differential equations with Dirichlet boundary condition are considered. The systems are stabilized by a boundary feedback in(1) The operator equation,(2) The boundary condition,(3) Both the operator equation and the boundary condition...... turns out to be a shortcut to some of the stabilization results of Lasiecka and Triggiani in [J. Differential Equations, 47 (1983), pp. 245-272], [SIAM J. Control Optim., 21(1983), pp. 766-802], and [Appl. Math. Optim., 8(1981), pp. 1-37], and it illuminates to some extent how a change of boundary...
Seo, Sangsoo; Kim, Seog-Joo; Moon, Young-Hwan; Lee, Byongjun
2013-11-01
Additional power generation sites have been limited in Korea, despite the fact load demands are gradually increasing. In order to meet these increasing demands, Korea’s power system company has begun constructing new generators at existing sites. Thus, multi-unit plants can create problems in terms of transient stability when a large disturbance occurs. This paper proposes a hybrid superconducting fault current limiter (SFCL) application to enhance the transient stability of multi-unit power plants. SFCLs reduce fault currents, and limitation currents decrease the imbalance of the mechanical and electrical torque of the generators, resulting in an improvement in transient stability.
Energy principles for linear dissipative systems with application to resistive MHD stability
International Nuclear Information System (INIS)
Pletzer, A.
1997-04-01
A formalism for the construction of energy principles for dissipative systems is presented. It is shown that dissipative systems satisfy a conservation law for the bilinear Hamiltonian provided the Lagrangian is time invariant. The energy on the other hand, differs from the Hamiltonian by being quadratic and by having a negative definite time derivative (positive power dissipation). The energy is a Lyapunov functional whose definiteness yields necessary and sufficient stability criteria. The stability problem of resistive magnetohydrodynamic (MHD) is addressed: the energy principle for ideal MHD is generalized and the stability criterion by Tasso is shown to be necessary in addition to sufficient for real growth rates. An energy principle is found for the inner layer equations that yields the resistive stability criterion D R <0 in the incompressible limit, whereas the tearing mode criterion Δ'<0 is shown to result from the conservation law of the bilinear concomitant in the resistive layer. (author) 1 fig., 25 refs
Combined analytical and numerical approaches in Dynamic Stability analyses of engineering systems
Náprstek, Jiří
2015-03-01
Dynamic Stability is a widely studied area that has attracted many researchers from various disciplines. Although Dynamic Stability is usually associated with mechanics, theoretical physics or other natural and technical disciplines, it is also relevant to social, economic, and philosophical areas of our lives. Therefore, it is useful to occasionally highlight the general aspects of this amazing area, to present some relevant examples and to evaluate its position among the various branches of Rational Mechanics. From this perspective, the aim of this study is to present a brief review concerning the Dynamic Stability problem, its basic definitions and principles, important phenomena, research motivations and applications in engineering. The relationships with relevant systems that are prone to stability loss (encountered in other areas such as physics, other natural sciences and engineering) are also noted. The theoretical background, which is applicable to many disciplines, is presented. In this paper, the most frequently used Dynamic Stability analysis methods are presented in relation to individual dynamic systems that are widely discussed in various engineering branches. In particular, the Lyapunov function and exponent procedures, Routh-Hurwitz, Liénard, and other theorems are outlined together with demonstrations. The possibilities for analytical and numerical procedures are mentioned together with possible feedback from experimental research and testing. The strengths and shortcomings of these approaches are evaluated together with examples of their effective complementing of each other. The systems that are widely encountered in engineering are presented in the form of mathematical models. The analyses of their Dynamic Stability and post-critical behaviour are also presented. The stability limits, bifurcation points, quasi-periodic response processes and chaotic regimes are discussed. The limit cycle existence and stability are examined together with their
Effects of HVDC on power systems small signal angle stability
Energy Technology Data Exchange (ETDEWEB)
Custodio, D.T.; Paccini, R.O.; Kopcak, I.; Costa, V.F. da [State University of Campinas (UNICAMP), SP (Brazil). School of Electrical and Computer Engineering. Power Systems Dept.], Emails: totti@dsee.fee.unicamp.br, rodrigo@dsee.fee.unicamp.br, kopcak@dsee.fee.unicamp.br, vivaldo@dsee.fee.unicamp.br
2009-07-01
In this paper, a didactic method for parameters tuning of the Power Oscillation Damper (POD) coupled to the HVDC constant current controller is proposed utilizing the MATLAB package with a control system toolbox. First, modal analysis is done from the system state matrix to determine the critical mode and oscillation natural frequency. Input and output linearized matrixes are built to single-input and single-output (SISO) control systems. The phase to be compensated between the active power flow in the parallel AC inter-tie and the current reference signal of the HVDC constant current controller is obtained from the Nyquist theorem. Following, the POD time constants are obtained. Finally, the static gain of the POD is tuned based on the root locus method of the classical control theory. Simulations results prove that the DC power modulation is efficient to damp the AC power oscillations. This method is straightforward because only involves matrix operation. (author)
International Nuclear Information System (INIS)
Derafshian, Mehdi; Amjady, Nima
2015-01-01
This paper presents an evolutionary algorithm-based approach for optimal design of power system stabilizer (PSS) for multi-machine power systems that include doubly fed induction generator wind turbines. The proposed evolutionary algorithm is an improved particle swarm optimization named chaotic particle swarm optimization with passive congregation (CPSO-PC) applied for finding the optimal settings of PSS parameters. Two different eigenvalue-based objectives are combined as the objective function for the optimization problem of tuning PSS parameters. The first objective function comprises the damping factor of lightly damped electro-mechanical modes and the second one includes the damping ratio of these modes. The effectiveness of the proposed method to design PSS for the power systems including DFIG (Doubly Fed Induction Generator) is extensively demonstrated through eigenvalue analysis and time-domain simulations and also by comparing its simulation results with the results of other heuristic optimization approaches. - Highlights: • A new optimization model for design of PSS in power systems including DFIG is proposed. • A detailed and realistic modeling of DFIG is presented. • A new evolutionary algorithm is suggested for solving the optimization problem of designing PSS
Improving Delay-Range-Dependent Stability Condition for Systems with Interval Time-Varying Delay
Directory of Open Access Journals (Sweden)
Wei Qian
2013-01-01
Full Text Available This paper discusses the delay-range-dependent stability for systems with interval time-varying delay. Through defining the new Lyapunov-Krasovskii functional and estimating the derivative of the LKF by introducing new vectors, using free matrices and reciprocally convex approach, the new delay-range-dependent stability conditions are obtained. Two well-known examples are given to illustrate the less conservatism of the proposed theoretical results.
Integrated analysis software for bulk power system stability
Energy Technology Data Exchange (ETDEWEB)
Tanaka, T; Nagao, T; Takahashi, K [Central Research Inst. of Electric Power Industry, Tokyo (Japan)
1994-12-31
This paper presents Central Research Inst.of Electric Power Industry - CRIEPI`s - own developed three softwares for bulk power network analysis and the user support system which arranges tremendous data necessary for these softwares with easy and high reliability. (author) 3 refs., 7 figs., 2 tabs.
Implementation of IEC Standard Models for Power System Stability Studies
DEFF Research Database (Denmark)
Margaris, Ioannis; Hansen, Anca Daniela; Bech, John
2012-01-01
, namely a model for a variable speed wind turbine with full scale power converter WTG including a 2- mass mechanical model. The generic models for fixed and variable speed WTGs models are suitable for fundamental frequency positive sequence response simulations during short events in the power system...
Bonding stability of adhesive systems to eroded dentin
Directory of Open Access Journals (Sweden)
Janaina Barros CRUZ
2015-01-01
Full Text Available This in vitro study evaluated the immediate and 6 months microshear bond strength (µSBS of different adhesive systems to sound and eroded dentin. Sixty bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated into two groups: sound dentin (immersion in artificial saliva and eroded dentin (erosive challenge following a pH cycling model comprising 4 ×/day Sprite Light® drink for 10 days. Then, specimens were reassigned according to the adhesive system: etch-and-rinse adhesive (Adper Single Bond, two-step self-etch system (Clearfil SE Bond, or one-step self-etch adhesive (Adper Easy One. Polyethylene tubes with an internal diameter of 0.76 mm were placed over pre-treated dentin and filled with resin composite (Z250. Half of the specimens were evaluated by the µSBS test after 24 h, and the other half 6 months later, after water storage at 37°C. Failure mode was evaluated using a stereomicroscope (400×. Data were analyzed by three-way repeated measures analysis of variance and Tukey’s post hoc tests (α = 0.05. After 6 months of water aging, marked reductions in µSBS values were observed, irrespective of the substrate. The µSBS values for eroded dentin were lower than those obtained for sound dentin. No difference in bonding effectiveness was observed among adhesive systems. For all groups, adhesive/mixed failure was observed. In conclusion, eroded dentin compromises the bonding quality of adhesive systems over time.
International Nuclear Information System (INIS)
Dyckes, G.W.
1980-07-01
A method of approximating the cloud stabilization height for aerosol-sized particles vented explosively through earth containment systems is presented. The calculated values for stabilization heights are in fair agreement with those obtained experimentally
Wind Turbine and Wind Power Plant Modelling Aspects for Power System Stability Studies
DEFF Research Database (Denmark)
Altin, Müfit; Hansen, Anca Daniela; Göksu, Ömer
2014-01-01
Large amount of wind power installations introduce modeling challenges for power system operators at both the planning and operational stages of power systems. Depending on the scope of the study, the modeling details of the wind turbine or the wind power plant are required to be different. A wind...... turbine model which is developed for the short-term voltage stability studies can be inaccurate and sufficient for the frequency stability studies. Accordingly, a complete and detailed wind power plant model for every kind of study is not feasible in terms of the computational time and also...... and wind power plants are reviewed for power system stability studies. Important remarks of the models are presented by means of simulations to emphasize the impact of these modelling details on the power system....
Directory of Open Access Journals (Sweden)
Da Sun
2016-01-01
Full Text Available A novel control algorithm based on the modified wave-variable controllers is proposed to achieve accurate position synchronization and reasonable force tracking of the nonlinear single-master-multiple-slave teleoperation system and simultaneously guarantee overall system’s stability in the presence of large time-varying delays. The system stability in different scenarios of human and environment situations has been analyzed. The proposed method is validated through experimental work based on the 3-DOF trilateral teleoperation system consisting of three different manipulators. The experimental results clearly demonstrate the feasibility of the proposed algorithm to achieve high transparency and robust stability in nonlinear single-master-multiple-slave teleoperation system in the presence of time-varying delays.
DEFF Research Database (Denmark)
Hu, Weihao; Su, Chi; Chen, Zhe
2011-01-01
Since the hourly spot market price is available one day ahead in Denmark, the price could be transferred to the consumers and they may shift some of their loads from high price periods to the low price periods in order to save their energy costs. The optimal load response to an electricity price...... price is proposed. A 17-bus power system with high wind power penetrations, which resembles the Eastern Danish power system, is chosen as the study case. Simulation results show that the optimal load response to electricity prices is an effective measure to improve the small signal stability of power...... for demand side management generates different load profiles and may provide an opportunity to improve the small signal stability of power systems with high wind power penetrations. In this paper, the idea of power system small signal stability improvement by using optimal load response to the electricity...
Simulation of beam pointing stability on targeting plane of high power excimer laser system
International Nuclear Information System (INIS)
Wang Dahui; Zhao Xueqing; Zhang Yongsheng; Zheng Guoxin; Hu Yun; Zhao Jun
2011-01-01
Based on characteristics of image-relaying structure in high power excimer MOPA laser system, simulation and analysis software of targeting beam's barycenter stability was designed by using LABVIEW and MATLAB. Simulation was made to measured results of every optical component in laboratory environment. Simulation and validation of budget values for optical components was and optimization of error budget of system was accomplished via post-allocation for several times. It is shown that targeting beam's barycenter stability in the condition of current laboratory environment can't satisfy needs and index of high demand optical components can be allotted to 1.7 μrad when index of low demand optical components have some stability margin. These results can provide a guide to construction of system and design and machining of optical components and optimization of system. Optical components of laboratory on work can satisfy optimized distributed index, which reduce the demand of structure to some extent. (authors)
Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement.
Ganjefar, Soheil; Tofighi, Morteza; Karami, Hamidreza
2015-11-01
In this study, we introduce an indirect adaptive fuzzy wavelet neural controller (IAFWNC) as a power system stabilizer to damp inter-area modes of oscillations in a multi-machine power system. Quantum computing is an efficient method for improving the computational efficiency of neural networks, so we developed an identifier based on a quantum neural network (QNN) to train the IAFWNC in the proposed scheme. All of the controller parameters are tuned online based on the Lyapunov stability theory to guarantee the closed-loop stability. A two-machine, two-area power system equipped with a static synchronous series compensator as a series flexible ac transmission system was used to demonstrate the effectiveness of the proposed controller. The simulation and experimental results demonstrated that the proposed IAFWNC scheme can achieve favorable control performance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Robust Coordinated Design of PSS and TCSC using PSO Technique for Power System Stability Enhancement
Directory of Open Access Journals (Sweden)
S. Panda
2007-06-01
Full Text Available Power system stability improvement by coordinated design of a Power System Stabilizer (PSS and a Thyristor Controlled Series Compensator (TCSC controller is addressed in this paper. Particle Swarm Optimization (PSO technique is employed for optimization of the parameterconstrained nonlinear optimization problem implemented in a simulation environment. The proposed controllers are tested on a weakly connected power system. The non-linear simulation results are presented for wide range of loading conditions with various fault disturbances and fault clearing sequences as well as for various small disturbances. The eigenvalue analysis and simulation results show the effectiveness and robustness of proposed controllers to improve the stability performance of power system by efficient damping of low frequency oscillations under various disturbances.
Energy Technology Data Exchange (ETDEWEB)
Cardozo Sanchez, Freddy [Mirant Americas (United States); Fernandez Krekeler, Ubaldo [Administracion Nacional de Electricidad (ANDE), Asuncion (Paraguay)
2001-07-01
This document presents analyses of permanent status of the ANDE transmission system, seeking to evaluate the voltage stability and impact that would have possible reinforcements in 500 kV. The transmission under this new voltage level, besides to be a reinforcement to the system for satisfying the national demand, will permit the increase of energy exportation to Brazil, depending on the adopted reinforcement. The system current status and its evolution according to the planning of short and medium period are analysed. In the voltage stability evolution, static analysis techniques to draw the Q-V and P-V curves were used, as well as for determination of the system self-values and stability margins.
Static and dynamic stability of the guidance force in a side-suspended HTS maglev system
Zhou, Dajin; Cui, Chenyu; Zhao, Lifeng; Zhang, Yong; Wang, Xiqing; Zhao, Yong
2017-02-01
The static and dynamic stability of the guidance force in a side-suspended HTS-PMG (permanent magnetic guideway) system were studied theoretically and experimentally. It is found that there are two types of guidance force that exist in the HTS-PMG system, which are sensitive to the levitation gap and the arrangement of YBCO bulks around the central axis of the PMG. An optimized YBCO array was used to stabilize the system, which enabled a side-suspended HTS-PMG maglev vehicle to run stably at 102 km h-1 on a circular test track with 6.5 m in diameter.
Asymptotic Stabilization of Continuous-Time Linear Systems with Input and State Quantizations
Directory of Open Access Journals (Sweden)
Sung Wook Yun
2014-01-01
Full Text Available This paper discusses the asymptotic stabilization problem of linear systems with input and state quantizations. In order to achieve asymptotic stabilization of such systems, we propose a state-feedback controller comprising two control parts: the main part is used to determine the fundamental characteristics of the system associated with the cost, and the additional part is employed to eliminate the effects of input and state quanizations. In particular, in order to implement the additional part, we introduce a quantizer with a region-decision making process (RDMP for a certain linear switching surface. The simulation results show the effectiveness of the proposed controller.
DESCRIBING FUNCTION METHOD FOR PI-FUZZY CONTROLLED SYSTEMS STABILITY ANALYSIS
Directory of Open Access Journals (Sweden)
Stefan PREITL
2004-12-01
Full Text Available The paper proposes a global stability analysis method dedicated to fuzzy control systems containing Mamdani PI-fuzzy controllers with output integration to control SISO linear / linearized plants. The method is expressed in terms of relatively simple steps, and it is based on: the generalization of the describing function method for the considered fuzzy control systems to the MIMO case, the approximation of the describing functions by applying the least squares method. The method is applied to the stability analysis of a class of PI-fuzzy controlled servo-systems, and validated by considering a case study.
Stability and periodicity of solutions for delay dynamic systems on time scales
Directory of Open Access Journals (Sweden)
Zhi-Qiang Zhu
2014-04-01
Full Text Available This article concerns the stability and periodicity of solutions to the delay dynamic system $$ x^{\\triangle}(t=A(t x(t + F(t, x(t, x(g(t+C(t $$ on a time scale. By the inequality technique for vectors, we obtain some stability criteria for the above system. Then, by using the Horn fixed point theorem, we present some conditions under which our system is asymptotically periodic and its periodic solution is unique. In particular, the periodic solution is positive under proper assumptions.
Oscillatory Stability and Eigenvalue Sensitivity Analysis of A DFIG Wind Turbine System
DEFF Research Database (Denmark)
Yang, Lihui; Xu, Zhao; Østergaard, Jacob
2011-01-01
This paper focuses on modeling and oscillatory stability analysis of a wind turbine with doubly fed induction generator (DFIG). A detailed mathematical model of DFIG wind turbine with vector-control loops is developed, based on which the loci of the system Jacobian's eigenvalues have been analyzed......, showing that, without appropriate controller tuning a Hopf bifurcation can occur in such a system due to various factors, such as wind speed. Subsequently, eigenvalue sensitivity with respect to machine and control parameters is performed to assess their impacts on system stability. Moreover, the Hopf...
Transient Stability Enhancement in Power System Using Static VAR Compensator (SVC
Directory of Open Access Journals (Sweden)
Youssef MOULOUDI
2012-12-01
Full Text Available In this paper, an indirect adaptive fuzzy excitation and static VAR (unit of reactive power, volt-ampere reactive compensator (SVC controller is proposed to enhance transient stability for the power system, which based on input-output linearization technique. A three-bus system, which contains a generator and static VAR compensator (SVC, is considered in this paper, the SVC is located at the midpoint of the transmission lines. Simulation results show that the proposed controller compared with a controller based on tradition linearization technique can enhance the transient stability of the power system under a large sudden fault, which may occur nearly at the generator bus terminal.
Roll-Axis Hydrofluidic Stability Augmentation System Development
1975-09-01
lifi .1035 SW 30 left for znro time delay - r Ight for other. 17 Preceding page Hank Recordings of the simulated aircraft performance to...DESIGN The analytical effort defined the gains and shaping networks required for the roll-axis damper system for the OH-58A helicopter, and the...Shaping Networks Usually a combination of resistors and capacitors (bellows) is designed to provide the following functions: a) b) 3.1.4 1 Lag
Linear Quantum Systems: Non-Classical States and Robust Stability
2016-06-29
has a history going back some 50 years, to the birth of modern control theory with Kalman’s foundational work on filtering and LQG optimal control...realizability conditions. DISTRIBUTION A. Approved for public release: distribution unlimited. 8 Shi Wang, Matthew R James H- Infinity control of...physical model for a quantum measurement-based feedback control system with time delay is presented for the H- infinity control. Luis Augusto
Robust Stability Analysis of the Space Launch System Control Design: A Singular Value Approach
Pei, Jing; Newsome, Jerry R.
2015-01-01
Classical stability analysis consists of breaking the feedback loops one at a time and determining separately how much gain or phase variations would destabilize the stable nominal feedback system. For typical launch vehicle control design, classical control techniques are generally employed. In addition to stability margins, frequency domain Monte Carlo methods are used to evaluate the robustness of the design. However, such techniques were developed for Single-Input-Single-Output (SISO) systems and do not take into consideration the off-diagonal terms in the transfer function matrix of Multi-Input-Multi-Output (MIMO) systems. Robust stability analysis techniques such as H(sub infinity) and mu are applicable to MIMO systems but have not been adopted as standard practices within the launch vehicle controls community. This paper took advantage of a simple singular-value-based MIMO stability margin evaluation method based on work done by Mukhopadhyay and Newsom and applied it to the SLS high-fidelity dynamics model. The method computes a simultaneous multi-loop gain and phase margin that could be related back to classical margins. The results presented in this paper suggest that for the SLS system, traditional SISO stability margins are similar to the MIMO margins. This additional level of verification provides confidence in the robustness of the control design.
Directory of Open Access Journals (Sweden)
Adrian Nocoń
2015-09-01
Full Text Available This paper presents an analysis of the influence of uncertainty of power system mathematical model parameters on optimised parameters of PSS2A system stabilizers. Optimisation of power system stabilizer parameters was based on polyoptimisation (multi-criteria optimisation. Optimisation criteria were determined for disturbances occurring in a multi-machine power system, when taking into account transient waveforms associated with electromechanical swings (instantaneous power, angular speed and terminal voltage waveforms of generators. A genetic algorithm with floating-point encoding, tournament selection, mean crossover and perturbative mutations, modified for the needs of investigations, was used for optimisation. The impact of uncertainties on the quality of operation of power system stabilizers with optimised parameters has been evaluated using various deformation factors.
A real-time BWR [boiling water reactor] stability measurement system
International Nuclear Information System (INIS)
March-Leuba, J.; King, W.T.
1987-01-01
This paper describes the characteristics of a portable, real-time system used for nonperturbational measurements of stability in boiling water reactors. The algorithm used in this system estimates the closed-loop asymptotic decay ratio using only the naturally occurring neutron noise and it is based on the univariate autoregressive methodology
Stability investigations of the ASDEX feedback system with filters for reducing thyristor noise
International Nuclear Information System (INIS)
Crisanti, F.; Schneider, F.
1983-06-01
A computer program for analysing the absolute and relative stabilities of any complex system by the root-locus method was developed. It is used to reanalyse the present horizontal position feed-back control in the ASDEX tokamak and to select the optimum parameters for this system with RCL filters for reducing thyristor noise. (orig.)
The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability
Although research has explained how plant roots mechanically stabilize soils, in this article we explore how root systems create networks of preferential flow and thus influence water pressures in soils to trigger landslides. Root systems may alter subsurface flow: Hydrological m...
Stability of Closed Loop Controlled Repetitive Periodic System applied to control of CD-Player
DEFF Research Database (Denmark)
Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle
2005-01-01
In this paper a criterion for stability of specific control scheme for handling linear dynamic control systems with repetitive periodic sensor faults is derived. The given system and control scheme are described and defined. By combining these with the lifting technique a necessary and sufficient...
Lyapunov stability robust analysis and robustness design for linear continuous-time systems
Luo, J.S.; Johnson, A.; Bosch, van den P.P.J.
1995-01-01
The linear continuous-time systems to be discussed are described by state space models with structured time-varying uncertainties. First, the explicit maximal perturbation bound for maintaining quadratic Lyapunov stability of the closed-loop systems is presented. Then, a robust design method is
Stabilizing periodic orbits of chaotic systems using fuzzy adaptive sliding mode control
Energy Technology Data Exchange (ETDEWEB)
Layeghi, Hamed [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: layeghi@mech.sharif.edu; Arjmand, Mehdi Tabe [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: arjmand@mech.sharif.edu; Salarieh, Hassan [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: aalasti@sharif.edu
2008-08-15
In this paper by using a combination of fuzzy identification and the sliding mode control a fuzzy adaptive sliding mode scheme is designed to stabilize the unstable periodic orbits of chaotic systems. The chaotic system is assumed to have an affine form x{sup (n)} = f(X) + g(X)u where f and g are unknown functions. Using only the input-output data obtained from the underlying dynamical system, two fuzzy systems are constructed for identification of f and g. Two distinct methods are utilized for fuzzy modeling, the least squares and the gradient descent techniques. Based on the estimated fuzzy models, an adaptive controller, which works through the sliding mode control, is designed to make the system track the desired unstable periodic orbits. The stability analysis of the overall closed loop system is presented in the paper and the effectiveness of the proposed adaptive scheme is numerically investigated. As a case of study, modified Duffing system is selected for applying the proposed method to stabilize its 2{pi} and 4{pi} periodic orbits. Simulation results show the high performance of the method for stabilizing the unstable periodic orbits of unknown chaotic systems.
Prest, E.I.E.D.
2015-01-01
Challenges to achieve biological stability in drinking water distribution systems Drinking water is distributed from the treatment facility to consumers through extended man-made piping systems. The World Health Organization drinking water guidelines (2006) stated that “Water entering the
Directory of Open Access Journals (Sweden)
Luis Enrique Ortiz Vidal
2010-12-01
Full Text Available Fue evaluada la influencia del uso de los métodos de Hazen-Williams y Darcy-Weisbach en el establecimiento del equilibrio hidráulico para un sistema de bombeo minero. Empresas mineras con actividad subterránea hacen uso de estaciones de bombeo para evacuar el agua, producto de la profundización de sus labores. Proyectistas y vendedores de equipos de bombeo usan diferentes expresiones para la estimación de la pérdida de carga total del sistema, parámetro importante para la determinación del equilibrio hidráulico. El presente estudio tiene como objetivo analizar y validar la aplicación de algunas de estas expresiones para un sistema de bombeo minero. Las principales características del estudio de caso son: caudal de agua de 1.350 l/s; tuberías de acero y HDPE de 16 in y 18 in de diámetro, respectivamente; longitud total de la tubería de 2.900 m; y una altura geodésica de 230 m. Los cálculos fueron realizados con los métodos ya mencionados teniendo las expresiones de Haaland, Swamee-Jain y Churchill como factores de fricción. Los resultados obtenidos fueron comparados con los medidos en campo, teniéndose una desviación máxima del sistema de 28,6% y 3,1% para la pérdida de carga y Hman total, respectivamente.This study evaluates the influence of the Hazen-Williams and Darcy-Weisbach methods on the hydraulic balance of a mine pumping system. Underground mining sompanies use pumping stations for evacuate the produced water. Designers and equipment sellers use different expressions to estimate the head loss. This study analyzes and validates the implementation of some of these expressions to a mine pumping system. The features of the case study are: water flow rate of 1350 l/s, steel and HDPE diameter pipes of 16in. and 18in., respectively. The total pipe length is 2900m, and the hydraulic height difference is 230 m. The calculations were performed by the above-mention methods, taking the expressions of Haaland, Swamee-Jain and
Measuring the emulsification dynamics and stability of self-emulsifying drug delivery systems.
Vasconcelos, Teófilo; Marques, Sara; Sarmento, Bruno
2018-02-01
Self-emulsifying drug delivery systems (SEDDS) are one of the most promising technologies in the drug delivery field, particularly for addressing solubility and bioavailability issues of drugs. The development of these drug carriers excessively relies in visual observations and indirect determinations. The present manuscript intended to describe a method able to measure the emulsification of SEDDS, both micro and nano-emulsions, able to measure the droplet size and to evaluate the physical stability of these formulations. Additionally, a new process to evaluate the physical stability of SEDDS after emulsification was also proposed, based on a cycle of mechanical stress followed by a resting period. The use of a multiparameter continuous evaluation during the emulsification process and stability was of upmost value to understand SEDDS emulsification process. Based on this method, SEDDS were classified as fast and slow emulsifiers. Moreover, emulsification process and stabilization of emulsion was subject of several considerations regarding the composition of SEDDS as major factor that affects stability to physical stress and the use of multicomponent with different properties to develop a stable and robust SEDDS formulation. Drug loading level is herein suggested to impact droplets size of SEDDS after dispersion and SEDDS stability to stress conditions. The proposed protocol allows an online measurement of SEDDS droplet size during emulsification and a rationale selection of excipients based on its emulsification and stabilization performance. Copyright © 2017. Published by Elsevier B.V.
Directory of Open Access Journals (Sweden)
Jing Wang
2012-01-01
Full Text Available The stabilization problem of a wireless networked control system is considered in this paper. Both time delay and packet loss exist simultaneously in the wireless network. The system is modeled as an asynchronous dynamic system (ADS with unstable subsystems. A sufficient condition for the system to be stable is presented. A numerical example is given to demonstrate the effectiveness of the proposed approach.
Stabilizing periodic orbits of chaotic systems using fuzzy control of Poincare map
International Nuclear Information System (INIS)
Bonakdar, Mohammad; Samadi, Mostafa; Salarieh, Hassan; Alasty, Aria
2008-01-01
In this paper a fuzzy control algorithm is used to stabilize the fixed points of a chaotic system. No knowledge of the dynamic equations of the system is needed in this approach and the whole system is considered as a black box. Two main approaches have been investigated: fuzzy clustering and table look up methods. As illustrative examples these methods have been applied to Bonhoeffer van der Pol oscillator and the Henon chaotic system and the convergence toward fixed points is observed
Stabilizing periodic orbits of chaotic systems using fuzzy control of Poincare map
Energy Technology Data Exchange (ETDEWEB)
Bonakdar, Mohammad; Samadi, Mostafa [Center of Excellence in Design, Robotics and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, 1458889694 Tehran (Iran, Islamic Republic of); Salarieh, Hassan [Center of Excellence in Design, Robotics and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, 1458889694 Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Center of Excellence in Design, Robotics and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, 1458889694 Tehran (Iran, Islamic Republic of)
2008-05-15
In this paper a fuzzy control algorithm is used to stabilize the fixed points of a chaotic system. No knowledge of the dynamic equations of the system is needed in this approach and the whole system is considered as a black box. Two main approaches have been investigated: fuzzy clustering and table look up methods. As illustrative examples these methods have been applied to Bonhoeffer van der Pol oscillator and the Henon chaotic system and the convergence toward fixed points is observed.
Directory of Open Access Journals (Sweden)
M. De la Sen
2018-05-01
Full Text Available This paper presents and discusses the stability of a discrete multirate sampling system whose sets of sampling rates (or sampling periods are the integer multiple of those operating on all the preceding substates. Each of such substates is associated with a particular sampling rate. The sufficiency-type stability conditions are derived based on simple conditions on the norm, spectral radius and numerical radius of the matrix of the dynamics of a system parameterized at the largest sampling period.
SU-F-P-11: Long Term Dosimetric Stability of 6 TomoTherapy Systems
Energy Technology Data Exchange (ETDEWEB)
Smilowitz, J; Dunkerley, D; Geurts, M; Hill, P; Yadav, P [University of Wisconsin, Madison, WI (United States)
2016-06-15
Purpose: The dosimetric stability of six TomoTherapy units was analyzed to investigate changes in performance over time and with system upgrades. Methods: Energy and output were tracked using monitor chamber signal, onboard MVCT detector signal and external ion chamber measurements. The systems (and monitoring periods) include 3 Hi-Art (67, 61 and 65 mos.), 2 HDA (29 and 25 mos.) and one research unit (7 mo.). Dose Control Stability system (DCS) was installed on 4 systems. Output stability is reported as deviation from reference monitor chamber signal for all systems, and from an external chamber for 4 systems. Energy stability was monitored using the relative (center versus off-axis) MVCT detector signal and/or the ratio of chamber measurements at 2 depths. The results from the clinical systems were used to benchmark the stability of the research unit, which has the same linear accelerator but runs at a higher dose rate. Results: The output based on monitor chamber data of all six systems is very stable. Non- DCS had a standard deviation of 1.7% and 1.8%. As expected, DCS systems had improved standard deviation: 0.003–0.05%. The energy was also very stable for all units. The standard deviation in exit detector flatness was 0.02–0.3%. Ion chamber output and 20/10 cm ratios supported these results. The stability for the research system, as monitored with a variety of metrics, is on par with the existing systems. Conclusion: The output and energy of six TomoTherapy units over a total of almost 10 years is quite stable. For each system, the results are consistent between the different measurement tools and techniques, proving not only the dosimetric stability, but that these quality parameters can be confirmed with various metrics. A research unit operating at a higher dose rate performed as well as the clinical treatment units. University of Wisconsin and Accuray Inc. (vendor of TomoTherapy systems) have a research agreement which supplies funds for research to
Constructing Hopf bifurcation lines for the stability of nonlinear systems with two time delays
Nguimdo, Romain Modeste
2018-03-01
Although the plethora real-life systems modeled by nonlinear systems with two independent time delays, the algebraic expressions for determining the stability of their fixed points remain the Achilles' heel. Typically, the approach for studying the stability of delay systems consists in finding the bifurcation lines separating the stable and unstable parameter regions. This work deals with the parametric construction of algebraic expressions and their use for the determination of the stability boundaries of fixed points in nonlinear systems with two independent time delays. In particular, we concentrate on the cases for which the stability of the fixed points can be ascertained from a characteristic equation corresponding to that of scalar two-delay differential equations, one-component dual-delay feedback, or nonscalar differential equations with two delays for which the characteristic equation for the stability analysis can be reduced to that of a scalar case. Then, we apply our obtained algebraic expressions to identify either the parameter regions of stable microwaves generated by dual-delay optoelectronic oscillators or the regions of amplitude death in identical coupled oscillators.
Zhang, Tie-Yan; Zhao, Yan; Xie, Xiang-Peng
2012-12-01
This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach.
International Nuclear Information System (INIS)
Zhang Tie-Yan; Zhao Yan; Xie Xiang-Peng
2012-01-01
This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach. (general)
BANKING SYSTEM STABILITY: COMMERCIAL AND CO-OPERATIVE BANKS
Directory of Open Access Journals (Sweden)
Dumitru-Cristian OANEA
2014-04-01
Full Text Available Commercial banks and co-operative banks are credit institutions, but there are some differences between the main operations proceeded by each of them. Based on these specific characteristics, we want to identify the manner in which financial crisis affected their activity. As we all know, the financial crisis had a major impact in the United States, the “natal” country of the crisis, because great banks such as Lehman Brothers or Merrill Lynch have bankrupted. Even if the Romanian banking system was not affected by such catastrophic situations, surely the financial crisis had a significant impact on it. This topic is worth to be analysed, because we would be able to identify the risk differences between these two types of business: commercial banks versus co-operative banks.
Implementation of IEC standard models for power system stability studies
Energy Technology Data Exchange (ETDEWEB)
Margaris, Ioannis D.; Hansen, Anca D.; Soerensen, Poul [Technical Univ. of Denmark, Roskilde (Denmark). Dept. of Wind Energy; Bech, John; Andresen, Bjoern [Siemens Wind Power A/S, Brande (Denmark)
2012-07-01
This paper presents the implementation of the generic wind turbine generator (WTG) electrical simulation models proposed in the IEC 61400-27 standard which is currently in preparation. A general overview of the different WTG types is given while the main focus is on Type 4B WTG standard model, namely a model for a variable speed wind turbine with full scale power converter WTG including a 2-mass mechanical model. The generic models for fixed and variable speed WTGs models are suitable for fundamental frequency positive sequence response simulations during short events in the power system such as voltage dips. The general configuration of the models is presented and discussed; model implementation in the simulation software platform DIgSILENT PowerFactory is presented in order to illustrate the range of applicability of the generic models under discussion. A typical voltage dip is simulated and results from the basic electrical variables of the WTG are presented and discussed. (orig.)
Role of Glutaraldehyde in Imparting Stability to Immobilized β-Galactosidase Systems
Directory of Open Access Journals (Sweden)
Rukhsana Satar
2018-01-01
Full Text Available ABSTRACT This review article highlights the role of glutaraldehyde as a matrix activator/stabilizer in imparting higher operational and thermal stability to β-galactosidase (βG for biotechnological applications. Glutaraldehyde has been used extensively as a crosslinking agent as well as for functionalization of matrices to immobilize β-galactosidase. Immobilized β-galactosidase systems (IβGS obtained as a result of glutaraldehyde treatment has been employed to hydrolyze whey and milk lactose in batch reactors, continuous packed-bed and fluidized bed reactors under various operational conditions. Moreover, these IβGS have also been utilized for the production of galactooligosaccharides in food, dairy and fermentation industries. It was observed that glutaraldehyde provided remarkable stability to immobilize βG against various physical/chemical denaturants, thus enhancing thermal/operational stability and rendering it more suitable for repeated utilization in industrial scale operations.
Natural shorelines promote the stability of fish communities in an urbanized coastal system.
Directory of Open Access Journals (Sweden)
Steven B Scyphers
Full Text Available Habitat loss and fragmentation are leading causes of species extinctions in terrestrial, aquatic and marine systems. Along coastlines, natural habitats support high biodiversity and valuable ecosystem services but are often replaced with engineered structures for coastal protection or erosion control. We coupled high-resolution shoreline condition data with an eleven-year time series of fish community structure to examine how coastal protection structures impact community stability. Our analyses revealed that the most stable fish communities were nearest natural shorelines. Structurally complex engineered shorelines appeared to promote greater stability than simpler alternatives as communities nearest vertical walls, which are among the most prevalent structures, were most dissimilar from natural shorelines and had the lowest stability. We conclude that conserving and restoring natural habitats is essential for promoting ecological stability. However, in scenarios when natural habitats are not viable, engineered landscapes designed to mimic the complexity of natural habitats may provide similar ecological functions.
Directory of Open Access Journals (Sweden)
Olha Sushchenko
2017-11-01
Full Text Available Purpose: The paper focuses on problems of design of robust precision attitude and heading reference systems, which can be applied in navigation of marine vehicles. The main goal is to create the optimization procedures for design of navigation and stabilization loops of the multimode gimballed system. The optimization procedure of the navigation loop design is based on the parametric robust H2/H∞-optimization. The optimization procedure of the stabilization loop design is based on the robust structural H∞-synthesis. Methods: To solve the given problem the methods of the robust control system theory and optimization methods are used. Results: The kinematical scheme of the precision gimballed attitude and heading reference system is represented. The parametrical optimization algorithm taking into consideration features of the researched system is given. Method of the mixed sensitivity relative to the researched system design is analyzed. Coefficients of the control laws of navigation loops are obtained based on optimization procedure providing compromise between accuracy and robustness. The robust controller of the stabilization loop was developed based on robust structural synthesis using method of the mixed sensitivity. Simulation of navigation and stabilization processes is carried out. Conclusions: The represented results prove efficiency of the proposed procedures, which can be useful for design of precision navigation systems of the moving vehicles.
Evaluating the Financial Stability of Banking System, Considering the Emergence Property
Directory of Open Access Journals (Sweden)
Lesik Vitaliy O.
2017-03-01
Full Text Available The article is concerned with analyzing the existing approaches to evaluation of the financial stability of banking system, substantiating the expedience of accounting, and generalizing the characteristics of the emergence property to determine its level. The article considers the interrelation of concepts of «financial stability» and «financial sustainability», the necessity of their correlation, taking account of the time factor, has been substantiated. A critical analysis of the approaches to evaluating the financial stability of banking system has been carried out, their eligibility according to the criteria of accounting of the identification attributes of systemacity and the analytical data aggregation has been examined. To determine the status of banking system as a system phenomenon, the necessity of carrying out an evaluation of its financial stability on the basis of the emergence approach has been substantiated, including the following directions: intensity of credit and financial interaction in the interbank market; functional load of the banking system as to ensuring the macroeconomic development; structural changes and financial disparities in the banking system; scale effects that arise as a consequence of change in the main financial parameters of the system banks.
DEFF Research Database (Denmark)
Ahmadi, Mohamadreza; Mojallali, Hamed; Wisniewski, Rafal
2012-01-01
This paper addresses the robust stability and control problem of uncertain piecewise linear switched systems where, instead of the conventional Carathe ́odory solutions, we allow for Filippov solutions. In other words, in contrast to the previous studies, solutions with infinite switching in fini...... algorithm is proposed to surmount the aforementioned matrix inequality conditions....... time along the facets and on faces of arbitrary dimensions are also taken into account. Firstly, based on earlier results, the stability problem of piecewise linear systems with Filippov solutions is translated into a number of linear matrix inequality feasibility tests. Subsequently, a set of matrix...... inequalities are brought forward, which determines the asymptotic stability of the Filippov solutions of a given uncertain piecewise linear system. Afterwards, bilinear matrix inequality conditions for synthesizing a robust controller with a guaranteed H∞ per- formance are formulated. Finally, a V-K iteration...
Modelling of the automatic stabilization system of the aircraft course by a fuzzy logic method
Mamonova, T.; Syryamkin, V.; Vasilyeva, T.
2016-04-01
The problem of the present paper concerns the development of a fuzzy model of the system of an aircraft course stabilization. In this work modelling of the aircraft course stabilization system with the application of fuzzy logic is specified. Thus the authors have used the data taken for an ordinary passenger plane. As a result of the study the stabilization system models were realised in the environment of Matlab package Simulink on the basis of the PID-regulator and fuzzy logic. The authors of the paper have shown that the use of the method of artificial intelligence allows reducing the time of regulation to 1, which is 50 times faster than the time when standard receptions of the management theory are used. This fact demonstrates a positive influence of the use of fuzzy regulation.
An Improved On-line Contingency Screening for Power System Transient Stability Assessment
DEFF Research Database (Denmark)
Weckesser, Johannes Tilman Gabriel; Jóhannsson, Hjörtur; Glavic, Mevludin
2017-01-01
This paper presents a contingency screening method and a framework for its on-line implementation. The proposed method carries out contingency screening and on-line stability assessment with respect to first-swing transient stability. For that purpose, it utilizes the single machine equivalent...... method and aims at improving the prior developed contingency screening approaches. In order to determine vulnerability of the system with respect to a particular contingency, only one time-domain simulation needs to be performed. An early stop criteria is proposed so that in a majority of the cases...... the simulation can be terminated after a few hundred milliseconds of simulated system response. The method's outcome is an assessment of the system's stability and a classification of each considered contingency. The contingencies are categorized by exploiting parameters of an equivalent one machine infinite bus...
Directory of Open Access Journals (Sweden)
Muawiya A. Kaigama
2016-03-01
Full Text Available Load shedding is a powerful scheme used for corrective and preventive measures; corrective to restore system’s stability and preventive to avoid catastrophic failure. However, the affected end users are deprived of power supply absolutely with no choice. This paper presents the design, development, feasibility and merits of Frequency-response Grid -Friendly Appliance System (FRGFAS in a smart home. FRGFAS is a decentralized Adaptive Load Shaving(ALS device that supports grid’s system stability by sensing grid’s frequency deterioration level and turns ON/OFF loads accordingly. The FRGFAS permits end users to carry out load shaving at their scale of preference in smart homes via flexible demand responses and automates outdoor lighting to optimum operational hours. FRGFAS obviate load shedding by shaving loads whenever the system is in distress and reset loads supply to the normal state when it stabilizes, this Consequently increases the end user comfort zone and averts a blackout.
Directory of Open Access Journals (Sweden)
Yu-Pei Huang
2015-01-01
Full Text Available The output power of a high concentration photovoltaic (HCPV system is very sensitive to fluctuating tracking errors and weather patterns. To help compensate this shortcoming, supercapacitors have been successfully incorporated into photovoltaic systems to improve their output power stability. This study examined the output power stability improvement of an HCPV module with a supercapacitor integrated into its circuit. Furthermore, the equivalent model of the experimental circuit is presented and analyzed. Experimental results suggest that integrating a supercapacitor into an HCPV module could improve its output power stability and further extend its acceptance angle. This paper provides preliminary data of the improvement and its evaluation method, which could be utilized for further improvements to an HCPV system.
Directory of Open Access Journals (Sweden)
Hamed Kharrati
2012-01-01
Full Text Available This study presents an improved model and controller for nonlinear plants using polynomial fuzzy model-based (FMB systems. To minimize mismatch between the polynomial fuzzy model and nonlinear plant, the suitable parameters of membership functions are determined in a systematic way. Defining an appropriate fitness function and utilizing Taylor series expansion, a genetic algorithm (GA is used to form the shape of membership functions in polynomial forms, which are afterwards used in fuzzy modeling. To validate the model, a controller based on proposed polynomial fuzzy systems is designed and then applied to both original nonlinear plant and fuzzy model for comparison. Additionally, stability analysis for the proposed polynomial FMB control system is investigated employing Lyapunov theory and a sum of squares (SOS approach. Moreover, the form of the membership functions is considered in stability analysis. The SOS-based stability conditions are attained using SOSTOOLS. Simulation results are also given to demonstrate the effectiveness of the proposed method.
A Lyapunov method for stability analysis of piecewise-affine systems over non-invariant domains
Rubagotti, Matteo; Zaccarian, Luca; Bemporad, Alberto
2016-05-01
This paper analyses stability of discrete-time piecewise-affine systems, defined on possibly non-invariant domains, taking into account the possible presence of multiple dynamics in each of the polytopic regions of the system. An algorithm based on linear programming is proposed, in order to prove exponential stability of the origin and to find a positively invariant estimate of its region of attraction. The results are based on the definition of a piecewise-affine Lyapunov function, which is in general discontinuous on the boundaries of the regions. The proposed method is proven to lead to feasible solutions in a broader range of cases as compared to a previously proposed approach. Two numerical examples are shown, among which a case where the proposed method is applied to a closed-loop system, to which model predictive control was applied without a-priori guarantee of stability.
Precise system stabilization at SLC using dither techniques
International Nuclear Information System (INIS)
Ross, M.C.; Hendrickson, L.; Himel, T.; Miller, E.
1993-01-01
A data acquisition method has been developed at the SLAC Linear Collider (SLC) that provides accurate beam parameter information using sub-tolerance excitation and synchronized detection. This is being applied to several SLC sub-systems to provide high speed feedback on beam parameters such as linac output energy spread. The method has significantly improved control of the linac energy spread. The linac average phase offset (θ), used to compensate the effects of longitudinal wakefields, is adjusted ±l control bit (about 0.18 degree S-band or 20% of tolerance), in a continuous fashion. Properly coordinated beam energy measurements provide a measure of the derivative of the accelerating voltage (dE/dθ). The position of the beam on the RF wave can thus be determined to ± 0.3 degree in about 5 seconds. The dithering does not contribute significantly to the energy jitter of the SLC and therefore does not adversely affect routine operation. Future applications include control of the interaction region beam size and orientation
Design of bearings for rotor systems based on stability
Dhar, D.; Barrett, L. E.; Knospe, C. R.
1992-01-01
Design of rotor systems incorporating stable behavior is of great importance to manufacturers of high speed centrifugal machinery since destabilizing mechanisms (from bearings, seals, aerodynamic cross coupling, noncolocation effects from magnetic bearings, etc.) increase with machine efficiency and power density. A new method of designing bearing parameters (stiffness and damping coefficients or coefficients of the controller transfer function) is proposed, based on a numerical search in the parameter space. The feedback control law is based on a decentralized low order controller structure, and the various design requirements are specified as constraints in the specification and parameter spaces. An algorithm is proposed for solving the problem as a sequence of constrained 'minimax' problems, with more and more eigenvalues into an acceptable region in the complex plane. The algorithm uses the method of feasible directions to solve the nonlinear constrained minimization problem at each stage. This methodology emphasizes the designer's interaction with the algorithm to generate acceptable designs by relaxing various constraints and changing initial guesses interactively. A design oriented user interface is proposed to facilitate the interaction.
Directory of Open Access Journals (Sweden)
Mario Espín Pérez
2015-04-01
Full Text Available El desarrollo de este artículo se basa en el estudio del almacenamiento de agua helada en los sistemas de climatización. Para desplazar el consumo eléctrico fuera del horario pico, como herramienta para pretender incrementar la eficiencia energética y disminuir el costo de la energía eléctrica en los hoteles con clima tropical. Para ello se procede a la estimación del perfil de carga térmica del hotel Jagua mediante el software TRNSYS, diseño y comprobación del sistema de almacenamiento de agua helada incorporado a las condiciones actuales de la instalación mediante modelos matemáticos que describen su funcionamiento. El objetivo es, evaluar e ilustrar los posibles efectos cuantitativos y cualitativos del almacenamiento de agua helada en el sistema de clima centralizado de la edificación. El trabajo que se presenta se enmarca en los esfuerzos para desarrollar el uso de tecnologías sustentables y la evaluación de sistemas industriales asistidos por computadora en Cuba. The development of this paper is based on the study of cold water storage in air conditioning systems. To offset power consumption off-peak, as a tool to increase energy efficiency claim and reduce the cost of electricity in tropical hotels. To do this we proceed to estimate the thermal load profile Jagua by TRNSYS software, system design and testing of chilled water storage built into the current conditions of the system using mathematical models to describe their operation. The objective is to evaluate and illustrate the quantitative and qualitative effects of cold water storage in the building centralized climate system. The work presented is part of the efforts to develop the use of sustainable technologies and evaluation of computer-aided industrial systems in Cuba.
Directory of Open Access Journals (Sweden)
Erik von Elm
2008-01-01
un documento de explicación y elaboración al que puede accederse libremente en los sitios web de PLoS Medicine, Annals of Internal Medicine y Epidemiology. Esperamos que la declaración STROBE contribuya a mejorar la calidad de la publicación de los estudios observacionales.
Directory of Open Access Journals (Sweden)
Zhixiong Zhong
2013-01-01
Full Text Available The stability analysis and stabilization of Takagi-Sugeno (T-S fuzzy delta operator systems with time-varying delay are investigated via an input-output approach. A model transformation method is employed to approximate the time-varying delay. The original system is transformed into a feedback interconnection form which has a forward subsystem with constant delays and a feedback one with uncertainties. By applying the scaled small gain (SSG theorem to deal with this new system, and based on a Lyapunov Krasovskii functional (LKF in delta operator domain, less conservative stability analysis and stabilization conditions are obtained. Numerical examples are provided to illustrate the advantages of the proposed method.
Energy Technology Data Exchange (ETDEWEB)
Ramirez Gonzalez, Miguel
1998-08-01
A procedure based on the phase compensation technique for tuning satisfactorily lead-lag power system stabilizers (PSS) is presented in this work. This procedure can be applied to standard models of PSS`s (with two phase compensation stages) where rotor speed deviation or an equivalent rotor speed signal is used as input. An analysis of several state of the art advanced control schemes is also presented, which are proposed for overcoming the limitations of conventional fixed parameters PSS`s. The advantages and drawbacks in designing certain types of PSS`s which are based on adaptive control, fuzzy logic and neural networks techniques are investigated. Based on this study, and taking into account the highly complex and non-linear nature of power systems, a fuzzy logic PSS is designed. In order to have good damping characteristics, speed deviation ({Delta}{omega}) of a machine and its acceleration ({Delta}{omega}) are chosen as the input signals to the fuzzy stabilizer of that particular machine. The performance of the lead-lag PSS and fuzzy stabilizer are validated through the simulation of two case studies: a single machine-infinite bus system, and a multimachine power system. All simulations were performed using a tool based on algorithms developed in MATLAB for the study of power system stability. [Espanol] Se presenta un procedimiento basado en la tecnica de compensacion de fase para ajustar en forma satisfactoria los parametros de los estabilizadores de sistemas de potencia (ESP) del tipo de adelanto-atraso. Este procedimiento es aplicable a modelos estandar de ESP`s (con dos redes de compensacion de fase) que utilizan como senal de entrada la velocidad del rotor del generador en cuestion, o una senal de velocidad equivalente. Por otra parte, se realiza un estudio de diversos esquemas de control avanzado del ESP que se proponen en la literatura actual para superar las limitantes de los estabilizadores convencionales. Basicamente, se analizan las ventajas y
Robust Stabilization of Discrete-Time Systems with Time-Varying Delay: An LMI Approach
Directory of Open Access Journals (Sweden)
Valter J. S. Leite
2008-01-01
Full Text Available Sufficient linear matrix inequality (LMI conditions to verify the robust stability and to design robust state feedback gains for the class of linear discrete-time systems with time-varying delay and polytopic uncertainties are presented. The conditions are obtained through parameter-dependent Lyapunov-Krasovskii functionals and use some extra variables, which yield less conservative LMI conditions. Both problems, robust stability analysis and robust synthesis, are formulated as convex problems where all system matrices can be affected by uncertainty. Some numerical examples are presented to illustrate the advantages of the proposed LMI conditions.
Stability Constrained Efficiency Optimization for Droop Controlled DC-DC Conversion System
DEFF Research Database (Denmark)
Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.
2013-01-01
implementing tertiary regulation. Moreover, system dynamic is affected when shifting VRs. Therefore, the stability is considered in optimization by constraining the eigenvalues arising from dynamic state space model of the system. Genetic algorithm is used in searching for global efficiency optimum while....... As the efficiency of each converter changes with output power, virtual resistances (VRs) are set as decision variables for adjusting power sharing proportion among converters. It is noteworthy that apart from restoring the voltage deviation, secondary control plays an important role to stabilize dc bus voltage when...
An Optimal Power Flow (OPF) Method with Improved Power System Stability
DEFF Research Database (Denmark)
Su, Chi; Chen, Zhe
2010-01-01
This paper proposes an optimal power flow (OPF) method taking into account small signal stability as additional constraints. Particle swarm optimization (PSO) algorithm is adopted to realize the OPF process. The method is programmed in MATLAB and implemented to a nine-bus test power system which...... has large-scale wind power integration. The results show the ability of the proposed method to find optimal (or near-optimal) operating points in different cases. Based on these results, the analysis of the impacts of wind power integration on the system small signal stability has been conducted....
Finite-time output feedback stabilization of high-order uncertain nonlinear systems
Jiang, Meng-Meng; Xie, Xue-Jun; Zhang, Kemei
2018-06-01
This paper studies the problem of finite-time output feedback stabilization for a class of high-order nonlinear systems with the unknown output function and control coefficients. Under the weaker assumption that output function is only continuous, by using homogeneous domination method together with adding a power integrator method, introducing a new analysis method, the maximal open sector Ω of output function is given. As long as output function belongs to any closed sector included in Ω, an output feedback controller can be developed to guarantee global finite-time stability of the closed-loop system.
Effects of nuclear electromagnetic pulse (EMP) on synchronous stability of the electric power system
International Nuclear Information System (INIS)
Manweiler, R.W.
1975-11-01
The effects of a nuclear electromagnetic pulse (EMP) on the synchronous stability of the electric power transmission and distribution systems are evaluated. The various modes of coupling of EMP to the power system are briefly discussed, with particular emphasis on those perturbations affecting the synchronous stability of the transmission system. A brief review of the fundamental concepts of the stability problem is given, with a discussion of the general characteristics of transient analysis. A model is developed to represent single sets as well as repetitive sets of multiple faults on the distribution systems, as might be produced by EMP. The results of many numerical stability calculations are presented to illustrate the transmission system's response from different types of perturbations. The important parameters of both multiple and repetitive faults are studied, including the dependence of the response on the size of the perturbed area, the fault density, and the effective impedance between the fault location and the transmission system. Both major load reduction and the effect of the opening of tie lines at the time of perturbation are also studied. We conclude that there is a high probability that EMP can induce perturbations on the distribution networks causing a large portion of the transmission network in the perturbed area to lose synchronism. The result would be an immediate and massive power failure
Directory of Open Access Journals (Sweden)
D. A. Eliseev
2015-01-01
Full Text Available The solution stability of an initial boundary problem for a linear hybrid system of differential equations, which models the rotation of a rigid body with two elastic rods located in the same plane is studied in the paper. To an axis passing through the mass center of the rigid body perpendicularly to the rods location plane is applied the stabilizing moment proportional to the angle of the system rotation, derivative of the angle, integral of the angle. The external moment provides a feedback. A method of studying the behavior of solutions of the initial boundary problem is proposed. This method allows to exclude from the hybrid system of differential equations partial differential equations, which describe the dynamics of distributed elements of a mechanical system. It allows us to build one equation for an angle of the system rotation. Its characteristic equation defines the stability of solutions of all the system. In the space of feedback-coefficients the areas that provide the asymptotic stability of solutions of the initial boundary problem are built up.
Effect of PID Power System Stabilizer for a Synchronous Machine in Simulink Environment
International Nuclear Information System (INIS)
Yi, Tan Qian; Kasilingam, Gowrishankar; Raguraman, Raman
2013-01-01
This paper presents the use of Proportional-Integral-Derivative (PID) Controller with power system stabilizer (PSS) in a single machine infinite bus system. A PSS is used to generate supplementary damping control signals for an excitation system in order to damp out low frequency oscillations (LFO) of an electric power system. The paper is modelled in the MATLAB Simulink Environment to analyze the performance of a synchronous machine under a wide range of operating conditions. The functional blocks of PID controller with PSS are generated and the simulation studies are conducted based on different test cases to observe the dynamic performance of the power system. Analysis in this paper reveals that the PID-PSS gives better dynamic performance as compared to that of conventional power system stabilizer and also the optimal gain settings of PID PSS obtained at normal operating condition works well to other operating condition without much deterioration of the dynamic responses.
Directory of Open Access Journals (Sweden)
Jorge Morel
2015-06-01
Full Text Available This paper considers the transient stability enhancement of a power system containing large amounts of solar and wind generation in Japan. Following the Fukushima Daiichi nuclear disaster there has been an increasing awareness on the importance of a distributed architecture, based mainly on renewable generation, for the Japanese power system. Also, the targets of CO2 emissions can now be approached without heavily depending on nuclear generation. Large amounts of renewable generation leads to a reduction in the total inertia of the system because renewable generators are connected to the grid by power converters, and transient stability becomes a significant issue. Simulation results show that sodium-sulfur batteries can keep the system in operation and stable after strong transient disturbances, especially for an isolated system. The results also show how the reduction of the inertia in the system can be mitigated by exploiting the kinetic energy of wind turbines.
Energy Technology Data Exchange (ETDEWEB)
Tavera, L. [Instituto Mexicano del Petroleo, Av. Eje Central Lazaro Cardenas No. 152, Edif. 23, Col. San Mateo Atepehuacan, 07730 Mexico D.F. (Mexico); Balcazar, M.; Lopez, A.; Brena, M. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Rosa, M.E. De la [Facultad de Quimica, UNAM, 04510 Mexico D.F. (Mexico); Villalobos P, R. [Centro de Estudios de la Atmosfera, UNAM, 04510 Mexico D.F. (Mexico)
2002-07-01
The radon and its decay products are responsible of the 3/4 parts of the exposure of the persons to the environmental radiation. The discovery at the end of XIX Century of the illnesses, mainly of cancer, which appeared in the presence of radon, lead to an accelerated growing of the radon studies: monitoring, dosimetry, effects on the persons, etc. Several epidemiological studies of radon in miners and population in general have been realized; advancing in the knowledge about the concentration-lung cancer risk relationship, but with discrepancies in the results depending on the concentration levels. Therefor, studies which consuming time, efforts and money go on doing. The research of the radon effects in biological systems different to human, allows to realize studies in less time, in controlled conditions and generally at lower cost, generating information about the alpha radiation effects in the cellular field. Therefor it was decided to study the response of three biological systems exposed to radon: an unicellular bacteria Escherichia Coli which was exposed directly to alpha particles from an electrodeposited source for determining the sensitivity limit of the chose technique. A plant, Tradescantia, for studying the cytogenetic effect of the system exposed to controlled concentrations of radon. An insect, Drosophila Melanogaster, for studying the genetic effects and the accumulated effects in several generations exposed to radon. In this work the experimental settlements are presented for the expositions of the systems and the biological results commenting the importance of these. (Author)
Considerations for transient stability, fault capacity and power flow study of offsite power system
Energy Technology Data Exchange (ETDEWEB)
Shin, M C; Kim, C W; Gwon, M H; Park, C W; Lee, K W; Kim, H M; Lee, G Y; Joe, P H [Sungkyunkwan Univ., Seoul (Korea, Republic of)
1994-04-15
By study of power flow calculation, fault capacity calculation and stability analysis according to connection of two units YGN 3 and 4 to KEPCO power system, we have conclusions as follows. As the result of power flow calculation, at peak load, the voltage change of each bus is very small when YGN 3 and 4 is connected with KEPCO power system. At base load, installation of phase modifing equipment is necessary in Seoul, Kyungki province where load is concentrated because bus voltage rises by increasing of charge capacity caused installation of underground cables. As the result of fault capacity calculation, fault capacity is increased because fault current increases when two units YGN 3 and 4 is connected with KEPCO power system. But it is enough to operate with presenting circuits breaker rated capacity. Transient stability studies have been conducted on the YK N/P generators 3 and 4 using a digital computer program. Three phase short faults have been simulated at the YK N/P 345[KV] bus with the resulting outage of transmission circuits. Several fault clearing times are applied: 6 cycles, 12 cycles, 15 cycles. The study results demonstrate that the transient stability of YK N/P is adequate to maintain stable for three phase short faults cleared within 12 cycles. The study results also demonstrate that the transient stability of YK N/P is stable for machine removals except 4-machine removal. In addition, the study shows that the transient stability analysis is implemented for the case of load.
Directory of Open Access Journals (Sweden)
Antonio A. Martínez García
2013-10-01
Full Text Available La determinación de los regímenes más económicos de operación de los Sistemas Eléctricos de Potencia, teniendo en cuenta la confiabilidad, es una tarea actual sobre todo en sistemas de grandes dimensiones. En el siguiente trabajo se explican las posibilidades que brinda el paquete libre PSAT para efectuar análisis técnicos y económicos aplicados al Sistema Eléctrico Nacional, tales como flujos de carga, flujos continuado, análisis de estabilidad de la tensión, flujo óptimo de potencia y análisis de pequeñas oscilaciones, con lo cual se obtuvieron los siguientes resultados se evalúo la seguridad de estos regímenes desde el punto de vista de la cargabilidad de los nodos, así como de manera preliminar el amortiguamiento del sistema ante pequeñas perturbaciones y se determinó flujo óptimo para asegurar tensiones permisibles en los nodos. Los regímenes tomados como base para el estudio fueron regímenes bases típicos de invierno con demanda máxima pronosticada de 3187,41MW.Determining the economic regimes of operation of Electrical Power Systems, considering the reliability, is a present task especially in large systems. In this paper, we explain the possibilities of the PSAT free package to perform technical and economic analysis applied to the national electricity system, such as load flow, continuous flow analysis, voltage stability, optimal power flow and analysis of small oscillations, which were obtained the following results are evaluated the safety of these systems from the point of view of the chargeability of the nodes, and preliminarily the damping of the system to small perturbations and was determined to ensure optimum flow allowable stresses at nodes. Regimes taken as a basis for the study were typical winter base systems with peak demand forecast of 3187,41 MW.
An offset tone based gain stabilization technique for mixed-signal RF measurement systems
Energy Technology Data Exchange (ETDEWEB)
Joshi, Gopal, E-mail: gjos@barc.gov.in [BARC, Mumbai 400085 (India); Motiwala, Paresh D.; Randale, G.D.; Singh, Pitamber [BARC, Mumbai 400085 (India); Agarwal, Vivek; Kumar, Girish [IIT Bombay, Powai, Mumbai 400076 (India)
2015-09-21
This paper describes a gain stabilization technique for a RF signal measurement system. A sinusoidal signal of known amplitude, phase and close enough in frequency is added to the main, to be measured RF signal at the input of the analog section. The system stabilizes this offset tone in the digital domain, as it is sampled at the output of the analog section. This process generates a correction factor needed to stabilize the magnitude of the gain of the analog section for the main RF signal. With the help of a simple calibration procedure, the absolute amplitude of the main RF signal can be measured. The technique is especially suited for a system that processes signals around a single frequency, employs direct signal conversion into the digital domain, and processes subsequent steps in an FPGA. The inherent parallel signal processing in an FPGA-based implementation allows a real time stabilization of the gain. The effectiveness of the technique is derived from the fact, that the gain stabilization stamped to the main RF signal measurement branch requires only a few components in the system to be inherently stable. A test setup, along with experimental results is presented from the field of RF instrumentation for particle accelerators. Due to the availability of a phase synchronized RF reference signal in these systems, the measured phase difference between the main RF and the RF reference is also stabilized using this technique. A scheme of the signal processing is presented, where a moving average filter has been used to filter out not only the unwanted frequencies, but also to separate the main RF signal from the offset tone signal. This is achieved by a suitable choice of sampling and offset tone frequencies. The presented signal processing scheme is suitable to a variety of RF measurement applications.
Directory of Open Access Journals (Sweden)
A. Díaz Nimo
2005-01-01
Full Text Available El diseño final de una máquina termina después de construirse un prototipo y verificar que funcione correctamente. Noobstante, antes de construir el prototipo se puede modelar el equipo para detectar problemas que puedan surgir en lapropuesta inicial. La idea anterior se aplicó en una máquina para la producción de bloques a partir de suelo estabilizado.Los esquemas, cinemático y estructural de la máquina, se hicieron a partir del análisis de equipos similares y de ideaspropias. Se incluyó un sistema de accionamiento óleo hidráulico para obtener una fuerza de compactación elevada y teneruna alta productividad de bloques con la calidad requerida. Posteriormente, se determinó, de forma experimental, la fuerzade compactación aplicada a un suelo estabilizado, para producir bloques que resistan un esfuerzo a compresión establecidopor la norma de calidad. Con la fuerza de compactación definida, se modelaron las partes peligrosas del equipo, en unprograma de elementos finitos. Se muestran los resultados, señalándose como en algunos elementos, la propuesta originalfallaba, proponiéndose nuevas soluciones.Palabras claves: Diseño mecánico, suelo estabilizado, método de elementos finitos.__________________________________________________________________________AbstractThe final design of machine finishes after built a prototype and verify that it works correctly. Nevertheless, before buildingthe prototype you can model the equipment in order to detect problems that can arise in the initial proposal. The previousidea was applied in a machine for the production of blocks starting from stabilized soil. The schemes, cinematic andstructure of the machine, were made starting from the analysis of similar equipment and of own ideas. A system of oilhydraulic power was included allowing a high force of compression and having a high block productivity with the requiredquality. Later on, it was determined, in an experimental way, the compression
Directory of Open Access Journals (Sweden)
A. Díaz Nimo
2006-09-01
Full Text Available El diseño final de una máquina termina después de construirse un prototipo y verificar que funcione correctamente. Noobstante, antes de construir el prototipo se puede modelar el equipo para detectar problemas que puedan surgir en lapropuesta inicial. La idea anterior se aplicó en una máquina para la producción de bloques a partir de suelo estabilizado.Los esquemas, cinemático y estructural de la máquina, se hicieron a partir del análisis de equipos similares y de ideaspropias. Se incluyó un sistema de accionamiento óleo hidráulico para obtener una fuerza de compactación elevada y teneruna alta productividad de bloques con la calidad requerida. Posteriormente, se determinó, de forma experimental, la fuerzade compactación aplicada a un suelo estabilizado, para producir bloques que resistan un esfuerzo a compresión establecidopor la norma de calidad. Con la fuerza de compactación definida, se modelaron las partes peligrosas del equipo, en unprograma de elementos finitos. Se muestran los resultados, señalándose como en algunos elementos, la propuesta originalfallaba, proponiéndose nuevas soluciones.Palabras claves: Diseño mecánico, suelo estabilizado, método de elementos finitos._____________________________________________________________________________AbstractThe final design of machine finishes after built a prototype and verify that it works correctly. Nevertheless, before buildingthe prototype you can model the equipment in order to detect problems that can arise in the initial proposal. The previousidea was applied in a machine for the production of blocks starting from stabilized soil. The schemes, cinematic andstructure of the machine, were made starting from the analysis of similar equipment and of own ideas. A system of oilhydraulic power was included allowing a high force of compression and having a high block productivity with the requiredquality. Later on, it was determined, in an experimental way, the
Power system stabilization by superconducting magnetic energystorage connected to rotating exciter
Mitani, Yasunori; Tsuji, K
1993-01-01
The authors describe a combination of a rotating exciter and a superconducting magnetic energy storage (SMES) system for efficient power system stabilization. A SMES system connected to an exciter rotating with a turbine-rotor shaft is proposed. The exciter is installed exclusively to supply current for the SMES. Since electrical power output from the SMES is converted into a mechanical torque of the generator directly by the exciter, it is expected that power swings of the generator will be ...
Dynamic stability of a vertically excited non-linear continuous system
Czech Academy of Sciences Publication Activity Database
Náprstek, Jiří; Fischer, Cyril
2015-01-01
Roč. 155, July (2015), s. 106-114 ISSN 0045-7949 R&D Projects: GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : non-linear systems * auto-parametric systems * semi-trivial solution * dynamic stability * system recovery * post- critical response Subject RIV: JM - Building Engineering Impact factor: 2.425, year: 2015 http://www.sciencedirect.com/science/article/pii/S0045794915000024
Competition, liquidity and stability: international evidence at the bank and systemic levels
Nguyen, Thi Ngoc My
2017-01-01
This thesis investigates the impact of market power on bank liquidity; the association between competition and systemic liquidity; and whether the associations between liquidity and stability at both bank- and systemic- levels are affected by competition. The first research question is explored in the context of 101 countries over 1996-2013 while the second and the third, which require listed banks, use a smaller sample of 32 nations during 2001-2013. The Panel Least Squares and the system Ge...
Technical impacts of high penetration levels of wind power on power system stability
Flynn, Damian; Rather, Z.; Ardal, Atle; Darco, Salvatore; Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Sørensen, Poul Ejnar; Estanqueiro, Ana; Gomez, Emilio; Menemenlis, Nickie; Smith, Charlie; Wang, Ye
2017-01-01
With increasing penetrations of wind generation, based on power-electronic converters, power systems are transitioning away from well-understood synchronous generator-based systems, with growing implications for their stability. Issues of concern will vary with system size, wind penetration level, geographical distribution and turbine type, network topology, electricity market structure, unit commitment procedures, and other factors. However, variable-speed wind turbines, both onshore and con...
Global stabilization of linear continuous time-varying systems with bounded controls
International Nuclear Information System (INIS)
Phat, V.N.
2004-08-01
This paper deals with the problem of global stabilization of a class of linear continuous time-varying systems with bounded controls. Based on the controllability of the nominal system, a sufficient condition for the global stabilizability is proposed without solving any Riccati differential equation. Moreover, we give sufficient conditions for the robust stabilizability of perturbation/uncertain linear time-varying systems with bounded controls. (author)
Energy Technology Data Exchange (ETDEWEB)
Duran Ramiro, M. T.; Garcia-Torano, E.
2005-07-01
Optics is a key issue in the development of any liquid scintillation counting (LSC) system. Light emission in the scintillating solution, transmission through the vial and reflector design are some aspects that need to be considered in detail. This paper describes measurements and calculations carried out to optimise these factors for the design of a new family of LSC counters. Measurements of the light distribution emitted by a scintillation vial were done by autoradiographs of cylindrical vials made of various materials and results were compared to those obtained by direct measurements of the light distribution made by scanning the vial with a photomultiplier tube. Calculations were also carried out to study the light transmission in the vial and the optimal design of the reflector for a system with one photomultiplier tube. (Author)
Mobile Phenotyping System Using an Aeromotively Stabilized Cable-Driven Robot
Newman, M. B.; Zygielbaum, A. I.
2017-12-01
Agricultural researchers are constantly attempting to generate superior agricultural crops. Whether this means creating crops with greater yield, crops that are more resilient to disease, or crops that can tolerate harsh environments with fewer failures, test plots of these experimental crops must be studied in real-world environments with minimal invasion to determine how they will perform in full-scale agricultural settings. To monitor these crops without interfering with their natural growth, a noninvasive sensor system has been implemented. This system, instituted by the College of Agricultural Sciences and Natural Resources at the University of Nebraska - Lincoln (UNL), uses a system of poles, cables, and winches to support and maneuver a sensor platform above the crops at an outdoor phenotyping site. In this work, we improve upon the UNL outdoor phenotyping system presenting the concept design for a mobile, cable-driven phenotyping system as opposed to a permanent phenotyping facility. One major challenge in large-scale, cable-driven robots is stability of the end-effector. As a result, this mobile system seeks to use a novel method of end-effector stabilization using an onboard rotor drive system, herein referred to as the Instrument Platform Aeromotive Stabilization System (IPASS). A prototype system is developed and analyzed to determine the viability of IPASS.
Static and dynamic stability of pneumatic vibration isolators and systems of isolators
Ryaboy, Vyacheslav M.
2014-01-01
Pneumatic vibration isolation is the most widespread effective method for creating vibration-free environments that are vital for precise experiments and manufacturing operations in optoelectronics, life sciences, microelectronics, nanotechnology and other areas. The modeling and design principles of a dual-chamber pneumatic vibration isolator, basically established a few decades ago, continue to attract attention of researchers. On the other hand, behavior of systems of such isolators was never explained in the literature in sufficient detail. This paper covers a range of questions essential for understanding the mechanics of pneumatic isolation systems from both design and application perspectives. The theory and a model of a single standalone isolator are presented in concise form necessary for subsequent analysis. Then the dynamics of a system of isolators supporting a payload is considered with main attention directed to two aspects of their behavior: first, the static stability of payloads with high positions of the center of gravity; second, dynamic stability of the feedback system formed by mechanical leveling valves. The direct method of calculating the maximum stable position of the center of gravity is presented and illustrated by three-dimensional stability domains; analytic formulas are given that delineate these domains. A numerical method for feedback stability analysis of self-leveling valve systems is given, and the results are compared with the analytical estimates for a single isolator. The relation between the static and dynamic phenomena is discussed.
Adaptive Integral Sliding Mode Stabilization of Nonholonomic Drift-Free Systems
Directory of Open Access Journals (Sweden)
Waseem Abbasi
2016-01-01
Full Text Available This article presents adaptive integral sliding mode control algorithm for the stabilization of nonholonomic drift-free systems. First the system is transformed, by using input transform, into a special structure containing a nominal part and some unknown terms which are computed adaptively. The transformed system is then stabilized using adaptive integral sliding mode control. The stabilizing controller for the transformed system is constructed that consists of the nominal control plus a compensator control. The compensator control and the adaptive laws are derived on the basis of Lyapunov stability theory. The proposed control algorithm is applied to three different nonholonomic drift-free systems: the unicycle model, the front wheel car model, and the mobile robot with trailer model. The controllability Lie algebra of the unicycle model contains Lie brackets of depth one, the model of a front wheel car contains Lie brackets of depths one and two, and the model of a mobile robot with trailer contains Lie brackets of depths one, two, and three. The effectiveness of the proposed control algorithm is verified through numerical simulations.
Transient Stability Improvement for Combined Heat and Power System Using Load Shedding
Directory of Open Access Journals (Sweden)
Hung-Cheng Chen
2014-01-01
Full Text Available The purpose of the paper is to analyze and improve the transient stability of an industrial combined heat and power (CHP system in a high-tech science park in Taiwan. The CHP system installed two 161 kV/161 kV high-impendence transformers to connect with Taipower System (TPS for both decreasing the short-circuit fault current and increasing the fault critical clearing time. The transient stabilities of three types of operation modes in CHP units, 3G1S, 2G1S, and 1G1S, are analyzed. Under the 3G1S operation mode, the system frequency is immediately restored to 60 Hz after tie line tripping with the TPS. Under the 1G1S and 2G1S operation modes, the system frequencies will continuously decrease and eventually become unstable. A novel transient stability improvement approach using load shedding technique based on the change in frequency is proposed to improve the transient stability.
Uniform stability for time-varying infinite-dimensional discrete linear systems
International Nuclear Information System (INIS)
Kubrusly, C.S.
1988-09-01
Stability for time-varying discrete linear systems in a Banach space is investigated. On the one hand, it established a fairly complete collection of necessary and sufficient conditions for uniform asymptotic equistability for input-free systems. This includes uniform and strong power equistability, and uniform and strong l p -equistability, among other technical conditions which also play essential role in stability theory. On other hand, it is shown that uniform asymptotic equistability for input-free systems is equivalent to each of the following concepts of uniform stability for forced systems: l p -input l p -state, c o -input c o -state, bounded-input bounded-state, l p>1 -input bounded-state, c sub (o)-input bounded-state, and convergent-input bounded-state; which are also equivalent to their nonuniform counterparts. For time-varying convergent systems, the above is also equivalent to convergent-input convergent-state stability. The proofs presented here are all ''elementary'' in the sense that they are based essentially only on the Banach-Steinhaus theorem. (autor) [pt
Barker, Blake; Jung, Soyeun; Zumbrun, Kevin
2018-03-01
Turing patterns on unbounded domains have been widely studied in systems of reaction-diffusion equations. However, up to now, they have not been studied for systems of conservation laws. Here, we (i) derive conditions for Turing instability in conservation laws and (ii) use these conditions to find families of periodic solutions bifurcating from uniform states, numerically continuing these families into the large-amplitude regime. For the examples studied, numerical stability analysis suggests that stable periodic waves can emerge either from supercritical Turing bifurcations or, via secondary bifurcation as amplitude is increased, from subcritical Turing bifurcations. This answers in the affirmative a question of Oh-Zumbrun whether stable periodic solutions of conservation laws can occur. Determination of a full small-amplitude stability diagram - specifically, determination of rigorous Eckhaus-type stability conditions - remains an interesting open problem.
Directory of Open Access Journals (Sweden)
Shenping Xiao
2014-01-01
Full Text Available The problem of stability analysis for a class of networked control systems (NCSs with network-induced delay and packet dropout is investigated in this paper. Based on the working mechanism of zero-order holder, the closed-loop NCS is modeled as a continuous-time linear system with input delay. By introducing a novel Lyapunov-Krasovskii functional which splits both the lower and upper bounds of the delay into two subintervals, respectively, and utilizes reciprocally convex combination technique, a new stability criterion is derived in terms of linear matrix inequalities. Compared with previous results in the literature, the obtained stability criterion is less conservative. Numerical examples demonstrate the validity and feasibility of the proposed method.
Energy Technology Data Exchange (ETDEWEB)
Talaat, Hossam E.A.; Abdennour, Adel; Al-Sulaiman, Abdulaziz A. [Electrical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421 (Saudi Arabia)
2010-09-15
The aim of this research is the design and implementation of a decentralized power system stabilizer (PSS) capable of performing well for a wide range of variations in system parameters and/or loading conditions. The framework of the design is based on Fuzzy Logic Control (FLC). In particular, the neuro-fuzzy control rules are derived from training three classical PSSs; each is tuned using GA so as to perform optimally at one operating point. The effectiveness and robustness of the designed stabilizer, after implementing it to the laboratory model, is investigated. The results of real-time implementation prove that the proposed PSS offers a superior performance in comparison with the conventional stabilizer. (author)
Partial stabilization and control of distributed parameter systems with elastic elements
Zuyev, Alexander L
2015-01-01
This monograph provides a rigorous treatment of problems related to partial asymptotic stability and controllability for models of flexible structures described by coupled nonlinear ordinary and partial differential equations or equations in abstract spaces. The text is self-contained, beginning with some basic results from the theory of continuous semigroups of operators in Banach spaces. The problem of partial asymptotic stability with respect to a continuous functional is then considered for a class of abstract multivalued systems on a metric space. Next, the results of this study are applied to the study of a rotating body with elastic attachments. Professor Zuyev demonstrates that the equilibrium cannot be made strongly asymptotically stable in the general case, motivating consideration of the problem of partial stabilization with respect to the functional that represents “averaged” oscillations. The book’s focus moves on to spillover analysis for infinite-dimensional systems with finite-dimensio...
Stability of periodic steady-state solutions to a non-isentropic Euler-Poisson system
Liu, Cunming; Peng, Yue-Jun
2017-06-01
We study the stability of periodic smooth solutions near non-constant steady-states for a non-isentropic Euler-Poisson system without temperature damping term. The system arises in the theory of semiconductors for which the doping profile is a given smooth function. In this stability problem, there are no special restrictions on the size of the doping profile, but only on the size of the perturbation. We prove that small perturbations of periodic steady-states are exponentially stable for large time. For this purpose, we introduce new variables and choose a non-diagonal symmetrizer of the full Euler equations to recover dissipation estimates. This also allows to make the proof of the stability result very simple and concise.
Wide area stability analysis and control of interconnected power systems with HVDC and FACTS devices
Energy Technology Data Exchange (ETDEWEB)
Li, Yong
2012-11-01
In order to damp low-frequency oscillations and improve the overall stability of large-scale interconnected power systems, this book investigates the wide-area stability analysis and control methods from different perspectives. The flexible and fast control capability of high-voltage (FACTS) is investigated in detail to implement a wide-area measurement based damping control. A sequential and global mixed optimization method is proposed to simultaneously optimize local and wide area damping controllers. A wide-area robust coordination method is presented to coordinate multiple wide-area damping controllers (WADC). A delay-dependent robust design method is also proposed to handle time-varying delays commonly existing in wide-area signal communication. A closed-loop hardware experiment is used to validate the damping performance. The research activities of this book include power system stability analysis and control, wide-area damping control as well as HVDC and FACTS technologies.
State — Region — Field — Enterprise: Framework of Economics System Stability of Russia Part 2
Directory of Open Access Journals (Sweden)
Georgy Borisovich Kleiner
2015-09-01
Full Text Available In the article, the factors of a stability of the Russian economy are investigated from the systematic positions as a multilevel, multisubject and multidimensional socio-economic system. The concept of economics system stability as abilities to keep prerequisites for growth with the support and effective use of system structure of economy is formulated. The leading role of all economic subjects of different levels (including government as a subject of the international relations, regions as the subjects of Federation, enterprises as economic entities in economic stability is shown. The need of "extension" of a network of subjects due to strengthening of the subjectivity of economic fields is emphasized. Research of an internal basic system structure of an economic subject and external structure of its immediate environment in socioeconomic, administrative-and-managerial, and market spaces with the use of the results of the new theory of economic systems leads to a conclusion of similarity of these structures. It is shown that each of these system complexes includes (together with a subject four systems of various types — object, environmental, processed, and designed. The system environment of a subject in the administrative-and-managerial space of inter-level interactions has the same structure. It gives the chance to reduce a problem of subjects’ resistance to a question of balance of system structures of the complexes forming an internal filling and an external environment of subjects. The method of balance index of similar complexes is given. Recommendations on a choice of the measures of economic policy for providing economics system stability of Russia during the crisis are formulated. It is shown that such policy has to be developed with the principles of a subject-preservation, system balance of internal filling and external environment of subjects, a corporate solidarity of subjects despite their level in the administrative
State — Region — Field— Enterprise: Framework of Economics System Stability of Russia Part 1
Directory of Open Access Journals (Sweden)
Georgy Borisovich Kleyner
2015-06-01
Full Text Available In the article, the factors of a stability of the Russian economy are investigated from the systematic positions as a multilevel, multisubject and multidimensional socio-economic system. The concept of economics system stability as abilities to keep prerequisites for growth with the support and effective use of system structure of economy is formulated. The leading role of all economic subjects of different levels (including government as a subject of the international relations, regions as subjects of Federation, enterprises as economic entities in economic stability is shown. The need of «extension» of a network of subjects due to strengthening of the subjectivity of economic fields is emphasized. Research of an internal basic system structure of an economic subject and external structure of its immediate environment in socioeconomic, administrative-and-managerial, and market spaces with the use of the results of the new theory of economic systems leads to a conclusion of similarity of these structures. It is shown that each of these system complexes includes (together with a subject four systems of various types — object, environmental, processed, and designed. The system environment of a subject in the administrative-and-managerial space of inter-level interactions has the same structure. It gives the chance to reduce a problem of subjects’ resistance to a question of balance of system structures of the complexes forming an internal filling and an external environment of subjects. The method of balance index of similar complexes is given. Recommendations on a choice of the measures of economic policy for providing economics system stability of Russia during the crisis are formulated. It is shown that such policy has to be developed with the principles of a subject-preservation, system balance of internal filling and external environment of subjects, a corporate solidarity of subjects despite their level in the administrative hierarchy
A Study of Strong Stability of Distributed Systems. Ph.D. Thesis
Cataltepe, Tayfun
1989-01-01
The strong stability of distributed systems is studied and the problem of characterizing strongly stable semigroups of operators associated with distributed systems is addressed. Main emphasis is on contractive systems. Three different approaches to characterization of strongly stable contractive semigroups are developed. The first one is an operator theoretical approach. Using the theory of dilations, it is shown that every strongly stable contractive semigroup is related to the left shift semigroup on an L(exp 2) space. Then, a decomposition for the state space which identifies strongly stable and unstable states is introduced. Based on this decomposition, conditions for a contractive semigroup to be strongly stable are obtained. Finally, extensions of Lyapunov's equation for distributed parameter systems are investigated. Sufficient conditions for weak and strong stabilities of uniformly bounded semigroups are obtained by relaxing the equivalent norm condition on the right hand side of the Lyanupov equation. These characterizations are then applied to the problem of feedback stabilization. First, it is shown via the state space decomposition that under certain conditions a contractive system (A,B) can be strongly stabilized by the feedback -B(*). Then, application of the extensions of the Lyapunov equation results in sufficient conditions for weak, strong, and exponential stabilizations of contractive systems by the feedback -B(*). Finally, it is shown that for a contractive system, the first derivative of x with respect to time = Ax + Bu (where B is any linear bounded operator), there is a related linear quadratic regulator problem and a corresponding steady state Riccati equation which always has a bounded nonnegative solution.
Tear film stability analysis system: introducing a new application for videokeratography.
Goto, Tomoko; Zheng, Xiaodong; Okamoto, Shigeki; Ohashi, Yuichi
2004-11-01
To review our previous studies regarding the development of a tear stability analysis system (TSAS) using videokeratography and the clinical application of TSAS for evaluation of tear film stability in patients subject to laser in situ keratomileusis (LASIK). New software, namely TSAS, was developed for the videokeratography system TMS-2N (topographic modeling system). TSAS automatically captures consecutive corneal surface images every second for 10 seconds. Corneal topographs were analyzed for tear breakup time (TMS-BUT) and tear breakup area (TMS-BUA, the ratio of breakup area to entire color-code area). First, we recruited volunteers to test the sensitivity and specificity of this new system in comparison with the routine method for tear stability analysis, tear film breakup time evaluation by slit-lamp microscope (SLE-BUT), with fluorescence staining. Second, we investigated the practicability of TSAS in dynamic evaluation of tear film stability before and after LASIK. TMS-BUT had a positive correlation with SLE-BUT, whereas TMS-BUA showed a negative correlation. Although they showed similar rates of specificity as SLE-BUT, the sensitivity rates of TMS-BUT and TMS-BUA were 97.5% and 95%, respectively, significantly higher than that of SLE-BUT (75%). The study on patients subject to LASIK showed that tear film stability significantly decreased during the early time period following LASIK and resolved at 6 months after surgery. Eyes that had abnormal TSAS evaluation tended to have higher risk of developing superficial punctuate keratitis and dry eye symptoms after LASIK, and their responses to treatment were slow. TSAS is a noninvasive and objective method with higher sensitivity for tear film stability analysis than SLE-BUT.
Ma, Junhai; Xie, Lei
2018-02-01
This paper, based on the China's communications and the current situation of the mobile phone industry, focuses on the stability of a supply chain system that consists of one supplier and one bounded rational retailer. We explore the influence of the decision makers' loss sensitivity and decision adjustment speed on the stability of the supply chain. It is found that when the retailer is not sensitive to the loss or adjusts decisions cautiously, the system can be stable. The single-retailer model is extended to a multi-retailer one to study the influence of competition on the system stability. The results show that the market share of each retailer does not affect the system stability when it is fixed. The decision of each retailer does not affect that of any other retailer and the system stability. We present two decision adjustment rules (;bounded rationality expectation (BRE); and "adaptive exponential smoothing (AES)") and compare their performances on the system stability, and find that the AES rule does not affect the system stability, while the BRE rule will make the system stability be sensitive to the retailers' loss sensitivity and the decision adjustment speed. We also reveal the unstable system's negative impact on the retailers' decisions and profits, to emphasize the importance to maintain the system stability.
Lyapunov-based Stability of Feedback Interconnections of Negative Imaginary Systems
Ghallab, Ahmed G.
2017-10-19
Feedback control systems using sensors and actuators such as piezoelectric sensors and actuators, micro-electro-mechanical systems (MEMS) sensors and opto-mechanical sensors, are allowing new advances in designing such high precision technologies. The negative imaginary control systems framework allows for robust control design for such high precision systems in the face of uncertainties due to unmodelled dynamics. The stability of the feedback interconnection of negative imaginary systems has been well established in the literature. However, the proofs of stability feedback interconnection which are used in some previous papers have a shortcoming due to a matrix inevitability issue. In this paper, we provide a new and correct Lyapunov-based proof of one such result and show that the result is still true.
A Multifeature Fusion Approach for Power System Transient Stability Assessment Using PMU Data
Directory of Open Access Journals (Sweden)
Yang Li
2015-01-01
Full Text Available Taking full advantage of synchrophasors provided by GPS-based wide-area measurement system (WAMS, a novel VBpMKL-based transient stability assessment (TSA method through multifeature fusion is proposed in this paper. First, a group of classification features reflecting the transient stability characteristics of power systems are extracted from synchrophasors, and according to the different stages of the disturbance process they are broken into three nonoverlapped subsets; then a VBpMKL-based TSA model is built using multifeature fusion through combining feature spaces corresponding to each feature subset; and finally application of the proposed model to the IEEE 39-bus system and a real-world power system is demonstrated. The novelty of the proposed approach is that it improves the classification accuracy and reliability of TSA using multifeature fusion with synchrophasors. The application results on the test systems verify the effectiveness of the proposal.
Switched periodic systems in discrete time: stability and input-output norms
Bolzern, Paolo; Colaneri, Patrizio
2013-07-01
This paper deals with the analysis of stability and the characterisation of input-output norms for discrete-time periodic switched linear systems. Such systems consist of a network of time-periodic linear subsystems sharing the same state vector and an exogenous switching signal that triggers the jumps between the subsystems. The overall system exhibits a complex dynamic behaviour due to the interplay between the time periodicity of the subsystem parameters and the switching signal. Both arbitrary switching signals and signals satisfying a dwell-time constraint are considered. Linear matrix inequality conditions for stability and guaranteed H2 and H∞ performances are provided. The results heavily rely on the merge of the theory of linear periodic systems and recent developments on switched linear time-invariant systems.
Lyapunov-based Stability of Feedback Interconnections of Negative Imaginary Systems
Ghallab, Ahmed G.; Mabrok, Mohamed; Petersen, Ian R.
2017-01-01
Feedback control systems using sensors and actuators such as piezoelectric sensors and actuators, micro-electro-mechanical systems (MEMS) sensors and opto-mechanical sensors, are allowing new advances in designing such high precision technologies. The negative imaginary control systems framework allows for robust control design for such high precision systems in the face of uncertainties due to unmodelled dynamics. The stability of the feedback interconnection of negative imaginary systems has been well established in the literature. However, the proofs of stability feedback interconnection which are used in some previous papers have a shortcoming due to a matrix inevitability issue. In this paper, we provide a new and correct Lyapunov-based proof of one such result and show that the result is still true.
Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool
Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark
2011-01-01
A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.
Desain Power System Stabilizer Berbasis Fuzzy Tipe-2 untuk Perbaikan Stabilitas Mesin Tunggal
Directory of Open Access Journals (Sweden)
I Made Ginarsa
2018-04-01
Full Text Available The growth of type-2 fuzzy logic system is penetrating electric power system field, especially on electric power system control sub-field in order to simplify the design of power system stabilizer (PSS. Traditionally, the function of conventional PSS is to damp rotor oscillation when a disturbance occurred due to transmission configuration or/and loading changes. However, the response of conventional PSS is slow with long settling time and high peak overshoot. To cover this problem, PSS based on type-2 fuzzy logic system (PFT2 is proposed. Simulation results show that the PFT2 is able to improve the stability of a single machine with 3 scenarios on transmission configuration and loading variation. The PFT2 gives shorter settling time for all scenarios and loading variation than the settling time of conventional PSS. Also, the peak overshoot of the PFT2 is smaller than the peak overshoot of the other competing PSS.
Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters
Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith
2016-01-01
Basic principles for the design and stability of a spacecraft on-orbit attitude control system employing on-off Reaction Control System (RCS) thrusters are presented. Both vehicle dynamics and the control system actuators are inherently nonlinear, hence traditional linear control system design approaches are not directly applicable. This paper has two main aspects: It summarizes key RCS design principles from earlier NASA vehicles, notably the Space Shuttle and Space Station programs, and introduces advances in the linear modelling and analyses of a phase plane control system derived in the initial development of the NASA's next upper stage vehicle, the Exploration Upper Stage (EUS). Topics include thruster hardware specifications, phase plane design and stability, jet selection approaches, filter design metrics, and RCS rotational maneuver logic.
Directory of Open Access Journals (Sweden)
Sayyad Delshad Saleh
2010-01-01
Full Text Available Abstract We propose a fractional-order controller to stabilize unstable fractional-order open-loop systems with interval uncertainty whereas one does not need to change the poles of the closed-loop system in the proposed method. For this, we will use the robust stability theory of Fractional-Order Linear Time Invariant (FO-LTI systems. To determine the control parameters, one needs only a little knowledge about the plant and therefore, the proposed controller is a suitable choice in the control of interval nonlinear systems and especially in fractional-order chaotic systems. Finally numerical simulations are presented to show the effectiveness of the proposed controller.
Coamorphous Loratadine-Citric Acid System with Enhanced Physical Stability and Bioavailability.
Wang, Jin; Chang, Ruimiao; Zhao, Yanan; Zhang, Jiye; Zhang, Ting; Fu, Qiang; Chang, Chun; Zeng, Aiguo
2017-10-01
Coamorphous systems using citric acid as a small molecular excipient were studied for improving physical stability and bioavailability of loratadine, a BCS class II drug with low water solubility and high permeability. Coamorphous loratadine-citric acid systems were prepared by solvent evaporation technique and characterized by differential scanning calorimetry, X-ray powder diffraction, and Fourier transform infrared spectroscopy. Solid-state analysis proofed that coamorphous loratadine-citric acid system (1:1) was amorphous and homogeneous, had a higher T g over amorphous loratadine, and the intermolecular hydrogen bond interactions between loratadine and citric acid exist. The solubility and dissolution of coamorphous loratadine-citric acid system (1:1) were found to be significantly greater than those of crystalline and amorphous form. The pharmacokinetic study in rats proved that coamorphous loratadine-citric acid system (1:1) could significantly improve absorption and bioavailability of loratadine. Coamorphous loratadine-citric acid system (1:1) showed excellently physical stability over a period of 3 months at 25°C under 0% RH and 25°C under 60% RH conditions. The improved stability of coamorphous loratadine-citric acid system (1:1) could be related to an elevated T g over amorphous form and the intermolecular hydrogen bond interactions between loratadine and citric acid. These studies demonstrate that the developed coamorphous loratadine-citric acid system might be a promising oral formulation for improving solubility and bioavailability of loratadine.
Stability Analysis of Nonlinear Time–Delayed Systems with Application to Biological Models
Directory of Open Access Journals (Sweden)
Kruthika H.A.
2017-03-01
Full Text Available In this paper, we analyse the local stability of a gene-regulatory network and immunotherapy for cancer modelled as nonlinear time-delay systems. A numerically generated kernel, using the sum-of-squares decomposition of multivariate polynomials, is used in the construction of an appropriate Lyapunov–Krasovskii functional for stability analysis of the networks around an equilibrium point. This analysis translates to verifying equivalent LMI conditions. A delay-independent asymptotic stability of a second-order model of a gene regulatory network, taking into consideration multiple commensurate delays, is established. In the case of cancer immunotherapy, a predator–prey type model is adopted to describe the dynamics with cancer cells and immune cells contributing to the predator–prey population, respectively. A delay-dependent asymptotic stability of the cancer-free equilibrium point is proved. Apart from the system and control point of view, in the case of gene-regulatory networks such stability analysis of dynamics aids mimicking gene networks synthetically using integrated circuits like neurochips learnt from biological neural networks, and in the case of cancer immunotherapy it helps determine the long-term outcome of therapy and thus aids oncologists in deciding upon the right approach.
Components of formalized description of selecting tools for ensuring stability of banking system
Directory of Open Access Journals (Sweden)
N.P. Pogorelenko
2015-09-01
Full Text Available A banking system is one of the key elements of a financial market of any country. Effectiveness and functional orientation of a banking system provide continuous and targeted financial resources flowing between different sectors of economy and this allows to perform economic activities of various entities. Thus, a banking system plays an essential role in the formation of market relations. A question of stable functioning of a banking system can be defined as a key one. The basic task is to improve the management of a banking system by achieving its stability. The disclosure of formalized description of the definition of tools to influence the selection procedure for ensuring stability of a banking system should be determined as the primary objective. For reaching the goal a comparative study has been introduced and generalized concerning the concept definition of «banking system» and the ideology of its management according to the circumstances and factors of influence. The combination of individual components is to determine the instruments of influence on the banking system activity in the form of chain ties. On the base of the analysis carried out the article grounds the necessity of the generalized use of formalized description of the procedures for selecting instruments for ensuring stability of a banking system. For the purpose of this procedure the author has also grounded, determined and disclosed some of its components. To implement the relevant qualitative phase of formalization the author has proposed the use of chain patterns, and to quantify the individual parameters of such a procedure the methodology of border stochastic analysis has been offered. As a scientific novelty of the present research it is necessary to note the qualitative and quantitative phases for formal presentation of describing procedures for the selection of tools to ensure banking system stability as well as the introduction of chain schemes for the
Stability of Nonlinear Wave Patterns to the Bipolar Vlasov-Poisson-Boltzmann System
Li, Hailiang; Wang, Yi; Yang, Tong; Zhong, Mingying
2018-04-01
The main purpose of the present paper is to investigate the nonlinear stability of viscous shock waves and rarefaction waves for the bipolar Vlasov-Poisson-Boltzmann (VPB) system. To this end, motivated by the micro-macro decomposition to the Boltzmann equation in Liu and Yu (Commun Math Phys 246:133-179, 2004) and Liu et al. (Physica D 188:178-192, 2004), we first set up a new micro-macro decomposition around the local Maxwellian related to the bipolar VPB system and give a unified framework to study the nonlinear stability of the basic wave patterns to the system. Then, as applications of this new decomposition, the time-asymptotic stability of the two typical nonlinear wave patterns, viscous shock waves and rarefaction waves are proved for the 1D bipolar VPB system. More precisely, it is first proved that the linear superposition of two Boltzmann shock profiles in the first and third characteristic fields is nonlinearly stable to the 1D bipolar VPB system up to some suitable shifts without the zero macroscopic mass conditions on the initial perturbations. Then the time-asymptotic stability of the rarefaction wave fan to compressible Euler equations is proved for the 1D bipolar VPB system. These two results are concerned with the nonlinear stability of wave patterns for Boltzmann equation coupled with additional (electric) forces, which together with spectral analysis made in Li et al. (Indiana Univ Math J 65(2):665-725, 2016) sheds light on understanding the complicated dynamic behaviors around the wave patterns in the transportation of charged particles under the binary collisions, mutual interactions, and the effect of the electrostatic potential forces.
Input-to-State Stabilizing MPC for Neutrally Stable Linear Systems subject to Input Constraints
Kim, Jung-Su; Yoon, Tae-Woong; Jadbabaie, Ali; Persis, Claudio De
2004-01-01
MPC(Model Predictive Control) is representative of control methods which are able to handle physical constraints. Closed-loop stability can therefore be ensured only locally in the presence of constraints of this type. However, if the system is neutrally stable, and if the constraints are imposed
Transient Voltage Stability Analysis and Improvement of A Network with different HVDC Systems
DEFF Research Database (Denmark)
Liu, Yan; Chen, Zhe
2011-01-01
This paper presents transient voltage stability analysis of an AC system with multi-infeed HVDC links including a traditional LCC HVDC link and a VSC HVDC link. It is found that the voltage supporting capability of the VSC-HVDC link is significantly influenced by the tie-line distance between the...
Directory of Open Access Journals (Sweden)
E. A. Feilat
2010-12-01
Full Text Available This paper demonstrates the assessment of the small-signal stability of a single-machine infinite- bus power system under widely varying loading conditions using the concept of synchronizing and damping torques coefficients. The coefficients are calculated from the time responses of the rotor angle, speed, and torque of the synchronous generator. Three adaptive computation algorithms including Kalman filtering, Adaline, and recursive least squares have been compared to estimate the synchronizing and damping torque coefficients. The steady-state performance of the three adaptive techniques is compared with the conventional static least squares technique by conducting computer simulations at different loading conditions. The algorithms are compared to each other in terms of speed of convergence and accuracy. The recursive least squares estimation offers several advantages including significant reduction in computing time and computational complexity. The tendency of an unsupplemented static exciter to degrade the system damping for medium and heavy loading is verified. Consequently, a power system stabilizer whose parameters are adjusted to compensate for variations in the system loading is designed using phase compensation method. The effectiveness of the stabilizer in enhancing the dynamic stability over wide range of operating conditions is verified through the calculation of the synchronizing and damping torque coefficients using recursive least square technique.