WorldWideScience

Sample records for systemic myostatin inhibition

  1. Muscle hypertrophy induced by myostatin inhibition accelerates degeneration in dysferlinopathy.

    Science.gov (United States)

    Lee, Yun-Sil; Lehar, Adam; Sebald, Suzanne; Liu, Min; Swaggart, Kayleigh A; Talbot, C Conover; Pytel, Peter; Barton, Elisabeth R; McNally, Elizabeth M; Lee, Se-Jin

    2015-10-15

    Myostatin is a secreted signaling molecule that normally acts to limit muscle growth. As a result, there is extensive effort directed at developing drugs capable of targeting myostatin to treat patients with muscle loss. One potential concern with this therapeutic approach in patients with muscle degenerative diseases like muscular dystrophy is that inducing hypertrophy may increase stress on dystrophic fibers, thereby accelerating disease progression. To investigate this possibility, we examined the effect of blocking the myostatin pathway in dysferlin-deficient (Dysf(-/-)) mice, in which membrane repair is compromised, either by transgenic expression of follistatin in skeletal muscle or by systemic administration of the soluble form of the activin type IIB receptor (ACVR2B/Fc). Here, we show that myostatin inhibition by follistatin transgene expression in Dysf(-/-) mice results in early improvement in histopathology but ultimately exacerbates muscle degeneration; this effect was not observed in dystrophin-deficient (mdx) mice, suggesting that accelerated degeneration induced by follistatin transgene expression is specific to mice lacking dysferlin. Dysf(-/-) mice injected with ACVR2B/Fc showed significant increases in muscle mass and amelioration of fibrotic changes normally seen in 8-month-old Dysf(-/-) mice. Despite these potentially beneficial effects, ACVR2B/Fc treatment caused increases in serum CK levels in some Dysf(-/-) mice, indicating possible muscle damage induced by hypertrophy. These findings suggest that depending on the disease context, inducing muscle hypertrophy by myostatin blockade may have detrimental effects, which need to be weighed against the potential gains in muscle growth and decreased fibrosis. © The Author 2015. Published by Oxford University Press.

  2. Effect of Postnatal Myostatin Inhibition on Bite Mechanics in Mice.

    Directory of Open Access Journals (Sweden)

    Susan H Williams

    Full Text Available As a negative regulator of muscle size, myostatin (Mstn impacts the force-production capabilities of skeletal muscles. In the masticatory system, measures of temporalis-stimulated bite forces in constitutive myostatin KOs suggest an absolute, but not relative, increase in jaw-muscle force. Here, we assess the phenotypic and physiologic impact of postnatal myostatin inhibition on bite mechanics using an inducible conditional KO mouse in which myostatin is inhibited with doxycycline (DOX. Given the increased control over the timing of gene inactivation in this model, it may be more clinically-relevant for developing interventions for age-associated changes in the musculoskeletal system. DOX was administered for 12 weeks starting at age 4 months, during which time food intake was monitored. Sex, age and strain-matched controls were given the same food without DOX. Bite forces were recorded just prior to euthanasia after which muscle and skeletal data were collected. Food intake did not differ between control or DOX animals within each sex. DOX males were significantly larger and had significantly larger masseters than controls, but DOX and control females did not differ. Although there was a tendency towards higher absolute bite forces in DOX animals, this was not significant, and bite forces normalized to masseter mass did not differ. Mechanical advantage for incisor biting increased in the DOX group due to longer masseter moment arms, likely due to a more anteriorly-placed masseter insertion. Despite only a moderate increase in bite force in DOX males and none in DOX females, the increase in masseter mass in males indicates a potentially positive impact on jaw muscles. Our data suggest a sexual dimorphism in the role of mstn, and as such investigations into the sex-specific outcomes is warranted.

  3. Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice

    OpenAIRE

    Sumner, Charlotte J.; Wee, Claribel D.; Warsing, Leigh C.; Choe, Dong W.; Ng, Andrew S.; Lutz, Cathleen; Wagner, Kathryn R.

    2009-01-01

    There is currently no treatment for the inherited motor neuron disease, spinal muscular atrophy (SMA). Severe SMA causes lower motor neuron loss, impaired myofiber development, profound muscle weakness and early mortality. Myostatin is a transforming growth factor-β family member that inhibits muscle growth. Loss or blockade of myostatin signaling increases muscle mass and improves muscle strength in mouse models of primary muscle disease and in the motor neuron disease, amyotrophic lateral s...

  4. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways.

    Science.gov (United States)

    Rodriguez, J; Vernus, B; Chelh, I; Cassar-Malek, I; Gabillard, J C; Hadj Sassi, A; Seiliez, I; Picard, B; Bonnieu, A

    2014-11-01

    Myostatin, a member of the transforming growth factor-β superfamily, is a potent negative regulator of skeletal muscle growth and is conserved in many species, from rodents to humans. Myostatin inactivation can induce skeletal muscle hypertrophy, while its overexpression or systemic administration causes muscle atrophy. As it represents a potential target for stimulating muscle growth and/or preventing muscle wasting, myostatin regulation and functions in the control of muscle mass have been extensively studied. A wealth of data strongly suggests that alterations in skeletal muscle mass are associated with dysregulation in myostatin expression. Moreover, myostatin plays a central role in integrating/mediating anabolic and catabolic responses. Myostatin negatively regulates the activity of the Akt pathway, which promotes protein synthesis, and increases the activity of the ubiquitin-proteasome system to induce atrophy. Several new studies have brought new information on how myostatin may affect both ribosomal biogenesis and translation efficiency of specific mRNA subclasses. In addition, although myostatin has been identified as a modulator of the major catabolic pathways, including the ubiquitin-proteasome and the autophagy-lysosome systems, the underlying mechanisms are only partially understood. The goal of this review is to highlight outstanding questions about myostatin-mediated regulation of the anabolic and catabolic signaling pathways in skeletal muscle. Particular emphasis has been placed on (1) the cross-regulation between myostatin, the growth-promoting pathways and the proteolytic systems; (2) how myostatin inhibition leads to muscle hypertrophy; and (3) the regulation of translation by myostatin.

  5. Pharmacological inhibition of myostatin protects against skeletal muscle atrophy and weakness after anterior cruciate ligament tear.

    Science.gov (United States)

    Wurtzel, Caroline Nw; Gumucio, Jonathan P; Grekin, Jeremy A; Khouri, Roger K; Russell, Alan J; Bedi, Asheesh; Mendias, Christopher L

    2017-11-01

    Anterior cruciate ligament (ACL) tears are among the most frequent knee injuries in sports medicine, with tear rates in the US up to 250,000 per year. Many patients who suffer from ACL tears have persistent atrophy and weakness even after considerable rehabilitation. Myostatin is a cytokine that directly induces muscle atrophy, and previous studies rodent models and patients have demonstrated an upregulation of myostatin after ACL tear. Using a preclinical rat model, our objective was to determine if the use of a bioneutralizing antibody against myostatin could prevent muscle atrophy and weakness after ACL tear. Rats underwent a surgically induced ACL tear and were treated with either a bioneutralizing antibody against myostatin (10B3, GlaxoSmithKline) or a sham antibody (E1-82.15, GlaxoSmithKline). Muscles were harvested at either 7 or 21 days after induction of a tear to measure changes in contractile function, fiber size, and genes involved in muscle atrophy and hypertrophy. These time points were selected to evaluate early and later changes in muscle structure and function. Compared to the sham antibody group, 7 days after ACL tear, myostatin inhibition reduced the expression of proteolytic genes and induced the expression of hypertrophy genes. These early changes in gene expression lead to a 22% increase in muscle fiber cross-sectional area and a 10% improvement in maximum isometric force production that were observed 21 days after ACL tear. Overall, myostatin inhibition lead to several favorable, although modest, changes in molecular biomarkers of muscle regeneration and reduced muscle atrophy and weakness following ACL tear. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2499-2505, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Tingqing Guo

    Full Text Available Myostatin (Mstn is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Mstn(-/- mice have a dramatic increase in muscle mass, reduction in fat mass, and resistance to diet-induced and genetic obesity. To determine how Mstn deletion causes reduced adiposity and resistance to obesity, we analyzed substrate utilization and insulin sensitivity in Mstn(-/- mice fed a standard chow. Despite reduced lipid oxidation in skeletal muscle, Mstn(-/- mice had no change in the rate of whole body lipid oxidation. In contrast, Mstn(-/- mice had increased glucose utilization and insulin sensitivity as measured by indirect calorimetry, glucose and insulin tolerance tests, and hyperinsulinemic-euglycemic clamp. To determine whether these metabolic effects were due primarily to the loss of myostatin signaling in muscle or adipose tissue, we compared two transgenic mouse lines carrying a dominant negative activin IIB receptor expressed specifically in adipocytes or skeletal muscle. We found that inhibition of myostatin signaling in adipose tissue had no effect on body composition, weight gain, or glucose and insulin tolerance in mice fed a standard diet or a high-fat diet. In contrast, inhibition of myostatin signaling in skeletal muscle, like Mstn deletion, resulted in increased lean mass, decreased fat mass, improved glucose metabolism on standard and high-fat diets, and resistance to diet-induced obesity. Our results demonstrate that Mstn(-/- mice have an increase in insulin sensitivity and glucose uptake, and that the reduction in adipose tissue mass in Mstn(-/- mice is an indirect result of metabolic changes in skeletal muscle. These data suggest that increasing muscle mass by administration of myostatin antagonists may be a promising therapeutic target for treating patients with obesity or diabetes.

  7. Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells.

    Science.gov (United States)

    Artaza, Jorge N; Bhasin, Shalender; Magee, Thomas R; Reisz-Porszasz, Suzanne; Shen, Ruoquin; Groome, Nigel P; Meerasahib, Mohamed Fareez; Fareez, Meerasaluh M; Gonzalez-Cadavid, Nestor F

    2005-08-01

    Inactivating mutations of the mammalian myostatin gene are associated with increased muscle mass and decreased fat mass; conversely, myostatin transgenic mice that overexpress myostatin in the skeletal muscle have decreased muscle mass and increased fat mass. We investigated the effects of recombinant myostatin protein and antimyostatin antibody on myogenic and adipogenic differentiation of mesenchymal multipotent cells. Accordingly, 10T(1/2) cells were incubated with 5'-azacytidine for 3 d to induce differentiation and then treated with a recombinant protein for myostatin (Mst) carboxy terminal 113 amino acids or a polyclonal anti-Mst antibody for 3, 7, and 14 d. Cells were also cotransfected with a Mst cDNA plasmid expressing the full-length 375-amino acid protein (pcDNA-Mst375) and the silencer RNAs for either Mst (pSil-Mst) or a random sequence (pSil-RS) for 3 or 7 d, and Mst expression was determined. Adipogenesis was evaluated by quantitative image analysis of fat cells before and after oil-red-O staining, immunocytochemistry of adiponectin, and Western blot for CCAAT/enhancer binding protein-alpha. Myogenesis was estimated by quantitative image analysis-immunocytochemistry for MyoD (Myo differentiation protein), myogenin, and myosin heavy chain type II, or by Western blot for myogenin. 5'-Azacytidine-mediated differentiation induced endogenous full-length Mst expression. Recombinant Mst carboxy terminal 113 amino acids inhibited both early and late markers of myogenesis and stimulated both early and late markers of adipogenesis, whereas the antibody against Mst exerted the reverse effects. Myogenin levels at 7 d after transfection of pcDNA-Mst375 were reduced as expected and elevated by pSil-Mst, which blocked efficiently Mst375 expression. In conclusion, myostatin promotes the differentiation of multipotent mesenchymal cells into the adipogenic lineage and inhibits myogenesis.

  8. Myostatin Promotes Interleukin-1β Expression in Rheumatoid Arthritis Synovial Fibroblasts through Inhibition of miR-21-5p

    Directory of Open Access Journals (Sweden)

    Sung-Lin Hu

    2017-12-01

    Full Text Available Rheumatoid arthritis (RA is characterized by the infiltration of a number of pro-inflammatory cytokines into synovial fluid and patients with RA often develop joint destruction and deficits in muscle mass. The growth factor myostatin is a key regulator linking muscle mass and bone structure. We sought to determine whether myostatin regulates rheumatoid synovial fibroblast activity and inflammation in RA. We found that levels of myostatin and interleukin (IL-1β (a key pro-inflammatory cytokine in RA in synovial fluid from RA patients were overexpressed and positively correlated. In in vitro investigations, we found that myostatin dose-dependently regulated IL-1β expression through the ERK, JNK, and AP-1 signal-transduction pathways. Computational analysis confirmed that miR-21-5p directly targets the expression of the 3′ untranslated region (3′ UTR of IL-1β. Treatment of cells with myostatin inhibited miR-21-5p expression and miR-21-5p mimic prevented myostatin-induced enhancement of IL-1β expression, showing an inverse correlation between miR-21-5p and IL-1β expression during myostatin treatment. We also found significantly increased paw swelling in an animal model of collagen-induced arthritis (CIA, compared with controls; immunohistochemistry staining revealed substantially higher levels of myostatin and IL-1β expression in CIA tissue. Our evidence indicates that myostatin regulates IL-1β production. Thus, targeting myostatin may represent a potential therapeutic target for RA.

  9. Myostatin inhibition induces muscle fibre hypertrophy prior to satellite cell activation

    Science.gov (United States)

    Wang, Qian; McPherron, Alexandra C

    2012-01-01

    Muscle fibres are multinucleated post-mitotic cells that can change dramatically in size during adulthood. It has been debated whether muscle fibre hypertrophy requires activation and fusion of muscle stem cells, the satellite cells. Myostatin (MSTN) is a negative regulator of skeletal muscle growth during development and in the adult, and MSTN inhibition is therefore a potential therapy for muscle wasting diseases, some of which are associated with a depletion of satellite cells. Conflicting results have been obtained in previous analyses of the role of MSTN on satellite cell quiescence. Here, we inhibited MSTN in adult mice with a soluble activin receptor type IIB and analysed the incorporation of new nuclei using 5′-bromo-2′-deoxyuridine (BrdU) labelling by isolating individual myofibres. We found that satellite cells are activated by MSTN inhibition. By varying the dose and time course for MSTN inhibition, however, we found that myofibre hypertrophy precedes the incorporation of new nuclei, and that the overall number of new nuclei is relatively low compared to the number of total myonuclei. These results reconcile some of the previous work obtained by other methods. In contrast with previous reports, we also found that Mstn null mice do not have increased satellite cell numbers during adulthood and are not resistant to sarcopaenia. Our results support a previously proposed model of hypertrophy in which hypertrophy can precede satellite cell activation. Studies of the metabolic and functional effects of postnatal MSTN inhibition are needed to determine the consequences of increasing the cytoplasm/myonuclear ratio after MSTN inhibition. PMID:22393251

  10. Denervation atrophy is independent from Akt and mTOR activation and is not rescued by myostatin inhibition

    Science.gov (United States)

    MacDonald, Elizabeth M.; Andres-Mateos, Eva; Mejias, Rebeca; Simmers, Jessica L.; Mi, Ruifa; Park, Jae-Sung; Ying, Stephanie; Hoke, Ahmet; Lee, Se-Jin; Cohn, Ronald D.

    2014-01-01

    The purpose of our study was to compare two acquired muscle atrophies and the use of myostatin inhibition for their treatment. Myostatin naturally inhibits skeletal muscle growth by binding to ActRIIB, a receptor on the cell surface of myofibers. Because blocking myostatin in an adult wild-type mouse induces profound muscle hypertrophy, we applied a soluble ActRIIB receptor to models of disuse (limb immobilization) and denervation (sciatic nerve resection) atrophy. We found that treatment of immobilized mice with ActRIIB prevented the loss of muscle mass observed in placebo-treated mice. Our results suggest that this protection from disuse atrophy is regulated by serum and glucocorticoid-induced kinase (SGK) rather than by Akt. Denervation atrophy, however, was not protected by ActRIIB treatment, yet resulted in an upregulation of the pro-growth factors Akt, SGK and components of the mTOR pathway. We then treated the denervated mice with the mTOR inhibitor rapamycin and found that, despite a reduction in mTOR activation, there is no alteration of the atrophy phenotype. Additionally, rapamycin prevented the denervation-induced upregulation of the mTORC2 substrates Akt and SGK. Thus, our studies show that denervation atrophy is not only independent from Akt, SGK and mTOR activation but also has a different underlying pathophysiological mechanism than disuse atrophy. PMID:24504412

  11. Denervation atrophy is independent from Akt and mTOR activation and is not rescued by myostatin inhibition.

    Science.gov (United States)

    MacDonald, Elizabeth M; Andres-Mateos, Eva; Mejias, Rebeca; Simmers, Jessica L; Mi, Ruifa; Park, Jae-Sung; Ying, Stephanie; Hoke, Ahmet; Lee, Se-Jin; Cohn, Ronald D

    2014-04-01

    The purpose of our study was to compare two acquired muscle atrophies and the use of myostatin inhibition for their treatment. Myostatin naturally inhibits skeletal muscle growth by binding to ActRIIB, a receptor on the cell surface of myofibers. Because blocking myostatin in an adult wild-type mouse induces profound muscle hypertrophy, we applied a soluble ActRIIB receptor to models of disuse (limb immobilization) and denervation (sciatic nerve resection) atrophy. We found that treatment of immobilized mice with ActRIIB prevented the loss of muscle mass observed in placebo-treated mice. Our results suggest that this protection from disuse atrophy is regulated by serum and glucocorticoid-induced kinase (SGK) rather than by Akt. Denervation atrophy, however, was not protected by ActRIIB treatment, yet resulted in an upregulation of the pro-growth factors Akt, SGK and components of the mTOR pathway. We then treated the denervated mice with the mTOR inhibitor rapamycin and found that, despite a reduction in mTOR activation, there is no alteration of the atrophy phenotype. Additionally, rapamycin prevented the denervation-induced upregulation of the mTORC2 substrates Akt and SGK. Thus, our studies show that denervation atrophy is not only independent from Akt, SGK and mTOR activation but also has a different underlying pathophysiological mechanism than disuse atrophy.

  12. Denervation atrophy is independent from Akt and mTOR activation and is not rescued by myostatin inhibition

    Directory of Open Access Journals (Sweden)

    Elizabeth M. MacDonald

    2014-04-01

    Full Text Available The purpose of our study was to compare two acquired muscle atrophies and the use of myostatin inhibition for their treatment. Myostatin naturally inhibits skeletal muscle growth by binding to ActRIIB, a receptor on the cell surface of myofibers. Because blocking myostatin in an adult wild-type mouse induces profound muscle hypertrophy, we applied a soluble ActRIIB receptor to models of disuse (limb immobilization and denervation (sciatic nerve resection atrophy. We found that treatment of immobilized mice with ActRIIB prevented the loss of muscle mass observed in placebo-treated mice. Our results suggest that this protection from disuse atrophy is regulated by serum and glucocorticoid-induced kinase (SGK rather than by Akt. Denervation atrophy, however, was not protected by ActRIIB treatment, yet resulted in an upregulation of the pro-growth factors Akt, SGK and components of the mTOR pathway. We then treated the denervated mice with the mTOR inhibitor rapamycin and found that, despite a reduction in mTOR activation, there is no alteration of the atrophy phenotype. Additionally, rapamycin prevented the denervation-induced upregulation of the mTORC2 substrates Akt and SGK. Thus, our studies show that denervation atrophy is not only independent from Akt, SGK and mTOR activation but also has a different underlying pathophysiological mechanism than disuse atrophy.

  13. Inhibition of myostatin signaling through Notch activation following acute resistance exercise.

    Directory of Open Access Journals (Sweden)

    Matthew G MacKenzie

    Full Text Available Myostatin is a TGFβ family member and negative regulator of muscle size. Due to the complexity of the molecular pathway between myostatin mRNA/protein and changes in transcription, it has been difficult to understand whether myostatin plays a role in resistance exercise-induced skeletal muscle hypertrophy. To circumvent this problem, we determined the expression of a unique myostatin target gene, Mighty, following resistance exercise. Mighty mRNA increased by 6 h (82.9 ± 24.21% and remained high out to 48 h (56.5 ± 19.67% after resistance exercise. Further examination of the soleus, plantaris and tibialis anterior muscles showed that the change in Mighty mRNA at 6 h correlated with the increase in muscle size associated with this protocol (R(2 = 0.9996. The increase in Mighty mRNA occurred both independent of Smad2 phosphorylation and in spite of an increase in myostatin mRNA (341.8 ± 147.14% at 3 h. The myostatin inhibitor SKI remained unchanged. However, activated Notch, another potential inhibitor of TGFβ signaling, increased immediately following resistance exercise (83 ± 11.2% and stayed elevated out to 6 h (78 ± 16.6%. Electroportion of the Notch intracellular domain into the tibialis anterior resulted in an increase in Mighty mRNA (63 ± 13.4% that was equivalent to the canonical Notch target HES-1 (94.4 ± 7.32%. These data suggest that acute resistance exercise decreases myostatin signaling through the activation of the TGFβ inhibitor Notch resulting in a decrease in myostatin transcriptional activity that correlates well with muscle hypertrophy.

  14. Dystrophin-deficient dogs with reduced myostatin have unequal muscle growth and greater joint contractures.

    Science.gov (United States)

    Kornegay, Joe N; Bogan, Daniel J; Bogan, Janet R; Dow, Jennifer L; Wang, Jiahui; Fan, Zheng; Liu, Naili; Warsing, Leigh C; Grange, Robert W; Ahn, Mihye; Balog-Alvarez, Cynthia J; Cotten, Steven W; Willis, Monte S; Brinkmeyer-Langford, Candice; Zhu, Hongtu; Palandra, Joe; Morris, Carl A; Styner, Martin A; Wagner, Kathryn R

    2016-01-01

    Myostatin (Mstn) is a negative regulator of muscle growth whose inhibition promotes muscle growth and regeneration. Dystrophin-deficient mdx mice in which myostatin is knocked out or inhibited postnatally have a less severe phenotype with greater total mass and strength and less fibrosis and fatty replacement of muscles than mdx mice with wild-type myostatin expression. Dogs with golden retriever muscular dystrophy (GRMD) have previously been noted to have increased muscle mass and reduced fibrosis after systemic postnatal myostatin inhibition. Based partly on these results, myostatin inhibitors are in development for use in human muscular dystrophies. However, persisting concerns regarding the effects of long-term and profound myostatin inhibition will not be easily or imminently answered in clinical trials. To address these concerns, we developed a canine (GRippet) model by crossbreeding dystrophin-deficient GRMD dogs with Mstn-heterozygous (Mstn (+/-)) whippets. A total of four GRippets (dystrophic and Mstn (+/-)), three GRMD (dystrophic and Mstn wild-type) dogs, and three non-dystrophic controls from two litters were evaluated. Myostatin messenger ribonucleic acid (mRNA) and protein levels were downregulated in both GRMD and GRippet dogs. GRippets had more severe postural changes and larger (more restricted) maximal joint flexion angles, apparently due to further exaggeration of disproportionate effects on muscle size. Flexors such as the cranial sartorius were more hypertrophied on magnetic resonance imaging (MRI) in the GRippets, while extensors, including the quadriceps femoris, underwent greater atrophy. Myostatin protein levels negatively correlated with relative cranial sartorius muscle cross-sectional area on MRI, supporting a role in disproportionate muscle size. Activin receptor type IIB (ActRIIB) expression was higher in dystrophic versus control dogs, consistent with physiologic feedback between myostatin and ActRIIB. However, there was no

  15. Evaluation of Electrical Impedance as a Biomarker of Myostatin Inhibition in Wild Type and Muscular Dystrophy Mice.

    Directory of Open Access Journals (Sweden)

    Benjamin Sanchez

    Full Text Available Non-invasive and effort independent biomarkers are needed to better assess the effects of drug therapy on healthy muscle and that affected by muscular dystrophy (mdx. Here we evaluated the use of multi-frequency electrical impedance for this purpose with comparison to force and histological parameters.Eight wild-type (wt and 10 mdx mice were treated weekly with RAP-031 activin type IIB receptor at a dose of 10 mg kg-1 twice weekly for 16 weeks; the investigators were blinded to treatment and disease status. At the completion of treatment, impedance measurements, in situ force measurements, and histology analyses were performed.As compared to untreated animals, RAP-031 wt and mdx treated mice had greater body mass (18% and 17%, p 70 Hz, but not in the mdx animals. In contrast, maximum force normalized by muscle mass was unchanged in the wt animals and lower in the mdx animals by 21% (p < 0.01. Similarly, myofiber size was only non-significantly higher in treated versus untreated animals (8% p = 0.44 and 12% p = 0.31 for wt and mdx animals, respectively.Our findings demonstrate electrical impedance of muscle reproduce the functional and histological changes associated with myostatin pathway inhibition and do not reflect differences in muscle size or volume. This technique deserves further study in both animal and human therapeutic trials.

  16. Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents

    Directory of Open Access Journals (Sweden)

    L.H. Manfredi

    2017-10-01

    Full Text Available Myostatin is a novel negative regulator of skeletal muscle mass. Myostatin expression is also found in heart in a much less extent, but it can be upregulated in pathological conditions, such as heart failure. Myostatin may be involved in inhibiting protein synthesis and/or increasing protein degradation in skeletal and cardiac muscles. Herein, we used cell cultures and isolated muscles from rats to determine protein degradation and synthesis. Muscles incubated with myostatin exhibited an increase in proteolysis with an increase of Atrogin-1, MuRF1 and LC3 genes. Extensor digitorum longus muscles and C2C12 myotubes exhibited a reduction in protein turnover. Cardiomyocytes showed an increase in proteolysis by activating autophagy and the ubiquitin proteasome system, and a decrease in protein synthesis by decreasing P70S6K. The effect of myostatin on protein metabolism is related to fiber type composition, which may be associated to the extent of atrophy mediated effect of myostatin on muscle.

  17. Postnatal PPARdelta activation and myostatin inhibition exert distinct yet complimentary effects on the metabolic profile of obese insulin-resistant mice.

    Directory of Open Access Journals (Sweden)

    Barbara L Bernardo

    Full Text Available BACKGROUND: Interventions for T2DM have in part aimed to mimic exercise. Here, we have compared the independent and combined effects of a PPARdelta agonist and endurance training mimetic (GW501516 and a myostatin antibody and resistance training mimetic (PF-879 on metabolic and performance outcomes in obese insulin resistant mice. METHODOLOGY/PRINCIPAL FINDINGS: Male ob/ob mice were treated for 6 weeks with vehicle, GW501516, PF-879, or GW501516 in combination with PF-879. The effects of the interventions on body composition, glucose homeostasis, glucose tolerance, energy expenditure, exercise capacity and metabolic gene expression were compared at the end of study. GW501516 attenuated body weight and fat mass accumulation and increased the expression of genes of oxidative metabolism. In contrast, PF-879 increased body weight by driving muscle growth and altered the expression of genes involved in insulin signaling and glucose metabolism. Despite their differences, both interventions alone improved glucose homeostasis. Moreover, GW501516 more effectively improved serum lipids, and PF-879 uniquely increased energy expenditure, exercise capacity and adiponectin levels. When combined the robust effects of GW501516 and/or PF-879 on body weight, adiposity, muscle mass, glycemia, serum lipids, energy expenditure and exercise capacity were highly conserved. CONCLUSIONS/SIGNIFICANCE: The data, for the first time, demonstrate postnatal inhibition of myostatin not only promotes gains in muscle mass similar to resistance training,but improves metabolic homeostasis. In several instances, these effects were either distinct from or complimentary to those of GW501516. The data further suggest that strategies to increase muscle mass, and not necessarily oxidative capacity, may effectively counter insulin resistance and T2DM.

  18. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Gojo, Satoshi [Department of Cardiac Support, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, Osam, E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2013-02-08

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.

  19. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-01-01

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases

  20. IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice

    Science.gov (United States)

    Insulin-like growth factors (IGFs) and myostatin have opposing roles in regulating the growth and size of skeletal muscle, with IGF1 stimulating, and myostatin inhibiting, growth. However, it remains unclear whether these proteins have mutually dependent, or independent, roles. To clarify this issue...

  1. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin

    Directory of Open Access Journals (Sweden)

    Zhang Tingting

    2012-12-01

    Full Text Available Abstract Background Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concerns, it is essential to optimize conditions to produce quality food and pharmaceutical products. Results We developed a simple but effective method to engineer a yeast strain stably expressing mammalian myostatin. This method utilized high-copy-number integration of myostatin gene into the ribosomal DNA of Saccharomyces cerevisiae. In the final step, antibiotic selection marker was removed using the Cre-LoxP system to minimize any possible side-effects for animals. The resulting yeast strain can be maintained in rich culture media and stably express mammalian myostatin for two years. Oral administration of the recombinant yeast was able to induce immune response to myostatin and modulated the body weight of mice. Conclusions Establishment of such yeast strain is a step further toward transformation of yeast cells into edible vaccine to improve meat production in farm animals and treat human muscle-wasting diseases in the future.

  2. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial

    Science.gov (United States)

    BACKGROUND: Myostatin inhibits skeletal muscle growth. The humanised monoclonal antibody LY2495655 (LY) binds and neutralises myostatin. We aimed to test whether LY increases appendicular lean body mass (aLBM) and improves physical performance in older individuals who have had recent falls and low m...

  3. Myostatin signals through Pax7 to regulate satellite cell self-renewal

    International Nuclear Information System (INIS)

    McFarlane, Craig; Hennebry, Alex; Thomas, Mark; Plummer, Erin; Ling, Nicholas; Sharma, Mridula; Kambadur, Ravi

    2008-01-01

    Myostatin, a Transforming Growth Factor-beta (TGF-β) super-family member, has previously been shown to negatively regulate satellite cell activation and self-renewal. However, to date the mechanism behind Myostatin function in satellite cell biology is not known. Here we show that Myostatin signals via a Pax7-dependent mechanism to regulate satellite cell self-renewal. While excess Myostatin inhibited Pax7 expression via ERK1/2 signaling, an increase in Pax7 expression was observed following both genetic inactivation and functional antagonism of Myostatin. As a result, we show that either blocking or inactivating Myostatin enhances the partitioning of the fusion-incompetent self-renewed satellite cell lineage (high Pax7 expression, low MyoD expression) from the pool of actively proliferating myogenic precursor cells. Consistent with this result, over-expression of Pax7 in C2C12 myogenic cells resulted in increased self-renewal through a mechanism which slowed both myogenic proliferation and differentiation. Taken together, these results suggest that increased expression of Pax7 promotes satellite cell self-renewal, and furthermore Myostatin may control the process of satellite cell self-renewal through regulation of Pax7. Thus we speculate that, in addition to the intrinsic factors (such as Pax7), extrinsic factors both positive and negative in nature, will play a major role in determining the stemness of skeletal muscle satellite cells

  4. Absence of Hyperplasia in Gasp-1 Overexpressing Mice is Dependent on Myostatin Up-Regulation

    Directory of Open Access Journals (Sweden)

    Caroline Brun

    2014-09-01

    Full Text Available Background/Aims: Overexpression of Gasp-1, an inhibitor of myostatin, leads to a hypermuscular phenotype due to hypertrophy rather than hyperplasia in mice. However to date, the cellular and molecular mechanisms underlying this phenotype are not investigated. Methods: Skeletal muscles of overexpressing Gasp-1 mice, called Tg(Gasp-1 mice, were analyzed by histological methods. Satellite cell-derived myoblasts from these mice were used to investigate the molecular mechanisms. Results: We demonstrated that hypertrophy in Tg(Gasp-1 mice was related to a myonuclear accretion during the first 3 postnatal weeks and an activation of the pro-hypertrophic Akt/mTORC/p70S6K signaling. In accordance with these results, we showed that overexpressing Gasp-1 primary myoblasts proliferated faster and myonuclei average per myotube was increased during differentiation. Molecular analysis revealed that Gasp-1 overexpression resulted in increased myostatin expression related to its auto-regulation. Despite its inhibition, myostatin led to Pax7 deregulation through its non-canonical Erk1/2 signaling pathway. Consistent with this, inhibition of Erk1/2 signaling pathway as well as neutralization of secreted myostatin rescue the Pax7 expression in overexpressing Gasp-1 myoblasts. Conclusion: Our study shows that myostatin is able to act independently of its canonical pathway to regulate the Pax7 expression. Altogether, our results indicate that myostatin could regulate muscle development despite its protein inhibition.

  5. Myostatin inhibitors in sports drug testing: Detection of myostatin-neutralizing antibodies in plasma/serum by affinity purification and Western blotting.

    Science.gov (United States)

    Walpurgis, Katja; Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario

    2016-02-01

    Myostatin is a key regulator of skeletal muscle growth and inhibition of its signaling pathway results in an increased muscle mass and function. The aim of this study was to develop a qualitative detection assay for myostatin-neutralizing antibodies for doping control purposes by using immunological approaches. To detect different types of myostatin-neutralizing antibodies irrespective of their amino acid sequence, an immunological assay specific for antibodies directed against myostatin and having a human Fc domain was established. Affinity purification and Western blotting strategies were combined to allow extracting and identifying relevant analytes from 200 μL of plasma/serum in a non-targeted approach. The assay was characterized regarding specificity, linearity, precision, robustness, and recovery. The assay was found to be highly specific, robust, and linear from 0.1 to 1 μg/mL. The precision was successfully specified at three different concentrations and the recovery of the affinity purification was 58%. Within this study, an immunological detection assay for myostatin-neutralizing antibodies present in plasma/serum specimens was developed and successfully characterized. The presented approach can easily be modified to include other therapeutic antibodies and serves as proof-of-concept for the detection of antibody-based myostatin inhibitors in doping control samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Genetics Home Reference: myostatin-related muscle hypertrophy

    Science.gov (United States)

    ... Conditions Myostatin-related muscle hypertrophy Myostatin-related muscle hypertrophy Printable PDF Open All Close All Enable Javascript ... the expand/collapse boxes. Description Myostatin-related muscle hypertrophy is a rare condition characterized by reduced body ...

  7. Plasma and muscle myostatin in relation to type 2 diabetes

    DEFF Research Database (Denmark)

    Brandt, Claus; Nielsen, Anders R; Fischer, Christian P

    2012-01-01

    Myostatin is a secreted growth factor expressed in skeletal muscle tissue, which negatively regulates skeletal muscle mass. Recent animal studies suggest a role for myostatin in insulin resistance. We evaluated the possible metabolic role of myostatin in patients with type 2 diabetes and healthy...

  8. Effects of active immunization against myostatin on carcass quality and expression of the myostatin gene in pigs.

    Science.gov (United States)

    Long, Ding-biao; Zhang, Ke-ying; Chen, Dai-wen; Ding, Xue-mei; Yu, Bing

    2009-10-01

    The study was conducted to investigate the effects of active immunization against myostatin on the titer of myostatin antibody, carcass evaluation, activity of creatine kinase and the expression of the myostatin gene in pigs. Eighteen pigs were allotted into three groups (six pigs per group), and pigs in treatment 1, 2 and 3 were immunized with physiological saline, 1 mg or 4 mg myostatin per pig, respectively. Six pigs were killed by electrical stunning followed by exsanguination at BW of 100 kg. The results indicated that the titer of myostatin antibody was increased in treated groups compared to the control group on day 42 (P activity of pigs treated with 1 mg and 4 mg myostatin was lower than the control group. The immunization of myostatin significantly decreased the myostatin gene expression levels in muscle. It was concluded that optimal active immunization against myostatin could increase the content of myostatin antibody, suppress the activity of creatine kinase and the expression of myostatin gene, and therefore improve the carcass lean percentage for pigs.

  9. Erythropoietin reduces the expression of myostatin in mdx dystrophic mice

    Energy Technology Data Exchange (ETDEWEB)

    Feder, D.; Rugollini, M.; Santomauro, A. Jr; Oliveira, L.P.; Lioi, V.P. [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Santos, R. dos; Ferreira, L.G.; Nunes, M.T.; Carvalho, M.H. [Universidade de São Paulo, Instituto de Ciências Biomédicas, São Paulo, SP (Brazil); Delgado, P.O.; Carvalho, A.A.S. [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Fonseca, F.L.A. [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Universidade Federal de São Paulo, Ambientais e Farmacêuticas, Instituto de Ciências Químicas, Diadema, SP (Brazil)

    2014-09-05

    Erythropoietin (EPO) has been well characterized as a renal glycoprotein hormone regulating red blood cell production by inhibiting apoptosis of erythrocyte progenitors in hematopoietic tissues. EPO exerts regulatory effects in cardiac and skeletal muscles. Duchenne muscular dystrophy is a lethal degenerative disorder of skeletal and cardiac muscle. In this study, we tested the possible therapeutic beneficial effect of recombinant EPO (rhEPO) in dystrophic muscles in mdx mice. Total strength was measured using a force transducer coupled to a computer. Gene expression for myostatin, transforming growth factor-β1 (TGF-β1), and tumor necrosis factor-α (TNF-α) was determined by quantitative real time polymerase chain reaction. Myostatin expression was significantly decreased in quadriceps from mdx mice treated with rhEPO (rhEPO=0.60±0.11, control=1.07±0.11). On the other hand, rhEPO had no significant effect on the expression of TGF-β1 (rhEPO=0.95±0.14, control=1.05±0.16) and TNF-α (rhEPO=0.73±0.20, control=1.01±0.09). These results may help to clarify some of the direct actions of EPO on skeletal muscle.

  10. Knockout of Myostatin by Zinc-finger Nuclease in Sheep Fibroblasts and Embryos

    OpenAIRE

    Zhang, Xuemei; Wang, Liqin; Wu, Yangsheng; Li, Wenrong; An, Jing; Zhang, Fuchun; Liu, Mingjun

    2016-01-01

    Myostatin (MSTN) can negatively regulate the growth and development of skeletal muscle, and natural mutations can cause “double-muscling” trait in animals. In order to block the inhibiting effect of MSTN on muscle growth, we transferred zinc-finger nucleases (ZFN) which targeted sheep MSTN gene into cultured fibroblasts. Gene targeted colonies were isolated from transfected fibroblasts by serial dilution culture and screened by sequencing. Two colonies were identified with mono-allele mutatio...

  11. Decorin binds myostatin and modulates its activity to muscle cells

    International Nuclear Information System (INIS)

    Miura, Takayuki; Kishioka, Yasuhiro; Wakamatsu, Jun-ichi; Hattori, Akihito; Hennebry, Alex; Berry, Carole J.; Sharma, Mridula; Kambadur, Ravi; Nishimura, Takanori

    2006-01-01

    Myostatin, a member of TGF-β superfamily of growth factors, acts as a negative regulator of skeletal muscle mass. The mechanism whereby myostatin controls the proliferation and differentiation of myogenic cells is mostly clarified. However, the regulation of myostatin activity to myogenic cells after its secretion in the extracellular matrix (ECM) is still unknown. Decorin, a small leucine-rich proteoglycan, binds TGF-β and regulates its activity in the ECM. Thus, we hypothesized that decorin could also bind to myostatin and participate in modulation of its activity to myogenic cells. In order to test the hypothesis, we investigated the interaction between myostatin and decorin by surface plasmon assay. Decorin interacted with mature myostatin in the presence of concentrations of Zn 2+ greater than 10 μM, but not in the absence of Zn 2+ . Kinetic analysis with a 1:1 binding model resulted in dissociation constants (K D ) of 2.02 x 10 -8 M and 9.36 x 10 -9 M for decorin and the core protein of decorin, respectively. Removal of the glycosaminoglycan chain by chondroitinase ABC digestion did not affect binding, suggesting that decorin could bind to myostatin with its core protein. Furthermore, we demonstrated that immobilized decorin could rescue the inhibitory effect of myostatin on myoblast proliferation in vitro. These results suggest that decorin could trap myostatin and modulate its activity to myogenic cells in the ECM

  12. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Gallardo-Escarate, C. [Laboratory of Biotechnology and Aquatic Genomics, Universidad de Concepción, Concepción (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Molina, A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Valdés, J.A., E-mail: jvaldes@unab.cl [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile)

    2015-08-21

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.

  13. Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes.

    Science.gov (United States)

    Crispo, M; Mulet, A P; Tesson, L; Barrera, N; Cuadro, F; dos Santos-Neto, P C; Nguyen, T H; Crénéguy, A; Brusselle, L; Anegón, I; Menchaca, A

    2015-01-01

    While CRISPR/Cas9 technology has proven to be a valuable system to generate gene-targeted modified animals in several species, this tool has been scarcely reported in farm animals. Myostatin is encoded by MSTN gene involved in the inhibition of muscle differentiation and growth. We determined the efficiency of the CRISPR/Cas9 system to edit MSTN in sheep and generate knock-out (KO) animals with the aim to promote muscle development and body growth. We generated CRISPR/Cas9 mRNAs specific for ovine MSTN and microinjected them into the cytoplasm of ovine zygotes. When embryo development of CRISPR/Cas9 microinjected zygotes (n = 216) was compared with buffer injected embryos (n = 183) and non microinjected embryos (n = 173), cleavage rate was lower for both microinjected groups (PEmbryo development to blastocyst was not affected by microinjection and was similar among the experimental groups. From 20 embryos analyzed by Sanger sequencing, ten were mutant (heterozygous or mosaic; 50% efficiency). To obtain live MSTN KO lambs, 53 blastocysts produced after zygote CRISPR/Cas9 microinjection were transferred to 29 recipient females resulting in 65.5% (19/29) of pregnant ewes and 41.5% (22/53) of newborns. From 22 born lambs analyzed by T7EI and Sanger sequencing, ten showed indel mutations at MSTN gene. Eight showed mutations in both alleles and five of them were homozygous for indels generating out-of frame mutations that resulted in premature stop codons. Western blot analysis of homozygous KO founders confirmed the absence of myostatin, showing heavier body weight than wild type counterparts. In conclusion, our results demonstrate that CRISPR/Cas9 system was a very efficient tool to generate gene KO sheep. This technology is quick and easy to perform and less expensive than previous techniques, and can be applied to obtain genetically modified animal models of interest for biomedicine and livestock.

  14. Allelic polymorphism of 'Makoei' sheep myostatin gene identified by ...

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... Key words: Myostatin gene, polymerase chain reaction (PCR), single strand conformation polymorphism technique (SSCP), Ovis aries. ..... Kambadur R, Sharmam M, Smith TPL, Bass JJ (1997). Mutations In. Myostatin (GDF8) In Double-Muscled Belgian Blue And Piemontese. Cattle. Genome. Res., 7: ...

  15. Plasma and muscle myostatin in relation to type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Claus Brandt

    Full Text Available OBJECTIVE: Myostatin is a secreted growth factor expressed in skeletal muscle tissue, which negatively regulates skeletal muscle mass. Recent animal studies suggest a role for myostatin in insulin resistance. We evaluated the possible metabolic role of myostatin in patients with type 2 diabetes and healthy controls. DESIGN: 76 patients with type 2 diabetes and 92 control subjects were included in the study. They were matched for age, gender and BMI. Plasma samples and biopsies from the vastus lateralis muscle were obtained to assess plasma myostatin and expression of myostatin in skeletal muscle. RESULTS: Patients with type 2 diabetes had higher fasting glucose (8.9 versus 5.1 mmol/L, P<0.001, plasma insulin (68.2 versus 47.2 pmol/L, P<0.002 and HOMA2-IR (1.6 versus 0.9, P<0.0001 when compared to controls. Patients with type 2 diabetes had 1.4 (P<0.01 higher levels of muscle myostatin mRNA content than the control subjects. Plasma myostatin concentrations did not differ between patients with type 2 diabetes and controls. In healthy controls, muscle myostatin mRNA correlated with HOMA2-IR (r = 0.30, P<0.01, plasma IL-6 (r = 0.34, P<0.05 and VO2 max (r = -0.26, P<0.05, however, no correlations were observed in patients with type 2 diabetes. CONCLUSIONS: This study supports the idea that myostatin may have a negative effect on metabolism. However, the metabolic effect of myostatin appears to be overruled by other factors in patients with type 2 diabetes.

  16. Myostatin: genetic variants, therapy and gene doping

    Directory of Open Access Journals (Sweden)

    André Katayama Yamada

    2012-09-01

    Full Text Available Since its discovery, myostatin (MSTN has been at the forefront of muscle therapy research because intrinsic mutations or inhibition of this protein, by either pharmacological or genetic means, result in muscle hypertrophy and hyperplasia. In addition to muscle growth, MSTN inhibition potentially disturbs connective tissue, leads to strength modulation, facilitates myoblast transplantation, promotes tissue regeneration, induces adipose tissue thermogenesis and increases muscle oxidative phenotype. It is also known that current advances in gene therapy have an impact on sports because of the illicit use of such methods. However, the adverse effects of these methods, their impact on athletic performance in humans and the means of detecting gene doping are as yet unknown. The aim of the present review is to discuss biosynthesis, genetic variants, pharmacological/genetic manipulation, doping and athletic performance in relation to the MSTN pathway. As will be concluded from the manuscript, MSTN emerges as a promising molecule for combating muscle wasting diseases and for triggering wide-ranging discussion in view of its possible use in gene doping.Desde sua descoberta, a miostatina (MSTN entrou na linha de frente em pesquisas relacionadas às terapias musculares porque mutações intrínsecas ou inibição desta proteína tanto por abordagens farmacológicas como genéticas resultam em hipertrofia muscular e hiperplasia. Além do aumento da massa muscular, a inibição de MSTN potencialmente prejudica o tecido conectivo, modula a força muscular, facilita o transplante de mioblastos, promove regeneração tecidual, induz termogênese no tecido adiposo e aumenta a oxidação na musculatura esquelética. É também sabido que os atuais avanços em terapia gênica têm uma relação com o esporte devido ao uso ilícito de tal método. Os efeitos adversos de tal abordagem, seus efeitos no desempenho de atletas e métodos para detectar doping genético s

  17. Adipose Tissue-Derived Stem Cell Secreted IGF-1 Protects Myoblasts from the Negative Effect of Myostatin

    Directory of Open Access Journals (Sweden)

    Sebastian Gehmert

    2014-01-01

    Full Text Available Myostatin, a TGF-β family member, is associated with inhibition of muscle growth and differentiation and might interact with the IGF-1 signaling pathway. Since IGF-1 is secreted at a bioactive level by adipose tissue-derived mesenchymal stem cells (ASCs, these cells (ASCs provide a therapeutic option for Duchenne Muscular Dystrophy (DMD. But the protective effect of stem cell secreted IGF-1 on myoblast under high level of myostatin remains unclear. In the present study murine myoblasts were exposed to myostatin under presence of ASCs conditioned medium and investigated for proliferation and apoptosis. The protective effect of IGF-1 was further examined by using IGF-1 neutralizing and receptor antibodies as well as gene silencing RNAi technology. MyoD expression was detected to identify impact of IGF-1 on myoblasts differentiation when exposed to myostatin. IGF-1 was accountable for 43.6% of the antiapoptotic impact and 48.8% for the proliferative effect of ASCs conditioned medium. Furthermore, IGF-1 restored mRNA and protein MyoD expression of myoblasts under risk. Beside fusion and transdifferentiation the beneficial effect of ASCs is mediated by paracrine secreted cytokines, particularly IGF-1. The present study underlines the potential of ASCs as a therapeutic option for Duchenne muscular dystrophy and other dystrophic muscle diseases.

  18. Combination Antisense Treatment for Destructive Exon Skipping of Myostatin and Open Reading Frame Rescue of Dystrophin in Neonatal mdx Mice.

    Science.gov (United States)

    Lu-Nguyen, Ngoc B; Jarmin, Susan A; Saleh, Amer F; Popplewell, Linda; Gait, Michael J; Dickson, George

    2015-08-01

    The fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis. Within this study, we investigated dual exon skipping of dystrophin and myostatin pre-mRNAs using phosphorodiamidate morpholino oligomers conjugated with an arginine-rich peptide (B-PMOs). Intraperitoneal administration of B-PMOs was performed in neonatal mdx males on the day of birth, and at weeks 3 and 6. At week 9, we observed in treated mice (as compared to age-matched, saline-injected controls) normalization of muscle mass, a recovery in dystrophin expression, and a decrease in muscle necrosis, particularly in the diaphragm. Our data provide a proof of concept for antisense therapy combining dystrophin restoration and myostatin inhibition for the treatment of DMD.

  19. Small RNA-Mediated Epigenetic Myostatin Silencing

    Directory of Open Access Journals (Sweden)

    Thomas C Roberts

    2012-01-01

    Full Text Available Myostatin (Mstn is a secreted growth factor that negatively regulates muscle mass and is therefore a potential pharmacological target for the treatment of muscle wasting disorders such as Duchenne muscular dystrophy. Here we describe a novel Mstn blockade approach in which small interfering RNAs (siRNAs complementary to a promoter-associated transcript induce transcriptional gene silencing (TGS in two differentiated mouse muscle cell lines. Silencing is sensitive to treatment with the histone deacetylase inhibitor trichostatin A, and the silent state chromatin mark H3K9me2 is enriched at the Mstn promoter following siRNA transfection, suggesting epigenetic remodeling underlies the silencing effect. These observations suggest that long-term epigenetic silencing may be feasible for Mstn and that TGS is a promising novel therapeutic strategy for the treatment of muscle wasting disorders.

  20. PPARγ and MyoD are differentially regulated by myostatin in adipose-derived stem cells and muscle satellite cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Deng, Bing [Wuhan Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208 (China); Wen, Jianghui [Wu Han University of Technology, Wuhan 430074 (China); Chen, Kun [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Liu, Wu; Ye, Shengqiang; Huang, Haijun [Wuhan Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208 (China); Jiang, Siwen, E-mail: jiangsiwen@mail.hzau.edu.cn [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Xiong, Yuanzhu, E-mail: xiongyzhu@163.com [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China)

    2015-03-06

    Myostatin (MSTN) is a secreted protein belonging to the transforming growth factor-β (TGF-β) family that is primarily expressed in skeletal muscle and also functions in adipocyte maturation. Studies have shown that MSTN can inhibit adipogenesis in muscle satellite cells (MSCs) but not in adipose-derived stem cells (ADSCs). However, the mechanism by which MSTN differently regulates adipogenesis in these two cell types remains unknown. Peroxisome proliferator-activated receptor-γ (PPARγ) and myogenic differentiation factor (MyoD) are two key transcription factors in fat and muscle cell development that influence adipogenesis. To investigate whether MSTN differentially regulates PPARγ and MyoD, we analyzed PPARγ and MyoD expression by assessing mRNA, protein and methylation levels in ADSCs and MSCs after treatment with 100 ng/mL MSTN for 0, 24, and 48 h. PPARγ mRNA levels were downregulated after 24 h and upregulated after 48 h of treatment in ADSCs, whereas in MSCs, PPARγ levels were downregulated at both time points. MyoD expression was significantly increased in ADSCs and decreased in MSCs. PPARγ and MyoD protein levels were upregulated in ADSCs and downregulated in MSCs. The CpG methylation levels of the PPARγ and MyoD promoters were decreased in ADSCs and increased in MSCs. Therefore, this study demonstrated that the different regulatory adipogenic roles of MSTN in ADSCs and MSCs act by differentially regulating PPARγ and MyoD expression. - Highlights: • PPARγ and MyoD mRNA and protein levels are upregulated by myostatin in ADSCs. • PPARγ and MyoD mRNA and protein levels are downregulated by myostatin in MSCs. • PPARγ exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • MyoD exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • PPARγ and MyoD are differentially regulated by myostatin in ADSCs and MSCs.

  1. PPARγ and MyoD are differentially regulated by myostatin in adipose-derived stem cells and muscle satellite cells

    International Nuclear Information System (INIS)

    Zhang, Feng; Deng, Bing; Wen, Jianghui; Chen, Kun; Liu, Wu; Ye, Shengqiang; Huang, Haijun; Jiang, Siwen; Xiong, Yuanzhu

    2015-01-01

    Myostatin (MSTN) is a secreted protein belonging to the transforming growth factor-β (TGF-β) family that is primarily expressed in skeletal muscle and also functions in adipocyte maturation. Studies have shown that MSTN can inhibit adipogenesis in muscle satellite cells (MSCs) but not in adipose-derived stem cells (ADSCs). However, the mechanism by which MSTN differently regulates adipogenesis in these two cell types remains unknown. Peroxisome proliferator-activated receptor-γ (PPARγ) and myogenic differentiation factor (MyoD) are two key transcription factors in fat and muscle cell development that influence adipogenesis. To investigate whether MSTN differentially regulates PPARγ and MyoD, we analyzed PPARγ and MyoD expression by assessing mRNA, protein and methylation levels in ADSCs and MSCs after treatment with 100 ng/mL MSTN for 0, 24, and 48 h. PPARγ mRNA levels were downregulated after 24 h and upregulated after 48 h of treatment in ADSCs, whereas in MSCs, PPARγ levels were downregulated at both time points. MyoD expression was significantly increased in ADSCs and decreased in MSCs. PPARγ and MyoD protein levels were upregulated in ADSCs and downregulated in MSCs. The CpG methylation levels of the PPARγ and MyoD promoters were decreased in ADSCs and increased in MSCs. Therefore, this study demonstrated that the different regulatory adipogenic roles of MSTN in ADSCs and MSCs act by differentially regulating PPARγ and MyoD expression. - Highlights: • PPARγ and MyoD mRNA and protein levels are upregulated by myostatin in ADSCs. • PPARγ and MyoD mRNA and protein levels are downregulated by myostatin in MSCs. • PPARγ exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • MyoD exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • PPARγ and MyoD are differentially regulated by myostatin in ADSCs and MSCs

  2. Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes.

    Directory of Open Access Journals (Sweden)

    M Crispo

    Full Text Available While CRISPR/Cas9 technology has proven to be a valuable system to generate gene-targeted modified animals in several species, this tool has been scarcely reported in farm animals. Myostatin is encoded by MSTN gene involved in the inhibition of muscle differentiation and growth. We determined the efficiency of the CRISPR/Cas9 system to edit MSTN in sheep and generate knock-out (KO animals with the aim to promote muscle development and body growth. We generated CRISPR/Cas9 mRNAs specific for ovine MSTN and microinjected them into the cytoplasm of ovine zygotes. When embryo development of CRISPR/Cas9 microinjected zygotes (n = 216 was compared with buffer injected embryos (n = 183 and non microinjected embryos (n = 173, cleavage rate was lower for both microinjected groups (P<0.05 and neither was affected by CRISPR/Cas9 content in the injected medium. Embryo development to blastocyst was not affected by microinjection and was similar among the experimental groups. From 20 embryos analyzed by Sanger sequencing, ten were mutant (heterozygous or mosaic; 50% efficiency. To obtain live MSTN KO lambs, 53 blastocysts produced after zygote CRISPR/Cas9 microinjection were transferred to 29 recipient females resulting in 65.5% (19/29 of pregnant ewes and 41.5% (22/53 of newborns. From 22 born lambs analyzed by T7EI and Sanger sequencing, ten showed indel mutations at MSTN gene. Eight showed mutations in both alleles and five of them were homozygous for indels generating out-of frame mutations that resulted in premature stop codons. Western blot analysis of homozygous KO founders confirmed the absence of myostatin, showing heavier body weight than wild type counterparts. In conclusion, our results demonstrate that CRISPR/Cas9 system was a very efficient tool to generate gene KO sheep. This technology is quick and easy to perform and less expensive than previous techniques, and can be applied to obtain genetically modified animal models of interest for

  3. Dual Myostatin and Dystrophin Exon Skipping by Morpholino Nucleic Acid Oligomers Conjugated to a Cell-penetrating Peptide Is a Promising Therapeutic Strategy for the Treatment of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Alberto Malerba

    2012-01-01

    Full Text Available The knockdown of myostatin, a negative regulator of skeletal muscle mass may have important implications in disease conditions accompanied by muscle mass loss like cancer, HIV/AIDS, sarcopenia, muscle atrophy, and Duchenne muscular dystrophy (DMD. In DMD patients, where major muscle loss has occurred due to a lack of dystrophin, the therapeutic restoration of dystrophin expression alone in older patients may not be sufficient to restore the functionality of the muscles. We recently demonstrated that phosphorodiamidate morpholino oligomers (PMOs can be used to re-direct myostatin splicing and promote the expression of an out-of-frame transcript so reducing the amount of the synthesized myostatin protein. Furthermore, the systemic administration of the same PMO conjugated to an octaguanidine moiety (Vivo-PMO led to a significant increase in the mass of soleus muscle of treated mice. Here, we have further optimized the use of Vivo-PMO in normal mice and also tested the efficacy of the same PMO conjugated to an arginine-rich cell-penetrating peptide (B-PMO. Similar experiments conducted in mdx dystrophic mice showed that B-PMO targeting myostatin is able to significantly increase the tibialis anterior (TA muscle weight and when coadministered with a B-PMO targeting the dystrophin exon 23, it does not have a detrimental interaction. This study confirms that myostatin knockdown by exon skipping is a potential therapeutic strategy to counteract muscle wasting conditions and dual myostatin and dystrophin skipping has potential as a therapy for DMD.

  4. The critical role of myostatin in differentiation of sheep myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chenxi [College of Life Science and Technology, Xinjiang University, Urumqi (China); Xinjiang Laboratory of Animal Biotechnology, Urumqi (China); Li, Wenrong; Zhang, Xuemei; Zhang, Ning; He, Sangang; Huang, Juncheng [Xinjiang Laboratory of Animal Biotechnology, Urumqi (China); Laboratory of Grass-fed Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Urumqi (China); Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi (China); Ge, Yubin [The State Engineering Laboratory of AIDS Vaccine, College of Life Science, Jilin University, Changchun (China); Liu, Mingjun, E-mail: xjlmj2004@yahoo.com.cn [Xinjiang Laboratory of Animal Biotechnology, Urumqi (China); Laboratory of Grass-fed Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Urumqi (China); Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi (China)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Identification of the effective and specific shRNA to knockdown MSTN. Black-Right-Pointing-Pointer Overexpression of MSTN reversibly suppressed myogenic differentiation. Black-Right-Pointing-Pointer shRNA knockdown of endogenous MSTN promoted ovine myoblast differentiation. Black-Right-Pointing-Pointer MSTN inhibits myogenic differentiation through down-regulation of MyoD and Myogenin and up-regulation of Smad3. Black-Right-Pointing-Pointer Provides a promise for the generation of transgenic sheep to improve meat productivity. -- Abstract: Myostatin [MSTN, also known as growth differentiation factor 8 (GDF8)], is an inhibitor of skeletal muscle growth. Blockade of MSTN function has been reported to result in increased muscle mass in mice. However, its role in myoblast differentiation in farm animals has not been determined. In the present study, we sought to determine the role of MSTN in the differentiation of primary sheep myoblasts. We found that ectopic overexpression of MSTN resulted in lower fusion index in sheep myoblasts, which indicated the repression of myoblast differentiation. This phenotypic change was reversed by shRNA knockdown of the ectopically expressed MSTN in the cells. In contrast, shRNA knockdown of the endogenous MSTN resulted in induction of myogenic differentiation. Additional studies revealed that the induction of differentiation by knocking down the ectopically or endogenously expressed MSTN was accompanied by up-regulation of MyoD and myogenin, and down-regulation of Smad3. Our results demonstrate that MSTN plays critical role in myoblast differentiation in sheep, analogous to that in mice. This study also suggests that shRNA knockdown of MSTN could be a potentially promising approach to improve sheep muscle growth, so as to increase meat productivity.

  5. The critical role of myostatin in differentiation of sheep myoblasts

    International Nuclear Information System (INIS)

    Liu, Chenxi; Li, Wenrong; Zhang, Xuemei; Zhang, Ning; He, Sangang; Huang, Juncheng; Ge, Yubin; Liu, Mingjun

    2012-01-01

    Highlights: ► Identification of the effective and specific shRNA to knockdown MSTN. ► Overexpression of MSTN reversibly suppressed myogenic differentiation. ► shRNA knockdown of endogenous MSTN promoted ovine myoblast differentiation. ► MSTN inhibits myogenic differentiation through down-regulation of MyoD and Myogenin and up-regulation of Smad3. ► Provides a promise for the generation of transgenic sheep to improve meat productivity. -- Abstract: Myostatin [MSTN, also known as growth differentiation factor 8 (GDF8)], is an inhibitor of skeletal muscle growth. Blockade of MSTN function has been reported to result in increased muscle mass in mice. However, its role in myoblast differentiation in farm animals has not been determined. In the present study, we sought to determine the role of MSTN in the differentiation of primary sheep myoblasts. We found that ectopic overexpression of MSTN resulted in lower fusion index in sheep myoblasts, which indicated the repression of myoblast differentiation. This phenotypic change was reversed by shRNA knockdown of the ectopically expressed MSTN in the cells. In contrast, shRNA knockdown of the endogenous MSTN resulted in induction of myogenic differentiation. Additional studies revealed that the induction of differentiation by knocking down the ectopically or endogenously expressed MSTN was accompanied by up-regulation of MyoD and myogenin, and down-regulation of Smad3. Our results demonstrate that MSTN plays critical role in myoblast differentiation in sheep, analogous to that in mice. This study also suggests that shRNA knockdown of MSTN could be a potentially promising approach to improve sheep muscle growth, so as to increase meat productivity.

  6. ESTRADIOL IN FEMALES MAY NEGATE SKELETAL MUSCLE MYOSTATIN MRNA EXPRESSION AND SERUM MYOSTATIN PROPEPTIDE LEVELS AFTER ECCENTRIC MUSCLE CONTRACTIONS

    Directory of Open Access Journals (Sweden)

    Darryn S. Willoughby

    2006-12-01

    Full Text Available Eccentric contractions produce a significant degree of inflammation and muscle injury that may increase the expression of myostatin. Due to its anti- oxidant and anti-flammatory effects, circulating 17-β estradiol (E2 may attenuate myostatin expression. Eight males and eight females performed 7 sets of 10 reps of eccentric contractions of the knee extensors at 150% 1-RM. Each female performed the eccentric exercise bout on a day that fell within her mid-luteal phase (d 21-23 of her 28-d cycle. Blood and muscle samples were obtained before and 6 and 24 h after exercise, while additional blood samples were obtained at 48 and 72 h after exercise. Serum E2 and myostatin LAP/propeptide (LAP/pro levels were determined with ELISA, and myostatin mRNA expression determined using RT-PCR. Data were analyzed with two-way ANOVA and bivariate correlations (p 0.05. Compared to pre-exercise, males had significant increases (p < 0.05 in LAP/propetide and mRNA of 78% and 28%, respectively, at 24 h post-exercise, whereas females underwent respective decreases of 10% and 21%. E2 and LAP/propeptide were correlated at 6 h (r = -0.804, p = 0.016 and 24 h post- exercise (r = -0.841, p = 0.009 in males, whereas in females E2 levels were correlated to myostatin mRNA at 6 h (r =0.739, p = 0.036 and 24 h (r = 0.813, p = 0.014 post-exercise and LAP/propeptide at 6 h (r = 0.713, p = 0.047 and 24 h (r = 0.735, p = 0.038. In females, myostatin mRNA expression and serum LAP/propeptide levels do not appear to be significantly up-regulated following eccentric exercise, and may be due to higher levels of circulating E2

  7. Molecular cloning and sequence analysis of the cat myostatin gene ...

    African Journals Online (AJOL)

    ... MEF3, MTBF, PAX3, SMAD, HBOX, HOMF and TEAF motifs. Comparative analysis for some motifs showed both conservations and differences among cat, horse, porcine and human. Key words: Cat, myostatin 5'-regulatory region, molecular cloning, sequence analysis and comparison, transcription factor binding sites.

  8. Polymorphisms in the myostatin gene and their association with ...

    African Journals Online (AJOL)

    Administrator

    2011-09-19

    Sep 19, 2011 ... carcass traits in future marker assisted selection programs in ducks. ... MSTN mutations on different livestock and fowl breeds, .... gene SNPs in different populations are shown in Table 2. Gene-specific SNP marker association analysis with economic traits. Myostatin gene acts as a negative regulation of ...

  9. Molecular cloning and sequence analysis of the cat myostatin gene ...

    African Journals Online (AJOL)

    Administrator

    2011-09-07

    Sep 7, 2011 ... TEAF. TEA/ATTS DNA binding domain factors. TEAD.01. TEA domain-containing factors, transcriptional enhancer factors 1, 3,. 4, 5. -1129/-1117(-) transcription factor binding sites located in the cat myostatin gene upstream sequence. According to previous works, we focused on analyzing and discussing.

  10. Within-Winter Flexibility in Muscle Masses, Myostatin, and Cellular Aerobic Metabolic Intensity in Passerine Birds.

    Science.gov (United States)

    Swanson, David L; King, Marisa O; Culver, William; Zhang, Yufeng

    Metabolic rates of passerine birds are flexible traits that vary both seasonally and among and within winters. Seasonal variation in summit metabolic rates (M sum = maximum thermoregulatory metabolism) in birds is consistently correlated with changes in pectoralis muscle and heart masses and sometimes with variation in cellular aerobic metabolic intensity, so these traits might also be associated with shorter-term, within-winter variation in metabolic rates. To determine whether these mechanisms are associated with within-winter variation in M sum , we examined the effects of short-term (ST; 0-7 d), medium-term (MT; 14-30 d), and long-term (LT; 30-yr means) temperature variables on pectoralis muscle and heart masses, pectoralis expression of the muscle-growth inhibitor myostatin and its metalloproteinase activators TLL-1 and TLL-2, and pectoralis and heart citrate synthase (CS; an indicator of cellular aerobic metabolic intensity) activities for two temperate-zone resident passerines, house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis). For both species, pectoralis mass residuals were positively correlated with ST temperature variables, suggesting that cold temperatures resulted in increased turnover of pectoralis muscle, but heart mass showed little within-winter variation for either species. Pectoralis mRNA and protein expression of myostatin and the TLLs were only weakly correlated with ST and MT temperature variables, which is largely consistent with trends in muscle masses for both species. Pectoralis and heart CS activities showed weak and variable trends with ST temperature variables in both species, suggesting only minor effects of temperature variation on cellular aerobic metabolic intensity. Thus, neither muscle or heart masses, regulation by the myostatin system, nor cellular aerobic metabolic intensity varied consistently with winter temperature, suggesting that other factors regulate within-winter metabolic variation in these birds.

  11. Measurement of myostatin concentrations in human serum: Circulating concentrations in young and older men and effects of testosterone administration.

    Science.gov (United States)

    Lakshman, Kishore M; Bhasin, Shalender; Corcoran, Christopher; Collins-Racie, Lisa A; Tchistiakova, Lioudmila; Forlow, S Bradley; St Ledger, Katie; Burczynski, Michael E; Dorner, Andrew J; Lavallie, Edward R

    2009-04-10

    Methodological problems, including binding of myostatin to plasma proteins and cross-reactivity of assay reagents with other proteins, have confounded myostatin measurements. Here we describe development of an accurate assay for measuring myostatin concentrations in humans. Monoclonal antibodies that bind to distinct regions of myostatin served as capture and detector antibodies in a sandwich ELISA that used acid treatment to dissociate myostatin from binding proteins. Serum from myostatin-deficient Belgian Blue cattle was used as matrix and recombinant human myostatin as standard. The quantitative range was 0.15-37.50 ng/mL. Intra- and inter-assay CVs in low, mid, and high range were 4.1%, 4.7%, and 7.2%, and 3.9%, 1.6%, and 5.2%, respectively. Myostatin protein was undetectable in sera of Belgian Blue cattle and myostatin knockout mice. Recovery in spiked sera approximated 100%. ActRIIB-Fc or anti-myostatin antibody MYO-029 had no effect on myostatin measurements when assayed at pH 2.5. Myostatin levels were higher in young than older men (mean+/-S.E.M. 8.0+/-0.3 ng/mL vs. 7.0+/-0.4 ng/mL, P=0.03). In men treated with graded doses of testosterone, myostatin levels were significantly higher on day 56 than baseline in both young and older men; changes in myostatin levels were significantly correlated with changes in total and free testosterone in young men. Myostatin levels were not significantly associated with lean body mass in either young or older men. Myostatin ELISA has the characteristics of a valid assay: nearly 100% recovery, excellent precision, accuracy, and sufficient sensitivity to enable measurement of myostatin concentrations in men and women.

  12. Knockout of Myostatin by Zinc-finger Nuclease in Sheep Fibroblasts and Embryos

    Directory of Open Access Journals (Sweden)

    Xuemei Zhang

    2016-10-01

    Full Text Available Myostatin (MSTN can negatively regulate the growth and development of skeletal muscle, and natural mutations can cause “double-muscling” trait in animals. In order to block the inhibiting effect of MSTN on muscle growth, we transferred zinc-finger nucleases (ZFN which targeted sheep MSTN gene into cultured fibroblasts. Gene targeted colonies were isolated from transfected fibroblasts by serial dilution culture and screened by sequencing. Two colonies were identified with mono-allele mutation and one colony with bi-allelic deletion. Further, we introduced the MSTN-ZFN mRNA into sheep embryos by microinjection. Thirteen of thirty-seven parthenogenetic embryos were targeted by ZFN, with the efficiency of 35%. Our work established the technical foundation for generation of MSTN gene editing sheep by somatic cloning and microinjection ZFN into embryos.

  13. Knockout of Myostatin by Zinc-finger Nuclease in Sheep Fibroblasts and Embryos

    Science.gov (United States)

    Zhang, Xuemei; Wang, Liqin; Wu, Yangsheng; Li, Wenrong; An, Jing; Zhang, Fuchun; Liu, Mingjun

    2016-01-01

    Myostatin (MSTN) can negatively regulate the growth and development of skeletal muscle, and natural mutations can cause “double-muscling” trait in animals. In order to block the inhibiting effect of MSTN on muscle growth, we transferred zinc-finger nucleases (ZFN) which targeted sheep MSTN gene into cultured fibroblasts. Gene targeted colonies were isolated from transfected fibroblasts by serial dilution culture and screened by sequencing. Two colonies were identified with mono-allele mutation and one colony with bi-allelic deletion. Further, we introduced the MSTN-ZFN mRNA into sheep embryos by microinjection. Thirteen of thirty-seven parthenogenetic embryos were targeted by ZFN, with the efficiency of 35%. Our work established the technical foundation for generation of MSTN gene editing sheep by somatic cloning and microinjection ZFN into embryos. PMID:27189642

  14. Dual exon skipping in myostatin and dystrophin for Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    van Ommen Gert Jan B

    2011-04-01

    Full Text Available Abstract Background Myostatin is a potent muscle growth inhibitor that belongs to the Transforming Growth Factor-β (TGF-β family. Mutations leading to non functional myostatin have been associated with hypermuscularity in several organisms. By contrast, Duchenne muscular dystrophy (DMD is characterized by a loss of muscle fibers and impaired regeneration. In this study, we aim to knockdown myostatin by means of exon skipping, a technique which has been successfully applied to reframe the genetic defect of dystrophin gene in DMD patients. Methods We targeted myostatin exon 2 using antisense oligonucleotides (AON in healthy and DMD-derived myotubes cultures. We assessed the exon skipping level, transcriptional expression of myostatin and its target genes, and combined myostatin and several dystrophin AONs. These AONs were also applied in the mdx mice models via intramuscular injections. Results Myostatin AON induced exon 2 skipping in cell cultures and to a lower extent in the mdx mice. It was accompanied by decrease in myostatin mRNA and enhanced MYOG and MYF5 expression. Furthermore, combination of myostatin and dystrophin AONs induced simultaneous skipping of both genes. Conclusions We conclude that two AONs can be used to target two different genes, MSTN and DMD, in a straightforward manner. Targeting multiple ligands of TGF-beta family will be more promising as adjuvant therapies for DMD.

  15. [Positional clonage and characterization of the bovine myostatin gene].

    Science.gov (United States)

    Grobet, L

    2000-01-01

    The double-muscled condition has been intensively selected for in the Belgian Blue cattle breed, where segregation studies have demonstrated the monogenic, autosomal and recessive determinism. This has been confirmed by genetic linkage which located the gene to the centromeric tip of chromosome 2. Our positional cloning strategy, and the discovery of a positional candidate in the mouse, led us to the identification of the causative gene now referred to as the Myostatin gene, since its product downregulates skeletal muscle mass. Disruptive mutations of the gene in cattle have been shown to be responsible for the muscular hypertrophy found in eight european beef breeds. A 15 Kilobases genomic region, including the myostatin gene, has been sequenced and compared in cattle and mice. The murine gene has undergone a complex genetic engineering in order to test different allelic variants in vivo after gene targeting transgenesis.

  16. Modulation of follistatin and myostatin propeptide by anabolic steroids and gender.

    Science.gov (United States)

    Mosler, S; Geisler, S; Hengevoss, J; Schiffer, T; Piechotta, M; Adler, M; Diel, P

    2013-07-01

    The purpose of this pilot study was to investigate the impact of training, anabolic steroids and endogenous hormones on myostatin-interacting proteins in order to identify manipulations of myostatin signalling. To identify whether analysis of the myostatin interacting proteins follistatin and myostatin propeptide is suitable to detect the abuse of anabolic steroids, their serum concentrations were monitored in untrained males, bodybuilders using anabolic steroids and natural bodybuilders. In addition, we analysed follistatin and myostatin propeptide serum proteins in females during menstrual cycle. Our results showed increased follistatin concentrations in response to anabolic steroids. Furthermore, variations of sex steroid levels during the menstrual cycle had no impact on the expression of follistatin and myostatin propetide. In addition, we identified gender differences in the basal expression of the investigated proteins. In general, follistatin and myostatin propeptide concentrations were relatively stable within the same individual both in males and females. In conclusion, the current findings provide an insight into gender differences in myostatin-interacting proteins and their regulation in response to anabolic steroids and endogenous hormones. Therefore our data provide new aspects for the development of doping prevention strategies. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin

    Science.gov (United States)

    Winbanks, Catherine E.; Weeks, Kate L.; Thomson, Rachel E.; Sepulveda, Patricio V.; Beyer, Claudia; Qian, Hongwei; Chen, Justin L.; Allen, James M.; Lancaster, Graeme I.; Febbraio, Mark A.; Harrison, Craig A.; McMullen, Julie R.; Chamberlain, Jeffrey S.

    2012-01-01

    Follistatin is essential for skeletal muscle development and growth, but the intracellular signaling networks that regulate follistatin-mediated effects are not well defined. We show here that the administration of an adeno-associated viral vector expressing follistatin-288aa (rAAV6:Fst-288) markedly increased muscle mass and force-producing capacity concomitant with increased protein synthesis and mammalian target of rapamycin (mTOR) activation. These effects were attenuated by inhibition of mTOR or deletion of S6K1/2. Furthermore, we identify Smad3 as the critical intracellular link that mediates the effects of follistatin on mTOR signaling. Expression of constitutively active Smad3 not only markedly prevented skeletal muscle growth induced by follistatin but also potently suppressed follistatin-induced Akt/mTOR/S6K signaling. Importantly, the regulation of Smad3- and mTOR-dependent events by follistatin occurred independently of overexpression or knockout of myostatin, a key repressor of muscle development that can regulate Smad3 and mTOR signaling and that is itself inhibited by follistatin. These findings identify a critical role of Smad3/Akt/mTOR/S6K/S6RP signaling in follistatin-mediated muscle growth that operates independently of myostatin-driven mechanisms. PMID:22711699

  18. The Vicious Cycle of Myostatin Signaling in Sarcopenic Obesity: Myostatin Role in Skeletal Muscle Growth, Insulin Signaling and Implications for Clinical Trials.

    Science.gov (United States)

    Consitt, L A; Clark, B C

    2018-01-01

    The age-related loss of skeletal muscle (sarcopenia) is a major health concern as it is associated with physical disability, metabolic impairments, and increased mortality. The coexistence of sarcopenia with obesity, termed 'sarcopenic obesity', contributes to skeletal muscle insulin resistance and the development of type 2 diabetes, a disease prevalent with advancing age. Despite this knowledge, the mechanisms contributing to sarcopenic obesity remain poorly understood, preventing the development of targeted therapeutics. This article will discuss the clinical and physiological consequences of sarcopenic obesity and propose myostatin as a potential candidate contributing to this condition. A special emphasis will be placed on examining the role of myostatin signaling in impairing both skeletal muscle growth and insulin signaling. In addition, the role of myostatin in regulating muscle-to fat cross talk, further exacerbating metabolic dysfunction in the elderly, will be highlighted. Lastly, we discuss how this knowledge has implications for the design of myostatin-inhibitor clinical trials.

  19. Myostatin signaling is up-regulated in female patients with advanced heart failure.

    Science.gov (United States)

    Ishida, Junichi; Konishi, Masaaki; Saitoh, Masakazu; Anker, Markus; Anker, Stefan D; Springer, Jochen

    2017-07-01

    Myostatin, a negative regulator of skeletal muscle mass, is up-regulated in the myocardium of heart failure (HF) and increased myostatin is associated with weight loss in animal models with HF. Although there are disparities in pathophysiology and epidemiology between male and female patients with HF, it remains unclear whether there is gender difference in myostatin expression and whether it is associated with weight loss in HF patients. Heart tissue samples were collected from patients with advanced heart failure (n=31, female n=5) as well as healthy control donors (n=14, female n=6). Expression levels of myostatin and its related proteins in the heart were evaluated by western blotting analysis. Body mass index was significantly lower in female HF patients than in male counterparts (20.0±4.2 in female vs 25.2±3.8 in male, p=0.04). In female HF patients, both mature myostatin and pSmad2 were significantly up-regulated by 1.9 fold (p=0.05) and 2.5 fold (p<0.01) respectively compared to female donors, while expression of pSmad2 was increased by 2.8 times in male HF patients compared to male healthy subjects, but that of myostatin was not. There was no significant difference in protein expression related to myostatin signaling between male and female patients. In this study, myostatin and pSmad2 were significantly up-regulated in the failing heart of female patients, but not male patients, and female patients displayed lower body mass index. Enhanced myostatin signaling in female failing heart may causally contribute to pathogenesis of HF and cardiac cachexia. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Associations of myostatin gene polymorphisms with performance and mortality traits in broiler chickens

    Directory of Open Access Journals (Sweden)

    Lamont Susan J

    2007-01-01

    Full Text Available Abstract Myostatin is a negative regulator of skeletal muscle growth. We evaluated effects of myostatin polymorphisms in three elite commercial broiler chicken lines on mortality, growth, feed conversion efficiency, ultrasound breast depth, breast percentage, eviscerated carcass weight, leg defects, blood oxygen level, and hen antibody titer to infectious bursal disease virus vaccine. Progeny mean data adjusted for fixed and mate effects and DNA from 100 sires per line were used. Single nucleotide polymorphisms (SNPs of the myostatin gene segregating in these lines were identified by designing specific primers, amplifying individual DNA in each line by polymerase chain reaction, cloning, sequencing and aligning the corresponding products. Individual sires were genotyped for five identified SNPs which contributed to eight haplotypes. Frequencies of SNP alleles and haplotypes differed between lines. Using the allele substitution effect model, the myostatin SNPs were found to have significant (P

  1. The Compact Mutation of Myostatin Causes a Glycolytic Shift in the Phenotype of Fast Skeletal Muscles

    OpenAIRE

    Baán, Júlia Aliz; Kocsis, Tamás; Keller-Pintér, Anikó; Müller, Géza; Zádor, Ernö; Dux, László; Mendler, Luca

    2013-01-01

    Myostatin is an important negative regulator of skeletal muscle growth. The hypermuscular Compact (Cmpt) mice carry a 12-bp natural mutation in the myostatin propeptide, with additional modifier genes being responsible for the phenotype. Muscle cellularity of the fast-type tibialis anterior (TA) and extensor digitorum longus (EDL) as well as the mixed-type soleus (SOL) muscles of Cmpt and wild-type mice was examined by immunohistochemical staining of the myosin heavy chain (MHC) proteins. In ...

  2. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats.

    Science.gov (United States)

    Mendias, Christopher L; Lynch, Evan B; Gumucio, Jonathan P; Flood, Michael D; Rittman, Danielle S; Van Pelt, Douglas W; Roche, Stuart M; Davis, Carol S

    2015-04-15

    Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild-type (MSTN(+/+) ) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTN(Δ/Δ) ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin-deficient rats was markedly different from that of myostatin-deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTN(Δ/Δ) rats demonstrated 20-33% increases in mass, 35-45% increases in fibre number, 20-57% increases in isometric force and no differences in specific force. The insulin-like growth factor-1 pathway was activated to a greater extent in MSTN(Δ/Δ) muscles, but no substantial differences in atrophy-related genes were observed. Tendons of MSTN(Δ/Δ) rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  3. Higher Plasma Myostatin Levels in Cor Pulmonale Secondary to Chronic Obstructive Pulmonary Disease.

    Directory of Open Access Journals (Sweden)

    Chun-Rong Ju

    Full Text Available To analyze plasma myostatin levels and investigate their relationship with right ventricular (RV function in patients with cor pulmonale secondary to chronic obstructive pulmonary disease (COPD.The study recruited 81 patients with advanced COPD and 40 age-matched controls. The patients were divided into two groups: those with cor pulmonale and those without. Echocardiography was used to evaluate RV function and morphology, and the value of tricuspid annular plane systolic excursion (TAPSE less than 16 mm was considered RV dysfunction. Plasma myostatin levels were analyzed by enzyme-linked immunosorbent assay, and B-type natriuretic peptide (BNP levels were analyzed as a comparison of myostatin.The data detected cor pulmonale in 39/81 patients, with the mean value of TAPSE of 14.3 mm. Plasma myostatin levels (ng/mL were significantly higher in patients with cor pulmonale (16.68 ± 2.95 than in those without (13.56 ± 3.09, and much higher than in controls (8.79±2.79, with each p<0.01. Significant differences were also found in plasma BNP levels among the three groups (p<0.05. Multivariate regression analysis suggested that myostatin levels were significantly correlated with the values of TAPSE and RV myocardium performance index among the COPD patients, and that BNP levels were significantly correlated only with systolic pulmonary arterial pressure, with each p<0.05.Plasma myostatin levels are increased in COPD patients who have cor pulmonale. Stronger correlations of plasma myostatin levels with echocardiographic indexes of the right heart suggest that myostatin might be superior to BNP in the early diagnosis of cor pulmonale in COPD.

  4. Modulation of reactive oxygen species in skeletal muscle by myostatin is mediated through NF??B

    OpenAIRE

    Sriram, Sandhya; Subramanian, Subha; Sathiakumar, Durga; Venkatesh, Rithika; Salerno, Monica S.; McFarlane, Craig D.; Kambadur, Ravi; Sharma, Mridula

    2011-01-01

    Summary Abnormal levels of reactive oxygen species (ROS) and inflammatory cytokines have been observed in the skeletal muscle during muscle wasting including sarcopenia. However, the mechanisms that signal ROS production and prolonged maintenance of ROS levels during muscle wasting are not fully understood. Here, we show that myostatin (Mstn) is a pro?oxidant and signals the generation of ROS in muscle cells. Myostatin, a transforming growth factor?? (TGF??) family member, has been shown to p...

  5. Higher Plasma Myostatin Levels in Cor Pulmonale Secondary to Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Ju, Chun-Rong; Chen, Miao; Zhang, Jian-Heng; Lin, Zhi-Ya; Chen, Rong-Chang

    2016-01-01

    To analyze plasma myostatin levels and investigate their relationship with right ventricular (RV) function in patients with cor pulmonale secondary to chronic obstructive pulmonary disease (COPD). The study recruited 81 patients with advanced COPD and 40 age-matched controls. The patients were divided into two groups: those with cor pulmonale and those without. Echocardiography was used to evaluate RV function and morphology, and the value of tricuspid annular plane systolic excursion (TAPSE) less than 16 mm was considered RV dysfunction. Plasma myostatin levels were analyzed by enzyme-linked immunosorbent assay, and B-type natriuretic peptide (BNP) levels were analyzed as a comparison of myostatin. The data detected cor pulmonale in 39/81 patients, with the mean value of TAPSE of 14.3 mm. Plasma myostatin levels (ng/mL) were significantly higher in patients with cor pulmonale (16.68 ± 2.95) than in those without (13.56 ± 3.09), and much higher than in controls (8.79±2.79), with each pcor pulmonale. Stronger correlations of plasma myostatin levels with echocardiographic indexes of the right heart suggest that myostatin might be superior to BNP in the early diagnosis of cor pulmonale in COPD.

  6. Cloning and characterization of largemouth bass ( Micropterus salmoides) myostatin encoding gene and its promoter

    Science.gov (United States)

    Li, Shengjie; Bai, Junjie; Wang, Lin

    2008-08-01

    Myostatin or GDF-8, a member of the transforming growth factor-β (TGF-β) superfamily, has been demonstrated to be a negative regulator of skeletal muscle mass in mammals. In the present study, we obtained a 5.64 kb sequence of myostatin encoding gene and its promoter from largemouth bass ( Micropterus salmoides). The myostatin encoding gene consisted of three exons (488 bp, 371 bp and 1779 bp, respectively) and two introns (390 bp and 855 bp, respectively). The intron-exon boundaries were conservative in comparison with those of mammalian myostatin encoding genes, whereas the size of introns was smaller than that of mammals. Sequence analysis of 1.569 kb of the largemouth bass myostatin gene promoter region revealed that it contained two TATA boxes, one CAAT box and nine putative E-boxes. Putative muscle growth response elements for myocyte enhancer factor 2 (MEF2), serum response factor (SRF), activator protein 1 (AP1), etc., and muscle-specific Mt binding site (MTBF) were also detected. Some of the transcription factor binding sites were conserved among five teleost species. This information will be useful for studying the transcriptional regulation of myostatin in fish.

  7. Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia.

    Science.gov (United States)

    Silva, Kleiton Augusto Santos; Dong, Jiangling; Dong, Yanjun; Dong, Yanlan; Schor, Nestor; Tweardy, David J; Zhang, Liping; Mitch, William E

    2015-04-24

    Cachexia occurs in patients with advanced cancers. Despite the adverse clinical impact of cancer-induced muscle wasting, pathways causing cachexia are controversial, and clinically reliable therapies are not available. A trigger of muscle protein loss is the Jak/Stat pathway, and indeed, we found that conditioned medium from C26 colon carcinoma (C26) or Lewis lung carcinoma cells activates Stat3 (p-Stat3) in C2C12 myotubes. We identified two proteolytic pathways that are activated in muscle by p-Stat3; one is activation of caspase-3, and the other is p-Stat3 to myostatin, MAFbx/Atrogin-1, and MuRF-1 via CAAT/enhancer-binding protein δ (C/EBPδ). Using sequential deletions of the caspase-3 promoter and CHIP assays, we determined that Stat3 activation increases caspase-3 expression in C2C12 cells. Caspase-3 expression and proteolytic activity were stimulated by p-Stat3 in muscles of tumor-bearing mice. In mice with cachexia caused by Lewis lung carcinoma or C26 tumors, knock-out of p-Stat3 in muscle or with a small chemical inhibitor of p-Stat3 suppressed muscle mass losses, improved protein synthesis and degradation in muscle, and increased body weight and grip strength. Activation of p-Stat3 stimulates a pathway from C/EBPδ to myostatin and expression of MAFbx/Atrogin-1 and increases the ubiquitin-proteasome system. Indeed, C/EBPδ KO decreases the expression of MAFbx/Atrogin-1 and myostatin, while increasing muscle mass and grip strength. In conclusion, cancer stimulates p-Stat3 in muscle, activating protein loss by stimulating caspase-3, myostatin, and the ubiquitin-proteasome system. These results could lead to novel strategies for preventing cancer-induced muscle wasting. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Relationship between myostatin and irisin in type 2 diabetes mellitus: a compensatory mechanism to an unfavourable metabolic state?

    Science.gov (United States)

    García-Fontana, Beatriz; Reyes-García, Rebeca; Morales-Santana, Sonia; Ávila-Rubio, Verónica; Muñoz-Garach, Araceli; Rozas-Moreno, Pedro; Muñoz-Torres, Manuel

    2016-04-01

    Myostatin and irisin are two myokines related to energy metabolism, acting on skeletal muscle and recently suggested on adipose tissue in mice. However, the exact role of these myokines in humans has not been fully established. Our aim was to evaluate the relationship between serum levels of myostatin and irisin in type 2 diabetes mellitus patients and non-diabetic controls and to explore its links with metabolic parameters. Case-control study including 73 type 2 diabetes mellitus patients and 55 non-diabetic subjects as control group. Circulating myostatin and irisin levels were measured by enzyme-linked immunosorbent assays. Type 2 diabetes mellitus patients showed significantly lower myostatin levels (p = 0.001) and higher irisin levels (p = 0.036) than controls. An inverse relationship was observed between myostatin and irisin levels (p = 0.002). Moreover, in type 2 diabetes mellitus patients, after adjusting by confounder factors, myostatin was negatively related to fasting plasma glucose (p = 0.005) and to triglyceride levels (p = 0.028) while irisin showed a positive association with these variables (p = 0.017 and p = 0.006 respectively). A linear regression analysis showed that irisin and fasting plasma glucose levels were independently associated to myostatin levels and that myostatin and triglyceride levels were independently associated to irisin concentrations in type 2 diabetes mellitus patients. Our results suggest that serum levels of myostatin and irisin are related in patients with type 2 diabetes. Triglyceride and glucose levels could modulate myostatin and irisin concentrations as a compensatory mechanism to improve the metabolic state in these patients although further studies are needed to elucidate whether the action of these myokines represents an adaptative response.

  9. A comparative evaluation of crowding stress on muscle HSP90 and myostatin expression in salmonids

    Science.gov (United States)

    Galt, Nicholas J.; Froehlich, Jacob Michael; McCormick, Stephen; Biga, Peggy R.

    2018-01-01

    Stress is a major factor that contributes to poor production and animal welfare concerns in aquaculture. As such, a thorough understanding of mechanisms involved in the stress response is imperative to developing strategies to mitigate the negative side effects of stressors, including the impact of high stocking densities on growth. The purpose of this study was to determine how the muscle growth inhibitor, myostatin, and the stress-responsive gene HSP90 are regulated in response to crowding stress in rainbow trout (Oncorhynchus mykiss), cutthroat trout (Oncorhynchus clarki), brook trout (Salvelinus fontinalis), and Atlantic salmon (Salmo salar). All species exhibited higher cortisol and glucose levels following the handling stress, indicating physiological response to the treatment. Additionally, all species, except rainbow trout, exhibited higher HSP90 levels in muscle after a 48 h crowding stress. Crowding stress resulted in a decrease of myostatin-1ain brook trout white muscle but not red muscle, while, myostatin-1a and -2a levels increased in white muscle and myostatin-1b levels increased in red muscle in Atlantic salmon. In rainbow trout, no significant changes were detected in either muscle type, but myostatin-1awas upregulated in both white and red skeletal muscle in the closely related cutthroat trout. The variation in response to crowding suggests a complex and species-specific interaction between stress and the muscle gene regulation in these salmonids. Only Atlantic salmon and cutthroat trout exhibited increased muscle myostatin transcription, and also exhibited the largest increase in circulating glucose in response to crowding. These results suggest that species-specific farming practices should be carefully examined in order to optimize low stress culture conditions.

  10. Effect of Myostatin SNP on muscle fiber properties in male Thoroughbred horses during training period.

    Science.gov (United States)

    Miyata, Hirofumi; Itoh, Rika; Sato, Fumio; Takebe, Naoya; Hada, Tetsuro; Tozaki, Teruaki

    2017-10-20

    Variants of the Myostatin gene have been shown to have an influence on muscle hypertrophy phenotypes in a wide range of mammalian species. Recently, a Thoroughbred horse with a C-Allele at the g.66493737C/T single-nucleotide polymorphism (SNP) has been reported to be suited to short-distance racing. In this study, we examined the effect of the Myostatin SNP on muscle fiber properties in young Thoroughbred horses during a training period. To investigate the effect of the Myostatin SNP on muscle fiber before training, several mRNA expressions were relatively quantified in biopsy samples from the middle gluteal muscle of 27 untrained male Thoroughbred horses (1.5 years old) using real-time RT-PCR analysis. The remaining muscle samples were used for immunohistochemical analysis to determine the population and area of each fiber type. All measurements were revaluated in biopsy samples of the same horses after a 5-month period of conventional training. Although the expressions of Myostatin mRNA decreased in all SNP genotypes, a significant decrease was found in only the C/C genotype after training. While, expression of VEGFa, PGC1α, and SDHa mRNAs, which relate to the biogenesis of mitochondria and capillaries, was significantly higher (54-82%) in the T/T than the C/C genotypes after training. It is suggested that hypertrophy of muscle fiber is directly associated with a decrease in Myostatin mRNA expression in the C/C genotype, and that increased expressions of VEGFa, PGC1α, and SDHa in the T/T genotype might be indirectly caused by the Myostatin SNP.

  11. Protective effect of myostatin gene deletion on aging-related muscle metabolic decline.

    Science.gov (United States)

    Chabi, B; Pauly, M; Carillon, J; Carnac, G; Favier, F B; Fouret, G; Bonafos, B; Vanterpool, F; Vernus, B; Coudray, C; Feillet-Coudray, C; Bonnieu, A; Lacan, D; Koechlin-Ramonatxo, C

    2016-06-01

    While myostatin gene deletion is a promising therapy to fight muscle loss during aging, this approach induces also skeletal muscle metabolic changes such as mitochondrial deficits, redox alteration and increased fatigability. In the present study, we evaluated the effects of aging on these features in aged wild-type (WT) and mstn knockout (KO) mice. Moreover, to determine whether an enriched-antioxidant diet may be useful to prevent age-related disorders, we orally administered to the two genotypes a melon concentrate rich in superoxide dismutase for 12 weeks. We reported that mitochondrial functional abnormalities persisted (decreased state 3 and 4 of respiration; paged KO mice; however, differences with WT mice were attenuated at old age in line with reduced difference on running endurance between the two genotypes. Interestingly, we showed an increase in glutathione levels, associated with lower lipid peroxidation levels in KO muscle. Enriched antioxidant diet reduced the aging-related negative effects on maximal aerobic velocity and running limit time (p<0.05) in both groups, with systemic adaptations on body weight. The redox status and the hypertrophic phenotype appeared to be beneficial to KO mice, mitigating the effect of aging on the skeletal muscle metabolic remodeling. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Sulfated polysaccharides of brown seaweed Cystoseira canariensis bind to serum myostatin protein.

    Science.gov (United States)

    Ramazanov, Zakir; Jimenez del Rio, Miguel; Ziegenfuss, Tim

    2003-01-01

    Natural sulfated polysaccharides (SPs) derived from brown seaweed comprise a complex group of macromolecules with a wide range of important physiological properties. SPs have been shown to bind and directly regulate the bioactivity of growth factors and cytokines such as basic fibroblast growth factor, interferon, various enzymes and transforming growth factor. Myostatin is a member of the transforming growth factor-beta (TGF-beta) family that acts as a negative regulator of skeletal muscle mass. In this work we demonstrated that SPs isolated from the brown seaweed Cystoseira canariensis bind to the myostatin protein in serum.

  13. Effect of myostatin depletion on weight gain, hyperglycemia, and hepatic steatosis during five months of high-fat feeding in mice.

    Directory of Open Access Journals (Sweden)

    Kerri Burgess

    Full Text Available The marked hypermuscularity in mice with constitutive myostatin deficiency reduces fat accumulation and hyperglycemia induced by high-fat feeding, but it is unclear whether the smaller increase in muscle mass caused by postdevelopmental loss of myostatin activity has beneficial metabolic effects during high-fat feeding. We therefore examined how postdevelopmental myostatin knockout influenced effects of high-fat feeding. Male mice with ubiquitous expression of tamoxifen-inducible Cre recombinase were fed tamoxifen for 2 weeks at 4 months of age. This depleted myostatin in mice with floxed myostatin genes, but not in control mice with normal myostatin genes. Some mice were fed a high-fat diet (60% of energy for 22 weeks, starting 2 weeks after cessation of tamoxifen feeding. Myostatin depletion increased skeletal muscle mass ∼30%. Hypermuscular mice had ∼50% less weight gain than control mice over the first 8 weeks of high-fat feeding. During the subsequent 3 months of high-fat feeding, additional weight gain was similar in control and myostatin-deficient mice. After 5 months of high-fat feeding, the mass of epididymal and retroperitoneal fat pads was similar in control and myostatin-deficient mice even though myostatin depletion reduced the weight gain attributable to the high-fat diet (mean weight with high-fat diet minus mean weight with low-fat diet: 19.9 g in control mice, 14.1 g in myostatin-deficient mice. Myostatin depletion did not alter fasting blood glucose levels after 3 or 5 months of high-fat feeding, but reduced glucose levels measured 90 min after intraperitoneal glucose injection. Myostatin depletion also attenuated hepatic steatosis and accumulation of fat in muscle tissue. We conclude that blocking myostatin signaling after maturity can attenuate some of the adverse effects of a high-fat diet.

  14. Sequence variants at the myostatin gene locus influence the body composition of Thoroughbred horses.

    Science.gov (United States)

    Tozaki, Teruaki; Sato, Fumio; Hill, Emmeline W; Miyake, Takeshi; Endo, Yoshiro; Kakoi, Hironaga; Gawahara, Hitoshi; Hirota, Kei-ichi; Nakano, Yasuko; Nambo, Yasuo; Kurosawa, Masahiko

    2011-12-01

    Myostatin is a member of the transforming growth factor-β family with a key role in inhibition of muscle growth by negative regulation of both myoblast proliferation and differentiation. Recently, a genomic region on ECA18, which includes the MSTN gene, was identified as a candidate region influencing racing performance in Thoroughbreds. In this study, four SNPs on ECA18, g.65809482T>C, g.65868604G>T, g.66493737C>T, and g.66539967A>G, were genotyped in 91 Thoroughbred horses-in-training to evaluate the association between genotype and body composition traits, including body weight, withers height, chest circumference, cannon circumference, and body weight/withers height. Of these, statistically differences in body weight and body weight/withers height were associated with specific genotypes in males. Specifically, body weight/withers height showed statistically significant differences depending on genotype at g.658604G>T, g.66493737C>T, and g.66539967A>G (PT, had the highest value (3.17 ± 0.05 kg·cm(-1)) for body weight/withers height in March, while those with a genotype associated with suitability for long-distance racing, T/T, had the lowest (2.99 ± 0.03 kg·cm(-1)). In females, the trends in the association of body weight/withers height with genotypes were similar to those observed in males. As the SNPs are not believed to be linked to coding variants in MSTN, these results suggest that regulation of MSTN gene expression influences skeletal muscle mass and hence racing performance, particularly optimum race distance, in Thoroughbred horses.

  15. Myostatin gene knockout mediated by Cas9-D10A nickase in chicken DF1 cells without off-target effect

    Directory of Open Access Journals (Sweden)

    Jeong Hyo Lee

    2017-05-01

    Full Text Available Objective Based on rapid advancement of genetic modification techniques, genomic editing is expected to become the most efficient tool for improvement of economic traits in livestock as well as poultry. In this study, we examined and verified the nickase of mutated CRISPR-associated protein 9 (Cas9 to modulate the specific target gene in chicken DF1 cells. Methods Chicken myostatin which inhibits muscle cell growth and differentiation during myogenesis was targeted to be deleted and mutated by the Cas9-D10A nickase. After co-transfection of the nickase expression vector with green fluorescent gene (GFP gene and targeted multiplex guide RNAs (gRNAs, the GFP-positive cells were sorted out by fluorescence-activated cell sorting procedure. Results Through the genotyping analysis of the knockout cells, the mutant induction efficiency was 100% in the targeted site. Number of the deleted nucleotides ranged from 2 to 39 nucleotide deletion. There was no phenotypic difference between regular cells and knockout cells. However, myostatin protein was not apparently detected in the knockout cells by Western blotting. Additionally, six off-target sites were predicted and analyzed but any non-specific mutation in the off-target sites was not observed. Conclusion The knockout technical platform with the nickase and multiplex gRNAs can be efficiently and stablely applied to functional genomics study in poultry and finally adapted to generate the knockout poultry for agribio industry.

  16. Myostatin expression, lymphocyte population, and potential cytokine production correlate with predisposition to high-fat diet induced obesity in mice.

    Directory of Open Access Journals (Sweden)

    Jeri-Anne Lyons

    2010-09-01

    Full Text Available A strong relationship exists between increased inflammatory cytokines and muscle insulin resistance in obesity. This study focused on identifying a relationship between metabolic propensity and myostatin expression in muscle and spleen cells in response to high-fat diet intake. Using a comparative approach, we analyzed the effects of high-fat diet intake on myostatin and follistatin expression, spleen cell composition, and potential cytokine expression in high-fat diet induced obesity (HFDIO resistant (SWR/J and susceptible (C57BL/6 mice models. Results demonstrated overall increased myostatin expression in muscle following high-fat diet intake in HFDIO-susceptible mice, while myostatin expression levels decreased initially in muscle from high-fat diet fed resistant mice. In HFDIO-resistant mice, myostatin expression decreased in spleen, while myostatin increased in spleen tissue from HFDIO-susceptible mice. Proinflammatory cytokine (IL-17, IL-1β, and IFNγ potential increased in splenocytes from HFDIO-susceptible mice. In comparison, C57BL/6 mice fed a high-fat diet exhibited higher frequencies of CD4(+/CD44(hi and CD8(+/CD44(hi cells in the spleen compared to control fed mice. Together, these results suggest that susceptibility to high-fat diet induced obesity could be influenced by local myostatin activity in a tissue-specific manner and that splenocytes exhibit differential cytokine production in a strain-dependent manner. This study sets the stage for future investigations into the interactions between growth, inflammation, and metabolism.

  17. SEQUENCING AND SEQUENCE ANALYSIS OF MYOSTATIN GENE IN THE EXON 1 OF THE CAMEL (CAMELUS DROMEDARIUS

    Directory of Open Access Journals (Sweden)

    M. G. SHAH, A. S. QURESHI1, M. REISSMANN2 AND H. J. SCHWARTZ3

    2006-10-01

    Full Text Available Myostatin, also called growth differentiation factor-8 (GDF-8, is a member of the mammalian growth transforming family (TGF-beta superfamily, which is expressed specifically in developing an adult skeletal muscle. Muscular hypertrophy allele (mh allele in the double muscle breeds involved mutation within the myostatin gene. Genomic DNA was isolated from the camel hair using NucleoSpin Tissue kit. Two animals of each of the six breeds namely, Marecha, Dhatti, Larri, Kohi, Sakrai and Cambelpuri were used for sequencing. For PCR amplification of the gene, a primer pair was designed from homolog regions of already published sequences of farm animals from GenBank. Results showed that camel myostatin possessed more than 90% homology with that of cattle, sheep and pig. Camel formed separate cluster from the pig in spite of having high homology (98% and showed 94% homology with cattle and sheep as reported in literature. Sequence analysis of the PCR amplified part of exon 1 (256 bp of the camel myostatin was identical among six camel breeds.

  18. Effects and interactions of myostatin and callipyge mutations. I. Growth and carcass traits

    Science.gov (United States)

    Objectives were to document effects of the Texel myostatin mutation (MSTN) on growth, carcass, and meat quality traits and also test whether or not interactions with the callipyge mutation (CLPG) could be detected. Twelve rams heterozygous at both loci on the two different chromosomes were mated to ...

  19. upstream region of the myostatin gene in four chicken breeds and its

    African Journals Online (AJOL)

    user

    2012-05-17

    May 17, 2012 ... polymorphisms (SNPs) of the 5'-upstream region of the myostatin gene were detected by single- stranded conformation polymorphism (SSCP) and DNA sequencing in the Bian, Jinghai, Youxi and. Arbor Acre chickens. Four novel mutations (G673A, G985C, G1085A, and A1278T) were detected. Only.

  20. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.

    Science.gov (United States)

    Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L

    2016-01-01

    Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.

  1. Effect of 8-Week Resistance Training on Hypertrophy, Strength, and Myostatin Concentration in Old and Young Men

    Directory of Open Access Journals (Sweden)

    Raoof Negaresh

    2017-06-01

    Conclusion Resistance training was associated with a decline in myostatin level and increase in the muscle mass and cross-sectional area. Hence, the beneficial effect of resistance training may decrease age-related muscle atrophy and affect elderly health.

  2. Astragalus Polysaccharide Suppresses Skeletal Muscle Myostatin Expression in Diabetes: Involvement of ROS-ERK and NF-κB Pathways

    Directory of Open Access Journals (Sweden)

    Min Liu

    2013-01-01

    Full Text Available Objective. The antidiabetes drug astragalus polysaccharide (APS is capable of increasing insulin sensitivity in skeletal muscle and improving whole-body glucose homeostasis. Recent studies suggest that skeletal muscle secreted growth factor myostatin plays an important role in regulating insulin signaling and insulin resistance. We hypothesized that regulation of skeletal muscle myostatin expression may be involved in the improvement of insulin sensitivity by APS. Methods. APS was administered to 13-week-old diabetic KKAy and nondiabetic C57BL/6J mice for 8 weeks. Complementary studies examined APS effects on the saturated acid palmitate-induced insulin resistance and myostatin expression in C2C12 cells. Results. APS treatment ameliorated hyperglycemia, hyperlipidemia, and insulin resistance and decreased the elevation of myostatin expression and malondialdehyde production in skeletal muscle of noninsulin-dependent diabetic KKAy mice. In C2C12 cells in vitro, saturated acid palmitate-induced impaired glucose uptake, overproduction of ROS, activation of extracellular regulated protein kinases (ERK, and NF-κB were partially restored by APS treatment. The protective effects of APS were mimicked by ERK and NF-κB inhibitors, respectively. Conclusion. Our study demonstrates elevated myostatin expression in skeletal muscle of type 2 diabetic KKAy mice and in cultured C2C12 cells exposed to palmitate. APS is capable of improving insulin sensitivity and decreasing myostatin expression in skeletal muscle through downregulating ROS-ERK-NF-κB pathway.

  3. Statin therapy inhibits remyelination in the central nervous system

    DEFF Research Database (Denmark)

    Miron, Veronique E; Zehntner, Simone P; Kuhlmann, Tanja

    2009-01-01

    Remyelination of lesions in the central nervous system contributes to neural repair following clinical relapses in multiple sclerosis. Remyelination is initiated by recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Simvastatin, a blood...... that OPCs were maintained in an immature state (Olig2(strong)/Nkx2.2(weak)). NogoA+ oligodendrocyte numbers were decreased during all simvastatin treatment regimens. Our findings suggest that simvastatin inhibits central nervous system remyelination by blocking progenitor differentiation, indicating...... the need to monitor effects of systemic immunotherapies that can access the central nervous system on brain tissue-repair processes....

  4. Target genes of myostatin loss-of-function in muscles of late bovine fetuses

    Directory of Open Access Journals (Sweden)

    Hocquette Jean-François

    2007-03-01

    Full Text Available Abstract Background Myostatin, a muscle-specific member of the Transforming Growth Factor beta family, negatively regulates muscle development. Double-muscled (DM cattle have a loss-of-function mutation in their myostatin gene responsible for the hypermuscular phenotype. Thus, these animals are a good model for understanding the mechanisms underpinning muscular hypertrophy. In order to identify individual genes or networks that may be myostatin targets, we looked for genes that were differentially expressed between DM and normal (NM animals (n = 3 per group in the semitendinosus muscle (hypertrophied in DM animals at 260 days of fetal development (when the biochemical differentiation of muscle is intensive. A heterologous microarray (human and murine oligonucleotide sequences of around 6,000 genes expressed in muscle was used. Results Many genes were found to be differentially expressed according to genetic type (some with a more than 5-fold change, and according to the presence of one or two functional myostatin allele(s. They belonged to various functional categories. The genes down-regulated in DM fetuses were mainly those encoding extracellular matrix proteins, slow contractile proteins and ribosomal proteins. The genes up-regulated in DM fetuses were mainly involved in the regulation of transcription, cell cycle/apoptosis, translation or DNA metabolism. These data highlight features indicating that DM muscle is shifted towards a more glycolytic metabolism, and has an altered extracellular matrix composition (e.g. down-regulation of COL1A1 and COL1A2, and up-regulation of COL4A2 and decreased adipocyte differentiation (down-regulation of C1QTNF3. The altered gene expression in the three major muscle compartments (fibers, connective tissue and intramuscular adipose tissue is consistent with the well-known characteristics of DM cattle. In addition, novel potential targets of the myostatin gene were identified (MB, PLN, troponins, ZFHX1B

  5. Myostatin and insulin-like growth factor I: potential therapeutic biomarkers for pompe disease.

    Directory of Open Access Journals (Sweden)

    Yin-Hsiu Chien

    Full Text Available OBJECTIVE: Myostatin and insulin-like growth factor 1 (IGF-1 are serum markers for muscle growth and regeneration. However, their value in the clinical monitoring of Pompe disease - a muscle glycogen storage disease - is not known. In order to evaluate their possible utility for disease monitoring, we assessed the levels of these serum markers in Pompe disease patients receiving enzyme replacement therapy (ERT. DESIGN: A case-control study that included 10 patients with Pompe disease and 10 gender- and age-matched non-Pompe disease control subjects was performed in a referral medical center. Average follow-up duration after ERT for Pompe disease patients was 11.7 months (range: 6-23 months. Measurements of serum myostatin, IGF-1, and creatine kinase levels were obtained, and examinations of muscle pathology were undertaken before and after ERT in the patient group. RESULTS: Compared with control subjects, Pompe disease patients prior to undergoing ERT had significantly lower serum IGF-1 levels (98.6 ng/ml vs. 307.9 ng/ml, p = 0.010 and lower myostatin levels that bordered on significance (1.38 ng/ml vs. 3.32 ng/ml, p = 0.075. After ERT, respective myostatin and IGF-1 levels in Pompe disease patients increased significantly by 129% (from 1.38 ng/ml to 3.16 ng/ml, p = 0.047 and 74% (from 98.6 ng/ml to 171.1 ng/ml, p = 0.013; these values fall within age-matched normal ranges. In contrast, myostatin and IGF-1 serum markers did not increase in age-matched controls. Follistatin, a control marker unrelated to muscle, increased in both Pompe disease patients and control subjects. At the same time, the percentage of muscle fibers containing intracytoplasmic vacuoles decreased from 80.0±26.4% to 31.6±45.3%. CONCLUSION: The increase in myostatin and IGF-1 levels in Pompe disease patients may reflect muscle regeneration after ERT. The role of these molecules as potential therapeutic biomarkers in Pompe disease and other neuromuscular

  6. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration

    Science.gov (United States)

    Pasteuning-Vuhman, Svitlana; Boertje-van der Meulen, Johanna W.; van Putten, Maaike; Overzier, Maurice; ten Dijke, Peter; Kiełbasa, Szymon M.; Arindrarto, Wibowo; Wolterbeek, Ron; Lezhnina, Ksenia V.; Ozerov, Ivan V.; Aliper, Aleksandr M.; Hoogaars, Willem M.; Aartsma-Rus, Annemieke; Loomans, Cindy J. M.

    2017-01-01

    Skeletal muscle fibrosis and impaired muscle regeneration are major contributors to muscle wasting in Duchenne muscular dystrophy (DMD). Muscle growth is negatively regulated by myostatin (MSTN) and activins. Blockage of these pathways may improve muscle quality and function in DMD. Antisense oligonucleotides (AONs) were designed specifically to block the function of ALK4, a key receptor for the MSTN/activin pathway in skeletal muscle. AON-induced exon skipping resulted in specific Alk4 down-regulation, inhibition of MSTN activity, and increased myoblast differentiation in vitro. Unexpectedly, a marked decrease in muscle mass (10%) was found after Alk4 AON treatment in mdx mice. In line with in vitro results, muscle regeneration was stimulated, and muscle fiber size decreased markedly. Notably, when Alk4 was down-regulated in adult wild-type mice, muscle mass decreased even more. RNAseq analysis revealed dysregulated metabolic functions and signs of muscle atrophy. We conclude that ALK4 inhibition increases myogenesis but also regulates the tight balance of protein synthesis and degradation. Therefore, caution must be used when developing therapies that interfere with MSTN/activin pathways.—Pasteuning-Vuhman, S., Boertje-van der Meulen, J. W., van Putten, M., Overzier, M., ten Dijke, P., Kiełbasa, S. M., Arindrarto, W., Wolterbeek, R., Lezhnina, K. V., Ozerov, I. V., Aliper, A. M., Hoogaars, W. M., Aartsma-Rus, A., Loomans, C. J. M. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration. PMID:27733450

  7. Ordering kinetics in model systems with inhibited interfacial adsorption

    DEFF Research Database (Denmark)

    Willart, J.-F.; Mouritsen, Ole G.; Naudts, J.

    1992-01-01

    . The results are related to experimental work on ordering processes in orientational glasses. It is suggested that the experimental observation of very slow ordering kinetics in, e.g., glassy crystals of cyanoadamantane may be a consequence of low-temperature activated processes which ultimately lead......The ordering kinetics in two-dimensional Ising-like spin moels with inhibited interfacial adsorption are studied by computer-simulation calculations. The inhibited interfacial adsorption is modeled by a particular interfacial adsorption condition on the structure of the domain wall between......, of the algebraic growth law, R(t)∼Atn, whereas the growth exponent, n, remains close to the value n=1/2 predicted by the classical Lifshitz-Allen-Cahn growth law for systems with nonconserved order parameter. At very low temperatures there is, however, an effective crossover to a much slower algebraic growth...

  8. Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases

    Directory of Open Access Journals (Sweden)

    Xinxia Zhao

    2016-03-01

    Full Text Available Myostatin (MSTN is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs in tandem with single-stranded DNA oligonucleotides (ssODNs. We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals.

  9. Myostatin blockade with a fully human monoclonal antibody induces muscle hypertrophy and reverses muscle atrophy in young and aged mice.

    Science.gov (United States)

    Latres, Esther; Pangilinan, Jeffrey; Miloscio, Lawrence; Bauerlein, Roy; Na, Erqian; Potocky, Terra B; Huang, Ying; Eckersdorff, Mark; Rafique, Ashique; Mastaitis, Jason; Lin, Calvin; Murphy, Andrew J; Yancopoulos, George D; Gromada, Jesper; Stitt, Trevor

    2015-01-01

    Loss of skeletal muscle mass and function in humans is associated with significant morbidity and mortality. The role of myostatin as a key negative regulator of skeletal muscle mass and function has supported the concept that inactivation of myostatin could be a useful approach for treating muscle wasting diseases. We generated a myostatin monoclonal blocking antibody (REGN1033) and characterized its effects in vitro using surface plasmon resonance biacore and cell-based Smad2/3 signaling assays. REGN1033 was tested in mice for the ability to induce skeletal muscle hypertrophy and prevent atrophy induced by immobilization, hindlimb suspension, or dexamethasone. The effect of REGN1033 on exercise training was tested in aged mice. Messenger RNA sequencing, immunohistochemistry, and ex vivo force measurements were performed on skeletal muscle samples from REGN1033-treated mice. The human monoclonal antibody REGN1033 is a specific and potent myostatin antagonist. Chronic treatment of mice with REGN1033 increased muscle fiber size, muscle mass, and force production. REGN1033 prevented the loss of muscle mass induced by immobilization, glucocorticoid treatment, or hindlimb unweighting and increased the gain of muscle mass during recovery from pre-existing atrophy. In aged mice, REGN1033 increased muscle mass and strength and improved physical performance during treadmill exercise. We show that specific myostatin antagonism with the human antibody REGN1033 enhanced muscle mass and function in young and aged mice and had beneficial effects in models of skeletal muscle atrophy.

  10. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    Science.gov (United States)

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P < 0.01) twitch and tetanus contraction times compared with BEH+/+ mice, but only EDL displayed lower (P < 0.05) specific force. SOL and EDL of age-matched but not younger BEH mice showed greater exercise-induced CK efflux compared with BEH+/+ mice. In summary, myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  11. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice.

    Science.gov (United States)

    Ma, Dezun; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Xiao, Gaojun; Cui, Wentao

    2015-08-24

    Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y). This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS), C313Y, and wild-type porcine myostatin propeptide (ppMS), respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR) mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.

  12. RNA-seq reveals transcriptome changes in goats following myostatin gene knockout

    Science.gov (United States)

    Cai, Bei; Zhou, Shiwei; Zhu, Haijing; Qu, Lei; Wang, Xiaolong

    2017-01-01

    Myostatin (MSTN) is a powerful negative regulator of skeletal muscle mass in mammalian species that is primarily expressed in skeletal muscles, and mutations of its encoding gene can result in the double-muscling trait. In this study, the CRISPR/Cas9 technique was used to edit MSTN in Shaanbei Cashmere goats and generate knockout animals. RNA sequencing was used to determine and compare the transcriptome profiles of the muscles from three wild-type (WT) goats, three fibroblast growth factor 5 (FGF5) knockout goats (FGF5+/- group) and three goats with disrupted expression of both the FGF5 and MSTN genes (FM+/- group). The sequence reads were obtained using the Illumina HiSeq 2000 system and mapped to the Capra hircus reference genome using TopHat (v2.0.9). In total, 68.93, 62.04 and 66.26 million clean sequencing reads were obtained from the WT, FM+/- and FGF5+/- groups, respectively. There were 201 differentially expressed genes (DEGs) between the WT and FGF5+/- groups, with 86 down- and 115 up-regulated genes in the FGF5+/- group. Between the WT and FM+/- groups, 121 DEGs were identified, including 81 down- and 40 up-regulated genes in the FM+/- group. A total of 198 DEGs were detected between the FGF5+/- group and FM+/- group, with 128 down- and 70 up-regulated genes in the FM+/- group. At the transcriptome level, we found substantial changes in genes involved in fatty acid metabolism and the biosynthesis of unsaturated fatty acids, such as stearoyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydratase 2, ELOVL fatty acid elongase 6 and fatty acid synthase, suggesting that the expression levels of these genes may be directly regulated by MSTN and that these genes are likely downstream targets of MSTN with potential roles in lipid metabolism in goats. Moreover, five randomly selected DEGs were further validated with qRT-PCR, and the results were consistent with the transcriptome analysis. The present study provides insight into the unique transcriptome profile of the

  13. RNA-seq reveals transcriptome changes in goats following myostatin gene knockout.

    Directory of Open Access Journals (Sweden)

    Lamei Wang

    Full Text Available Myostatin (MSTN is a powerful negative regulator of skeletal muscle mass in mammalian species that is primarily expressed in skeletal muscles, and mutations of its encoding gene can result in the double-muscling trait. In this study, the CRISPR/Cas9 technique was used to edit MSTN in Shaanbei Cashmere goats and generate knockout animals. RNA sequencing was used to determine and compare the transcriptome profiles of the muscles from three wild-type (WT goats, three fibroblast growth factor 5 (FGF5 knockout goats (FGF5+/- group and three goats with disrupted expression of both the FGF5 and MSTN genes (FM+/- group. The sequence reads were obtained using the Illumina HiSeq 2000 system and mapped to the Capra hircus reference genome using TopHat (v2.0.9. In total, 68.93, 62.04 and 66.26 million clean sequencing reads were obtained from the WT, FM+/- and FGF5+/- groups, respectively. There were 201 differentially expressed genes (DEGs between the WT and FGF5+/- groups, with 86 down- and 115 up-regulated genes in the FGF5+/- group. Between the WT and FM+/- groups, 121 DEGs were identified, including 81 down- and 40 up-regulated genes in the FM+/- group. A total of 198 DEGs were detected between the FGF5+/- group and FM+/- group, with 128 down- and 70 up-regulated genes in the FM+/- group. At the transcriptome level, we found substantial changes in genes involved in fatty acid metabolism and the biosynthesis of unsaturated fatty acids, such as stearoyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydratase 2, ELOVL fatty acid elongase 6 and fatty acid synthase, suggesting that the expression levels of these genes may be directly regulated by MSTN and that these genes are likely downstream targets of MSTN with potential roles in lipid metabolism in goats. Moreover, five randomly selected DEGs were further validated with qRT-PCR, and the results were consistent with the transcriptome analysis. The present study provides insight into the unique transcriptome

  14. Behavioral inhibition system (BIS), Behavioral activation system (BAS) and schizophrenia : Relationship with psychopathology and physiology

    NARCIS (Netherlands)

    Scholten, Marion R. M.; van Honk, Jack; Aleman, Andre; Kahn, Rene S.

    2006-01-01

    Objective: The Behavioral Inhibition System (BIS) and the Behavioral Activation System (BAS) have been conceptualized as two neural motivational systems that regulate sensitivity to punishment (BIS) and reward (BAS). Imbalance in BIS and BAS levels has been reported to be related to various forms of

  15. Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon

    DEFF Research Database (Denmark)

    Heinemeier, K M; Olesen, J L; Schjerling, P

    2007-01-01

    In skeletal muscle, an increased expression of insulin like growth factor-I isoforms IGF-IEa and mechano-growth factor (MGF) combined with downregulation of myostatin is thought to be essential for training-induced hypertrophy. However, the specific effects of different contraction types on regul......In skeletal muscle, an increased expression of insulin like growth factor-I isoforms IGF-IEa and mechano-growth factor (MGF) combined with downregulation of myostatin is thought to be essential for training-induced hypertrophy. However, the specific effects of different contraction types......, and the combined changes in myostatin and IGF-IEa/MGF expression could explain the important effect of eccentric actions for muscle hypertrophy....

  16. IGF and myostatin pathways are respectively induced during the earlier and the later stages of skeletal muscle hypertrophy induced by clenbuterol, a β₂-adrenergic agonist.

    Science.gov (United States)

    Abo, Tokuhisa; Iida, Ryo-Hei; Kaneko, Syuhei; Suga, Takeo; Yamada, Hiroyuki; Hamada, Yoshiki; Yamane, Akira

    2012-12-01

    Clenbuterol, a β₂-adrenergic agonist, increases the hypertrophy of skeletal muscle. Insulin-like growth factor (IGF) is reported to work as a potent positive regulator in the clenbuterol-induced hypertrophy of skeletal muscles. However, the precise regulatory mechanism for the hypertrophy of skeletal muscle induced by clenbuterol is unknown. Myostatin, a member of the TGFβ super family, is a negative regulator of muscle growth. The aim of the present study is to elucidate the function of myostatin and IGF in the hypertrophy of rat masseter muscle induced by clenbuterol. To investigate the function of myostatin and IGF in regulatory mechanism for the clenbuterol-induced hypertrophy of skeletal muscles, we analysed the expression of myostatin and phosphorylation levels of myostatin and IGF signaling components in the masseter muscle of rat to which clenbuterol was orally administered for 21 days. Hypertrophy of the rat masseter muscle was induced between 3 and 14 days of oral administration of clenbuterol and was terminated at 21 days. The expression of myostatin and the phosphorylation of smad2/3 were elevated at 21 days. The phosphorylation of IGF receptor 1 (IGFR1) and akt1 was elevated at 3 and 7 days. These results suggest that myostatin functions as a negative regulator in the later stages in the hypertrophy of rat masseter muscle induced by clenbuterol, whereas IGF works as a positive regulator in the earlier stages. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Polymeric Materials For Scale Inhibition In Cooling Water Systems

    Directory of Open Access Journals (Sweden)

    Najwa S.Majeed

    2013-04-01

    Full Text Available Calcium carbonate deposition is generally predominant in cooling water-circulating system. For the control of calcium carbonate scale formation two types of polymeric scale inhibitors were used Polyamino polyether methylene phosphonate  (PAPEMPand polyacrylaminde(PAA.Model of cooling tower system have been built up in laboratory scale. Experiments were carried out using different inhibitor concentrations(0.5,1,1.5,2,3ppm ,at water temperature of  40oC and flow rate of 150 l/hr. It was found that Polyamino polyether methylene phosphonate    more effective than polyacryle amide'  as scale inhibitor in all used concentrations and the best inhibition efficiency (95% was at (2.5ppm of Polyamino polyether methylene phosphonate  and (85% with poly acryle amide at concentrations of (3 ppm. The performance of the polymeric scale inhibitors was compared with a method used to control heavy calcium carbonate scale forming by the deposition of sufficiently thin protective calcium carbonate scale using sulfuric acid and depending on Ryznar stability index controlling method. 

  18. RNA Sequencing Identifies Upregulated Kyphoscoliosis Peptidase and Phosphatidic Acid Signaling Pathways in Muscle Hypertrophy Generated by Transgenic Expression of Myostatin Propeptide

    Directory of Open Access Journals (Sweden)

    Yuanxin Miao

    2015-04-01

    Full Text Available Myostatin (MSTN, a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph, and zinc metallopeptidase STE24 (Zmpste24. In addition, kyphoscoliosis peptidase (Ky, which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA pathways (Dgki, Dgkz, Plcd4 were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition.

  19. RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide.

    Science.gov (United States)

    Miao, Yuanxin; Yang, Jinzeng; Xu, Zhong; Jing, Lu; Zhao, Shuhong; Li, Xinyun

    2015-04-09

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition.

  20. FLOW RESTRICTED RESISTANCE TRAINING ATTENUATES MYOSTATIN GENE EXPRESSION IN A PATIENT WITH INCLUSION BODY MYOSITIS

    Directory of Open Access Journals (Sweden)

    A.R. Santos

    2014-07-01

    Full Text Available Inclusion body myositis is a rare idiopathic inflammatory myopathy that produces extreme muscle weakness. Blood flow restricted resistance training has been shown to improve muscle strength and muscle hypertrophy in inclusion body myositis. Objective: The aim of this study was to evaluate the effects of a resistance training programme on the expression of genes related to myostatin (MSTN signalling in one inclusion body myositis patient. Methods: A 65-year-old man with inclusion body myositis underwent blood flow restricted resistance training for 12 weeks. The gene expression of MSTN, follistatin, follistatin-like 3, activin II B receptor, SMAD-7, MyoD, FOXO-3, and MURF-2 was quantified. Results: After 12 weeks of training, a decrease (25% in MSTN mRNA level was observed, whereas follistatin and follistatin-like 3 gene expression increased by 40% and 70%, respectively. SMAD-7 mRNA level was augmented (20%. FOXO-3 and MURF-2 gene expression increased by 40% and 20%, respectively. No change was observed in activin II B receptor or MyoD gene expression. Conclusions: Blood flow restricted resistance training attenuated MSTN gene expression and also increased expression of myostatin endogenous inhibitors. Blood flow restricted resistance training evoked changes in the expression of genes related to MSTN signalling pathway that could in part explain the muscle hypertrophy previously observed in a patient with inclusion body myositis.

  1. Polymorphisms in the Myostatin-1 gene and their association with growth traits in Ancherythroculter nigrocauda

    Science.gov (United States)

    Sun, Yanhong; Li, Qing; Wang, Guiying; Zhu, Dongmei; Chen, Jian; Li, Pei; Tong, Jingou

    2017-05-01

    Myostatin ( MSTN) is a member of the transforming growth factor-β gene superfamily that negatively regulates skeletal muscle development and growth. In the present study, partial genomic fragments of Myostatin-1 ( MSTN-1) in two commercial hatchery populations of Ancherythroculter nigrocauda, an economically important freshwater fish, were screened for single nucleotide polymorphisms (SNPs) and then genotyped by direct sequencing of PCR products. Five SNPs were identified in intron 1 and exon 2, including a non-synonymous mutation causing an amino acid change (Val to Ile) at position 180. Association analyses based on 300 individuals revealed that the g.1129T>C SNP locus was significantly associated with total length (TL), body length (BL), body height (BH) and body weight (BW) in 6- and 18-month-old populations, while the g.1289G>A locus was significantly associated with BH and BW in the 6-month-old population. Haplotype analyses revealed that fish with the genotype combinations TC/TC or TC/GA showed better growth performance. Our results suggest that g.1129T>C and g.1289G>A have positive effects on growth traits and may be candidate gene markers for marker-assisted selection in A. nigrocauda.

  2. Molecular characterization of exon 3 of caprine myostatin gene in Marwari goat

    Directory of Open Access Journals (Sweden)

    Jai Prakash Khichar

    2016-06-01

    Full Text Available Aim: To estimate genetic variability in exon 3 of caprine myostatin gene in Marwari goats. Materials and Methods: A total of 120 blood samples from unrelated Marwari goats were randomly collected from different villages of Bikaner (Rajasthan, India. Genomic DNA was extracted from whole blood using blood DNA isolation kit (Himedia Ltd. as per manufacturer’s protocol. The quality of extracted genomic DNA was checked on 0.8% agarose gel. Specifically designed a primer set for caprine myostatin (MSTN gene (Genebank accession no. DQ167575 was used to amplify the exon 3 region of MSTN gene in Marwari goat. The genetic variability in exon 3 of MSTN gene in Marwari goat was assessed on 8% polyacrylamide gel electrophoresis to detect single strand conformation polymorphism (SSCP pattern. Results: The exon 3 of MSTN gene in Marwari goat showed two types of conformation patterns on 8% polyacrylamide gel. One of the patterns showed only two bands and was considered as genotype AA, whereas another pattern having an extra band was designated as genotype AB. The frequencies of AA and AB genotype for exon 3 region of MSTN gene were calculated as 0.90 and 0.10, respectively. Conclusion: Low level of polymorphism was observed at exon 3 region of MSTN gene in Marwari goat through SSCP analysis. This information could be utilized in future breeding plan to exploit the unique characteristics of Marwari goat of Rajasthan.

  3. The Effect of 10 Weeks of Resistance Training on Serum Myostatin and Body Composition Levels in Obese Adolescents

    Directory of Open Access Journals (Sweden)

    Mohammad ebrahim Bahram

    2017-06-01

    Full Text Available Background and Objectives: Studies are indicative of negative regulatory role of myostatin in skeletal muscle growth. In the present study, the effect of 10 weeks of resistance training was investigated on serum level of myostatin and body composition in obese adolescents. Methods: In this quasi-experimental study, 16 students of Mohammad Naraghi Technical and Vocational Institute of Kashan with body mass index of 30-35, were purposefully selected and randomly divided into two groups of experimental and control. Resistance training program included 3 sets of 8-10 reps with 50-90% 1RM for 3 days a week. Before starting the training program and 48 h after the last training session, blood samples were taken from all participants. Before and after the training, plasma level of myostatin were measured. Data were analyzed using Kolmogorov-Smirnov, dependent t-, and independent t-tests at significance level of p<0.05. Results: In this study, 10 weeks of resistance training resulted in a significant decrease in serum level of myostatin (p=0.0001, weight (p=0.015, body mass index (p=0.02, and fat percentage (p=0.0001 in the experimental group as compared to the control group (p<0.05. Conclusion: According to the findings of the current study, it can be concluded that resistance training-induced changes reduce myostatin level and some anthropometric parameters related to obesity and overweight, which may be effective in the prevention of muscle atrophy and loss of muscle mass, and can play a role as an autocrine mechanism for guiding mechanical load stimuli in response to the growth of skeletal muscle.

  4. Systemic administration of erythropoietin inhibits retinopathy in RCS rats.

    Directory of Open Access Journals (Sweden)

    Weiyong Shen

    Full Text Available OBJECTIVE: Royal College of Surgeons (RCS rats develop vasculopathy as photoreceptors degenerate. The aim of this study was to examine the effect of erythropoietin (EPO on retinopathy in RCS rats. METHODS: Fluorescein angiography was used to monitor retinal vascular changes over time. Changes in retinal glia and vasculature were studied by immunostaining. To study the effects of EPO on retinal pathology, EPO (5000 IU/kg was injected intraperitoneally in 14 week old normal and RCS rats twice a week for 4 weeks. Changes in the retinal vasculature, glia and microglia, photoreceptor apoptosis, differential expression of p75 neurotrophin receptor (p75NTR, pro-neurotrophin 3 (pro-NT3, tumour necrosis factor-α (TNFα, pigment epithelium derived factor (PEDF and vascular endothelial growth factor-A (VEGF-A, the production of CD34(+ cells and mobilization of CD34(+/VEGF-R2(+ cells as well as recruitment of CD34(+ cells into the retina were examined after EPO treatment. RESULTS: RCS rats developed progressive capillary dropout and subretinal neovascularization which were accompanied by retinal gliosis. Systemic administration of EPO stabilized the retinal vasculature and inhibited the development of focal vascular lesions. Further studies showed that EPO modulated retinal gliosis, attenuated photoreceptor apoptosis and p75NTR and pro-NT3 upregulation, promoted the infiltration of ramified microglia and stimulated VEGF-A expression but had little effect on TNFα and PEDF expression. EPO stimulated the production of red and white blood cells and CD34(+ cells along with effective mobilization of CD34(+/VEGF-R2(+ cells. Immunofluorescence study demonstrated that EPO enhanced the recruitment of CD34+ cells into the retina. CONCLUSIONS: Our results suggest that EPO has therapeutic potentials in treatment of neuronal and vascular pathology in retinal disease. The protective effects of EPO on photoreceptors and the retinal vasculature may involve multiple

  5. Maltose binding protein-fusion enhances the bioactivity of truncated forms of pig myostatin propeptide produced in E. coli.

    Directory of Open Access Journals (Sweden)

    Sang Beum Lee

    Full Text Available Myostatin (MSTN is a potent negative regulator of skeletal muscle growth. MSTN propeptide (MSTNpro inhibits MSTN binding to its receptor through complex formation with MSTN, implying that MSTNpro can be a useful agent to improve skeletal muscle growth in meat-producing animals. Four different truncated forms of pig MSTNpro containing N-terminal maltose binding protein (MBP as a fusion partner were expressed in E. coli, and purified by the combination of affinity chromatography and gel filtration. The MSTN-inhibitory capacities of these proteins were examined in an in vitro gene reporter assay. A MBP-fused, truncated MSTNpro containing residues 42-175 (MBP-Pro42-175 exhibited the same MSTN-inhibitory potency as the full sequence MSTNpro. Truncated MSTNpro proteins containing either residues 42-115 (MBP-Pro42-115 or 42-98 (MBP-Pro42-98 also exhibited MSTN-inhibitory capacity even though the potencies were significantly lower than that of full sequence MSTNpro. In pull-down assays, MBP-Pro42-175, MBP-Pro42-115, and MBP-Pro42-98 demonstrated their binding to MSTN. MBP was removed from the truncated MSTNpro proteins by incubation with factor Xa to examine the potential role of MBP on MSTN-inhibitory capacity of those proteins. Removal of MBP from MBP-Pro42-175 and MBP-Pro42-98 resulted in 20-fold decrease in MSTN-inhibitory capacity of Pro42-175 and abolition of MSTN-inhibitory capacity of Pro42-98, indicating that MBP as fusion partner enhanced the MSTN-inhibitory capacity of those truncated MSTNpro proteins. In summary, this study shows that MBP is a very useful fusion partner in enhancing MSTN-inhibitory potency of truncated forms of MSTNpro proteins, and MBP-fused pig MSTNpro consisting of amino acid residues 42-175 is sufficient to maintain the full MSTN-inhibitory capacity.

  6. Maltose binding protein-fusion enhances the bioactivity of truncated forms of pig myostatin propeptide produced in E. coli.

    Science.gov (United States)

    Lee, Sang Beum; Park, Sung Kwon; Kim, Yong Soo

    2017-01-01

    Myostatin (MSTN) is a potent negative regulator of skeletal muscle growth. MSTN propeptide (MSTNpro) inhibits MSTN binding to its receptor through complex formation with MSTN, implying that MSTNpro can be a useful agent to improve skeletal muscle growth in meat-producing animals. Four different truncated forms of pig MSTNpro containing N-terminal maltose binding protein (MBP) as a fusion partner were expressed in E. coli, and purified by the combination of affinity chromatography and gel filtration. The MSTN-inhibitory capacities of these proteins were examined in an in vitro gene reporter assay. A MBP-fused, truncated MSTNpro containing residues 42-175 (MBP-Pro42-175) exhibited the same MSTN-inhibitory potency as the full sequence MSTNpro. Truncated MSTNpro proteins containing either residues 42-115 (MBP-Pro42-115) or 42-98 (MBP-Pro42-98) also exhibited MSTN-inhibitory capacity even though the potencies were significantly lower than that of full sequence MSTNpro. In pull-down assays, MBP-Pro42-175, MBP-Pro42-115, and MBP-Pro42-98 demonstrated their binding to MSTN. MBP was removed from the truncated MSTNpro proteins by incubation with factor Xa to examine the potential role of MBP on MSTN-inhibitory capacity of those proteins. Removal of MBP from MBP-Pro42-175 and MBP-Pro42-98 resulted in 20-fold decrease in MSTN-inhibitory capacity of Pro42-175 and abolition of MSTN-inhibitory capacity of Pro42-98, indicating that MBP as fusion partner enhanced the MSTN-inhibitory capacity of those truncated MSTNpro proteins. In summary, this study shows that MBP is a very useful fusion partner in enhancing MSTN-inhibitory potency of truncated forms of MSTNpro proteins, and MBP-fused pig MSTNpro consisting of amino acid residues 42-175 is sufficient to maintain the full MSTN-inhibitory capacity.

  7. Synergistic and antagonistic interplay between myostatin gene expression and physical activity levels on gene expression patterns in triceps Brachii muscles of C57/BL6 mice.

    Directory of Open Access Journals (Sweden)

    Kelsey Caetano-Anollés

    Full Text Available Levels of myostatin expression and physical activity have both been associated with transcriptome dysregulation and skeletal muscle hypertrophy. The transcriptome of triceps brachii muscles from male C57/BL6 mice corresponding to two genotypes (wild-type and myostatin-reduced under two conditions (high and low physical activity was characterized using RNA-Seq. Synergistic and antagonistic interaction and ortholog modes of action of myostatin genotype and activity level on genes and gene pathways in this skeletal muscle were uncovered; 1,836, 238, and 399 genes exhibited significant (FDR-adjusted P-value < 0.005 activity-by-genotype interaction, genotype and activity effects, respectively. The most common differentially expressed profiles were (i inactive myostatin-reduced relative to active and inactive wild-type, (ii inactive myostatin-reduced and active wild-type, and (iii inactive myostatin-reduced and inactive wild-type. Several remarkable genes and gene pathways were identified. The expression profile of nascent polypeptide-associated complex alpha subunit (Naca supports a synergistic interaction between activity level and myostatin genotype, while Gremlin 2 (Grem2 displayed an antagonistic interaction. Comparison between activity levels revealed expression changes in genes encoding for structural proteins important for muscle function (including troponin, tropomyosin and myoglobin and for fatty acid metabolism (some linked to diabetes and obesity, DNA-repair, stem cell renewal, and various forms of cancer. Conversely, comparison between genotype groups revealed changes in genes associated with G1-to-S-phase transition of the cell cycle of myoblasts and the expression of Grem2 proteins that modulate the cleavage of the myostatin propeptide. A number of myostatin-feedback regulated gene products that are primarily regulatory were uncovered, including microRNA impacting central functions and Piezo proteins that make cationic current

  8. Kinetic models for nitrogen inhibition in ANAMMOX and nitrification process on deammonification system at room temperature.

    Science.gov (United States)

    De Prá, Marina C; Kunz, Airton; Bortoli, Marcelo; Scussiato, Lucas A; Coldebella, Arlei; Vanotti, Matias; Soares, Hugo M

    2016-02-01

    In this study were fitted the best kinetic model for nitrogen removal inhibition by ammonium and/or nitrite in three different nitrogen removal systems operated at 25 °C: a nitrifying system (NF) containing only ammonia oxidizing bacteria (AOB), an ANAMMOX system (AMX) containing only ANAMMOX bacteria, and a deammonification system (DMX) containing both AOB and ANAMMOX bacteria. NF system showed inhibition by ammonium and was best described by Andrews model. The AMX system showed a strong inhibition by nitrite and Edwards model presented a best system representation. For DMX system, the increased substrate concentration (until 1060 mg NH3-N/L) tested was not limiting for the ammonia consumption rate and the Monod model was the best model to describe this process. The AOB and ANAMMOX sludges combined in the DMX system displayed a better activity, substrate affinity and excellent substrate tolerance than in nitrifying and ANAMMOX process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. KERAGAMAN GEN CALPASTATIN, CALPAIN 3 DAN MYOSTATIN PADA DOMBA DI UP3 JONGGOL

    Directory of Open Access Journals (Sweden)

    Cece Sumantri

    2012-04-01

    Full Text Available The aim of this study was to identify the genetic polymorphisms of calpastatin (CAST, calpain 3 (CAPN3 and myostatin (MSTN on local sheep at Jonggol Animal Science Teaching and Research Unit (JASTRU. A total number of 294 blood samples were collected from JASTRU. The identification of polymorhism in CAST and CAPN3 genes performed by using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP while MSTN gene by using PCR-SSCP methods. The results showed that CAST|MspI, CAST|NcoI and CAPN3|MaeII loci were polymorphic, whereas The MSTN locus was monomorphic for G (1.0. The frequency of allele M (0.87 on the locus (CAST|MspI higher than the N allele (0.13. At locus CAST|NcoI, the frequency of allele M (0.96 higher than the N allele (0.04. At the CAPN3|MaeII, allele G (0.85 and allele T (0.15. Locus CAST|NcoI has higher observed heterozygosity (Ho = 0.92 compared to CAPN3|MaeII and CAST|MspI (Ho = 0.74-0.77, however has lower compared to CAPN3|MaeII and CAST|MspI in expected of heterozygosity (He = 0.08 vs 0.23-0.26 and in index fixation (Fis = -0.04 vs 0.03-0.12.

  10. Skeletal muscle mitochondrial bioenergetics and associations with myostatin genotypes in the Thoroughbred horse.

    Directory of Open Access Journals (Sweden)

    Mary F Rooney

    Full Text Available Variation in the myostatin (MSTN gene has been reported to be associated with race distance, body composition and skeletal muscle fibre composition in the horse. The aim of the present study was to test the hypothesis that MSTN variation influences mitochondrial phenotypes in equine skeletal muscle. Mitochondrial abundance and skeletal muscle fibre types were measured in whole muscle biopsies from the gluteus medius of n = 82 untrained (21 ± 3 months Thoroughbred horses. Skeletal muscle fibre type proportions were significantly (p T (C and the SINE insertion 227 bp polymorphism (I. Evaluation of mitochondrial complex activities indicated higher combined mitochondrial complex I+III and II+III activities in the presence of the C-allele / I allele (p ≤ 0.05. The restoration of complex I+III and complex II+III activities following addition of exogenous coenzyme Q1 (ubiquinone1 (CoQ1 in vitro in the TT/NN (homozygous T allele/homozygous no insertion cohort indicated decreased coenzyme Q in these animals. In addition, decreased gene expression in two coenzyme Q (CoQ biosynthesis pathway genes (COQ4, p ≤ 0.05; ADCK3, p ≤ 0.01 in the TT/NN horses was observed. This study has identified several mitochondrial phenotypes associated with MSTN genotype in untrained Thoroughbred horses and in addition, our findings suggest that nutritional supplementation with CoQ may aid to restore coenzyme Q activity in TT/NN horses.

  11. Skeletal muscle mitochondrial bioenergetics and associations with myostatin genotypes in the Thoroughbred horse.

    Science.gov (United States)

    Rooney, Mary F; Porter, Richard K; Katz, Lisa M; Hill, Emmeline W

    2017-01-01

    Variation in the myostatin (MSTN) gene has been reported to be associated with race distance, body composition and skeletal muscle fibre composition in the horse. The aim of the present study was to test the hypothesis that MSTN variation influences mitochondrial phenotypes in equine skeletal muscle. Mitochondrial abundance and skeletal muscle fibre types were measured in whole muscle biopsies from the gluteus medius of n = 82 untrained (21 ± 3 months) Thoroughbred horses. Skeletal muscle fibre type proportions were significantly (p T (C) and the SINE insertion 227 bp polymorphism (I). Evaluation of mitochondrial complex activities indicated higher combined mitochondrial complex I+III and II+III activities in the presence of the C-allele / I allele (p ≤ 0.05). The restoration of complex I+III and complex II+III activities following addition of exogenous coenzyme Q1 (ubiquinone1) (CoQ1) in vitro in the TT/NN (homozygous T allele/homozygous no insertion) cohort indicated decreased coenzyme Q in these animals. In addition, decreased gene expression in two coenzyme Q (CoQ) biosynthesis pathway genes (COQ4, p ≤ 0.05; ADCK3, p ≤ 0.01) in the TT/NN horses was observed. This study has identified several mitochondrial phenotypes associated with MSTN genotype in untrained Thoroughbred horses and in addition, our findings suggest that nutritional supplementation with CoQ may aid to restore coenzyme Q activity in TT/NN horses.

  12. BRAF inhibition improves tumor recognition by the immune system

    DEFF Research Database (Denmark)

    Donia, Marco; Fagone, Paolo; Nicoletti, Ferdinando

    2012-01-01

    to be poorly efficient. By characterizing the immunological interactions between T cells and cancer cells in clinical material as well as the influence of the FDA-approved BRAF inhibitor vemurafenib on the immune system, we aimed at unraveling new strategies to expand the efficacy of adoptive T-cell transfer...

  13. Brief Communication: Sexual dimorphic expression of myostatin and follistatin like-3 in a rat trans-generational under-nutrition model

    Directory of Open Access Journals (Sweden)

    Mitchell Murray D

    2010-05-01

    Full Text Available Abstract The detrimental effects of maternal under-nutrition during gestation on fetal development are well known with an increased propensity of metabolic disorders identified in the adult offspring. Understanding exactly how and by which molecular pathways inadequate nutrition can impact upon offspring phenotype is critical and necessary for the development of treatment methods and ultimately prevention of any negative health effects. Myostatin, a negative regulator of muscle development, has recently been shown to effect glucose homeostasis and fat deposition. The involvement of myostatin in glucose metabolism and adipogenesis thus supports its ability to act in the continued alterations to the postnatal phenotype of the offspring. This hypothesis was examined in the current study using a trans-generational gestationally under-nourished rat model exposed to a high-fat (HF diet post-weaning. The body weight, body fat, plasma glucose and insulin concentrations of the offspring, both male and female, were investigated in relation to the protein expression of myostatin and its main inhibitor; follistatin like-3 (FSTL-3, in skeletal muscle of mature offspring. Sexual dimorphism was clearly evident in the majority of these measures, including myostatin and FSTL-3 expression. Generally males displayed higher (P myostatin precursor and dimer expression than females, which was especially apparent (P in both chow and HF trans-generationally undernourished (UNAD groups. In females only, myostatin precursor and dimer expression was altered by both trans-generational under-nutrition and postnatal diet. Overall FSTL-3 expression did not differ between sexes, although difference between sexes within certain treatments and diets were evident. Most notably, HF fed UNAD females had higher (P FSTL-3 expression than HF fed UNAD males. The former group also displayed higher (P FSTL-3 expression compared to all other female groups. In summary, myostatin may prove

  14. Formation and Inhibition of Nε-(Carboxymethyllysine in Saccharide-Lysine Model Systems during Microwave Heating

    Directory of Open Access Journals (Sweden)

    Bing Li

    2012-10-01

    Full Text Available  Nε-(carboxymethyl lysine (CML is the most abundant advanced glycation end product (AGE, and frequently selected as an AGEs marker in laboratory studies. In this paper, the formation and inhibition of Nε-(carboxymethyllysine in saccharide-lysine model systems during microwave heating have been studied. The microwave heating treatment significantly promoted the formation of CML during Maillard reactions, which was related to the reaction temperature, time and type of saccharide. The order of CML formation for different saccharides was lactose > glucose > sucrose. Then, the inhibition effect on CML by five inhibitors was further examined. According to the results, ascorbic acid and tocopherol did not affect inhibition of CML, in contrast, thiamin, rutin and quercetin inhibited CML formation, and the inhibitory effects were concentration dependent.

  15. Inhibition of the classical pathway of the complement system by saliva of Amblyomma cajennense (Acari: Ixodidae).

    Science.gov (United States)

    Franco, Paula F; Silva, Naylene C S; Fazito do Vale, Vladimir; Abreu, Jéssica F; Santos, Vânia C; Gontijo, Nelder F; Valenzuela, Jesus G; Pereira, Marcos H; Sant'Anna, Mauricio R V; Gomes, Alessandra P S; Araujo, Ricardo N

    2016-05-01

    Inhibition of the complement system during and after haematophagy is of utmost importance for tick success in feeding and tick development. The role of such inhibition is to minimise damage to the intestinal epithelium as well as avoiding inflammation and opsonisation of salivary molecules at the bite site. Despite its importance, the salivary anti-complement activity has been characterised only in species belonging to the Ixodes ricinus complex which saliva is able to inhibit the alternative and lectin pathways. Little is known about this activity in other species of the Ixodidae family. Thus, the aim of this study was to describe the inhibition of the classical pathway of the complement system by the saliva of Amblyomma cajennense at different stages of the haematophagy. The A. cajennense saliva and salivary gland extract (SGE) were able to inhibit the complement classical pathway through haemolytic assays with higher activity observed when saliva was used. The anti-complement activity is present in the salivary glands of starving females and also in females throughout the whole feeding process, with significant higher activity soon after tick detachment. The SGE activity from both females fed on mice or horses had no significant correlation (p > 0.05) with tick body weight. The pH found in the intestinal lumen of A. cajennense was 8.04 ± 0.08 and haemolytic assays performed at pH 8.0 showed activation of the classical pathway similarly to what occurs at pH 7.4. Consequently, inhibition could be necessary to protect the tick enterocytes. Indeed, the inhibition observed by SGE was higher in pH 8.0 in comparison to pH 7.4 reinforcing the role of saliva in protecting the intestinal cells. Further studies should be carried out in order to identify the inhibitor molecule and characterise its inhibition mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Analysis of Horse Myostatin Gene and Identification of Single Nucleotide Polymorphisms in Breeds of Different Morphological Types

    OpenAIRE

    Dall'Olio, Stefania; Fontanesi, Luca; Nanni Costa, Leonardo; Tassinari, Marco; Minieri, Laura; Falaschini, Adalberto

    2010-01-01

    Myostatin (MSTN) is a negative modulator of muscle mass. We characterized the horse (Equus caballus) MSTN gene and identified and analysed single nucleotide polymorphisms (SNPs) in breeds of different morphological types. Sequencing of coding, untranslated, intronic, and regulatory regions of MSTN gene in 12 horses from 10 breeds revealed seven SNPs: two in the promoter, four in intron 1, and one in intron 2. The SNPs of the promoter (GQ183900:g.26T > C and GQ183900:g.156T > C, the latter loc...

  17. DETECTING PRESENCE OF C/T POLYMORPHISM AT POSITION 34 SECOND INTRON OF THE MYOSTATIN GENE IN RABBITS

    Directory of Open Access Journals (Sweden)

    Agnieszka MARKOWSKA

    2011-01-01

    Full Text Available Myostatin gene is a negative regulator of skeletal muscles growth. It is responsible for normal development of skeletal muscles. The objective of the research was to detect variation of C/T at position 34 of the second intron of the MNST gene in rabbits. The research included 114 rabbits: 54 of them Polish Rabbits, and 60 of them White Flemish Giants, examined by means of the PCR-RFLP method using AluI restriction enzyme. We found allele C with a frequency of 0.6184 of the examined rabbit population, and allele T with a frequency of 0.3816 of the examined rabbits.

  18. DETECTING PRESENCE OF C/T POLYMORPHISM AT POSITION 34 SECOND INTRON OF THE MYOSTATIN GENE IN RABBITS

    OpenAIRE

    Agnieszka MARKOWSKA; Alica RAFAYOVA; Anna TRAKOWICKA

    2011-01-01

    Myostatin gene is a negative regulator of skeletal muscles growth. It is responsible for normal development of skeletal muscles. The objective of the research was to detect variation of C/T at position 34 of the second intron of the MNST gene in rabbits. The research included 114 rabbits: 54 of them Polish Rabbits, and 60 of them White Flemish Giants, examined by means of the PCR-RFLP method using AluI restriction enzyme. We found allele C with a frequency of 0.6184 of the examined rabbit pop...

  19. DETECTING PRESENCE OF C/T POLYMORPHISM AT POSITION 34 SECOND INTRON OF THE MYOSTATIN GENE IN RABBITS

    OpenAIRE

    MARKOWSKA, Agnieszka; RAFAYOVA, Alica; TRAKOWICKA, Anna

    2011-01-01

    Myostatin gene is a negative regulator of skeletal muscles growth. It is responsible for normal development of skeletal muscles. The objective of the research was to detect variation of C/T at position 34 of the second intron of the MNST gene in rabbits. The research included 114 rabbits: 54 of them Polish Rabbits, and 60 of them White Flemish Giants, examined by means of the PCR-RFLP method using AluI restriction enzyme. We found allele C with a frequency of 0.6184 of the examine...

  20. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-β- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures

    International Nuclear Information System (INIS)

    Kamanga-Sollo, E.; Pampusch, M.S.; White, M.E.; Hathaway, M.R.; Dayton, W.R.

    2005-01-01

    We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-β superfamily members myostatin and TGF-β 1 have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-β 1 or myostatin significantly (P 1 and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P 1 or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-β 1 or myostatin treatment (P 1 or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-β and myostatin to suppress proliferation of PEMC

  1. Cannabinoids inhibit fibrogenesis in diffuse systemic sclerosis fibroblasts.

    Science.gov (United States)

    Garcia-Gonzalez, Estrella; Selvi, Enrico; Balistreri, Epifania; Lorenzini, Sauro; Maggio, Roberta; Natale, Maria-Rita; Capecchi, Pier-Leopoldo; Lazzerini, Pietro-Enea; Bardelli, Marco; Laghi-Pasini, Franco; Galeazzi, Mauro

    2009-09-01

    It has been demonstrated that the endocannabinoid system is up-regulated in pathologic fibrosis and that modulation of the cannabinoid receptors might limit the progression of uncontrolled fibrogenesis. The aim of this study was to investigate whether the synthetic cannabinoid receptor agonist WIN55,212-2 could modulate fibrogenesis in an in vitro model of dcSSc. The expression of cannabinoid receptors CB1 and CB2 was assessed in dcSSc fibroblasts and healthy control fibroblasts. To investigate the effect of WIN55,212-2 on dcSSc fibrogenesis, we studied type I collagen, profibrotic cytokines, fibroblast transdifferentiation into myofibroblasts, apoptotic processes and activation of the extracellular signal-related kinase 1/2 pathway prior to and after the treatment with the synthetic cannabinoid at increasing concentrations. Both CB1 and CB2 receptors were over-expressed in dcSSc fibroblasts compared with healthy controls. WIN55,212-2 caused a reduction in extracellular matrix deposition and counteracted several behavioural abnormalities of scleroderma fibroblasts including transdifferentiation into myofibroblasts and resistance to apoptosis. The anti-fibrogenic effect of WIN55,212-2 was not reverted by selective cannabinoid antagonists. Our preliminary findings suggest that cannabinoids are provided with an anti-fibrotic activity, thereby possibly representing a new class of agents targeting fibrosis diseases.

  2. L6E9 Myoblasts Are Deficient of Myostatin and Additional TGF- Members Are Candidates to Developmentally Control Their Fiber Formation

    Directory of Open Access Journals (Sweden)

    Stefania Rossi

    2010-01-01

    Full Text Available This work provides evidence that the robust myoblast differentiation observed in L6E9 cells is causally linked to deficiency of myostatin, which, conversely, has been found to be expressed in C2C12 cells. However, despite the absence of endogenous myostatin, L6E9 myoblasts expressed functional Activin receptors type II (ActRIIs and follistatin as well as the highly related TGF- members Activins and GDF11, suggesting that in this cell line the regulation of fiber size might be under the control of multiple regulators regardless of myostatin. In line with this hypothesis, delivery of a dominant-negative ActRIIb form or the increase of follistatin, as obtained via Trichostatin treatment or stable transfection of a short human follistatin form, enhanced the L6E9 cell differentiation and further increased the size of myotubes, suggesting that L6E9 myoblasts provide a spontaneous myostatin knock-out in vitro model to study TGF- ligands involved in developmental regulation of fiber size.

  3. Alleviating exercise-induced muscular stress using neat and processed bee pollen: oxidative markers, mitochondrial enzymes, and myostatin expression in rats

    Directory of Open Access Journals (Sweden)

    Sameer Ketkar

    2015-09-01

    Conclusion: The study establishes the antioxidant, mitochondrial upregulatory, and myostatin inhibitory effects of both MIMBP and PMIMBP in exercise-induced oxidative stress conditions, suggesting their usefulness in effective management of exercise-induced muscular stress. Further, processing of MIMBP with an edible lipid-surfactant mixture was found to improve the therapeutic efficiency of pollen.

  4. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration.

    NARCIS (Netherlands)

    Pasteuning-Vuhman, S.; Boertje-van der Meulen, J.; van Putten, M.; Overzier, M.; ten Dijke, P; Kiełbasa, S.M.; Arindrarto, W.; Wolterbeek, R.; Lezhnina, K.V.; Ozerov, I.V.; Aliper, A.M.; Hoogaars, W.; Aartsma-Rus, A; Loomans, C.J.

    Skeletal muscle fibrosis and impaired muscle regeneration are major contributors to muscle wasting in Duchenne muscular dystrophy (DMD). Muscle growth is negatively regulated by myostatin (MSTN) and activins. Blockage of these pathways may improve muscle quality and function in DMD. Antisense

  5. The Effect of 8 Weeks High-intensity Interval Training on Myostatin and Follistatin Gene Expression in Gastrocnemius Muscle of the Rats

    Directory of Open Access Journals (Sweden)

    Soheil Biglari

    2018-04-01

    Full Text Available Abstract Background: The purpose of the present study is to investigate the effect of 8 weeks High-intensity Interval Training (HIIT on the expression of two muscle growth regulating genes (myostatin and follistatin in gastrocnemius muscle of healthy male rats. Materials and Methods: 16 male Wistar rats were randomly divided into two groups in the same number: control and HIIT. HIIT program was underwent 40 min each session, three sessions in a week for eight weeks. Each exercise training session consisted of 5 min warm-up and cool-down at 40-50 % VO2max, 30 min interval running including 4 min high-intensity (85-90% VO2max and 2 min active recovery (at 50-60% VO2max. Rats in control group did not do any exercise training program. 48 h after the last training session, rats` gastrocnemius muscle was extracted and the expression of myostatin and follistatin genes was determined by Real Time-PCR. For statistical data analysis, independent t-test was used. Results: The expression of myostatin was significantly reduced 68% in HIIT group in comparison with the control group (p0.05. Gastrocnemius muscle weight was significantly increased 23% in the HIIT group compared to the control group (p<0.05. Conclusion: Results indicated that HIIT lead to significant reduction in the expression of myostatin gene and increase in the weight of gastrocnemius muscle in rats.

  6. Inhibition of bacterial foodborne pathogens by the lactoperoxidase system in combination with monolaurin.

    Science.gov (United States)

    McLay, J C; Kennedy, M J; Orourke, A L; Elliot, R M; Simmonds, R S

    2002-02-25

    The lactoperoxidase system (LPS) and monolaurin (ML) are potential natural antimicrobial agents for use in foods. The LPS is considered to have greatest activity against Gram-negative bacteria while ML is usually considered to have greatest activity against Gram-positive bacteria. An LPS-ML combination system (utilizing lactoperoxidase (LPX) in the range 5-200 mg kg(-1) and ML in the range 50-1,000 ppm) inhibited growth of Escherichia coli O157:H7 and Staphylococcus aureus. Growth of S. aureus was inhibited more strongly in broth than in milk, in milk than in ground beef A similar pattern was observed for E. coli O157:H7, though enhanced inhibition by LPS-ML systems over that obtained in comparable LPS only systems was not observed in ground beef The inhibitory action of the LPS in combination with other lipids was also examined, with progressively weaker inhibition observed in combinations including palmitoleic acid, monopalmitolein, lauric acid, caprylic acid, and sodium lauryl sulphate.

  7. Sensitivity of Gray's Behavioral Inhibition System in clinically anxious and non-anxious children and adolescents

    NARCIS (Netherlands)

    Vervoort, Leentje; Wolters, Lidewij H.; Hogendoorn, Sanne M.; de Haan, Else; Boer, Frits; Prins, Pier J. M.

    2010-01-01

    The child version of the Carver and White (1994) BIS/BAS-scales (Muris et al., 2005) was used to assess sensitivity of the Behavioral Inhibition and the Behavioral Activation System in clinically anxious and non-anxious youth (n = 175, ages 8-18 years, 70 boys). Results supported the hypothesis that

  8. Morphological abnormalities, impaired fetal development and decrease in myostatin expression following somatic cell nuclear transfer in dogs.

    Science.gov (United States)

    Hong, Il-Hwa; Jeong, Yeon-Woo; Shin, Taeyoung; Hyun, Sang-Hwan; Park, Jin-Kyu; Ki, Mi-Ran; Han, Seon-Young; Park, Se-Il; Lee, Ji-Hyun; Lee, Eun-Mi; Kim, Ah-Young; You, Sang-Young; Hwang, Woo-Suk; Jeong, Kyu-Shik

    2011-05-01

    Several mammals, including dogs, have been successfully cloned using somatic cell nuclear transfer (SCNT), but the efficiency of generating normal, live offspring is relatively low. Although the high failure rate has been attributed to incomplete reprogramming of the somatic nuclei during the cloning process, the exact cause is not fully known. To elucidate the cause of death in cloned offspring, 12 deceased offspring cloned by SCNT were necropsied. The clones were either stillborn just prior to delivery or died with dyspnea shortly after birth. On gross examination, defects in the anterior abdominal wall and increased heart and liver sizes were found. Notably, a significant increase in muscle mass and macroglossia lesions were observed in deceased SCNT-cloned dogs. Interestingly, the expression of myostatin, a negative regulator of muscle growth during embryogenesis, was down-regulated at the mRNA level in tongues and skeletal muscles of SCNT-cloned dogs compared with a normal dog. Results of the present study suggest that decreased expression of myostatin in SCNT-cloned dogs may be involved in morphological abnormalities such as increased muscle mass and macroglossia, which may contribute to impaired fetal development and poor survival rates. Copyright © 2011 Wiley-Liss, Inc.

  9. Real-time PCR genotyping and frequency of the myostatin F94L mutation in beef cattle breeds.

    Science.gov (United States)

    Vankan, D M; Waine, D R; Fortes, M R S

    2010-04-01

    This research developed two real-time PCR assays, employing high-resolution melt and allele-specific analysis to accurately genotype the F94L mutation in cattle. This mutation (g.433C > A) in the growth differentiation factor 8 or myostatin gene has recently been shown to be functionally associated with increased muscle mass and carcass yield in cattle. The F94L mutation is not, like other myostatin mutations, associated with reduced fertility and dystocia. It is therefore a candidate for introgression into other breeds to improve retail beef yield and the development of a simple and accurate test to genotype this specific mutation is warranted. Variations in the efficiency of enzyme cleavage compromised the accuracy of genotyping by published methods, potentially resulting in an overestimation of the frequency of the mutant allele. The frequency of the F94L mutation was determined by real-time PCR in 1140 animals from 15 breeds of cattle in Australia. The mutation was present in Simmental (0.8%), Piedmontese (2%), Droughtmaster (4%) and Limousin (94.2%) but not found in Salers, Angus, Poll Hereford, Hereford, Gelbvieh, Charolais, Jersey, Brahman, Holstein, Shorthorn or Maine Anjou. The low prevalence of F94L in all beef breeds except Limousin indicates the significant potential for this mutation to improve retail yield in Australian beef cattle.

  10. Roles of abscisic acid and auxin in shoot-supplied ammonium inhibition of root system development

    OpenAIRE

    Li, Baohai; Li, Qing; Kronzucker, Herbert J; Shi, Weiming

    2011-01-01

    A plastic root system is a prerequisite for successful plant acclimation to variable environments. The normally functioning root system is the result of a complex interaction of root-borne signals and shoot-derived regulators. We recently demonstrated that AUX1, a well-studied component of auxin transport, mediates shoot-supplied ammonium (SSA) inhibition of lateral root (LR) formation in Arabidopsis. By contrast, the response did not involve ABA pathways, via which several other abiotic stre...

  11. Inhibition of corrosion of carbon steel by heptane sulphonic acid – Zn2+ system

    Directory of Open Access Journals (Sweden)

    C. MARY ANBARAS

    2012-03-01

    Full Text Available Corrosion inhibition of carbon steel in dam water by sodium heptane sulphonate (SHS and zinc ion system was investigated using weight loss and potentiodynamic polarization methods. Results of weight loss method indicated that inhibition efficiency (IE increased as the inhibitor concentration increased. A synergistic effect existed between SHS and Zn2+. The influence of sodium potassium tartrate (SPT on the IE of the SHS-Zn2+ system was evaluated. As the immersion period increased, the IE decreased. Polarization study revealed that SHS-Zn2+ system functioned as a cathodic inhibitor. AC impedance spectra revealed that a protective film was formed on the metal surface. The nature of the metal surface was analyzed by FTIR spectra, SEM and AFM analyses.

  12. Central inhibition of initiation of swallowing by systemic administration of diazepam and baclofen in anaesthetized rats.

    Science.gov (United States)

    Tsujimura, Takanori; Sakai, Shogo; Suzuki, Taku; Ujihara, Izumi; Tsuji, Kojun; Magara, Jin; Canning, Brendan J; Inoue, Makoto

    2017-05-01

    Dysphagia is caused not only by neurological and/or structural damage but also by medication. We hypothesized memantine, dextromethorphan, diazepam, and baclofen, all commonly used drugs with central sites of action, may regulate swallowing function. Swallows were evoked by upper airway (UA)/pharyngeal distension, punctate mechanical stimulation using a von Frey filament, capsaicin or distilled water (DW) applied topically to the vocal folds, and electrical stimulation of a superior laryngeal nerve (SLN) in anesthetized rats and were documented by recording electromyographic activation of the suprahyoid and thyrohyoid muscles and by visualizing laryngeal elevation. The effects of intraperitoneal or topical administration of each drug on swallowing function were studied. Systemic administration of diazepam and baclofen, but not memantine or dextromethorphan, inhibited swallowing evoked by mechanical, chemical, and electrical stimulation. Both benzodiazepines and GABA A receptor antagonists diminished the inhibitory effects of diazepam, whereas a GABA B receptor antagonist diminished the effects of baclofen. Topically applied diazepam or baclofen had no effect on swallowing. These data indicate that diazepam and baclofen act centrally to inhibit swallowing in anesthetized rats. NEW & NOTEWORTHY Systemic administration of diazepam and baclofen, but not memantine or dextromethorphan, inhibited swallowing evoked by mechanical, chemical, and electrical stimulation. Both benzodiazepines and GABA A receptor antagonists diminished the inhibitory effects of diazepam, whereas a GABA B receptor antagonist diminished the effects of baclofen. Topical applied diazepam or baclofen was without effect on swallowing. Diazepam and baclofen act centrally to inhibit swallowing in anesthetized rats. Copyright © 2017 the American Physiological Society.

  13. Correlating single nucleotide polymorphisms in the myostatin gene with performance traits in rabbit

    Directory of Open Access Journals (Sweden)

    E.M. Abdel-Kafy

    2016-09-01

    Full Text Available The Myostatin (MSTN, or Growth and Differentiation Factor 8 (GDF8, gene has been implicated in the double muscling phenomenon, in which a series of mutations render the gene inactive and unable to properly regulate muscle fibre deposition. Single nucleotide polymorphisms (SNPs in the MSTN gene have been correlated to production traits, making it a candidate target gene to enhance livestock and fowl productivity. This study aimed to assess any association of three SNPs in the rabbit MSTN gene (c.713T>A in exon 2, c.747+34C>T in intron 2, and c.*194A>G in 3’-untranslated region and their combinations, with carcass, production and reproductive traits. The investigated traits included individual body weight, daily body weight gain, carcass traits and reproductive traits. The 3 SNPs were screened using PCR-restriction fragment length polymorphism (RFLP-based analysis and the effects of the different SNP genotypes and their combinations were estimated in a rabbit population. Additionally, additive and dominance effects were estimated for significant traits. The results found no significant association between the c.713 T>A SNP and all the examined traits. Allele T at the c.747+34C>T SNP was only significantly associated (PG, allele G was significantly associated (PG SNP also had positive effects on most carcass traits. The estimated additive genetic effect for the c.*194A>G SNP was significant (PA and c.747+34C>T, GG at the c.*194A>G SNP correlated with highest values in body weight and daily weight gain. In conclusion, the ‘G’ allele at the c.*194A>G SNP had positive effects on growth and carcass traits and so could be used as a favourable allele in planning rabbit selection. Further population-wide studies are necessary to test the association of the c.*194A>G SNP with carcass traits. We also recommend evaluation of the potential effects of the c.*194A>G SNP on MSTN gene expression.

  14. Relationship between suicide ideation and Behavioral Inhibition/Activation Systems (BIS/BAS and perfectionism

    Directory of Open Access Journals (Sweden)

    Mansour Bairami

    2015-03-01

    Full Text Available Background: The present research investigated the relationship between suicide ideation and Behavioral Inhibition/Activation Systems (BIS/BAS and perfectionism in university Studants. Methods: This descriptive-correlational study was conducted on200 students at university of Tabriz that were selected by multistage cluster sampling. The subjects answered three questionnaires: Beck Scale for Suicide Ideation (BSSI, Multidimensional Perfectionism Scale (MPS and Gray-Wilson Personality Questionnaire (GWPQ. Data were analyzed by Pearson correlation and multiple regression. Results: Results showed that there is a significant relationship between suicide ideation and behavioral inhibition system (R=0/55, self-oriented perfectionism(R=0/40 and socially- prescribed perfectionism (0/47 (p=0.01. Also, the results of regression analysis showed that behavioral inhibition system, self-oriented and socially-prescribed perfectionism could significantly predict suicide ideation. Conclusion: Behavioral activation system (BIS and self-oriented /socially prescribed perfectionism were correlated to and could predict suicide ideation.

  15. Study the effect of synthesized graft copolymer on the inhibitive water based drilling fluid system

    Directory of Open Access Journals (Sweden)

    Rajat Jain

    2017-12-01

    Full Text Available This research paper consists of the synthesis of carboxymethyl-graft-polyacrylamide copolymer by free radical polymerization technique and its characterization using Fourier transform infrared spectroscopy (FTIR, field-emission scanning electron microscopy (FESEM and thermogravimetric analysis. This graft copolymer was used as a drilling fluid additive and its effect on the Indian reactive shale sample was analyzed. The characterization of the shale sample used in this study was done by X-ray diffraction technique (XRD, FTIR, FESEM, and energy-dispersive X-ray spectroscopy (EDX to determine the presence of various clay minerals. Experimental investigations revealed that the synthesized graft copolymer has a significant effect on the rheological and filtration properties of the inhibitive drilling fluid system and has high shale recovery performance. Hence, inhibitive drilling fluid system using synthesized graft copolymer may be used for the drilling of water sensitive shale formations.

  16. Micelle System Based on Molecular Economy Principle for Overcoming Multidrug Resistance and Inhibiting Metastasis.

    Science.gov (United States)

    Qi, Yan; Qin, Xianya; Yang, Conglian; Wu, Tingting; Qiao, Qi; Song, Qingle; Zhang, Zhiping

    2018-03-05

    The high mortality of cancer is mainly attributed to multidrug resistance (MDR) and metastasis. A simple micelle system was constructed here to codeliver doxorubicin (DOX), adjudin (ADD), and nitric oxide (NO) for overcoming MDR and inhibiting metastasis. It was devised based on the "molecular economy" principle as the micelle system was easy to fabricate and exhibited high drug loading efficiency, and importantly, each component of the micelles would exert one or more active functions. DOX acted as the main cell killing agent supplemented with ADD, NO, and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). MDR was overcome by synergistic effects of mitochondria inhibition agents, TPGS and ADD. A TPGS-based NO donor can be used as a drug carrier, and it can release NO to enhance drug accumulation and penetration in tumor, resulting in a positive cycle of drug delivery. This DOX-ADD conjugate self-assembly system demonstrated controlled drug release, increased cellular uptake and cytotoxicity, enhanced accumulation at tumor site, and improved in vivo metastasis inhibition of breast cancer. The micelles can fully take advantage of the functions of each component, and they provide a potential strategy for nanomedicine design and clinical cancer treatment.

  17. A digital wireless system for closed-loop inhibition of nociceptive signals

    Science.gov (United States)

    Zuo, Chao; Yang, Xiaofei; Wang, Yang; Hagains, Christopher E.; Li, Ai-Ling; Peng, Yuan B.; Chiao, J.-C.

    2012-10-01

    Neurostimulation of the spinal cord or brain has been used to inhibit nociceptive signals in pain management applications. Nevertheless, most of the current neurostimulation models are based on open-loop system designs. There is a lack of closed-loop systems for neurostimulation in research with small freely-moving animals and in future clinical applications. Based on our previously developed analog wireless system for closed-loop neurostimulation, a digital wireless system with real-time feedback between recorder and stimulator modules has been developed to achieve multi-channel communication. The wireless system includes a wearable recording module, a wearable stimulation module and a transceiver connected to a computer for real-time and off-line data processing, display and storage. To validate our system, wide dynamic range neurons in the spinal cord dorsal horn have been recorded from anesthetized rats in response to graded mechanical stimuli (brush, pressure and pinch) applied in the hind paw. The identified nociceptive signals were used to automatically trigger electrical stimulation at the periaqueductal gray in real time to inhibit their own activities by the closed-loop design. Our digital wireless closed-loop system has provided a simplified and efficient method for further study of pain processing in freely-moving animals and potential clinical application in patients. Groups 1, 2 and 3 contributed equally to this project.

  18. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system.

    Science.gov (United States)

    Fu, Shan-Fei; Ding, Jian-Nan; Zhang, Yun; Li, Yi-Fei; Zhu, Rong; Yuan, Xian-Zheng; Zou, Hua

    2018-06-01

    In this study, impacts of nanoplastic on the pure and mixed anaerobic digestion systems were investigated. Results showed the growth and metabolism of Acetobacteroides hydrogenigenes were partly inhibited by nanoplastic existed in the pure anaerobic digestion system. The anaerobic digestion of sewage sludge was also obviously inhibited by nanoplastic existed in the mixed anaerobic digestion system. Both the methane yield and methane production rate of the mixed anaerobic digestion system showed negative correlation with the nanoplastic concentration. Compared with anaerobic digestion system without nanoplastic, methane yield and maximum daily methane yield at the nanoplastic concentration of 0.2g/L decreased for 14.4% and 40.7%, respectively. In addition, the start-up of mixed anaerobic digestion system was prolonged by addition of nanoplastic. Microbial community structure analysis indicated the microbial community structures were also affected by nanoplastic existed in the system. At the nanoplastic concentration of 0.2g/L, the relative abundances of family Cloacamonaceae, Porphyromonadaceae, Anaerolinaceae and Gracilibacteraceae decreased partly. Conversely, the relative abundances of family Anaerolinaceae, Clostridiaceae, Geobacteraceae, Dethiosulfovibrionaceae and Desulfobulbaceae improved partly. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Inhibition of the complement system by saliva of Anopheles (Nyssorhynchus) aquasalis.

    Science.gov (United States)

    Mendes-Sousa, Antonio Ferreira; Vale, Vladimir Fazito; Queiroz, Daniel Costa; Pereira-Filho, Adalberto Alves; da Silva, Naylene Carvalho Sales; Koerich, Leonardo Barbosa; Moreira, Luciano Andrade; Pereira, Marcos Horácio; Sant'Anna, Maurício Roberto; Araújo, Ricardo Nascimento; Andersen, John; Valenzuela, Jesus Gilberto; Gontijo, Nelder Figueiredo

    2018-01-01

    Anopheline mosquitoes are vectors of malaria parasites. Their saliva contains anti-hemostatic and immune-modulator molecules that favor blood feeding and parasite transmission. In this study, we describe the inhibition of the alternative pathway of the complement system (AP) by Anopheles aquasalis salivary gland extracts (SGE). According to our results, the inhibitor present in SGE acts on the initial step of the AP blocking deposition of C3b on the activation surfaces. Properdin, which is a positive regulatory molecule of the AP, binds to SGE. When SGE was treated with an excess of properdin, it was unable to inhibit the AP. Through SDS-PAGE analysis, A. aquasalis presented a salivary protein with the same molecular weight as recombinant complement inhibitors belonging to the SG7 family described in the saliva of other anopheline species. At least some SG7 proteins bind to properdin and are AP inhibitors. Searching for SG7 proteins in the A. aquasalis genome, we retrieved a salivary protein that shared an 85% identity with albicin, which is the salivary alternative pathway inhibitor from A. albimanus. This A. aquasalis sequence was also very similar (81% ID) to the SG7 protein from A. darlingi, which is also an AP inhibitor. Our results suggest that the salivary complement inhibitor from A. aquasalis is an SG7 protein that can inhibit the AP by binding to properdin and abrogating its stabilizing activity. Albicin, which is the SG7 from A. albimanus, can directly inhibit AP convertase. Given the high similarity of SG7 proteins, the SG7 from A. aquasalis may also directly inhibit AP convertase in the absence of properdin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Forced notch signaling inhibits commissural axon outgrowth in the developing chick central nerve system.

    Directory of Open Access Journals (Sweden)

    Ming Shi

    Full Text Available BACKGROUND: A collection of in vitro evidence has demonstrated that Notch signaling plays a key role in the growth of neurites in differentiated neurons. However, the effects of Notch signaling on axon outgrowth in an in vivo condition remain largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the neural tubes of HH10-11 chick embryos were in ovo electroporated with various Notch transgenes of activating or inhibiting Notch signaling, and then their effects on commissural axon outgrowth across the floor plate midline in the chick developing central nerve system were investigated. Our results showed that forced expression of Notch intracellular domain, constitutively active form of RBPJ, or full-length Hes1 in the rostral hindbrain, diencephalon and spinal cord at stage HH10-11 significantly inhibited commissural axon outgrowth. On the other hand, inhibition of Notch signaling by ectopically expressing a dominant-negative form of RBPJ promoted commissural axonal growth along the circumferential axis. Further results revealed that these Notch signaling-mediated axon outgrowth defects may be not due to the alteration of axon guidance since commissural axon marker TAG1 was present in the axons in floor plate midline, and also not result from the changes in cell fate determination of commissural neurons since the expression of postmitotic neuron marker Tuj1 and specific commissural markers TAG1 and Pax7 was unchanged. CONCLUSIONS/SIGNIFICANCE: We first used an in vivo system to provide evidence that forced Notch signaling negatively regulates commissural axon outgrowth.

  1. Baicalein Inhibits Staphylococcus aureus Biofilm Formation and the Quorum Sensing System In Vitro.

    Directory of Open Access Journals (Sweden)

    Yan Chen

    Full Text Available Biofilm formed by Staphylococcus aureus significantly enhances antibiotic resistance by inhibiting the penetration of antibiotics, resulting in an increasingly serious situation. This study aimed to assess whether baicalein can prevent Staphylococcus aureus biofilm formation and whether it may have synergistic bactericidal effects with antibiotics in vitro. To do this, we used a clinically isolated strain of Staphylococcus aureus 17546 (t037 for biofilm formation. Virulence factors were detected following treatment with baicalein, and the molecular mechanism of its antibiofilm activity was studied. Plate counting, crystal violet staining, and fluorescence microscopy revealed that 32 μg/mL and 64 μg/mL baicalein clearly inhibited 3- and 7-day biofilm formation in vitro. Moreover, colony forming unit count, confocal laser scanning microscopy, and scanning electron microscopy showed that vancomycin (VCM and baicalein generally enhanced destruction of biofilms, while VCM alone did not. Western blotting and real-time quantitative polymerase chain reaction analyses (RTQ-PCR confirmed that baicalein treatment reduced staphylococcal enterotoxin A (SEA and α-hemolysin (hla levels. Most strikingly, real-time qualitative polymerase chain reaction data demonstrated that 32 μg/mL and 64 μg/mL baicalein downregulated the quorum-sensing system regulators agrA, RNAIII, and sarA, and gene expression of ica, but 16 μg/mL baicalein had no effect. In summary, baicalein inhibited Staphylococcus aureus biofilm formation, destroyed biofilms, increased the permeability of vancomycin, reduced the production of staphylococcal enterotoxin A and α-hemolysin, and inhibited the quorum sensing system. These results support baicalein as a novel drug candidate and an effective treatment strategy for Staphylococcus aureus biofilm-associated infections.

  2. HSC-specific inhibition of Rho-kinase reduces portal pressure in cirrhotic rats without major systemic effects

    NARCIS (Netherlands)

    Klein, Sabine; Van Beuge, Marike Marjolijn; Granzow, Michaela; Beljaars, Leonie; Schierwagen, Robert; Kilic, Sibel; Heidari, Iren; Huss, Sebastian; Sauerbruch, Tilman; Poelstra, Klaas; Trebicka, Jonel

    2012-01-01

    Background & Aims: Rho-kinase activation mediates cell contraction and increases intrahepatic resistance and consequently portal pressure in liver cirrhosis. Systemic Rho-kinase inhibition decreases portal pressure in cirrhosis, but also arterial pressure. Thus, liver-specific Rho-kinase inhibition

  3. Novel Scabies Mite Serpins Inhibit the Three Pathways of the Human Complement System

    Science.gov (United States)

    Mika, Angela; Reynolds, Simone L.; Mohlin, Frida C.; Willis, Charlene; Swe, Pearl M.; Pickering, Darren A.; Halilovic, Vanja; Wijeyewickrema, Lakshmi C.; Pike, Robert N.; Blom, Anna M.; Kemp, David J.; Fischer, Katja

    2012-01-01

    Scabies is a parasitic infestation of the skin by the mite Sarcoptes scabiei that causes significant morbidity worldwide, in particular within socially disadvantaged populations. In order to identify mechanisms that enable the scabies mite to evade human immune defenses, we have studied molecules associated with proteolytic systems in the mite, including two novel scabies mite serine protease inhibitors (SMSs) of the serpin superfamily. Immunohistochemical studies revealed that within mite-infected human skin SMSB4 (54 kDa) and SMSB3 (47 kDa) were both localized in the mite gut and feces. Recombinant purified SMSB3 and SMSB4 did not inhibit mite serine and cysteine proteases, but did inhibit mammalian serine proteases, such as chymotrypsin, albeit inefficiently. Detailed functional analysis revealed that both serpins interfered with all three pathways of the human complement system at different stages of their activation. SMSB4 inhibited mostly the initial and progressing steps of the cascades, while SMSB3 showed the strongest effects at the C9 level in the terminal pathway. Additive effects of both serpins were shown at the C9 level in the lectin pathway. Both SMSs were able to interfere with complement factors without protease function. A range of binding assays showed direct binding between SMSB4 and seven complement proteins (C1, properdin, MBL, C4, C3, C6 and C8), while significant binding of SMSB3 occurred exclusively to complement factors without protease function (C4, C3, C8). Direct binding was observed between SMSB4 and the complement proteases C1s and C1r. However no complex formation was observed between either mite serpin and the complement serine proteases C1r, C1s, MASP-1, MASP-2 and MASP-3. No catalytic inhibition by either serpin was observed for any of these enzymes. In summary, the SMSs were acting at several levels mediating overall inhibition of the complement system and thus we propose that they may protect scabies mites from complement

  4. Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation

    OpenAIRE

    Mendias, Christopher L.; Kayupov, Erdan; Bradley, Joshua R.; Brooks, Susan V.; Claflin, Dennis R.

    2011-01-01

    Myostatin (MSTN) is a member of the transforming growth factor-β superfamily of cytokines and is a negative regulator of skeletal muscle mass. Compared with MSTN+/+ mice, the extensor digitorum longus muscles of MSTN−/− mice exhibit hypertrophy, hyperplasia, and greater maximum isometric force production (Fo), but decreased specific maximum isometric force (sFo; Fo normalized by muscle cross-sectional area). The reason for the reduction in sFo was not known. Studies in myotubes indicate that ...

  5. Strategies for the inhibition of gingipains for the potential treatment of periodontitis and associated systemic diseases

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2014-08-01

    Full Text Available Gingipains are the major virulence factors of Porphyromonas gingivalis, the main periodontopathogen. It is expected that inhibition of gingipain activity in vivo could prevent or slow down the progression of adult periodontitis. To date, several classes of gingipain inhibitors have been recognized. These include gingipain N-terminal prodomains, synthetic compounds, inhibitors from natural sources, antibiotics, antiseptics, antibodies, and bacteria. Several synthetic compounds are potent gingipain inhibitors but inhibit a broad spectrum of host proteases and have undesirable side effects. Synthetic compounds with high specificity for gingipains have unknown toxicity effects, making natural inhibitors more promising as therapeutic gingipain blockers. Cranberry and rice extracts interfere with gingipain activity and prevent the growth and biofilm formation of periodontopathogens. Although the ideal gingipain inhibitor has yet to be discovered, gingipain inhibition represents a novel approach to treat and prevent periodontitis. Gingipain inhibitors may also help treat systemic disorders that are associated with periodontitis, including cardiovascular disease, rheumatoid arthritis, aspiration pneumonia, pre-term birth, and low birth weight.

  6. Persistent phenotypic shift in cardiac fibroblasts: impact of transient renin angiotensin system inhibition.

    Science.gov (United States)

    Hale, Taben M

    2016-04-01

    Fibrotic cardiac remodeling ultimately leads to heart failure - a debilitating and costly condition. Select antihypertensive agents have been effective in reducing or slowing the development of cardiac fibrosis. Moreover, some experimental studies have shown that the reduction in fibrosis induced by these agents persists long after stopping treatment. What has not been as well investigated is whether this transient treatment results in a protection against future fibrotic cardiac remodeling. In the present review, previously published studies are re-examined to assess whether the relative percent increase in collagen deposition over an off-treatment period is attenuated, relative to control, following transient antihypertensive treatment in young or adult rats. Present findings suggest that transient inhibition of the renin angiotensin system (RAS) not only produces a sustained reduction in cardiac fibrosis, but also results in a degree of protection against future collagen deposition. In addition, prior transient RAS inhibition appears to alter the cardiac fibroblast phenotype such that these cells show a muted response to myocardial injury - namely reduced proliferation, chemokine release, and collagen deposition. This review puts forth several potential mechanisms underlying this long-term cardiac protection that is afforded by transient RAS inhibition. Specifically, fibroblast phenotypic change, cardiac fibroblast apoptosis, sustained suppression of the RAS, persistent reduction in left ventricular hypertrophy, and persistent reduction in arterial pressure are each discussed. Identifying the mechanisms ultimately responsible for this change in cardiac fibroblast response to injury, hypertension, and aging may reveal novel targets for therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Effect of constitutive inactivation of the myostatin gene on the gain in muscle strength during postnatal growth in two murine models.

    Science.gov (United States)

    Stantzou, Amalia; Ueberschlag-Pitiot, Vanessa; Thomasson, Remi; Furling, Denis; Bonnieu, Anne; Amthor, Helge; Ferry, Arnaud

    2017-02-01

    The effect of constitutive inactivation of the gene encoding myostatin on the gain in muscle performance during postnatal growth has not been well characterized. We analyzed 2 murine myostatin knockout (KO) models, (i) the Lee model (KO Lee ) and (ii) the Grobet model (KO Grobet ), and measured the contraction of tibialis anterior muscle in situ. Absolute maximal isometric force was increased in 6-month-old KO Lee and KO Grobet mice, as compared to wild-type mice. Similarly, absolute maximal power was increased in 6-month-old KO Lee mice. In contrast, specific maximal force (relative maximal force per unit of muscle mass was decreased in all 6-month-old male and female KO mice, except in 6-month-old female KO Grobet mice, whereas specific maximal power was reduced only in male KO Lee mice. Genetic inactivation of myostatin increases maximal force and power, but in return it reduces muscle quality, particularly in male mice. Muscle Nerve 55: 254-261, 2017. © 2016 Wiley Periodicals, Inc.

  8. Roles of abscisic acid and auxin in shoot-supplied ammonium inhibition of root system development.

    Science.gov (United States)

    Li, Baohai; Li, Qing; Kronzucker, Herbert J; Shi, Weiming

    2011-10-01

    A plastic root system is a prerequisite for successful plant acclimation to variable environments. The normally functioning root system is the result of a complex interaction of root-borne signals and shoot-derived regulators. We recently demonstrated that AUX1, a well-studied component of auxin transport, mediates shoot-supplied ammonium (SSA) inhibition of lateral root (LR) formation in Arabidopsis. By contrast, the response did not involve ABA pathways, via which several other abiotic stresses affect LR formation. We proposed that SSA regulates LR emergence by interrupting AUX1-mediated auxin transport from shoot to root. Here, by analyzing both ABA- and auxin-related mutants, we show that AUX1 is also required for SSA-mediated suppression of primary root growth. Ammonium content in shoots was furthermore shown to increase linearly with shoot-, but not root-supplied, ammonium, suggesting it may represent the internal trigger for SSA inhibition of root development. Taken together, our data identify AUX1-mediated auxin transport as a key transmission step in the sensing of excessive ammonium exposure and its inhibitory effect on root development. 

  9. Flight-induced inhibition of the cerebral median peptidergic neurosecretory system in Locusta migratoria

    International Nuclear Information System (INIS)

    Diederen, J.H.; van Etten, E.W.; Biegstraaten, A.I.; Terlou, M.; Vullings, H.G.; Jansen, W.F.

    1988-01-01

    This study discusses the effects of a 1-hr period of flight on the peptidergic pars intercerebralis (PI)-corpus cardiacum storage part (CCS) system in male Locusta migratoria, particularly the effect on material in this system stained by a histochemical method for peptidergic neurosecretory material (NSM) or labeled by in vivo incorporation of radioactive amino acid molecules. By use of an automatic image analysis system a number of parameters of the stained or radioactively labeled substances were measured to quantify the flight-induced effects and to get information on the manner in which the neurosecretory cell bodies in the PI and their axonal endings in the CCS accommodate changing amounts of NSM. The CCS of flown locusts contained distinctly more stained and radioactively labeled substances than the CCS of unflown locusts. A tendency to similar differences was observed in the cluster of neurosecretory cell bodies in the PI. The results indicate that 1 hr flight inhibited the release of NSM by the PI-CCS system. After the onset of reduced release activity by flight, some NSM continued to be synthesized and transported from the PI to the CCS, gradually filling up and expanding the entire PI-CCS system, the NSM at the same time becoming more and more densely packed. It is concluded that the peptidergic PI-CCS system is not actively involved in the control of flight metabolism or flight behavior

  10. Designed Coiled-Coil Peptides Inhibit the Type Three Secretion System of Enteropathogenic Escherichia coli

    Science.gov (United States)

    Larzábal, Mariano; Mercado, Elsa C.; Vilte, Daniel A.; Salazar-González, Hector; Cataldi, Angel; Navarro-Garcia, Fernando

    2010-01-01

    Background Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are two categories of E. coli strains associated with human disease. A major virulence factor of both pathotypes is the expression of a type three secretion system (TTSS), responsible for their ability to adhere to gut mucosa causing a characteristic attaching and effacing lesion (A/E). The TTSS translocates effector proteins directly into the host cell that subvert mammalian cell biochemistry. Methods/Principal Findings We examined synthetic peptides designed to inhibit the TTSS. CoilA and CoilB peptides, both representing coiled-coil regions of the translocator protein EspA, and CoilD peptide, corresponding to a coiled–coil region of the needle protein EscF, were effective in inhibiting the TTSS dependent hemolysis of red blood cells by the EPEC E2348/69 strain. CoilA and CoilB peptides also reduced the formation of actin pedestals by the same strain in HEp-2 cells and impaired the TTSS-mediated protein translocation into the epithelial cell. Interestingly, CoilA and CoilB were able to block EspA assembly, destabilizing the TTSS and thereby Tir translocation. This blockage of EspA polymerization by CoilA or CoilB peptides, also inhibited the correct delivery of EspB and EspD as detected by immunoblotting. Interestingly, electron microscopy of bacteria incubated with the CoilA peptide showed a reduction of the length of EspA filaments. Conclusions Our data indicate that coiled-coil peptides can prevent the assembly and thus the functionality of the TTSS apparatus and suggest that these peptides could provide an attractive tool to block EPEC and EHEC pathogenesis. PMID:20140230

  11. Local applications of myostatin-siRNA with atelocollagen increase skeletal muscle mass and recovery of muscle function.

    Directory of Open Access Journals (Sweden)

    Emi Kawakami

    Full Text Available BACKGROUND: Growing evidence suggests that small-interfering RNA (siRNA can promote gene silencing in mammalian cells without induction of interferon synthesis or nonspecific gene suppression. Recently, a number of highly specific siRNAs targeted against disease-causing or disease-promoting genes have been developed. In this study, we evaluate the effectiveness of atelocollagen (ATCOL-mediated application of siRNA targeting myostatin (Mst, a negative regulator of skeletal muscle growth, into skeletal muscles of muscular dystrophy model mice. METHODS AND FINDINGS: We injected a nanoparticle complex containing myostatin-siRNA and ATCOL (Mst-siRNA/ATCOL into the masseter muscles of mutant caveolin-3 transgenic (mCAV-3Tg mice, an animal model for muscular dystrophy. Scrambled (scr -siRNA/ATCOL complex was injected into the contralateral muscles as a control. Two weeks after injection, the masseter muscles were dissected for histometric analyses. To investigate changes in masseter muscle activity by local administration of Mst-siRNA/ATCOL complex, mouse masseter electromyography (EMG was measured throughout the experimental period via telemetry. After local application of the Mst-siRNA/ATCOL complex, masseter muscles were enlarged, while no significant change was observed on the contralateral side. Histological analysis showed that myofibrils of masseter muscles treated with the Mst-siRNA/ATCOL complex were significantly larger than those of the control side. Real-time PCR analysis revealed a significant downregulation of Mst expression in the treated masseters of mCAV-3Tg mice. In addition, expression of myogenic transcription factors was upregulated in the Mst-siRNA-treated masseter muscle, while expression of adipogenic transcription factors was significantly downregulated. EMG results indicate that masseter muscle activity in mCAV-3Tg mice was increased by local administration of the Mst-siRNA/ATCOL complex. CONCLUSION: These data suggest local

  12. Characterization of a molt-related myostatin gene (FmMstn) from the banana shrimp Fenneropenaeus merguiensis.

    Science.gov (United States)

    Zhuo, Rui Qun; Zhou, Ting Ting; Yang, Shi Ping; Chan, Siuming Francis

    2017-07-01

    Myostatin is an important member of the transforming growth factor (TGF) family that functions to regulate muscle growth in animals. In this study, the myostatin gene (FmMstn) and two slightly different (short and long forms) cDNAs of the banana shrimp Fenneropenaeus merguiensis were cloned and characterized. Similar to Mstn gene of the scallop, fish and mammal, FmMstn gene consists of 3 exons and 2 introns. The 2kb upstream promoter region of the FmMstn gene consists of putative response elements for myocyte enhancing factor (MEF2) and E-box factors. The longest open reading frame of the short Mstn consists of 1260bp encoding for a protein with 420 amino acid residues. The long FmMstn is almost identical to the short FmMstn with the exception of 8 amino acid insertions. FmMstn is most similar to the Mstn of Litopenaeus vannamei and Penaeus monodon sharing >92-98% amino acid sequence identity. Multiple sequence alignment results revealed high degree of amino acid conservation of the cysteine residues and mature peptide of the FmMstn with Mstn from other animals. FmMstn transcript was detected in the heart, muscle, optic nerve and thoracic ganglion. FmMstn transcript level in muscle is higher in early postmolt, decreases in intermolt and increases again towards ecdysis. Higher expression level of FmMstn is also observed in smaller shrimp of the same age. Knock-down of FmMstn gene by RNAi can cause a significant increase in molt cycle duration and failure of some shrimp to undergo ecdysis. Direct DNA sequencing results revealed that FmMstn gene is highly polymorphic and several potential SNPs have been identified. Some SNPs are associated with the size difference of the shrimp. In summary, the result of this study indicates that shrimp FmMstn gene is molt/growth-related and the presence of SNP suggests that it could be a candidate gene for shrimp genetic improvement research. Copyright © 2017. Published by Elsevier Inc.

  13. Neonicotinoid insecticides inhibit cholinergic neurotransmission in a molluscan (Lymnaea stagnalis) nervous system.

    Science.gov (United States)

    Vehovszky, Á; Farkas, A; Ács, A; Stoliar, O; Székács, A; Mörtl, M; Győri, J

    2015-10-01

    Neonicotinoids are highly potent and selective systemic insecticides, but their widespread use also has a growing impact on non-target animals and contaminates the environment, including surface waters. We tested the neonicotinoid insecticides commercially available in Hungary (acetamiprid, Mospilan; imidacloprid, Kohinor; thiamethoxam, Actara; clothianidin, Apacs; thiacloprid, Calypso) on cholinergic synapses that exist between the VD4 and RPeD1 neurons in the central nervous system of the pond snail Lymnaea stagnalis. In the concentration range used (0.01-1 mg/ml), neither chemical acted as an acetylcholine (ACh) agonist; instead, both displayed antagonist activity, inhibiting the cholinergic excitatory components of the VD4-RPeD1 connection. Thiacloprid (0.01 mg/ml) blocked almost 90% of excitatory postsynaptic potentials (EPSPs), while the less effective thiamethoxam (0.1 mg/ml) reduced the synaptic responses by about 15%. The ACh-evoked membrane responses of the RPeD1 neuron were similarly inhibited by the neonicotinoids, confirming that the same ACh receptor (AChR) target was involved. We conclude that neonicotinoids act on nicotinergic acetylcholine receptors (nAChRs) in the snail CNS. This has been established previously in the insect CNS; however, our data indicate differences in the background mechanism or the nAChR binding site in the snail. Here, we provide the first results concerning neonicotinoid-related toxic effects on the neuronal connections in the molluscan nervous system. Aquatic animals, including molluscs, are at direct risk while facing contaminated surface waters, and snails may provide a suitable model for further studies of the behavioral/neuronal consequences of intoxication by neonicotinoids. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Neutral endopeptidase inhibition and the natriuretic peptide system: an evolving strategy in cardiovascular therapeutics

    Science.gov (United States)

    Mangiafico, Sarah; Costello-Boerrigter, Lisa C.; Andersen, Ingrid A.; Cataliotti, Alessandro; Burnett, John C.

    2013-01-01

    Hypertension and heart failure (HF) are common diseases that, despite advances in medical therapy, continue to be associated with high morbidity and mortality. Therefore, innovative therapeutic strategies are needed. Inhibition of the neutral endopeptidase (NEPinh) had been investigated as a potential novel therapeutic approach because of its ability to increase the plasma concentrations of the natriuretic peptides (NPs). Indeed, the NPs have potent natriuretic and vasodilator properties, inhibit the activity of the renin–angiotensin–aldosterone system, lower sympathetic drive, and have antiproliferative and antihypertrophic effects. Such potentially beneficial effects can be theoretically achieved by the use of NEPinh. However, studies have shown that NEPinh alone does not result in clinically meaningful blood pressure-lowering actions. More recently, NEPinh has been used in combination with other cardiovascular agents, such as angiotensin-converting enzyme inhibitors, and antagonists of the angiotensin receptor. Another future possible combination would be the use of NEPinh with NPs or their newly developed chimeric peptides. This review summarizes the current knowledge of the use and effects of NEPinh alone or in combination with other therapeutic agents for the treatment of human cardiovascular disease such as HF and hypertension. PMID:22942338

  15. Stressing the ubiquitin-proteasome system without 20S proteolytic inhibition selectively kills cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Ravi K Anchoori

    Full Text Available Cervical cancer cells exhibit an increased requirement for ubiquitin-dependent protein degradation associated with an elevated metabolic turnover rate, and for specific signaling pathways, notably HPV E6-targeted degradation of p53 and PDZ proteins. Natural compounds with antioxidant properties including flavonoids and triterpenoids hold promise as anticancer agents by interfering with ubiquitin-dependent protein degradation. An increasing body of evidence indicates that their α-β unsaturated carbonyl system is the molecular determinant for inhibition of ubiquitin-mediated protein degradation up-stream of the catalytic sites of the 20S proteasome. Herein we report the identification and characterization of a new class of chalcone-based, potent and cell permeable chemical inhibitors of ubiquitin-dependent protein degradation, and a lead compound RAMB1. RAMB1 inhibits ubiquitin-dependent protein degradation without compromising the catalytic activities of the 20S proteasome, a mechanism distinct from that of Bortezomib. Treatment of cervical cancer cells with RAMB1 triggers unfolded protein responses, including aggresome formation and Hsp90 stabilization, and increases p53 steady state levels. RAMB1 treatment results in activation of lysosomal-dependent degradation pathways as a mechanism to compensate for increasing levels of poly-ubiquitin enriched toxic aggregates. Importantly, RAMB1 synergistically triggers cell death of cervical cancer cells when combined with the lysosome inhibitor Chloroquine.

  16. Combination inhibition of the renin-angiotensin system: is more better?

    Science.gov (United States)

    Krause, Michelle W; Fonseca, Vivian A; Shah, Sudhir V

    2011-08-01

    Angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers are considered the standard of care for treatment of cardiovascular disease and chronic kidney disease. Combination therapy with both angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers effectively inhibits the renin-angiotensin system as well as potentiates the vasodilatory effects of bradykinin. It has been advocated that this dual blockade approach theoretically should result in improved clinical outcomes in both cardiovascular disease and chronic kidney disease. Clinical trial evidence for the use of combination therapy with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in cardiovascular disease has provided conflicting results in hypertension, congestive heart failure, and ischemic heart disease. Clinical trial evidence to support combination therapy with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in chronic kidney disease has largely been based on proteinuria reduction as a surrogate marker for clinically meaningful outcomes. Recent large-scale randomized clinical trials have not been able to validate protection in halting progression in chronic kidney disease with a dual blockade approach. This review serves as an appraisal on the clinical evidence of combination angiotensin-converting enzyme inhibition and angiotensin II receptor blockade in both cardiovascular disease and chronic kidney disease.

  17. Systemic EP4 Inhibition Increases Adhesion Formation in a Murine Model of Flexor Tendon Repair.

    Directory of Open Access Journals (Sweden)

    Michael B Geary

    Full Text Available Flexor tendon injuries are a common clinical problem, and repairs are frequently complicated by post-operative adhesions forming between the tendon and surrounding soft tissue. Prostaglandin E2 and the EP4 receptor have been implicated in this process following tendon injury; thus, we hypothesized that inhibiting EP4 after tendon injury would attenuate adhesion formation. A model of flexor tendon laceration and repair was utilized in C57BL/6J female mice to evaluate the effects of EP4 inhibition on adhesion formation and matrix deposition during flexor tendon repair. Systemic EP4 antagonist or vehicle control was given by intraperitoneal injection during the late proliferative phase of healing, and outcomes were analyzed for range of motion, biomechanics, histology, and genetic changes. Repairs treated with an EP4 antagonist demonstrated significant decreases in range of motion with increased resistance to gliding within the first three weeks after injury, suggesting greater adhesion formation. Histologic analysis of the repair site revealed a more robust granulation zone in the EP4 antagonist treated repairs, with early polarization for type III collagen by picrosirius red staining, findings consistent with functional outcomes. RT-PCR analysis demonstrated accelerated peaks in F4/80 and type III collagen (Col3a1 expression in the antagonist group, along with decreases in type I collagen (Col1a1. Mmp9 expression was significantly increased after discontinuing the antagonist, consistent with its role in mediating adhesion formation. Mmp2, which contributes to repair site remodeling, increases steadily between 10 and 28 days post-repair in the EP4 antagonist group, consistent with the increased matrix and granulation zones requiring remodeling in these repairs. These findings suggest that systemic EP4 antagonism leads to increased adhesion formation and matrix deposition during flexor tendon healing. Counter to our hypothesis that EP4 antagonism

  18. Effects of concurrent strength and endurance training on genes related to myostatin signaling pathway and muscle fiber responses.

    Science.gov (United States)

    de Souza, Eduardo O; Tricoli, Valmor; Aoki, Marcelo S; Roschel, Hamilton; Brum, Patrícia C; Bacurau, Aline V N; Silva-Batista, Carla; Wilson, Jacob M; Neves, Manoel; Soares, Antonio G; Ugrinowitsch, Carlos

    2014-11-01

    Concurrent training (CT) seems to impair training-induced muscle hypertrophy. This study compared the effects of CT, strength training (ST) and interval training (IT) on the muscle fiber cross-sectional area (CSA) response, and on the expression of selected genes involved in the myostatin (MSTN) signaling mRNA levels. Thirty-seven physically active men were randomly divided into 4 groups: CT (n = 11), ST (n = 11), IT (n = 8), and control group (C) (n = 7) and underwent an 8-week training period. Vastus lateralis biopsy muscle samples were obtained at baseline and 48 hours after the last training session. Muscle fiber CSA, selected genes expression, and maximum dynamic ST (1 repetition maximum) were evaluated before and after training. Type IIa and type I muscle fiber CSA increased from pre- to posttest only in the ST group (17.08 and 17.9%, respectively). The SMAD-7 gene expression significantly increased at the posttest in the ST (53.9%) and CT groups (39.3%). The MSTN and its regulatory genes ActIIb, FLST-3, FOXO-3a, and GASP-1 mRNA levels remained unchanged across time and groups. One repetition maximum increased from pre- to posttest in both the ST and CT groups (ST = 18.5%; CT = 17.6%). Our findings are suggestive that MSTN and their regulatory genes at transcript level cannot differentiate muscle fiber CSA responses between CT and ST regimens in humans.

  19. Myostatin mRNA expression and its association with body weight and carcass traits in Yunnan Wuding chicken.

    Science.gov (United States)

    Liu, L X; Dou, T F; Li, Q H; Rong, H; Tong, H Q; Xu, Z Q; Huang, Y; Gu, D H; Chen, X B; Ge, C R; Jia, J J

    2016-12-02

    Myostatin (MSTN) is expressed in the myotome and developing skeletal muscles, and acts to regulate the number of muscle fibers. Wuding chicken large body, developed muscle, high disease resistance, and tender, delicious meat, and are not selected for fast growth. Broiler chickens (Avian broiler) are selected for fast growth and have a large body size and high muscle mass. Here, 240 one-day-old chickens (120 Wuding chickens and 120 broilers) were examined. Twenty chickens from each breed were sacrificed at days 1, 30, 60, 90, 120, and 150. Breast and leg muscle samples were collected within 20 min of sacrifice to investigate the effects of MSTN gene expression on growth performance and carcass traits. Body weight, carcass traits, and skeletal muscle mass in Wuding chickens were significantly (P chickens at all time points. Breast muscle MSTN mRNA was lower in Wuding chickens than in broilers before day 30 (P chicken than in broilers (P chicken than in broilers at all ages except for day 60 (P chickens than in the fast growing broilers. In contract, leg muscle MSTN mRNA level has a greater effect in broilers than in Wuding chickens. MSTN regulates growth performance and carcass traits in chickens.

  20. Impact of two myostatin (MSTN mutations on weight gain and lamb carcass classification in Norwegian White Sheep (Ovis aries

    Directory of Open Access Journals (Sweden)

    Blichfeldt Thor

    2010-01-01

    Full Text Available Abstract Background Our aim was to estimate the effect of two myostatin (MSTN mutations in Norwegian White Sheep, one of which is close to fixation in the Texel breed. Methods The impact of two known MSTN mutations was examined in a field experiment with Norwegian White Sheep. The joint effect of the two MSTN mutations on live weight gain and weaning weight was studied on 644 lambs. Carcass weight gain from birth to slaughter, carcass weight, carcass conformation and carcass fat classes were calculated in a subset of 508 lambs. All analyses were carried out with a univariate linear animal model. Results The most significant impact of both mutations was on conformation and fat classes. The largest difference between the genotype groups was between the wild type for both mutations and the homozygotes for the c.960delG mutation. Compared to the wild types, these mutants obtained a conformation score 5.1 classes higher and a fat score 3.0 classes lower, both on a 15-point scale. Conclusions Both mutations reduced fatness and increased muscle mass, although the effect of the frameshift mutation (c.960delG was more important as compared to the 3'-UTR mutation (c.2360G>A. Lambs homozygous for the c.960delG mutation grew more slowly than those with other MSTN genotypes, but had the least fat and the largest muscle mass. Only c.960delG showed dominance effects.

  1. Analysis of horse myostatin gene and identification of single nucleotide polymorphisms in breeds of different morphological types.

    Science.gov (United States)

    Dall'Olio, Stefania; Fontanesi, Luca; Nanni Costa, Leonardo; Tassinari, Marco; Minieri, Laura; Falaschini, Adalberto

    2010-01-01

    Myostatin (MSTN) is a negative modulator of muscle mass. We characterized the horse (Equus caballus) MSTN gene and identified and analysed single nucleotide polymorphisms (SNPs) in breeds of different morphological types. Sequencing of coding, untranslated, intronic, and regulatory regions of MSTN gene in 12 horses from 10 breeds revealed seven SNPs: two in the promoter, four in intron 1, and one in intron 2. The SNPs of the promoter (GQ183900:g.26T>C and GQ183900:g.156T>C, the latter located within a conserved TATA-box like motif) were screened in 396 horses from 16 breeds. The g.26C and the g.156C alleles presented higher frequency in heavy (brachymorphic type) than in light breeds (dolichomorphic type such as Italian Trotter breed). The significant difference of allele frequencies for the SNPs at the promoter and analysis of molecular variance (AMOVA) on haplotypes indicates that these polymorphisms could be associated with variability of morphology traits in horse breeds.

  2. The correlation of resistance exercise-induced myostatin with insulin resistance and plasma cytokines in healthy young men.

    Science.gov (United States)

    Kazemi, F

    2016-04-01

    This study was designed to examine the correlation of resistance exercise (RE)-induced myostatin (MSTN) with insulin resistance and plasma cytokines in healthy young men. Twenty-four healthy men were randomly divided into RE (n = 12) and control (n = 12) group. After a session of familiarization, one repetition maximum (1-RM) was calculated. Circuit RE program involved 3 sets of 15 repetitions at 55 % of 1-RM. Blood samples were collected before and 24 h after the exercise. Paired t test, independent t test, and Pearson's correlation were used for analyzing data. A significant decrease in plasma level of MSTN, glucose, insulin, interleukin-6 (IL-6), and homeostasis model assessment of insulin resistance (HOMA-IR) and a significant increase in plasma interleukin-10 (IL-10) were found in RE group 24 h post-exercise versus pre-exercise (p healthy young men. In other word, the beneficial effect of acute RE may be reflected by changes in MSTN in healthy young individuals.

  3. Analysis of Horse Myostatin Gene and Identification of Single Nucleotide Polymorphisms in Breeds of Different Morphological Types

    Directory of Open Access Journals (Sweden)

    Stefania Dall'Olio

    2010-01-01

    Full Text Available Myostatin (MSTN is a negative modulator of muscle mass. We characterized the horse (Equus caballus MSTN gene and identified and analysed single nucleotide polymorphisms (SNPs in breeds of different morphological types. Sequencing of coding, untranslated, intronic, and regulatory regions of MSTN gene in 12 horses from 10 breeds revealed seven SNPs: two in the promoter, four in intron 1, and one in intron 2. The SNPs of the promoter (GQ183900:g.26T>C and GQ183900:g.156T>C, the latter located within a conserved TATA-box like motif were screened in 396 horses from 16 breeds. The g.26C and the g.156C alleles presented higher frequency in heavy (brachymorphic type than in light breeds (dolichomorphic type such as Italian Trotter breed. The significant difference of allele frequencies for the SNPs at the promoter and analysis of molecular variance (AMOVA on haplotypes indicates that these polymorphisms could be associated with variability of morphology traits in horse breeds.

  4. RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems

    Directory of Open Access Journals (Sweden)

    Daiha Shin

    2017-10-01

    Condensed abstract: This study revealed a novel RITA resistant mechanism associated with the sustained induction of autophagy, p62 overexpression, and Keap1-Nrf2 antioxidant system activation. The combined treatment of RITA with the autophagy inhibitor 3-methyladenine overcomes RITA resistance via dual inhibition of autophagy and antioxidant systems in vitro and in vivo.

  5. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems

    Science.gov (United States)

    Wang, Hongmei; Gong, Linfeng; Cravotta,, Charles A.; Yang, Xiaofen; Tuovinen, Olli H.; Dong, Hailiang; Fu, Xiang

    2013-01-01

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO3)2 was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0–24.2 mM Pb(II) added as Pb(NO3)2. Anglesite (PbSO4) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe3(SO4)2(OH)6) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9–17.6 μM regardless of the concentrations of Pb(NO3)2 added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO3)2 addition even when anglesite was removed before inoculation. Experiments with 0–48 mM KNO3 demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO3)2 addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans.

  6. Post-mortem stability of RNA in skeletal muscle and adipose tissue and the tissue-specific expression of myostatin, perilipin and associated factors in the horse.

    Directory of Open Access Journals (Sweden)

    Philippa K Morrison

    Full Text Available Obesity, a major concern for equine welfare, is highly prevalent in the leisure horse population. Skeletal-muscle and adipose tissues are important determinants of maintenance energy requirements. The myostatin and perilipin pathways play key roles in the regulation of muscle mass and lipolysis respectively and have both been associated with obesity predisposition in other mammalian species. High quality samples, suitable for molecular biology, are an essential prerequisite for detailed investigations of gene and protein expression. Hence, this study has evaluated a the post-mortem stability of RNA extracted from skeletal-muscle and adipose-tissues collected under commercial conditions and b the tissue-specific presence of myostatin, the moystatin receptor (activin receptor IIB, ActRIIB, follistatin and perilipin, genes and proteins across a range of equine tissues. Objectives were addressed using tissues from 7 Thoroughbred horses presented for slaughter at a commercial abattoir; a samples were collected at 7 time-points from Masseter muscle and perirenal adipose from 5 minutes to 6 hours post-mortem. Extracted RN was appraised by Optical Density analysis and agarose-gel electrophoresis. b Quantitative real time PCR and Western Blotting were used to evaluate gene and protein expression in anatomically-defined samples collected from 17 tissues (6 organs, 4 skeletal muscles and 7 discrete adipose depots. The results indicate that, under the present collection conditions, intact, good quality RNA could be extracted from skeletal-muscle for up to 2 hours post-mortem. However, RNA from adipose tissue may be more susceptible to degradation/contamination and samples should be collected no later than 30 minutes post-mortem. The data also show that myostatin and ActRIIB genes and proteins were almost exclusively expressed in skeletal muscle. The follistatin gene showed a more diverse gene expression profile, with expression evident in several organs

  7. In vitro toxicities of experimental jet fuel system ice-inhibiting agents.

    Science.gov (United States)

    Geiss, K T; Frazier, J M

    2001-07-02

    One research emphasis within the Department of Defense has been to seek the replacement of operational compounds with alternatives that pose less potential risk to human and ecological systems. Alternatives to glycol ethers, such as diethylene glycol monomethyl ether (M-DE), were investigated for use as jet fuel system ice-inhibiting agents (FSIIs). This group of chemicals includes three derivatives of 1,3-dioxolane-4-methanol (M-1, M-2, and M-3) and a 1,3-dioxane (M-27). In addition, M-DE was evaluated as a reference compound. Our approach was to implement an in vitro test battery based on primary rat hepatocyte cultures to perform initial toxicity evaluations. Hepatocytes were exposed to experimental chemicals (0, 0.001, 0.01, 0.1, 1, 10 mM dosages) for periods up to 24 h. Samples were assayed for lactate dehydrogenase (LDH) release, MTT dye reduction activity, glutathione level, and rate of protein synthesis as indicators of toxicity. Of the compounds tested, M-1, especially at the 10-mM dose, appeared to be more potent than the other chemicals, as measured by these toxicity assays. M-DE, the current FSII, elicited little response in the toxicity assays. Although some variations in toxicity were observed at the 10-mM dose, the in vitro toxicities of the chemicals tested (except for M-1) were not considerably greater than that of M-DE.

  8. Measures of Behavioral Inhibition and Activation System Sensitivity as Predictors of Big Five Personality Traits

    Directory of Open Access Journals (Sweden)

    Valerija Križanić

    2015-07-01

    Full Text Available In the Reinforcement Sensitivity Theory, Gray (1987 described three hypothetical biological brain systems, assumed to represent underpinnings of the stable patterns of experience and behaviour. Most research has been devoted to studying behavioural inhibition system (BIS and behavioural activation system (BAS, which have shown relatively stable associations with neuroticism and extroversion, respectively. BIS/BAS scale (Carver & White, 1994 is one of the most frequently used instruments for measuring these constructs. The questionnaire contains one scale of BIS sensitivity that captures reactions to appearance or anticipation of punishment, and three subscales of BAS sensitivity which are aimed to assess distinct but related constructs: BAS – Drive, that relate to persistence in achieving desired goals; BAS - Fun seeking, that relates to desire for new rewarding experiences and indicates person's readiness to engage in potentially rewarding situation, and BAS – Reward sensitivity, that measures positive reactions to appearance or anticipation of reward.The aim of the current study was to explore to what extent individual differences in personality traits can be predicted based on measures of BIS and BAS sensitivity. In this paper we analysed the data of 284 female students, that completed translated and adapted Croatian version of BIS/BAS scales, as well as International Personality Item Pool (IPIP 50 which measures the Big-Five personality domains. Exploratory factor analysis indicated that the factor structure of Croatian version of BIS/BAS scale was comparable to the original instrument. Results of the regression analysis revealed that BIS scale was a significant predictor of emotional instability, while BAS subscales showed different patterns of relationships with measured personality traits. These results indicate the importance of measuring distinct aspects of BAS sensitivity.

  9. Vanadium(V) complexes in enzyme systems: aqueous chemistry, inhibition and molecular modeling in inhibitor design.

    Science.gov (United States)

    Bhattacharyya, S; Tracey, A S

    2001-05-01

    Vanadate in aqueous solution is known to influence a number of enzyme-catalyzed reactions. Such effects are well known to carry over to living systems where numerous responses to the influence of vanadium have been well-documented; perhaps the most studied being the insulin-mimetic effect. Studies of the aqueous chemistry of vanadate provide an insight into the mechanisms by which vanadate affects enzyme systems and suggests methods for the elucidation of specific types of responses. Studies of the corresponding enzymes provide complementary information that suggests model vanadate systems be studied and provides clues as to functional groups that might be utilized in the development of selective enzyme inhibition. The insulin-mimetic effect is thought by many workers to originate in the effectiveness of vanadium as an inhibitor of protein tyrosine phosphatase (PTPase) activity. One, or more PTPases regulate the phosphotyrosine levels of the insulin receptor kinase domain. Appropriate ligands allow modification of the reactivity and function of vanadate. For instance, although the complex, ((CH(3))(2)NO)(2)V(O)OH, is not quite as good an inhibitor of PTPase activity as is vanadate, it is much more effective in cell cultures for increasing glucose transport and glycogen synthesis. Studies of the chemistry of this complex provide an explanation of the efficacy of this compound as a PTPase inhibitor that is supported by computer modeling studies. Computer calculations using X-ray data of known PTPases as a basis for homology modeling then suggests functionality that needs to be addressed in developing selective PTPase inhibitors.

  10. Chlorine gas exposure causes systemic endothelial dysfunction by inhibiting endothelial nitric oxide synthase-dependent signaling.

    Science.gov (United States)

    Honavar, Jaideep; Samal, Andrey A; Bradley, Kelley M; Brandon, Angela; Balanay, Joann; Squadrito, Giuseppe L; MohanKumar, Krishnan; Maheshwari, Akhil; Postlethwait, Edward M; Matalon, Sadis; Patel, Rakesh P

    2011-08-01

    Chlorine gas (Cl(2)) exposure during accidents or in the military setting results primarily in injury to the lungs. However, the potential for Cl(2) exposure to promote injury to the systemic vasculature leading to compromised vascular function has not been studied. We hypothesized that Cl(2) promotes extrapulmonary endothelial dysfunction characterized by a loss of endothelial nitric oxide synthase (eNOS)-derived signaling. Male Sprague Dawley rats were exposed to Cl(2) for 30 minutes, and eNOS-dependent vasodilation of aorta as a function of Cl(2) dose (0-400 ppm) and time after exposure (0-48 h) were determined. Exposure to Cl(2) (250-400 ppm) significantly inhibited eNOS-dependent vasodilation (stimulated by acetycholine) at 24 to 48 hours after exposure without affecting constriction responses to phenylephrine or vasodilation responses to an NO donor, suggesting decreased NO formation. Consistent with this hypothesis, eNOS protein expression was significantly decreased (∼ 60%) in aorta isolated from Cl(2)-exposed versus air-exposed rats. Moreover, inducible nitric oxide synthase (iNOS) mRNA was up-regulated in circulating leukocytes and aorta isolated 24 hours after Cl(2) exposure, suggesting stimulation of inflammation in the systemic vasculature. Despite decreased eNOS expression and activity, no changes in mean arterial blood pressure were observed. However, injection of 1400W, a selective inhibitor of iNOS, increased mean arterial blood pressure only in Cl(2)-exposed animals, suggesting that iNOS-derived NO compensates for decreased eNOS-derived NO. These results highlight the potential for Cl(2) exposure to promote postexposure systemic endothelial dysfunction via disruption of vascular NO homeostasis mechanisms.

  11. Chlorine Gas Exposure Causes Systemic Endothelial Dysfunction by Inhibiting Endothelial Nitric Oxide Synthase–Dependent Signaling

    Science.gov (United States)

    Honavar, Jaideep; Samal, Andrey A.; Bradley, Kelley M.; Brandon, Angela; Balanay, Joann; Squadrito, Giuseppe L.; MohanKumar, Krishnan; Maheshwari, Akhil; Postlethwait, Edward M.; Matalon, Sadis; Patel, Rakesh P.

    2011-01-01

    Chlorine gas (Cl2) exposure during accidents or in the military setting results primarily in injury to the lungs. However, the potential for Cl2 exposure to promote injury to the systemic vasculature leading to compromised vascular function has not been studied. We hypothesized that Cl2 promotes extrapulmonary endothelial dysfunction characterized by a loss of endothelial nitric oxide synthase (eNOS)-derived signaling. Male Sprague Dawley rats were exposed to Cl2 for 30 minutes, and eNOS-dependent vasodilation of aorta as a function of Cl2 dose (0–400 ppm) and time after exposure (0–48 h) were determined. Exposure to Cl2 (250–400 ppm) significantly inhibited eNOS-dependent vasodilation (stimulated by acetycholine) at 24 to 48 hours after exposure without affecting constriction responses to phenylephrine or vasodilation responses to an NO donor, suggesting decreased NO formation. Consistent with this hypothesis, eNOS protein expression was significantly decreased (∼ 60%) in aorta isolated from Cl2–exposed versus air-exposed rats. Moreover, inducible nitric oxide synthase (iNOS) mRNA was up-regulated in circulating leukocytes and aorta isolated 24 hours after Cl2 exposure, suggesting stimulation of inflammation in the systemic vasculature. Despite decreased eNOS expression and activity, no changes in mean arterial blood pressure were observed. However, injection of 1400W, a selective inhibitor of iNOS, increased mean arterial blood pressure only in Cl2–exposed animals, suggesting that iNOS-derived NO compensates for decreased eNOS-derived NO. These results highlight the potential for Cl2 exposure to promote postexposure systemic endothelial dysfunction via disruption of vascular NO homeostasis mechanisms. PMID:21131444

  12. Effect of delivery modalities on the physiologic inhibition system of coagulation of the neonate.

    Science.gov (United States)

    Franzoi, Malida; Simioni, Paolo; Luni, Sonia; Zerbinati, Patrizia; Girolami, Antonio; Zanardo, Vincenzo

    2002-01-01

    The perinatal period is associated with an increased incidence of thromboembolic complications, which may occur in both the maternal and fetal circulation in otherwise normal and healthy adults and fetuses, and this may be related to the activation of the coagulation system at the time of parturition. The risk of these complications is generally much higher in neonates, who have decreased activity of the physiologic inhibition system of coagulation (PISC), including protein C, protein S and antithrombin, in comparison with adults. Therefore, any additional obstetric iatrogenic factors could predispose the neonate to an increased risk of thromboembolic complications. The aim of this study was to evaluate the influence of modality of delivery (spontaneous vaginal delivery vs. elective caesarian section) on the neonatal PISC factor (protein C, protein S and antithrombin) levels and the fibrinolytic system (plasminogen and fibrinogen levels). We studied 41 consecutive healthy newborns, 18 delivered vaginally (mean gestational age 39.7 +/- 0.8) and 23 by elective caesarian section (mean gestational age 38.5 +/- 0.7). Plasma samples were collected from the umbilical cord at birth. AT activity, protein C antigen and activity, total and free protein S antigen, fibrinogen concentration and plasminogen activity were tested. Among PISC factors studied in cord blood of infants born after vaginal delivery, protein C antigen levels and antithrombin activity were statistically higher (41.3 +/- 9.4 vs. 33.9 +/- 7.2 and 58.5 +/- 10.0 vs. 48.4 +/- 12.7, respectively; Plabor stress of vaginal delivery may play a role in influencing the levels of some PISC factors in the cord blood of full-term neonates. In newborns with coagulation disorders, separate reference ranges in coagulation screening tests should be possibly needed depending on the delivery modality.

  13. The Relationship between Behavioral Activation/ Inhibition Systems (BAS/BIS and Bullying/ Victimization Behaviors among Male Adolescents

    Directory of Open Access Journals (Sweden)

    Sajjad Basharpoor

    2013-09-01

    Full Text Available Objective:This research was conducted to investigate the relationship between behavioral activation-inhibition systems and bullyingvictimization behaviors among adolescents.Method:This was a correlational and cross-sectional study. Two hundred and thirty school boys were selected randomly by multistage cluster sampling method, and participated in this research. This sample responded to a demographic questionnaire, the Revised Olweus Bully/ Victim questionnaire and the child version of behavioral inhibition/activation systems Scale in their classrooms and in the presence of the researcher. The collected data were analyzed by Pearson’s correlation and multiple regressions. Result:The results showed that bullying and victimization were correlated with both behavioral activation and behavioral inhibition systems (p<0.01. The results also showed that 18% of the variance in victimization and 31 % of the variance in bullying were explained by behavioral inhibition and behavioral activation systems respectively .Conclusion:The results of this study implied that BAS and BIS may play a role in the manifestation of bullying in adolescents.

  14. Sensitivity of Gray’s behavioral inhibition system in clinically anxious and non-anxious children and adolescents

    NARCIS (Netherlands)

    Vervoort, L.; Wolters, L.H.; Hogendoorn, S.M.; de Haan, E.; de Boer, F.; Prins, P.J.M.

    2010-01-01

    The child version of the Carver and White (1994) BIS/BAS-scales (Muris et al., 2005) was used to assess sensitivity of the Behavioral Inhibition and the Behavioral Activation System in clinically anxious and non-anxious youth (n = 175, ages 8-18 years, 70 boys). Results supported the hypothesis that

  15. Are US utility standby rates inhibiting diffusion of customer-owned generating systems?

    International Nuclear Information System (INIS)

    Jackson, Jerry

    2007-01-01

    New, small-scale electric generation technologies permit utility customers to generate some of their own electric power and to utilize waste heat for space heating and other applications at the building site. This combined heat and power (CHP) characteristic can provide significant energy-cost savings. However, most current US utility regulations leave CHP standby rate specification largely to utility discretion resulting in claims by CHP advocates that excessive standby rates are significantly reducing CHP-related savings and inhibiting CHP diffusion. The impacts of standby rates on the adoption of CHP are difficult to determine; however, because of the characteristically slow nature of new technology diffusion. This study develops an agent-based microsimulation model of CHP technology choice using cellular automata to represent new technology information dispersion and knowledge acquisition. Applying the model as an n-factorial experiment quantifies the impacts of standby rates on CHP technologies under alternative diffusion paths. Analysis of a sample utility indicates that, regardless of the likely diffusion process, reducing standby rates to reflect the cost of serving a large number of small, spatially clustered CHP systems significantly increases the adoption of these technologies

  16. Restriction-modification system with methyl-inhibited base excision and abasic-site cleavage activities.

    Science.gov (United States)

    Fukuyo, Masaki; Nakano, Toshiaki; Zhang, Yingbiao; Furuta, Yoshikazu; Ishikawa, Ken; Watanabe-Matsui, Miki; Yano, Hirokazu; Hamakawa, Takeshi; Ide, Hiroshi; Kobayashi, Ichizo

    2015-03-11

    The restriction-modification systems use epigenetic modification to distinguish between self and nonself DNA. A modification enzyme transfers a methyl group to a base in a specific DNA sequence while its cognate restriction enzyme introduces breaks in DNA lacking this methyl group. So far, all the restriction enzymes hydrolyze phosphodiester bonds linking the monomer units of DNA. We recently reported that a restriction enzyme (R.PabI) of the PabI superfamily with half-pipe fold has DNA glycosylase activity that excises an adenine base in the recognition sequence (5'-GTAC). We now found a second activity in this enzyme: at the resulting apurinic/apyrimidinic (AP) (abasic) site (5'-GT#C, # = AP), its AP lyase activity generates an atypical strand break. Although the lyase activity is weak and lacks sequence specificity, its covalent DNA-R.PabI reaction intermediates can be trapped by NaBH4 reduction. The base excision is not coupled with the strand breakage and yet causes restriction because the restriction enzyme action can impair transformation ability of unmethylated DNA even in the absence of strand breaks in vitro. The base excision of R.PabI is inhibited by methylation of the target adenine base. These findings expand our understanding of genetic and epigenetic processes linking those in prokaryotes and eukaryotes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Personality Factors Predicting Smartphone Addiction Predisposition: Behavioral Inhibition and Activation Systems, Impulsivity, and Self-Control.

    Directory of Open Access Journals (Sweden)

    Yejin Kim

    Full Text Available The purpose of this study was to identify personality factor-associated predictors of smartphone addiction predisposition (SAP. Participants were 2,573 men and 2,281 women (n = 4,854 aged 20-49 years (Mean ± SD: 33.47 ± 7.52; participants completed the following questionnaires: the Korean Smartphone Addiction Proneness Scale (K-SAPS for adults, the Behavioral Inhibition System/Behavioral Activation System questionnaire (BIS/BAS, the Dickman Dysfunctional Impulsivity Instrument (DDII, and the Brief Self-Control Scale (BSCS. In addition, participants reported their demographic information and smartphone usage pattern (weekday or weekend average usage hours and main use. We analyzed the data in three steps: (1 identifying predictors with logistic regression, (2 deriving causal relationships between SAP and its predictors using a Bayesian belief network (BN, and (3 computing optimal cut-off points for the identified predictors using the Youden index. Identified predictors of SAP were as follows: gender (female, weekend average usage hours, and scores on BAS-Drive, BAS-Reward Responsiveness, DDII, and BSCS. Female gender and scores on BAS-Drive and BSCS directly increased SAP. BAS-Reward Responsiveness and DDII indirectly increased SAP. We found that SAP was defined with maximal sensitivity as follows: weekend average usage hours > 4.45, BAS-Drive > 10.0, BAS-Reward Responsiveness > 13.8, DDII > 4.5, and BSCS > 37.4. This study raises the possibility that personality factors contribute to SAP. And, we calculated cut-off points for key predictors. These findings may assist clinicians screening for SAP using cut-off points, and further the understanding of SA risk factors.

  18. Personality Factors Predicting Smartphone Addiction Predisposition: Behavioral Inhibition and Activation Systems, Impulsivity, and Self-Control.

    Science.gov (United States)

    Kim, Yejin; Jeong, Jo-Eun; Cho, Hyun; Jung, Dong-Jin; Kwak, Minjung; Rho, Mi Jung; Yu, Hwanjo; Kim, Dai-Jin; Choi, In Young

    2016-01-01

    The purpose of this study was to identify personality factor-associated predictors of smartphone addiction predisposition (SAP). Participants were 2,573 men and 2,281 women (n = 4,854) aged 20-49 years (Mean ± SD: 33.47 ± 7.52); participants completed the following questionnaires: the Korean Smartphone Addiction Proneness Scale (K-SAPS) for adults, the Behavioral Inhibition System/Behavioral Activation System questionnaire (BIS/BAS), the Dickman Dysfunctional Impulsivity Instrument (DDII), and the Brief Self-Control Scale (BSCS). In addition, participants reported their demographic information and smartphone usage pattern (weekday or weekend average usage hours and main use). We analyzed the data in three steps: (1) identifying predictors with logistic regression, (2) deriving causal relationships between SAP and its predictors using a Bayesian belief network (BN), and (3) computing optimal cut-off points for the identified predictors using the Youden index. Identified predictors of SAP were as follows: gender (female), weekend average usage hours, and scores on BAS-Drive, BAS-Reward Responsiveness, DDII, and BSCS. Female gender and scores on BAS-Drive and BSCS directly increased SAP. BAS-Reward Responsiveness and DDII indirectly increased SAP. We found that SAP was defined with maximal sensitivity as follows: weekend average usage hours > 4.45, BAS-Drive > 10.0, BAS-Reward Responsiveness > 13.8, DDII > 4.5, and BSCS > 37.4. This study raises the possibility that personality factors contribute to SAP. And, we calculated cut-off points for key predictors. These findings may assist clinicians screening for SAP using cut-off points, and further the understanding of SA risk factors.

  19. Inhibition of soluble epoxide hydrolase attenuates high-fat-diet-induced hepatic steatosis by reduced systemic inflammatory status in mice.

    Directory of Open Access Journals (Sweden)

    Yan Liu

    Full Text Available Non-alcoholic fatty liver disease is associated with obesity and considered an inflammatory disease. Soluble epoxide hydrolase (sEH is a major enzyme hydrolyzing epoxyeicosatrienoic acids and attenuates their cardiovascular protective and anti-inflammatory effects. We examined whether sEH inhibition can protect against high-fat (HF-diet-induced fatty liver in mice and the underlying mechanism. Compared with wild-type littermates, sEH-null mice showed lower diet-induced lipid accumulation in liver, as seen by Oil-red O staining and triglycerides levels. We studied the effect of sEH inhibition on diet-induced fatty liver by feeding C57BL/6 mice an HF diet for 8 weeks (short-term or 16 weeks (long-term and administering t-AUCB, a selective sEH inhibitor. sEH inhibition had no effect on the HF-diet-increased body and adipose tissue weight or impaired glucose tolerance but alleviated the diet-induced hepatic steatosis. Adenovirus-mediated overexpression of sEH in liver increased the level of triglycerides in liver and the hepatic inflammatory response. Surprisingly, the induced expression of sEH in liver occurred only with the long-term but not short-term HF diet, which suggests a secondary effect of HF diet on regulating sEH expression. Furthermore, sEH inhibition attenuated the HF-diet-induced increase in plasma levels of proinflammatory cytokines and their mRNA upregulation in adipose tissue, which was accompanied by increased macrophage infiltration. Therefore, sEH inhibition could alleviate HF-diet-induced hepatic steatosis, which might involve its anti-inflammatory effect in adipose tissue and direct inhibition in liver. sEH may be a therapeutic target for HF-diet-induced hepatic steatosis in inhibiting systemic inflammation.

  20. The effects of intraperitoneal clenbuterol injection on protein degradation and myostatin expression differ between the sartorius and pectoral muscles of neonatal chicks.

    Science.gov (United States)

    Ijiri, Daichi; Ishitani, Kanae; Shimamoto, Saki; Ishimaru, Yoshitaka; Ohtsuka, Akira

    2014-09-15

    The purpose of this study was to investigate the effects of injection of the β2-adrenergic receptor agonist clenbuterol on the skeletal muscles of neonatal chicks (Gallus gallus domesticus). One-day-old chicks were randomly divided into four groups and given a single intraperitoneal injection of clenbuterol (0.01, 0.1, or 1mg/kg) or phosphate-buffered saline. Twenty-four hours after the injection, the sartorius muscles (which consist of both slow- and fast-twitch fibers) of chicks that received 0.01 or 0.1mg/kg clenbuterol were significantly heavier than those of controls, while there were no between-group differences in the weight of the pectoral muscles, which consist of only fast-twitch fibers. Muscle free N(t)-methylhistidine, regarded as an index of myofibrillar proteolysis, was decreased in the sartorius muscle of the clenbuterol-injected chicks, while it was not affected in the pectoral muscles. In the sartorius muscle of the clenbuterol-injected chicks, myostatin and atrogin-1/MAFbx mRNA expressions were decreased, while insulin-like growth factor-I was unaffected. These observations suggested, in 1-day-old chicks, clenbuterol might increase mass of the sartorius muscle by decreasing myostatin gene expression and protein degradation. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. A Systems Biology Framework for Modeling Metabolic Enzyme Inhibition of Mycobacterium Tuberculosis

    Science.gov (United States)

    2009-09-15

    parameters, and group IV included those that, by definition , were directly determined once the other parameters were defined. During the sensitivity...III parameters were assumed to be related to the parameters of the first two groups; and group IV parameters are, by definition , determined once the...population growth model are described below. sAMS inhibition model sAMS inhibits the enzyme salicyl -AMP ligase (MbtA; encoded by the gene Rv2384) that

  2. Leptin promotes systemic lupus erythematosus by increasing autoantibody production and inhibiting immune regulation.

    Science.gov (United States)

    Lourenço, Elaine V; Liu, Aijing; Matarese, Giuseppe; La Cava, Antonio

    2016-09-20

    Leptin is an adipocytokine that plays a key role in the modulation of immune responses and the development and maintenance of inflammation. Circulating levels of leptin are elevated in systemic lupus erythematosus (SLE) patients, but it is not clear whether this association can reflect a direct influence of leptin on the propathogenic events that lead to SLE. To investigate this possibility, we compared the extent of susceptibility to SLE and lupus manifestations between leptin-deficient (ob/ob) and H2-matched leptin-sufficient (wild-type, WT) mice that had been treated with the lupus-inducing agent pristane. Leptin deficiency protected ob/ob mice from the development of autoantibodies and renal disease and increased the frequency of immunoregulatory T cells (Tregs) compared with leptin-sufficient WT mice. The role of leptin in the development of SLE was confirmed in the New Zealand Black (NZB) × New Zealand White (NZW)F1 (NZB/W) mouse model of spontaneous SLE, where elevated leptin levels correlated with disease manifestations and the administration of leptin accelerated development of autoantibodies and renal disease. Conversely, leptin antagonism delayed disease progression and increased survival of severely nephritic NZB/W mice. At the cellular level, leptin promoted effector T-cell responses and facilitated the presentation of self-antigens to T cells, whereas it inhibited the activity of regulatory CD4 T cells. The understanding of the role of leptin in modulating autoimmune responses in SLE can open possibilities of leptin-targeted therapeutic intervention in the disease.

  3. CaSO4 Scale Inhibition by a Trace Amount of Zinc Ion in Piping System

    Science.gov (United States)

    Mangestiyono, W.; Sutrisno

    2017-05-01

    Usually, a small steam generator is not complemented by equipment such as demineralization and chlorination process apparatus since the economic aspect was a precedence. Such phenomenon was uncovered in a case study of green tea industrial process in which the boiler capacity was not more than 1 ton/hour. The operation of the small boiler affected the scaling process in its piping system. In a year operation, there was already a large scale of calcium attached to the inner surface of the pipe. Such large scale formed a layer and decreased the overall heat transfer coefficient, prolonged the process time and decreased the production. The aim of the current research was to solve the problem through a laboratory research to inhibit the CaSO4 scale formation by the addition of trace amounts of zinc ion. This research was conducted through a built in-house experimental rig which consisted of a dosing pump for controlling the flow rate and a thermocouple to control the temperature. Synthesis solution was prepared with 3,500 ppm concentration of CaCl2 and Na2SO4. The concentration of zinc was set at 0.00; 5.00 and 10.00 ppm. The data found were characterized by scanning electron microscopy (SEM) to analyze crystal polymorph as the influence of zinc ion addition. The induction time was also investigated to analyze the nucleation time, and it was found on the 9th, 13th, and 19th minute of the zinc ion addition of 0.00, 5.00 and 10.00 ppm. After running for a four-hour duration, the scale grow-rate was found to be 5.799; 5.501 and 4.950 × 10-3 gr/min for 0.00; 5.00 and 10.00 ppm of zinc addition at 50 °C.

  4. Significant inhibition of Tembusu virus envelope and NS5 gene using an adenovirus-mediated short hairpin RNA delivery system.

    Science.gov (United States)

    Wang, Hongzhi; Feng, Qiang; Wei, Lei; Zhuo, Liling; Chen, Hao; Diao, Youxiang; Tang, Yi

    2017-10-01

    Tembusu virus (TMUV) is a mosquito-borne flavivirus, which was first isolated in the tropics during the 1970s. Recently, a disease characterized by ovarian haemorrhage and neurological symptoms was observed in ducks in China, which threatens poultry production. However, there is no suitable vaccination strategy or effective antiviral drugs to combat TMUV infections. Consequently, there is an urgent need to develop a new anti-TMUV therapy. In this study, we report an efficient short hairpin RNA (shRNA) delivery strategy for the inhibition of TMUV production using an adenovirus vector system. Using specifically designed shRNAs based on the E and NS5 protein genes of TMUV, the vector-expressed viral genes, TMUV RNA replication and infectious virus production were downregulated at different levels in Vero cells, where the shRNA (NS52) was highly effective in inhibiting TMUV. Using the human adenovirus type 5 shRNA delivery system, the recombinant adenovirus (rAd-NS52) inhibited TMUV multiplication with high efficiency. Furthermore, the significant dose-dependent inhibition of viral RNA copies induced by rAd-NS52 was found in TMUV-infected cells, which could last for at least 96h post infection. Our results indicated that the adenovirus-mediated delivery of shRNAs could play an active role in future TMUV antiviral therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Analysis of factors that inhibiting implementation of Information Security Management System (ISMS) based on ISO 27001

    Science.gov (United States)

    Tatiara, R.; Fajar, A. N.; Siregar, B.; Gunawan, W.

    2018-03-01

    The purpose of this research is to determine multi factors that inhibiting the implementation of the ISMS based on ISO 2700. It is also to propose a follow-up recommendation on the factors that inhibit the implementation of the ISMS. Data collection is derived from questionnaires to 182 respondents from users in data center operation (DCO) at bca, Indonesian telecommunication international (telin), and data centre division at Indonesian Ministry of Health. We analysing data collection with multiple linear regression analysis and paired t-test. The results are multiple factors which inhibiting the implementation of the ISMS from the three organizations which has implement and operate the ISMS, ISMS documentation management, and continual improvement. From this research, we concluded that the processes of implementation in ISMS is the necessity of the role of all parties in succeeding the implementation of the ISMS continuously.

  6. Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Pachitsas, Stylianos; von Solms, Nicolas

    2015-01-01

    Gas hydrate formation in multi phase mixtures containing an aqueous phase (with dissolved salts), reservoir fluid (crude oil) and natural gas phase was investigated by using a standard rocking cell (RC-5) apparatus. The hydrate formation temperature was reduced in the presence of crude oils...... of the biodegradable commercial kinetic inhibitor (Luvicap-Bio) on natural gas hydrate formation with and without crude oil (30%) was investigated. The strength of kinetic inhibitor was not affected by salts, but decreased significantly in the presence of crude oil. Data for hydrate formation at practical conditions...... inhibition mechanisms and potentially a competition among inhibition-promotion mechanisms. Moreover, the hydrate formation time has been determined at different water cuts in each crude oil and it was found that the inhibition capability increases with an increase in the oil content. The effect...

  7. Systemic vascular resistance during brief withdrawal of angiotensin converting enzyme inhibition in heart failure

    DEFF Research Database (Denmark)

    Gabrielsen, A; Bie, P; Christensen, N J

    2002-01-01

    We tested the hypothesis that moderate increases in endogenous angiotensin II (Ang II) concentrations, induced by withdrawal of angiotensin converting enzyme inhibition (ACE-I) in patients with compensated heart failure (HF) on chronic medical therapy, do not increase or impair control of systemi...

  8. A Systems Chemical Biology Study of Malate Synthase and Isocitrate Lyase Inhibition in Mycobacterium tuberculosis During Active and NRP Growth

    Science.gov (United States)

    May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander; Oprea, Tudor I.

    2013-01-01

    The ability of Mycobacterium tuberculosis (Mtb) to survive in low oxygen environments enables the bacterium to persist in a latent state within host tissues. In vitro studies of Mtb growth have identified changes in isocitrate lyase (ICL) and malate synthase (MS) that enable bacterial persistent under low oxygen and other environmentally limiting conditions. Systems chemical biology (SCB) enables us to evaluate the effects of small molecule inhibitors not only on the reaction catalyzed by malate synthase and isocitrate lyase, but the effect on the complete tricarboxylic acid cycle (TCA) by taking into account complex network relationships within that system. To study the kinetic consequences of inhibition on persistent bacilli, we implement a systems-chemical biology (SCB) platform and perform a chemistry-centric analysis of key metabolic pathways believed to impact Mtb latency. We explore consequences of disrupting the function of malate synthase (MS) and isocitrate lyase (ICL) during aerobic and hypoxic non-replicating persistence (NRP) growth by using the SCB method to identify small molecules that inhibit the function of MS and ICL, and simulating the metabolic consequence of the disruption. Results indicate variations in target and non-target reaction steps, clear differences in the normal and low oxygen models, as well as dosage dependent response. Simulation results from singular and combined enzyme inhibition strategies suggest ICL may be the more effective target for chemotherapeutic treatment against Mtb growing in a microenvironment where oxygen is slowly depleted, which may favor persistence. PMID:24121675

  9. Association of the Myostatin gene with obesity, abdominal obesity and low lean body mass and in non-diabetic Asian Indians in north India.

    Directory of Open Access Journals (Sweden)

    Surya Prakash Bhatt

    Full Text Available BACKGROUND: To determine the association of the A55T and K153R polymorphisms of the Myostatin gene with obesity, abdominal obesity and lean body mass (LBM in Asian Indians in north India. MATERIALS AND METHODS: A total of 335 subjects (238 men and 97 women were assessed for anthropometry, % body fat (BF, LBM and biochemical parameters. Associations of Myostatin gene polymorphisms were evaluated with anthropometric, body composition and biochemical parameters. In A55T polymorphism, BMI (p=0.04, suprailiac skinfold (p=0.05, total skinfold (p=0.008, %BF (p=0.002 and total fat mass (p=0.003 were highest and % LBM (p=0.03 and total LBM (Kg were lowest (p=0.04 in subjects with Thr/Thr genotype as compared to other genotypes. Association analysis of K153R polymorphism showed that subjects with R/R genotype had significantly higher BMI (p=0.05, waist circumference (p=0.04, %BF (p=0.04 and total fat mass (p=0.03, and lower %LBM (p=0.02 and total LBM [(Kg, (p=0.04] as compared to other genotypes. Using a multivariate logistic regression model after adjusting for age and sex, subjects with Thr/Thr genotype of A55T showed high risk for high %BF (OR, 3.92, 95% Cl: 2.61-12.41, truncal subcutaneous adiposity (OR, 2.9, 95% Cl: 1.57-6.60] and low LBM (OR, 0.64, 95% CI: 0.33-0.89 whereas R/R genotype of K153R showed high risk of obesity (BMI; OR, 3.2, 95% CI: 1.2-12.9; %BF, OR, 3.6, 95% CI: 1.04-12.4, abdominal obesity (OR, 2.12, 95% CI: 2.71-14.23 and low LBM (OR, 0.61, 95% CI: 0.29-0.79. CONCLUSIONS/SIGNIFICANCE: We report that variants of Myostatin gene predispose to obesity, abdominal obesity and low lean body mass in Asian Indians in north India.

  10. Pseudomonas aeruginosa Magnesium Transporter MgtE Inhibits Type III Secretion System Gene Expression by StimulatingrsmYZTranscription.

    Science.gov (United States)

    Chakravarty, Shubham; Melton, Cameron N; Bailin, Adam; Yahr, Timothy L; Anderson, Gregory G

    2017-12-01

    Pseudomonas aeruginosa causes numerous acute and chronic opportunistic infections in humans. One of its most formidable weapons is a type III secretion system (T3SS), which injects powerful toxins directly into host cells. The toxins lead to cell dysfunction and, ultimately, cell death. Identification of regulatory pathways that control T3SS gene expression may lead to the discovery of novel therapeutics to treat P. aeruginosa infections. In a previous study, we found that expression of the magnesium transporter gene mgtE inhibits T3SS gene transcription. MgtE-dependent inhibition appeared to interfere with the synthesis or function of the master T3SS transcriptional activator ExsA, although the exact mechanism was unclear. We now demonstrate that mgtE expression acts through the GacAS two-component system to activate rsmY and rsmZ transcription. This event ultimately leads to inhibition of exsA translation. This inhibitory effect is specific to exsA as translation of other genes in the exsCEBA operon is not inhibited by mgtE Moreover, our data reveal that MgtE acts solely through this pathway to regulate T3SS gene transcription. Our study reveals an important mechanism that may allow P. aeruginosa to fine-tune T3SS activity in response to certain environmental stimuli. IMPORTANCE The type III secretion system (T3SS) is a critical virulence factor utilized by numerous Gram-negative bacteria, including Pseudomonas aeruginosa , to intoxicate and kill host cells. Elucidating T3SS regulatory mechanisms may uncover targets for novel anti- P. aeruginosa therapeutics and provide deeper understanding of bacterial pathogenesis. We previously found that the magnesium transporter MgtE inhibits T3SS gene transcription in P. aeruginosa In this study, we describe the mechanism of MgtE-dependent inhibition of the T3SS. Our report also illustrates how MgtE might respond to environmental cues, such as magnesium levels, to fine-tune T3SS gene expression. Copyright © 2017 American

  11. Systemic Monocyte Chemotactic Protein-1 Inhibition Modifies Renal Macrophages and Restores Glomerular Endothelial Glycocalyx and Barrier Function in Diabetic Nephropathy.

    Science.gov (United States)

    Boels, Margien G S; Koudijs, Angela; Avramut, M Cristina; Sol, Wendy M P J; Wang, Gangqi; van Oeveren-Rietdijk, Annemarie M; van Zonneveld, Anton Jan; de Boer, Hetty C; van der Vlag, Johan; van Kooten, Cees; Eulberg, Dirk; van den Berg, Bernard M; IJpelaar, Daphne H T; Rabelink, Ton J

    2017-11-01

    Inhibition of monocyte chemotactic protein-1 (MCP-1) with the Spiegelmer emapticap pegol (NOX-E36) shows long-lasting albuminuria-reducing effects in diabetic nephropathy. MCP-1 regulates inflammatory cell recruitment and differentiation of macrophages. Because the endothelial glycocalyx is also reduced in diabetic nephropathy, we hypothesized that MCP-1 inhibition restores glomerular barrier function through influencing macrophage cathepsin L secretion, thus reducing activation of the glycocalyx-degrading enzyme heparanase. Four weeks of treatment of diabetic Apoe knockout mice with the mouse-specific NOX-E36 attenuated albuminuria without any change in systemic hemodynamics, despite persistent loss of podocyte function. MCP-1 inhibition, however, increased glomerular endothelial glycocalyx coverage, with preservation of heparan sulfate. Mechanistically, both glomerular cathepsin L and heparanase expression were reduced. MCP-1 inhibition resulted in reduced CCR2-expressing Ly6C hi monocytes in the peripheral blood, without affecting overall number of kidney macrophages at the tissue level. However, the CD206 + /Mac3 + cell ratio, as an index of presence of anti-inflammatory macrophages, increased in diabetic mice after treatment. Functional analysis of isolated renal macrophages showed increased release of IL-10, whereas tumor necrosis factor and cathepsin L release was reduced, further confirming polarization of tissue macrophages toward an anti-inflammatory phenotype during mouse-specific NOX-E36 treatment. We show that MCP-1 inhibition restores glomerular endothelial glycocalyx and barrier function and reduces tissue inflammation in the presence of ongoing diabetic injury, suggesting a therapeutic potential for NOX-E36 in diabetic nephropathy. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. A Comparison of Behavioral Inhibition/ Activation System, Type D and Optimism in the Breast Cancer Patients and Healthy Controls

    Directory of Open Access Journals (Sweden)

    A Alipoor

    2015-04-01

    Full Text Available Background & aim: Nowadays, the role and importance of psychosocial factors on physical health, as well as the influence of personality characteristics in having psychosomatic diseases such as cancer are of interest to many researchers. In spite of increase in breast cancer in Iran, very few studies have been carried out on risk factors of breast cancer. The aim of this study was to evaluate the comparative Behavioral inhibition / Activation System, type D and optimism in the breast cancer patients and healthy individuals. Methods: In the present casual-comparative study, 190 people (95 Patients and 95 Normal Subjects were selected in Rasht, Iran. Moreover, the groups were matched for demographic characteristics (age, gender and education. All individuals diagnosed with Breast Cancer and Normal Subjects received a Gary-Wilson Personality Questionnaire, Life Orientation Test and Type D Personality Scale. Collected data were analyzed using multivariate analysis of variance and regression. Results: The findings revealed that there were significant differences between cancer and normal groups in behavioral inhibition/activation system, type D Personality and optimism. In this regard, the Breast Cancer group had higher scores subscales of negative affect, social inhibition, passive avoidance, extinction and fight-flight than normal group. In addition, subscales of approach, active avoidance and optimism in the normal group were more than the Breast Cancer group. Conclusion: The present study supported the role of psychological variables in breast cancer patients which is essential for improving patients’ health and quality of life.

  13. Inhibition of nitric oxide synthesis by systemic N(G)-monomethyl-L-arginine administration in humans

    DEFF Research Database (Denmark)

    Frandsen, U; Bangsbo, J; Langberg, Henning

    2000-01-01

    We examined whether the formation or the release of the vasodilators adenosine, prostacyclin (PGI(2)) and potassium (K(+)) increase in skeletal muscle interstitium in response to nitric oxide synthase (NOS) inhibition. Five subjects performed one-legged knee extensor exercise at 30 W without (con......-keto-prostaglandin F1alpha concentration in controls was 1.17+/-0.20 ng/ml at rest and increased (p0.05) in L-NAME. The interstitial K(+) concentration in controls increased (p...

  14. Combined targeting of Raf and Mek synergistically inhibits tumorigenesis in triple negative breast cancer model systems.

    Science.gov (United States)

    Nagaria, Teddy S; Shi, Changnian; Leduc, Charles; Hoskin, Victoria; Sikdar, Soma; Sangrar, Waheed; Greer, Peter A

    2017-10-06

    Aberrant Ras-MAPK signaling from receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor-2 (HER2), is a hallmark of triple negative breast cancer (TNBC); thus providing rationale for targeting the Ras-MAPK pathway. Components of this EGFR/HER2-Ras-Raf-Mek-Erk pathway were co-targeted in the MDA-MB-231 and MDA-MB-468 human TNBC cell lines, and in vitro effects on signaling and cytotoxicity, as well as in vivo effects on xenograft tumor growth and metastasis were assessed. The dual EGFR/HER2 inhibitor lapatinib (LPN) displayed greater cytotoxic potency and MAPK signaling inhibition than the EGFR inhibitor erlotinib, suggesting both EGFR and HER2 contribute to MAPK signaling in this TNBC model. The Raf inhibitor sorafenib (SFN) or the Mek inhibitor U0126 suppressed MAPK signaling to a greater extent than LPN; which correlated with greater cytotoxic potency of SFN, but not U0126. However, U0126 potentiated the cytotoxic efficacy of LPN and SFN in an additive and synergistic manner, respectively. This in-series Raf-Mek co-targeting synergy was recapitulated in orthotopic mouse xenografts, where SFN and the Mek inhibitor selumitinib (AZD6244) inhibited primary tumor growth and pulmonary metastasis. Raf and Mek co-inhibition exhibits synergy in TNBC models and represent a promising combination therapy for this aggressive breast cancer type.

  15. Pharmacological activation/inhibition of the cannabinoid system affects alcohol withdrawal-induced neuronal hypersensitivity to excitotoxic insults.

    Directory of Open Access Journals (Sweden)

    Marina Rubio

    Full Text Available Cessation of chronic ethanol consumption can increase the sensitivity of the brain to excitotoxic damages. Cannabinoids have been proposed as neuroprotectants in different models of neuronal injury, but their effect have never been investigated in a context of excitotoxicity after alcohol cessation. Here we examined the effects of the pharmacological activation/inhibition of the endocannabinoid system in an in vitro model of chronic ethanol exposure and withdrawal followed by an excitotoxic challenge. Ethanol withdrawal increased N-methyl-D-aspartate (NMDA-evoked neuronal death, probably by altering the ratio between GluN2A and GluN2B NMDA receptor subunits. The stimulation of the endocannabinoid system with the cannabinoid agonist HU-210 decreased NMDA-induced neuronal death exclusively in ethanol-withdrawn neurons. This neuroprotection could be explained by a decrease in NMDA-stimulated calcium influx after the administration of HU-210, found exclusively in ethanol-withdrawn neurons. By contrast, the inhibition of the cannabinoid system with the CB1 receptor antagonist rimonabant (SR141716 during ethanol withdrawal increased death of ethanol-withdrawn neurons without any modification of NMDA-stimulated calcium influx. Moreover, chronic administration of rimonabant increased NMDA-stimulated toxicity not only in withdrawn neurons, but also in control neurons. In summary, we show for the first time that the stimulation of the endocannabinoid system is protective against the hyperexcitability developed during alcohol withdrawal. By contrast, the blockade of the endocannabinoid system is highly counterproductive during alcohol withdrawal.

  16. Combined Inhibition of C5 and CD14 Attenuates Systemic Inflammation in a Piglet Model of Meconium Aspiration Syndrome.

    Science.gov (United States)

    Thomas, Anub Mathew; Schjalm, Camilla; Nilsson, Per H; Lindenskov, Paal H H; Rørtveit, Runa; Solberg, Rønnaug; Saugstad, Ola Didrik; Berglund, Magnus M; Strömberg, Patrik; Lau, Corinna; Espevik, Terje; Jansen, Johan Høgset; Castellheim, Albert; Mollnes, Tom Eirik; Barratt-Due, Andreas

    2018-02-27

    Meconium aspiration syndrome (MAS) is a severe lung condition affecting newborns and it can lead to a systemic inflammatory response. We previously documented complement activation and cytokine release in a piglet MAS model. Additionally, we showed ex vivo that meconium-induced inflammation was dependent on complement and Toll-like receptors. To assess the efficacy of the combined inhibition of complement (C5) and CD14 on systemic inflammation induced in a forceful piglet MAS model. Thirty piglets were randomly allocated to a treatment group receiving the C5-inhibitor SOBI002 and anti-CD14 (n = 15) and a nontreated control group (n = 15). MAS was induced by intratracheal meconium instillation, and the piglets were observed for 5 h. Complement, cytokines, and myeloperoxidase (MPO) were measured by ELISA. SOBI002 ablated C5 activity and the formation of the terminal complement complex in vivo. The combined inhibition attenuated the inflammasome cytokines IL-1β and IL-6 by 60 (p = 0.029) and 44% (p = 0.01), respectively, and also MPO activity in the bronchoalveolar fluid by 42% (p = 0.017). Ex vivo experiments in human blood revealed that the combined regimen attenuated meconium-induced MPO release by 64% (p = 0.008), but there was only a negligible effect with single inhibition, indicating a synergic cross-talk between the key molecules C5 and CD14. Combined inhibition of C5 and CD14 attenuates meconium-induced inflammation in vivo and this could become a future therapeutic regimen for MAS. © 2018 The Author(s) Published by S. Karger AG, Basel.

  17. Deficits in Response Inhibition in Patients with Attention-Deficit/Hyperactivity Disorder: The Impaired Self-Protection System Hypothesis

    Directory of Open Access Journals (Sweden)

    Thales Vianna Coutinho

    2018-01-01

    Full Text Available Problems in inhibitory control are regarded in Psychology as a key problem associated with attention-deficit/hyperactivity disorder (ADHD. They, however, might not be primary deficits, but instead a consequence of inattention. At least two components have been identified and dissociated in studies in regards to inhibitory control: interference suppression, responsible for controlling interference by resisting irrelevant or misleading information, and response inhibition, referring to withholding a response or overriding an ongoing behavior. Poor error awareness and self-monitoring undermine an individual’s ability to inhibit inadequate responses and change course of action. In non-social contexts, an individual depends on his own cognition to regulate his mistakes. In social contexts, however, there are many social cues that should help that individual to perceive his mistakes and inhibit inadequate responses. The processes involved in perceiving and interpreting those social cues are arguably part of a self-protection system (SPS. Individuals with ADHD not only present impulsive behaviors in social contexts, but also have difficulty perceiving their inadequate responses and overriding ongoing actions toward more appropriate ones. In this paper, we discuss that those difficulties are arguably a consequence of an impaired SPS, due to visual attention deficits and subsequent failure in perceiving and recognizing accurately negative emotions in facial expressions, especially anger. We discuss evidence that children with ADHD exhibit problems in a series of components involved in the activation of that system and advocate that the inability to identify the anger expressed by others, and thus, not experiencing the fear response that should follow, is, ultimately, what prevents them from inhibiting the ongoing inappropriate behavior, since a potential threat is not registered. Getting involved in high-risk situations, such as reckless driving, could

  18. Deficits in Response Inhibition in Patients with Attention-Deficit/Hyperactivity Disorder: The Impaired Self-Protection System Hypothesis.

    Science.gov (United States)

    Coutinho, Thales Vianna; Reis, Samara Passos Santos; da Silva, Antonio Geraldo; Miranda, Debora Marques; Malloy-Diniz, Leandro Fernandes

    2017-01-01

    Problems in inhibitory control are regarded in Psychology as a key problem associated with attention-deficit/hyperactivity disorder (ADHD). They, however, might not be primary deficits, but instead a consequence of inattention. At least two components have been identified and dissociated in studies in regards to inhibitory control: interference suppression, responsible for controlling interference by resisting irrelevant or misleading information, and response inhibition, referring to withholding a response or overriding an ongoing behavior. Poor error awareness and self-monitoring undermine an individual's ability to inhibit inadequate responses and change course of action. In non-social contexts, an individual depends on his own cognition to regulate his mistakes. In social contexts, however, there are many social cues that should help that individual to perceive his mistakes and inhibit inadequate responses. The processes involved in perceiving and interpreting those social cues are arguably part of a self-protection system (SPS). Individuals with ADHD not only present impulsive behaviors in social contexts, but also have difficulty perceiving their inadequate responses and overriding ongoing actions toward more appropriate ones. In this paper, we discuss that those difficulties are arguably a consequence of an impaired SPS, due to visual attention deficits and subsequent failure in perceiving and recognizing accurately negative emotions in facial expressions, especially anger. We discuss evidence that children with ADHD exhibit problems in a series of components involved in the activation of that system and advocate that the inability to identify the anger expressed by others, and thus, not experiencing the fear response that should follow, is, ultimately, what prevents them from inhibiting the ongoing inappropriate behavior, since a potential threat is not registered. Getting involved in high-risk situations, such as reckless driving, could also be a

  19. A SNP in the 5' flanking region of the myostatin-1b gene is associated with harvest traits in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Peñaloza, Carolina; Hamilton, Alastair; Guy, Derrick R; Bishop, Stephen C; Houston, Ross D

    2013-11-27

    Myostatin (MSTN) belongs to the transforming growth factor-β superfamily and is a potent negative regulator of skeletal muscle development and growth in mammals. Most teleost fish possess two MSTN paralogues. However, as a consequence of a recent whole genome-duplication event, salmonids have four: MSTN-1 (-1a and -1b) and MSTN-2 (-2a and -2b). Evidence suggests that teleost MSTN plays a role in the regulation of muscle growth. In the current study, the MSTN-1b gene was re-sequenced and screened for SNP markers in a commercial population of Atlantic salmon. After genotyping 4,800 progeny for the discovered SNPs, we investigated their association with eight harvest traits - four body-weight traits, two ratios of weight traits, flesh colour and fat percentage - using a mixed model association analysis. Three novel SNPs were discovered in the MSTN-1b gene of Atlantic salmon. One of the SNPs, located within the 5' flanking region (g.1086C > T), had a significant association with harvest traits (p  T locus. The alleles at g.1086C > T act in an additive manner and explain a small percentage of the genetic variation of these phenotypes. The association analysis revealed that g.1086C > T had a significant association with all body-weight traits under study. Although the SNP explains a small percentage of the variance, our results indicate that a variation in the 5' flanking region of the myostatin gene is associated with the genetic regulation of growth in Atlantic salmon.

  20. The systemic bone protective effects of Gushukang granules in ovariectomized mice by inhibiting osteoclastogenesis and stimulating osteoblastogenesis

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2018-03-01

    Full Text Available Primary osteoporosis (POP, which is caused by unbalanced bone remodeling, leads to significant economic and societal burdens globally. Gushukang (GSK granule serves as one commonly used prescription for POP in Traditional Chinese Medicine (TCM. The present study aimed to clarify the exact roles of GSK in bone remodeling with in vivo and in vitro assays. Here we showed that GSK prevented bone loss and the alternations of osteoporotic bone parameters as well as the decreased density of osteoclast in ovariectomized (OVX mice. GSK inhibited receptor activator for nuclear factor-κ B Ligand (RANKL-activated osteoclastogenesis in bone marrow macrophages (BMMs. At the molecular levels, GSK inhibited the expression of nuclear factor of activated T cells cytoplasm 1(NFATc1 and c-Fos, two master regulators of osteoclastogenesis. GSK also inhibited bone resorbed genetic expression of matrix metalloproteinase 9 (MMP9, cathepsin K (Ctsk, TRAP and carbonic anhydrase II (Car2. Meanwhile, GSK stimulated osteoblastogenesis from bone primary mesenchymal stem cells (MSCs and enhanced the expression of Osteirx, and Runx2. GSK also stimulated the expression of Col-1, Osteocalcein and alkaline phosphatase (ALP. Our investigation established the systemic bone protective effects of GSK by suppressing osteoclastogenesis and stimulating osteoblastogenesis and laid bases for new drugs discovery in treating POP. Keywords: Gushukang (GSK granule, Primary osteoporosis, Osteoclastogenesis, Osteoblastogenesis

  1. The systemic bone protective effects of Gushukang granules in ovariectomized mice by inhibiting osteoclastogenesis and stimulating osteoblastogenesis.

    Science.gov (United States)

    Wang, Qiang; Zhao, Yongjian; Sha, Nannan; Zhang, Yan; Li, Chenguang; Zhang, Hao; Tang, Dezhi; Lu, Sheng; Shi, Qi; Wang, Yongjun; Shu, Bing; Zhao, Dongfeng

    2018-03-01

    Primary osteoporosis (POP), which is caused by unbalanced bone remodeling, leads to significant economic and societal burdens globally. Gushukang (GSK) granule serves as one commonly used prescription for POP in Traditional Chinese Medicine (TCM). The present study aimed to clarify the exact roles of GSK in bone remodeling with in vivo and in vitro assays. Here we showed that GSK prevented bone loss and the alternations of osteoporotic bone parameters as well as the decreased density of osteoclast in ovariectomized (OVX) mice. GSK inhibited receptor activator for nuclear factor-κ B Ligand (RANKL)-activated osteoclastogenesis in bone marrow macrophages (BMMs). At the molecular levels, GSK inhibited the expression of nuclear factor of activated T cells cytoplasm 1(NFATc1) and c-Fos, two master regulators of osteoclastogenesis. GSK also inhibited bone resorbed genetic expression of matrix metalloproteinase 9 (MMP9), cathepsin K (Ctsk), TRAP and carbonic anhydrase II (Car2). Meanwhile, GSK stimulated osteoblastogenesis from bone primary mesenchymal stem cells (MSCs) and enhanced the expression of Osteirx, and Runx2. GSK also stimulated the expression of Col-1, Osteocalcein and alkaline phosphatase (ALP). Our investigation established the systemic bone protective effects of GSK by suppressing osteoclastogenesis and stimulating osteoblastogenesis and laid bases for new drugs discovery in treating POP. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  2. Peptide redesign for inhibition of the complement system: Targeting age-related macular degeneration

    Science.gov (United States)

    Mohan, Rohith R.; Cabrera, Andrea P.; Harrison, Reed E. S.; Gorham, Ronald D.; Johnson, Lincoln V.; Ghosh, Kaustabh

    2016-01-01

    Purpose To redesign a complement-inhibiting peptide with the potential to become a therapeutic for dry and wet age-related macular degeneration (AMD). Methods We present a new potent peptide (Peptide 2) of the compstatin family. The peptide is developed by rational design, based on a mechanistic binding hypothesis, and structural and physicochemical properties derived from molecular dynamics (MD) simulation. The inhibitory activity, efficacy, and solubility of Peptide 2 are evaluated using a hemolytic assay, a human RPE cell–based assay, and ultraviolet (UV) absorption properties, respectively, and compared to the respective properties of its parent peptide (Peptide 1). Results The sequence of Peptide 2 contains an arginine-serine N-terminal extension (a characteristic of parent Peptide 1) and a novel 8-polyethylene glycol (PEG) block C-terminal extension. Peptide 2 has significantly improved aqueous solubility compared to Peptide 1 and comparable complement inhibitory activity. In addition, Peptide 2 is more efficacious in inhibiting complement activation in a cell-based model that mimics the pathobiology of dry AMD. Conclusions We have designed a new peptide analog of compstatin that combines N-terminal polar amino acid extensions and C-terminal PEGylation extensions. This peptide demonstrates significantly improved aqueous solubility and complement inhibitory efficacy, compared to the parent peptide. The new peptide overcomes the aggregation limitation for clinical translation of previous compstatin analogs and is a candidate to become a therapeutic for the treatment of AMD. PMID:27829783

  3. A systems biology framework for modeling metabolic enzyme inhibition of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Reifman Jaques

    2009-09-01

    Full Text Available Abstract Background Because metabolism is fundamental in sustaining microbial life, drugs that target pathogen-specific metabolic enzymes and pathways can be very effective. In particular, the metabolic challenges faced by intracellular pathogens, such as Mycobacterium tuberculosis, residing in the infected host provide novel opportunities for therapeutic intervention. Results We developed a mathematical framework to simulate the effects on the growth of a pathogen when enzymes in its metabolic pathways are inhibited. Combining detailed models of enzyme kinetics, a complete metabolic network description as modeled by flux balance analysis, and a dynamic cell population growth model, we quantitatively modeled and predicted the dose-response of the 3-nitropropionate inhibitor on the growth of M. tuberculosis in a medium whose carbon source was restricted to fatty acids, and that of the 5'-O-(N-salicylsulfamoyl adenosine inhibitor in a medium with low-iron concentration. Conclusion The predicted results quantitatively reproduced the experimentally measured dose-response curves, ranging over three orders of magnitude in inhibitor concentration. Thus, by allowing for detailed specifications of the underlying enzymatic kinetics, metabolic reactions/constraints, and growth media, our model captured the essential chemical and biological factors that determine the effects of drug inhibition on in vitro growth of M. tuberculosis cells.

  4. Renal targeting of captopril selectively enhances the intrarenal over the systemic effects of ACE inhibition in rats

    Science.gov (United States)

    Haverdings, R Folgert G; Haas, Marijke; Navis, Gerjan; van Loenen-Weemaes, Anne-miek; Meijer, Dirk K F; de Zeeuw, Dick; Moolenaar, Frits

    2002-01-01

    In previous studies on the renal targeting of the ACE inhibitor captopril, we demonstrated that a 6 fold increased concentration of this drug could be obtained in the kidney after conjugation to the low-molecular-weight protein lysozyme. In this study, we investigated in unrestrained rats whether systemic administration of captopril–lysozyme also results in an enhanced effect on renal parameters, relative to the systemic effects. Renal effects: intravenous infusion of captopril–lysozyme for 6 h resulted in a more pronounced increment of renal blood flow (31±2% vs 17±4% at 0.5 mg kg−1 6h−1, Pcaptopril as a free drug. In correspondence with these findings, renal ACE inhibition was potentiated approximately 5 fold (−50±4% vs −22±3% at 1 mg kg−1 6 h−1, Pcaptopril did not affect blood pressure in dosages up to 5 mg kg−1 6 h−1. This effect coincided with a less pronounced inhibition of the pressor response to intravenously administered angiotensin I (−12±3% vs −66±5% at 1 mg kg−1 6 h−1, Pcaptopril. An experiment of continued intravenous administration of captopril–lysozyme for 7 days in nephrotic syndrome demonstrated that the conjugate is also active in renal disease: the antiproteinuric response was substantially augmented (−67±5% vs −15±7% at 4 mg kg−1 24 h−1, Pcaptopril–lysozyme conjugate leads to more selective renal ACE inhibition and enhanced renal effects as well as less systemic effects compared to captopril itself. PMID:12163343

  5. Effect of Metformin on Handgrip Strength, Gait Speed, Myostatin Serum Level, and Health-related Quality of Life: A Double Blind Randomized Controlled Trial among Non-diabetic Pre-frail Elderly Patients.

    Science.gov (United States)

    Laksmi, Purwita Wijaya; Setiati, Siti; Tamin, Tirza Z; Soewondo, Pradana; Rochmah, Wasilah; Nafrialdi, Nafrialdi; Prihartono, Joedo

    2017-04-01

    sarcopenia contributes to the development of frailty syndrome. Frailty syndrome is potentially improved by modifying insulin resistance, inflammation, and myostatin level. This study is aimed to investigate the effect of metformin on handgrip strength, gait speed, myostatin serum level, and health-related quality of life (HR-QoL) among non-diabetic pre-frail elderly patients. a double blind randomized controlled trial study was conducted on non-diabetic elderly outpatients aged ≥ 60 years with pre-frail status based on phenotype and/ or index criteria (Cardiovascular Health Study and/ or Frailty Index 40 items) consecutively recruited from March 2015 to June 2016 at Cipto Mangunkusumo Hospital. One-hundred-twenty subjects who met the research criteria were randomized and equally assigned into 3 x 500 mg metformin or placebo group. The study outcomes were measured at baseline and after 16 weeks of intervention. out of 120 subjects, 43 subjects in metformin group and 48 subjects in placebo group who completed the intervention. There was a significant improvement on the mean gait speed of metformin group by 0.39 (0.77) second or 0.13 (0.24) meter/second that remained significant after adjusting for important prognostic factors (p = 0.024). There was no significant difference on handgrip strength, myostatin serum level, and HR-QoL between both groups. 3 x 500 mg metformin for 16 weeks was statistically significant and clinically important in improving usual gait speed as one of the HR-QoL dimensions, but did not significantly improve the EQ-5D index score, handgrip strength, nor myostatin serum level.

  6. Temporal profiling of the chromatin proteome reveals system-wide responses to replication inhibition

    DEFF Research Database (Denmark)

    Khoudoli, Guennadi A; Gillespie, Peter J; Stewart, Graeme

    2008-01-01

    Although the replication, expression, and maintenance of DNA are well-studied processes, the way that they are coordinated is poorly understood. Here, we report an analysis of the changing association of proteins with chromatin (the chromatin proteome) during progression through interphase...... of the cell cycle. Sperm nuclei were incubated in Xenopus egg extracts, and chromatin-associated proteins were analyzed by mass spectrometry at different times. Approximately 75% of the proteins varied in abundance on chromatin by more than 15%, suggesting that the chromatin proteome is highly dynamic....... Proteins were then assigned to one of 12 different clusters on the basis of their pattern of chromatin association. Each cluster contained functional groups of proteins involved in different nuclear processes related to progression through interphase. We also blocked DNA replication by inhibiting either...

  7. Inhibition of nitric oxide synthesis by systemic N(G)-monomethyl-L-arginine administration in humans

    DEFF Research Database (Denmark)

    Frandsen, U; Bangsbo, J; Langberg, Henning

    2000-01-01

    (controls) and with prior N(G)-nitro-L-arginine methyl ester (L-NAME) infusion (4 mg/kg, intravenously). Samples from the interstitial fluid were obtained at rest, during exercise and after exercise with the microdialysis technique. Interstitial adenosine in controls increased (p0.05) to controls. The 6......-keto-prostaglandin F1alpha concentration in controls was 1.17+/-0.20 ng/ml at rest and increased (p0.05) in L-NAME. The interstitial K(+) concentration in controls increased (p......We examined whether the formation or the release of the vasodilators adenosine, prostacyclin (PGI(2)) and potassium (K(+)) increase in skeletal muscle interstitium in response to nitric oxide synthase (NOS) inhibition. Five subjects performed one-legged knee extensor exercise at 30 W without...

  8. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin–angiotensin system and proinflammatory cytokines in hypertension

    International Nuclear Information System (INIS)

    Su, Qing; Qin, Da-Nian; Wang, Fu-Xin; Ren, Jun; Li, Hong-Bao; Zhang, Meng; Yang, Qing; Miao, Yu-Wang; Yu, Xiao-Jing; Qi, Jie; Zhu, Zhiming; Zhu, Guo-Qing; Kang, Yu-Ming

    2014-01-01

    Aims: To explore whether reactive oxygen species (ROS) scavenger (tempol) in the hypothalamic paraventricular nucleus (PVN) attenuates renin–angiotensin system (RAS) and proinflammatory cytokines (PICs), and decreases the blood pressure and sympathetic activity in angiotensin II (ANG II)-induced hypertension. Methods and results: Male Sprague–Dawley rats were infused intravenously with ANG II (10 ng/kg per min) or normal saline (NS) for 4 weeks. These rats were treated with bilateral PVN infusion of oxygen free radical scavenger tempol (TEMP, 20 μg/h) or vehicle (artificial cerebrospinal fluid, aCSF) for 4 weeks. ANG II infusion resulted in increased mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA). These ANG II-infused rats also had higher levels of gp91 phox (a subunit of NAD(P)H oxidase), angiotensin-converting enzyme (ACE), and interleukin-1beta (IL-1β) in the PVN than the control animals. Treatment with PVN infusion of TEMP attenuated the overexpression of gp91 phox , ACE and IL-1β within the PVN, and decreased sympathetic activity and MAP in ANG II-infused rats. Conclusion: These findings suggest that ANG II infusion induces elevated PICs and oxidative stress in the PVN, which contribute to the sympathoexcitation in hypertension. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin–angiotensin system, proinflammatory cytokines and oxidative stress in ANG II-induced hypertension. - Highlights: • The effect of chronic inhibiting PVN superoxide on hypertension was investigated. • ANG II infusion induced increased proinflammatory cytokines and superoxide in PVN. • ANG II infusion resulted in oxidative stress, sympathoexcitation and hypertension. • Chronic inhibiting PVN superoxide attenuates RAS and cytokines in hypertension

  9. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin–angiotensin system and proinflammatory cytokines in hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Su, Qing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Wang, Fu-Xin [Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi 154002 (China); Ren, Jun [Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071 (United States); Li, Hong-Bao; Zhang, Meng; Yang, Qing; Miao, Yu-Wang; Yu, Xiao-Jing; Qi, Jie [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhu, Zhiming [Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, The Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China)

    2014-04-15

    Aims: To explore whether reactive oxygen species (ROS) scavenger (tempol) in the hypothalamic paraventricular nucleus (PVN) attenuates renin–angiotensin system (RAS) and proinflammatory cytokines (PICs), and decreases the blood pressure and sympathetic activity in angiotensin II (ANG II)-induced hypertension. Methods and results: Male Sprague–Dawley rats were infused intravenously with ANG II (10 ng/kg per min) or normal saline (NS) for 4 weeks. These rats were treated with bilateral PVN infusion of oxygen free radical scavenger tempol (TEMP, 20 μg/h) or vehicle (artificial cerebrospinal fluid, aCSF) for 4 weeks. ANG II infusion resulted in increased mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA). These ANG II-infused rats also had higher levels of gp91{sup phox} (a subunit of NAD(P)H oxidase), angiotensin-converting enzyme (ACE), and interleukin-1beta (IL-1β) in the PVN than the control animals. Treatment with PVN infusion of TEMP attenuated the overexpression of gp91{sup phox}, ACE and IL-1β within the PVN, and decreased sympathetic activity and MAP in ANG II-infused rats. Conclusion: These findings suggest that ANG II infusion induces elevated PICs and oxidative stress in the PVN, which contribute to the sympathoexcitation in hypertension. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin–angiotensin system, proinflammatory cytokines and oxidative stress in ANG II-induced hypertension. - Highlights: • The effect of chronic inhibiting PVN superoxide on hypertension was investigated. • ANG II infusion induced increased proinflammatory cytokines and superoxide in PVN. • ANG II infusion resulted in oxidative stress, sympathoexcitation and hypertension. • Chronic inhibiting PVN superoxide attenuates RAS and cytokines in hypertension.

  10. Bothrops asper metalloproteinase BaP1 is inhibited by alpha(2)-macroglobulin and mouse serum and does not induce systemic hemorrhage or coagulopathy.

    Science.gov (United States)

    Escalante, Teresa; Rucavado, Alexandra; Kamiguti, Aura S; Theakston, R David G; Gutiérrez, José María

    2004-02-01

    The ability of the P-I metalloproteinase BaP1, isolated from the venom of the snake Bothrops asper, to induce systemic bleeding, thrombocytopenia and defibrinogenation was assessed in an experimental mouse model. Intravenous administration of BaP1 caused neither systemic bleeding nor any evidence of pathology in lungs, kidneys, liver, heart and brain. Moreover, there were no alterations in the whole blood clotting time or in platelet numbers. In addition, BaP1 did not inhibit collagen-induced platelet aggregation in vitro. Proteolytic and hemorrhagic activities of BaP1 were readily inhibited by the plasma proteinase inhibitor, alpha(2)-macroglobulin, and normal mouse serum also inhibited hemorrhage. Such inhibition may explain why BaP1 induces multiple local tissue-damaging effects, but is largely devoid of systemic toxicity.

  11. Presynaptic inhibition of the release of multiple major central nervous system neurotransmitter types by the inhaled anaesthetic isoflurane

    Science.gov (United States)

    Westphalen, R. I.; Desai, K. M.; Hemmings, H. C.

    2013-01-01

    Background Presynaptic effects of general anaesthetics are not well characterized. We tested the hypothesis that isoflurane exhibits transmitter-specific effects on neurotransmitter release from neurochemically and functionally distinct isolated mammalian nerve terminals. Methods Nerve terminals from adult male rat brain were prelabelled with [3H]glutamate and [14C]GABA (cerebral cortex), [3H]norepinephrine (hippocampus), [14C]dopamine (striatum), or [3H]choline (precursor of [3H]acetylcholine; striatum). Release evoked by depolarizing pulses of 4-aminopyridine (4AP) or elevated KCl was quantified using a closed superfusion system. Results Isoflurane at clinical concentrations (neurotransmitters tested in a concentration-dependent manner. Isoflurane was a more potent inhibitor [expressed as IC50 (sem)] of glutamate release [0.37 (0.03) mM; Pneurotransmitters with selectivity for glutamate release, consistent with both widespread inhibition and nerve terminal-specific presynaptic effects. Glutamate release was most sensitive to inhibition compared with GABA, acetylcholine, dopamine, and norepinephrine release due to presynaptic specializations in ion channel expression, regulation, and/or coupling to exocytosis. Reductions in neurotransmitter release by volatile anaesthetics could contribute to altered synaptic transmission, leading to therapeutic and toxic effects involving all major neurotransmitter systems. PMID:23213036

  12. Redundant let-7a suppresses the immunomodulatory properties of BMSCs by inhibiting the Fas/FasL system in osteoporosis.

    Science.gov (United States)

    Liao, Li; Yu, Yang; Shao, Bingyi; Su, Xiaoxia; Wang, Han; Kuang, Huijuan; Jing, Huan; Shuai, Yi; Yang, Deqin; Jin, Yan

    2018-04-01

    Bone marrow-derived mesenchymal stem cell (BMSC) cytotherapy has emerged as a promising treatment strategy for refractory immune diseases; however, the influence of the pathologic conditions of donors on the immunomodulatory properties of BMSCs is still poorly understand. Here, we found that BMSCs that were derived from donors with osteoporosis were ineffective as cytotherapy for patients with experimental colitis and graft- vs.-host disease (GVHD). In vivo and in vitro assays revealed that the capacity of osteoporotic BMSCs to induce T-cell apoptosis declined as a result of decreased Fas and FasL protein. Additional analysis revealed that let-7a, a microRNA induced by TNF-α in osteoporosis, inhibited the expression of the Fas/FasL system via post-transcriptional regulation. By knocking down let-7a expression, we successfully recovered the immunosuppressive capacity of osteoporotic BMSCs and improved their therapy for experimental colitis and GVHD. Taken together, our study demonstrates that the immunomodulatory properties of BMSCs are suppressed in osteoporosis and illustrates the molecular mechanism that underlies this suppression. These findings might have important implications for the development of targeted strategies to improve BMSC cytotherapy.-Liao, L., Yu, Y., Shao, B., Su, X., Wang, H., Kuang, H., Jing, H., Shuai, Y., Yang, D., Jin, Y. Redundant let-7a suppresses the immunomodulatory properties of BMSCs by inhibiting the Fas/FasL system in osteoporosis.

  13. Inhibition of the Renin-Angiotensin System Post Myocardial Infarction Prevents Inflammation-Associated Acute Cardiac Rupture.

    Science.gov (United States)

    Gao, Xiao-Ming; Tsai, Alan; Al-Sharea, Annas; Su, Yidan; Moore, Shirley; Han, Li-Ping; Kiriazis, Helen; Dart, Anthony M; Murphy, Andrew J; Du, Xiao-Jun

    2017-04-01

    Inhibition of the renin-angiotensin system (RAS) is beneficial in patient management after myocardial infarction (MI). However, whether RAS inhibition also provides cardiac protection in the acute phase of MI is unclear. Male 129sv mice underwent coronary artery occlusion to induce MI, followed by treatment with losartan (L, 20 and 60 mg/kg), perindopril (P, 2 and 6 mg/kg), amlodipine (20 mg/kg as a BP-lowering agent) or vehicle as control. Drug effects on hemodynamics were examined. Effects of treatments on incidence of cardiac rupture, haematological profile, monocyte and neutrophil population in the spleen and the heart, cardiac leukocyte density, expression of inflammatory genes and activity of MMPs were studied after MI. Incidence of cardiac rupture within 2 weeks was significantly and similarly reduced by both losartan (L) and perindopril (P) in a dose-dependent manner [75% (27/36) in vehicle, 40-45% in low-dose (L 10/22, P 8/20) and 16-20% (L 5/32, P 4/20) in high-dose groups, all P infarct tissue were attenuated by losartan and/or perindopril treatment (all P acute phase of MI through blockade of splenic release of monocytes and neutrophils and consequently attenuation of systemic and regional inflammatory responses.

  14. Piriformospora indica root colonization triggers local and systemic root responses and inhibits secondary colonization of distal roots.

    Directory of Open Access Journals (Sweden)

    Lorenzo Pedrotti

    Full Text Available Piriformosporaindica is a basidiomycete fungus colonizing roots of a wide range of higher plants, including crop plants and the model plant Arabidopsis thaliana. Previous studies have shown that P. indica improves growth, and enhances systemic pathogen resistance in leaves of host plants. To investigate systemic effects within the root system, we established a hydroponic split-root cultivation system for Arabidopsis. Using quantitative real-time PCR, we show that initial P. indica colonization triggers a local, transient response of several defense-related transcripts, of which some were also induced in shoots and in distal, non-colonized roots of the same plant. Systemic effects on distal roots included the inhibition of secondary P. indica colonization. Faster and stronger induction of defense-related transcripts during secondary inoculation revealed that a P. indica pretreatment triggers root-wide priming of defense responses, which could cause the observed reduction of secondary colonization levels. Secondary P. indica colonization also induced defense responses in distant, already colonized parts of the root. Endophytic fungi therefore trigger a spatially specific response in directly colonized and in systemic root tissues of host plants.

  15. Piriformospora indica root colonization triggers local and systemic root responses and inhibits secondary colonization of distal roots.

    Science.gov (United States)

    Pedrotti, Lorenzo; Mueller, Martin J; Waller, Frank

    2013-01-01

    Piriformosporaindica is a basidiomycete fungus colonizing roots of a wide range of higher plants, including crop plants and the model plant Arabidopsis thaliana. Previous studies have shown that P. indica improves growth, and enhances systemic pathogen resistance in leaves of host plants. To investigate systemic effects within the root system, we established a hydroponic split-root cultivation system for Arabidopsis. Using quantitative real-time PCR, we show that initial P. indica colonization triggers a local, transient response of several defense-related transcripts, of which some were also induced in shoots and in distal, non-colonized roots of the same plant. Systemic effects on distal roots included the inhibition of secondary P. indica colonization. Faster and stronger induction of defense-related transcripts during secondary inoculation revealed that a P. indica pretreatment triggers root-wide priming of defense responses, which could cause the observed reduction of secondary colonization levels. Secondary P. indica colonization also induced defense responses in distant, already colonized parts of the root. Endophytic fungi therefore trigger a spatially specific response in directly colonized and in systemic root tissues of host plants.

  16. EIS study on corrosion and scale processes and their inhibition in cooling system media

    International Nuclear Information System (INIS)

    Marin-Cruz, J.; Cabrera-Sierra, R.; Pech-Canul, M.A.; Gonzalez, I.

    2006-01-01

    A study of the carbon steel/cooling water interface was carried out using electrochemical impedance spectroscopy (EIS). EIS spectra reveal that a layer of corrosion and scale products forms naturally and evolves with the immersion time modifying the carbon steel/cooling water interface and giving rise to corrosion and scale processes. In addition, the nature of the layer formed on the metal was found to depend on the inhibitor used. It was established that the corrosion inhibitor (hydroxyphosphonoacetic acid (HPA)) chelates with Ca(II) ion generating a layer with resistive properties that provides good protection against corrosion. In contrast, the scale inhibitor (1-hydroxy-ethane-1,1-diphosphonic acid (HEDP)) is incorporated into the calcium carbonate crystals at the surface, modifying the structure and diminishing scale formation in the surface; this additive additionally inhibited corrosion. These observations were supported by scanning electronic microscopy (SEM) and corroborate previous studies performed by other techniques on HPA and HEDP. Finally, a synergistic effect was observed between these inhibitors that provides good protection to steel against corrosion and scaling in cooling media

  17. Solar energy system reduces time taken to inhibit microbial growth in soil

    Energy Technology Data Exchange (ETDEWEB)

    Phitthayarachasak, Thanathep; Thepa, Sirichai; Kongkiattikajorn, Jirasak [Energy Technology Division, School of Energy Environment and Materials, King Mongkut' s University of Technology Thonburi, 126 Prachauthid Road, Tungkru, Bangkok 10140 (Thailand)

    2009-11-15

    This research studied how to reduce the time consumption and to increase and improve the efficiency of the solarization process. The asymmetry compound parabolic concentrator (ACPC) was developed to produce boiling water to be utilized while the solarization process was in operation. This could decrease the time consumed in the solarization process from 4 to 6 weeks to 4 h, with a temperature of approximately 41.25 C at the various depth levels, not exceeding 50 cm. The test to inhibit the growth of Ralstonia solanacearum, the causative agent of wilt in crops leaves, indicated that R. solanacearum was reduced from the total bacterial population of 10.9 x 10{sup 8} colony forming unit/g soil (cfu g{sup -1}) at soil surface to 9.0 x 10{sup 7}, 7.5 x 10{sup 4} and 4.1 x 10{sup 3} cfu g{sup -1} within 1, 2 and 4 h, respectively. (author)

  18. Lichen-forming fungus Caloplaca flavoruscens inhibits transcription factors and chromatin remodeling system in fungi.

    Science.gov (United States)

    Kwon, Youngho; Cha, Jaeyul; Chiang, Jennifer; Tran, Grant; Nislow, Corey; Hur, Jae-Seoun; Kwak, Youn-Sig

    2016-06-01

    Lichen-forming fungi and extracts derived from them have been used as alternative medicine sources for millennia and recently there has been a renewed interest in their known bioactive properties for anticancer agents, cosmetics and antibiotics. Although lichen-forming fungus-derived compounds are biologically and commercially valuable, few studies have been performed to determine their modes of action. This study used chemical-genetic and chemogenomic high-throughput analyses to gain insight into the modes of action of Caloplaca flavoruscens extracts. High-throughput screening of 575 lichen extracts was performed and 39 extracts were identified which inhibited yeast growth. A C. flavoruscens extract was selected as a promising antifungal and was subjected to genome-wide haploinsufficiency profiling and homozygous profiling assays. These screens revealed that yeast deletion strains lacking Rsc8, Pro1 and Toa2 were sensitive to three concentrations (IC25.5, IC25 and IC50, respectively) of C. flavoruscens extract. Gene-enrichment analysis of the data showed that C. flavoruscens extracts appear to perturb transcription and chromatin remodeling. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse

    Science.gov (United States)

    Schill, Ellen Merrick; Lake, Jonathan I.; Tusheva, Olga A.; Nagy, Nandor; Bery, Saya K.; Foster, Lynne; Avetisyan, Marina; Johnson, Stephen L.; Stenson, William F.; Goldstein, Allan M.; Heuckeroth, Robert O.

    2016-01-01

    Hirschsprung Disease (HSCR) is a potentially deadly birth defect characterized by the absence of the enteric nervous system (ENS) in distal bowel. Although HSCR has clear genetic causes, no HSCR-associated mutation is 100% penetrant, suggesting gene-gene and gene-environment interactions determine HSCR occurrence. To test the hypothesis that certain medicines might alter HSCR risk we treated zebrafish with medications commonly used during early human pregnancy and discovered that ibuprofen caused HSCR-like absence of enteric neurons in distal bowel. Using fetal CF-1 mouse gut slice cultures, we found that ibuprofen treated enteric neural crest-derived cells (ENCDC) had reduced migration, fewer lamellipodia and lower levels of active RAC1/CDC42. Additionally, inhibiting ROCK, a RHOA effector and known RAC1 antagonist, reversed ibuprofen effects on migrating mouse ENCDC in culture. Ibuprofen also inhibited colonization of Ret+/− mouse bowel by ENCDC in vivo and dramatically reduced bowel colonization by chick ENCDC in culture. Interestingly, ibuprofen did not affect ENCDC migration until after at least three hours of exposure. Furthermore, mice deficient in Ptgs1 (COX 1) and Ptgs2 (COX 2) had normal bowel colonization by ENCDC and normal ENCDC migration in vitro suggesting COX-independent effects. Consistent with selective and strain specific effects on ENCDC, ibuprofen did not affect migration of gut mesenchymal cells, NIH3T3, or WT C57BL/6 ENCDC, and did not affect dorsal root ganglion cell precursor migration in zebrafish. Thus, ibuprofen inhibits ENCDC migration in vitro and bowel colonization by ENCDC in vivo in zebrafish, mouse and chick, but there are cell type and strain specific responses. These data raise concern that ibuprofen may increase Hirschsprung disease risk in some genetically susceptible children. PMID:26586201

  20. Direct renin inhibition — a new way of targeting the renin system

    Directory of Open Access Journals (Sweden)

    Morris J Brown

    2006-06-01

    Full Text Available The renin system plays a key role in the pathology of hypertension and is influenced, both directly and indirectly, by most antihypertensive agents. The system is the target of several established classes of antihypertensive agents including angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and beta-blockers. Of currently available drugs, only the beta-blockers suppress renin secretion, but these also reduce heart rate and cardiac output. Calcium channel blockers and diuretics cause a modest activation of the renin system secondary to the fall in renal afferent arteriolar pressure and reduction in filtered sodium load. Aliskiren is the first orally available direct inhibitor that blocks the renin system at its rate limiting step and is shown to reduce angiotensin I and II and plasma renin activity.

  1. Attention, reward, and inhibition: symptomatic features of ADHD and issues for offenders in the criminal justice system.

    Science.gov (United States)

    Berryessa, Colleen M

    2017-03-01

    Although the relationship between criminal activity and ADHD has been heavily studied, this paper reviews a largely neglected area of academic discourse: how symptoms of ADHD that often contribute to offending behavior may also potentially create further problems for offenders with ADHD after they come into contact with the criminal justice system and pilot their way through the legal process. The main symptoms of ADHD that are primarily connected to criminal offending are examined and contextualized with respect to diagnosed offenders' experiences with the justice system. Symptoms of ADHD, specifically reward deficiency, behavioral inhibition, and attention deficits, may affect whether individuals will be successful in their experiences in court, with probation, and during incarceration. This is especially true for individuals whose ADHD diagnoses are unknown to the criminal justice system or have never been formally diagnosed. Actors in the criminal justice need to be aware of the symptomatic features and behavioral patterns of offenders with ADHD in order to recognize and identify these offenders, and correspondingly, to refer them to mental health services. Recognizing that at least some of an offender's behavior may be related to symptoms of ADHD will help the criminal justice system better provide recommendations regarding sentencing, probation, and treatment provisions, as well as better ensure that offenders with ADHD have a more successful and just experience in their interactions with the criminal justice system.

  2. Influence of an oxygen-inhibited layer on enamel bonding of dental adhesive systems: surface free-energy perspectives.

    Science.gov (United States)

    Ueta, Hirofumi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Oouchi, Hajime; Sai, Keiichi; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The influence of an oxygen-inhibited layer (OIL) on the shear bond strength (SBS) to enamel and surface free-energy (SFE) of adhesive systems was investigated. The adhesive systems tested were Scotchbond Multipurpose (SM), Clearfil SE Bond (CS), and Scotchbond Universal (SU). Resin composite was bonded to bovine enamel surfaces to determine the SBS, with and without an OIL, of adhesives. The SFE of cured adhesives with and without an OIL were determined by measuring the contact angles of three test liquids. There were no significant differences in the mean SBS of SM and CS specimens with or without an OIL; however, the mean SBS of SU specimens with an OIL was significantly higher than that of SU specimens without an OIL. For all three systems, the mean total SFE (γS), polarity force (γSp), and hydrogen bonding force (γSh) values of cured adhesives with an OIL were significantly higher than those of cured adhesives without an OIL. The results of this study indicate that the presence of an OIL promotes higher SBS of a single-step self-etch adhesive system, but not of a three-step or a two-step self-etch primer system. The SFE values of cured adhesives with an OIL were significantly higher than those without an OIL. The SFE characteristics of the OIL of adhesives differed depending on the type of adhesive. © 2015 Eur J Oral Sci.

  3. In vivo temporal property of GABAergic neural transmission in collateral feed-forward inhibition system of hippocampal-prefrontal pathway.

    Science.gov (United States)

    Takita, Masatoshi; Kuramochi, Masahito; Izaki, Yoshinori; Ohtomi, Michiko

    2007-05-30

    Anatomical evidence suggests that rat CA1 hippocampal afferents collaterally innervate excitatory projecting pyramidal neurons and inhibitory interneurons, creating a disynaptic, feed-forward inhibition microcircuit in the medial prefrontal cortex (mPFC). We investigated the temporal relationship between the frequency of paired synaptic transmission and gamma-aminobutyric acid (GABA)ergic receptor-mediated modulation of the microcircuit in vivo under urethane anesthesia. Local perfusions of a GABAa antagonist (-)-bicuculline into the mPFC via microdialysis resulted in a statistically significant disinhibitory effect on intrinsic GABA action, increasing the first and second mPFC responses following hippocampal paired stimulation at interstimulus intervals of 100-200 ms, but not those at 25-50 ms. This (-)-bicuculline-induced disinhibition was compensated by the GABAa agonist muscimol, which itself did not attenuate the intrinsic oscillation of the local field potentials. The perfusion of a sub-minimal concentration of GABAb agonist (R)-baclofen slightly enhanced the synaptic transmission, regardless of the interstimulus interval. In addition to the tonic control by spontaneous fast-spiking GABAergic neurons, it is clear the sequential transmission of the hippocampal-mPFC pathway can phasically drive the collateral feed-forward inhibition system through activation of a GABAa receptor, bringing an active signal filter to the various types of impulse trains that enter the mPFC from the hippocampus in vivo.

  4. A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI)

    Science.gov (United States)

    Subbarao, G. V.; Sahrawat, K. L.; Nakahara, K.; Rao, I. M.; Ishitani, M.; Hash, C. T.; Kishii, M.; Bonnett, D. G.; Berry, W. L.; Lata, J. C.

    2013-01-01

    Background Agriculture is the single largest geo-engineering initiative that humans have initiated on planet Earth, largely through the introduction of unprecedented amounts of reactive nitrogen (N) into ecosystems. A major portion of this reactive N applied as fertilizer leaks into the environment in massive amounts, with cascading negative effects on ecosystem health and function. Natural ecosystems utilize many of the multiple pathways in the N cycle to regulate N flow. In contrast, the massive amounts of N currently applied to agricultural systems cycle primarily through the nitrification pathway, a single inefficient route that channels much of this reactive N into the environment. This is largely due to the rapid nitrifying soil environment of present-day agricultural systems. Scope In this Viewpoint paper, the importance of regulating nitrification as a strategy to minimize N leakage and to improve N-use efficiency (NUE) in agricultural systems is highlighted. The ability to suppress soil nitrification by the release of nitrification inhibitors from plant roots is termed ‘biological nitrification inhibition’ (BNI), an active plant-mediated natural function that can limit the amount of N cycling via the nitrification pathway. The development of a bioassay using luminescent Nitrosomonas to quantify nitrification inhibitory activity from roots has facilitated the characterization of BNI function. Release of BNIs from roots is a tightly regulated physiological process, with extensive genetic variability found in selected crops and pasture grasses. Here, the current status of understanding of the BNI function is reviewed using Brachiaria forage grasses, wheat and sorghum to illustrate how BNI function can be utilized for achieving low-nitrifying agricultural systems. A fundamental shift towards ammonium (NH4+)-dominated agricultural systems could be achieved by using crops and pastures with high BNI capacities. When viewed from an agricultural and

  5. Inhibition of systemic inflammation by central action of the neuropeptide alpha-melanocyte- stimulating hormone.

    Science.gov (United States)

    Delgado Hernàndez, R; Demitri, M T; Carlin, A; Meazza, C; Villa, P; Ghezzi, P; Lipton, J M; Catania, A

    1999-01-01

    The neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) reduces fever and acute inflammation in the skin when administered centrally. The aim of the present research was to determine whether central alpha-MSH can also reduce signs of systemic inflammation in mice with endotoxemia. Increases in serum tumor necrosis factor-alpha and nitric oxide, induced by intraperitoneal administration of endotoxin, were modulated by central injection of a small concentration of alpha-MSH. Inducible nitric oxide synthase (iNOS) activity and iNOS mRNA in lungs and liver were likewise modulated by central alpha-MSH. Lung myeloperoxidase activity, a marker of neutrophil infiltration, was increased in endotoxemic mice; the increase was significantly less in lungs of mice treated with central alpha-MSH. Intraperitoneal administration of the small dose of alpha-MSH that was effective centrally did not alter any of the markers of inflammation. In experiments using immunoneutralization of central alpha-MSH, we tested the idea that endogenous peptide induced within the brain during systemic inflammation modulates host responses to endotoxic challenge in peripheral tissues. The data showed that proinflammatory agents induced by endotoxin in the circulation, lungs, and liver were significantly greater after blockade of central alpha-MSH. The results suggest that anti-inflammatory influences of neural origin that are triggered by alpha-MSH could be used to treat systemic inflammation.

  6. The Burkholderia bcpAIOB genes define unique classes of two-partner secretion and contact dependent growth inhibition systems.

    Science.gov (United States)

    Anderson, Melissa S; Garcia, Erin C; Cotter, Peggy A

    2012-01-01

    Microbes have evolved many strategies to adapt to changes in environmental conditions and population structures, including cooperation and competition. One apparently competitive mechanism is contact dependent growth inhibition (CDI). Identified in Escherichia coli, CDI is mediated by Two-Partner Secretion (TPS) pathway proteins, CdiA and CdiB. Upon cell contact, the toxic C-terminus of the TpsA family member CdiA, called the CdiA-CT, inhibits the growth of CDI(-) bacteria. CDI(+) bacteria are protected from autoinhibition by an immunity protein, CdiI. Bioinformatic analyses indicate that CDI systems are widespread amongst α, β, and γ proteobacteria and that the CdiA-CTs and CdiI proteins are highly variable. CdiI proteins protect against CDI in an allele-specific manner. Here we identify predicted CDI system-encoding loci in species of Burkholderia, Ralstonia and Cupriavidus, named bcpAIOB, that are distinguished from previously-described CDI systems by gene order and the presence of a small ORF, bcpO, located 5' to the gene encoding the TpsB family member. A requirement for bcpO in function of BcpA (the TpsA family member) was demonstrated, indicating that bcpAIOB define a novel class of TPS system. Using fluorescence microscopy and flow cytometry, we show that these genes are expressed in a probabilistic manner during culture of Burkholderia thailandensis in liquid medium. The bcpAIOB genes and extracellular DNA were required for autoaggregation and adherence to an abiotic surface, suggesting that CDI is required for biofilm formation, an activity not previously attributed to CDI. By contrast to what has been observed in E. coli, the B. thailandensis bcpAIOB genes only mediated interbacterial competition on a solid surface. Competition occurred in a defined spatiotemporal manner and was abrogated by allele-specific immunity. Our data indicate that the bcpAIOB genes encode distinct classes of CDI and TPS systems that appear to function in sociomicrobiological

  7. The Burkholderia bcpAIOB genes define unique classes of two-partner secretion and contact dependent growth inhibition systems.

    Directory of Open Access Journals (Sweden)

    Melissa S Anderson

    Full Text Available Microbes have evolved many strategies to adapt to changes in environmental conditions and population structures, including cooperation and competition. One apparently competitive mechanism is contact dependent growth inhibition (CDI. Identified in Escherichia coli, CDI is mediated by Two-Partner Secretion (TPS pathway proteins, CdiA and CdiB. Upon cell contact, the toxic C-terminus of the TpsA family member CdiA, called the CdiA-CT, inhibits the growth of CDI(- bacteria. CDI(+ bacteria are protected from autoinhibition by an immunity protein, CdiI. Bioinformatic analyses indicate that CDI systems are widespread amongst α, β, and γ proteobacteria and that the CdiA-CTs and CdiI proteins are highly variable. CdiI proteins protect against CDI in an allele-specific manner. Here we identify predicted CDI system-encoding loci in species of Burkholderia, Ralstonia and Cupriavidus, named bcpAIOB, that are distinguished from previously-described CDI systems by gene order and the presence of a small ORF, bcpO, located 5' to the gene encoding the TpsB family member. A requirement for bcpO in function of BcpA (the TpsA family member was demonstrated, indicating that bcpAIOB define a novel class of TPS system. Using fluorescence microscopy and flow cytometry, we show that these genes are expressed in a probabilistic manner during culture of Burkholderia thailandensis in liquid medium. The bcpAIOB genes and extracellular DNA were required for autoaggregation and adherence to an abiotic surface, suggesting that CDI is required for biofilm formation, an activity not previously attributed to CDI. By contrast to what has been observed in E. coli, the B. thailandensis bcpAIOB genes only mediated interbacterial competition on a solid surface. Competition occurred in a defined spatiotemporal manner and was abrogated by allele-specific immunity. Our data indicate that the bcpAIOB genes encode distinct classes of CDI and TPS systems that appear to function in

  8. Anandamide and Δ9-Tetrahydrocannabinol Directly Inhibit Cells of the Immune System via CB2 Receptors

    Science.gov (United States)

    Eisenstein, Toby K.; Meissler, Joseph J.; Wilson, Qiana; Gaughan, John P.; Adler, Martin W.

    2007-01-01

    This study shows that two cannabinoids, Δ9-tetrahydrocannabinol (THC) and anandamide, induce dose related immunosuppression in both the primary and secondary in vitro plaque-forming cell assays of antibody formation. The immunosuppression induced by both compounds could be blocked by SR144528, an antagonist specific for the CB2 receptor, but not by SR141716, a CB1 antagonist. These studies are novel in that they show that both anadamide and THC are active in the nanomolar to picomolar (for anandamide) range in these assays of immune function, and that both mediate their effects directly on cells of the immune system through the CB2 receptor. PMID:17640739

  9. Individual differences in the Behavioral Inhibition System are associated with orbitofrontal cortex and precuneus gray matter volume.

    Science.gov (United States)

    Fuentes, Paola; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Rosell, Patricia; Costumero, Víctor; Ávila, César

    2012-09-01

    The Behavioral Inhibition System (BIS) is described in Gray's Reinforcement Sensitivity Theory as a hypothetical construct that mediates anxiety in animals and humans. The neuroanatomical correlates of this system are not fully clear, although they are known to involve the amygdala, the septohippocampal system, and the prefrontal cortex. Previous neuroimaging research has related individual differences in BIS with regional volume and functional variations in the prefrontal cortex, amygdala, and hippocampal formation. The aim of the present work was to study BIS-related individual differences and their relationship with brain regional volume. BIS sensitivity was assessed through the BIS/BAS questionnaire in a sample of male participants (N = 114), and the scores were correlated with brain regional volume in a voxel-based morphometry analysis. The results show a negative correlation between the BIS and the volume of the right and medial orbitofrontal cortices and the precuneus. Our results and previous findings suggest that individual differences in anxiety-related personality traits and their related psychopathology may be associated with reduced brain volume in certain structures relating to emotional control (i.e., the orbitofrontal cortex) and self-consciousness (i.e., the precuneus), as shown by our results.

  10. Effect of oxygen inhibition in two-step self-etch systems on surface free energy and dentin bond strength with a chemically cured resin composite.

    Science.gov (United States)

    Yamaji, Ayumi; Tsujimoto, Akimasa; Asaoka, Tetsui; Matsuyoshi, Saki; Tsuchiya, Kenji; Takamizawa, Toshiki; Miyazaki, Masashi

    2014-09-01

    We compared the surface free energies and dentin bond strengths of two-step self-etch systems with and without an oxygen-inhibited layer. The adhesives were applied to self-etching primer-treated dentin surfaces of bovine incisors, after which the teeth were light-irradiated and the oxygen-inhibited layer was left intact or removed with ethanol. We determined surface free energies (γS) and their components by measuring the contact angles of three test liquids placed on the cured adhesives. We also measured the dentin bond strengths of chemically cured resin composite to the adhesives, with and without the oxygen-inhibited layer. For all surfaces, the estimated surface tension component, γS(LW), was relatively constant. The Lewis base (γS(-)) component decreased significantly when the oxygen-inhibited layer was removed, whereas the Lewis acid (γS(+)) component slightly increased. The dentin bond strengths of the two-step self-etch systems did not significantly differ in relation to the presence of the oxygen-inhibited layer. Although the surface free energy of the adhesive was affected by the presence of the oxygen-inhibited layer, no changes in dentin bond strength were detected.

  11. Analysis of the 227 bp short interspersed nuclear element (SINE) insertion of the promoter of the myostatin (MSTN) gene in different horse breeds.

    Science.gov (United States)

    Dall'Olio, Stefania; Scotti, Emilio; Fontanesi, Luca; Tassinari, Marco

    2014-01-01

    The myostatin (MSTN) gene encodes a protein known to be a negative regulator of muscle mass in mammalian species. Different polymorphisms of the horse (Equus caballus) MSTN gene have been identified, including single nucleotide polymorphisms and a short interspersed nuclear element (SINE) insertion of 227 bp within the promoter of the gene. The SINE insertion has been associated with performance traits in Thoroughbred racehorses and it was proposed as a predictor of optimum racing distance. The aims of this study were to perform in silico analysis to identify putative gains or abrogation of transcription-factor binding sites (TFBSs) generated by the SINE allele of the promoter and to analyse the frequency of the SINE insertion in horses used for racing (gallop and trot) and other purposes. The SINE insertion was genotyped in 227 horses from 10 breeds belonging to different morphological types (brachimorphic, mesomorphic, meso-dolichomorphic and dolichomorphic). The presence of the insertion was confirmed in the Quarter Horse (SINE allele frequency of 0.81) and in the Thoroughbred (0.51), whereas the SINE allele did not segregate in any of the other analysed breeds. As the SINE MSTN gene polymorphism may be population or breed specific, it is not a useful marker for association studies in all breeds.

  12. Analysis of the 227 bp short interspersed nuclear element (SINE insertion of the promoter of the myostatin (MSTN gene in different horse breeds

    Directory of Open Access Journals (Sweden)

    Stefania Dall'Olio

    2014-09-01

    Full Text Available The myostatin (MSTN gene encodes a protein known to be a negative regulator of muscle mass in mammalian species. Different polymorphisms of the horse (Equus caballus MSTN gene have been identified, including single nucleotide polymorphisms and a short interspersed nuclear element (SINE insertion of 227 bp within the promoter of the gene. The SINE insertion has been associated with performance traits in Thoroughbred racehorses and it was proposed as a predictor of optimum racing distance. The aims of this study were to perform in silico analysis to identify putative gains or abrogation of transcription-factor binding sites (TFBSs generated by the SINE allele of the promoter and to analyse the frequency of the SINE insertion in horses used for racing (gallop and trot and other purposes. The SINE insertion was genotyped in 227 horses from 10 breeds belonging to different morphological types (brachimorphic, mesomorphic, meso-dolichomorphic and dolichomorphic. The presence of the insertion was confirmed in the Quarter Horse (SINE allele frequency of 0.81 and in the Thoroughbred (0.51, whereas the SINE allele did not segregate in any of the other analysed breeds. As the SINE MSTN gene polymorphism may be population or breed specific, it is not a useful marker for association studies in all breeds.

  13. Egg white hydrolysate inhibits oxidation in mayonnaise and a model system.

    Science.gov (United States)

    Kobayashi, Hideaki; Sasahara, Ryou; Yoda, Shoichi; Kotake-Nara, Eiichi

    2017-06-01

    The flavor deterioration of mayonnaise is induced by iron, which is released from egg yolk phosvitin under acidic conditions and promotes lipid oxidation. To prevent oxidative deterioration, natural components, rather than synthetic chemicals such as ethylenediaminetetraacetic acid have been required by consumers. In the present study, we evaluated the inhibitory effects of three egg white components with the same amino acid composition, namely egg white protein, hydrolysate, and the amino acid mixture, on lipid oxidation in mayonnaise and an acidic egg yolk solution as a model system. We found that the hydrolysate had the strongest inhibitory effect on lipid oxidation among the three components. The mechanism underlying the antioxidant effect was associated with Fe 2+ -chelating activity. Thus, egg white hydrolysate may have the potential as natural inhibitors of lipid oxidation in mayonnaise.

  14. Small-molecule inhibition of bacterial two-component systems to combat antibiotic resistance and virulence.

    Science.gov (United States)

    Worthington, Roberta J; Blackledge, Meghan S; Melander, Christian

    2013-07-01

    Infections caused by multidrug-resistant bacteria are a considerable and increasing global problem. The development of new antibiotics is not keeping pace with the rapid evolution of resistance to almost all clinically available drugs, and novel strategies are required to fight bacterial infections. One such strategy is the control of pathogenic behaviors, as opposed to simply killing bacteria. Bacterial two-component system (TCS) signal transduction pathways control many pathogenic bacterial behaviors, such as virulence, biofilm formation and antibiotic resistance and are, therefore, an attractive target for the development of new drugs. This review presents an overview of TCS that are potential targets for such a strategy, describes small-molecules inhibitors of TCS identified to date and discusses assays for the identification of novel inhibitors. The future perspective for the identification and use of inhibitors of TCS to potentially provide new therapeutic options for the treatment of drug-resistant bacterial infections is discussed.

  15. Systemic DNA damage accumulation under in vivo tumor growth can be inhibited by the antioxidant Tempol.

    Science.gov (United States)

    Georgakilas, Alexandros G; Redon, Christophe E; Ferguson, Nicholas F; Kryston, Thomas B; Parekh, Palak; Dickey, Jennifer S; Nakamura, Asako J; Mitchell, James B; Bonner, William M; Martin, Olga A

    2014-10-28

    Recently we found that mice bearing subcutaneous non-metastatic tumors exhibited elevated levels of two types of complex DNA damage, i.e., double-strand breaks and oxidatively-induced clustered DNA lesions in various tissues throughout the body, both adjacent to and distant from the tumor site. This DNA damage was dependent on CCL2, a cytokine involved in the recruitment and activation of macrophages, suggesting that this systemic DNA damage was mediated via tumor-induced chronic inflammatory responses involving cytokines, activation of macrophages, and consequent free radical production. If free radicals are involved, then a diet containing an antioxidant may decrease the distant DNA damage. Here we repeated our standard protocol in cohorts of two syngeneic tumor-bearing C57BL/6NCr mice that were on a Tempol-supplemented diet. We show that double-strand break and oxidatively-induced clustered DNA lesion levels were considerably decreased, about two- to three fold, in the majority of tissues studied from the tumor-bearing mice fed the antioxidant Tempol compared to the control tumor-bearing mice. Similar results were also observed in nude mice suggesting that the Tempol effects are independent of functioning adaptive immunity. This is the first in vivo study demonstrating the effect of a dietary antioxidant on abscopal DNA damage in tissues distant from a localized source of genotoxic stress. These findings may be important for understanding the mechanisms of genomic instability and carcinogenesis caused by chronic stress-induced systemic DNA damage and for developing preventative strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Systemic catechol-O-methyl transferase inhibition enables the D1 agonist radiotracer R-[11C]SKF 82957

    International Nuclear Information System (INIS)

    Palner, Mikael; McCormick, Patrick; Parkes, Jun; Knudsen, Gitte M.; Wilson, Alan A.

    2010-01-01

    Introduction: R-[ 11 C]-SKF 82957 is a high-affinity and potent dopamine D 1 receptor agonist radioligand, which gives rise to a brain-penetrant lipophilic metabolite. In this study, we demonstrate that systemic administration of catechol-O-methyl transferase (COMT) inhibitors blocks this metabolic pathway, facilitating the use of R-[ 11 C]-SKF 82957 to image the high-affinity state of the dopamine D 1 receptor with PET. Methods: R-[ 11 C]SKF 82957 was administered to untreated and COMT inhibitor-treated conscious rats, and the radioactive metabolites present in the brain and plasma were quantified by HPLC. Under optimal conditions, cerebral uptake and dopamine D 1 binding of R-[ 11 C]SKF 82957 were measured ex vivo. In addition, pharmacological challenges with the receptor antagonist SCH 23390, amphetamine, the dopamine reuptake inhibitor RTI-32 and the dopamine hydroxylase inhibitor α-methyl-p-tyrosine were performed to study the specificity and sensitivity of R-[ 11 C]-SKF 82957 dopamine D 1 binding in COMT-inhibited animals. Results: Treatment with the COMT inhibitor tolcapone was associated with a dose-dependent (EC 90 5.3±4.3 mg/kg) reduction in the lipophilic metabolite. Tolcapone treatment (20 mg/kg) also resulted in a significant increase in the striatum/cerebellum ratio of R-[ 11 C]SKF 82957, from 15 (controls) to 24. Treatment with the dopamine D 1 antagonist SCH 23390 reduced the striatal binding to the levels of the cerebellum, demonstrating a high specificity and selectivity of R-[ 11 C]SKF 82957 binding. Conclusions: Pre-treatment with the COMT inhibitor tolcapone inhibits formation of an interfering metabolite of R-[ 11 C]SKF 82957. Under such conditions, R-[ 11 C]SKF 82957 demonstrates high potential as the first agonist radiotracer for imaging the dopamine D 1 receptor by PET.

  17. Daily sesame oil supplementation attenuates local renin-angiotensin system via inhibiting MAPK activation and oxidative stress in cardiac hypertrophy.

    Science.gov (United States)

    Liu, Chuan-Teng; Liu, Ming-Yie

    2017-04-01

    The renin-angiotensin system (RAS) is involved in the development of left ventricular hypertrophy (LVH) by which increases cardiac morbidity and mortality. Activation of mitogen-activated protein kinases (MAPKs) and oxidative stress are important in RAS-mediated cardiac hypertrophy. Sesame oil, a potent antioxidant, attenuates hypertension-dependent LVH. We examined the protective role of sesame oil on RAS-mediated MAPK activation and oxidative stress in rats. We induced LVH using a hypertensive model by subcutaneously injecting deoxycorticosterone acetate (DOCA; 15 mg/ml/kg in mineral oil; twice weekly for 5 weeks) and supplementing with 1% sodium chloride drinking water (DOCA/salt) to uninephrectomized rats. Sesame oil was gavaged (0.5 or 1 ml/kg/day for 7 days) after 4 weeks of DOCA/salt treatment. Cardiac histopathology, RAS parameters, expression of MAPKs, reactive oxygen species and lipid peroxidation were assessed 24 h after the last dose of sesame oil. Sesame oil significantly decreased the size of cardiomyocytes and the levels of cardiac renin, angiotensin-converting enzyme and angiotensin II. In addition, sesame oil down-regulated the expression of angiotensin type 1 receptor, JNK and p38 MAPK and apoptosis signal regulating kinase 1, c-Fos and c-Jun in rats receiving DOCA/salt. Furthermore, the induction of nicotinamide adenine dinucleotide phosphate oxidase, superoxide anion and hydroxyl radical and lipid peroxidation by DOCA/salt were inhibited by sesame oil. Sesame oil modulates cardiac RAS to ameliorate LVH by inhibiting MAPK activation and lowering oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Inhibition of the reproductive system by deslorelin in male and female pigeons (Columba livia).

    Science.gov (United States)

    Cowan, Melinda Lee; Martin, Graeme Bruce; Monks, Deborah Jane; Johnston, Stephen Douglas; Doneley, Robert James Tyson; Blackberry, Margaret Anne

    2014-06-01

    Veterinary practitioners frequently encounter disorders of the reproductive system in avian patients. Management of these disorders relies on manipulating reproduction by modifying the environment, diet, and social interactions, and by the use of pharmacologic agents and surgery, with varying levels of success and side effects. An alternative is to use the gonadotropin-releasing hormone (GnRH) agonist deslorelin to suppress the pituitary-gonadal axis. To determine the efficacy of deslorelin in domestic pigeons (Columba livia), male (n = 10) and female (n = 10) birds each were implanted intramuscularly with a single long-acting implant containing 4.7 mg deslorelin. Untreated males (n = 11) and females (n = 10) were used as controls. The baseline serum concentration of luteinizing hormone (LH) was assayed at 7, 28, 56, and 84 days after treatment, and egg production was recorded weekly. In females, deslorelin administration significantly reduced serum LH concentrations compared to pretreatment levels at 7, 28, 56, and 84 days (P < .05). In males, deslorelin significantly reduced LH concentrations at 7, 28, and 56 days (P < .05). Female birds treated with deslorelin laid significantly fewer eggs over the course of the study (mean = 1.46, SEM = 0.84) compared with controls (mean = 5.54, SEM = 0.88). Deslorelin treatment had no discernible effect on body weight. Deslorelin is effective for controlling egg laying in female pigeons for at least 49 days, but further research is required to determine the effects on male fertility and the duration of action in both sexes.

  19. Fun Seeking and Reward Responsiveness Moderate the Effect of the Behavioural Inhibition System on Coping-Motivated Problem Gambling.

    Science.gov (United States)

    Keough, Matthew T; Wardell, Jeffrey D; Hendershot, Christian S; Bagby, R Michael; Quilty, Lena C

    2017-09-01

    Gray's Reinforcement Sensitivity Theory (RST) predicts that the Behavioral Inhibition System (BIS) may relate to coping-motivated problem gambling, given its central role in anxiety. Studies examining the BIS-problem gambling association, however, are mixed. The revised RST posits that the Behavioral Approach System (BAS) may moderate the effect of the BIS on coping-motivated problem gambling. A concurrently strong BAS may highlight the negatively reinforcing effects of gambling, which may strengthen coping motives and increase gambling-related harms. We examined these interactive effects to clarify the moderators and mediators of the negative reinforcement pathway to problem gambling. Data came from a larger investigation of problem gambling among individuals with mood disorders. All participants (N = 275) met criteria for a lifetime depressive or bipolar disorder. During a two-day assessment, participants completed a diagnostic assessment and self-reports. Mediated moderation path analysis showed positive indirect effects from the BIS to problem gambling via coping motives at high, but not at low, levels of BAS-Reward Responsiveness and BAS-Fun Seeking. Enhancement motives were also found to mediate the associations of BAS-Fun Seeking and BAS-Drive with problem gambling. Reward Responsiveness and Fun Seeking facets of the BAS may strengthen coping gambling motives within the mood disorders.

  20. Systemic delivery of microRNA-101 potently inhibits hepatocellular carcinoma in vivo by repressing multiple targets.

    Directory of Open Access Journals (Sweden)

    Fang Zheng

    2015-02-01

    Full Text Available Targeted therapy based on adjustment of microRNA (miRNAs activity takes great promise due to the ability of these small RNAs to modulate cellular behavior. However, the efficacy of miR-101 replacement therapy to hepatocellular carcinoma (HCC remains unclear. In the current study, we first observed that plasma levels of miR-101 were significantly lower in distant metastatic HCC patients than in HCCs without distant metastasis, and down-regulation of plasma miR-101 predicted a worse disease-free survival (DFS, P<0.05. In an animal model of HCC, we demonstrated that systemic delivery of lentivirus-mediated miR-101 abrogated HCC growth in the liver, intrahepatic metastasis and distant metastasis to the lung and to the mediastinum, resulting in a dramatic suppression of HCC development and metastasis in mice without toxicity and extending life expectancy. Furthermore, enforced overexpression of miR-101 in HCC cells not only decreased EZH2, COX2 and STMN1, but also directly down-regulated a novel target ROCK2, inhibited Rho/Rac GTPase activation, and blocked HCC cells epithelial-mesenchymal transition (EMT and angiogenesis, inducing a strong abrogation of HCC tumorigenesis and aggressiveness both in vitro and in vivo. These results provide proof-of-concept support for systemic delivery of lentivirus-mediated miR-101 as a powerful anti-HCC therapeutic modality by repressing multiple molecular targets.

  1. Faox enzymes inhibited Maillard reaction development during storage both in protein glucose model system and low lactose UHT milk.

    Science.gov (United States)

    Troise, Antonio Dario; Dathan, Nina A; Fiore, Alberto; Roviello, Giovanni; Di Fiore, Anna; Caira, Simonetta; Cuollo, Marina; De Simone, Giuseppina; Fogliano, Vincenzo; Monti, Simona M

    2014-02-01

    Fructosamines, also known as Amadori products, are formed by the condensation of glucose with the amino group of amino acids or proteins. These compounds are precursors of advanced glycation end products (AGEs) that can be formed either endogenously during aging and diabetes, and exogenously in heat-processed food. The negative effects of dietary AGEs on human health as well as their negative impact on the quality of dairy products have been widely described, therefore specific tools able to prevent the formation of glycation products are needed. Two fructosamine oxidase enzymes isolated from Aspergillus sp. namely, Faox I and Faox II catalyze the oxidative deglycation of Amadori products representing a potential tool for inhibiting the Maillard reaction in dairy products. In this paper, the ability of recombinant Faox I and II in limiting the formation of carboxy-methyl lysine (CML) and protein-bound hydroxymethyl furfurol (b-HMF) in a commercial UHT low lactose milk and a beta-lactoglobulin (β-LG) glucose model system was investigated. Results show a consistent reduction of CML and b-HMF under all conditions. Faox effects were particularly evident on b-HMF formation in low lactose commercial milk. Peptide analysis of the β-LG glucose system identified some peptides, derived from cyanogen bromide hydrolysis, as suitable candidates to monitor Faox action in milk-based products. All in all data suggested that non-enzymatic reactions in dairy products might be strongly reduced by implementing Faox enzymes.

  2. Influence of the Oxygen-inhibited Layer on Bonding Performance of Dental Adhesive Systems: Surface Free Energy Perspectives.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-01-01

    To examine the influence of the oxygen inhibited layer (OIL) on shear bond strength (SBS) to dentin and surface free energy (SFE) characteristics of different adhesive systems. Three adhesive systems were used: Scotchbond Multipurpose (SM), Clearfil SE Bond (CS), and Scotchbond Universal (SU). Resin composite was bonded to dentin surfaces to determine SBS with and without OIL of adhesives. The SFE, dispersion force (γSd), polarity force (γSp), and hydrogen bonding force (γSh) of cured adhesives with and without an OIL were measured. Two-way ANOVA and Tukey's honestly significant difference (HSD) test were used for analysis of SBS data, and one-way ANOVA and Tukey's HSD test were used for the SFE and contact angle data. The SBS of SM and CS showed no significant differences between specimens with and without the OIL. However, the SBS of SU with the OIL was significantly higher than without the OIL. The SFE, γSp, and γSh of cured adhesives with an OIL were significantly higher than those of cured adhesives without an OIL. The SFE, γSp, and γSh of SM and CS with an OIL were significantly higher than those of SU with an OIL. The results of this study indicate that the presence of an OIL with a single-step self-etching adhesive promotes higher SBS to dentin, unlike in the other types of adhesive systems. The SFE characteristics of the OIL of dental adhesives differed depending on the type of adhesive system.

  3. The Inhibition of Maillard Browning by Different Concentrations of Rosmarinic Acid and Epigallocatechin-3-Gallate in Model, Bakery, and Fruit Systems.

    Science.gov (United States)

    Favreau-Farhadi, Nicole; Pecukonis, Lauren; Barrett, Ann

    2015-10-01

    Rosmarinic acid and Epigallocatechin gallate concentrations were studied as natural inhibitors of Maillard browning in glucose/glycine model systems, and in bakery rolls and applesauce. The concentrations of the inhibitors were varied to determine the highest level of inhibition without a pro-oxidant/browning effect. UV absorbance and gas chromatography/mass spec (GC/MS) with solid phase microextraction (SPME) sampling was used to study browning in the model systems. Hunter L*, a*, b* was used to analyze the color change results of the inhibitors on applesauce and bakery rolls. It was determined that a 1.0% solution of either antioxidant in the glucose/glycine system produced the greatest inhibition and a synergistic effect was not apparent when the two were combined. Inhibition of browning and a lack of synergy between the antioxidants were also determined in food systems consisting of applesauce and bakery rolls. GC/MS analysis of the model system revealed a high level of pyrazine formation in no-inhibitor control samples and the absence of pyrazines in inhibitor-containing samples. Natural browning inhibitors, that is Rosmarinic acid and Epigallocatechin gallate, can be added to food items to inhibit browning over a prolonged period of storage in order to increase product shelf stability. The concentrations of the inhibitors require optimization since a pro-oxidant effect and increased browning will occur at high levels. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  4. Polysaccharides from Arnebia euchroma Ameliorated Endotoxic Fever and Acute Lung Injury in Rats Through Inhibiting Complement System.

    Science.gov (United States)

    Ou, Ying-Ye; Jiang, Yun; Li, Hong; Zhang, Yun-Yi; Lu, Yan; Chen, Dao-Feng

    2017-02-01

    Arnebiaeuchroma (Royle) Johnst (Ruanzicao) is a traditional Chinese herbal medicine (TCM). It is extensively used in China and other countries for treatment of inflammatory diseases. It is known that hyper-activated complement system involves in the fever and acute lung injury (ALI) in rats. In our preliminary studies, anti-complementary activity of crude Arnebiaeuchroma polysaccharides (CAEP) had been demonstrated in vitro. This study aimed to investigate the role and mechanism of crude Arnebiaeuchroma polysaccharides (CAEP) using two animal models, which relate with inappropriate activation of complement system. In lipopolysaccharide (LPS)-induced fever model, the body temperature and leukocytes of peripheral blood in rats were significantly increased, while the complement levels of serum were remarkably decreased. CAEP administration alleviated the LPS-induced fever, reduced the number of leukocytes, and improved the levels of complement. Histological assay showed that there were severe damages and complement depositions in lung of the ALI rats. Further detection displayed that the oxidant stress was enhanced, and total hemolytic activity and C3/C4 levels in serum were decreased significantly in the ALI model group. Remarkably, CAEP not only attenuated the morphological injury, edema, and permeability in the lung but also significantly weakened the oxidant stress in bronchoalveolar lavage fluid (BALF) in the ALI rats. The levels of complement and complement depositions were improved by the CAEP treatment. In conclusion, the CAEP treatment ameliorated febrile response induced by LPS and acute lung injury induced by LPS plus ischemia-reperfusion. CAEP exerted beneficial effects on inflammatory disease potentially via inhibiting the inappropriate activation of complement system.

  5. Corrosion inhibition measures in primary cooling water system during refurbishment of Cirus, re-commissioning and subsequent operation

    International Nuclear Information System (INIS)

    Rai, K.K.; Ramesh, N.; Sharma, R.C.

    2008-01-01

    Cirus is a 40 MWth, heavy water moderated, demineralized light water cooled, natural uranium fuelled research reactor. Reactor was commissioned in year 1960 and operated satisfactorily till 1990. After that availability factor started decreasing mainly due to equipment outage exhibiting signs of ageing. Based upon systematic ageing studies and assessment of condition of systems, structures and components, a refurbishment plan including safety upgrades was drawn up. Reactor was shut down in October 1997 for execution of jobs. After completion of refurbishment jobs reactor was started back in October 2002 and power operation was achieved in 2003. Primary cooling water (PCW) system consists of re-circulating pumps, heat exchangers, expansion tank, piping, valves, emergency storage reservoir (Ball Tank) and other components. Normally the fission heat from fuel is removed by re-circulating coolant in closed loop and transferred to seawater via heat exchangers. In case of outage of pumps, shut down cooling is provided by flow of water from Ball Tank under gravity to the underground dump tanks. The dissolved oxygen is maintained below 2 ppm and pH is maintained neutral to minimize corrosion of fuel cladding (Aluminum). This paper highlights the experience gained during segmentation of primary cooling water pipelines for pressure testing, measures taken to corrosion inhibition of primary cooling water lines to permit execution of refurbishment jobs, inspections and actions taken to repair/replace the corroded PCW pipe line segments, observations regarding corrosion related failures, re-commissioning of the system after refurbishment, assessment for safe reactor operation and experience during power operation. (author)

  6. Systemic or Intra-Amygdala Infusion of the Benzodiazepine, Midazolam, Impairs Learning, but Facilitates Re-Learning to Inhibit Fear Responses in Extinction

    Science.gov (United States)

    Hart, Genevra; Harris, Justin A.; Westbrook, R. Frederick

    2010-01-01

    A series of experiments used rats to study the effect of a systemic or intra-amygdala infusion of the benzodiazepine, midazolam, on learning and re-learning to inhibit context conditioned fear (freezing) responses. Rats were subjected to two context-conditioning episodes followed by extinction under drug or vehicle, or to two cycles of context…

  7. Renin–angiotensin system inhibition is not associated with increased sudden cardiac death, cardiovascular mortality or all-cause mortality in patients with aortic stenosis

    DEFF Research Database (Denmark)

    Bang, Casper N; Greve, Anders M; Køber, Lars

    2014-01-01

    BACKGROUND: Renin-angiotensin system inhibition (RASI) is frequently avoided in aortic stenosis (AS) patients because of fear of hypotension. We evaluated if RASI with angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) increased mortality in patients with mild...

  8. Inhibition of melanosome transfer from melanocytes to keratinocytes by lectins and neoglycoproteins in an in vitro model system.

    Science.gov (United States)

    Minwalla, L; Zhao, Y; Cornelius, J; Babcock, G F; Wickett, R R; Le Poole, I C; Boissy, R E

    2001-06-01

    We propose that some of the critical molecules involved in the transfer of melanosomes from melanocytes to keratinocytes include plasma membrane lectins and their glycoconjugates. To investigate this mechanism, co-cultures of human melanocytes and keratinocytes derived from neonatal foreskins were established. The process of melanosome transfer was assessed by two experimental procedures. The first involved labeling melanocyte cultures with the fluorochrome CFDA. Labeled melanocytes were subsequently co-cultured with keratinocytes, and the transfer of fluorochrome assessed visually by confocal microscopy and quantitatively by flow cytometry. The second investigative approach involved co-culturing melanocytes with keratinocytes, and processing the co-cultures after 3 days for electron microscopy to quantitate the numbers of melanosomes in keratinocytes. Results from these experimental approaches indicate significant transfer of dye or melanosomes from melanocytes to keratinocytes that increased with time of co-culturing. Using these model systems, we subsequently tested a battery of lectins and neoglycoproteins for their effect in melanosome transfer. Addition of these selected molecules to co-cultures inhibited transfer of fluorochrome by approximately 15-44% as assessed by flow cytometry, and of melanosomes by 67-93% as assessed by electron microscopy. Therefore, our results suggest the roles of selected lectins and glycoproteins in melanosome transfer to keratinocytes in the skin.

  9. Zinc metalloproteinase ZmpC suppresses experimental pneumococcal meningitis by inhibiting bacterial invasion of central nervous systems.

    Science.gov (United States)

    Yamaguchi, Masaya; Nakata, Masanobu; Sumioka, Ryuichi; Hirose, Yujiro; Wada, Satoshi; Akeda, Yukihiro; Sumitomo, Tomoko; Kawabata, Shigetada

    2017-11-17

    Streptococcus pneumoniae is a leading cause of bacterial meningitis. Here, we investigated whether pneumococcal paralogous zinc metalloproteases contribute to meningitis onset. Findings of codon-based phylogenetic analyses indicated 3 major clusters in the Zmp family; ZmpA, ZmpC, and ZmpB, with ZmpD as a subgroup. In vitro invasion assays of human brain microvascular endothelial cells (hBMECs) showed that deletion of the zmpC gene in S. pneumoniae strain TIGR4 significantly increased bacterial invasion into hBMECs, whereas deletion of either zmpA or zmpB had no effect. In a mouse meningitis model, the zmpC deletion mutant exhibited increased invasion of the brain and was associated with increased matrix metalloproteinase-9 in plasma and mortality as compared with the wild type. We concluded that ZmpC suppresses pneumococcal virulence by inhibiting bacterial invasion of the central nervous system. Furthermore, ZmpC illustrates the evolutional theory stating that gene duplication leads to acquisition of novel function to suppress excessive mortality.

  10. Behavioural Inhibition System (BIS) sensitivity differentiates EEG theta responses during goal conflict in a continuous monitoring task.

    Science.gov (United States)

    Moore, Roger A; Mills, Matthew; Marshman, Paul; Corr, Philip J

    2012-08-01

    Previous research has revealed that EEG theta oscillations are affected during goal conflict processing. This is consistent with the behavioural inhibition system (BIS) theory of anxiety (Gray & McNaughton, 2000). However, studies have not attempted to relate these BIS-related theta effects to BIS personality measures. Confirmation of such an association would provide further support for BIS theory, especially as it relates to trait differences. EEG was measured (32 electrodes) from extreme groups (low/high trait BIS) engaged in a target detection task. Goal conflicts were introduced throughout the task. Results show that the two groups did not differ in behavioural performance. The major EEG result was that a stepwise discriminant analysis indicated discrimination by 6 variables derived from coherence and power, with 5 of the 6 in the theta range as predicted by BIS theory and one in the beta range. Also, across the whole sample, EEG theta coherence increased at a variety of regions during primary goal conflict and showed a general increase during response execution; EEG theta power, in contrast, was primarily reactive to response execution. This is the first study to reveal a three-way relationship between the induction of goal conflict, the induction of theta power and coherence, and differentiation by psychometrically-defined low/high BIS status. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Evaluation of four different systems for extraction of RNA from stool suspensions using MS-2 coliphage as an exogenous control for RT-PCR inhibition.

    Directory of Open Access Journals (Sweden)

    Lester M Shulman

    Full Text Available Knowing when, and to what extent co-extracted inhibitors interfere with molecular RNA diagnostic assays is of utmost importance. The QIAamp Viral RNA Mini Kit (A; MagNA Pure LC2.0 Automatic extractor (B; KingFisher (C; and NucliSENS EasyMag (D RNA extraction systems were evaluated for extraction efficiency and co-purification of inhibitors from stool suspensions. Real-Time Reverse Transcriptase Polymerase Chain Reaction (rRT-PCR of MS-2 coliphage spiked into each system's lysis buffer served as an external control for both. Cycle thresholds (Cts of the MS2 were determined for RNA extracted from stool suspensions containing unknown (n = 93 or varying amounts of inhibitors (n = 92. Stool suspensions from the latter group were also used to determine whether MS-2 and enterovirus rRT-PCR inhibitions were correlated. Specifically 23 RNA extracts from stool suspensions were spiked with enterovirus RNA after extraction and 13 of these stool suspension were spiked with intact enterovirus before extraction. MS2 rRT-PCR inhibition varied for RNAs extracted by the different systems. Inhibition was noted in 12 (13.0%, 26 (28.3%, 7 (7.6%, and 7 (7.6% of the first 93 RNA extracts, and 58 (63.0%, 55 (59.8%, 37 (40.2% and 30 (32.6% of the second 92 extracts for A, B, C, and D, respectively. Furthermore, enterovirus rRT-PCR inhibition correlated with MS2 rRT-PCR inhibition for added enterovirus RNA or virus particles. In conclusion, rRT-PCR for MS-2 RNA is a good predictor of inhibition of enterovirus RNA extracted from stool suspensions. EasyMag performed the best, however all four extraction methods were suitable provided that external controls identified problematic samples.

  12. Validating the pivotal role of the immune system in low-dose radiation-induced tumor inhibition in Lewis lung cancer-bearing mice.

    Science.gov (United States)

    Zhou, Lei; Zhang, Xiaoying; Li, Hui; Niu, Chao; Yu, Dehai; Yang, Guozi; Liang, Xinyue; Wen, Xue; Li, Min; Cui, Jiuwei

    2018-04-01

    Although low-dose radiation (LDR) possesses the two distinct functions of inducing hormesis and adaptive responses, which result in immune enhancement and tumor inhibition, its clinical applications have not yet been elucidated. The major obstacle that hinders the application of LDR in the clinical setting is that the mechanisms underlying induction of tumor inhibition are unclear, and the risks associated with LDR are still unknown. Thus, to overcome this obstacle and elucidate the mechanisms mediating the antitumor effects of LDR, in this study, we established an in vivo lung cancer model to investigate the participation of the immune system in LDR-induced tumor inhibition and validated the pivotal role of the immune system by impairing immunity with high-dose radiation (HDR) of 1 Gy. Additionally, the LDR-induced adaptive response of the immune system was also observed by sequential HDR treatment in this mouse model. We found that LDR-activated T cells and natural killer cells and increased the cytotoxicity of splenocytes and the infiltration of T cells in the tumor tissues. In contrast, when immune function was impaired by HDR pretreatment, LDR could not induce tumor inhibition. However, when LDR was administered before HDR, the immunity could be protected from impairment, and tumor growth could be inhibited to some extent, indicating the induction of the immune adaptive response by LDR. Therefore, we demonstrated that immune enhancement played a key role in LDR-induced tumor inhibition. These findings emphasized the importance of the immune response in tumor radiotherapy and may help promote the application of LDR as a novel approach in clinical practice. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  13. A Comparative Study of Personality Traits and Brain Behavioral activation Systems and Inhibition in Women with Cancer, Cardiovascular Diseases and Normal Women

    Directory of Open Access Journals (Sweden)

    Sohrab Amiri

    2017-04-01

    Full Text Available Background and Objectives: Chronic diseases are among the most important causes of mortality. The aim of the current study was to compare the Brain/behavioral systems and Dark personality traits of Machiavellianism, narcissism, and psychopathy in cancer, cardiovascular female patients and normal women. Methods: In this study, 60 individuals were selected using available sampling in three groups of 20 cancer patients, cardiovascular patients, and normal subjects. Finally, in order to test the goals and hypotheses of the research, the participants were studied based on Behavioral Activation System and Behavioral Inhibition System, and Dark Triad traits. Data analysis was performed using multivariate ANOVA, univariate ANOVA and post-hoc tests. Results: In this study, there was a significant difference among the three groups in Brain/behavioral systems and traits of Machiavellianism, narcissism, and psychopathy, so that the cancer and cardiovascular patients had higher score in dark triad traits compared to normal individuals. Also, the cancer patients had a higher score in Machiavellianism trait compared to the cardiovascular patients. In the brain/behavioral systems, cardiovascular and cancer patients had higher score in behavioral inhibition system (BIS component compared to the normal individuals in the of behavioral inhibition system (BIS. Also, in the reward seeking subscale of behavioral activation system (BAS-f, cancer patients had a higher score compared to cardiovascular patients, which was significantly different. Conclusion: The results of this study indicated that cancer and cardiovascular patients, have greater extent of social disgusting personality traits as well as behavioral inhibition system as anxiety-predisposing factor.

  14. Unsaturated Fatty Acids Affect Quorum Sensing Communication System and Inhibit Motility and Biofilm Formation of Acinetobacter baumannii

    Science.gov (United States)

    Nicol, Marion; Alexandre, Stéphane; Luizet, Jean-Baptiste; Skogman, Malena; Jouenne, Thierry; Salcedo, Suzana P.; Dé, Emmanuelle

    2018-01-01

    The increasing threat of Acinetobacter baumannii as a nosocomial pathogen is mainly due to the occurrence of multidrug-resistant strains that are associated with the real problem of its eradication from hospital wards. The particular ability of this pathogen to form biofilms contributes to its persistence, increases antibiotic resistance, and promotes persistent/device-related infections. We previously demonstrated that virstatin, which is a small organic compound known to decrease virulence of Vibrio cholera via an inhibition of T4-pili expression, displayed very promising activity to prevent A. baumannii biofilm development. Here, we examined the antibiofilm activity of mono-unsaturated chain fatty acids, palmitoleic (PoA), and myristoleic (MoA) acids, presenting similar action on V. cholerae virulence. We demonstrated that PoA and MoA (at 0.02 mg/mL) were able to decrease A. baumannii ATCC 17978 biofilm formation up to 38% and 24%, respectively, presented a biofilm dispersing effect and drastically reduced motility. We highlighted that these fatty acids decreased the expression of the regulator abaR from the LuxIR-type quorum sensing (QS) communication system AbaIR and consequently reduced the N-acyl-homoserine lactone production (AHL). This effect can be countered by addition of exogenous AHLs. Besides, fatty acids may have additional non-targeted effects, independent from QS. Atomic force microscopy experiments probed indeed that PoA and MoA could also act on the initial adhesion process in modifying the material interface properties. Evaluation of fatty acids effect on 22 clinical isolates showed a strain-dependent antibiofilm activity, which was not correlated to hydrophobicity or pellicle formation ability of the tested strains, and suggested a real diversity in cell-to-cell communication systems involved in A. baumannii biofilm formation. PMID:29320462

  15. Systemic insulin sensitivity is regulated by GPS2 inhibition of AKT ubiquitination and activation in adipose tissue.

    Science.gov (United States)

    Cederquist, Carly T; Lentucci, Claudia; Martinez-Calejman, Camila; Hayashi, Vanessa; Orofino, Joseph; Guertin, David; Fried, Susan K; Lee, Mi-Jeong; Cardamone, M Dafne; Perissi, Valentina

    2017-01-01

    Insulin signaling plays a unique role in the regulation of energy homeostasis and the impairment of insulin action is associated with altered lipid metabolism, obesity, and Type 2 Diabetes. The main aim of this study was to provide further insight into the regulatory mechanisms governing the insulin signaling pathway by investigating the role of non-proteolytic ubiquitination in insulin-mediated activation of AKT. The molecular mechanism of AKT regulation through ubiquitination is first dissected in vitro in 3T3-L1 preadipocytes and then validated in vivo using mice with adipo-specific deletion of GPS2, an endogenous inhibitor of Ubc13 activity (GPS2-AKO mice). Our results indicate that K63 ubiquitination is a critical component of AKT activation in the insulin signaling pathway and that counter-regulation of this step is provided by GPS2 preventing AKT ubiquitination through inhibition of Ubc13 enzymatic activity. Removal of this negative checkpoint, through GPS2 downregulation or genetic deletion, results in sustained activation of insulin signaling both in vitro and in vivo . As a result, the balance between lipid accumulation and utilization is shifted toward storage in the adipose tissue and GPS2-AKO mice become obese under normal laboratory chow diet. However, the adipose tissue of GPS2-AKO mice is not inflamed, the levels of circulating adiponectin are elevated, and systemic insulin sensitivity is overall improved. Our findings characterize a novel layer of regulation of the insulin signaling pathway based on non-proteolytic ubiquitination of AKT and define GPS2 as a previously unrecognized component of the insulin signaling cascade. In accordance with this role, we have shown that GPS2 presence in adipocytes modulates systemic metabolism by restricting the activation of insulin signaling during the fasted state, whereas in absence of GPS2, the adipose tissue is more efficient at lipid storage, and obesity becomes uncoupled from inflammation and insulin

  16. A polymorphism in myostatin influences puberty but not fertility in beef heifers, whereas µ-calpain affects first calf birth weight.

    Science.gov (United States)

    Cushman, R A; Tait, R G; McNeel, A K; Forbes, E D; Amundson, O L; Lents, C A; Lindholm-Perry, A K; Perry, G A; Wood, J R; Cupp, A S; Smith, T P L; Freetly, H C; Bennett, G L

    2015-01-01

    The use of genetic markers to aid in selection decisions to improve carcass and growth characteristics is of great interest to the beef industry. However, it is important to examine potential antagonistic interactions with fertility in cows before widespread application of marker-assisted selection. The objective of the current experiment was to examine the influence of 2 commercially available markers currently in use for improving carcass traits, the myostatin (MSTN) F94L and μ-calpain (CAPN1) 316 and 4751 polymorphisms, on heifer development and reproductive performance. In Exp. 1, beef heifers (n = 146) were evaluated for growth and reproductive traits over a 3-yr period to determine if these polymorphisms influenced reproductive performance. In Exp. 2, heifers representing the 2 homozygous genotypes for the MSTN F94L polymorphism were slaughtered on d 4 of the estrous cycle and reproductive tracts were collected for morphological examination. In Exp. 1, there was a tendency (P = 0.06) for birth BW to be affected by MSTN with the Leu allele increasing birth BW in an additive fashion. Additionally, MSTN significantly affected the proportion of pubertal heifers by the start of the breeding season (P 0.15). The GT haplotype of CAPN1, which was previously associated with decreased meat tenderness, was associated with an additive decrease in birth BW of the first calf born to these heifers (P 0.05). From these results, we concluded that the MSTN F94L and CAPN1 polymorphisms can be used to improve carcass traits without compromising fertility in beef heifers. The influence of these markers on cow performance and herd life remains to be determined. While the delay in puberty associated with the MSTN F94L polymorphism did not negatively impact reproductive performance in heifers, caution should be used when combining this marker with other markers for growth or carcass traits until the potential interactions are more clearly understood.

  17. High-resolution melting analysis for detection of a single-nucleotide polymorphism and the genotype of the myostatin gene in warmblood horses.

    Science.gov (United States)

    Serpa, Priscila B S; Garbade, Petra; Natalini, Cláudio C; Pires, Ananda R; Tisotti, Tainor M

    2017-01-01

    OBJECTIVE To develop a high-resolution melting (HRM) assay to detect the g.66493737C>T polymorphism in the myostatin gene (MSTN) and determine the frequency of 3 previously defined g.66493737 genotypes (T/T, T/C, and C/C) in warmblood horses. SAMPLES Blood samples from 23 horses. PROCEDURES From each blood sample, DNA was extracted and analyzed by standard PCR methods and an HRM assay to determine the MSTN genotype. Three protocols (standard protocol, protocol in which a high-salt solution was added to the reaction mixture before the first melting cycle, and protocol in which an unlabeled probe was added to the reaction mixture before analysis) for the HRM assay were designed and compared. Genotype results determined by the HRM protocol that generated the most consistent melting curves were compared with those determined by sequencing. RESULTS The HRM protocol in which an unlabeled probe was added to the reaction mixture generated the most consistent melting curves. The genotypes of the g.66493737C>T polymorphism were determined for 22 horses (16 by HRM analysis and 20 by sequencing); 14, 7, and 1 had the T/T, T/C, and C/C genotypes, respectively. The genotype determined by HRM analysis agreed with that determined by sequencing for 14 of 16 horses. The frequency of alleles T and C was 79.5% and 20.5%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that HRM analysis may be a faster and more economical alternative than PCR methods for genotyping. Genotyping results might be useful as predictors of athletic performance for horses.

  18. Demands on response inhibition processes determine modulations of theta band activity in superior frontal areas and correlations with pupillometry - Implications for the norepinephrine system during inhibitory control.

    Science.gov (United States)

    Dippel, Gabriel; Mückschel, Moritz; Ziemssen, Tjalf; Beste, Christian

    2017-08-15

    Response inhibition processes are important for goal-directed behavior and particularly demanded when it is unlikely to inhibit automatically executed responses. It has been suggested that the norepinephrine (NE) system is important to consider for such likelihood effects. As an indirect measure of the NE system activity we used the pupil diameter and integrated this data with neurophysiological (EEG) data and beamforming analyses. The study shows that inhibitory control processes reflected by theta oscillations are strongly modulated by the likelihood to employ these processes and that these mechanisms were related to neural processes in the SMA and SFG. Probably, the modulations observed for theta band activity may reflect modulations in the encoding of a surprise, or conflict signal. Interestingly, correlation analyses of neuronal activity at the sensor and the source level with pupil diameter data revealed strong correlations that were only seen in the condition where inhibitory control processes were rarely demanded. On the basis of findings and theoretical models suggesting that the pupil diameter can be interpreted as a proximate of NE system activity the results may be interpreted that the NE system modulates inhibitory control processes via theta band activity in the SFB when the likelihood to inhibit a prepotent response tendency is low. From this it may be speculated that the NE system dynamically gains and loses relevance to modulate inhibitory control depending on boundary conditions that determine the mode of responding. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Lateral Inhibition in the Human Visual System in Patients with Glaucoma and Healthy Subjects: A Case-Control Study.

    Directory of Open Access Journals (Sweden)

    Francisco G Junoy Montolio

    Full Text Available In glaucoma, the density of retinal ganglion cells is reduced. It is largely unknown how this influences retinal information processing. An increase in spatial summation and a decrease in contrast gain control and contrast adaptation have been reported. A decrease in lateral inhibition might also arise. This could result in a larger than expected response to some stimuli, which could mask ganglion cell loss on functional testing (structure-function discrepancy. The aim of this study was to compare lateral inhibition between glaucoma patients and healthy subjects; we used a case-control design. Cases (n = 18 were selected to have advanced visual field loss in combination with a normal visual acuity. Controls (n = 50 were not allowed to have symptoms or signs of any eye disease. Lateral inhibition was measured psychophysically on a computer screen, with (1 a modified illusory movement experiment and (2 a contrast sensitivity (CS test. Illusory movement was quantified by nulling it with a real movement; measure of lateral inhibition was the amount of illusory movement. CS was measured at 1 and 4 cycles per degree (cpd; measure of lateral inhibition was the difference between log CS at 4 and 1 cpd. Both measures were compared between cases and controls; analyses were adjusted for age and gender. There was no difference between cases and controls for these two measures of lateral inhibition (p = 0.58 for illusory movement; p = 0.20 for CS. The movement threshold was higher in cases than in controls (p = 0.008 and log CS was lower, at both 1 (-0.20; p = 0.008 and 4 (-0.28; p = 0.001 cpd. Our results indicate that spatially antagonistic mechanisms are not specifically affected in glaucoma, at least not in the intact center of a severely damaged visual field. This suggests that the structure-function discrepancy in glaucoma is not related to a decrease in lateral inhibition.

  20. Pyrrhocoricin, a proline-rich antimicrobial peptide derived from insect, inhibits the translation process in the cell-free Escherichia coli protein synthesis system.

    Science.gov (United States)

    Taniguchi, Masayuki; Ochiai, Akihito; Kondo, Hiroshi; Fukuda, Shun; Ishiyama, Yohei; Saitoh, Eiichi; Kato, Tetsuo; Tanaka, Takaaki

    2016-05-01

    Previous studies have shown that pyrrhocoricin, a proline-rich antimicrobial peptide (PrAMP), killed sensitive species in a dose-dependent manner by specifically binding to DnaK. Here, on the basis of the finding that DnaK-deficient Escherichia coli strains are susceptible to PrAMPs, we used pyrrhocoricin to investigate internal targets other than DnaK. Using conventional antibiotics (bleomycin, streptomycin, and fosfomycin) that have known modes of action, first, we validated the availability of an assay using a cell-free rapid translation system (RTS), which is an in vitro protein synthesis system based on E. coli lysate, for evaluating inhibition of protein synthesis. We found that, similarly to bleomycin and streptomycin, pyrrhocoricin inhibited GFP synthesis in RTS in a concentration-dependent manner. In addition, blockage of transcription and translation steps in RTS was individually estimated using RT-PCR after gene expression to determine mRNA products and using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to determine the amounts of GFP expressed from purified mRNA, respectively. The results demonstrated that this inhibition of GFP synthesis by pyrrhocoricin did not occur at the transcription step but rather at the translation step, in a manner similar to that of GFP synthesis by streptomycin, an inhibitor of the translation step by causing misreading of tRNA. These results suggest that RTS is a powerful assay system for determining if antimicrobial peptides inhibit protein synthesis and its transcription and/or translation steps. This is the first study to have shown that pyrrhocoricin inhibited protein synthesis by specifically repressing the translation step. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Research on corrosion mechanism of suspension insulator steel foot of direct current system and measures for corrosion inhibition

    Science.gov (United States)

    Chen, He; Yang, Yueguang; Su, Guolei; Wang, Xiaoqing; Zhang, Hourong; Sun, Xiaoyu; Fan, Youping

    2017-09-01

    There are increasingly serious electrocorrosion phenomena on insulator hardware caused by direct current transmission due to the wide-range popularization of extra high voltage direct current transmission engineering in our country. Steel foot corrosion is the main corrosion for insulators on positive polarity side of transmission lines. On one hand, the corrosion leads to the tapering off of steel foot diameter, having a direct influence on mechanical property of insulators; on the other hand, in condition of corrosion on steel foot wrapped in porcelain ware, the volume of the corrosion product is at least 50% more than that of the original steel foot, leading to bursting of porcelain ware, threatening safe operation of transmission lines. Therefore, it is necessary to conduct research on the phenomenon and propose feasible measures for corrosion inhibition. Starting with the corrosion mechanism, this article proposes two measures for corrosion inhibition, and verifies the inhibition effect in laboratory conditions, providing reference for application in engineering.

  2. The association of Internet addiction symptoms with impulsiveness, loneliness, novelty seeking and behavioral inhibition system among adults with attention-deficit/hyperactivity disorder (ADHD).

    Science.gov (United States)

    Li, Wendi; Zhang, Wei; Xiao, Lin; Nie, Jia

    2016-09-30

    The aims of this study were to test the associations of the Internet addiction symptoms with impulsiveness, loneliness, novelty seeking and behavioral inhibition systems among adults with attention-deficit/hyperactivity disorder (ADHD) and adults with non-ADHD. A total of 146 adults aged between 19 and 33 years involved in this study. Participants were assessed with the Chinese version of the adult ADHD Self-report scale (ASRS), the Revised Chen Internet Addiction Scale (CIAS-R), the Barratt Impulsiveness Scale 11 (BIS-11), the Tridimensional Personality Questionnaire (TPQ), the UCLA loneliness scale, and the Behavioral Inhibition System and Behavioral Activation System Scale (BIS/BAS Scale). The results of hierarchical regression analysis indicated that impulsiveness, loneliness, and behavioral inhibition system were significant predictors of Internet addition among adults with ADHD. Higher loneliness was significantly associated with more severe Internet addition symptoms among the non-ADHD group. Adults with high impulsiveness, loneliness, and BIS should be treated with caution for preventing Internet addiction. In addition, adults with and without ADHD should be provided with different preventative strategies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. The dominant role of inhibition in creating response selectivities for communication calls in the brainstem auditory system.

    Science.gov (United States)

    Pollak, George D

    2013-11-01

    This review is concerned with how communication calls are processed and represented by populations of neurons in both the inferior colliculus (IC), the auditory midbrain nucleus, and the dorsal nucleus of the lateral lemniscus (DNLL), the nucleus just caudal to the IC. The review has five sections where focus in each section is on inhibition and its role in shaping response selectivity for communication calls. In the first section, the lack of response selectivity for calls in DNLL neurons is presented and discusses why inhibition plays virtually no role in shaping selectivity. In the second section, the lack of selectivity in the DNLL is contrasted with the high degree of response selectivity in the IC. The third section then reviews how inhibition in the IC shapes response selectivities for calls, and how those selectivities can create a population response with a distinctive response profile to a particular call, which differs from the population profile evoked by any other call. The fourth section is concerned with the specifics of inhibition in the IC, and how the interaction of excitation and inhibition creates directional selectivities for frequency modulations, one of the principal acoustic features of communication signals. The two major hypotheses for directional selectivity are presented. One is the timing hypothesis, which holds that the precise timing of excitation relative to inhibition is the feature that shapes directionality. The other hypothesis is that the relative magnitudes of excitation and inhibition are the dominant features that shape directionality, where timing is relatively unimportant. The final section then turns to the role of serotonin, a neuromodulator that can markedly change responses to calls in the IC. Serotonin provides a linkage between behavioral states and processing. This linkage is discussed in the final section together with the hypothesis that serotonin acts to enhances the contrast in the population responses to various

  4. Effect of central nervous system radiotherapy in children with acute lymphoblastic leukaemia on lymphocyte subpopulations and indicators of leucocyte migration inhibition in the peripheral blood

    International Nuclear Information System (INIS)

    Cesarz-Kruz, E.; Lukas, A; Sroczynska, M.; Lukas, W; Sonta-Jakimczyk, D.

    1981-01-01

    The reported investigations of changes in lymphocyte subpopulations and indicators of leycocyte migration inhibition in the peripheral blood were carried out in 17 children with acute lymphoblastic leukaemia subjected to prophylactic irradiation of the central nervous system. It was found that the depressive effect of radioprophylaxis affected mostly lymphocytes B. The usefulness of immunomodulation application in children with this leukaemia immediately after completion of radiotherapy is considered. (author)

  5. Dienogest, a synthetic progestin, inhibits prostaglandin E2 production and aromatase expression by human endometrial epithelial cells in a spheroid culture system.

    Science.gov (United States)

    Shimizu, Yutaka; Mita, Shizuka; Takeuchi, Takashi; Notsu, Tatsuto; Mizuguchi, Kiyoshi; Kyo, Satoru

    2011-01-01

    Prostaglandin E(2) (PGE(2)) is a major mediator in the pathophysiology, and pathogenesis of gynecological diseases associated with abnormal endometrial disease with proliferation and inflammation, such as endometriosis. In this study, we investigated the effect of dienogest, a selective progesterone receptor agonist, on PGE(2) production and the expression of aromatase, an estrogen synthase, in human immortalized endometrial epithelial cells. Compared with monolayer culture, the cells showed enhanced PGE(2) production and expression of the PGE(2) synthases cyclooxygenase-2 (COX-2), and microsomal prostaglandin E(2) synthase-1 (mPGES-1) in a spheroid culture system. Dienogest inhibited PGE(2) production and this effect was reversed by RU486, a progesterone receptor antagonist. Dienogest inhibited the PGE(2) synthases mRNA and protein expression, and the nuclear factor-κB activation. Moreover, the suppressive effect of dienogest on PGE(2) production was sustained 24h after the drug was withdrawn. Dienogest but not COX inhibitors inhibited aromatase expression. These results suggest that progesterone receptor activation reduces the gene expressions of COX-2, mPGES-1, and aromatase. Our findings suggest that the pharmacological mechanism of dienogest includes the direct inhibition of PGE(2) synthase and aromatase expression and may contribute to the therapeutic effect on the progression of endometriosis. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. [The inhibition of Mycoplasma pneumoniae adhesion in a fetuin test system by synthetic analogs and polymeric forms of neuraminic acid].

    Science.gov (United States)

    Tokovenko, I P; Skripal', I G; Malinovskaia, L P; Baĭramova, N E; Mochalova, L V; Tuzikov, A B; Bovin, N V

    1994-01-01

    Eight glycosides and structural analogues of neuraminic acid as well as eight polymeric forms of N-acetyl neuraminic acid have been studied for their inhibitory effect on adhesion of Mycoplasma pneumoniae. Maximum inhibiting effect among low-molecular compounds was manifested by 2-->3 sialyllactose which, being used in concentrations 5.0 and 10.0 micrograms/ml, inhibited adhesion of mycoplasmas by 76 and 87%, respectively. These indices for other derivatives in the above mentioned concentrations were as follows (%): 2-->6 sialyllactose, 31 and 74%; alpha-Me-glycoside NeuAc, 75 and 85%; alpha-Bn-glycoside-N-trifluoruracetyl NeuAc, 30 and 63%; alpha-Bn-glycoside NeuAc, 32 and 59%; alpha-Bn-glycoside-4-epi-NeuAc, 20 and 27%; beta-Bn-glycoside NeuAc, 2-4%; beta-me-glycoside NeuAc, 4-5%. The maximum inhibiting effect (50% inhibition at concentration 2.5 mumol) among polymeric forms was exerted by the conjugate alpha-benzeneglycoside with polyacrylic acid containing 12 mol% of NeuAc. Conjugates with 8, 16 and 20 mol% of NeuAc possessed a bit less activity. The 50% concentration for them was 5.3, 3.1 and 8.3 mumol, respectively. Polymeric forms on the basis of polyacrylamide proved less active.

  7. Individual variability in response to renin angiotensin aldosterone system inhibition predicts cardiovascular outcome in patients with type 2 diabetes: A primary care cohort study.

    Science.gov (United States)

    Apperloo, Ellen M; Pena, Michelle J; de Zeeuw, Dick; Denig, Petra; Heerspink, Hiddo J L

    2018-01-18

    To assess variability in systolic blood pressure (SBP) and albuminuria (urinary albumin creatinine ratio [UACR]) responses in patients with type 2 diabetes mellitus initiating renin angiotensin aldosterone system (RAAS) inhibition, and to assess the association of response variability with cardiovascular outcomes. We performed an observational cohort study in patients with type 2 diabetes who started RAAS inhibition between 2007 and 2013 (n = 1600). Patients were identified from general practices in the Netherlands. Individual response in SBP and UACR was assessed during 15 months' follow-up. Patients were categorized as: good responders (∆SBP 0% or ∆SBP >0 mm Hg and ∆UACR 0 mm Hg and ∆UACR >0%). Multivariable Cox regression was performed to test the association between initial RAAS inhibition response and subsequent cardiovascular outcomes. After starting RAAS inhibition, the mean SBP change was -13.2 mm Hg and the median UACR was -36.6%, with large between-individual variability, both in SBP [5th to 95th percentile: 48.5-20] and UACR [5th to 95th percentile: -87.6 to 171.4]. In all, 812 patients (51%) were good responders, 353 (22%) had a good SBP but poor UACR response, 268 (17%) had a good UACR but poor SBP response, and 167 patients (10%) were poor responders. Good responders had a lower risk of cardiovascular events than poor responders (hazard ratio 0.51, 95% confidence interval 0.30-0.86; P = .012). SBP and UACR response after RAAS inhibition initiation varied between and within individual patients with type 2 diabetes treated in primary care. Poor responders had the highest risk of cardiovascular events, therefore, more efforts are needed to develop personalized treatment plans for these patients. © 2018 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  8. Clinical impacts of inhibition of renin-angiotensin system in patients with acute ST-segment elevation myocardial infarction who underwent successful late percutaneous coronary intervention.

    Science.gov (United States)

    Park, Hyukjin; Kim, Hyun Kuk; Jeong, Myung Ho; Cho, Jae Yeong; Lee, Ki Hong; Sim, Doo Sun; Yoon, Nam Sik; Yoon, Hyun Ju; Hong, Young Joon; Kim, Kye Hun; Park, Hyung Wook; Kim, Ju Han; Ahn, Youngkeun; Cho, Jeong Gwan; Park, Jong Chun; Kim, Young Jo; Cho, Myeong Chan; Kim, Chong Jim

    2017-01-01

    Successful percutaneous coronary intervention (PCI) of the occluded infarct-related artery (IRA) in latecomers may improve long-term survival mainly by reducing left ventricular remodeling. It is not clear whether inhibition of renin-angiotensin system (RAS) brings additional better clinical outcomes in this specific population subset. Between January 2008 and June 2013, 669 latecomer patients with acute ST-segment elevation myocardial infarction (STEMI) (66.2±12.1 years, 71.0% males) in Korea Acute Myocardial Infarction Registry (KAMIR) who underwent a successful PCI were enrolled. The study population underwent a successful PCI for a totally occluded IRA. They were divided into two groups according to whether they were prescribed RAS inhibitors at the time of discharge: group I (RAS inhibition, n=556), and group II (no RAS inhibition, n=113). During the one-year follow-up, major adverse cardiac events (MACE), which consist of cardiac death and myocardial infarction, occurred in 71 patients (10.6%). There were significantly reduced incidences of MACE in the group I (hazard ratio=0.34, 95% confidence interval 0.199-0.588, p=0.001). In subgroup analyses, RAS inhibition was beneficial in patients with male gender, history of hypertension or diabetes mellitus, and even in patients with left ventricular ejection fraction (LVEF) ≥40%. In the baseline and follow-up echocardiographic data, benefit in changes of LVEF and left ventricular end-systolic volume was noted in group I. In latecomers with STEMI, RAS inhibition improved long-term clinical outcomes after a successful PCI, even in patients with low risk who had relatively preserved LVEF. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  9. The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems

    International Nuclear Information System (INIS)

    Sadeghi, S M

    2009-01-01

    We study the inhibition of optical excitation and enhancement of Rabi flopping and frequency in semiconductor quantum dots via plasmonic effects. This is done by demonstrating that the interaction of a quantum dot with a laser field in the vicinity of a metallic nanoparticle can be described in terms of optical Bloch equations with a plasmically normalized Rabi frequency. We show that in the weak-field regime plasmonic effects can suppress the interband transitions, inhibiting exciton generation. In the strong-field regime these effects delay the response of the quantum dot to the laser field and enhance Rabi flopping. We relate these to the conversion of Rabi frequency from a real quantity into a complex and strongly frequency-dependent quantity as plasmonic effects become significant. We show that, within the strong-field regime, in the wavelength range where real and imaginary parts of this frequency reach their maxima, a strongly frequency-dependent enhancement of carrier excitation can happen.

  10. Inhibition of Glucose-6-Phosphate Dehydrogenase Reverses Cisplatin Resistance in Lung Cancer Cells via the Redox System

    Science.gov (United States)

    Hong, Weipeng; Cai, Peiheng; Xu, Chuncao; Cao, Di; Yu, Weibang; Zhao, Zhongxiang; Huang, Min; Jin, Jing

    2018-01-01

    The pentose phosphate pathway (PPP), which branches from glycolysis, is correlated with cancer cell proliferation, survival and senescence. In this study, differences in the metabolic profile of the PPP and the redox status of human lung carcinoma A549 cells and cisplatin-induced multidrug-resistant A549/DDP cells were analyzed and evaluated. The results showed that A549/DDP cells exhibited differential PPP-derived metabolic features and redox-related molecules. A549/DDP cells exhibited increased expression and enzymatic activity of PPP enzyme glucose-6-phosphate dehydrogenase (G6PD). Furthermore, as demonstrated by the apoptotic rate, cell viability, and colony formation, inhibition of G6PD by siRNA or an inhibitor sensitized A549/DDP cells to cisplatin. Additionally, inhibition of G6PD restored the cisplatin sensitivity of A549/DDP cells by influencing redox homeostasis. In conclusion, overcoming cisplatin resistance through inhibition of G6PD could improve the understanding of the mechanisms underlying cisplatin-induced resistance in human lung cancer and may provide insights into the therapeutic potential of this treatment to combat resistance. PMID:29445340

  11. Toxicological effects of thiomersal and ethylmercury: Inhibition of the thioredoxin system and NADP{sup +}-dependent dehydrogenases of the pentose phosphate pathway

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Juan, E-mail: juanricardorodrigues@gmail.com [Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa (Portugal); Laboratory of Biochemistry, Faculty of Pharmacy, Central University of Venezuela (Venezuela, Bolivarian Republic of); Branco, Vasco [Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa (Portugal); Lu, Jun; Holmgren, Arne [Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet (Sweden); Carvalho, Cristina, E-mail: cristina.carvalho@ff.ulisboa.pt [Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa (Portugal)

    2015-08-01

    Mercury (Hg) is a strong toxicant affecting mainly the central nervous, renal, cardiovascular and immune systems. Thiomersal (TM) is still in use in medical practice as a topical antiseptic and as a preservative in multiple dose vaccines, routinely given to young children in some developing countries, while other forms of mercury such as methylmercury represent an environmental and food hazard. The aim of the present study was to determine the effects of thiomersal (TM) and its breakdown product ethylmercury (EtHg) on the thioredoxin system and NADP{sup +}-dependent dehydrogenases of the pentose phosphate pathway. Results show that TM and EtHg inhibited the thioredoxin system enzymes in purified suspensions, being EtHg comparable to methylmercury (MeHg). Also, treatment of neuroblastoma and liver cells with TM or EtHg decreased cell viability (GI{sub 50}: 1.5 to 20 μM) and caused a significant (p < 0.05) decrease in the overall activities of thioredoxin (Trx) and thioredoxin reductase (TrxR) in a concentration- and time-dependent manner in cell lysates. Compared to control, the activities of Trx and TrxR in neuroblastoma cells after EtHg incubation were reduced up to 60% and 80% respectively, whereas in hepatoma cells the reduction was almost 100%. In addition, the activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were also significantly inhibited by all mercurials, with inhibition intensity of Hg{sup 2+} > MeHg ≈ EtHg > TM (p < 0.05). Cell incubation with sodium selenite alleviated the inhibitory effects on TrxR and glucose-6-phosphate dehydrogenase. Thus, the molecular mechanism of toxicity of TM and especially of its metabolite EtHg encompasses the blockage of the electrons from NADPH via the thioredoxin system. - Highlights: • TM and EtHg inhibit Trx and TrxR both in purified suspensions and cell lysates. • TM and EtHg also inhibit the activities of G6PDH and 6PGDH in cell lysates, • Co-exposure to selenite alleviates

  12. Toxicological effects of thiomersal and ethylmercury: Inhibition of the thioredoxin system and NADP+-dependent dehydrogenases of the pentose phosphate pathway

    International Nuclear Information System (INIS)

    Rodrigues, Juan; Branco, Vasco; Lu, Jun; Holmgren, Arne; Carvalho, Cristina

    2015-01-01

    Mercury (Hg) is a strong toxicant affecting mainly the central nervous, renal, cardiovascular and immune systems. Thiomersal (TM) is still in use in medical practice as a topical antiseptic and as a preservative in multiple dose vaccines, routinely given to young children in some developing countries, while other forms of mercury such as methylmercury represent an environmental and food hazard. The aim of the present study was to determine the effects of thiomersal (TM) and its breakdown product ethylmercury (EtHg) on the thioredoxin system and NADP + -dependent dehydrogenases of the pentose phosphate pathway. Results show that TM and EtHg inhibited the thioredoxin system enzymes in purified suspensions, being EtHg comparable to methylmercury (MeHg). Also, treatment of neuroblastoma and liver cells with TM or EtHg decreased cell viability (GI 50 : 1.5 to 20 μM) and caused a significant (p < 0.05) decrease in the overall activities of thioredoxin (Trx) and thioredoxin reductase (TrxR) in a concentration- and time-dependent manner in cell lysates. Compared to control, the activities of Trx and TrxR in neuroblastoma cells after EtHg incubation were reduced up to 60% and 80% respectively, whereas in hepatoma cells the reduction was almost 100%. In addition, the activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were also significantly inhibited by all mercurials, with inhibition intensity of Hg 2+ > MeHg ≈ EtHg > TM (p < 0.05). Cell incubation with sodium selenite alleviated the inhibitory effects on TrxR and glucose-6-phosphate dehydrogenase. Thus, the molecular mechanism of toxicity of TM and especially of its metabolite EtHg encompasses the blockage of the electrons from NADPH via the thioredoxin system. - Highlights: • TM and EtHg inhibit Trx and TrxR both in purified suspensions and cell lysates. • TM and EtHg also inhibit the activities of G6PDH and 6PGDH in cell lysates, • Co-exposure to selenite alleviates the

  13. In-Vitro Inhibition of Pythium ultimum, Fusarium graminearum, and Rhizoctonia solani by a Stabilized Lactoperoxidase System alone and in Combination with Synthetic Fungicides

    Directory of Open Access Journals (Sweden)

    Zachariah R. Hansen

    2017-11-01

    Full Text Available Advances in enzyme stabilization and immobilization make the use of enzymes for industrial applications increasingly feasible. The lactoperoxidase (LPO system is a naturally occurring enzyme system with known antimicrobial activity. Stabilized LPO and glucose oxidase (GOx enzymes were combined with glucose, potassium iodide, and ammonium thiocyanate to create an anti-fungal formulation, which inhibited in-vitro growth of the plant pathogenic oomycete Pythium ultimum, and the plant pathogenic fungi Fusarium graminearum and Rhizoctonia solani. Pythium ultimum was more sensitive than F. graminearum and R. solani, and was killed at LPO and GOx concentrations of 20 nM and 26 nM, respectively. Rhizoctonia solani and F. graminearum were 70% to 80% inhibited by LPO and GOx concentrations of 242 nM and 315 nM, respectively. The enzyme system was tested for compatibility with five commercial fungicides as co-treatments. The majority of enzyme + fungicide co-treatments resulted in additive activity. Synergism ranging from 7% to 36% above the expected additive activity was observed when P. ultimum was exposed to the enzyme system combined with Daconil® (active ingredient (AI: chlorothalonil 29.6%, GardenTech, Lexington, KY, USA, tea tree oil, and mancozeb at select fungicide concentrations. Antagonism was observed when the enzyme system was combined with Tilt® (AI: propiconazole 41.8%, Syngenta, Basel, Switzerland at one fungicide concentration, resulting in activity 24% below the expected additive activity at that concentration.

  14. Inhibition of UVA-mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system.

    Science.gov (United States)

    Panich, Uraiwan; Tangsupa-a-nan, Vanida; Onkoksoong, Tasanee; Kongtaphan, Kamolratana; Kasetsinsombat, Kanda; Akarasereenont, Pravit; Wongkajornsilp, Adisak

    2011-05-01

    Ascorbic acid (AA) has been well known as a skin whitening agent, although attempts have been made to evaluate its protective role against ultraviolet (UV)-induced skin hyperpigmentation or increased melanin production. While melanogenesis is a defense mechanism of the skin against UV irradiation, melanin overproduction may also contribute to melanoma initiation. UVA might play a role in melanogenesis through promoting oxidative stress, which occurs as the result of increased formation of oxidants and/or reactive nitrogen species (RNS) including nitric oxide (NO). Therefore, we investigated the antimelanogenic effect of AA (7.5-120 μM) in association with its inhibitory effect on UVA-induced oxidant formation, NO production through endothelial and inducible NO synthases (eNOS and iNOS) activation and impairment of antioxidant defense using G361 human melanoma cells. Our study demonstrated a comparable ability of AA with that of kojic acid, a well-known tyrosinase inhibitor in inhibiting mushroom tyrosinase. Melanin content was reduced by AA, but neither tyrosinase activity nor mRNA levels were reduced by AA at non-cytotoxic concentrations in UVA-irradiated G361 cells. AA was shown to inhibit UVA-mediated catalase (CAT) inactivation, glutathione (GSH) depletion, oxidant formation and NO production through suppression of eNOS and iNOS mRNA. We report herein that AA can protect against UVA-dependent melanogenesis possibly through the improvement of antioxidant defense capacity and inhibition of NO production through down-regulation of eNOS and iNOS mRNA.

  15. New perspectives in the renin-angiotensin-aldosterone system (RAAS I: endogenous angiotensin converting enzyme (ACE inhibition.

    Directory of Open Access Journals (Sweden)

    Miklós Fagyas

    Full Text Available Angiotensin-converting enzyme (ACE inhibitors represent the fifth most often prescribed drugs. ACE inhibitors decrease 5-year mortality by approximately one-fifth in cardiovascular patients. Surprisingly, there are reports dating back to 1979 suggesting the existence of endogenous ACE inhibitors, which endogenous inhibitory effects are much less characterized than that for the clinically administered ACE inhibitors. Here we aimed to investigate this endogenous ACE inhibition in human sera. It was hypothesized that ACE activity is masked by an endogenous inhibitor, which dissociates from the ACE when its concentration decreases upon dilution. ACE activity was measured by FAPGG hydrolysis first. The specific (dilution corrected enzyme activities significantly increased by dilution of human serum samples (23.2 ± 0.7 U/L at 4-fold dilution, 51.4 ± 0.3 U/L at 32-fold dilution, n = 3, p = 0.001, suggesting the presence of an endogenous inhibitor. In accordance, specific enzyme activities did not changed by dilution when purified renal ACE was used, where no endogenous inhibitor was present (655 ± 145 U/L, 605 ± 42 U/L, n = 3, p = 0.715, respectively. FAPGG conversion strongly correlated with angiotensin I conversion suggesting that this feature is not related to the artificial substrate. Serum samples were ultra-filtered to separate ACE (MW: 180 kDa and the hypothesized inhibitor. Filtering through 50 kDa filters was without effect, while filtering through 100 kDa filters eliminated the inhibiting factor (ACE activity after <100 kDa filtering: 56.4 ± 2.4 U/L, n = 4, control: 26.4 ± 0.7 U/L, n = 4, p<0.001. Lineweaver-Burk plot indicated non-competitive inhibition of ACE by this endogenous factor. The endogenous inhibitor had higher potency on the C-terminal active site than N-terminal active site of ACE. Finally, this endogenous ACE inhibition was also present in mouse, donkey, goat, bovine sera besides men (increasing of specific ACE activity

  16. Modulation of the assay system for the sensory integration of 2 sensory stimuli that inhibit each other in nematode Caenorhabditis elegans.

    Science.gov (United States)

    Li, Yin-Xia; Wang, Yang; Hu, Ya-Ou; Zhong, Ji-Xiang; Wang, Da-Yong

    2011-04-01

    To perform the modulation of an assay system for the sensory integration of 2 sensory stimuli that inhibit each other. The assay system for assessing the integrative response to 2 reciprocally-inhibitory sensory stimuli was modulated by changing the metal ion barrier. Moreover, the hen-1, ttx-3 and casy-1 mutants having known defects in integrative response were used to evaluate the modulated assay systems. Based on the examined assay systems, new genes possibly involved in the sensory integration control were identified. In the presence of different metal ion barriers and diacetyl, locomotion behaviors, basic movements, pan-neuronal, cholinergic and GABAergic neuronal GFP expressions, neuronal development, structures of sensory neurons and interneurons, and stress response of nematodes in different regions of examined assay systems were normal, and chemotaxis toward different concentrations of diacetyl and avoidance of different concentrations of metal ions were inhibited. In the first group, most of the nematodes moved to diacetyl by crossing the barrier of Fe(2+), Zn(2+), or Mn(2+). In the second group, almost half of the nematodes moved to diacetyl by crossing the barrier of Ag(+), Cu(2+), Cr(2+), or Cd(2+). In the third group, only a small number of nematodes moved to diacetyl by crossing the barrier of Pb(2+) or Hg(2+). Moreover, when nematodes encountered different metal ion barriers during migration toward diacetyl, the percentage of nematodes moving back and then turning and that of nematodes moving straight to diacetyl were very different. With the aid of examined assay systems, it was found that mutations of fsn-1 that encodes a F-box protein, and its target scd-2 that encodes a receptor tyrosine kinase, caused severe defects in integrative response, and the sensory integration defects of fsn-1 mutants were obviously inhibited by scd-2 mutation. Based on the nematode behaviors in examined assay systems, 3 groups of assay systems were obtained. The first

  17. Ilex paraguariensis and its main component chlorogenic acid inhibit fructose formation of advanced glycation endproducts with amino acids at conditions compatible with those in the digestive system.

    Science.gov (United States)

    Bains, Yasmin; Gugliucci, Alejandro

    2017-03-01

    We have previously shown that Ilex paraguariensis extracts have potent antiglycation actions. Associations of excess free fructose consumption with inflammatory diseases have been proposed to be mediated through in situ enteral formation of fructose AGEs, which, after being absorbed may contribute to inflammatory diseases via engagement of RAGE. In this proof of principle investigation we show fluorescent AGE formation between amino acids (Arg, Lys, Gly at 10-50mM) and fructose (10-50mM) under time, temperature, pH and concentrations compatible with the digestive system lumen and its inhibition by Ilex paraguariensis extracts. Incubation of amino acids with fructose (but not glucose) leads to a time dependent formation of AGE fluorescence, already apparent after just 1h incubation, a time frame well compatible with the digestive process. Ilex paraguariensis (mate tea) inhibited AGE formation by 83% at 50μl/ml (pacid and cholorogenic acid were as potent as aminoguanidine-a specific antiglycation agent: IC50 of 0.9mM (pacids at times and concentrations plausibly found in the intestines. The reaction is inhibited by mate tea and its individual phenolics (caffeic acid and chlorogenic acids). The study provides the first evidence for the proposed mechanism to explain epidemiological correlations between excess fructose consumption and inflammatory diseases. Enteral fructose-AGE formation would be inhibited by co-intake of Ilex paraguariensis, and potentially other beverages, fruits and vegetables that contain comparable concentrations of phenolics as in IP (mate tea). Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A DO- and pH-Based Early Warning System of Nitrification Inhibition for Biological Nitrogen Removal Processes

    Directory of Open Access Journals (Sweden)

    Hyunook Kim

    2012-11-01

    Full Text Available In Korea, more than 80% of municipal wastewater treatment plants (WWTPs with capacities of 500 m3·d−1 or more are capable of removing nitrogen from wastewater through biological nitrification and denitrification processes. Normally, these biological processes show excellent performance, but if a toxic chemical is present in the influent to a WWTP, the biological processes (especially, the nitrification process may be affected and fail to function normally; nitrifying bacteria are known very vulnerable to toxic substances. Then, the toxic compound as well as the nitrogen in wastewater may be discharged into a receiving water body without any proper treatment. Moreover, it may take significant time for the process to return back its normal state. In this study, a DO- and pH-based strategy to identify potential nitrification inhibition was developed to detect early the inflow of toxic compounds to a biological nitrogen removal process. This strategy utilizes significant changes observed in the oxygen uptake rate and the pH profiles of the mixed liquor when the activity of nitrifying bacteria is inhibited. Using the strategy, the toxicity from test wastewater with 2.5 mg·L−1 Hg2+, 0.5 mg·L−1 allythiourea, or 0.25 mg·L−1 chloroform could be successfully detected.

  19. [The role of balanced low-protein diet in inhibition of predialysis chronic kidney disease progression in patients with systemic diseases].

    Science.gov (United States)

    Milovanov, Iu S; Lysenko, L V; Milovanova, L Iu; Dobrosmyslov, I A

    2009-01-01

    To evaluate the effects of low-protein diet (LPD) balanced by addition of highly energetic mix and essential keto/amino acids on inhibition of renal failure in patients with systemic diseases with predialysis stages of chronic disease of the kidney (CDK). Forty six patients with stage III--IV of CDK in systemic diseases (33 SLE patients and 13 with systemic vasculitis) were randomized into three groups. Group 1 consisted of 18 patients with CDK (10 with stage III and 8 with stage IV). They received LPD (0.6 g/kg/day) with addition of essential keto/amino acids for 24-48 months. Group 2 of 18 CDK patients with the same stages received the same diet but greater amount of vegetable protein (highly purified soya protein) to 0.3 g/kg/day in highly energetic nutrient mixture. Group 3--10 CDK patients (7 with stage III and 3 with stage IV) received free diet. Group 1 and 2 patients received LPD irrespective of the nutrient status assessed basing on anthropometric and other data. Protein consumption and caloric value were estimated by 3-day food diary. Before diet therapy, out of 46 examinees nutrient status was abnormal in 45.7% patients. Both variants of LPD were well tolerated and nutrient status was corrected while the rate of nutritive disorders in group 3 increased 1.5-fold (from 40 to 60%) with progression of renal failure. Intake of LPD diet for at least a year reduced glomerular filtration rate inhibition, especially in addition of highly energetic mixture. Early (predialysis) restriction of diet protein (0.6 g/kg/day) with addition of highly energetic mixture and essential keto/amino acids improves a nutritive status of CDK patients and inhibits GFR decline.

  20. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy.

    Science.gov (United States)

    Reed, Sarah A; Sandesara, Pooja B; Senf, Sarah M; Judge, Andrew R

    2012-03-01

    Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.

  1. Renin-angiotensin-aldosterone system inhibition: overview of the therapeutic use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, mineralocorticoid receptor antagonists, and direct renin inhibitors.

    Science.gov (United States)

    Mercier, Kelly; Smith, Holly; Biederman, Jason

    2014-12-01

    Angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) therapy in hypertensive diabetic patients with macroalbuminuria, microalbuminuria, or normoalbuminuria has been repeatedly shown to improve cardiovascular mortality and reduce the decline in glomerular filtration rate. Renin-angiotensin-aldosterone system (RAAS) blockade in normotensive diabetic patients with normoalbuminuria or microalbuminuria cannot be advocated at present. Dual RAAS inhibition with ACE inhibitors plus ARBs or ACE inhibitors plus direct renin inhibitors has failed to improve cardiovascular or renal outcomes but has predisposed patients to serious adverse events. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The relationship of the Severe Personality disorders with behavioral activation and inhibition systems in patients with paranoid, borderline and schizotypal personality disorders

    Directory of Open Access Journals (Sweden)

    Setareh Jani

    2016-12-01

    Full Text Available Introduction: Given the disruptive effects of personality disorders on personal and family life, it is essential to recognize their predisposing factors to understand them more accurately, and identify their preventive measures treatment facilitators. Therefore, the present study aimed to examine the relationship of severe personality disorders with behavioral activation and inhibition systems in patients with paranoid, borderline and schizotypal personality disorders. Methods: The present descriptive-correlational study recruited patients with paranoid, borderline and schizotypal personality disorders presenting to psychiatry clinics in Ardabil using convenient sampling method. A total of 30 paranoid patients, 30 borderline patients and 20 schizotypal patients were selected by a psychiatrist through psychiatric examination, clinical interview and completing Millon Clinical Multiaxial Inventory (MCMI-III. The following instruments were used: MCMI- III and behavioral activation-inhibition system scale (BIS-BAS. The data were analyzed with Pearson’s correlation coefficient and stepwise regression. Results: BIS and BAS systems were both significant for predicting borderline and paranoid personality disorders, but only BIS was significant for predicting schizotypal personality disorder. Conclusion: These findings can help experts to have a better and more accurate understanding of personality disorders and use proper methods to predict the probability of these disorders and develop treatments.

  3. Traffic safety data : state data system quality varies and limited resources and coordination can inhibit further progress

    Science.gov (United States)

    2010-04-01

    GAOs analysis of traffic records assessmentsconducted for states by NHTSA technical teams or contractors at least every 5 yearsindicates that the quality of state traffic safety data systems varies across the six data systems maintained by s...

  4. Cannabidiol inhibits paclitaxel-induced neuropathic pain through 5-HT(1A) receptors without diminishing nervous system function or chemotherapy efficacy.

    Science.gov (United States)

    Ward, Sara Jane; McAllister, Sean D; Kawamura, Rumi; Murase, Ryuchi; Neelakantan, Harshini; Walker, Ellen A

    2014-02-01

    Paclitaxel (PAC) is associated with chemotherapy-induced neuropathic pain (CIPN) that can lead to the cessation of treatment in cancer patients even in the absence of alternate therapies. We previously reported that chronic administration of the non-psychoactive cannabinoid cannabidiol (CBD) prevents PAC-induced mechanical and thermal sensitivity in mice. Hence, we sought to determine receptor mechanisms by which CBD inhibits CIPN and whether CBD negatively effects nervous system function or chemotherapy efficacy. The ability of acute CBD pretreatment to prevent PAC-induced mechanical sensitivity was assessed, as was the effect of CBD on place conditioning and on an operant-conditioned learning and memory task. The potential interaction of CBD and PAC on breast cancer cell viability was determined using the MTT assay. PAC-induced mechanical sensitivity was prevented by administration of CBD (2.5 - 10 mg·kg⁻¹) in female C57Bl/6 mice. This effect was reversed by co-administration of the 5-HT(1A) antagonist WAY 100635, but not the CB₁ antagonist SR141716 or the CB₂ antagonist SR144528. CBD produced no conditioned rewarding effects and did not affect conditioned learning and memory. Also, CBD + PAC combinations produce additive to synergistic inhibition of breast cancer cell viability. Our data suggest that CBD is protective against PAC-induced neurotoxicity mediated in part by the 5-HT(1A) receptor system. Furthermore, CBD treatment was devoid of conditioned rewarding effects or cognitive impairment and did not attenuate PAC-induced inhibition of breast cancer cell viability. Hence, adjunct treatment with CBD during PAC chemotherapy may be safe and effective in the prevention or attenuation of CIPN. © 2013 The British Pharmacological Society.

  5. Effect of inhibition of the Ubiquitin-Proteasome System and Hsp90 on growth and survival of Rhabdomyosarcoma cells in vitro

    Directory of Open Access Journals (Sweden)

    Peron Marica

    2012-06-01

    Full Text Available Abstract Background The ubiquitin-proteasome system (UPS and the heat shock response (HSR are two critical regulators of cell homeostasis, as their inhibition affects growth and survival of normal cells, as well as stress response and invasiveness of cancer cells. We evaluated the effects of the proteasome inhibitor Bortezomib and of 17-DMAG, a competitive inhibitor of Hsp90, in rhabdomyosarcoma (RMS cells, and analyzed the efficacy of single-agent exposures with combination treatments. Methods To assess cytotoxicity induced by Bortezomib and 17-DMAG in RMS cells, viability was measured by MTT assay after 24, 48 and 72 hours. Western blotting and immunofluorescence analyses were carried out to elucidate the mechanisms of action. Apoptosis was measured by FACS with Annexin-V-FITC and Propidium Iodide. Results Bortezomib and 17-DMAG, when combined at single low-toxic concentrations, enhanced growth inhibition of RMS cells, with signs of autophagy that included intensive cytoplasmic vacuolization and conversion of cytosolic LC3-I protein to its autophagosome-associated form. Treatment with lysosomal inhibitor chloroquine facilitates apoptosis, whereas stimulation of autophagy by rapamycin prevents LC3-I conversion and cell death, suggesting that autophagy is a resistance mechanism in RMS cells exposed to proteotoxic drugs. However, combination treatment also causes caspase-dependent apoptosis, PARP cleavage and Annexin V staining, as simultaneous inhibition of both UPS and HSR systems limits cytoprotective autophagy, exacerbating stress resulting from accumulation of misfolded proteins. Conclusion The combination of proteasome inhibitor Bortezomib with Hsp90 inhibitor 17-DMAG, appears to have important therapeutic advantages in the treatment of RMS cells compared with single-agent exposure, because compensatory survival mechanisms that occur as side effects of treatment may be prevented.

  6. Gender-specific neuroanatomical basis of behavioral inhibition/approach systems (BIS/BAS) in a large sample of young adults: a voxel-based morphometric investigation.

    Science.gov (United States)

    Li, Yadan; Qiao, Lei; Sun, Jiangzhou; Wei, Dongtao; Li, Wenfu; Qiu, Jiang; Zhang, Qinglin; Shi, Huiying

    2014-11-01

    The behavioral inhibition system (BIS) and the behavioral activation system (BAS) are two fundamental motivational systems which are not only responsible for affective states, behavior and personality, but also related to predispositions for various forms of psychopathology. A wide range of previous studies revealed sex differences in both BIS/BAS and affective disorders (e.g., anxiety disorder) and externalizing disorders (e.g., addictive and impulsive behaviors), and a close link might exist between them. It remains to be clarified, however, whether the relationships between neuroanatomical characteristics and BIS/BAS exhibit sex differences. To investigate, voxel-based morphometry (VBM) was used to examine sex differences in the correlations between regional gray matter volume (rGMV) and scores on the Behavioral Inhibition System/Behavioral Activation System (BIS/BAS) scale in a large sample of healthy young adults (n=353). Results showed that females displayed a negative correlation between BIS sensitivity and rGMV in the parahippocampal gyrus (PHG), as well as positive correlations between BAS sensitivity and rGMV in the ventromedial prefrontal cortex (vmPFC) and inferior parietal lobule (IPL), whereas males showed the opposite pattern. These findings suggest that the brain regions associated with processing of negative emotions (PHG) and reward-related information (vmPFC and IPL) may contribute to sex-related differences in rGMV correlates of BIS and BAS, respectively. The present findings demonstrated the evidence of sex-linked neuroanatomical background of BIS and BAS among non-clinical subjects and might encourage future research into the gender-specific relationships between BIS/BAS and related affective disorders and externalizing disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Significant enhancement of (R)-mandelic acid production by relieving substrate inhibition of recombinant nitrilase in toluene-water biphasic system.

    Science.gov (United States)

    Zhang, Zhi-Jun; Pan, Jiang; Liu, Jun-Feng; Xu, Jian-He; He, Yu-Cai; Liu, You-Yan

    2011-03-10

    The enantioselective hydrolysis of mandelonitrile with whole cells of a recombinant Escherichia coli expressing nitrilase activity was severely inhibited by the substrate at high concentrations (>300mM), which resulted in a low yield of the target product (R)-(-)-mandelic acid. To relieve the substrate inhibition and to enhance the (R)-(-)-mandelic acid productivity, eight water-organic solvent biphasic systems were attempted in this work. Toluene was found to be the most suitable solvent as the organic phase among the solvents tested. Various parameters were systematically examined and optimized in shake flasks. The phase volume ratio, buffer pH and reaction temperature were shown to be sensitive parameters affecting both the yield and the enantiopurity of product in the biphasic system. Under the optimized conditions, significant enhancement of substrate tolerance from 200mM to 500mM and average productivity from 179.6gl(-1)d(-1) to 352.6gl(-1)d(-1) were achieved. Subsequently, the biocatalytic hydrolysis of mandelonitrile was successfully carried out in a stirred reactor (2-l scale) by repeated use of the calcium alginate entrapped cells for 5 batches, affording 110.7g (R)-(-)-mandelic acid in 98.0% ee (enantiomeric excess) and a specific production of 13.8g (mandelic acid) g(-1) (cell), respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Methylseleninic acid (MSA) inhibits 17β-estradiol-induced cell growth in breast cancer T47D cells via enhancement of the antioxidative thioredoxin/ thioredoxin reductase system.

    Science.gov (United States)

    Okuno, Tomofumi; Miura, Kiyoshi; Sakazaki, Fumitoshi; Nakamuro, Katsuhiko; Ueno, Hitoshi

    2012-01-01

    The purpose of this study was to clarify the cell growth inhibitory mechanism of human breast cancer cells caused by selenium (Se) compounds. In the presence of 17β-estradiol (E(2)) at physiological concentrations, growth of estrogen receptor α (ERα)-positive T47D cells was markedly inhibited by 1 × 10(-6) mol/L methylseleninic acid (MSA) with no Se related toxicity.Under conditions where cell growth was inhibited, MSA decreased ERα mRNA levels and subsequent protein levels; further decreasing expression of estrogen-responsive finger protein (Efp) which is a target gene product of ERα and promotes G2/M progression of the cell cycle. Therefore, the decline in Efp expression is presumed to be involved in G2 arrest. Coincidentally, the antioxidative thioredoxin/ thioredoxin reductase (Trx/TrxR) system in cells was enhanced by the synergistic action of E(2) and MSA. It has been reported that ROS-induced oxidative stress enhanced ERα expression. E(2) increased production of intracellular ROS in T47D cells. Meanwhile, MSA significantly decreased E(2)-induced ROS accumulation. From these results, activation of the Trx/TrxR system induced by the coexistence of MSA and E(2) suppresses oxidative stress and decreases expression of ERα, and finally induces the growth arrest of T47D cells through disruption of ERα signaling.

  9. Alternative solutions for inhibiting Legionella in domestic hot water systems based on low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2015-01-01

    , and includes a comprehensive overview of their efficiency, installation, operation and costs, so as to give adequate information for selecting appropriate solutions. In addition to sterilization methods, alternative system design implemented with new technologies can also help prevent Legionella in hot water...... systems. They have the additional benefit of reducing the heat loss of the hot water system. The alternative design solutions both enrich our options for water sanitation and improve the energy efficiency of our energy systems....... methods, thermal treatment, ionization, chlorine, chlorine dioxide, ultraviolet light, photocatalysis and filtration are discussed as the most frequently used methods in hot water systems. The characteristics, efficacy and operation methods of LTDH using the solutions investigated are documented...

  10. Estimation of fractions metabolized by hepatic CYP enzymes using a concept of inter-system extrapolation factors (ISEFs) - a comparison with the chemical inhibition method.

    Science.gov (United States)

    Umehara, Ken-Ichi; Huth, Felix; Gu, Helen; Schiller, Hilmar; Heimbach, Tycho; He, Handan

    2017-12-20

    For estimation of fractions metabolized (fm) by different hepatic recombinant human CYP enzymes (rhCYP), calculation of inter-system extrapolation factors (ISEFs) has been proposed. ISEF values for CYP1A2, CYP2C19 and CYP3A4/5 were measured. A CYP2C9 ISEF was taken from a previous report. Using a set of compounds, fractions metabolized by CYP enzymes (fm,CYP) values calculated with the ISEFs based on rhCYP data were compared with those from the chemical inhibition data. Oral pharmacokinetics (PK) profiles of midazolam were simulated using the physiologically based pharmacokinetics (PBPK) model with the CYP3A ISEF. For other CYPs, the in vitro fm,CYP values were compared with the reference fm,CYP data back-calculated with, e.g. modeling of test substrates by feeding clinical PK data. In vitro-in vitro fm,CYP3A4 relationship between the results from rhCYP incubation and chemical inhibition was drawn as an exponential correlation with R2=0.974. A midazolam PBPK model with the CYP3A4/5 ISEFs simulated the PK profiles within twofold error compared to the clinical observations. In a limited number of cases, the in vitro methods could not show good performance in predicting fm,CYP1A2, fm,CYP2C9 and fm,CYP2C19 values as reference data. The rhCYP data with the measured ISEFs provided reasonable calculation of fm,CYP3A4 values, showing slight over-estimation compared to chemical inhibition.

  11. Systemic and Cardiac Depletion of M2 Macrophage through CSF-1R Signaling Inhibition Alters Cardiac Function Post Myocardial Infarction.

    Directory of Open Access Journals (Sweden)

    Anne-Laure Leblond

    Full Text Available The heart hosts tissue resident macrophages which are capable of modulating cardiac inflammation and function by multiple mechanisms. At present, the consequences of phenotypic diversity in macrophages in the heart are incompletely understood. The contribution of cardiac M2-polarized macrophages to the resolution of inflammation and repair response following myocardial infarction remains to be fully defined. In this study, the role of M2 macrophages was investigated utilising a specific CSF-1 receptor signalling inhibition strategy to achieve their depletion. In mice, oral administration of GW2580, a CSF-1R kinase inhibitor, induced significant decreases in Gr1lo and F4/80hi monocyte populations in the circulation and the spleen. GW2580 administration also induced a significant depletion of M2 macrophages in the heart after 1 week treatment as well as a reduction of cardiac arginase1 and CD206 gene expression indicative of M2 macrophage activity. In a murine myocardial infarction model, reduced M2 macrophage content was associated with increased M1-related gene expression (IL-6 and IL-1β, and decreased M2-related gene expression (Arginase1 and CD206 in the heart of GW2580-treated animals versus vehicle-treated controls. M2 depletion was also associated with a loss in left ventricular contractile function, infarct enlargement, decreased collagen staining and increased inflammatory cell infiltration into the infarct zone, specifically neutrophils and M1 macrophages. Taken together, these data indicate that CSF-1R signalling is critical for maintaining cardiac tissue resident M2-polarized macrophage population, which is required for the resolution of inflammation post myocardial infarction and, in turn, for preservation of ventricular function.

  12. Cognitive Improvement of Attention and Inhibition in the Late Afternoon in Children With Attention-Deficit Hyperactivity Disorder (ADHD) Treated With Osmotic-Release Oral System Methylphenidate.

    Science.gov (United States)

    Slama, Hichem; Fery, Patrick; Verheulpen, Denis; Vanzeveren, Nathalie; Van Bogaert, Patrick

    2015-07-01

    Long-acting medications have been developed and approved for use in the treatment of attention-deficit hyperactivity disorder (ADHD). These compounds are intended to optimize and maintain symptoms control throughout the day. We tested prolonged effects of osmotic-release oral system methylphenidate on both attention and inhibition, in the late afternoon. A double-blind, randomized, placebo-controlled study was conducted in 36 boys (7-12 years) with ADHD and 40 typically developing children. The ADHD children received an individualized dose of placebo or osmotic-release oral system methylphenidate. They were tested about 8 hours after taking with 2 continuous performance tests (continuous performance test-X [CPT-X] and continuous performance test-AX [CPT-AX]) and a counting Stroop. A positive effect of osmotic-release oral system methylphenidate was present in CPT-AX with faster and less variable reaction times under osmotic-release oral system methylphenidate than under placebo, and no difference with typically developing children. In the counting Stroop, we found a decreased interference with osmotic-release oral system methylphenidate but no difference between children with ADHD under placebo and typically developing children. © The Author(s) 2014.

  13. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway.

    Science.gov (United States)

    Ye, Bai-Liang; Zheng, Ru; Ruan, Xiao-Jiao; Zheng, Zhi-Hai; Cai, Hua-Jie

    2018-01-01

    Nano-particles have been widely used in target-specific drug delivery system and showed advantages in cancers treatment. This study aims to evaluate the effect of chitosan coated doxorubicin nano-particles drug delivery system in liver cancer. The chitosan nano-particles were prepared by using the ionic gelation method. The characterizations of the nano-particles were determined by transmission electron microscopy. The cytotoxicity was detected by MTT assay, and the endocytosis, cell apoptosis and cell cycle were examined by flow cytometry. The protein level was analyzed with western blot. The dual luciferase reporter assay was performed to assess the interaction between p53 and the promoter of PRC1, and chromatin immune-precipitation was used to verify the binding between them. The FA-CS-DOX nano-particles were irregular and spherical particles around 30-40 nm, with uniform size and no adhesion. No significant difference was noted in doxorubicin release rate between CS-DOX and FA-CS-DOX. FA-CS-DOX nano-particles showed stronger cytotoxicity than CS-DOX. FA-CS-DOX nano-particles promoted the apoptosis and arrested cell cycle at G2/M phase, and they up-regulated p53. FA-CS-DOX nano-particles inhibited cell survival through p53/PRC1 pathway. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer by promoting apoptosis and arresting cell cycle at G2/M phase through p53/PRC1 pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Disruption of HPV16-E7 by CRISPR/Cas System Induces Apoptosis and Growth Inhibition in HPV16 Positive Human Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    2014-01-01

    Full Text Available High-risk human papillomavirus (HR-HPV has been recognized as a major causative agent for cervical cancer. Upon HPV infection, early genes E6 and E7 play important roles in maintaining malignant phenotype of cervical cancer cells. By using clustered regularly interspaced short palindromic repeats- (CRISPR- associated protein system (CRISPR/Cas system, a widely used genome editing tool in many organisms, to target HPV16-E7 DNA in HPV positive cell lines, we showed for the first time that the HPV16-E7 single-guide RNA (sgRNA guided CRISPR/Cas system could disrupt HPV16-E7 DNA at specific sites, inducing apoptosis and growth inhibition in HPV positive SiHa and Caski cells, but not in HPV negative C33A and HEK293 cells. Moreover, disruption of E7 DNA directly leads to downregulation of E7 protein and upregulation of tumor suppressor protein pRb. Therefore, our results suggest that HPV16-E7 gRNA guided CRISPR/Cas system might be used as a therapeutic strategy for the treatment of cervical cancer.

  15. On-line HPLC Analysis System for Metabolism and Inhibition Studies in Precision-Cut Liver Slices

    NARCIS (Netherlands)

    van Midwoud, Paul M.; Janssen, Joost; Merema, M.T.; de Graaf, Inge A. M.; Groothuis, Geny M. M.; Verpoorte, Elisabeth

    2011-01-01

    A novel approach for on-line monitoring of drug metabolism in continuously perifused, precision-cut liver slices (PCLS) in a microfluidic system has been developed using high-performance liquid chromatography with UV detection (HPLC-UV). In this approach, PCLS are incubated in a microfluidic device

  16. Blocking TGFβ via Inhibition of the αvβ6 Integrin: A Possible Therapy for Systemic Sclerosis Interstitial Lung Disease

    Directory of Open Access Journals (Sweden)

    Tamiko R. Katsumoto

    2011-01-01

    Full Text Available Interstitial lung disease (ILD is a commonly encountered complication of systemic sclerosis (SSc and accounts for a significant proportion of SSc-associated morbidity and mortality. Its pathogenesis remains poorly understood, and therapies that treat SSc ILD are suboptimal, at best. SSc ILD pathogenesis may share some common mechanisms with other fibrotic lung diseases, in which dysregulation of lung epithelium can contribute to pathologic fibrosis via recruitment or in situ generation and activation of fibroblasts. TGFβ, a master regulator of fibrosis, is tightly regulated in the lung by the integrin αvβ6, which is expressed at low levels on healthy alveolar epithelial cells but is highly induced in the setting of lung injury or fibrosis. Here we discuss the biology of αvβ6 and present this integrin as a potentially attractive target for inhibition in the setting of SSc ILD.

  17. Establishment of a luciferase assay-based screening system: Fumitremorgin C selectively inhibits cellular proliferation of immortalized astrocytes expressing an active form of AKT

    International Nuclear Information System (INIS)

    Wang Lei; Sasai, Ken; Akagi, Tsuyoshi; Tanaka, Shinya

    2008-01-01

    The AKT pathway is frequently activated in glioblastoma, and as such, inhibitors of this pathway could prove very useful as anti-glioblastoma therapies. Here we established immortalized astrocytes expressing Renilla luciferase as well as those expressing both an active form of AKT and firefly luciferase. Since both luciferase activities represent the numbers of corresponding cell lines, novel inhibitors of the AKT pathway can be identified by treating co-cultures containing the two types of luciferase-expressing cells with individual compounds. Indeed, such a screening system succeeded in identifying fumitremorgin C as an efficient inhibitor of the AKT pathway, which was further confirmed by the ability of fumitremorgin C to selectively inhibit the growth of immortalized astrocytes expressing an active form of AKT. The present study proposes a broadly applicable approach for identifying therapeutic agents that target the pathways and/or molecules responsible for cancer development

  18. Nitrogen management in grasslands and forage-based production systems – Role of biological nitrification inhibition (BNI

    Directory of Open Access Journals (Sweden)

    G.V. Subbarao

    2013-12-01

    Full Text Available Nitrogen (N, the most critical and essential nutrient for plant growth, largely determines the productivity in both extensive and intensive grassland systems. Nitrification and denitrification processes in the soil are the primary drivers of generating reactive N (NO3-, N2O and NO, largely responsible for N loss and degradation of grasslands. Suppressing nitrification can thus facilitate retention of soil N to sustain long-term productivity of grasslands and forage-based production systems. Certain plants can suppress soil nitrification by releasing inhibitors from roots, a phenomenon termed ‘biological nitrification inhibition’ (BNI. Recent methodological developments [e.g. bioluminescence assay to detect biological nitrification inhibitors (BNIs from plant-root systems] led to significant advances in our ability to quantify and characterize BNI function in pasture grasses. Among grass pastures, BNI capacity is strongest in low-N environment grasses such as Brachiaria humidicola and weakest in high-N environment grasses such as Italian ryegrass (Lolium perenne and B. brizantha. The chemical identity of some of the BNIs produced in plant tissues and released from roots has now been established and their mode of inhibitory action determined on nitrifying Nitrosomonas bacteria. Synthesis and release of BNIs is a highly regulated and localized process, triggered by the presence of NH4+ in the rhizosphere, which facilitates release of BNIs close to soil-nitrifier sites. Substantial genotypic variation is found for BNI capacity in B. humidicola, which opens the way for its genetic manipulation. Field studies suggest that Brachiaria grasses suppress nitrification and N2O emissions from soil. The potential for exploiting BNI function (from a genetic improvement and a system perspective to develop production systems, that are low-nitrifying, low N2O-emitting, economically efficient and ecologically sustainable, is discussed.

  19. The Type III Secretion System Effector SeoC of Salmonella enterica subsp. salamae and S. enterica subsp. arizonae ADP-Ribosylates Src and Inhibits Opsonophagocytosis.

    Science.gov (United States)

    Pollard, Dominic J; Young, Joanna C; Covarelli, Valentina; Herrera-León, Silvia; Connor, Thomas R; Fookes, Maria; Walker, Danielle; Echeita, Aurora; Thomson, Nicholas R; Berger, Cedric N; Frankel, Gad

    2016-12-01

    Salmonella species utilize type III secretion systems (T3SSs) to translocate effectors into the cytosol of mammalian host cells, subverting cell signaling and facilitating the onset of gastroenteritis. In this study, we compared a draft genome assembly of Salmonella enterica subsp. salamae strain 3588/07 against the genomes of S. enterica subsp. enterica serovar Typhimurium strain LT2 and Salmonella bongori strain 12419. S. enterica subsp. salamae encodes the Salmonella pathogenicity island 1 (SPI-1), SPI-2, and the locus of enterocyte effacement (LEE) T3SSs. Though several key S Typhimurium effector genes are missing (e.g., avrA, sopB, and sseL), S. enterica subsp. salamae invades HeLa cells and contains homologues of S. bongori sboK and sboC, which we named seoC SboC and SeoC are homologues of EspJ from enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively), which inhibit Src kinase-dependent phagocytosis by ADP-ribosylation. By screening 73 clinical and environmental Salmonella isolates, we identified EspJ homologues in S. bongori, S. enterica subsp. salamae, and Salmonella enterica subsp. arizonae The β-lactamase TEM-1 reporter system showed that SeoC is translocated by the SPI-1 T3SS. All the Salmonella SeoC/SboC homologues ADP-ribosylate Src E310 in vitro Ectopic expression of SeoC/SboC inhibited phagocytosis of IgG-opsonized beads into Cos-7 cells stably expressing green fluorescent protein (GFP)-FcγRIIa. Concurrently, S. enterica subsp. salamae infection of J774.A1 macrophages inhibited phagocytosis of beads, in a seoC-dependent manner. These results show that S. bongori, S. enterica subsp. salamae, and S. enterica subsp. arizonae share features of the infection strategy of extracellular pathogens EPEC and EHEC and shed light on the complexities of the T3SS effector repertoires of Enterobacteriaceae. Copyright © 2016 Pollard et al.

  20. Development of a phosphorylated Momordica charantia protein system for inhibiting susceptible dose-dependent C. albicans to available antimycotics: An allosteric regulation of protein.

    Science.gov (United States)

    Qiao, Yuanbiao; Song, Li; Zhu, Chenchen; Wang, Qian; Guo, Tianyan; Yan, Yanhua; Li, Qingshan

    2017-11-15

    A regulatory Momordica charantia protein system was constructed allosterically by in vitro protein phosphorylation, in an attempt to evaluate antimycological pluripotency against dose-dependent susceptibilities in C. albicans. Fungal strain lineages susceptible to ketoconazole, econazole, miconazole, 5-flucytosine, nystatin and amphotericin B were prepared in laboratory, followed by identification via antifungal susceptibility testing. Protein phosphorylation was carried out in reactions with 5'-adenylic, guanidylic, cytidylic and uridylic acids and cyclic adenosine triphosphate, through catalysis of cyclin-dependent kinase 1, protein kinase A and protein kinase C respectively. Biochemical analysis of enzymatic reactions indicated the apparent Michaelis-Menten constants and maximal velocity values of 16.57-91.97mM and 55.56-208.33μM·min -1 , together with an approximate 1:1 reactant stoichiometric ratio. Three major protein phosphorylation sites were theoretically predicted at Thr255, Thr102 and Thr24 by a KinasePhos tool. Additionally, circular dichroism spectroscopy demonstrated that upon phosphorylation, protein folding structures were decreased in random coil, β6-sheet and α1-helix partial regions. McFarland equivalence standard testing yielded the concentration-dependent inhibition patterns, while fungus was grown in Sabouraud's dextrose agar. The minimal inhibitory concentrations of 0.16-0.51μM (at 50% response) were obtained for free protein and phosphorylated counterparts. With respect to the 3-cycling susceptibility testing regimen, individuals of total protein forms were administrated in-turn at 0.14μM/cycle. Relative inhibition ratios were retained to 66.13-81.04% of initial ones regarding the ketoconazole-susceptible C. albicans growth. An inhibitory protein system, with an advantage of decreasing antifungal susceptibilities to diverse antimycotics, was proposed because of regulatory pluripotency whereas little contribution to susceptibility in

  1. Oral beta-stimulants can inhibit passive cutaneous anaphylaxis in rats through an indirect inhibitory mechanism: possible involvement of afferent and efferent nervous system via gastric beta2-adrenoceptor stimulation.

    Science.gov (United States)

    Shibata, H; Minami, E; Hirata, R; Nabe, T; Kohno, S

    2000-12-01

    We previously demonstrated that oral l-ephedrine exerts an extremely rapid (within 20 s) inhibition of 48-h passive cutaneous anaphylaxis reaction (PCA) in rats by a possibly unidentified mode of action. In the present experiments, we elucidated the mechanism of the PCA inhibition by l-ephedrine using adrenoceptor agonists and antagonists. Rat antiserum was prepared with dinitrophenylated Ascaris suum extract + Bordetella pertussis. Passively skin-sensitised Wistar rats were mainly used. l-Ephedrine, and adrenoceptor agonists and antagonists were orally administered immediately before PCA provocation. Catecholamine depleting (6-hydroxydopamine, 6-OHDA), amine depleting (reserpine) or ganglion blocking (hexamethonium) agent was intraperitoneally or intravenously administered before the provocation. The effects of the drugs on PCA were assessed by inhibition of the dye leakage. beta-(propranolol) and beta2-(butoxamine) blocking agents reduced the inhibition of PCA by l-ephedrine, while the inhibition was not altered by either an a-blocking agent (phentolamine) or a beta1-(atenolol) selective antagonist. On the other hand, beta-(isoproterenol) and beta2-selective (salbutamol) agonists showed extremely rapid inhibition of PCA. However, the beta-selective agonist (dobutamine) had no effect on the reaction. The pretreatment with hexamethonium, reserpine or 6-OH-DA substantially attenuated the inhibitory effect of l-ephedrine on PCA. The results strongly suggest that beta2-adrenoceptors locate in the stomach and that their receptor excitement finally may lead to the inhibition of PCA via the stimulation of the central and peripheral nervous systems.

  2. Inhibition of the Injectisome and Flagellar Type III Secretion Systems by INP1855 Impairs Pseudomonas aeruginosa Pathogenicity and Inflammasome Activation.

    OpenAIRE

    Anantharajah, Ahalieyah; Faure, Emmanuel; Buyck, Julien; Sundin, Charlotta; Lindmark, Tuulikki; Mecsas, Joan; Yahr, Timothy L; Tulkens, Paul M.; Mingeot-Leclercq, Marie-Paule; Guery, Benoît; Van Bambeke, Françoise

    2016-01-01

    With the rise of multidrug resistance, Pseudomonas aeruginosa infections require alternative therapeutics. The injectisome (iT3SS) and flagellar (fT3SS) type III secretion systems are 2 virulence factors associated with poor clinical outcomes. iT3SS translocates toxins, rod, needle, or regulator proteins, and flagellin into the host cell cytoplasm and causes cytotoxicity and NLRC4-dependent inflammasome activation, which induces interleukin 1β (IL-1β) release and reduces interleukin 17 (IL-17...

  3. Systemic catechol-O-methyl transferase inhibition enables the D1 agonist radiotracer R-[11C]SKF 82957

    DEFF Research Database (Denmark)

    Palner, Mikael; McCormick, Patrick; Parkes, Jun

    2010-01-01

    R-[(11)C]-SKF 82957 is a high-affinity and potent dopamine D(1) receptor agonist radioligand, which gives rise to a brain-penetrant lipophilic metabolite. In this study, we demonstrate that systemic administration of catechol-O-methyl transferase (COMT) inhibitors blocks this metabolic pathway, f......, facilitating the use of R-[(11)C]-SKF 82957 to image the high-affinity state of the dopamine D(1) receptor with PET....

  4. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation

    Energy Technology Data Exchange (ETDEWEB)

    Fusaro, Adriana F. [University of Sydney, NSW 2006 (Australia); CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia); Correa, Regis L. [CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia); Depto. de Virologia, IMPPG, UFRJ, 21941-902 (Brazil); Nakasugi, Kenlee; Jackson, Craig [University of Sydney, NSW 2006 (Australia); Kawchuk, Lawrence [Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J4B1 (Canada); Vaslin, Maite F.S. [Depto. de Virologia, IMPPG, UFRJ, 21941-902 (Brazil); Waterhouse, Peter M., E-mail: peter.waterhouse@sydney.edu.au [University of Sydney, NSW 2006 (Australia); CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia)

    2012-05-10

    The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0{sup PE}, in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0{sup PE} has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0{sup PE} destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery.

  5. Systemic inhibition of mTOR kinase via rapamycin disrupts consolidation and reconsolidation of auditory fear memory.

    Science.gov (United States)

    Mac Callum, Phillip E; Hebert, Mark; Adamec, Robert E; Blundell, Jacqueline

    2014-07-01

    The mammalian target of rapamycin (mTOR) kinase is a critical regulator of mRNA translation and is known to be involved in various long lasting forms of synaptic and behavioural plasticity. However, information concerning the temporal pattern of mTOR activation and susceptibility to pharmacological intervention during both consolidation and reconsolidation of long-term memory (LTM) remains scant. Male C57BL/6 mice were injected systemically with rapamycin at various time points following conditioning or retrieval in an auditory fear conditioning paradigm, and compared to vehicle (and/or anisomycin) controls for subsequent memory recall. Systemic blockade of mTOR with rapamycin immediately or 12h after training or reactivation impairs both consolidation and reconsolidation of an auditory fear memory. Further behavioural analysis revealed that the enduring effects of rapamycin on reconsolidation are dependent upon reactivation of the memory trace. Rapamycin, however, has no effect on short-term memory or the ability to retrieve an established fear memory. Collectively, our data suggest that biphasic mTOR signalling is essential for both consolidation and reconsolidation-like activities that contribute to the formation, re-stabilization, and persistence of long term auditory-fear memories, while not influencing other aspects of the memory trace. These findings also provide evidence for a cogent treatment model for reducing the emotional strength of established, traumatic memories analogous to those observed in acquired anxiety disorders such as posttraumatic stress disorder (PTSD) and specific phobias, through pharmacologic blockade of mTOR using systemic rapamycin following reactivation. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Monoacyl phosphatidylcholine inhibits the formation of lipid multilamellar structures during in vitro lipolysis of self-emulsifying drug delivery systems

    DEFF Research Database (Denmark)

    Tran, Thuy; Siqueira, Scheyla D V S; Amenitsch, Heinz

    2017-01-01

    The colloidal structures formed during lipolysis of self-emulsifying drug delivery systems (SEDDS) might affect the solubilisation and possibly the absorption of drugs. The aim of the current study is to elucidate the structures formed during the in vitro lipolysis of four SEDDS containing medium...... lipolysis process, SEDDS both with and without MAPC generated uni-, bi-, and oligo-lamellar vesicles. The lipolysis kinetics in the first minutes of the four SEDDS correlated with an increased intensity of the SAXS curves and the rapid transformation from lipid droplets to vesicles observed by cryo...

  7. Systemic insulin sensitivity is regulated by GPS2 inhibition of AKT ubiquitination and activation in adipose tissue

    Directory of Open Access Journals (Sweden)

    Carly T. Cederquist

    2017-01-01

    Conclusions: Our findings characterize a novel layer of regulation of the insulin signaling pathway based on non-proteolytic ubiquitination of AKT and define GPS2 as a previously unrecognized component of the insulin signaling cascade. In accordance with this role, we have shown that GPS2 presence in adipocytes modulates systemic metabolism by restricting the activation of insulin signaling during the fasted state, whereas in absence of GPS2, the adipose tissue is more efficient at lipid storage, and obesity becomes uncoupled from inflammation and insulin resistance.

  8. Effectiveness of sulodexide might be associated with inhibition of complement system in hepatitis B virus-associated membranous nephropathy: An inspiration from a pilot trial.

    Science.gov (United States)

    Yang, Yang; Ma, Lu; Wang, Chao; Kong, Deyang; Wang, YaPing; Mei, Changlin

    2016-07-01

    The activation of complement system is associated with the development of hepatitis B virus-associated membranous nephropathy (HBV-MN) and heparin could inhibit the activation of complement system. This was a three-center trial. Seventy-nine patients with HBV-MN participated in the study. The follow-up of the study consisted of two periods: Stage 1 (S1) and Stage 2 (S2). All patients received 0.5mg entecavir plus 150-300mg/day of irbesartan but sulodexide was prescribed during S1. They were randomized into 4 groups according to sulodexide dose: blank (Group 1), 250 lipasemic unit (lsu)/day for 1year (Group 2), 500 lsu/day for 1year (Group 3) and 1000 lsu/day for 6months followed by 250 lsu/day for 6months (Group 4). Major clinical outcomes were valid remission (VR): (1) urine albumin/creatinine ratio (UACR) 50% decline of baseline; (2) albumin >35g/L; (3) glomerular filtration rate (GFR) >90ml/(min*1.73m(2)). (1) Groups 3 and 4 had significantly lower UACR and higher albumin than did Groups 1 and 2 at major visits; (2) Groups 3 and 4 achieved more VR compared with Group 1 (42.1% and 60.0% vs. 9.1%, p bothcomplement system. Copyright © 2016 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  9. Inhibition of P2Y6 Signaling in AgRP Neurons Reduces Food Intake and Improves Systemic Insulin Sensitivity in Obesity.

    Science.gov (United States)

    Steculorum, Sophie Marie; Timper, Katharina; Engström Ruud, Linda; Evers, Nadine; Paeger, Lars; Bremser, Stephan; Kloppenburg, Peter; Brüning, Jens Claus

    2017-02-14

    Uridine-diphosphate (UDP) and its receptor P2Y6 have recently been identified as regulators of AgRP neurons. UDP promotes feeding via activation of P2Y6 receptors on AgRP neurons, and hypothalamic UDP concentrations are increased in obesity. However, it remained unresolved whether inhibition of P2Y6 signaling pharmacologically, globally, or restricted to AgRP neurons can improve obesity-associated metabolic dysfunctions. Here, we demonstrate that central injection of UDP acutely promotes feeding in diet-induced obese mice and that acute pharmacological blocking of CNS P2Y6 receptors reduces food intake. Importantly, mice with AgRP-neuron-restricted inactivation of P2Y6 exhibit reduced food intake and fat mass as well as improved systemic insulin sensitivity with improved insulin action in liver. Our results reveal that P2Y6 signaling in AgRP neurons is involved in the onset of obesity-associated hyperphagia and systemic insulin resistance. Collectively, these experiments define P2Y6 as a potential target to pharmacologically restrict both feeding and systemic insulin resistance in obesity. Copyright © 2017 Max Planck Institute for Metabolism Research. Published by Elsevier Inc. All rights reserved.

  10. Activation of endogenous arginine vasopressin neurons inhibit food intake: by using a novel transgenic rat line with DREADDs system.

    Science.gov (United States)

    Yoshimura, Mitsuhiro; Nishimura, Kazuaki; Nishimura, Haruki; Sonoda, Satomi; Ueno, Hiromichi; Motojima, Yasuhito; Saito, Reiko; Maruyama, Takashi; Nonaka, Yuki; Ueta, Yoichi

    2017-11-16

    Various studies contributed to discover novel mechanisms of central arginine vasopressin (AVP) system responsible for the behaviour albeit endogenous vasopressin activation. We established a novel transgenic rat line which expresses both human muscarinic acetylcholine receptors (hM3Dq), of which ligand is clozapine-N-oxide (CNO), and mCherry fluorescence specifically in AVP neurons. The mCherry neurons that indicate the expression of the hM3Dq gene were observed in the suprachiasmatic (SCN), supraoptic (SON), and paraventricular nuclei (PVN). hM3Dq-mCherry fluorescence was localized mainly in the membrane of the neurons. The mCherry neurons were co-localized with AVP-like immunoreactive (LI) neurons, but not with oxytocin-LI neurons. The induction of Fos, which is the indicator for neuronal activity, was observed in approximately 90% of the AVP-LI neurons in the SON and PVN 90 min after intraperitoneal (i.p.) administration of CNO. Plasma AVP was significantly increased and food intake, water intake, and urine volume were significantly attenuated after i.p. administration of CNO. Although the detailed mechanism has unveiled, we demonstrated, for the first time, that activation of endogenous AVP neurons decreased food intake. This novel transgenic rat line may provide a revolutionary insight into the neuronal mechanism regarding central AVP system responsible for various kind of behaviours.

  11. Inhibited-coupling HC-PCF based beam-delivery-system for high power green industrial lasers

    Science.gov (United States)

    Chafer, M.; Gorse, A.; Beaudou, B.; Lekiefs, Q.; Maurel, M.; Debord, B.; Gérôme, F.; Benabid, F.

    2018-02-01

    We report on an ultra-low loss Hollow-Core Photonic Crystal Fiber (HC-PCF) beam delivery system (GLO-GreenBDS) for high power ultra-short pulse lasers operating in the green spectral range (including 515 nm and 532 nm). The GLOBDS- Green combines ease-of-use, high laser-coupling efficiency, robustness and industrial compatible cabling. It comprises a pre-aligned laser-injection head, a sheath-cable protected HC-PCF and a modular fiber-output head. It enables fiber-core gas loading and evacuation in a hermetic fashion. A 5 m long GLO-BDS were demonstrated for a green short pulse laser with a transmission coefficient larger than 80%, and a laser output profile close to single-mode (M2 <1.3).

  12. Global Analysis of Type Three Secretion System and Quorum Sensing Inhibition of Pseudomonas savastanoi by Polyphenols Extracts from Vegetable Residues.

    Directory of Open Access Journals (Sweden)

    Carola Biancalani

    Full Text Available Protection of plants against bacterial diseases still mainly relies on the use of chemical pesticides, which in Europe correspond essentially to copper-based compounds. However, recently plant diseases control is oriented towards a rational use of molecules and extracts, generally with natural origin, with lower intrinsic toxicity and a reduced negative environmental impact. In this work, polyphenolic extracts from vegetable no food/feed residues of typical Mediterranean crops, as Olea europaea, Cynara scolymus, and Vitis vinifera were obtained and their inhibitory activity on the Type Three Secretion System (TTSS and the Quorum Sensing (QS of the Gram-negative phytopathogenic bacterium Pseudomonas savastanoi pv. nerii strain Psn23 was assessed. Extract from green tea (Camellia sinensis was used as a positive control. Collectively, the data obtained through gfp-promoter fusion system and real-time PCR show that all the polyphenolic extracts here studied have a high inhibitory activity on both the TTSS and QS of Psn23, without any depressing effect on bacterial viability. Extracts from green tea and grape seeds were shown to be the most active. Such activity was confirmed in planta by a strong reduction in the ability of Psn23 to develop hyperplastic galls on explants from adult oleander plants, as well as to elicit hypersensitive response on tobacco. By using a newly developed Congo red assay and an ELISA test, we demonstrated that the TTSS-targeted activity of these polyphenolic extracts also affects the TTSS pilus assembly. In consideration of the potential application of polyphenolic extracts in plant protection, the absence of any toxicity of these polyphenolic compounds was also assessed. A widely and evolutionary conserved molecular target such as Ca2+-ATPase, essential for the survival of any living organism, was used for the toxicity assessment.

  13. Dual roles of palladin protein in in vitro myogenesis: inhibition of early induction but promotion of myotube maturation.

    Directory of Open Access Journals (Sweden)

    Ngoc-Uyen-Nhi Nguyen

    Full Text Available Palladin is a microfilament-associated phosphoprotein whose function in skeletal muscle has rarely been studied. Therefore, we investigate whether myogenesis is influenced by the depletion of palladin expression known to interfere with the actin cytoskeleton dynamic required for skeletal muscle differentiation. The inhibition of palladin in C2C12 myoblasts leads to precocious myogenic differentiation with a concomitant reduction in cell apoptosis. This premature myogenesis is caused, in part, by an accelerated induction of p21, myogenin, and myosin heavy chain, suggesting that palladin acts as a negative regulator in early differentiation phases. Paradoxically, palladin-knockdown myoblasts are unable to differentiate terminally, despite their ability to perform some initial steps of differentiation. Cells with attenuated palladin expression form thinner myotubes with fewer myonuclei compared to those of the control. It is noteworthy that a negative regulator of myogenesis, myostatin, is activated in palladin-deficient myotubes, suggesting the palladin-mediated impairment of late-stage myogenesis. Additionally, overexpression of 140-kDa palladin inhibits myoblast differentiation while 200-kDa and 90-kDa palladin-overexpressed cells display an enhanced differentiation rate. Together, our data suggest that palladin might have both positive and negative roles in maintaining the proper skeletal myogenic differentiation in vitro.

  14. Inhibition of β-amyloid1-42 internalization attenuates neuronal death by stabilizing the endosomal-lysosomal system in rat cortical cultured neurons.

    Science.gov (United States)

    Song, M S; Baker, G B; Todd, K G; Kar, S

    2011-03-31

    A number of recent studies have indicated that accumulation of β amyloid (Aβ) peptides within neurons is an early event which may trigger degeneration of neurons and subsequent development of Alzheimer's disease (AD) pathology. However, very little is known about the internalization and/or subcellular sites involved in trafficking of Aβ peptides into the neurons that are vulnerable in AD pathology. To address this issue we evaluated internalization of fluoroscein conjugated Aβ1-42 (FAβ1-42) and subsequent alteration of endosomal-lysosomal (EL) markers such as cathepsin D, Rab5 and Rab7 in rat cortical cultured neurons. It is evident from our results that internalization of FAβ1-42, which occurred in a dose- and time-dependent manner, triggered degeneration of neurons along with increased levels and/or altered distribution of cathepsin D, Rab5 and Rab7. Our results further revealed that FAβ1-42 internalization was attenuated by phenylarsine oxide (a general inhibitor of endocytosis) and sucrose (an inhibitor of clathrin-mediated endocytosis) but not by antagonists of N-methyl-d-aspartate (NMDA) glutamate receptors. Additionally, inhibition of FAβ1-42 endocytosis not only protected neurons against toxicity but also reversed the altered levels/distributions of EL markers. These results, taken together, suggest that internalization of exogenous Aβ1-42, which is partly mediated via a clathrin-dependent process, can lead to degeneration of neurons, possibly by activating the EL system. Inhibition of FAβ endocytosis attenuated toxicity, thus suggesting a potential strategy for preventing loss of neurons in AD pathology. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Damage of neuroblastoma cell SH-SY5Y mediated by MPP+ inhibits proliferation of T-cell leukemia Jurkat by co-culture system.

    Science.gov (United States)

    Wang, Fuli; Awan, Umer Farooq; Wang, Yuanyuan; Wang, Luna; Qing, Hong; Ma, Hong; Deng, Yulin

    2014-06-13

    The adaptive immune system has implications in pathology of Parkinson's disease (PD). Research data demonstrated that the peripheral CD4+ T-cell population decreased in pathogenesis of PD. The effect of damaged dopaminergic neurons on peripheral T cells of PD is still unknown. In this study, we constructed a neuronal and glial cells co-culture model by using human neuroblastoma cells SH-SY5Y and gliomas cells U87. After the co-culture cells were treated with neurotoxin 1-methyl-4-phenylpyridinium (MPP+) for 24 h, the conditioned media was harvested and used to cultivate T-cell leukemia Jurkat cells for another 24 h. We then analyzed the cell proliferation, cell cycle and necrosis effect of Jurkat cells. The results showed that co-culture medium of SH-SY5Y and U87 cells with MPP+ treatment inhibited the proliferation of Jurkat cells compared to control medium without MPP+, even though the same concentration of MPP+ had very little toxicity to the Jurkat cell. Furthermore, co-culture medium with low concentration of MPP+ (100 µM) arrested Jurkat cells cycle in G2/M phase through increasing cell cycle division 2 (CDC2) and CyclinB1 expression level, whereas co-culture medium with high concentration of MPP+ (500 µM) induced Jurkat cell necrosis through cellular swelling and membrane breakage. Our data implies that damaged dopamine neurons with glial cells can lead to the reduced number or inhibited proliferation activity of peripheral T cells.

  16. Damage of Neuroblastoma Cell SH-SY5Y Mediated by MPP+ Inhibits Proliferation of T-Cell Leukemia Jurkat by Co-Culture System

    Directory of Open Access Journals (Sweden)

    Fuli Wang

    2014-06-01

    Full Text Available The adaptive immune system has implications in pathology of Parkinson’s disease (PD. Research data demonstrated that the peripheral CD4+ T-cell population decreased in pathogenesis of PD. The effect of damaged dopaminergic neurons on peripheral T cells of PD is still unknown. In this study, we constructed a neuronal and glial cells co-culture model by using human neuroblastoma cells SH-SY5Y and gliomas cells U87. After the co-culture cells were treated with neurotoxin 1-methyl-4-phenylpyridinium (MPP+ for 24 h, the conditioned media was harvested and used to cultivate T-cell leukemia Jurkat cells for another 24 h. We then analyzed the cell proliferation, cell cycle and necrosis effect of Jurkat cells. The results showed that co-culture medium of SH-SY5Y and U87 cells with MPP+ treatment inhibited the proliferation of Jurkat cells compared to control medium without MPP+, even though the same concentration of MPP+ had very little toxicity to the Jurkat cell. Furthermore, co-culture medium with low concentration of MPP+ (100 µM arrested Jurkat cells cycle in G2/M phase through increasing cell cycle division 2 (CDC2 and CyclinB1 expression level, whereas co-culture medium with high concentration of MPP+ (500 µM induced Jurkat cell necrosis through cellular swelling and membrane breakage. Our data implies that damaged dopamine neurons with glial cells can lead to the reduced number or inhibited proliferation activity of peripheral T cells.

  17. Therapeutic Development of Mesenchymal Stem Cells or Their Extracellular Vesicles to Inhibit Autoimmune-Mediated Inflammatory Processes in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Juhi Sharma

    2017-05-01

    Full Text Available Since being discovered over half a century ago, mesenchymal stem cells (MSCs have been investigated extensively to characterize their cellular and physiological influences. MSCs have been shown to possess immunosuppressive capacity through inhibiting lymphocyte activation/proliferation and proinflammatory cytokine secretion while simultaneously demonstrating limited allogenic reactivity, which subsequently led to the evaluation of therapeutic feasibility to treat inflammatory diseases. Although regulatory constraints have restricted MSC development pharmacologically, limited clinical studies have shown encouraging results using MSC infusions to treat systemic lupus erythematosus (SLE; but, more trials will have to be performed to conclusively determine the clinical efficacy of MSCs to treat SLE. Moreover, there are some data to suggest that MSCs possess tumorigenic potential and that the immunosuppressive influence can be dramatically affected by both donor variability and ex vivo expansion. Given that recent studies have found that the immunosuppressive effects of MSCs are a result, at least in part, to extracellular vesicle (EV secretion, the use of MSC-derived EVs has been suggested as a cell-free therapeutic alternative. Despite the positive data observed using EVs isolated from human MSCs to suppress inflammatory responses in vitro and in inhibiting autoimmune disease pathogenesis in preclinical work, there are no studies to date examining EVs from MSCs to treat SLE in humans or animal models. Considering that EVs are not subject to the strict regulatory constraints of stem cell-based pharmacological development and are more readily standardized with regard to industrial-scale production and storage, this review outlines the anti-inflammatory biology of MSCs and the scientific evidence supporting the potential use of EVs derived from human MSCs to treat patients with SLE.

  18. Inhibition of opioid systems in the hypothalamus as well as the mesolimbic area suppresses feeding behavior of mice.

    Science.gov (United States)

    Ikeda, H; Ardianto, C; Yonemochi, N; Yang, L; Ohashi, T; Ikegami, M; Nagase, H; Kamei, J

    2015-12-17

    Opioid receptors, especially μ-opioid receptors, in the ventral tegmental area (VTA) and nucleus accumbens (NAcc) are reported to regulate food motivation. However, the roles of μ-, δ- and κ-opioid receptors are not fully understood. Moreover, since μ-, δ- and κ-opioid receptors are reported to distribute in the hypothalamus, these receptors in the hypothalamus might regulate feeding behavior. Thus, the present study investigated the role of μ-, δ- and κ-opioid receptors in the VTA, the NAcc and the hypothalamus in the regulation of feeding behavior. Male ICR mice were subjected to a feeding test after food deprivation for 16h. The mRNA levels of proopiomelanocortin (POMC), preproenkephalin (PENK) and prodynorphin (PDYN), the precursors of endogenous opioid peptides, were measured by reverse transcription-polymerase chain reaction (RT-PCR). The systemic injection of non-selective (naloxone) and selective μ (β-funaltrexamine; β-FNA), δ (naltrindole) and κ (norbinaltorphimine; norBNI) opioid receptor antagonists markedly reduced food intake. In contrast, the systemic injection of preferential μ (morphine), selective δ (KNT-127) and κ (U-50,488) opioid receptor agonists did not change food intake. The mRNA levels of POMC, PENK and PDYN were decreased in the hypothalamus and the midbrain after food deprivation, whereas the mRNA levels of PENK and PDYN, but not POMC, were decreased in the ventral striatum. The injection of naloxone into the NAcc, VTA and lateral hypothalamus (LH), but not the ventromedial nucleus of the hypothalamus, significantly decreased food intake. The injection of β-FNA and naltrindole into the LH, but not the VTA or NAcc, decreased food intake. The injection of norBNI into the LH and VTA, but not the NAcc, decreased food intake. These results indicate that μ-, δ- and κ-opioid receptors in the LH play a more important role in the regulation of feeding behavior than those receptors in the VTA and the NAcc. Copyright © 2015

  19. Novel compounds targeting the enterohemorrhagic Escherichia coli type three secretion system reveal insights into mechanisms of secretion inhibition.

    Science.gov (United States)

    Zambelloni, Riccardo; Connolly, James P R; Huerta Uribe, Alejandro; Burgess, Karl; Marquez, Rodolfo; Roe, Andrew J

    2017-08-01

    Anti-virulence (AV) compounds are a promising alternative to traditional antibiotics for fighting bacterial infections. The Type Three Secretion System (T3SS) is a well-studied and attractive AV target, given that it is widespread in more than 25 species of Gram-negative bacteria, including enterohemorrhagic E. coli (EHEC), and as it is essential for host colonization by many pathogens. In this work, we designed, synthesized and tested a new series of compounds that block the functionality of the T3SS of EHEC. Affinity chromatography experiments identified the primary target of the compounds as the T3SS needle pore protein EspD, which is essential for effector protein translocation into host cells. These data were supported by mechanistic studies that determined the coiled-coil domain 1 of EspD as a key compound-binding site, thereby preventing correct assembly of the T3SS complex on the cell surface. However, binding of inhibitors to EspD or deletion of EspD itself did not result in transcriptional down-regulation of effector proteins. Instead, we found the compounds to exhibit dual-functionality by also down-regulating transcription of the entire chromosomal locus encoding the T3SS, further demonstrating their desirability and effectiveness. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  20. Testosterone inhibits facilitating effects of parenting experience on parental behavior and the oxytocin neural system in mice.

    Science.gov (United States)

    Okabe, Shota; Kitano, Kanako; Nagasawa, Miho; Mogi, Kazutaka; Kikusui, Takefumi

    2013-06-13

    Parental behavior in mammals is facilitated by sensory experiences from infant, and by endocrine hormones. However, the interactions between these factors in the parental behavior of nonreproductive adults are not understood. We examined the interactive effects of gonadal hormones and the experience of repeated pup exposure on parental behavior in sexually naive mice. We also compared oxytocin (OT) expression levels in the paraventricular nucleus of the hypothalamus to behavioral outcomes. Clear sex differences were observed in retrieving tests; initial retrieving latency was shorter in females than in males, and 5-time pup exposure shortened retrieving latency in females only. Gonadectomy influenced neither initial retrieving latency nor pup sensitization in females. In contrast, gonadectomy shortened initial retrieving latency and caused pup sensitization in males. Estrogen implants given simultaneously with gonadectomy further shortened the initial retrieving latency in males, but pup sensitization was not affected and occurred in both sexes. In contrast, simultaneous testosterone implants impaired pup sensitization in both sexes. Similar to the results for responsiveness to pups, the number of OT neurons was increased by gonadectomy in males only. In comparison to gonadectomy only, OT neurons were decreased by simultaneous testosterone implants, but were not influenced by estrogen in either sex. Considering the parallel inhibitory effects of testosterone on both pup sensitization and number of OT neurons, we postulate that sex differences in parental responsiveness facilitated by repeated pup exposure were caused by an inhibitory effect of testosterone via the OT neural system in mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy

    Science.gov (United States)

    Reed, Sarah A.; Sandesara, Pooja B.; Senf, Sarah M.; Judge, Andrew R.

    2012-01-01

    Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.—Reed, S. A., Sandesara, P. B., Senf, S. F., Judge, A. R. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. PMID:22102632

  2. Transient up- and down-regulation of expression of myosin light chain 2 and myostatin mRNA mark the changes from stratified hyperplasia to muscle fiber hypertrophy in larvae of gilthead sea bream (Sparus aurata L.).

    Science.gov (United States)

    Georgiou, Stella; Alami-Durante, Hélène; Power, Deborah M; Sarropoulou, Elena; Mamuris, Zissis; Moutou, Katerina A

    2016-02-01

    Hyperplasia and hypertrophy are the two mechanisms by which muscle develops and grows. We study these two mechanisms, during the early development of white muscle in Sparus aurata, by means of histology and the expression of structural and regulatory genes. A clear stage of stratified hyperplasia was identified early in the development of gilthead sea bream but ceased by 35 dph when hypertrophy took over. Mosaic recruitment of new white fibers began as soon as 60 dph. The genes mlc2a and mlc2b were expressed at various levels during the main phases of hyperplasia and hypertrophy. The genes myog and mlc2a were significantly up-regulated during the intensive stratified formation of new fibers and their expression was significantly correlated. Expression of mstn1 and igf1 increased at 35 dph, appeared to regulate the hyperplasia-to-hypertrophy transition, and may have stimulated the expression of mlc2a, mlc2b and col1a1 at the onset of mosaic hyperplasia. The up-regulation of mstn1 at transitional phases in muscle development indicates a dual regulatory role of myostatin in fish larval muscle growth.

  3. Cloning and expression analysis of myostatin, fibroblast growth factor 6, insulin-like growth factor I and II in liver and muscle of sea bass (Dicentrarchus labrax, L. during long-term fasting and refeeding

    Directory of Open Access Journals (Sweden)

    M. Saroglia

    2010-04-01

    Full Text Available The exceptionally fast growth that fish experience after periods of fasting has been called “compensatory growth”. This phenomenon has been studied in intensive aquaculture as a means of enhancing growth rates, but the mechanisms by which food intake activates an increase in somatic growth, and especially in muscle growth, are complex and not yet fully understood. In the present paper, we describe the molecular cloning and sequencing of sea bass (Dicentrarchus labrax myostatin (MSTN and fibroblast growth factor 6 (FGF6, which have been shown to be major genetic determinants of skeletal muscle growth, together with insulin-like growth factor I (IGFI and IGF-II, which are potent mitogens known to play important roles in growth and development. We then report the pattern of expression of the four aforementioned genes, in liver and myotomal muscle in response to prolonged fasting and refeeding. Nutritional status significantly influenced the expression of IGF-I, IGF-II and MSTN, whereas the muscular FGF6 expression levels were not affected by the feeding status of the animals. Taken together these data indicate that IGF-I, IGF-II and MSTN are involved in the sea bass muscle compensatory growth induced by refeeding, whereas FGF6 probably has not a role in this phenomenon.

  4. Bryophyllum pinnatum leaves ethanol extract inhibit maturation and promote apoptosis of systemic lupus erythematosus BALB/c mice B cells

    Directory of Open Access Journals (Sweden)

    Kusworini Handono

    2018-02-01

    Full Text Available Background: B cells play a key role in systemic lupus erythematosus (SLE. Targeting B cells as SLE therapy is a plausible approach. This study investigated the potential effects of Bryophyllum pinnatum leaves with ethanol extract in decreasing percentages of maturation, increasing percentages of apoptosis, and decreasing NF-κB p65 expressions of SLE BALB/c mice B cells.Methods: Culturing B cells from pristane induced SLE BALB/c mice’s spleen will resulted in this in vitro study. B cells were activated by BAFF, LPS, IL-4, and anti-CD40 yielding CD19+ >80%. B cells were cultured by adding those stimulants with and without B. pinnatum leaves (0, 0.02, 0.1, or 0.5 µg/ml for 72 hours at 37°C. Flow cytometry was performed to determine The Percentages of maturation (CD19+CD38+ and apoptosis (Annexin V+PI+ of B cells.  Further analysis to determine the expressions of transcription factor of maturation and apoptosis of B cells, NF-ĸB p65, were performed using immunocytochemistry. Data were analyzed using SPSS version 22.Results: Flow cytometry assay showed significant decrease in percentages of maturation of B cells in all doses and significant increase in percentage of apoptosis of B cells in dose 0.5 µg/ml. Immunocytochemistry results showed significant decrease expressions of NF-ĸB p65 in all doses. Percentages of maturation, apoptosis, and expressions of NF-ĸB p65 of B cells were significantly correlated.Conclusion: This in vitro study revealed that B. pinnatum leaves with ethanol extract decreased the percentages of maturation, increased the percentage of apoptosis, and decreased NF-κB p65 expressions of SLE BALB/c mice B cells significantly.

  5. Resveratrol inhibits the intracellular calcium increase and angiotensin/endothelin system activation induced by soluble uric acid in mesangial cells

    Directory of Open Access Journals (Sweden)

    G. Albertoni

    2015-01-01

    Full Text Available Resveratrol (Resv is natural polyphenol found in grapes. This study evaluated the protective effect of Resv against the effects of uric acid (UA in immortalized human mesangial cells (ihMCs. ihMCs were preincubated with Resv (12.5 µM for 1 h and treated with UA (10 mg/dL for 6 or 12 h. The intracellular calcium concentration [Ca2+]i was quantified by fluorescence using flow cytometry. Angiotensinogen (AGT and pre-pro endothelin-1 (ppET-1 mRNA were assayed by quantitative real-time RT-PCR. Angiotensin II (AII and endothelin-1 (ET-1 were assayed by ELISA. UA significantly increased [Ca2+]i. Pre-incubation with Resv significantly reduced the change in [Ca2+]i induced by UA. Incubation with UA for 6 or 12 h also increased AGT mRNA expression and AII protein synthesis. Resv blunted these increases in AGT mRNA expression and AII protein. Incubation with UA in the ihMCs increased ppET-1 expression and ET-1 protein synthesis at 6 and 12 h. When ihMCs were pre-incubated with Resv, UA had a significantly diminished effect on ppET-1 mRNA expression and ET-1 protein synthesis at 6 and 12 h, respectively. Our results suggested that UA triggers reactions including AII and ET-1 production in mesangial cells. The renin-angiotensin system may contribute to the pathogenesis of renal function and chronic kidney disease. Resv can minimize the impact of UA on AII, ET-1 and the increase of [Ca2+]i in mesangial cells, suggesting that, at least in part, Resv can prevent the effects of soluble UA in mesangial cells.

  6. Resveratrol inhibits the intracellular calcium increase and angiotensin/endothelin system activation induced by soluble uric acid in mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Albertoni, G.; Schor, N. [Divisão de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-10-24

    Resveratrol (Resv) is natural polyphenol found in grapes. This study evaluated the protective effect of Resv against the effects of uric acid (UA) in immortalized human mesangial cells (ihMCs). ihMCs were preincubated with Resv (12.5 µM) for 1 h and treated with UA (10 mg/dL) for 6 or 12 h. The intracellular calcium concentration [Ca{sup 2+}]i was quantified by fluorescence using flow cytometry. Angiotensinogen (AGT) and pre-pro endothelin-1 (ppET-1) mRNA were assayed by quantitative real-time RT-PCR. Angiotensin II (AII) and endothelin-1 (ET-1) were assayed by ELISA. UA significantly increased [Ca{sup 2+}]i. Pre-incubation with Resv significantly reduced the change in [Ca{sup 2+}]i induced by UA. Incubation with UA for 6 or 12 h also increased AGT mRNA expression and AII protein synthesis. Resv blunted these increases in AGT mRNA expression and AII protein. Incubation with UA in the ihMCs increased ppET-1 expression and ET-1 protein synthesis at 6 and 12 h. When ihMCs were pre-incubated with Resv, UA had a significantly diminished effect on ppET-1 mRNA expression and ET-1 protein synthesis at 6 and 12 h, respectively. Our results suggested that UA triggers reactions including AII and ET-1 production in mesangial cells. The renin-angiotensin system may contribute to the pathogenesis of renal function and chronic kidney disease. Resv can minimize the impact of UA on AII, ET-1 and the increase of [Ca{sup 2+}]i in mesangial cells, suggesting that, at least in part, Resv can prevent the effects of soluble UA in mesangial cells.

  7. Industrial-scale application of Lactobacillus reuteri coupled with glycerol as a biopreservation system for inhibiting Clostridium tyrobutyricum in semi-hard ewe milk cheese.

    Science.gov (United States)

    Ávila, Marta; Gómez-Torres, Natalia; Delgado, David; Gaya, Pilar; Garde, Sonia

    2017-09-01

    The suitability of the biopreservation system formed by reuterin-producing L. reuteri INIA P572 and glycerol (required for reuterin production) to prevent late blowing defect (LBD) was evaluated in industrial sized semi-hard ewe milk cheese contaminated with Clostridium tyrobutyricum INIA 68, a wild strain isolated from a LBD cheese. For this purpose, six batches of cheese were made (three with and three without clostridial spores): control cheeses with lactococci starter, cheeses with L. reuteri as adjunct, and cheeses with L. reuteri and 30 mM glycerol. Spores of C. tyrobutyricum INIA 68 germinated during pressing of cheese curd, causing butyric acid fermentation in cheese after 30 d of ripening. The addition of L. reuteri, without glycerol, enhanced the symptoms and the formation of volatile compounds associated with LBD. When glycerol was added to cheese milk contaminated with C. tyrobutyricum, L. reuteri was able to produce reuterin in cheese resulting in cheeses with a uniform cheese matrix and a volatile profile similar to cheese made with L. reuteri and glycerol (without spores). Accordingly, L. reuteri INIA P572 coupled with glycerol seems a novel biopreservation system to inhibit Clostridium growth and prevent LBD by means of in situ reuterin production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Development of a primary microglia screening assay and its use to characterize inhibition of system xc- by erastin and its analogs

    Directory of Open Access Journals (Sweden)

    Mariana Figuera-Losada

    2017-03-01

    Full Text Available The inflammatory response in the central nervous system involves activated microglia. Under normal conditions they remove damaged neurons by phagocytosis. On the other hand, neurodegenerative diseases are thought to involve chronic microglia activation resulting in release of excess glutamate, proinflammatory cytokines and reactive oxygen species, leading to neuronal death. System xC- cystine/glutamate antiporter (SXC, a sodium independent heterodimeric transporter found in microglia and astrocytes in the CNS, imports cystine into the cell and exports glutamate. SXC has been shown to be upregulated in neurodegenerative diseases including multiple sclerosis, ALS, neuroAIDS Parkinson's disease and Alzheimer's disease. Consequently, SXC inhibitors could be of use in the treatment of diseases characterized by neuroinflammation and glutamate excitotoxicity. We report on the optimization of a primary microglia-based assay to screen for SXC inhibitors. Rat primary microglia were activated using lipopolysaccharides (LPS and glutamate release and cystine uptake were monitored by fluorescence and radioactivity respectively. LPS-induced glutamate release increased with increasing cell density, time of incubation and LPS concentration. Conditions to screen for SXC inhibitors were optimized in 96-well format and subsequently used to evaluate SXC inhibitors. Known SXC inhibitors sulfasalazine, S-4CPG and erastin blocked glutamate release and cystine uptake while R-4CPG, the inactive enantiomer of S-4CPG, failed to inhibit glutamate release or cystine transport. In addition, several erastin analogs were evaluated using primary microglia and found to have EC50 values in agreement with previous studies using established cell lines.

  9. Caffeic acid and ferulic acid inhibit UVA-induced matrix metalloproteinase-1 through regulation of antioxidant defense system in keratinocyte HaCaT cells.

    Science.gov (United States)

    Pluemsamran, Thanyawan; Onkoksoong, Tasanee; Panich, Uraiwan

    2012-01-01

    Ultraviolet A (UVA) plays a vital role in the pathogenesis of premature skin aging through keratinocyte cytotoxicity and degradation of collagen, a main component of the extracellular matrix providing structural support. Oxidative stress caused by UVA irradiation can mediate induction of matrix metalloprotease-1 (MMP-1), a major enzyme responsible for collagen damage. Protection against UV-mediated disturbance of antioxidant defense system has been proposed as a possible mechanism by which botanical compounds slow down skin aging process. This study therefore aimed to assess inhibitory effects of caffeic acid (CA) and ferulic acid (FA), powerful plant-based phenolic antioxidants, on UVA-induced cytotoxicity and MMP-1 activity and mRNA level through modulation of antioxidant defense mechanism in immortalized human keratinocyte (HaCaT) cells. Pretreatment of the cells with CA or FA prior to UVA irradiation inhibited cytotoxicity, induction of MMP-1 activity and mRNA and oxidant formation. Moreover, CA and FA were able to up-regulate glutathione (GSH) content, γ-glutamate cysteine ligase (γ-GCL) mRNA as well as activities and mRNA expression of catalase and glutathione peroxidase (GPx) in irradiated cells. In conclusion, CA and FA provided protective effects on UVA-mediated MMP-1 induction in HaCaT cells possibly through restoration of antioxidant defense system at the cellular and molecular level. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  10. Lipopolysaccharide inhibits myogenic differentiation of C2C12 myoblasts through the Toll-like receptor 4-nuclear factor-κB signaling pathway and myoblast-derived tumor necrosis factor-α.

    Directory of Open Access Journals (Sweden)

    Yuko Ono

    Full Text Available Circulating lipopolysaccharide (LPS concentrations are often elevated in patients with sepsis or with various endogenous diseases that are associated with metabolic endotoxemia. Involuntary loss of skeletal muscle, termed muscle wasting, is commonly observed in these conditions, suggesting that circulating LPS might play an essential role in its development. Although impairment of muscle regeneration is an important determinant of skeletal muscle wasting, it is unclear whether LPS affects this process and, if so, by what mechanism. Here, we used the C2C12 myoblast cell line to investigate the effects of LPS on myogenesis.C2C12 myoblasts were grown to 80% confluence and induced to differentiate in the absence or presence of LPS (0.1 or 1 μg/mL; TAK-242 (1 μM, a specific inhibitor of Toll-like receptor 4 (TLR4 signaling; and a tumor necrosis factor (TNF-α neutralizing antibody (5 μg/mL. Expression of a skeletal muscle differentiation marker (myosin heavy chain II, two essential myogenic regulatory factors (myogenin and MyoD, and a muscle negative regulatory factor (myostatin was analyzed by western blotting. Nuclear factor-κB (NF-κB DNA-binding activity was measured using an enzyme-linked immunosorbent assay.LPS dose-dependently and significantly decreased the formation of multinucleated myotubes and the expression of myosin heavy chain II, myogenin, and MyoD, and increased NF-κB DNA-binding activity and myostatin expression. The inhibitory effect of LPS on myogenic differentiation was reversible, suggesting that it was not caused by nonspecific toxicity. Both TAK-242 and anti-TNF-α reduced the LPS-induced increase in NF-κB DNA-binding activity, downregulation of myogenic regulatory factors, and upregulation of myostatin, thereby partially rescuing the impairment of myogenesis.Our data suggest that LPS inhibits myogenic differentiation via a TLR4-NF-κB-dependent pathway and an autocrine/paracrine TNF-α-induced pathway. These pathways

  11. INHIBITION IN SPEAKING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Isna Humaera

    2015-09-01

    Full Text Available The most common problem encountered by the learner in the language acquisition process is learner inhibition. Inhibition refers to a temperamental tendency to display wariness, fearfulness, or restrain in response to unfamiliar people, objects, and situations. There are some factors that cause inhibition, such as lack of motivation, shyness, self-confidence, self-esteem, and language ego. There are also levels of inhibition, it refers to kinds of inhibition and caused of inhibition itself. Teacher can support their students to reduce their inhibition effect by many ways, one of them by creating good classroom management including establishing good rapport between teacher and learners.

  12. Effects of Mind-Body Training on Personality and Behavioral Activation and Inhibition System According to BDNF Val66Met Polymorphism.

    Science.gov (United States)

    Jung, Ye-Ha; Lee, Ul Soon; Jang, Joon Hwan; Kang, Do-Hyung

    2016-05-01

    It has been known that mind-body training (MBT) can affect personality and behavior system as well as emotional well-being, but different effects of MBT on them has not been reported according to BDNF genetic polymorphism. Healthy subjects consisted of 64 subjects and the MBT group who practiced meditation regularly consisted of 72 practitioners. Participants completed neuroticism-extraversion-openness (NEO) Five-Factor Inventory and Behavioral Activation System/Behavioral Inhibition System (BAS/BIS) scales. All subjects were genotyped for the BDNF Val66Met polymorphism. In the same genotypes of the BDNF Val/Val+Val/Met group, MBT group showed the increased Extraversion (p=0.033) and the increased Openness to Experience (p=0.004) compared to the control group. Also, in the same Met/Met carriers, MBT group exhibited the increase of Extraversion (p=0.008), the reduction of Neuroticism (p=0.002), and the increase of Openness to Experience (p=0.008) compared to the control group. In the same genotypes of the BDNF Val/Val+Val/Met group, MBT group showed the decreased BAS-Reward Responsiveness (p=0.016) and the decrease of BIS (p=0.004) compared to the control group. In the BDNF Met/Met group, MBT group increased BAS-Fun Seeking (p=0.045) and decreased BIS (p=0.013) compared to the control group. MBT would differently contribute to NEO personality and BAS/BIS according to BDNF genetic polymorphism, compensating for different vulnerable traits based on each genotype.

  13. Inhibition of NOS-NO System Prevents Autoimmune Orchitis Development in Rats: Relevance of NO Released by Testicular Macrophages in Germ Cell Apoptosis and Testosterone Secretion.

    Directory of Open Access Journals (Sweden)

    Sabrina Jarazo Dietrich

    Full Text Available Although the testis is considered an immunoprivileged organ it can orchestrate immune responses against pathological insults such as infection and trauma. Experimental autoimmune orchitis (EAO is a model of chronic inflammation whose main histopathological features it shares with human orchitis. In EAO an increased number of macrophages infiltrate the interstitium concomitantly with progressive germ cell degeneration and impaired steroidogenesis. Up-regulation of nitric oxide (NO-NO synthase (NOS system occurs, macrophages being the main producers of NO.The aim of our study was to evaluate the role of NO-NOS system in orchitis development and determine the involvement of NO released by testicular macrophages on germ cell apoptosis and testosterone secretion.EAO was induced in rats by immunization with testicular homogenate and adjuvants (E group and a group of untreated normal rats (N was also studied. Blockage of NOS by i.p. injection of E rats with a competitive inhibitor of NOS, L-NAME (8mg/kg, significantly reduced the incidence and severity of orchitis and lowered testicular nitrite content. L-NAME reduced germ cell apoptosis and restored intratesticular testosterone levels, without variations in serum LH. Co-culture of N testicular fragments with testicular macrophages obtained from EAO rats significantly increased germ cell apoptosis and testosterone secretion, whereas addition of L-NAME lowered both effects and reduced nitrite content. Incubation of testicular fragments from N rats with a NO donor DETA-NOnoate (DETA-NO induced germ cell apoptosis through external and internal apoptotic pathways, an effect prevented by N-acetyl-L-cysteine (NAC. DETA-NO inhibited testosterone released from Leydig cells, whereas NAC (from 2.5 to 15 mM did not prevent this effect.We demonstrated that NO-NOS system is involved in the impairment of testicular function in orchitis. NO secreted mainly by testicular macrophages could promote oxidative stress

  14. Beneficial bacteria inhibit cachexia

    Science.gov (United States)

    Varian, Bernard J.; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R.; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M.; Mirabal, Sheyla; Erdman, Susan E.

    2016-01-01

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny. PMID:26933816

  15. Identification of Respiratory Syncytial Virus Nonstructural Protein 2 Residues Essential for Exploitation of the Host Ubiquitin System and Inhibition of Innate Immune Responses.

    Science.gov (United States)

    Whelan, Jillian N; Tran, Kim C; van Rossum, Damian B; Teng, Michael N

    2016-07-15

    Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in young children worldwide. The RSV nonstructural protein 2 (NS2) is a multifunctional protein that primarily acts to antagonize the innate immune system by targeting STAT2 for proteasomal degradation. We investigated the structural determinants of NS2 important for interaction with the host ubiquitin system to degrade STAT2 during infection. We found that NS2 expression enhances ubiquitination of host proteins. Bioinformatics analysis provided a platform for identification of specific residues that limit NS2-induced ubiquitination. Combinations of multiple mutations displayed an additive effect on reducing NS2-induced ubiquitination. Using a reverse genetics system, we generated recombinant RSV (rRSV) containing NS2 ubiquitin mutations, which maintained their effect on ubiquitin expression during infection. Interestingly, STAT2 degradation activity was ablated in the NS2 ubiquitin mutant rRSV. In addition, NS2 ubiquitin mutations decreased rRSV replication, indicating a correlation between NS2's ubiquitin function and antagonism of innate immune signaling to enhance viral replication. Our approach of targeting NS2 residues required for NS2 inhibition of immune responses provides a mechanism for attenuating RSV for vaccine development. RSV has been circulating globally for more than 60 years, causing severe respiratory disease in pediatric, elderly, and immunocompromised populations. Production of a safe, effective vaccine against RSV is a public health priority. The NS2 protein is an effective target for prevention and treatment of RSV due to its antagonistic activity against the innate immune system. However, NS2-deleted RSV vaccine candidates rendered RSV overattenuated or poorly immunogenic. Alternatively, we can modify essential NS2 structural features to marginally limit viral growth while maintaining immune responses, providing the necessary balance between

  16. Organ Impairment—Drug–Drug Interaction Database: A Tool for Evaluating the Impact of Renal or Hepatic Impairment and Pharmacologic Inhibition on the Systemic Exposure of Drugs

    Science.gov (United States)

    Yeung, CK; Yoshida, K; Kusama, M; Zhang, H; Ragueneau-Majlessi, I; Argon, S; Li, L; Chang, P; Le, CD; Zhao, P; Zhang, L; Sugiyama, Y; Huang, S-M

    2015-01-01

    The organ impairment and drug–drug interaction (OI-DDI) database is the first rigorously assembled database of pharmacokinetic drug exposure data from publicly available renal and hepatic impairment studies presented together with the maximum change in drug exposure from drug interaction inhibition studies. The database was used to conduct a systematic comparison of the effect of renal/hepatic impairment and pharmacologic inhibition on drug exposure. Additional applications are feasible with the public availability of this database. PMID:26380158

  17. Sustained Inhibition of HBV Replication In Vivo after Systemic Injection of AAVs Encoding Artificial Antiviral Primary MicroRNAs.

    Science.gov (United States)

    Maepa, Mohube Betty; Ely, Abdullah; Grayson, Wayne; Arbuthnot, Patrick

    2017-06-16

    Chronic infection with hepatitis B virus (HBV) remains a problem of global significance and improving available treatment is important to prevent life-threatening complications arising in persistently infected individuals. HBV is susceptible to silencing by exogenous artificial intermediates of the RNA interference (RNAi) pathway. However, toxicity of Pol III cassettes and short duration of silencing by effectors of the RNAi pathway may limit anti-HBV therapeutic utility. To advance RNAi-based HBV gene silencing, mono- and trimeric artificial primary microRNAs (pri-miRs) derived from pri-miR-31 were placed under control of the liver-specific modified murine transthyretin promoter. The sequences, which target the X sequence of HBV, were incorporated into recombinant hepatotropic self-complementary adeno-associated viruses (scAAVs). Systemic intravenous injection of the vectors into HBV transgenic mice at a dose of 1 × 10 11 per animal effected significant suppression of markers of HBV replication for at least 32 weeks. The pri-miRs were processed according to the intended design, and intrahepatic antiviral guide sequences were detectable for 40 weeks after the injection. There was no evidence of toxicity, and innate immunostimulation was not detectable following the injections. This efficacy is an improvement on previously reported RNAi-based inhibition of HBV replication and is important to clinical translation of the technology. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera

    Science.gov (United States)

    Xu, Yi; Burgess, Patrick; Zhang, Xunzhong; Huang, Bingru

    2016-01-01

    Drought stress limits root growth and inhibits cytokinin (CK) production. Increases in CK production through overexpression of isopentenyltransferase (ipt) alleviate drought damages to promote root growth. The objective of this study was to investigate whether CK-regulated root growth was involved in the alteration of reactive oxygen species (ROS) production and ROS scavenging capacity under drought stress. Wild-type (WT) creeping bentgrass (Agrostis stolonifera L. ‘Penncross’) and a transgenic line (S41) overexpressing ipt ligated to a senescence-activated promoter (SAG12) were exposed to drought stress for 21 d in growth chambers. SAG12-ipt transgenic S41 developed a more extensive root system under drought stress compared to the WT. Root physiological analysis (electrolyte leakage and lipid peroxidation) showed that S41 roots exhibited less cellular damage compared to the WT under drought stress. Roots of SAG12-ipt transgenic S41 had significantly higher endogenous CK content than the WT roots under drought stress. ROS (hydrogen peroxide and superoxide) content was significantly lower and content of total and free ascorbate was significantly higher in S41 roots compared to the WT roots under drought stress. Enzymatic assays and transcript abundance analysis showed that superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase were significantly higher in S41 roots compared to the WT roots under drought stress. S41 roots also maintained significantly higher alternative respiration rates compared to the WT under drought stress. The improved root growth of transgenic creeping bentgrass may be facilitated by CK-enhanced ROS scavenging through antioxidant accumulation and activation of antioxidant enzymes, as well as higher alternative respiration rates when soil water is limited. PMID:26889010

  19. The Mammalian Cortex as a Self-Organizing Complex System: Multi-Scale Homeostatic Approaches to Criticality via Dynamical Balance of Inhibition against Excitation

    Science.gov (United States)

    Ng, Tony T.

    The mammalian cortex is a highly structured network of densely packed neurons that interact strongly with each other in very specific ways. Loosely speaking, neurons are cells that fire clicks at each other as a means of communication. Common sites of communication, known as synapses, are enabled by transmitter molecules released from presynaptic sender cells, which bind to receptors on postsynaptic receiver cells. There are two major classes of neurons - excitatory ones that prompt their downstream neighbors to fire spikes through depolarization, and inhibitory ones that suppress spike activity of their postsynaptic partners via hyperpolarization. Depolarization and hyperpolarization make membrane potential of a cell more positive and more negative, respectively. A sufficiently depolarized neuron fires a spike, which technically is called an action potential. In this thesis, we focus on the interplay between three of the cortex's most ubiquitous features and examine some of the consequences that their interactions have on cortical dynamics. One of the features, widespread projections between clusters of excitatory neurons, is topological. The two remaining features, homeostasis and balance between the amount of excitatory and inhibitory activity are dynamical. Here, homeostasis refers to the regulatory mechanism of individual cells or collections of cells that maintains constant levels of spike activity over time. Simply by varying the average homeostatic firing rate in clusters of excitatory neurons or by tuning the common homoeostatic rate of individual inhibitory neurons, we show via simulation that cluster-based activity bursts can exhibit critical dynamics and display power-law distributions with exponents that are consistent with those found in in vivo experiments of awake animals. Criticality is an idea that originated in statistical physics. At the critical point, activity levels of sites across an entire system, such as those of different cortical regions

  20. Synthesis and study of the mechanisms of action of biodegradable additives for corrosion and scale inhibition in industrial cooling water systems; Mise au point et etude des mecanismes d'action d'additifs biodegradables pour l'inhibition du pouvoir entartrant et corrosif des eaux de refroidissement industrielles

    Energy Technology Data Exchange (ETDEWEB)

    Estievenart, C.

    2003-11-01

    Industrial cooling water systems undergo more and more environmental constraints. The recycling of water increases the risks of scale deposition and corrosion. The use of chemical additives to inhibit these phenomena is necessary. Poly-aspartates are proposed as green multi-functional inhibitors. Polymers of different characteristics have been synthesized by different ways. Their efficiency towards scale deposition and corrosion is determined by electrochemical techniques in different test conditions (composition of the test water, temperature, flow rate, concentration of additive...). Their biodegradability is also evaluated. These poly-aspartates inhibit both nucleation and growth of calcium carbonate crystals, but also corrosion. Their efficiency depends on the characteristics of the polymers and their way of synthesis. The morphology of scale and corrosion deposits is modified in the presence of poly-aspartate. The mechanism of action of poly-aspartates combines adsorption, dispersion, complexation with both iron and calcium ions and insertion in the crystal lattice. (author)

  1. An antisense peptide nucleic acid against Pseudomonas aeruginosa inhibiting bacterial-induced inflammatory responses in the cystic fibrosis IB3-1 cellular model system

    DEFF Research Database (Denmark)

    Montagner, Giulia; Bezzerri, Valentino; Cabrini, Giulio

    2017-01-01

    of the essential acpP gene of P. aeruginosa, and previously shown to inhibit bacterial growth, concomitantly also strongly inhibits induced up-regulation of the pro-inflammatory markers IL-8, IL-6, G-CSF, IFN-γ, IP-10, MCP-1 and TNF-α in IB3-1 cystic fibrosis cells infected by P. aeruginosa PAO1. Remarkably...... are significant considering the key role of this protein in the cystic fibrosis inflammatory process exacerbated by P. aeruginosa infection....

  2. Gene expression of proteolytic systems and growth regulators of skeletal muscle in horses with myopathy associated with pituitary pars intermedia dysfunction.

    Science.gov (United States)

    Aleman, Monica; Nieto, Jorge E

    2010-06-01

    To investigate gene expression of the major proteolytic systems and growth regulators in skeletal muscle of horses with myopathy associated with pituitary pars intermedia dysfunction (PPID). 14 horses with PPID-associated myopathy and 7 healthy control horses. Horses with PPID and controls were age matched (15 to 28 years old). Muscle biopsy specimens were collected from both groups and processed for RNA and cDNA extraction. Validation of the most stable housekeeping genes for skeletal muscle was performed and used to compare gene expression of the following proteolytic systems: cysteine aspartate protease-dependent systems (caspases), lysosomal-dependent systems (cathepsins), non-lysosomal calcium protease-dependent systems (calpains), and ubiquitin-proteasome-dependent systems (ubiquitins). Gene expression of negative regulators of muscle growth (myostatin and inflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha) was also determined. No significant difference between groups was detected in expression of the major proteolytic systems except for m-calpain, which was greater in horses with PPID. No differences in gene expression of myostatin and interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha were detected between groups. Greater expression of m-calpain may suggest that calpains play an important role in development of muscle atrophy in horses with PPID. However, because posttranslational events may alter protein activation, inactivation, and functions not studied here, other mechanisms of muscle atrophy cannot be excluded.

  3. Antiproteinuric effect of add-on paricalcitol in CKD patients under maximal tolerated inhibition of renin-angiotensin system: a prospective observational study

    Directory of Open Access Journals (Sweden)

    De Nicola Luca

    2012-11-01

    Full Text Available Abstract Background Whether paricalcitol (PCT reduces proteinuria in the presence of intensified inhibition of Renin-Angiotensin-System (RAS is poorly studied. We evaluated the antiproteinuric effect of PCT in non-dialysis chronic kidney disease (CKD patients with proteinuria greater than 0.5 g/24 h persisting despite anti-RAS therapy titrated to minimize proteinuria in the absence of adverse effects. Methods Forty-eight CKD patients were studied in the first six months of add-on oral PCT (1 mcg/day and three months after drug withdrawal. Results Males were 87.5%, age 63 ± 14 yrs, systolic/diastolic blood pressure (BP 143 ± 22/78 ± 11 mmHg, eGFR 29.7 ± 14.5 mL/min/1.73 m2, diabetes 40%, and cardiovascular disease 38%. At referral in the center (28 months prior to study baseline, proteinuria was 2.44 (95% CI 1.80-3.04 g/24 h with 6 patients not receiving any anti-RAS and 42 treated with a single agent, at low dosage in most cases. At study baseline, twenty patients were under 2–3 anti-RAS drugs while twenty-eight received 1 agent at full dose and proteinuria resulted to be reduced versus referral to 1.23 g/24 h (95%CI 1.00-1.51. Six months of add-on PCT significantly decreased proteinuria to 0.61 g/24 h (95%CI 0.40-0.93, with levels less than 0.5 g/24 h achieved in 37.5% patients, in the absence of changes of BP and GFR. Proteinuria recovered to basal value after drug withdrawal. The extent of antiproteinuric response to PCT was positively associated with diabetes, eGFR and daily Na excretion (R2 = 0.459, P  Conclusions In CKD patients, add-on PCT induces a significant reduction of proteinuria that is evident despite intensified anti-RAS therapy and larger in the presence of diabetes, higher GFR and unrestricted salt intake.

  4. Antiproteinuric effect of add-on paricalcitol in CKD patients under maximal tolerated inhibition of renin-angiotensin system: a prospective observational study.

    Science.gov (United States)

    De Nicola, Luca; Conte, Giuseppe; Russo, Domenico; Gorini, Antonio; Minutolo, Roberto

    2012-11-20

    Whether paricalcitol (PCT) reduces proteinuria in the presence of intensified inhibition of Renin-Angiotensin-System (RAS) is poorly studied. We evaluated the antiproteinuric effect of PCT in non-dialysis chronic kidney disease (CKD) patients with proteinuria greater than 0.5 g/24 h persisting despite anti-RAS therapy titrated to minimize proteinuria in the absence of adverse effects. Forty-eight CKD patients were studied in the first six months of add-on oral PCT (1 mcg/day) and three months after drug withdrawal. Males were 87.5%, age 63 ± 14 yrs, systolic/diastolic blood pressure (BP) 143 ± 22/78 ± 11 mmHg, eGFR 29.7 ± 14.5 mL/min/1.73 m(2), diabetes 40%, and cardiovascular disease 38%. At referral in the center (28 months prior to study baseline), proteinuria was 2.44 (95% CI 1.80-3.04) g/24 h with 6 patients not receiving any anti-RAS and 42 treated with a single agent, at low dosage in most cases. At study baseline, twenty patients were under 2-3 anti-RAS drugs while twenty-eight received 1 agent at full dose and proteinuria resulted to be reduced versus referral to 1.23 g/24 h (95%CI 1.00-1.51). Six months of add-on PCT significantly decreased proteinuria to 0.61 g/24 h (95%CI 0.40-0.93), with levels less than 0.5 g/24 h achieved in 37.5% patients, in the absence of changes of BP and GFR. Proteinuria recovered to basal value after drug withdrawal. The extent of antiproteinuric response to PCT was positively associated with diabetes, eGFR and daily Na excretion (R(2) = 0.459, P proteinuria that is evident despite intensified anti-RAS therapy and larger in the presence of diabetes, higher GFR and unrestricted salt intake.

  5. Sequential release of salidroside and paeonol from a nanosphere-hydrogel system inhibits ultraviolet B-induced melanogenesis in guinea pig skin

    Directory of Open Access Journals (Sweden)

    Peng LH

    2014-04-01

    Full Text Available Li-Hua Peng,1 Shen-Yao Xu,1 Ying-Hui Shan,1 Wei Wei,1 Shuai Liu,1 Chen-Zhen Zhang,1 Jia-He Wu,1 Wen-Quan Liang,1 Jian-Qing Gao1,2 1Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 2Novel Transdermal Research Center of Jiangsu Province, Changzhou, People's Republic of China Abstract: Melanin is the one of most important pigments for skin color in mammals. Excessive biosynthesis of melanin induces various pigment disorders. Much effort has been made to develop regulators to minimize skin pigmentation abnormalities. However, only a few of them are used, primarily because of safety concerns and low efficiency. In this study, we aimed to construct a novel nanosphere-gel for sequential delivery of salidroside and paeonol, to investigate the synergistic effects of these drugs in anti-melanogenesis, and to decrease their potential for toxicity in high dosage. Nanospheres were prepared and characterized for their particle size, polydispersity index, zeta potential, and morphological properties. The optimized nanospheres were incorporated in carbomer hydrogel with both paeonol and salidroside entrapped to form a dual drug-releasing nanosphere-gel. With this nanosphere-gel, rapid release of salidroside from the hydrogel followed by sustained release of paeonol from the nanosphere was achieved. Using a classical model of the melanogenesis response to ultraviolet exposure, it was shown that the anti-melanogenesis effects of the dual drug-releasing system, in which the doses of the individual drugs were decreased by half, was obviously enhanced when compared with the effects of the single drug preparations. Mechanistically, the burst release of salidroside from the hydrogel may enable prompt suppression of melanocyte proliferation on exposure to ultraviolet B radiation, while the paeonol released in a sustained manner can provide continuous inhibition of tyrosinase activity in melanocytes. Combined delivery of

  6. Inhibition of 2-Amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) Formation by Alkoxy Radical Scavenging of Flavonoids and Their Quantitative Structure-Activity Relationship in a Model System.

    Science.gov (United States)

    Yu, Chundi; Shao, Zeping; Liu, Bing; Zhang, Yan; Wang, Shuo

    2016-08-01

    The inhibitory effect of 10 flavonoids on the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in a creatinine-phenylalanine model system was investigated through electronic spin resonance and a quantitative structure-activity relationship. Alkoxy radicals were observed during the heating process, providing evidence for a radical pathway in the formation of PhIP. The alkoxy radical scavenging capability of the flavonoids was proportional to their inhibition of PhIP formation (IC50 ). We deduced that flavonoid inhibition of PhIP generation occurs via scavenging of alkoxy radicals during the heating process. Multiple linear regression and partial least squares models were used to elucidate the relationship between PhIP inhibition activity and structure characteristics of the flavonoids. The lipo-hydro partition coefficient and molecular fractional polar surface area of the flavonoids were found to be predictive of the inhibition effect. © 2016 Institute of Food Technologists®

  7. A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T in the equine myostatin (MSTN gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses

    Directory of Open Access Journals (Sweden)

    Whiston Ronan

    2010-10-01

    Full Text Available Abstract Background Thoroughbred horses have been selected for traits contributing to speed and stamina for centuries. It is widely recognized that inherited variation in physical and physiological characteristics is responsible for variation in individual aptitude for race distance, and that muscle phenotypes in particular are important. Results A genome-wide SNP-association study for optimum racing distance was performed using the EquineSNP50 Bead Chip genotyping array in a cohort of n = 118 elite Thoroughbred racehorses divergent for race distance aptitude. In a cohort-based association test we evaluated genotypic variation at 40,977 SNPs between horses suited to short distance (≤ 8 f and middle-long distance (> 8 f races. The most significant SNP was located on chromosome 18: BIEC2-417495 ~690 kb from the gene encoding myostatin (MSTN [Punadj. = 6.96 × 10-6]. Considering best race distance as a quantitative phenotype, a peak of association on chromosome 18 (chr18:65809482-67545806 comprising eight SNPs encompassing a 1.7 Mb region was observed. Again, similar to the cohort-based analysis, the most significant SNP was BIEC2-417495 (Punadj. = 1.61 × 10-9; PBonf. = 6.58 × 10-5. In a candidate gene study we have previously reported a SNP (g.66493737C>T in MSTN associated with best race distance in Thoroughbreds; however, its functional and genome-wide relevance were uncertain. Additional re-sequencing in the flanking regions of the MSTN gene revealed four novel 3' UTR SNPs and a 227 bp SINE insertion polymorphism in the 5' UTR promoter sequence. Linkage disequilibrium was highest between g.66493737C>T and BIEC2-417495 (r2 = 0.86. Conclusions Comparative association tests consistently demonstrated the g.66493737C>T SNP as the superior variant in the prediction of distance aptitude in racehorses (g.66493737C>T, P = 1.02 × 10-10; BIEC2-417495, Punadj. = 1.61 × 10-9. Functional investigations will be required to determine whether this

  8. Rosmarinic acid counteracts activation of hepatic stellate cells via inhibiting the ROS-dependent MMP-2 activity: Involvement of Nrf2 antioxidant system

    International Nuclear Information System (INIS)

    Lu, Changfang; Zou, Yu; Liu, Yuzhang; Niu, Yingcai

    2017-01-01

    Recently, oxidative stress is involved in hepatofibrogenesis. Matrix metalloproteinase-2 (MMP-2) is required for activation of hepatic stellate cells (HSCs) in response to reactive oxygen species (ROS). This study was designed to explore the hypothesis that the inhibitory effect of rosmarinic acid (RA) on HSCs activation might mainly result from its antioxidant capability by increasing the synthesis of glutathione (GSH) involved in nuclear factor kappa B (NF-κB)-dependent inhibition of MMP-2 activity. Here, we demonstrate that RA reverses activated HSCs to quiescent cells. Concomitantly, RA inhibits MMP-2 activity. RNA interference-imposed knockdown of NF-κB abolished down-regulation of MMP-2 by RA. RA-mediated inactivation of NF-κB could be blocked by the diphenyleneiodonium chloride (DPI; a ROS inhibitor). Conversely, transfection of dominant-negative (DN) mutant of extracellular signal-regulated kinases 2 (ERK2), c-Jun N-terminal kinase 1 (JNK1), or p38α kinase had no such effect. Simultaneously, RA suppresses ROS generation and lipid peroxidation (LPO) whereas increases cellular GSH in HSC-T6 cells. Furthermore, RA significantly increased antioxidant response element (ARE)-mediated luciferase activity, nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and catalytic subunits from glutamate cysteine ligase (GCLc) expression, but not modulatory subunits from GCL (GCLm). RA-mediated up-regulation of GClc is inhibited by the shRNA-induced Nrf2 knockdown. The knocking down of Nrf2 or buthionine sulfoximine (a GCL inhibitor) abolished RA-mediated inhibition of ROS. Collectively, these results provide novel insights into the mechanisms of RA as an antifibrogenic candidate in the prevention and treatment of liver fibrosis. - Highlights: • RA reverses activated HSCs to quiescent cells. • RA suppresses MMP-2 activity through a NF-κB-dependent pathway. • Inhibition of oxidative stress by RA is dependent on nuclear translocation of Nrf2

  9. Inhibition of the Quorum Sensing System (ComDE Pathway by Aromatic 1,3-di-m-tolylurea (DMTU: Cariostatic Effect with Fluoride in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Gurmeet Kaur

    2017-07-01

    Full Text Available Dental caries occurs as a result of dysbiosis among commensal and pathogenic bacteria leading to demineralization of enamel within a dental biofilm (plaque as a consequence of lower pH in the oral cavity. In our previous study, we have reported 1,3-disubstituted ureas particularly, 1,3-di-m-tolylurea (DMTU could inhibit the biofilm formation along with lower concentrations of fluoride (31.25 ppm without affecting bacterial growth. In the present study, RT-qPCR analysis showed the target specific molecular mechanism of DMTU. In vivo treatment with DMTU, alone or in combination with fluoride, resulted in inhibition of caries (biofilm development of Streptococcus mutans using a Wistar rat model for dental caries. The histopathological analysis reported the development of lesions on dentine in infected subjects whereas the dentines of treated rodents were found to be intact and healthy. Reduction in inflammatory markers in rodents' blood and liver samples was observed when treated with DMTU. Collectively, data speculate that DMTU is an effective anti-biofilm and anti-inflammatory agent, which may improve the cariostatic properties of fluoride.

  10. Inhibition of bcl-2 and cox-2 Protein Expression after Local Application of a New Carmustine-Loaded Clinoptilolite-Based Delivery System in a Chemically Induced Skin Cancer Model in Mice

    Directory of Open Access Journals (Sweden)

    Cristina Mihaela Ghiciuc

    2017-11-01

    Full Text Available Our research has focused on in vitro and in vivo evaluations of a new Carmustine (BCNU-loaded clinoptilolite-based delivery system. Two clinoptilolite ionic forms—hydrogen form (HCLI and sodium form (NaCLI—were prepared, allowing a loading degree of about 5–6 mg BCNU/g of zeolite matrix due to the dual porous feature of clinoptilolite. Clinoptilolite-based delivery systems released 35.23% of the load in 12 h for the BCNU@HCLI system and only 10.82% for the BCNU@NaCLI system. The BCNU@HCLI system was chosen to develop gel and cream semisolid dosage forms. The cream (C_BCNU@HCLI released 29.6% of the loaded BCNU after 12 h in the Nylon synthetic membrane test and 31.6% in the collagen membrane test, higher by comparison to the gel. The new cream was evaluated in vivo in a chemically induced model of skin cancer in mice. Quantitative immunohistochemistry analysis showed stronger inhibition of B-cell lymphoma-2 (bcl-2 and cyclooxygenase 2 (cox-2 protein expression, known markers for cancer survival and aggressiveness, after the treatment with C_BCNU@HCLI by comparison to all the control treatment types, including an off-label magistral formula commercially available Carmustine cream as reference, bringing evidence that a clinoptilolite-based delivery systems could be used as a cancer drug carriers and controlled release systems (skin-targeted topical delivery systems.

  11. Solidago canadensis L essential oil vapor effectively inhibits Botrytis cinerea growth and preserves postharvest quality of strawberry as a food model system

    Directory of Open Access Journals (Sweden)

    Shumin Liu

    2016-08-01

    Full Text Available This study investigated the anti-fungal properties of Solidago canadensis L essential oil (SCLEO against Botrytis cinerea in vitro, and its ability to control gray mold and maintain quality in strawberry fruits. SCLEO exhibited dose-dependent antifungal activity against B. cinerea and profoundly altered mycelial morphology, cellular ultrastructure, and membrane permeability as evaluated by scanning electron microscopy, transmission electron microscopy, and fluorescence microscopy. SCLEO vapor at 0.1 mL/L maintained higher sensory acceptance and reduced decay of fresh strawberry fruit, and also reduced gray mold in artificially inoculated fruit. SCLEO treatment did not however, stimulate phenylalanin ammonia-lyase (PAL, polyphenol oxidase (POD, or chitinase (CHI, enzymes related to disease resistance. This suggests that SCLEO reduces gray mold by direct inhibition of pathogen growth. SCLEO vapor may provide a new and effective strategy for controlling postharvest disease and maintaining quality in strawberries.

  12. Solidago canadensis L. Essential Oil Vapor Effectively Inhibits Botrytis cinerea Growth and Preserves Postharvest Quality of Strawberry as a Food Model System.

    Science.gov (United States)

    Liu, Shumin; Shao, Xingfeng; Wei, Yanzhen; Li, Yonghua; Xu, Feng; Wang, Hongfei

    2016-01-01

    This study investigated the anti-fungal properties of Solidago canadensis L. essential oil (SCLEO) against Botrytis cinerea in vitro, and its ability to control gray mold and maintain quality in strawberry fruits. SCLEO exhibited dose-dependent antifungal activity against B. cinerea and profoundly altered mycelial morphology, cellular ultrastructure, and membrane permeability as evaluated by scanning electron microscopy, transmission electron microscopy, and fluorescence microscopy. SCLEO vapor at 0.1 mL/L maintained higher sensory acceptance and reduced decay of fresh strawberry fruit, and also reduced gray mold in artificially inoculated fruit. SCLEO treatment did not, however, stimulate phenylalanin ammonia-lyase, polyphenol oxidase, or chitinase, enzymes related to disease resistance. This suggests that SCLEO reduces gray mold by direct inhibition of pathogen growth. SCLEO vapor may provide a new and effective strategy for controlling postharvest disease and maintaining quality in strawberries.

  13. Murine immunization with CS21 pili or LngA major subunit of enterotoxigenic Escherichia coli (ETEC) elicits systemic and mucosal immune responses and inhibits ETEC gut colonization.

    Science.gov (United States)

    Zhang, Chengxian; Iqbal, Junaid; Gómez-Duarte, Oscar G

    2017-04-01

    CS21 pili of enterotoxigenic Escherichia coli (ETEC) is one of the most prevalent ETEC colonization factors. CS21 major subunit, LngA, mediates ETEC adherence to intestinal cells, and contributes to ETEC pathogenesis in a neonatal mouse infection model. The objectives of this work were to evaluate LngA major subunit purified protein and CS21 purified pili on immunogenicity and protection against ETEC colonization of mice intestine. Recombinant LngA purified protein or purified CS21 pili from E9034A ETEC strain were evaluated for immunogenicity after immunization of C57BL/6 mice. Specific anti-LngA antibodies were detected from mice serum, feces, and intestine fluid samples by ELISA assays. Protection against gut colonization was evaluated on immunized mice orally challenged with wild type E9034A ETEC strain and by subsequent quantification of bacterial colony forming units (CFU) recovered from feces. Recombinant LngA protein and CS21 pili induced specific humoral and mucosal anti-LngA antibodies in the mouse model. CS21 combined with CT delivered intranasally as well as LngA combined with incomplete Freund adjuvant delivered intraperitoneally inhibited ETEC gut colonization in a mouse model. In conclusion, both LngA purified protein and CS21 pili from ETEC are highly immunogenic and may inhibit ETEC intestinal shedding. Our data on immunogenicity and immunoprotection indicates that CS21 is a suitable vaccine candidate for a future multivalent vaccine against ETEC diarrhea. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Bioaccumulation of the synthetic dye Basic Violet 3 and heavy metals in single and binary systems by Candida tropicalis grown in a sugarcane bagasse extract medium: Modelling optimal conditions using response surface methodology (RSM) and inhibition kinetics

    International Nuclear Information System (INIS)

    Das, Devlina; Charumathi, D.; Das, Nilanjana

    2011-01-01

    Single and binary effects of dye Basic Violet 3 and heavy metals, 'namely', Pb(II) and Cd(II), were investigated for their role in dye and heavy metal bioaccumulation by Candida tropicalis that was grown in a sugarcane bagasse extract medium containing 8 g/L, 16 g/L or 24 g/L of sugar. The optimum pH was found to be 4.0 in the single system and 5.0 in the binary system. A central composite design was successfully used to analyse the experimental results. Four numerical correlations that were fitted to a second order quadratic equation were used to estimate optimum combinations predicted by response surface methodology. In the dye-Pb(II) binary system, C. tropicalis was capable of bioaccumulating 49.5% of the dye and 49.6% of the Pb(II), in comparison to 15.9% of the dye and 55.5% of the Cd(II) in the dye-Cd(II) binary system. In these two systems, the pollutants were dispersed at minimum working concentration levels. Competitive inhibition was observed in both the single and binary systems, which was suggested by an increase in the saturation constant, K s , and a simultaneous decrease in the specific growth rate that was calculated from Lineweaver-Burk plots. Atomic force microscopy images demonstrated changes in yeast cell morphology by exposure to these contaminants in the dye-Pb(II) binary system grown in a bioaccumulation medium.

  15. Systemic inhibition and liver-specific over-expression of PAI-1 failed to improve survival in all-inclusive populations or homogenous cohorts of CLP mice.

    Science.gov (United States)

    Raeven, P; Drechsler, S; Weixelbaumer, K M; Bastelica, D; Peiretti, F; Klotz, A; Jafarmadar, M; Redl, H; Bahrami, S; Alessi, M C; Declerck, P J; Osuchowski, M F

    2014-06-01

    The role of plasminogen activator inhibitor type-1 (PAI-1) in abdominal sepsis remains elusive. To study the influence of inhibition and over-expression of PAI-1 upon survival in cecal ligation and puncture (CLP) sepsis. (i) Mice underwent moderate CLP and received 10 mg kg(-1) of either monoclonal anti-PAI-1 (MA-MP6H6) or control (MA-Control) antibody intravenously at 0, 18 or 30 h post-CLP. The 30-h treatment group was additionally stratified into mice predicted to survive (P-SUR) or die (P-DIE) based on IL 6 measured at 24 h post-CLP. (ii) PAI-1 expression was induced with pLIVE.PAI-1 plasmid administered 72 h pre-CLP. Blood was sampled for 5 days and survival was monitored for 28 days. MA-MP6H6 effectively neutralized active PAI-1 and fully restored fibrinolysis while PAI-1 over-expression was liver-specific and correlated with PAI-1 increase in the blood. Without stratification, MA-MP6H6 co-/post-treatment conferred no survival benefit. Prospective stratification (IL-6 cut-off: 14 ng mL(-1) ) suggested increased mortality by MA-MP6H6 treatment in P-SUR that reached 30% difference (vs. MA-Control; P < 0.05) after a retrospective cut-off readjustment to 3.3 ng mL(-1) for better P-SUR homogeneity. Subsequent prospective anti-PAI-1 treatment in P-SUR mice with 3.3 ng mL(-1) cut-off demonstrated a negative but statistically insignificant effect: mortality was higher by 17% after MA-MP6H6 vs. MA-Control. Over-expression of PAI 1 did not alter post-CLP survival. Neither PAI-1 inhibition nor over-expression meaningfully modified inflammatory response and/or organ function. Restoration of fibrinolysis in early abdominal sepsis was not beneficial and it may prove detrimental in subjects with the lowest risk of death, while preemptive PAI-1 up-regulation at the current magnitude was not protective. © 2014 International Society on Thrombosis and Haemostasis.

  16. Substance P Promotes the Proliferation, but Inhibits Differentiation and Mineralization of Osteoblasts from Rats with Spinal Cord Injury via RANKL/OPG System.

    Directory of Open Access Journals (Sweden)

    Hai-Juan Liu

    Full Text Available Spinal cord injury (SCI causes a significant amount of bone loss, which results in osteoporosis (OP. The neuropeptide substance P (SP and SP receptors may play important roles in the pathogenesis of OP after SCI. To identify the roles of SP in the bone marrow mesenchymal stem cell derived osteoblasts (BMSC-OB in SCI rats, we investigated the expression of neurokinin-1 receptors (NK1R in BMSC-OB and the effects of SP on bone formation by development of BMSC-OB cultures. Sixty young male Sprague-Dawley rats were randomized into two groups: SHAM and SCI. The expression of NK1R protein in BMSC-OB was observed using immunohistochemistry and Western blot analysis. The dose- and time-dependent effects of SP on the proliferation, differentiation and mineralization of BMSC-OB and the expression of osteoblastic markers by in vitro experiments. The expression of NK1R in BMSC-OB was observed on plasma membranes and in cytoplasm. One week after osteogenic differentiation, the expression of NK1R was significantly increased after SCI at mRNA and protein levels. However, this difference was gradually attenuated at 2 or 3 weeks later. SP have the function to enhance cell proliferation, inhibite cell differentiation and mineralization at a proper concentration and incubation time, and this effect would be inhibited by adding SP or NK1R antagonist. The expression of RANKL/OPG was significantly increased in tibiae after SCI. Similarly, the RANKL/OPG expression in SCI rats was significantly increased when treating with 10-8 M SP. SP plays a very important role in the pathogenesis of OP after SCI. The direct effect of SP may lead to increased bone resorption through the RANKL/OPG axis after SCI. In addition, high expression of SP also results in the suppression of osteogenesis in SCI rats. Then, the balance between bone resorption and bone formation was broken and finally osteoporosis occurred.

  17. Evaluation of anti-quorum-sensing activity of edible plants and fruits through inhibition of the N-acyl-homoserine lactone system in Chromobacterium violaceum and Pseudomonas aeruginosa.

    Science.gov (United States)

    Musthafa, K Syed; Ravi, A Veera; Annapoorani, A; Packiavathy, I Sybiya Vasantha; Pandian, S Karutha

    2010-01-01

    To find out an alternative strategy to antibiotic usage against bacterial infection. The purpose of this study is to describe the quorum-sensing (QS) inhibitory activity of edible plants and fruits against N-acyl-homoserine lactone (AHL)-mediated violacein production in Chromobacterium violaceum and virulence factor expression in Pseudomonas aeruginosa PAO1. Aqueous extracts of Ananas comosus (Bromeliaceae), Musa paradiciaca (Musaceae), Manilkara zapota (Sapotaceae) and Ocimum sanctum (Lamiaceae) were prepared and anti-QS activity of each extract was tested against AHL-mediated phenotypic expressions of C. violaceum and PAO1. Most of these extracts showed significant reduction in AHL-mediated violacein production in C. violaceum as well as pyocyanin pigment, staphylolytic protease, elastase production and biofilm formation in PAO1. However, these extracts were not inhibitory to bacterial growth, revealing that the QS inhibition by the extracts is not related to static or killing effects on the bacteria. The present study identified the anti-QS activity of A. comosus, M. paradiciaca, M. zapota and O. sanctum. An AHL-inactivating compound from these plant sources can be used as an alternative to antibiotic compounds to prevent AHL-mediated bacterial infection in higher organisms. Copyright © 2010 S. Karger AG, Basel.

  18. Involvement of the peripheral sensory and sympathetic nervous system in the vascular endothelial expression of ICAM-1 and the recruitment of opioid-containing immune cells to inhibit inflammatory pain.

    Science.gov (United States)

    Mousa, Shaaban A; Shaqura, Mohammed; Brendl, Ute; Al-Khrasani, Mahmoud; Fürst, Susanna; Schäfer, Michael

    2010-11-01

    promotes the endogenous opioid peptide-mediated inhibition of inflammatory pain. They support existing evidence about a close link between the nervous and the immune system. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Inhibition by acrolein of light-induced stomatal opening through inhibition of inward-rectifying potassium channels in Arabidopsis thaliana.

    Science.gov (United States)

    Islam, Md Moshiul; Ye, Wenxiu; Matsushima, Daiki; Khokon, Md Atiqur Rahman; Munemasa, Shintaro; Nakamura, Yoshimasa; Murata, Yoshiyuki

    2015-01-01

    Acrolein is a reactive α,β-unsaturated aldehyde derived from lipid peroxides, which are produced in plants under a variety of stress. We investigated effects of acrolein on light-induced stomatal opening using Arabidopsis thaliana. Acrolein inhibited light-induced stomatal opening in a dose-dependent manner. Acrolein at 100 μM inhibited plasma membrane inward-rectifying potassium (Kin) channels in guard cells. Acrolein at 100 μM inhibited Kin channel KAT1 expressed in a heterologous system using Xenopus leaves oocytes. These results suggest that acrolein inhibits light-induced stomatal opening through inhibition of Kin channels in guard cells.

  20. Systems pharmacology of adiposity reveals inhibition of EP300 as a common therapeutic mechanism of caloric restriction and resveratrol for obesity

    Directory of Open Access Journals (Sweden)

    Yuhei eNishimura

    2015-09-01

    Full Text Available Both caloric restriction and resveratrol have beneficial effects on obesity. However, the biochemical pathways that mediate these beneficial effects might be complex and interconnected and have not been fully elucidated. To reveal the common therapeutic mechanism of caloric restriction and resveratrol, we performed a comparative transcriptome analysis of adipose tissues from diet-induced obese zebrafish and obese humans. We identified nine genes in diet-induced obese zebrafish and seven genes in obese humans whose expressions were regulated by caloric restriction and resveratrol. Although the gene lists did not overlap except for one gene, the gene ontologies enriched in the gene lists were highly overlapped, and included genes involved in adipocyte differentiation, lipid storage and lipid metabolism. Bioinformatic analysis of cis-regulatory sequences of these genes revealed that their transcriptional regulators also overlapped, including EP300, HDAC2, CEBPB, CEBPD, FOXA1 and FOXA2. We also identified 15 and 46 genes that were dysregulated in the adipose tissue of diet-induced obese zebrafish and obese humans, respectively. Bioinformatics analysis identified EP300, HDAC2, and CEBPB as common transcriptional regulators for these genes. EP300 is a histone and lysyl acetyltransferase that modulates the function of histone and various proteins including CEBPB, CEBPD, FOXA1 and FOXA2. We demonstrated that adiposity in larval zebrafish was significantly reduced by C646, an inhibitor of EP300 that antagonizes acetyl-CoA. The reduction of adiposity by C646 was not significantly different from that induced by resveratrol or co-treatment of C646 and resveratrol. These results indicate that the inhibition of EP300 might be a common therapeutic mechanism between caloric restriction and resveratrol in adipose tissues of obese individuals.

  1. TV Inhibiting Creative Ideas

    Science.gov (United States)

    Intellect, 1977

    1977-01-01

    Television may be inhibiting our ability to create new ideas, according to Eric Somers, assistant professor of journalism at Drake University. Discusses television's role as facilitator of information and how it should improve to increase organization and the creative process. (Editor/RK)

  2. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  3. Proteomic prediction and Renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy in TYpe 2 diabetic patients with normoalbuminuria (PRIORITY)

    DEFF Research Database (Denmark)

    Lindhardt, Morten; Persson, Frederik; Currie, Gemma

    2016-01-01

    INTRODUCTION: Diabetes mellitus affects 9% of the European population and accounts for 15% of healthcare expenditure, in particular, due to excess costs related to complications. Clinical trials aiming for earlier prevention of diabetic nephropathy by renin angiotensin system blocking treatment...

  4. Determination of the potency of a novel saw palmetto supercritical CO2 extract (SPSE for 5α-reductase isoform II inhibition using a cell-free in vitro test system

    Directory of Open Access Journals (Sweden)

    Pais P

    2016-04-01

    Full Text Available Pilar Pais, Agustí Villar, Santiago Rull Euromed, Barcelona, Spain Background: The nicotinamide adenine dinucleotide phosphate-dependent membrane protein 5α-reductase catalyses the conversion of testosterone to the most potent androgen – 5α-dihydrotestosterone. Two 5α-reductase isoenzymes are expressed in humans: type I and type II. The latter is found primarily in prostate tissue. Saw palmetto extract (SPE has been used extensively in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH. The pharmacological effects of SPE include the inhibition of 5α-reductase, as well as anti-inflammatory and antiproliferative effects. Clinical studies of SPE have been inconclusive – some have shown significant results, and others have not – possibly the result of varying bioactivities of the SPEs used in the studies. Purpose: To determine the in vitro potency in a cell-free test system of a novel SP supercritical CO2 extract (SPSE, an inhibitor of the 5α-reductase isoenzyme type II. Materials and methods: The inhibitory potency of SPSE was compared to that of finasteride, an approved 5α-reductase inhibitor, on the basis of the enzymatic conversion of the substrate androstenedione to the 5α-reduced product 5α-androstanedione. Results: By concentration-dependent inhibition of 5α-reductase type II in vitro (half-maximal inhibitory concentration 3.58±0.05 µg/mL, SPSE demonstrated competitive binding toward the active site of the enzyme. Finasteride, the approved 5α-reductase inhibitor tested as positive control, led to 63%–75% inhibition of 5α-reductase type II. Conclusion: SPSE effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is comparatively low. It can be confirmed from the results of this study that SPSE has bioactivity that promotes prostate health at a level that is superior to that of many other phytotherapeutic extracts. The

  5. Extracellular polysaccharides purified from Aureobasidium pullulans SM-2001 (Polycan) inhibit dexamethasone-induced muscle atrophy in mice

    Science.gov (United States)

    Cho, Hyung-Rae; Park, Dong-Chan; Jung, Go-Woon

    2018-01-01

    The present study assessed the beneficial skeletal muscle-preserving effects of extracellular polysaccharides from Aureobasidium pullulans SM-2001 (Polycan) (EAP) on dexamethasone (DEXA)-induced catabolic muscle atrophy in mice. To investigate whether EAP prevented catabolic DEXA-induced muscle atrophy, and to examine its mechanisms of action, EAP (100, 200 and 400 mg/kg) was administered orally, once a day for 24 days. EAP treatment was initiated 2 weeks prior to DEXA treatment (1 mg/kg, once a day for 10 days) in mice. Body weight alterations, serum biochemistry, calf thickness, calf muscle strength, gastrocnemius muscle thickness and weight, gastrocnemius muscle antioxidant defense parameters, gastrocnemius muscle mRNA expression, histology and histomorphometry were subsequently assessed. After 24 days, DEXA control mice exhibited muscle atrophy according to all criteria indices. However, these muscle atrophy symptoms were significantly inhibited by oral treatment with all three doses of EAP. Regarding possible mechanisms of action, EAP exhibited favorable ameliorating effects on DEXA-induced catabolic muscle atrophy via antioxidant and anti-inflammatory effects; these effects were mediated by modulation of the expression of genes involved in muscle protein synthesis (AKT serine/threonine kinase 1, phosphatidylinositol 3-kinase, adenosine A1 receptor and transient receptor potential cation channel subfamily V member 4) and degradation (atrogin-1, muscle RING-finger protein-1, myostatin and sirtuin 1). Therefore, these results indicated that EAP may be helpful in improving muscle atrophies of various etiologies. EAP at 400 mg/kg exhibited favorable muscle protective effects against DEXA-induced catabolic muscle atrophy, comparable with the effects of oxymetholone (50 mg/kg), which has been used to treat various muscle disorders. PMID:29138805

  6. Development of surface-engineered PLGA nanoparticulate-delivery system of Tet-1-conjugated nattokinase enzyme for inhibition of Aβ40 plaques in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Bhatt PC

    2017-12-01

    Full Text Available Prakash Chandra Bhatt,1 Amita Verma,2 Fahad A Al-Abbasi,3 Firoz Anwar,3 Vikas Kumar,4 Bibhu Prasad Panda1 1Microbial and Pharmaceutical Biotechnology Laboratory, Centre for Advanced Research in Pharmaceutical Science, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India; 2Bioorganic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, India; 3Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; 4Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, India Abstract: According to the World Health Organization, globally there are around 18 million patients suffering from Alzheimer’s disease (AD, and this number is expected to double by 2025. The pathophysiology of AD includes selective deposition of Aβ peptide in the mitochondria of cells, which inhibits uptake of glucose by neurons and key enzyme functions. Current drug treatments for AD are unable to rectify the underlying pathology of the disease; they only provide short-term symptomatic relief, so there is a need for the development of newer treatment regimes. The antiamyloid activity, antifibrinolytic activity, and antithrombotic activity of nattokinase holds potential for the treatment of AD. As nattokinase is a protein, its stability restricts its usage to a greater extent, but this limitation can be overcome by nanoencapsulation. In this work, we successfully synthesized polymeric nanoparticles of nattokinase and characterized its use by different techniques: transmission electron microscopy, scanning electron microscopy, DTS Nano, differential scanning calorimetry, Fourier-transform infrared spectroscopy, thioflavin T-binding assay, in vitro drug

  7. New perspectives in the renin-angiotensin-aldosterone system (RAAS III: endogenous inhibition of angiotensin converting enzyme (ACE provides protection against cardiovascular diseases.

    Directory of Open Access Journals (Sweden)

    Miklós Fagyas

    Full Text Available ACE inhibitor drugs decrease mortality by up to one-fifth in cardiovascular patients. Surprisingly, there are reports dating back to 1979 suggesting the existence of endogenous ACE inhibitors. Here we investigated the clinical significance of this potential endogenous ACE inhibition. ACE concentration and activity was measured in patient's serum samples (n = 151. ACE concentration was found to be in a wide range (47-288 ng/mL. ACE activity decreased with the increasing concentration of the serum albumin (HSA: ACE activity was 56 ± 1 U/L in the presence of 2.4 ± 0.3 mg/mL HSA, compared to 39 ± 1 U/L in the presence of 12 ± 1 mg/mL HSA (values are mean ± SEM. Effects of the differences in ACE concentration were suppressed in human sera: patients with ACE DD genotype exhibited a 64% higher serum ACE concentration (range, 74-288 ng/mL, median, 155.2 ng/mL, n = 52 compared to patients with II genotype (range, 47-194 ng/mL, median, 94.5 ng/mL, n = 28 while the difference in ACE activities was only 32% (range, 27.3-59.8 U/L, median, 43.11 U/L, and range 15.6-55.4 U/L, median, 32.74 U/L, respectively in the presence of 12 ± 1 mg/mL HSA. No correlations were found between serum ACE concentration (or genotype and cardiovascular diseases, in accordance with the proposed suppressed physiological ACE activities by HSA (concentration in the sera of these patients: 48.5 ± 0.5 mg/mL or other endogenous inhibitors. Main implications are that (1 physiological ACE activity can be stabilized at a low level by endogenous ACE inhibitors, such as HSA; (2 angiotensin II elimination may have a significant role in angiotensin II related pathologies.

  8. Inhibition of 2-methoxyestradiol glucuronidation by probenecid.

    Science.gov (United States)

    Qian, Yuli; Sherbini, Ahmad; Matin, Bahar; Zhao, Yanli; Castellot, John; Greenblatt, David J

    2015-11-01

    2-Methoxyestradiol (2ME2), a metabolite of estradiol, has antitumour activity in vitro. However, potential clinical applicability has been limited by low oral bioavailability. Probenecid was evaluated in vitro as an inhibitor of 2ME2 glucuronidation for purposes of enhancing 2ME2 oral bioavailability. Human liver microsomes were used to determine kinetic parameters for transformation of 2ME2 to its glucuronide metabolites (M1, M2) and inhibition of the reactions by probenecid. M1 and M2 formation from 2ME2 proceeded with features of substrate inhibition. Probenecid inhibited metabolite formation, with mean inhibition constant (Ki ) values of 0.9 and 2.6 mM, respectively. Inhibition was reversible, with mixed competitive-non-competitive characteristics. The Ki values for probenecid inhibition of 2ME2 glucuronide formation, when compared to maximum probenecid plasma concentrations anticipated clinically, indicate that probenecid co-administration has the potential to augment systemic plasma levels of 2ME2 after oral dosage in humans. © 2015 Royal Pharmaceutical Society.

  9. Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Koji Inui

    Full Text Available Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observed by inserting a weak (5 dB increase for 1 ms prepulse. The time course of the inhibition evaluated by prepulses presented at 10-800 ms before the test stimulus showed at least two temporally distinct inhibitions peaking at approximately 20-60 and 600 ms that presumably reflected IPSPs by fast spiking, parvalbumin-positive cells and somatostatin-positive, Martinotti cells, respectively. In another experiment, we confirmed that the degree of the inhibition depended on the strength of the prepulse, but not on the amplitude of the prepulse-evoked cortical response, indicating that the prepulse-evoked excitatory response and prepulse-evoked inhibition reflected activation in two different pathways. Although many diseases such as schizophrenia may involve deficits in the inhibitory system, we do not have appropriate methods to evaluate them; therefore, the easy and non-invasive method described herein may be clinically useful.

  10. Recombinant human activated protein C inhibits local and systemic activation of coagulation without influencing inflammation during Pseudomonas aeruginosa pneumonia in rats

    NARCIS (Netherlands)

    Choi, Goda; Hofstra, Jorrit-Jan H.; Roelofs, Joris J. T. H.; Florquin, Sandrine; Bresser, Paul; Levi, Marcel; van der Poll, Tom; Schultz, Marcus J.

    2007-01-01

    OBJECTIVE: Alveolar fibrin deposition is a hallmark of pneumonia. It has been proposed that recombinant human activated protein C exerts lung-protective effects via anticoagulant and anti-inflammatory pathways. We investigated the role of the protein C system in pneumonia caused by Pseudomonas

  11. Recombinant human activated protein C inhibits local and systemic activation of coagulation without influencing inflammation during Pseudomonas aeruginosa pneumonia in rats

    NARCIS (Netherlands)

    Choi, Goda; Hofstra, Jorrit-Jan H; Roelofs, Joris J T H; Florquin, Sandrine; Bresser, Paul; Levi, Marcel; van der Poll, Tom; Schultz, Marcus J

    OBJECTIVE: Alveolar fibrin deposition is a hallmark of pneumonia. It has been proposed that recombinant human activated protein C exerts lung-protective effects via anticoagulant and anti-inflammatory pathways. We investigated the role of the protein C system in pneumonia caused by Pseudomonas

  12. Antagonizing the alpha(4)beta(1) Integrin, but Not alpha(4)beta(7), Inhibits Leukocytic Infiltration of the Central Nervous System in Rhesus Monkey Experimental Autoimmune Encephalomyelitis

    NARCIS (Netherlands)

    Haanstra, Krista G.; Hofman, Sam O.; Estevao, Dave M. Lopes; Blezer, Erwin L. A.; Bauer, Jan; Yang, Li-Li; Wyant, Tim; Csizmadia, Vilmos; 't Hart, Bert A.; Fedyk, Eric R.

    2013-01-01

    The immune system is characterized by the preferential migration of lymphocytes through specific tissues (i.e., tissue tropism). Tissue tropism is mediated, in part, by the alpha(4) integrins expressed by T lymphocytes. The alpha(4)beta(1) integrin mediates migration of memory T lymphocytes into the

  13. Anti-allergic activity of 2,4,6-trihydroxy-3-geranylacetophenone (tHGA) via attenuation of IgE-mediated mast cell activation and inhibition of passive systemic anaphylaxis.

    Science.gov (United States)

    Tan, Ji Wei; Israf, Daud Ahmad; Harith, Hanis Hazeera; Md Hashim, Nur Fariesha; Ng, Chean Hui; Shaari, Khozirah; Tham, Chau Ling

    2017-03-15

    tHGA, a geranyl acetophenone compound originally isolated from a local shrub called Melicope ptelefolia, has been previously reported to prevent ovalbumin-induced allergic airway inflammation in a murine model of allergic asthma by targeting cysteinyl leukotriene synthesis. Mast cells are immune effector cells involved in the pathogenesis of allergic diseases including asthma by releasing cysteinyl leukotrienes. The anti-asthmatic properties of tHGA could be attributed to its inhibitory effect on mast cell degranulation. As mast cell degranulation is an important event in allergic responses, this study aimed to investigate the anti-allergic effects of tHGA in cellular and animal models of IgE-mediated mast cell degranulation. For in vitro model of IgE-mediated mast cell degranulation, DNP-IgE-sensitized RBL-2H3 cells were pre-treated with tHGA before challenged with DNP-BSA to induce degranulation. For IgE-mediated passive systemic anaphylaxis, Sprague Dawley rats were sensitized by intraperitoneal injection of DNP-IgE before challenged with DNP-BSA. Both in vitro and in vivo models showed that tHGA significantly inhibited the release of preformed mediators (β-hexosaminidase and histamine) as well as de novo mediators (interleukin-4, tumour necrosis factor-α, prostaglandin D 2 and leukotriene C 4 ). Pre-treatment of tHGA also prevented IgE-challenged RBL-2H3 cells and peritoneal mast cells from undergoing morphological changes associated with mast cell degranulation. These findings indicate that tHGA possesses potent anti-allergic activity via attenuation of IgE-mediated mast cell degranulation and inhibition of IgE-mediated passive systemic anaphylaxis. Thus, tHGA may have the potential to be developed as a mast cell stabilizer for the treatment of allergic diseases in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Inhibiting the inevitable

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2006-01-01

    conservation is to ‘buy time’ for the object. Inhibitive conservation of plastics involves the removal or reduction of factors causing or accelerating degradation including light, oxygen, acids, relative humidity and acidic breakdown products. Specific approaches to conservation have been developed......Once plastics objects are registered in museum collections, the institution becomes responsible for their long term preservation, until the end of their useful lifetime. Plastics appear to deteriorate faster than other materials in museum collections and have a useful lifetime between 5 and 25...... years. Preventive or inhibitive conservation involves controlling the environments in which objects are placed during storage and display, with the aim of slowing the major deterioration reactions. Once in progress, degradation of plastics cannot be stopped or reversed, so the aim of preventive...

  15. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  16. DC-SIGN activation mediates the differential effects of SAP and CRP on the innate immune system and inhibits fibrosis in mice.

    Science.gov (United States)

    Cox, Nehemiah; Pilling, Darrell; Gomer, Richard H

    2015-07-07

    Fibrosis is caused by scar tissue formation in internal organs and is associated with 45% of deaths in the United States. Two closely related human serum proteins, serum amyloid P (SAP) and C-reactive protein (CRP), strongly affect fibrosis. In multiple animal models, and in Phase 1 and Phase 2 clinical trials, SAP affects several aspects of the innate immune system to reduce fibrosis, whereas CRP appears to potentiate fibrosis. However, SAP and CRP bind the same Fcγ receptors (FcγR) with similar affinities, and why SAP and CRP have opposing effects is unknown. Here, we report that SAP but not CRP binds the receptor DC-SIGN (SIGN-R1) to affect the innate immune system, and that FcγR are not necessary for SAP function. A polycyclic aminothiazole DC-SIGN ligand and anti-DC-SIGN antibodies mimic SAP effects in vitro. In mice, the aminothiazole reduces neutrophil accumulation in a model of acute lung inflammation and, at 0.001 mg/kg, alleviates pulmonary fibrosis by increasing levels of the immunosuppressant IL-10. DC-SIGN (SIGN-R1) is present on mouse lung epithelial cells, and SAP and the aminothiazole potentiate IL-10 production from these cells. Our data suggest that SAP activates DC-SIGN to regulate the innate immune system differently from CRP, and that DC-SIGN is a target for antifibrotics.

  17. DC-SIGN activation mediates the differential effects of SAP and CRP on the innate immune system and inhibits fibrosis in mice

    Science.gov (United States)

    Cox, Nehemiah; Pilling, Darrell; Gomer, Richard H.

    2015-01-01

    Fibrosis is caused by scar tissue formation in internal organs and is associated with 45% of deaths in the United States. Two closely related human serum proteins, serum amyloid P (SAP) and C-reactive protein (CRP), strongly affect fibrosis. In multiple animal models, and in Phase 1 and Phase 2 clinical trials, SAP affects several aspects of the innate immune system to reduce fibrosis, whereas CRP appears to potentiate fibrosis. However, SAP and CRP bind the same Fcγ receptors (FcγR) with similar affinities, and why SAP and CRP have opposing effects is unknown. Here, we report that SAP but not CRP binds the receptor DC-SIGN (SIGN-R1) to affect the innate immune system, and that FcγR are not necessary for SAP function. A polycyclic aminothiazole DC-SIGN ligand and anti–DC-SIGN antibodies mimic SAP effects in vitro. In mice, the aminothiazole reduces neutrophil accumulation in a model of acute lung inflammation and, at 0.001 mg/kg, alleviates pulmonary fibrosis by increasing levels of the immunosuppressant IL-10. DC-SIGN (SIGN-R1) is present on mouse lung epithelial cells, and SAP and the aminothiazole potentiate IL-10 production from these cells. Our data suggest that SAP activates DC-SIGN to regulate the innate immune system differently from CRP, and that DC-SIGN is a target for antifibrotics. PMID:26106150

  18. RNAi combining Sleeping Beauty transposon system inhibits ex vivo expression of foot-and-mouth disease virus VP1 in transgenic sheep cells.

    Science.gov (United States)

    Deng, Shoulong; Li, Guangdong; Yu, Kun; Tian, Xiuzhi; Wang, Feng; Li, Wenting; Jiang, Wuqi; Ji, Pengyun; Han, Hongbing; Fu, Juncai; Zhang, Xiaosheng; Zhang, Jinlong; Liu, Yixun; Lian, Zhengxing; Liu, Guoshi

    2017-08-30

    Foot and mouth disease, which is induced by the foot and mouth disease virus (FMDV), takes its toll on the cloven-hoofed domestic animals. The VP1 gene in FMDV genome encodes the viral capsid, a vital element for FMDV replication. Sleeping Beauty (SB) is an active DNA-transposon system responsible for genetic transformation and insertional mutagenesis in vertebrates. In this study, a conserved VP1-shRNA which specifically targets the ovine FMDV-VP1 gene was constructed and combined with SB transposase and transposon. Then, they were microinjected into pronuclear embryos to breed transgenic sheep. Ninety-two lambs were born and the VP1-shRNA was positively integrated into eight of them. The rate of transgenic sheep production in SB transposon system was significantly higher than that in controls (13.04% vs. 3.57% and 7.14%, P sheep were successfully generated by the current new method. The ear fibroblasts from these transgenic sheep possess a great resistance to FMDV. The result indicated that RNAi technology combining the "Sleeping Beauty" transposon system is an efficient method to produce transgenic animals.

  19. Unimpaired Autoreactive T-Cell Traffic Within the Central Nervous System During Tumor Necrosis Factor Receptor-Mediated inhibition of Experimental Autoimmune Encephalomyelitis

    Science.gov (United States)

    Korner, Heinrich; Goodsall, Anna L.; Lemckert, Frances A.; Scallon, Bernard J.; Ghrayeb, John; Ford, Andrew L.; Sedgwick, Jonathon D.

    1995-11-01

    The critical role of tumor necrosis factor (TNF) as a mediator in autoimmune inflammatory processes is evident from in vivo studies with TNF-blocking agents. However, the mechanisms by which TNF, and possibly also its homologue lymphotoxin α, contributes to development of pathology in rheumatoid arthritis and Crohn disease and in animal models like experimental autoimmune encephalomyelitis is unclear. Possibilities include regulation of vascular adhesion molecules enabling leukocyte movement into tissues or direct cytokine-mediated effector functions such as mediation of tissue damage. Here we show that administration of a TNF receptor (55 kDa)-IgG fusion protein prevented clinical signs of actively induced experimental autoimmune encephalomyelitis. Significantly, the total number of CD4^+ T lymphocytes isolated from the central nervous system of clinically healthy treated versus diseased control animals was comparable. By using a CD45 congenic model of passively transferred experimental autoimmune encephalomyelitis to enable tracking of myelin basic protein-specific effector T lymphocytes, prevention of clinical signs of disease was again demonstrated in treated animals but without quantitative or qualitative impediment to the movement of autoreactive T lymphocytes to and within the central nervous system. Thus, despite the uninterrupted movement of specific T lymphocytes into the target tissue, subsequent disease development was blocked. This provides compelling evidence for a direct effector role of TNF/lymphotoxin α in autoimmune tissue damage.

  20. Inhibition of ABCB1 (MDR1 expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Michiro Susa

    2010-05-01

    Full Text Available The use of neo-adjuvant chemotherapy in treating osteosarcoma has improved patients' average 5 year survival rate from 20% to 70% in the past 30 years. However, for patients who progress after chemotherapy, its effectiveness diminishes due to the emergence of multi-drug resistance (MDR after prolonged therapy.In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure resulting from MDR, we designed and evaluated a novel drug delivery system for MDR1 siRNA delivery. Novel biocompatible, lipid-modified dextran-based polymeric nanoparticles were used as the platform for MDR1 siRNA delivery; and the efficacy of combination therapy with this system was evaluated. In this study, multi-drug resistant osteosarcoma cell lines (KHOS(R2 and U-2OS(R2 were treated with the MDR1 siRNA nanocarriers and MDR1 protein (P-gp expression, drug retention, and immunofluoresence were analyzed. Combination therapy of the MDR1 siRNA loaded nanocarriers with increasing concentrations of doxorubicin was also analyzed. We observed that MDR1 siRNA loaded dextran nanoparticles efficiently suppresses P-gp expression in the drug resistant osteosarcoma cell lines. The results also demonstrated that this approach may be capable of reversing drug resistance by increasing the amount of drug accumulation in MDR cell lines.Lipid-modified dextran-based polymeric nanoparticles are a promising platform for siRNA delivery. Nanocarriers loaded with MDR1 siRNA are a potential treatment strategy for reversing MDR in osteosarcoma.

  1. Sequence-specific inhibition of microRNA-130a gene by CRISPR/Cas9 system in breast cancer cell line

    Science.gov (United States)

    Ainina Abdollah, Nur; Das Kumitaa, Theva; Yusof Narazah, Mohd; Razak, Siti Razila Abdul

    2017-05-01

    MicroRNAs (miRNAs) are short stranded noncoding RNA that play important roles in apoptosis, cell survival, development and cell proliferation. However, gene expression control via small regulatory RNA, particularly miRNA in breast cancer is still less explored. Therefore, this project aims to develop an approach to target microRNA-130a using the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system in MCF7, breast cancer cell line. The 20 bp sequences target at stem loop, 3ʹ and 5ʹ end of miR130a were cloned into pSpCas9(BB)-2A-GFP (PX458) plasmid, and the positive clones were confirmed by sequencing. A total of 5 μg of PX458-miR130a was transfected to MCF7 using Lipofectamine® 3000 according to manufacturer’s protocol. The transfected cells were maintained in the incubator at 37 °C under humidified 5% CO2. After 48 hours, cells were harvested and total RNA was extracted using miRNeasy Mini Kit (Qiagen). cDNAs were synthesised specific to miR-130a using TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems). Then, qRT-PCR was carried out using TaqMan Universal Master Mix (Applied Biosystems) to quantify the knockdown level of mature miRNAs in the cells. Result showed that miR-130a-5p was significantly downregulated in MCF7 cell line. However, no significant changes were observed for sequences targeting miR-130a-3p and stem loop. Thus, this study showed that the expression of miR-130a-5p was successfully down-regulated using CRISPR silencing system. This technique may be useful to manipulate the level of miRNA in various cell types to answer clinical questions at the molecular level.

  2. Cathepsin S inhibition suppresses systemic lupus erythematosus and lupus nephritis because cathepsin S is essential for MHC class II-mediated CD4 T cell and B cell priming.

    Science.gov (United States)

    Rupanagudi, Khader Valli; Kulkarni, Onkar P; Lichtnekert, Julia; Darisipudi, Murthy Narayana; Mulay, Shrikant R; Schott, Brigitte; Gruner, Sabine; Haap, Wolfgang; Hartmann, Guido; Anders, Hans-Joachim

    2015-02-01

    Major histocompatibility complex (MHC) class II-mediated priming of T and B lymphocytes is a central element of autoimmunity in systemic lupus erythematosus (SLE) and lupus nephritis. The cysteine protease cathepsin S degrades the invariant peptide chain during MHC II assembly with antigenic peptide in antigen-presenting cells; therefore, we hypothesised that cathepsin S inhibition would be therapeutic in SLE. We developed a highly specific small molecule, orally available, cathepsin S antagonist, RO5461111, with suitable pharmacodynamic and pharmacokinetic properties that efficiently suppressed antigen-specific T cell and B cell priming in vitro and in vivo. When given to MRL-Fas(lpr) mice with SLE and lupus nephritis, RO5461111 significantly reduced the activation of spleen dendritic cells and the subsequent expansion and activation of CD4 T cells and CD4/CD8 double-negative T cells. Cathepsin S inhibition impaired the spatial organisation of germinal centres, suppressed follicular B cell maturation to plasma cells and Ig class switch. This reversed hypergammaglobulinemia and significantly suppressed the plasma levels of numerous IgG (but not IgM) autoantibodies below baseline, including anti-dsDNA. This effect was associated with less glomerular IgG deposits, which protected kidneys from lupus nephritis. Together, cathepsin S promotes SLE by driving MHC class II-mediated T and B cell priming, germinal centre formation and B cell maturation towards plasma cells. These afferent immune pathways can be specifically reversed with the cathepsin S antagonist RO5461111, which prevents lupus nephritis progression even when given after disease onset. This novel therapeutic strategy could correct a common pathomechanism of SLE and other immune complex-related autoimmune diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Inhibition of cell proliferation through an ATP-responsive co-delivery system of doxorubicin and Bcl-2 siRNA

    Science.gov (United States)

    Zhang, Jianxu; Wang, Yudi; Chen, Jiawen; Liang, Xiao; Han, Haobo; Yang, Yan; Li, Quanshun; Wang, Yanbo

    2017-01-01

    Herein, DNA duplex was constructed through the hybridization of adenosine triphosphate (ATP)-responsive aptamer and its cDNA in which GC-rich motif could be used to load doxorubicin (DOX), and then, cationic polymer PEI25K was used as a carrier to simultaneously condense DOX-Duplex and Bcl-2 siRNA to prepare the ternary nanocomplex polyethylenimine (PEI)/DOX-Duplex/siRNA. The ATP concentration gradient between the cytosol and extracellular environment could achieve the stable loading of DOX in duplex and the rapid drug release in an ATP-responsive manner. Using human prostate tumor cell line PC-3 as a model, an obvious induction of cell proliferation could be detected with a cell viability of 53.3%, which was stronger than single cargo delivery, indicating the synergistic effect between these two components. The enhanced anti-proliferative effect of ternary nanocomplex could be attributed to the improved induction of cell apoptosis in a mitochondria-mediated pathway and cell-cycle arrest at the G2 phase. Overall, the ATP-responsive nanocarrier for co-delivering DOX and Bcl-2 siRNA has been demonstrated to be a smart delivery system with favorable anti-proliferative effect, especially for solving the multidrug resistance of tumors. PMID:28740380

  4. Fractionated Radiotherapy with 3 x 8 Gy Induces Systemic Anti-Tumour Responses and Abscopal Tumour Inhibition without Modulating the Humoral Anti-Tumour Response.

    Directory of Open Access Journals (Sweden)

    Thomas H P M Habets

    Full Text Available Accumulating evidence indicates that fractionated radiotherapy (RT can result in distant non-irradiated (abscopal tumour regression. Although preclinical studies indicate the importance of T cells in this infrequent phenomenon, these studies do not preclude that other immune mechanisms exhibit an addition role in the abscopal effect. We therefore addressed the question whether in addition to T cell mediated responses also humoral anti-tumour responses are modulated after fractionated RT and whether systemic dendritic cell (DC stimulation can enhance tumour-specific antibody production. We selected the 67NR mammary carcinoma model since this tumour showed spontaneous antibody production in all tumour-bearing mice. Fractionated RT to the primary tumour was associated with a survival benefit and a delayed growth of a non-irradiated (contralateral secondary tumour. Notably, fractionated RT did not affect anti-tumour antibody titers and the composition of the immunoglobulin (Ig isotypes. Likewise, we demonstrated that treatment of tumour-bearing Balb/C mice with DC stimulating growth factor Flt3-L did neither modulate the magnitude nor the composition of the humoral immune response. Finally, we evaluated the immune infiltrate and Ig isotype content of the tumour tissue using flow cytometry and found no differences between treatment groups that were indicative for local antibody production. In conclusion, we demonstrate that the 67NR mammary carcinoma in Balb/C mice is associated with a pre-existing antibody response. And, we show that in tumour-bearing Balb/C mice with abscopal tumour regression such pre-existing antibody responses are not altered upon fractionated RT and/or DC stimulation with Flt3-L. Our research indicates that evaluating the humoral immune response in the setting of abscopal tumour regression is not invariably associated with therapeutic effects.

  5. Ulinastatin, a protease inhibitor, may inhibit allogeneic blood transfusion-associated pro-inflammatory cytokines and systemic inflammatory response syndrome and improve postoperative recovery

    Science.gov (United States)

    Shu, Haihua; Liu, Kuanzhi; He, Qiulan; Zhong, Fei; Yang, Lu; Li, Qiaobo; Liu, Weifeng; Ye, Fang; Huang, Wenqi

    2014-01-01

    Background The aim of this study was to investigate the effects of ulinastatin, a protease inhibitor, and blood transfusion on perioperative surgical complications, changes of systemic inflammatory response syndrome (SIRS) scores, and levels of interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor-α (TNF-α) in patients undergoing liver resection. Materials and methods Patients aged 18–65 years were enrolled and divided into four groups (12 patients in each group): a control group, a group given ulinastatin (UTI group), a group given blood transfusion (BT group), and a group given both blood transfusion and ulinastatin (BT+UTI group). Patients were randomised to receive ulinastatin or not, whereas blood transfusion was administered based on a transfusion trigger. Ulinastatin was given at a dose of 100,000 units/10 kg, infused 15 min before allogeneic blood transfusion or after completion of the liver resection. The patients were followed up for 3 days to record surgical complications, SIRS scores and levels of IL-6, IL-8 and TNF-α. Results Forty-four patients were included in the data analysis. The SIRS rate (SIRS scores ≥2) was significantly higher in the BT groups than in the control group at 6 hours and on day 3 after surgery and was significantly lower in the BT+UTI group than in the BT group on day 3 after surgery. Allogeneic blood transfusion significantly increased and ulinastatin significantly decreased postoperative levels of IL-6, IL-8, and TNF-α. The length of stay in hospital was significantly longer in the BT groups than in the control group but was not significantly different between the BT+UTI and BT groups. Conclusion A single dose of ulinastatin before allogeneic blood transfusion may lower the rate of postoperative SIRS and levels of IL-6, IL-8 and TNF-α associated with allogeneic blood transfusion and improve patients’ postoperative recovery. PMID:23736923

  6. Effect of Losartan on Right Ventricular Dysfunction: Results From the Double-Blind, Randomized REDEFINE Trial (Right Ventricular Dysfunction in Tetralogy of Fallot: Inhibition of the Renin-Angiotensin-Aldosterone System) in Adults With Repaired Tetralogy of Fallot.

    Science.gov (United States)

    Bokma, Jouke P; Winter, Michiel M; van Dijk, Arie P; Vliegen, Hubert W; van Melle, Joost P; Meijboom, Folkert J; Post, Martijn C; Berbee, Jacqueline K; Boekholdt, S Matthijs; Groenink, Maarten; Zwinderman, Aeilko H; Mulder, Barbara J M; Bouma, Berto J

    2018-04-03

    The effect of angiotensin II receptor blockers on right ventricular (RV) function is still unknown. Angiotensin II receptor blockers are beneficial in patients with acquired left ventricular dysfunction, and recent findings have suggested a favorable effect in symptomatic patients with systemic RV dysfunction. The current study aimed to determine the effect of losartan, an angiotensin II receptor blocker, on subpulmonary RV dysfunction in adults after repaired tetralogy of Fallot. The REDEFINE trial (Right Ventricular Dysfunction in Tetralogy of Fallot: Inhibition of the Renin-Angiotensin-Aldosterone System) is an investigator-initiated, multicenter, prospective, 1:1 randomized, double-blind, placebo-controlled study. Adults with repaired tetralogy of Fallot and RV dysfunction (RV ejection fraction [EF] 0.30 for all). In predefined subgroup analyses, losartan did not have a statistically significant impact on RV EF in subgroups with symptoms, restrictive RV, RV EFtetralogy of Fallot. Future larger studies may determine whether there might be a role for losartan in specific vulnerable subgroups. URL: https://www.clinicaltrials.gov. Unique identifier: NCT02010905. © 2017 American Heart Association, Inc.

  7. Downhill Running Excessive Training Inhibits Hypertrophy in Mice Skeletal Muscles with Different Fiber Type Composition.

    Science.gov (United States)

    da Rocha, Alisson L; Pereira, Bruno C; Pauli, José R; de Souza, Claudio T; Teixeira, Giovana R; Lira, Fábio S; Cintra, Dennys E; Ropelle, Eduardo R; Júnior, Carlos R B; da Silva, Adelino S R

    2016-05-01

    The aim of this study was to verify the effects of running overtraining protocols performed in downhill, uphill, and without inclination on the proteins related to hypertrophy signaling pathway in extensor digitorum longus (EDL) and soleus of C57BL/6 mice. We also performed histological and stereological analyses. Rodents were divided into control (CT; sedentary mice), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up), and overtrained by running without inclination (OTR). The incremental load, exhaustive, and grip force tests were used as performance evaluation parameters. 36 h after the grip force test, EDL and soleus were removed and immediately used for immunoblotting analysis or stored at -80°C for histological and stereological analyses. For EDL, OTR/down decreased the protein kinase B (Akt) and tuberous sclerosis protein 2 (TSC2) phosphorylation (p), and increased myostatin, receptor-activated Smads (pSMAD2-3), and insulin receptor substrate-1 (pIRS-1; Ser307/636). OTR/down also presented low and high relative proportions of cytoplasm and connective tissue, respectively. OTR/up increased the mammalian target of rapamycin (pmTOR), 70-kDa ribosomal protein S6 kinase 1 (pS6K1) and pSMAD2-3, and decreased pTSC2. OTR decreased pTSC2 and increased pIRS-1 (Ser636). For soleus, OTR/down increased S6 ribosomal protein (pS6RP) and pSMAD2-3, and decreased pIRS-1 (Ser639). OTR/up decreased pS6K1, pS6RP and pIRS-1 (Ser639), and increased pTSC2 (Ser939), and pSMAD2-3. OTR increased pS6RP, 4E-binding protein-1 (p4E-BP1), pTSC2 (Ser939), and pSMAD2-3, and decreased pIRS-1 (Ser639). In summary, OTR/down inhibited the skeletal muscle hypertrophy with concomitant signs of atrophy in EDL. The effects of OTR/up and OTR depended on the analyzed skeletal muscle type. © 2015 Wiley Periodicals, Inc.

  8. [Penicillium-inhibiting yeasts].

    Science.gov (United States)

    Benítez Ahrendts, M R; Carrillo, L

    2004-01-01

    The objective of this work was to establish the in vitro and in vivo inhibition of post-harvest pathogenic moulds by yeasts in order to make a biocontrol product. Post-harvest pathogenic moulds Penicillium digitatum, P. italicum, P. ulaiense, Phyllosticta sp., Galactomyces geotrichum and yeasts belonging to genera Brettanomyces, Candida, Cryptococcus, Kloeckera, Pichia, Rhodotorula were isolated from citrus fruits. Some yeasts strains were also isolated from other sources. The yeasts were identified by their macro and micro-morphology and physiological tests. The in vitro and in vivo activities against P. digitatum or P. ulaiense were different. Candida cantarellii and one strain of Pichia subpelliculosa produced a significant reduction of the lesion area caused by the pathogenic moulds P. digitatum and P. ulaiense, and could be used in a biocontrol product formulation.

  9. Systemic buffers inhibit carcinogenesis in TRAMP mice.

    Science.gov (United States)

    Ibrahim-Hashim, Arig; Cornnell, Heather H; Abrahams, Dominique; Lloyd, Mark; Bui, Marilyn; Gillies, Robert J; Gatenby, Robert A

    2012-08-01

    Hypoxia and acidosis develop in in situ tumors as cellular expansion increases the diffusion distance of substrates and metabolites from blood vessels deep to the basement membrane. Prior studies of breast and cervical cancer revealed that cellular adaptation to microenvironmental hypoxia and acidosis is associated with the transition from in situ to invasive cancer. We hypothesized that decreased acidosis in intraductal tumors would alter environmental selection pressures for acid adapted phenotypes and delay or prevent evolution to invasive cancer. A total of 37 C57BL/6 TRAMP mice were randomized to a control group or to 1 of 4 treatment groups. In the latter groups 200 mM sodium bicarbonate were added to drinking water starting between ages 4 and 10 weeks. In all 18 controls prostate cancer developed that was visible on 3-dimensional ultrasound at a mean age of 13 weeks. They died within 52 weeks (median 37). When sodium bicarbonate therapy commenced before age 6 weeks in 10 mice, all reached senescence (age 76 weeks) without radiographic evidence of prostate cancer. Histological sections of the prostates in this cohort showed hyperplasia but no cancer in 70% of mice and minimal well differentiated cancer in the remainder. When therapy commenced after age 6 weeks in 9 mice, prostate cancer development was no different from that in controls. Immunohistochemical staining for carbonic anhydrase 9 in regions of ductal hyperplasia showed increased expression in controls vs the early treatment group. Regional pH perturbation in in situ tumors may be a simple, inexpensive and effective cancer prevention strategy. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Studying prepulse inhibition in a stressed system

    NARCIS (Netherlands)

    Douma, T.N.

    2013-01-01

    Onset and course of psychotic disorders are thought to be influenced by stress, although there is no consistent evidence that experience of elevated levels of stress triggers disease onset in healthy individuals. In order to better understand the relation between stress and psychosis, these complex

  11. Artesunate enhances the antibacterial effect of {beta}-lactam antibiotics against Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump system AcrAB-TolC.

    Science.gov (United States)

    Li, Bin; Yao, Qi; Pan, Xi-Chun; Wang, Ning; Zhang, Rong; Li, Jun; Ding, Guofu; Liu, Xin; Wu, Chong; Ran, Dongzhi; Zheng, Jiang; Zhou, Hong

    2011-04-01

    Occasionally, we found that artesunate enhanced the antibacterial effects of antibiotics in vitro. Therefore, the enhancement of various β-lactam antibiotics by artesunate against Escherichia coli and the possible mechanism were investigated in the present study. Antibacterial effects were observed using the serial 2-fold dilution method and dynamic bacterial growth. Daunomycin accumulation within E. coli was observed using fluorospectrophotometry and laser confocal scanning microscopy. AcrAB-TolC, AmpC and TEM-1 mRNA expression was observed using a PCR method. Antisense oligonucleotides (as-ODNs) targeting AcrB were designed and used to block AcrB gene expression within E. coli ATCC 35218. Although artesunate itself had no antibacterial ability, artesunate significantly increased the antibacterial effect of β-lactam antibiotics against E. coli ATCC 35218 and an E. coli clinical strain. Artesunate increased daunomycin accumulation within E. coli ATCC 35218 in a dose-dependent manner and reduced the mRNA expression of AcrAB-TolC, an important multidrug efflux system for Gram-negative bacteria. The bacterial number was significantly reduced by as-ODN targeting AcrB, but did not further decrease after additional artesunate treatment. In contrast, artesunate lost its enhancement of β-lactam antibiotics against E. coli AG100A, a strain lacking the gene encoding AcrAB, and artesunate did not increase daunomycin accumulation within E. coli AG100A. After the transformation of pET28a-AcrB into E. coli AG100A, artesunate regained enhancement of β-lactam antibiotics. Furthermore, artesunate did not inhibit the expression of AmpC and TEM-1 mRNA. Artesunate enhances the antibacterial effect of various β-lactam antibiotics against E. coli, which might be associated with the suppression of a major multidrug resistance system, AcrAB-TolC.

  12. Theoretical and experimental studies of thermolysin inhibition

    OpenAIRE

    Wuxiuer, Yimingjiang

    2008-01-01

    Zinc-metalloproteinases play a key role in the biosythesis and metabolism of different bioactive peptides. As a member of zinc-metalloproteinases, thermolysin has served as a model system to study the inhibition mechanism of other metalloproteinases. Inhibitors of thermolysin have considerable potential as therapeutic agents. In the present master thesis, docking calculations were performed and reported for 25 potent non-peptidal thermolysin inhibitors retrieved from literatures. Docking sof...

  13. Quorum sensing inhibition

    DEFF Research Database (Denmark)

    Persson, T.; Givskov, Michael Christian; Nielsen, J.

    2005-01-01

    Quorum sensing (QS) systems comprise a new therapeutic target potentially substitutive or complementary to traditional antibiotic treatment of chronic diseases. One route to disrupt the previously established interrelationship between pathogenesis and QS is by blocking the dual functioning signal...

  14. Reduced surround inhibition in musicians.

    Science.gov (United States)

    Shin, Hae-Won; Kang, Suk Y; Hallett, Mark; Sohn, Young H

    2012-06-01

    To investigate whether surround inhibition (SI) in the motor system is altered in professional musicians, we performed a transcranial magnetic stimulation (TMS) study in 10 professional musicians and 15 age-matched healthy non-musicians. TMS was set to be triggered by self-initiated flexion of the index finger at different intervals ranging from 3 to 1,000 ms. Average motor evoked potential (MEP) amplitudes obtained from self-triggered TMS were normalized to average MEPs of the control TMS at rest and expressed as a percentage. Normalized MEP amplitudes of the abductor digiti minimi (ADM) muscles were compared between the musicians and non-musicians with the primary analysis being the intervals between 3 and 80 ms (during the movement). A mixed-design ANOVA revealed a significant difference in normalized ADM MEPs during the index finger flexion between groups, with less SI in the musicians. This study demonstrated that the functional operation of SI is less strong in musicians than non-musicians, perhaps due to practice of movement synergies involving both muscles. Reduced SI, however, could lead susceptible musicians to be prone to develop task-specific dystonia.

  15. Menaquinone analogs inhibit growth of bacterial pathogens.

    Science.gov (United States)

    Schlievert, Patrick M; Merriman, Joseph A; Salgado-Pabón, Wilmara; Mueller, Elizabeth A; Spaulding, Adam R; Vu, Bao G; Chuang-Smith, Olivia N; Kohler, Petra L; Kirby, John R

    2013-11-01

    Gram-positive bacteria cause serious human illnesses through combinations of cell surface and secreted virulence factors. We initiated studies with four of these organisms to develop novel topical antibacterial agents that interfere with growth and exotoxin production, focusing on menaquinone analogs. Menadione, 1,4-naphthoquinone, and coenzymes Q1 to Q3 but not menaquinone, phylloquinone, or coenzyme Q10 inhibited the growth and to a greater extent exotoxin production of Staphylococcus aureus, Bacillus anthracis, Streptococcus pyogenes, and Streptococcus agalactiae at concentrations of 10 to 200 μg/ml. Coenzyme Q1 reduced the ability of S. aureus to cause toxic shock syndrome in a rabbit model, inhibited the growth of four Gram-negative bacteria, and synergized with another antimicrobial agent, glycerol monolaurate, to inhibit S. aureus growth. The staphylococcal two-component system SrrA/B was shown to be an antibacterial target of coenzyme Q1. We hypothesize that menaquinone analogs both induce toxic reactive oxygen species and affect bacterial plasma membranes and biosynthetic machinery to interfere with two-component systems, respiration, and macromolecular synthesis. These compounds represent a novel class of potential topical therapeutic agents.

  16. Direct renin inhibition in chronic kidney disease

    DEFF Research Database (Denmark)

    Persson, Frederik; Rossing, Peter; Parving, Hans-Henrik

    2013-01-01

    that renin inhibition could hold potential for improved treatment in patients with chronic kidney disease, with diabetic nephropathy as an obvious group of patients to investigate, as the activity of the renin-angiotensin-aldosterone system is enhanced in these patients and as there is an unmet need...... early as a beneficial effect was unlikely and there was an increased frequency of side effects. Also in non-diabetic kidney disease a few intervention studies have been carried out, but there is no ongoing hard outcome study. In this review we provide the current evidence for renin inhibition in chronic...... kidney disease by reporting of the studies published so far as well as perspective on the future possibilites....

  17. Inhibition of intestinal disaccharidase activity by pentoses

    DEFF Research Database (Denmark)

    Halschou-Jensen, Kia

    The current health problems regarding the obesity epidemic, development of type 2 diabetes mellitus (T2D) and cardiovascular disease are a major challenge for healthcare systems worldwide.No simple or unique cure has been documented to prevent or treat this major health problem regarding T2D...... on carbohydrate- ingesting enzymes activity in vitro and possible effects on human postprandial blood response. In paper 1 the effects of sugar beet polyphenols from molasses and the potential inhibition of sucrase activity in vitro, was investigated. Two different polyphenol-rich fractions from chromatographic...... separation of molasses from sugar beets and pure ferulic acid were tested. We found no effects of the two fractions of molasses. The pure ferulic acid indicated an inhibition of sucrase in vitr. Both in vitro and in vivo studies have investigated the effects of L-arabinose and D-xylose on carbohydrate...

  18. Selective inhibition of distracting input.

    Science.gov (United States)

    Noonan, MaryAnn P; Crittenden, Ben M; Jensen, Ole; Stokes, Mark G

    2017-10-16

    We review a series of studies exploring distractor suppression. It is often assumed that preparatory distractor suppression is controlled via top-down mechanisms of attention akin to those that prepare brain areas for target enhancement. Here, we consider two alternative mechanisms: secondary inhibition and expectation suppression within a predictive coding framework. We draw on behavioural studies, evidence from neuroimaging and some animal studies. We conclude that there is very limited evidence for selective top-down control of preparatory inhibition. By contrast, we argue that distractor suppression often relies secondary inhibition of non-target items (relatively non-selective inhibition) and on statistical regularities of the environment, learned through direct experience. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. Response inhibition is associated with white matter microstructure in children

    DEFF Research Database (Denmark)

    Madsen, Kathrine Skak; Baaré, William; Vestergaard, Martin

    2010-01-01

    the relationship between response inhibition, as measured with the stop-signal task, and indices of regional white matter microstructure in typically-developing children. We hypothesized that better response inhibition performance would be associated with higher fractional anisotropy (FA) in fibre tracts within...... to the prediction of performance variability. Observed associations may be related to variation in phase of maturation, to activity-dependent alterations in the network subserving response inhibition, or to stable individual differences in underlying neural system connectivity. (C) 2009 Elsevier Ltd. All rights...... reserved....

  20. [Concepts of inhibition in psychiatry].

    Science.gov (United States)

    Auroux, Y; Bourrat, M M; Brun, J P

    1978-01-01

    Following a historical approach, the authors first describe the original development of the concept of inhibition in neurophysiology and then analyze the subsequent adaptations made in psychiatry around such concept including those of: -- Pavlov, Hull, Watson and the behaviorists, -- Freud and the Freudian School, -- clinicians and psychopharmacologists. The concept of inhibition has thus various meanings in psychiatry. Although some unity is achieved on the semiological level, this aspect cannot explain the extent of the process.

  1. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    International Nuclear Information System (INIS)

    Jan, Yi-Hua; Richardson, Jason R.; Baker, Angela A.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2015-01-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.

  2. Tiotropium bromide inhibits human monocyte chemotaxis

    Directory of Open Access Journals (Sweden)

    Kurai M

    2012-08-01

    Full Text Available Tiotropium bromide (Spiriva® is used as a bronchodilator in chronic obstructive pulmonary disease (COPD. However, clinical evidence suggests that tiotropium bromide may improve COPD by mechanisms beyond bronchodilation. We hypothesized that tiotropium bromide may act as an anti-inflammatory agent by inhibiting monocyte chemotaxis, a process that plays an important role in the lung inflammation of COPD. To test this hypothesis monocytes were pretreated with tiotropium bromide prior to exposure to chemotactic agents and monocyte chemotactic activity (MCA was evaluated with a blind chamber technique. Tiotropium bromide inhibited MCA in a dose- and time- dependent manner (respectively, p< 0.01 by directly acting on the monocyte. Acetylcholine (ACh challenge increased MCA (p< 0.01, and tiotropium bromide effectively reduced (p< 0.01 the increase in MCA by ACh. The inhibition of MCA by tiotropium bromide was reversed by a muscarinic type 3 (M3-muscarinic receptor antagonist (p< 0.01, and was not effected by an M2 receptor antagonist. Furthermore, a selective M3 receptor agonist, cevimeline, and Gq protein stimulator, Pasteurella multocida toxin, significantly increased MCA (P < 0.01, and tiotropium bromide pretreatment reduced (p< 0.01 the increase in MCA induced by these agents. These results suggest that tiotropium might regulate monocyte chemotaxis, in part, by interfering with M3-muscarinic receptor coupled Gq protein signal transduction. These results provide new insight that an anti-cholinergic therapeutic may provide anti-inflammatory action in the pulmonary system.

  3. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy.

    Science.gov (United States)

    Lach-Trifilieff, Estelle; Minetti, Giulia C; Sheppard, KellyAnn; Ibebunjo, Chikwendu; Feige, Jerome N; Hartmann, Steffen; Brachat, Sophie; Rivet, Helene; Koelbing, Claudia; Morvan, Frederic; Hatakeyama, Shinji; Glass, David J

    2014-02-01

    The myostatin/activin type II receptor (ActRII) pathway has been identified to be critical in regulating skeletal muscle size. Several other ligands, including GDF11 and the activins, signal through this pathway, suggesting that the ActRII receptors are major regulatory nodes in the regulation of muscle mass. We have developed a novel, human anti-ActRII antibody (bimagrumab, or BYM338) to prevent binding of ligands to the receptors and thus inhibit downstream signaling. BYM338 enhances differentiation of primary human skeletal myoblasts and counteracts the inhibition of differentiation induced by myostatin or activin A. BYM338 prevents myostatin- or activin A-induced atrophy through inhibition of Smad2/3 phosphorylation, thus sparing the myosin heavy chain from degradation. BYM338 dramatically increases skeletal muscle mass in mice, beyond sole inhibition of myostatin, detected by comparing the antibody with a myostatin inhibitor. A mouse version of the antibody induces enhanced muscle hypertrophy in myostatin mutant mice, further confirming a beneficial effect on muscle growth beyond myostatin inhibition alone through blockade of ActRII ligands. BYM338 protects muscles from glucocorticoid-induced atrophy and weakness via prevention of muscle and tetanic force losses. These data highlight the compelling therapeutic potential of BYM338 for the treatment of skeletal muscle atrophy and weakness in multiple settings.

  4. Homo economicus belief inhibits trust.

    Directory of Open Access Journals (Sweden)

    Ziqiang Xin

    Full Text Available As a foundational concept in economics, the homo economicus assumption regards humans as rational and self-interested actors. In contrast, trust requires individuals to believe partners' benevolence and unselfishness. Thus, the homo economicus belief may inhibit trust. The present three experiments demonstrated that the direct exposure to homo economicus belief can weaken trust. And economic situations like profit calculation can also activate individuals' homo economicus belief and inhibit their trust. It seems that people's increasing homo economicus belief may serve as one cause of the worldwide decline of trust.

  5. Homo economicus belief inhibits trust.

    Science.gov (United States)

    Xin, Ziqiang; Liu, Guofang

    2013-01-01

    As a foundational concept in economics, the homo economicus assumption regards humans as rational and self-interested actors. In contrast, trust requires individuals to believe partners' benevolence and unselfishness. Thus, the homo economicus belief may inhibit trust. The present three experiments demonstrated that the direct exposure to homo economicus belief can weaken trust. And economic situations like profit calculation can also activate individuals' homo economicus belief and inhibit their trust. It seems that people's increasing homo economicus belief may serve as one cause of the worldwide decline of trust.

  6. Angiotensin inhibition in heart failure

    Directory of Open Access Journals (Sweden)

    John JV Mcmurray

    2004-03-01

    Full Text Available Survival in patients with heart failure remains very poor, and is worse than that for most common cancers, including bowel cancer in men and breast cancer in women. The renin-angiotensin-aldosterone system (RAAS is not completely blocked by angiotensin-converting enzyme (ACE inhibition. Blockade of the RAAS at the AT1-receptor has the theoretical benefit of more effective blockade of the actions of angiotensin II. ACE inhibitors (ACE-Is prevent the breakdown of bradykinin: this has been blamed for some of the unwanted effects of ACE-Is although bradykinin may have advantageous effects in heart failure. Consequently, ACE-Is and ARBs might be complementary or even additive treatments; recent trials have tested these hypotheses. The Candesartan in Heart failure Assessment of Reduction in Mortality and morbidity (CHARM programme compared the angiotensin receptor blocker (ARB candesartan (target dose 32 mg once daily to placebo in three distinct but complementary populations of patients with symptomatic heart failure. These were: patients with reduced left ventricular ejection fraction (LVEF who were ACE-I-intolerant (CHARM-Alternative; patients with reduced LVEF who were being treated with ACE-Is (CHARM-Added; and patients with preserved left ventricular systolic function (CHARM-Preserved. There were substantial and statistically significant reductions in the primary composite end point (risk of cardiovascular death or hospital admission for heart failure in CHARM-Alternative. This was also the case in CHARM-Added, supporting and extending the findings of Val-HeFT. In CHARM-Preserved, the effect of candesartan on the primary end point did not reach conventional statistical significance though hospital admission for heart failure was reduced significantly with candesartan. In the CHARM-Overall programme there was a statistically borderline reduction in all-cause mortality with a clear reduction in cardiovascular mortality. All-cause mortality was

  7. Angiotensin inhibition in heart failure

    Directory of Open Access Journals (Sweden)

    John JV McMurray

    2004-03-01

    Full Text Available Survival in patients with heart failure remains very poor, and is worse than that for most common cancers, including bowel cancer in men and breast cancer in women. The renin-angiotensin-aldosterone system (RAAS is not completely blocked by angiotensin-converting enzyme (ACE inhibition. Blockade of the RAAS at the AT1-receptor has the theoretical benefit of more effective blockade of the actions of angiotensin II. ACE inhibitors (ACE-Is prevent the breakdown of bradykinin: this has been blamed for some of the unwanted effects of ACE-Is although bradykinin may have advantageous effects in heart failure. Consequently, ACE-Is and ARBs might be complementary or even additive treatments; recent trials have tested these hypotheses.The Candesartan in Heart failure Assessment of Reduction in Mortality and morbidity (CHARM programme compared the angiotensin receptor blocker (ARB candesartan (target dose 32 mg once daily to placebo in three distinct but complementary populations of patients with symptomatic heart failure. These were: patients with reduced left ventricular ejection fraction (LVEF who were ACE-I-intolerant (CHARM-Alternative; patients with reduced LVEF who were being treated with ACE-Is (CHARM-Added; and patients with preserved left ventricular systolic function (CHARM-Preserved.There were substantial and statistically significant reductions in the primary composite end point (risk of cardiovascular death or hospital admission for heart failure in CHARM-Alternative. This was also the case in CHARM-Added, supporting and extending the findings of Val-HeFT. In CHARM-Preserved, the effect of candesartan on the primary end point did not reach conventional statistical significance though hospital admission for heart failure was reduced significantly with candesartan. In the CHARM-Overall programme there was a statistically borderline reduction in all-cause mortality with a clear reduction in cardiovascular mortality. All-cause mortality was

  8. Testing of Biologically Inhibiting Surface

    DEFF Research Database (Denmark)

    Bill Madsen, Thomas; Larsen, Erup

    2003-01-01

    The main purpose of this course is to examine a newly developed biologically inhibiting material with regards to galvanic corrosion and electrochemical properties. More in detail, the concern was how the material would react when exposed to cleaning agents, here under CIP cleaning (Cleaning...

  9. Withdrawal of voluntary inhibition unravels the off state of the spontaneous blink generator.

    Science.gov (United States)

    Moraitis, Timoleon; Ghosh, Arko

    2014-12-01

    Involuntary movements such as spontaneous eye blinks can be successfully inhibited at will. Little do we know how the voluntary motor circuits countermand spontaneous blinks. Do the voluntary inhibitory commands act to pause or to turn off the endogenous blink generator, or does inhibition intersect and counter the generator׳s excitatory outputs? In theory, the time taken for the system to generate an after-inhibition blink will reflect onto the form of inhibition. For instance, if voluntary commands were to turn the blink generator off then the after-blink latency would be fixed to the inhibition offset and reflect the time it takes for the generator to rebound and turn on. In this study we measured the after-blink latency from the offset of voluntary inhibition. Volunteers inhibited their blinks in response to sound tones of randomly varying durations. At the offset volunteers withdrew the inhibition and relaxed. Interestingly, the spontaneous after-blinks were fixed to the offset of the inhibition as if the generator rebounded from an off state. The after-blink latency was not related to the duration of the inhibition, and inhibiting even for a small fraction of the mean inter-blink interval generated an after-blink time-locked to the inhibition offset. Interestingly, the insertion of voluntary blinks after inhibition further altered the blink generator by delaying the spontaneous after-blinks. We propose that the inhibition of spontaneous blinks at the level of the generator allows for highly effective voluntary countermanding. Nevertheless, the withdrawal of such inhibition was strongly associated with motor excitation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The immediate effects of acoustic trauma on excitation and inhibition in the inferior colliculus : A Wiener-kernel analysis

    NARCIS (Netherlands)

    Heeringa, Amarins Nieske; van Dijk, Pim

    Noise-induced tinnitus and hyperacusis are thought to correspond to a disrupted balance between excitation and inhibition in the central auditory system. Excitation and inhibition are often studied using pure tones; however, these responses do not reveal inhibition within the excitatory pass band.

  11. On inhibition of dental erosion.

    Science.gov (United States)

    Rölla, Gunnar; Jonski, Grazyna; Saxegaard, Erik

    2013-11-01

    To examine the erosion-inhibiting effect of different concentrations of hydrofluoric acid. Thirty-six human molars were individually treated with 10 ml of 0.1 M citric acid for 30 min (Etch 1), acid was collected and stored until analysis. The teeth were randomly divided into six groups and then individually treated with 10 ml of one of six dilutions (from 0.1-1%) of hydrofluoric acid. The teeth were then again treated with citric acid (Etch 2). The individual acid samples from Etch 1 and 2 were analyzed for calcium by flame atomic absorption spectroscopy and difference in calcium loss was calculated. The highest erosion inhibiting effect was obtained in groups with the highest concentrations of hydrofluoric acid, where the pH was lowest, below pKa of 3.17, thus the hydrofluoric acids being mainly in an undissociated state. Diluted hydrofluoric acid is present in aqueous solution of SnF2 and TiF4 (which are known to inhibit dental erosion): SnF2 + 3H2O = Sn(OH)2 + 2HF + H2O and TiF4 + 5H2O = Ti(OH)4 + 4HF + H2O. It is also known that pure, diluted hydrofluoric acid can inhibit dental erosion. Teeth treated with hydrofluoric acid are covered by a layer of CaF2-like mineral. This mineral is acid resistant at pH acid resistant mineral, initiated by tooth enamel treatment with hydrofluoric acid. Hydrofluoric acid is different in having fluoride as a conjugated base, which provides this acid with unique properties.

  12. Global Precipitation Measurement (GPM) Safety Inhibit Timeline Tool

    Science.gov (United States)

    Dion, Shirley

    2012-01-01

    The Global Precipitation Measurement (GPM) Observatory is a joint mission under the partnership by National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA), Japan. The NASA Goddard Space Flight Center (GSFC) has the lead management responsibility for NASA on GPM. The GPM program will measure precipitation on a global basis with sufficient quality, Earth coverage, and sampling to improve prediction of the Earth's climate, weather, and specific components of the global water cycle. As part of the development process, NASA built the spacecraft (built in-house at GSFC) and provided one instrument (GPM Microwave Imager (GMI) developed by Ball Aerospace) JAXA provided the launch vehicle (H2-A by MHI) and provided one instrument (Dual-Frequency Precipitation Radar (DPR) developed by NTSpace). Each instrument developer provided a safety assessment which was incorporated into the NASA GPM Safety Hazard Assessment. Inhibit design was reviewed for hazardous subsystems which included the High Gain Antenna System (HGAS) deployment, solar array deployment, transmitter turn on, propulsion system release, GMI deployment, and DPR radar turn on. The safety inhibits for these listed hazards are controlled by software. GPM developed a "pathfinder" approach for reviewing software that controls the electrical inhibits. This is one of the first GSFC in-house programs that extensively used software controls. The GPM safety team developed a methodology to document software safety as part of the standard hazard report. As part of this process a new tool "safety inhibit time line" was created for management of inhibits and their controls during spacecraft buildup and testing during 1& Tat GSFC and at the Range in Japan. In addition to understanding inhibits and controls during 1& T the tool allows the safety analyst to better communicate with others the changes in inhibit states with each phase of hardware and software testing. The tool was very

  13. Pim-1 kinase inhibits the activation of reporter gene expression in Elk-1 and c-Fos reporting systems but not the endogenous gene expression: an artifact of the reporter gene assay by transient co-transfection

    Directory of Open Access Journals (Sweden)

    Yan B.

    2006-01-01

    Full Text Available We have studied the molecular mechanism and signal transduction of pim-1, an oncogene encoding a serine-threonine kinase. This is a true oncogene which prolongs survival and inhibits apoptosis of hematopoietic cells. In order to determine whether the effects of Pim-1 occur by regulation of the mitogen-activated protein kinase pathway, we used a transcriptional reporter assay by transient co-transfection as a screening method. In this study, we found that Pim-1 inhibited the Elk-1 and NFkappaB transcriptional activities induced by activation of the mitogen-activated protein kinase cascade in reporter gene assays. However, Western blots showed that the induction of Elk-1-regulated expression of endogenous c-Fos was not affected by Pim-1. The phosphorylation and activation of neither Erk1/2 nor Elk-1 was influenced by Pim-1. Also, in the gel shift assay, the pattern of endogenous NFkappaB binding to its probe was not changed in any manner by Pim-1. These data indicate that Pim-1 does not regulate the activation of Erk1/2, Elk-1 or NFkappaB. These contrasting results suggest a pitfall of the transient co-transfection reporter assay in analyzing the regulation of transcription factors outside of the chromosome context. It ensures that results from reporter gene expression assay should be verified by study of endogenous gene expression.

  14. Reciprocal inhibition in Parkinson's disease.

    Science.gov (United States)

    Tsai, C H; Chen, R S; Lu, C S

    1997-01-01

    We studied the inhibition of median H-reflex by conditioning stimuli on the radial nerve in 14 normal controls, 6 patients with unilateral and 1 patient with predominantly left-sided Parkinson's disease. In normal controls, the electrophysiological studies were performed on their right hands, yet both hands were examined in patient group. In the controls, we identified three inhibitory phases, with maximal inhibition at conditioning-test intervals of 0 ms (41.66 +/- 4.73%), 20 ms (45.19 +/- 4.33%), and 100 ms (44.55 +/- 6.84%), respectively. In the less- or a- symptomatic side of the patient group, the inhibitory patterns are similar to those of the controls. However, in the symptomatic arms, loss of inhibition, or even mild potentiation, was observed in the third inhibitory phase. When the symptomatic and asymptomatic sides of patients were compared, in contrast to the striking phenomenon found between symptomatic side and the controls, no difference was observed in the third phase. The current results imply that, although no obvious rigidity can be detected on the asymptomatic sides, subtle functional corruption may have occurred within the contralateral basal ganglia in patients with unilateral Parkinson's disease. The remarkable change of the third phase on the symptomatic sides of patients suggests the perturbation of the polysynaptic long latency reflex pathway may somehow play a role in the rigidity pathogenesis.

  15. Aβ association inhibition by transferrin.

    Science.gov (United States)

    Raditsis, Annie V; Milojevic, Julijana; Melacini, Giuseppe

    2013-07-16

    The iron-transport glycoprotein transferrin has recently been shown to serve as a potent inhibitor of Aβ self-association. Although this novel, to our knowledge, inhibitory function of transferrin is of potential therapeutic interest for the treatment of Alzheimer's disease, the underlying mechanism is still not fully understood. Although it has been shown that the Fe(III) sequestration by transferrin reduces oxidative damage and Aβ aggregation, it is not clear whether transferrin is also able to inhibit Aβ self-association through direct binding of Aβ. Here, using saturation transfer and off-resonance relaxation NMR spectroscopy, we show that transferrin inhibits Aβ aggregation also by preferentially binding Aβ oligomers and outcompeting Aβ monomers that would otherwise cause the growth of the Aβ oligomers into larger assemblies. This inhibitory mechanism is different from the iron-sequestration model, but it is qualitatively similar to a mechanism previously proposed for the inhibition of Aβ self-association by another plasma and cerebrospinal fluid protein, i.e., human serum albumin. These results suggest that Aβ monomer competition through direct Aβ oligomer binding might be a general strategy adopted by proteins in plasma and cerebrospinal fluid to prevent Aβ aggregation. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Serotonin, inhibition, and negative mood.

    Directory of Open Access Journals (Sweden)

    Peter Dayan

    2008-02-01

    Full Text Available Pavlovian predictions of future aversive outcomes lead to behavioral inhibition, suppression, and withdrawal. There is considerable evidence for the involvement of serotonin in both the learning of these predictions and the inhibitory consequences that ensue, although less for a causal relationship between the two. In the context of a highly simplified model of chains of affectively charged thoughts, we interpret the combined effects of serotonin in terms of pruning a tree of possible decisions, (i.e., eliminating those choices that have low or negative expected outcomes. We show how a drop in behavioral inhibition, putatively resulting from an experimentally or psychiatrically influenced drop in serotonin, could result in unexpectedly large negative prediction errors and a significant aversive shift in reinforcement statistics. We suggest an interpretation of this finding that helps dissolve the apparent contradiction between the fact that inhibition of serotonin reuptake is the first-line treatment of depression, although serotonin itself is most strongly linked with aversive rather than appetitive outcomes and predictions.

  17. Inhibition of Stat3 signaling ameliorates atrophy of the soleus muscles in mice lacking the vitamin D receptor.

    Science.gov (United States)

    Gopinath, Suchitra D

    2017-01-25

    Although skeletal muscle wasting has long been observed as a clinical outcome of impaired vitamin D signaling, precise molecular mechanisms that mediate the loss of muscle mass in the absence of vitamin D signaling are less clear. To determine the molecular consequences of vitamin D signaling, we analyzed the role of signal transducer and activator of transcription 3 (Stat3) signaling, a known contributor to various muscle wasting pathologies, in skeletal muscles. We isolated soleus (slow) and tibialis anterior (fast) muscles from mice lacking the vitamin D receptor (VDR -/- ) and used western blot analysis, quantitative RTPCR, and pharmacological intervention to analyze muscle atrophy in VDR -/- mice. We found that slow and fast subsets of muscles of the VDR -/- mice displayed elevated levels of phosphorylated Stat3 accompanied by an increase in Myostatin expression and signaling. Consequently, we observed reduced activity of mammalian target of rapamycin (mTOR) signaling components, ribosomal S6 kinase (p70S6K) and ribosomal S6 protein (rpS6), that regulate protein synthesis and cell size, respectively. Concomitantly, we observed an increase in atrophy regulators and a block in autophagic gene expression. An examination of the upstream regulation of Stat3 levels in VDR -/- muscles revealed an increase in IL-6 protein expression in the soleus, but not in the tibialis anterior muscles. To investigate the involvement of satellite cells (SCs) in atrophy in VDR -/- mice, we found that there was no significant deficit in SC numbers in VDR -/- muscles compared to the wild type. Unlike its expression within VDR -/- fibers, Myostatin levels in VDR -/- SCs from bulk muscles were similar to those of wild type. However, VDR -/- SCs induced to differentiate in culture displayed increased p-Stat3 signaling and Myostatin expression. Finally, VDR -/- mice injected with a Stat3 inhibitor displayed reduced Myostatin expression and function and restored active p70S6K and rpS6

  18. Changes in Serum Levels of Myokines and Wnt-Antagonists after an Ultramarathon Race.

    Directory of Open Access Journals (Sweden)

    Katharina Kerschan-Schindl

    Full Text Available Regular physical activities have a positive effect on the muscular skeletal system but overstrenuous exercise may be different. Transiently suppressed bone formation and increased bone resorption after participation in a 246-km ultradistance race has been demonstrated.The aim of this study was to analyze effects of the Spartathlon race on novel musculoskeletal markers.Venous blood samples were obtained before and immediately after the race from 19 participants of the Spartathlon. From 9 runners who were available 3 days after the start blood was drawn for a third time. Serum levels of myostatin, an inhibitor of myogenic differentiation, and its opponent follistatin as well as sclerostin and dickkopf-1, both of them inhibitors of the wnt signaling pathway, and markers of bone turnover were determined.Serum levels of myostatin were significantly higher after the race. Serum follistatin only showed a transient increase. Sclerostin levels did not significantly differ before and after the race, whereas dickkopf-1 levels were significantly decreased. At follow-up a decrement of sclerostin and dickkopf-1 levels was seen. Serum cathepsin K levels did not change.The increase of serum levels of myostatin appears to reflect muscle catabolic processes induced by overstrenuous exercise. After the short-term uncoupling of bone turnover participation in an ultradistance race seems to initiate a long-term positive effect on bone indicated by the low-level inhibition of the Wnt/β-catenin signaling pathway.

  19. Amylase inhibits Neisseria gonorrhoeae by degrading starch in the growth medium.

    OpenAIRE

    Gregory, M R; Gregory, W W; Bruns, D E; Zakowski, J J

    1983-01-01

    Highly purified salivary alpha-amylase inhibited the growth of fresh isolates of Neisseria gonorrhoeae on GC agar base medium supplemented with 2% IsoVitaleX (BBL Microbiology Systems). Hydrolysis of starch in the medium by amylase resulted in a negative starch-iodine test. However, purified amylase did not inhibit gonococcal growth on agar plates that contained hemoglobin (chocolate agar). This effect was not caused by inhibition of amylase, since amylase activity was the same in the presenc...

  20. Carbon source-dependent inhibition of xyl operon expression of the Pseudomonas putida TOL plasmid.

    OpenAIRE

    Holtel, A; Marqués, S; Möhler, I; Jakubzik, U; Timmis, K N

    1994-01-01

    TOL plasmid-encoded degradation of benzyl alcohol by Pseudomonas putida is inhibited by glucose and other compounds related to the main carbohydrate metabolism in Pseudomonas species. We report here that this effect is exerted at the level of expression of the xyl catabolic operons, and two xyl promoters, Pu and Ps, were identified as the primary targets of this inhibition. xyl promoter activation was also inhibited by glucose in the heterologous Escherichia coli system, apparently not howeve...

  1. Saccadic inhibition in a guided saccade task

    Directory of Open Access Journals (Sweden)

    Isabel Dombrowe

    2018-03-01

    Full Text Available The eye movement system reacts very systematically to visual transients that are presented during the planning phase of a saccade. About 50 to 70 ms after the onset of a transient, the number of saccades that are started decreases, a phenomenon that has been termed saccadic inhibition. Saccades started just before this time window are hypometric compared to regular saccades, presumably because the presentation of the transient stops them in mid-flight. Recent research investigating the properties of repeated saccades to fixed locations found that these early saccades were additionally faster than expected from the main sequence relation, suggesting that a saccadic dead time during which saccades can no longer be modified does not exist. The present study investigated the properties of saccades to random locations in a guided saccade task. As expected, early saccades starting just before the saccadic inhibition dip in frequency were hypometric. Their velocity profiles implied that these saccades were actively stopped after reaching peak velocity. However, the peak velocities of these saccades did not generally deviate from the main sequence relation. The question whether an active stop of early saccades is incompatible with the idea of a saccadic dead time is open to debate.

  2. Inhibition of human lung adenocarcinoma growth using survivint34a ...

    Indian Academy of Sciences (India)

    Low-dose systemic administration was continuously used. The HSurvivinT34A plasmid (5 g/one) complexed with a cationic liposome (DOTAP/Chol) significantly inhibited tumour growth in our model. We observed microvessel density degradation by CD31 immunohistochemistry and apoptotic cell increase by TUNEL ...

  3. Inhibition of Sheep Liver Cholinesterase Enzyme by the Leaf ...

    African Journals Online (AJOL)

    The efficacies of these crude extract were comparable to that of Huperzine A as a reference standard for cholinesterase inhibition. The anticholinesterase assay serves as an indicator system whose analysis always correspond to the bioluminescent Mycobacterium aurum or tuberculosis expressing firefly luciferase.

  4. Cyperus scariosus Chloroform Fraction Inhibits T cell Responses in ...

    African Journals Online (AJOL)

    Erah

    CSC did not significantly (p < 0.01) suppress Th2 (IL-4) system. Conclusion: The findings from this investigation reveal that C. scariosus causes immunosuppression by inhibiting Th1 cytokines. Keywords: Cyperus scariosus; Immunosuppression; Humoral antibody titre; Cell-mediated immune response; CD 4+ T- helper cells ...

  5. Inhibition of human aromatase complex (CYP19) by antiepileptic drugs

    DEFF Research Database (Denmark)

    Jacobsen, Naja Wessel; Halling-Sørensen, Bent; Birkved, Franziska Maria A Kramer

    2008-01-01

    Antiepileptic drugs and epilepsy are often associated with sexual disorder in women such as hyperandrogenism, menstrual disorders and ovarian cysts. In children, until puberty, a hormone imbalance may influence many aspects of development, e.g. growth and sexual maturation. The aromatase complex...... is the enzyme system that converts androgens to estrogens and consequently an inhibition may induce a hormone imbalance. Twelve antiepileptic drugs, used in mono or polytherapy for the treatment of children, were tested for their ability to inhibit aromatase (CYP19) with commercially available microsomes from...

  6. Study of electroplated silver-palladium biofouling inhibiting coating

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Hilbert, Lisbeth Rischel; Møller, Per

    The undesired microbial and biofilm adhesions on the surfaces of food industrial facilities, water supply systems and etc. are so called as “biofouling”. Biofouling can cause many undesirable effects. Until now for solving biofouling, there are few non-toxic inhibiting treatments. In this study......, a new coating has been designed to form an inhibiting effect on the surface by itself. In this way, it is desired that the release of any matter will be in low concentration. This design is based on silver combined with nobler palladium, both with catalytic properties. Due to the potential difference...... between silver and palladium while contacting with an electrolyte, the surface can form numerous discrete anodic and cathodic areas, so that an inhibiting reaction can be formed. In this paper, a series of electrochemical and biological tests were conducted to study the properties of these surfaces...

  7. Self-regulation, ego depletion, and inhibition.

    Science.gov (United States)

    Baumeister, Roy F

    2014-12-01

    Inhibition is a major form of self-regulation. As such, it depends on self-awareness and comparing oneself to standards and is also susceptible to fluctuations in willpower resources. Ego depletion is the state of reduced willpower caused by prior exertion of self-control. Ego depletion undermines inhibition both because restraints are weaker and because urges are felt more intensely than usual. Conscious inhibition of desires is a pervasive feature of everyday life and may be a requirement of life in civilized, cultural society, and in that sense it goes to the evolved core of human nature. Intentional inhibition not only restrains antisocial impulses but can also facilitate optimal performance, such as during test taking. Self-regulation and ego depletion- may also affect less intentional forms of inhibition, even chronic tendencies to inhibit. Broadly stated, inhibition is necessary for human social life and nearly all societies encourage and enforce it. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Reactivation of Paraoxon-inhibited Acetylcholinesterase by Monoquaternary Pyridinium Oximes with N-Alkylbromide Side Chains

    International Nuclear Information System (INIS)

    Lee, Hyun Myung; Shin, Jin Soo; Han, Soo Bong; Jung Yu Kyung; Kim, Meeheyin; Lee, Sang-Ho; Jung, Young-Sik; Hur, Gyeunghaeng

    2016-01-01

    Organophosphorus nerve agents cause neurotoxicity through the inhibition of acetylcholinesterase (AChE) in the human body. Various oxime reactivators were found to reactivate the inhibited AChE. Pralidoxime (2-PAM) is one such representative oxime antidotes. However, its reactivation ability, as well as its action on the inhibited AChE of the central nervous system, is not sufficient, and therefore the discovery of new oximereactivators is required. Here, oximes with N-bromoalkyl groups were synthesized, and their reactivationpotency on AChE inhibited by paraoxon was evaluated.

  9. NSAIDs inhibit tumorigenesis, but how?

    Science.gov (United States)

    Gurpinar, Evrim; Grizzle, William E; Piazza, Gary A

    2014-03-01

    Numerous epidemiologic studies have reported that the long-term use of nonsteroidal anti-inflammatory drugs (NSAID) is associated with a significant decrease in cancer incidence and delayed progression of malignant disease. The use of NSAIDs has also been linked with reduced risk from cancer-related mortality and distant metastasis. Certain prescription-strength NSAIDs, such as sulindac, have been shown to cause regression of precancerous lesions. Unfortunately, the extended use of NSAIDs for chemoprevention results in potentially fatal side effects related to their COX-inhibitory activity and suppression of prostaglandin synthesis. Although the basis for the tumor growth-inhibitory activity of NSAIDs likely involves multiple effects on tumor cells and their microenvironment, numerous investigators have concluded that the underlying mechanism is not completely explained by COX inhibition. It may therefore be possible to develop safer and more efficacious drugs by targeting such COX-independent mechanisms. NSAID derivatives or metabolites that lack COX-inhibitory activity, but retain or have improved anticancer activity, support this possibility. Experimental studies suggest that apoptosis induction and suppression of β-catenin-dependent transcription are important aspects of their antineoplastic activity. Studies show that the latter involves phosphodiesterase inhibition and the elevation of intracellular cyclic GMP levels. Here, we review the evidence for COX-independent mechanisms and discuss progress toward identifying alternative targets and developing NSAID derivatives that lack COX-inhibitory activity but have improved antineoplastic properties. ©2013 AACR

  10. Formation of distinct inclusion bodies by inhibition of ubiquitin-proteasome and autophagy-lysosome pathways

    International Nuclear Information System (INIS)

    Lee, Junho; Yang, Kyu-Hwan; Joe, Cheol O.; Kang, Seok-Seong

    2011-01-01

    Research highlights: → Distinct inclusion bodies are developed by inhibition of UPP and ALP. → The inclusion bodies differ in morphology, localization and formation process. → The inclusion bodies are distinguishable by the localization of TSC2. → Inhibition of both UPP and ALP simultaneously induces those inclusion bodies. -- Abstract: Accumulation of misfolded proteins is caused by the impairment of protein quality control systems, such as ubiquitin-proteasome pathway (UPP) and autophagy-lysosome pathway (ALP). In this study, the formation of inclusion bodies was examined after the blockade of UPP and/or ALP in A549 cells. UPP inhibition induced a single and large inclusion body localized in microtubule-organizing center. Interestingly, however, ALP inhibition generated dispersed small inclusion bodies in the cytoplasm. Tuberous sclerosis complex 2 was selectively accumulated in the inclusion bodies of UPP-inhibited cells, but not those of ALP-inhibited cells. Blockade of transcription and translation entirely inhibited the formation of inclusion body induced by UPP inhibition, but partially by ALP inhibition. Moreover, the simultaneous inhibition of two protein catabolic pathways independently developed two distinct inclusion bodies within a single cell. These findings clearly demonstrated that dysfunction of each catabolic pathway induced formation and accumulation of unique inclusion bodies on the basis of morphology, localization and formation process in A549 cells.

  11. Pharmacological inhibition of poly(ADP-ribose) polymerase inhibits angiogenesis

    International Nuclear Information System (INIS)

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Batkai, Sandor; Godlewski, Grzegorz; Hasko, Gyoergy; Liaudet, Lucas; Pacher, Pal

    2006-01-01

    Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which plays an important role in regulating cell death and cellular responses to DNA repair. Pharmacological inhibitors of PARP are being considered as treatment for cancer both in monotherapy as well as in combination with chemotherapeutic agents and radiation, and were also reported to be protective against untoward effects exerted by certain anticancer drugs. Here we show that pharmacological inhibition of PARP with 3-aminobenzamide or PJ-34 dose-dependently reduces VEGF-induced proliferation, migration, and tube formation of human umbilical vein endothelial cells in vitro. These results suggest that treatment with PARP inhibitors may exert additional benefits in various cancers and retinopathies by decreasing angiogenesis

  12. Selective and nonselective inhibition of competitors in picture naming

    NARCIS (Netherlands)

    Shao, Z.; Meyer, A.S.; Roelofs, A.P.A.

    2013-01-01

    The present study examined the relation between nonselective inhibition and selective inhibition in picture naming performance. Nonselective inhibition refers to the ability to suppress any unwanted response, whereas selective inhibition refers to the ability to suppress specific competing

  13. Greener Approach towards Corrosion Inhibition

    Directory of Open Access Journals (Sweden)

    Neha Patni

    2013-01-01

    Full Text Available Corrosion control of metals is technically, economically, environmentally, and aesthetically important. The best option is to use inhibitors for protecting metals and alloys against corrosion. As organic corrosion inhibitors are toxic in nature, so green inhibitors which are biodegradable, without any heavy metals and other toxic compounds, are promoted. Also plant products are inexpensive, renewable, and readily available. Tannins, organic amino acids, alkaloids, and organic dyes of plant origin have good corrosion-inhibiting abilities. Plant extracts contain many organic compounds, having polar atoms such as O, P, S, and N. These are adsorbed on the metal surface by these polar atoms, and protective films are formed, and various adsorption isotherms are obeyed. Various types of green inhibitors and their effect on different metals are mentioned in the paper.

  14. Triacontanol inhibits both enzymatic and nonenzymatic lipid peroxidation.

    Science.gov (United States)

    Ramanarayan, K; Bhat, A; Shripathi, V; Swamy, G S; Rao, K S

    2000-09-01

    The effect of the plant growth regulator, triacontanol (TRIA) on lipid peroxidation was studied in three different systems: (i) isolated chloroplasts of spinach (Spinacea oleracea L.) leaves; (ii) egg lecithin liposomes; and (iii) soybean lipoxygenase (LOX) system. The nonenzymatic lipid peroxidation in isolated chloroplasts and egg lecithin liposomes was measured as the amount of thiobarbituric acid reactive substances (TBARS) formed. Inhibition of Fe2+ and/or light-induced lipid peroxidation by TRIA was observed in both isolated chloroplasts and egg lecithin liposomes. The kinetics of soybean lipoxygenase-1 (LOX-1) was studied using linoleic acid as the substrate. The enzyme was competitively inhibited by TRIA. The Ki for TRIA inhibition of the enzyme was estimated to be 3.2-5.0 microM according to different methods of estimation. TRIA has been known to exhibit anti-inflammatory action in animals and this anti-inflammatory effect of TRIA might be mediated through inhibition of lipid peroxidation. Since LOX inhibitors have been extensively used as therapeutic agents, TRIA, being a natural compound has been suggested to be an effective anti-inflammatory drug.

  15. Cellulase Inhibition by High Concentrations of Monosaccharides

    DEFF Research Database (Denmark)

    Hsieh, Chia-Wen; Cannella, David; Jørgensen, Henning

    2014-01-01

    Biological degradation of biomass on an industrial scale culminates in high concentrations of end products. It is known that the accumulation of glucose and cellobiose, end products of hydrolysis, inhibit cellulases and decrease glucose yields. Aside from these end products, however, other monosa...... glucose. Protein adsorption studies showed that this inhibition e ff ect was most likely due to catalytic, and not binding, inhibition of the cellulases....

  16. Fcγ receptor-mediated inflammation inhibits axon regeneration.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.

  17. Inhibition of RAS in diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Yacoub R

    2015-04-01

    Full Text Available Rabi Yacoub, Kirk N Campbell Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA Abstract: Diabetic kidney disease (DKD is a progressive proteinuric renal disorder in patients with type 1 or type 2 diabetes mellitus. It is a common cause of end-stage kidney disease worldwide, particularly in developed countries. Therapeutic targeting of the renin–angiotensin system (RAS is the most validated clinical strategy for slowing disease progression. DKD is paradoxically a low systematic renin state with an increased intrarenal RAS activity implicated in its pathogenesis. Angiotensin II (AngII, the main peptide of RAS, is not only a vasoactive peptide but functions as a growth factor, activating interstitial fibroblasts and mesangial and tubular cells, while promoting the synthesis of extracellular matrix proteins. AngII also promotes podocyte injury through increased calcium influx and the generation of reactive oxygen species. Blockade of the RAS using either angiotensin converting enzyme inhibitors, or angiotensin receptor blockers can attenuate progressive glomerulosclerosis in animal models, and slows disease progression in humans with DKD. In this review, we summarize the role of intrarenal RAS activation in the pathogenesis and progression of DKD and the rationale for RAS inhibition in this population. Keywords: renin–angiotensin system, diabetic kidney disease, angiotensin II, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers

  18. Inhibition of carcinogenesis by retinoids. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Nettesheim, P.

    1979-01-01

    Progress made in recent years in the search for retinoids with anticarcinogenic activity is reviewed. There are many studies to be found in the literature which show no substantial effect of retinoids on carcinogenesis or tumor growth. Some of these negative findings may be related to the carcinogen dose used, the type of retinoid used, the dose, dose schedule or mode of administration of the retinoid. Others may indicate that the particular type of tumor or tumor system is, indeed, refractory to retinoids in general or to those retinoids that were tested. A great gap still exists in our knowledge concerning the pharmake-kinetics of most retinoids their availability to various normal and cancerous tissues, and the role and existence of transport and binding proteins. There are studies which indicate that under certain conditions, particularly conditions of topical application, some retinoids may even enhance carcinogenesis. It seems, however, indisputable by now that some retinoids are effective inhibitors of carcinogenesis in some organ systems and can even inhibit the growth of some established tumors. While the mechanisms of these inhibitory effects are presently not understood, it does seem clear that they are not mediated via the cytotoxic mechanisms typical of chemotherapeutic agents. The hope that retinoids might become an effective tool to halt the progression of some neoplastic diseases, seems to be justified.

  19. The potential role of myostatin and neurotransmission genes in elite ...

    Indian Academy of Sciences (India)

    2015-08-12

    Aug 12, 2015 ... Introduction. Elite athletes are those who have represented their sport at a major competition: this includes participation at national, continental, and world championship events, as well as other competitions where the ... emotional management of psychological insights. In this work we assessed the ...

  20. The potential role of myostatin and neurotransmission genes in elite ...

    Indian Academy of Sciences (India)

    2015-08-12

    Aug 12, 2015 ... Holden JJ 2003 Association of autism severity with monoamine oxidase A functional polymorphism. Clin. Genet. 64 190–197. Costa AM, Breitenfeld L, Silva A, Pereira A, Izquierdo M and. Marques MC 2012 Genetic inheritance effects on endurance and muscle strength: an update. Sports Med. 42 449–458.

  1. The potential role of myostatin and neurotransmission genes in elite ...

    Indian Academy of Sciences (India)

    As for neurotransmission, 5HTT, DAT and MAOA genes have been considered as directly involved in the management of aggressiveness and anxiety. Genotypes and allelic frequencies of 5HTTLPR, MAOA-u VNTR, DAT VNTR and MSTN K153R were determined in 50 elite athletes and compared with 100 control athletes.

  2. Inhibition of Intrinsic Thrombin Generation

    Directory of Open Access Journals (Sweden)

    Thomas W. Stief MD

    2006-01-01

    Full Text Available Background The contact phase of coagulation is of physiologic/pathophysiologic importance, whenever unphysiologic polynegative substances such as cell fragments (microparticles get in contact with blood. There are several clinically used inhibitors of intrinsic thrombin generation. Here the inhibitory concentrations 50% (IC50 of these anticoagulants are measured by the highly specific thrombin generation assay INCA. Methods Unfrozen pooled normal citrated plasma in polystyrole tubes was supplemented at 23°C in duplicate with 0–2 IU/ml low molecular weight heparin (dalteparin, 0–2 IU/ml unfractionated heparin, 0–500 KIU/ml aprotinin, or 0–40 mM arginine. 50 μl plasma or 1 IU/ml thrombin standard were pipetted into a polystyrole microtiter plate with flat bottom. 5 μl SiO 2 /CaCl 2 - reagent (INCA activator were added and after 0–30 min incubation at 37°C 100 μl 2.5 M arginine, pH 8.6, were added; arginine inhibits hemostasis activation and depolymerizes generated fibrin within 20 min at 23°C. The in the physiologic 37°C incubation phase generated thrombin was then chromogenically detected. The intra-assay CV values were < 5%. Results and Discussion The approximate IC50 were 0.01 IU/ml dalteparin, 0.02 IU/ml heparin, 25 KIU/ml aprotinin, and 12 mM arginine. The efficiency of any anticoagulant on intrinsic thrombin generation should be measured for each individual patient. Abbreviations IIa, thrombin; δA, increase in absorbance; APTT, activated partial thromboplastin time; CRT, coagulation reaction time (at 37°C in water-bath; F-wells, polystyrole microtiter plates with flat bottom; IC50, inhibitory concentration 50%; INCA, intrinsic coagulation activity assay; IU, international units; KIU, kallikrein inhibiting unis; LMWH, low molecular weight heparin; mA, milli-absorbance units; PSL, pathromtin SL®; RT, room temperature (23°C; U-wells, polystyrole microtiter plates with round bottom.

  3. A Salmonella virulence protein that inhibits cellular trafficking.

    OpenAIRE

    Uchiya, K; Barbieri, M A; Funato, K; Shah, A H; Stahl, P D; Groisman, E A

    1999-01-01

    Salmonella enterica requires a type III secretion system, designated Spi/Ssa, to survive and proliferate within macrophages. The Spi/Ssa system is encoded within the SPI-2 pathogenicity island and appears to function intracellularly. Here, we establish that the SPI-2-encoded SpiC protein is exported by the Spi/Ssa type III secretion system into the host cell cytosol where it interferes with intracellular trafficking. In J774 macrophages, wild-type Salmonella inhibited fusion of Salmonella-con...

  4. Feed-Forward versus Feedback Inhibition in a Basic Olfactory Circuit.

    Directory of Open Access Journals (Sweden)

    Tiffany Kee

    2015-10-01

    Full Text Available Inhibitory interneurons play critical roles in shaping the firing patterns of principal neurons in many brain systems. Despite difference in the anatomy or functions of neuronal circuits containing inhibition, two basic motifs repeatedly emerge: feed-forward and feedback. In the locust, it was proposed that a subset of lateral horn interneurons (LHNs, provide feed-forward inhibition onto Kenyon cells (KCs to maintain their sparse firing--a property critical for olfactory learning and memory. But recently it was established that a single inhibitory cell, the giant GABAergic neuron (GGN, is the main and perhaps sole source of inhibition in the mushroom body, and that inhibition from this cell is mediated by a feedback (FB loop including KCs and the GGN. To clarify basic differences in the effects of feedback vs. feed-forward inhibition in circuit dynamics we here use a model of the locust olfactory system. We found both inhibitory motifs were able to maintain sparse KCs responses and provide optimal odor discrimination. However, we further found that only FB inhibition could create a phase response consistent with data recorded in vivo. These findings describe general rules for feed-forward versus feedback inhibition and suggest GGN is potentially capable of providing the primary source of inhibition to the KCs. A better understanding of how inhibitory motifs impact post-synaptic neuronal activity could be used to reveal unknown inhibitory structures within biological networks.

  5. Recent advances in biosensors based on enzyme inhibition.

    Science.gov (United States)

    Amine, A; Arduini, F; Moscone, D; Palleschi, G

    2016-02-15

    Enzyme inhibitors like drugs and pollutants are closely correlated to human and environmental health, thus their monitoring is of paramount importance in analytical chemistry. Enzymatic biosensors represent cost-effective, miniaturized and easy to use devices; particularly biosensors based on enzyme inhibition are useful analytical tools for fast screening and monitoring of inhibitors. The present review will highlight the research carried out in the last 9 years (2006-2014) on biosensors based on enzyme inhibition. We underpin the recent advances focused on the investigation in new theoretical approachs and in the evaluation of biosensor performances for reversible and irreversible inhibitors. The use of nanomaterials and microfluidic systems as well as the applications of the various biosensors in real samples is critically reviewed, demonstrating that such biosensors allow the development of useful devices for a fast and reliable alarm system. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Proteomic prediction and Renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy in TYpe 2 diabetic patients with normoalbuminuria (PRIORITY) : Essential study design and rationale of a randomised clinical multicentre trial

    NARCIS (Netherlands)

    Lindhardt, Morten; Persson, Frederik; Currie, Gemma; Pontillo, Claudia; Beige, Joachim; Delles, Christian; von der Leyen, Heiko; Mischak, Harald; Navis, Gerjan; Noutsou, Marina; Ortiz, Alberto; Ruggenenti, Piero Luigi; Rychlik, Ivan; Spasovski, Goce; Rossing, Peter

    2016-01-01

    Introduction Diabetes mellitus affects 9% of the European population and accounts for 15% of healthcare expenditure, in particular, due to excess costs related to complications. Clinical trials aiming for earlier prevention of diabetic nephropathy by renin angiotensin system blocking treatment in

  7. Allosteric Inhibition Through Core Disruption

    Energy Technology Data Exchange (ETDEWEB)

    Horn, James R.; Shoichet, Brian K. (NWU); (UCSF)

    2010-03-05

    Although inhibitors typically bind pre-formed sites on proteins, it is theoretically possible to inhibit by disrupting the folded structure of a protein or, in the limit, to bind preferentially to the unfolded state. Equilibria defining how such molecules act are well understood, but structural models for such binding are unknown. Two novel inhibitors of {beta}-lactamase were found to destabilize the enzyme at high temperatures, but at lower temperatures showed no preference for destabilized mutant enzymes versus stabilized mutants. X-ray crystal structures showed that both inhibitors bound to a cryptic site in {beta}-lactamase, which the inhibitors themselves created by forcing apart helixes 11 and 12. This opened up a portion of the hydrophobic core of the protein, into which these two inhibitors bind. Although this binding site is 16 {angstrom} from the center of the active site, the conformational changes were transmitted through a sequence of linked motions to a key catalytic residue, Arg244, which in the complex adopts conformations very different from those in catalytically competent enzyme conformations. These structures offer a detailed view of what has heretofore been a theoretical construct, and suggest the possibility for further design against this novel site.

  8. Evaluation of fish models of soluble epoxide hydrolase inhibition.

    OpenAIRE

    Newman, J W; Denton, D L; Morisseau, C; Koger, C S; Wheelock, C E; Hinton, D E; Hammock, B D

    2001-01-01

    Substituted ureas and carbamates are mechanistic inhibitors of the soluble epoxide hydrolase (sEH). We screened a set of chemicals containing these functionalities in larval fathead minnow (Pimphales promelas) and embryo/larval golden medaka (Oryzias latipes) models to evaluate the utility of these systems for investigating sEH inhibition in vivo. Both fathead minnow and medaka sEHs were functionally similar to the tested mammalian orthologs (murine and human) with respect to substrate hydrol...

  9. Morphine Decreases Enteric Neuron Excitability via Inhibition of Sodium Channels

    OpenAIRE

    Smith, Tricia H.; Grider, John R.; Dewey, William L.; Akbarali, Hamid I.

    2012-01-01

    Gastrointestinal peristalsis is significantly dependent on the enteric nervous system. Constipation due to reduced peristalsis is a major side-effect of morphine, which limits the chronic usefulness of this excellent pain reliever in man. The ionic basis for the inhibition of enteric neuron excitability by morphine is not well characterized as previous studies have mainly utilized microelectrode recordings from whole mount myenteric plexus preparations in guinea pigs. Here we have developed a...

  10. Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis

    OpenAIRE

    Nakano, Haruko; Minami, Itsunari; Braas, Daniel; Pappoe, Herman; Wu, Xiuju; Sagadevan, Addelynn; Vergnes, Laurent; Fu, Kai; Morselli, Marco; Dunham, Christopher; Ding, Xueqin; Stieg, Adam Z; Gimzewski, James K; Pellegrini, Matteo; Clark, Peter M

    2017-01-01

    The heart switches its energy substrate from glucose to fatty acids at birth, and maternal hyperglycemia is associated with congenital heart disease. However, little is known about how blood glucose impacts heart formation. Using a chemically defined human pluripotent stem-cell-derived cardiomyocyte differentiation system, we found that high glucose inhibits the maturation of cardiomyocytes at genetic, structural, metabolic, electrophysiological, and biomechanical levels by promoting nucleoti...

  11. Madecassoside Inhibits Melanin Synthesis by Blocking Ultraviolet-Induced Inflammation

    OpenAIRE

    Eunsun Jung; Jung-A Lee; Seoungwoo Shin; Kyung-Baeg Roh; Jang-Hyun Kim; Deokhoon Park

    2013-01-01

    Madecassoside (MA), a pentacyclic triterpene isolated from Centella asitica (L.), is used as a therapeutic agent in wound healing and also as an anti-inflammatory and anti-aging agent. However, the involvement of MA in skin-pigmentation has not been reported. This study was conducted to investigate the effects of MA on ultraviolet (UV)-induced melanogenesis and mechanisms in a co-culture system of keratinocytes and melanocytes. MA significantly inhibited UVR-induced melanin synthesis and mel...

  12. Systems

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Papers in this session describe the concept of mined geologic disposal system and methods for ensuring that the system, when developed, will meet all technical requirements. Also presented in the session are analyses of system parameters, such as cost and nuclear criticality potential, as well as a technical analysis of a requirement that the system permit retrieval of the waste for some period of time. The final paper discusses studies under way to investigate technical alternatives or complements to the mined geologic disposal system. Titles of the presented papers are: (1) Waste Isolation System; (2) Waste Isolation Economics; (3) BWIP Technical Baseline; (4) Criticality Considerations in Geologic Disposal of High-Level Waste; (5) Retrieving Nuclear Wastes from Repository; (6) NWTS Programs for the Evaluation of Technical Alternatives or Complements to Mined Geologic Repositories - Purpose and Objectives

  13. systems

    Directory of Open Access Journals (Sweden)

    Alexander Leonessa

    2000-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  14. Quorum Sensing Inhibition, Relevance to Periodontics

    OpenAIRE

    Yada, Sudheer; Kamalesh, B; Sonwane, Siddharth; Guptha, Indra; Swetha, R K

    2015-01-01

    Quorum sensing helps bacteria to communicate with each other and in coordinating their behavior. Many diseases of human beings, plants, and animals are mediated by quorum sensing. Various approaches are being tried to inhibit this communication to control the diseases caused by bacteria. Periodontal pathogens also communicate through quorum sensing and new approaches to treat periodontal disease using quorum sensing inhibition need to explored.

  15. The pharmacology of visuospatial attention and inhibition

    NARCIS (Netherlands)

    Logemann, H.N.A.

    2013-01-01

    Attention and inhibition are of vital importance in everyday functioning. Problems of attention and inhibition are central to disorders such as Attention Deficit/Hyperactivity Disorder (ADHD). Both bias and disengagement key components of visuospatial attention. Bias refers to neuronal signals that

  16. Inhibition: Mental Control Process or Mental Resource?

    Science.gov (United States)

    Im-Bolter, Nancie; Johnson, Janice; Ling, Daphne; Pascual-Leone, Juan

    2015-01-01

    The current study tested 2 models of inhibition in 45 children with language impairment and 45 children with normally developing language; children were aged 7 to 12 years. Of interest was whether a model of inhibition as a mental-control process (i.e., executive function) or as a mental resource would more accurately reflect the relations among…

  17. Optimal Decision Making in Neural Inhibition Models

    Science.gov (United States)

    van Ravenzwaaij, Don; van der Maas, Han L. J.; Wagenmakers, Eric-Jan

    2012-01-01

    In their influential "Psychological Review" article, Bogacz, Brown, Moehlis, Holmes, and Cohen (2006) discussed optimal decision making as accomplished by the drift diffusion model (DDM). The authors showed that neural inhibition models, such as the leaky competing accumulator model (LCA) and the feedforward inhibition model (FFI), can mimic the…

  18. A Qualitative Approach to Enzyme Inhibition

    Science.gov (United States)

    Waldrop, Grover L.

    2009-01-01

    Most general biochemistry textbooks present enzyme inhibition by showing how the basic Michaelis-Menten parameters K[subscript m] and V[subscript max] are affected mathematically by a particular type of inhibitor. This approach, while mathematically rigorous, does not lend itself to understanding how inhibition patterns are used to determine the…

  19. Contour Detection Operators Based on Surround Inhibition

    NARCIS (Netherlands)

    Grigorescu, Cosmin; Petkov, Nicolai; Westenberg, Michel A.

    2003-01-01

    We propose a biologically motivated computational step, called non-classical receptive field (non-CRF) inhibition, to improve contour detection in images of natural scenes. We augment a Gabor energy operator with non-CRF inhibition. The resulting contour operator responds strongly to isolated lines,

  20. Quorum sensing inhibition, relevance to periodontics.

    Science.gov (United States)

    Yada, Sudheer; Kamalesh, B; Sonwane, Siddharth; Guptha, Indra; Swetha, R K

    2015-01-01

    Quorum sensing helps bacteria to communicate with each other and in coordinating their behavior. Many diseases of human beings, plants, and animals are mediated by quorum sensing. Various approaches are being tried to inhibit this communication to control the diseases caused by bacteria. Periodontal pathogens also communicate through quorum sensing and new approaches to treat periodontal disease using quorum sensing inhibition need to explored.

  1. Adsorptive, Kinetic, Thermodynamic and Inhibitive Properties of ...

    African Journals Online (AJOL)

    The adsorption of Cissus populnea stem extract and its subsequent corrosion inhibition properties on aluminum in 0.5 M HCl solutions have been investigated using weight loss measurements. Inhibition efficiency of the plant extract increased with concentration but decreased with rise in temperature. The adsorption of the ...

  2. Enhancing Targeted Genomic DNA Editing in Chicken Cells Using the CRISPR/Cas9 System

    Science.gov (United States)

    Wang, Ling; Yang, Likai; Guo, Yijie; Du, Weili; Yin, Yajun; Zhang, Tao; Lu, Hongzhao

    2017-01-01

    The CRISPR/Cas9 system has enabled highly efficient genome targeted editing for various organisms. However, few studies have focused on CRISPR/Cas9 nuclease-mediated chicken genome editing compared with mammalian genomes. The current study combined CRISPR with yeast Rad52 (yRad52) to enhance targeted genomic DNA editing in chicken DF-1 cells. The efficiency of CRISPR/Cas9 nuclease-induced targeted mutations in the chicken genome was increased to 41.9% via the enrichment of the dual-reporter surrogate system. In addition, the combined effect of CRISPR nuclease and yRad52 dramatically increased the efficiency of the targeted substitution in the myostatin gene using 50-mer oligodeoxynucleotides (ssODN) as the donor DNA, resulting in a 36.7% editing efficiency after puromycin selection. Furthermore, based on the effect of yRad52, the frequency of exogenous gene integration in the chicken genome was more than 3-fold higher than that without yRad52. Collectively, these results suggest that ssODN is an ideal donor DNA for targeted substitution and that CRISPR/Cas9 combined with yRad52 significantly enhances chicken genome editing. These findings could be extensively applied in other organisms. PMID:28068387

  3. Retrieval-Induced Inhibition in Short-Term Memory.

    Science.gov (United States)

    Kang, Min-Suk; Choi, Joongrul

    2015-07-01

    We used a visual illusion called motion repulsion as a model system for investigating competition between two mental representations. Subjects were asked to remember two random-dot-motion displays presented in sequence and then to report the motion directions for each. Remembered motion directions were shifted away from the actual motion directions, an effect similar to the motion repulsion observed during perception. More important, the item retrieved second showed greater repulsion than the item retrieved first. This suggests that earlier retrieval exerted greater inhibition on the other item being held in short-term memory. This retrieval-induced motion repulsion could be explained neither by reduced cognitive resources for maintaining short-term memory nor by continued inhibition between short-term memory representations. These results indicate that retrieval of memory representations inhibits other representations in short-term memory. We discuss mechanisms of retrieval-induced inhibition and their implications for the structure of memory. © The Author(s) 2015.

  4. Inhibition in Parkinson’s disease: A focus on prepulse inhibition and Rapid eye movement sleep Behavior Disorder (RBD)

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle

    2014-01-01

    Summary Background: α-synucleinopathies are characterized by degeneration of the nigrostriatal pathway and midbrain dopamine function. These disorders, including Parkinson’s disease (PD), are associated with sensorimotor gating deficits and show an increased prevalence of the parasomnia REM sleep...... with daytime motor function in Parkinsonism, the relation to the increased motor activity during REM sleep as seen in RBD is unclear. Aim: The objective of this thesis was 1) to examine prepulse inhibition of the acoustic blink reflex in patients with idiopathic REM sleep behaviour disorder (iRBD), Parkinson...... behaviour disorder (RBD). Converging evidence supports a key role of the central dopamine system and striatum in the regulation of prepulse inhibition (PPI), a measure of sensorimotor gating, which has received little attention with regard to Parkinsonism. Although the dopamine system is associated...

  5. Chronic Inhibition of STAT3/STAT5 in Treatment-Resistant Human Breast Cancer Cell Subtypes: Convergence on the ROS/SUMO Pathway and Its Effects on xCT Expression and System xc- Activity

    Science.gov (United States)

    Linher-Melville, Katja; Nashed, Mina G.; Ungard, Robert G.; Haftchenary, Sina; Rosa, David A.; Gunning, Patrick T.; Singh, Gurmit

    2016-01-01

    Pharmacologically targeting activated STAT3 and/or STAT5 has been an active area of cancer research. The cystine/glutamate antiporter, system xc-, contributes to redox balance and export of intracellularly produced glutamate in response to up-regulated glutaminolysis in cancer cells. We have previously shown that blocking STAT3/5 using the small molecule inhibitor, SH-4-54, which targets the SH2 domains of both proteins, increases xCT expression, thereby increasing system xc- activity in human breast cancer cells. The current investigation demonstrates that chronic SH-4-54 administration, followed by clonal selection of treatment-resistant MDA-MB-231 and T47D breast cancer cells, elicits distinct subtype-dependent effects. xCT mRNA and protein levels, glutamate release, and cystine uptake are decreased relative to untreated passage-matched controls in triple-negative MDA-MB-231 cells, with the inverse occurring in estrogen-responsive T47D cells. This “ying-yang” effect is linked with a shifted balance between the phosphorylation status of STAT3 and STAT5, intracellular ROS levels, and STAT5 SUMOylation/de-SUMOylation. STAT5 emerged as a definitive negative regulator of xCT at the transcriptional level, while STAT3 activation is coupled with increased system xc- activity. We propose that careful classification of a patient’s breast cancer subtype is central to effectively targeting STAT3/5 as a therapeutic means of treating breast cancer, particularly given that xCT is emerging as an important biomarker of aggressive cancers. PMID:27513743

  6. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, Abhinav [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Venkatachalam, Avanthika [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India); Gideon, Daniel Andrew [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Manoj, Kelath Murali, E-mail: satyamjayatu@yahoo.com [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India)

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  7. Bacterial inhibiting surfaces caused by the effects of silver release and/or electrical field

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Hilbert, Lisbeth Rischel; Schroll, Casper

    2008-01-01

    In this study, silver-palladium surfaces and silver-bearing stainless steels were designed and investigated focusing on electrochemical principles to form inhibiting effects on planktonic and/or biofilm bacteria in water systems. Silver-resistant Escherichia coli and silver-sensitive E. coli were...... used for the evaluation of inhibiting effects and the inhibiting mechanism. For silver-palladium surfaces combined with bacteria in media, the inhibiting effect was a result of electrochemical interactions and/or electrical field, and in some specific media, such as ammonium containing, undesired...... silver ions release can occur from their Surfaces. For silver-bearing stainless steels, the inhibiting effect can only be explained by high local silver ions release. and can be limited or deactivated dependent on the specific environment. (c) 2008 Elsevier Ltd. All rights reserved....

  8. Nitrate dosage system in a reclaimed wastewater pipeline for the inhibition of sulfide build-up; Sistema de dosificacion de nitrato en una conduccion de transporte de agua depurada para evitar la generacion de sulfuro

    Energy Technology Data Exchange (ETDEWEB)

    Monteagudo Perez-Machado, T.; Rodriguez Gomez, L. E.; Alvarez Diaz, M.

    2007-07-01

    During reclaimed wastewater transportation under anaerobic conditions sulfide generation may take place, which should be avoided due to the numerous problems related to it. This is the case of the reclaimed wastewater reuse scheme of Tenerife, one of whose elements is a completely filled 61 km long gravity pipeline, 0,60 m in diameter. In order to avoid the appearance of anaerobic conditions a controlled nitrate dosage system has been designed to be installed at the pipeline inlet, with nitrate dosage to be controlled by the organic matter content of the reclaimed wastewater, using turbidity as an indicator of it. (Author) 26 refs.

  9. Inhibition of Midkine Augments Osteoporotic Fracture Healing.

    Directory of Open Access Journals (Sweden)

    Melanie Haffner-