WorldWideScience

Sample records for systemic antiviral response

  1. Anopheles gambiae antiviral immune response to systemic O'nyong-nyong infection.

    Directory of Open Access Journals (Sweden)

    Joanna Waldock

    Full Text Available Mosquito-borne viral diseases cause significant burden in much of the developing world. Although host-virus interactions have been studied extensively in the vertebrate host, little is known about mosquito responses to viral infection. In contrast to mosquitoes of the Aedes and Culex genera, Anopheles gambiae, the principal vector of human malaria, naturally transmits very few arboviruses, the most important of which is O'nyong-nyong virus (ONNV. Here we have investigated the A. gambiae immune response to systemic ONNV infection using forward and reverse genetic approaches.We have used DNA microarrays to profile the transcriptional response of A. gambiae inoculated with ONNV and investigate the antiviral function of candidate genes through RNAi gene silencing assays. Our results demonstrate that A. gambiae responses to systemic viral infection involve genes covering all aspects of innate immunity including pathogen recognition, modulation of immune signalling, complement-mediated lysis/opsonisation and other immune effector mechanisms. Patterns of transcriptional regulation and co-infections of A. gambiae with ONNV and the rodent malaria parasite Plasmodium berghei suggest that hemolymph immune responses to viral infection are diverted away from melanisation. We show that four viral responsive genes encoding two putative recognition receptors, a galectin and an MD2-like receptor, and two effector lysozymes, function in limiting viral load.This study is the first step in elucidating the antiviral mechanisms of A. gambiae mosquitoes, and has revealed interesting differences between A. gambiae and other invertebrates. Our data suggest that mechanisms employed by A. gambiae are distinct from described invertebrate antiviral immunity to date, and involve the complement-like branch of the humoral immune response, supressing the melanisation response that is prominent in anti-parasitic immunity. The antiviral immune response in A. gambiae is thus

  2. Systems-Biology Approaches to Discover Anti-Viral Effectors of the Human Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Andreas F.R. Sommer

    2011-07-01

    Full Text Available Virus infections elicit an immediate innate response involving antiviral factors. The activities of some of these factors are, in turn, blocked by viral countermeasures. The ensuing battle between the host and the viruses is crucial for determining whether the virus establishes a foothold and/or induces adaptive immune responses. A comprehensive systems-level understanding of the repertoire of anti-viral effectors in the context of these immediate virus-host responses would provide significant advantages in devising novel strategies to interfere with the initial establishment of infections. Recent efforts to identify cellular factors in a comprehensive and unbiased manner, using genome-wide siRNA screens and other systems biology “omics” methodologies, have revealed several potential anti-viral effectors for viruses like Human immunodeficiency virus type 1 (HIV-1, Hepatitis C virus (HCV, West Nile virus (WNV, and influenza virus. This review describes the discovery of novel viral restriction factors and discusses how the integration of different methods in systems biology can be used to more comprehensively identify the intimate interactions of viruses and the cellular innate resistance.

  3. Viral ancestors of antiviral systems.

    Science.gov (United States)

    Villarreal, Luis P

    2011-10-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.

  4. Viral Ancestors of Antiviral Systems

    Directory of Open Access Journals (Sweden)

    Luis P. Villarreal

    2011-10-01

    Full Text Available All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the ‘Big Bang’ theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.

  5. Topoisomerase 1 Inhibition Promotes Cyclic GMP-AMP Synthase-Dependent Antiviral Responses.

    Science.gov (United States)

    Pépin, Geneviève; Nejad, Charlotte; Ferrand, Jonathan; Thomas, Belinda J; Stunden, H James; Sanij, Elaine; Foo, Chwan-Hong; Stewart, Cameron R; Cain, Jason E; Bardin, Philip G; Williams, Bryan R G; Gantier, Michael P

    2017-10-03

    Inflammatory responses, while essential for pathogen clearance, can also be deleterious to the host. Chemical inhibition of topoisomerase 1 (Top1) by low-dose camptothecin (CPT) can suppress transcriptional induction of antiviral and inflammatory genes and protect animals from excessive and damaging inflammatory responses. We describe the unexpected finding that minor DNA damage from topoisomerase 1 inhibition with low-dose CPT can trigger a strong antiviral immune response through cyclic GMP-AMP synthase (cGAS) detection of cytoplasmic DNA. This argues against CPT having only anti-inflammatory activity. Furthermore, expression of the simian virus 40 (SV40) large T antigen was paramount to the proinflammatory antiviral activity of CPT, as it potentiated cytoplasmic DNA leakage and subsequent cGAS recruitment in human and mouse cell lines. This work suggests that the capacity of Top1 inhibitors to blunt inflammatory responses can be counteracted by viral oncogenes and that this should be taken into account for their therapeutic development. IMPORTANCE Recent studies suggest that low-dose DNA-damaging compounds traditionally used in cancer therapy can have opposite effects on antiviral responses, either suppressing (with the example of CPT) or potentiating (with the example of doxorubicin) them. Our work demonstrates that the minor DNA damage promoted by low-dose CPT can also trigger strong antiviral responses, dependent on the presence of viral oncogenes. Taken together, these results call for caution in the therapeutic use of low-dose chemotherapy agents to modulate antiviral responses in humans. Copyright © 2017 Pépin et al.

  6. Nanoparticulate delivery systems for antiviral drugs.

    Science.gov (United States)

    Lembo, David; Cavalli, Roberta

    2010-01-01

    Nanomedicine opens new therapeutic avenues for attacking viral diseases and for improving treatment success rates. Nanoparticulate-based systems might change the release kinetics of antivirals, increase their bioavailability, improve their efficacy, restrict adverse drug side effects and reduce treatment costs. Moreover, they could permit the delivery of antiviral drugs to specific target sites and viral reservoirs in the body. These features are particularly relevant in viral diseases where high drug doses are needed, drugs are expensive and the success of a therapy is associated with a patient's adherence to the administration protocol. This review presents the current status in the emerging area of nanoparticulate delivery systems in antiviral therapy, providing their definition and description, and highlighting some peculiar features. The paper closes with a discussion on the future challenges that must be addressed before the potential of nanotechnology can be translated into safe and effective antiviral formulations for clinical use.

  7. Topoisomerase 1 Inhibition Promotes Cyclic GMP-AMP Synthase-Dependent Antiviral Responses

    OpenAIRE

    Pépin, Geneviève; Nejad, Charlotte; Ferrand, Jonathan; Thomas, Belinda J.; Stunden, H. James; Sanij, Elaine; Foo, Chwan-Hong; Stewart, Cameron R.; Cain, Jason E.; Bardin, Philip G.; Williams, Bryan R. G.; Gantier, Michael P.

    2017-01-01

    ABSTRACT Inflammatory responses, while essential for pathogen clearance, can also be deleterious to the host. Chemical inhibition of topoisomerase 1 (Top1) by low-dose camptothecin (CPT) can suppress transcriptional induction of antiviral and inflammatory genes and protect animals from excessive and damaging inflammatory responses. We describe the unexpected finding that minor DNA damage from topoisomerase 1 inhibition with low-dose CPT can trigger a strong antiviral immune response through c...

  8. Topoisomerase 1 Inhibition Promotes Cyclic GMP-AMP Synthase-Dependent Antiviral Responses

    Directory of Open Access Journals (Sweden)

    Geneviève Pèépin

    2017-10-01

    Full Text Available Inflammatory responses, while essential for pathogen clearance, can also be deleterious to the host. Chemical inhibition of topoisomerase 1 (Top1 by low-dose camptothecin (CPT can suppress transcriptional induction of antiviral and inflammatory genes and protect animals from excessive and damaging inflammatory responses. We describe the unexpected finding that minor DNA damage from topoisomerase 1 inhibition with low-dose CPT can trigger a strong antiviral immune response through cyclic GMP-AMP synthase (cGAS detection of cytoplasmic DNA. This argues against CPT having only anti-inflammatory activity. Furthermore, expression of the simian virus 40 (SV40 large T antigen was paramount to the proinflammatory antiviral activity of CPT, as it potentiated cytoplasmic DNA leakage and subsequent cGAS recruitment in human and mouse cell lines. This work suggests that the capacity of Top1 inhibitors to blunt inflammatory responses can be counteracted by viral oncogenes and that this should be taken into account for their therapeutic development.

  9. Coxsackievirus cloverleaf RNA containing a 5' triphosphate triggers an antiviral response via RIG-I activation.

    Directory of Open Access Journals (Sweden)

    Qian Feng

    Full Text Available Upon viral infections, pattern recognition receptors (PRRs recognize pathogen-associated molecular patterns (PAMPs and stimulate an antiviral state associated with the production of type I interferons (IFNs and inflammatory markers. Type I IFNs play crucial roles in innate antiviral responses by inducing expression of interferon-stimulated genes and by activating components of the adaptive immune system. Although pegylated IFNs have been used to treat hepatitis B and C virus infections for decades, they exert substantial side effects that limit their use. Current efforts are directed toward the use of PRR agonists as an alternative approach to elicit host antiviral responses in a manner similar to that achieved in a natural infection. RIG-I is a cytosolic PRR that recognizes 5' triphosphate (5'ppp-containing RNA ligands. Due to its ubiquitous expression profile, induction of the RIG-I pathway provides a promising platform for the development of novel antiviral agents and vaccine adjuvants. In this study, we investigated whether structured RNA elements in the genome of coxsackievirus B3 (CVB3, a picornavirus that is recognized by MDA5 during infection, could activate RIG-I when supplied with 5'ppp. We show here that a 5'ppp-containing cloverleaf (CL RNA structure is a potent RIG-I inducer that elicits an extensive antiviral response that includes induction of classical interferon-stimulated genes, as well as type III IFNs and proinflammatory cytokines and chemokines. In addition, we show that prophylactic treatment with CVB3 CL provides protection against various viral infections including dengue virus, vesicular stomatitis virus and enterovirus 71, demonstrating the antiviral efficacy of this RNA ligand.

  10. Peripheral dendritic cells are essential for both the innate and adaptive antiviral immune responses in the central nervous system

    International Nuclear Information System (INIS)

    Steel, Christina D.; Hahto, Suzanne M.; Ciavarra, Richard P.

    2009-01-01

    Intranasal application of vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS). However, VSV encephalitis is not invariably fatal, suggesting that the CNS may contain a professional antigen-presenting cell (APC) capable of inducing or propagating a protective antiviral immune response. To examine this possibility, we first characterized the cellular elements that infiltrate the brain as well as the activation status of resident microglia in the brains of normal and transgenic mice acutely ablated of peripheral dendritic cells (DCs) in vivo. VSV encephalitis was characterized by a pronounced infiltrate of myeloid cells (CD45 high CD11b + ) and CD8 + T cells containing a subset that was specific for the immunodominant VSV nuclear protein epitope. This T cell response correlated temporally with a rapid and sustained upregulation of MHC class I expression on microglia, whereas class II expression was markedly delayed. Ablation of peripheral DCs profoundly inhibited the inflammatory response as well as infiltration of virus-specific CD8 + T cells. Unexpectedly, the VSV-induced interferon-gamma (IFN-γ) response in the CNS remained intact in DC-deficient mice. Thus, both the inflammatory and certain components of the adaptive primary antiviral immune response in the CNS are dependent on peripheral DCs in vivo.

  11. The interferon response circuit in antiviral host defense.

    Science.gov (United States)

    Haller, O; Weber, F

    2009-01-01

    Viruses have learned to multiply in the face of a powerful innate and adaptive immune response of the host. They have evolved multiple strategies to evade the interferon (IFN) system which would otherwise limit virus growth at an early stage of infection. IFNs induce the synthesis of a range of antiviral proteins which serve as cell-autonomous intrinsic restriction factors. For example, the dynamin-like MxA GTPase inhibits the multiplication of influenza and bunyaviruses (such as La Crosse virus, Hantaan virus, Rift Valley Fever virus, and Crimean-Congo hemorrhagic fever virus) by binding and sequestering the nucleocapsid protein into large perinuclear complexes. To overcome such intracellular restrictions, virulent viruses either inhibit IFN synthesis, bind and inactivate secreted IFN molecules, block IFN-activated signaling, or disturb the action of IFN-induced antiviral proteins. Many viruses produce specialized proteins to disarm the danger signal or express virulence genes that target members of the IFN regulatory factor family (IRFs) or components of the JAK-STAT signaling pathway. An alternative evasion strategy is based on extreme viral replication speed which out-competes the IFN response. The identification of viral proteins with IFN antagonistic functions has great implications for disease prevention and therapy. Virus mutants lacking IFN antagonistic properties represent safe yet highly immunogenic candidate vaccines. Furthermore, novel drugs intercepting viral IFN-antagonists could be used to disarm the viral intruders.

  12. Resistance to Rhabdoviridae Infection and Subversion of Antiviral Responses.

    Science.gov (United States)

    Blondel, Danielle; Maarifi, Ghizlane; Nisole, Sébastien; Chelbi-Alix, Mounira K

    2015-07-07

    Interferon (IFN) treatment induces the expression of hundreds of IFN-stimulated genes (ISGs). However, only a selection of their products have been demonstrated to be responsible for the inhibition of rhabdovirus replication in cultured cells; and only a few have been shown to play a role in mediating the antiviral response in vivo using gene knockout mouse models. IFNs inhibit rhabdovirus replication at different stages via the induction of a variety of ISGs. This review will discuss how individual ISG products confer resistance to rhabdoviruses by blocking viral entry, degrading single stranded viral RNA, inhibiting viral translation or preventing release of virions from the cell. Furthermore, this review will highlight how these viruses counteract the host IFN system.

  13. Molecular Mechanisms of Foot-and-Mouth Disease Virus Targeting the Host Antiviral Response.

    Science.gov (United States)

    Rodríguez Pulido, Miguel; Sáiz, Margarita

    2017-01-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of an acute vesicular disease affecting pigs, cattle and other domestic, and wild animals worldwide. The aim of the host interferon (IFN) response is to limit viral replication and spread. Detection of the viral genome and products by specialized cellular sensors initiates a signaling cascade that leads to a rapid antiviral response involving the secretion of type I- and type III-IFNs and other antiviral cytokines with antiproliferative and immunomodulatory functions. During co-evolution with their hosts, viruses have acquired strategies to actively counteract host antiviral responses and the balance between innate response and viral antagonism may determine the outcome of disease and pathogenesis. FMDV proteases Lpro and 3C have been found to antagonize the host IFN response by a repertoire of mechanisms. Moreover, the putative role of other viral proteins in IFN antagonism is being recently unveiled, uncovering sophisticated immune evasion strategies different to those reported to date for other members of the Picornaviridae family. Here, we review the interplay between antiviral responses induced by FMDV infection and viral countermeasures to block them. Research on strategies used by viruses to modulate immunity will provide insights into the function of host pathways involved in defense against pathogens and will also lead to development of new therapeutic strategies to fight virus infections.

  14. Resistance to Rhabdoviridae Infection and Subversion of Antiviral Responses

    Directory of Open Access Journals (Sweden)

    Danielle Blondel

    2015-07-01

    Full Text Available Interferon (IFN treatment induces the expression of hundreds of IFN-stimulated genes (ISGs. However, only a selection of their products have been demonstrated to be responsible for the inhibition of rhabdovirus replication in cultured cells; and only a few have been shown to play a role in mediating the antiviral response in vivo using gene knockout mouse models. IFNs inhibit rhabdovirus replication at different stages via the induction of a variety of ISGs. This review will discuss how individual ISG products confer resistance to rhabdoviruses by blocking viral entry, degrading single stranded viral RNA, inhibiting viral translation or preventing release of virions from the cell. Furthermore, this review will highlight how these viruses counteract the host IFN system.

  15. Resistance to Rhabdoviridae Infection and Subversion of Antiviral Responses

    Science.gov (United States)

    Blondel, Danielle; Maarifi, Ghizlane; Nisole, Sébastien; Chelbi-Alix, Mounira K.

    2015-01-01

    Interferon (IFN) treatment induces the expression of hundreds of IFN-stimulated genes (ISGs). However, only a selection of their products have been demonstrated to be responsible for the inhibition of rhabdovirus replication in cultured cells; and only a few have been shown to play a role in mediating the antiviral response in vivo using gene knockout mouse models. IFNs inhibit rhabdovirus  replication at different stages via the induction of a variety of ISGs. This review will discuss how individual ISG products confer resistance to rhabdoviruses by blocking viral entry, degrading single stranded viral RNA, inhibiting viral translation or preventing release of virions from the cell. Furthermore, this review will highlight how these viruses counteract the host IFN system. PMID:26198243

  16. NSs protein of Schmallenberg virus counteracts the antiviral response of the cell by inhibiting its transcriptional machinery.

    Science.gov (United States)

    Barry, Gerald; Varela, Mariana; Ratinier, Maxime; Blomström, Anne-Lie; Caporale, Marco; Seehusen, Frauke; Hahn, Kerstin; Schnettler, Esther; Baumgärtner, Wolfgang; Kohl, Alain; Palmarini, Massimo

    2014-08-01

    Bunyaviruses have evolved a variety of strategies to counteract the antiviral defence systems of mammalian cells. Here we show that the NSs protein of Schmallenberg virus (SBV) induces the degradation of the RPB1 subunit of RNA polymerase II and consequently inhibits global cellular protein synthesis and the antiviral response. In addition, we show that the SBV NSs protein enhances apoptosis in vitro and possibly in vivo, suggesting that this protein could be involved in SBV pathogenesis in different ways. © 2014 The Authors.

  17. UBXN1 Interferes with Rig-I-like Receptor-Mediated Antiviral Immune Response by Targeting MAVS

    Directory of Open Access Journals (Sweden)

    Penghua Wang

    2013-04-01

    Full Text Available RNA viruses are sensed by RIG-I-like receptors (RLRs, which signal through a mitochondria-associated adaptor molecule, MAVS, resulting in systemic antiviral immune responses. Although RLR signaling is essential for limiting RNA virus replication, it must be stringently controlled to prevent damage from inflammation. We demonstrate here that among all tested UBX-domain-containing protein family members, UBXN1 exhibits the strongest inhibitory effect on RNA-virus-induced type I interferon response. UBXN1 potently inhibits RLR- and MAVS-induced, but not TLR3-, TLR4-, or DNA-virus-induced innate immune responses. Depletion of UBXN1 enhances virus-induced innate immune responses, including those resulting from RNA viruses such as vesicular stomatitis, Sendai, West Nile, and dengue virus infection, repressing viral replication. Following viral infection, UBXN1 is induced, binds to MAVS, interferes with intracellular MAVS oligomerization, and disrupts the MAVS/TRAF3/TRAF6 signalosome. These findings underscore a critical role of UBXN1 in the modulation of a major antiviral signaling pathway.

  18. Coxsackievirus cloverleaf RNA containing a 5' triphosphate triggers an antiviral response via RIG-I activation

    NARCIS (Netherlands)

    Feng, Qian; Langereis, Martijn A; Olagnier, David; Chiang, Cindy; van de Winkel, Roel; van Essen, Peter; Zoll, Jan; Hiscott, John; van Kuppeveld, Frank J M

    2014-01-01

    Upon viral infections, pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs) and stimulate an antiviral state associated with the production of type I interferons (IFNs) and inflammatory markers. Type I IFNs play crucial roles in innate antiviral responses by

  19. An Antiviral Role for Antimicrobial Peptides during the Arthropod Response to Alphavirus Replication

    OpenAIRE

    Huang, Zhijing; Kingsolver, Megan B.; Avadhanula, Vasanthi; Hardy, Richard W.

    2013-01-01

    Alphaviruses establish a persistent infection in arthropod vectors which is essential for the effective transmission of the virus to vertebrate hosts. The development of persistence in insects is not well understood, although it is thought to involve the innate immune response. Using a transgenic fly system expressing a self-replicating viral RNA genome analog, we have previously demonstrated antiviral roles of the Drosophila Imd (immune deficiency) and Jak-STAT innate immunity pathways in re...

  20. ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response.

    Science.gov (United States)

    Malakhova, Oxana A; Zhang, Dong-Er

    2008-04-04

    Interferons regulate diverse immune functions through the transcriptional activation of hundreds of genes involved in anti-viral responses. The interferon-inducible ubiquitin-like protein ISG15 is expressed in cells in response to a variety of stress conditions like viral or bacterial infection and is present in its free form or is conjugated to cellular proteins. In addition, protein ubiquitination plays a regulatory role in the immune system. Many viruses modulate the ubiquitin (Ub) pathway to alter cellular signaling and the antiviral response. Ubiquitination of retroviral group-specific antigen precursors and matrix proteins of the Ebola, vesicular stomatitis, and rabies viruses by Nedd4 family HECT domain E3 ligases is an important step in facilitating viral release. We found that Nedd4 is negatively regulated by ISG15. Free ISG15 specifically bound to Nedd4 and blocked its interaction with Ub-E2 molecules, thus preventing further Ub transfer from E2 to E3. Furthermore, overexpression of ISG15 diminished the ability of Nedd4 to ubiquitinate viral matrix proteins and led to a decrease in the release of Ebola VP40 virus-like particles from the cells. These results point to a mechanistically novel function of ISG15 in the enhancement of the innate anti-viral response through specific inhibition of Nedd4 Ub-E3 activity. To our knowledge, this is the first example of a Ub-like protein with the ability to interfere with Ub-E2 and E3 interaction to inhibit protein ubiquitination.

  1. A molecular arms race between host innate antiviral response and emerging human coronaviruses.

    Science.gov (United States)

    Wong, Lok-Yin Roy; Lui, Pak-Yin; Jin, Dong-Yan

    2016-02-01

    Coronaviruses have been closely related with mankind for thousands of years. Community-acquired human coronaviruses have long been recognized to cause common cold. However, zoonotic coronaviruses are now becoming more a global concern with the discovery of highly pathogenic severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses causing severe respiratory diseases. Infections by these emerging human coronaviruses are characterized by less robust interferon production. Treatment of patients with recombinant interferon regimen promises beneficial outcomes, suggesting that compromised interferon expression might contribute at least partially to the severity of disease. The mechanisms by which coronaviruses evade host innate antiviral response are under intense investigations. This review focuses on the fierce arms race between host innate antiviral immunity and emerging human coronaviruses. Particularly, the host pathogen recognition receptors and the signal transduction pathways to mount an effective antiviral response against SARS and MERS coronavirus infection are discussed. On the other hand, the counter-measures evolved by SARS and MERS coronaviruses to circumvent host defense are also dissected. With a better understanding of the dynamic interaction between host and coronaviruses, it is hoped that insights on the pathogenesis of newly-identified highly pathogenic human coronaviruses and new strategies in antiviral development can be derived.

  2. Hepatitis C Virus and Antiviral Drug Resistance.

    Science.gov (United States)

    Kim, Seungtaek; Han, Kwang-Hyub; Ahn, Sang Hoon

    2016-11-15

    Since its discovery in 1989, hepatitis C virus (HCV) has been intensively investigated to understand its biology and develop effective antiviral therapies. The efforts of the previous 25 years have resulted in a better understanding of the virus, and this was facilitated by the development of in vitro cell culture systems for HCV replication. Antiviral treatments and sustained virological responses have also improved from the early interferon monotherapy to the current all-oral regimens using direct-acting antivirals. However, antiviral resistance has become a critical issue in the treatment of chronic hepatitis C, similar to other chronic viral infections, and retreatment options following treatment failure have become important questions. Despite the clinical challenges in the management of chronic hepatitis C, substantial progress has been made in understanding HCV, which may facilitate the investigation of other closely related flaviviruses and lead to the development of antiviral agents against these human pathogens.

  3. Exopolysaccharides from Lactobacillus delbrueckii OLL1073R-1 modulate innate antiviral immune response in porcine intestinal epithelial cells.

    Science.gov (United States)

    Kanmani, Paulraj; Albarracin, Leonardo; Kobayashi, Hisakazu; Iida, Hikaru; Komatsu, Ryoya; Humayun Kober, A K M; Ikeda-Ohtsubo, Wakako; Suda, Yoshihito; Aso, Hisashi; Makino, Seiya; Kano, Hiroshi; Saito, Tadao; Villena, Julio; Kitazawa, Haruki

    2018-01-01

    Previous studies demonstrated that the extracellular polysaccharides (EPSs) produced by Lactobacillus delbrueckii OLL1073R-1 (LDR-1) improve antiviral immunity, especially in the systemic and respiratory compartments. However, it was not studied before whether those EPSs are able to beneficially modulate intestinal antiviral immunity. In addition, LDR-1-host interaction has been evaluated mainly with immune cells while its interaction with intestinal epithelial cells (IECs) was not addressed before. In this work, we investigated the capacity of EPSs from LDR-1 to modulate the response of porcine IECs (PIE cells) to the stimulation with the Toll-like receptor (TLR)-3 agonist poly(I:C) and the role of TLR2, TLR4, and TLR negative regulators in the immunoregulatory effect. We showed that innate immune response triggered by TLR3 activation in porcine IECs was differentially modulated by EPS from LDR-1. EPSs treatment induced an increment in the expression of interferon (IFN)-α and IFN-β in PIE cells after the stimulation with poly(I:C) as well as the expression of the antiviral factors MxA and RNase L. Those effects were related to the reduced expression of A20 in EPS-treated PIE cells. EPS from LDR-1 was also able to reduce the expression of IL-6 and proinflammatory chemokines. Although further in vivo studies are needed, our results suggest that these EPSs or a yogurt fermented with LDR-1 have potential to improve intestinal innate antiviral response and protect against intestinal viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Elevation of intact and proteolytic fragments of acute phase proteins constitutes the earliest systemic antiviral response in HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Holger B Kramer

    2010-05-01

    Full Text Available The earliest immune responses activated in acute human immunodeficiency virus type 1 infection (AHI exert a critical influence on subsequent virus spread or containment. During this time frame, components of the innate immune system such as macrophages and DCs, NK cells, beta-defensins, complement and other anti-microbial factors, which have all been implicated in modulating HIV infection, may play particularly important roles. A proteomics-based screen was performed on a cohort from whom samples were available at time points prior to the earliest positive HIV detection. The ability of selected factors found to be elevated in the plasma during AHI to inhibit HIV-1 replication was analyzed using in vitro PBMC and DC infection models. Analysis of unique plasma donor panels spanning the eclipse and viral expansion phases revealed very early alterations in plasma proteins in AHI. Induction of acute phase protein serum amyloid A (A-SAA occurred as early as 5-7 days prior to the first detection of plasma viral RNA, considerably prior to any elevation in systemic cytokine levels. Furthermore, a proteolytic fragment of alpha-1-antitrypsin (AAT, termed virus inhibitory peptide (VIRIP, was observed in plasma coincident with viremia. Both A-SAA and VIRIP have anti-viral activity in vitro and quantitation of their plasma levels indicated that circulating concentrations are likely to be within the range of their inhibitory activity. Our results provide evidence for a first wave of host anti-viral defense occurring in the eclipse phase of AHI prior to systemic activation of other immune responses. Insights gained into the mechanism of action of acute-phase reactants and other innate molecules against HIV and how they are induced could be exploited for the future development of more efficient prophylactic vaccine strategies.

  5. Evasion of the Interferon-Mediated Antiviral Response by Filoviruses

    Directory of Open Access Journals (Sweden)

    Washington B. Cárdenas

    2010-01-01

    Full Text Available The members of the filoviruses are recognized as some of the most lethal viruses affecting human and non-human primates. The only two genera of the Filoviridae family, Marburg virus (MARV and Ebola virus (EBOV, comprise the main etiologic agents of severe hemorrhagic fever outbreaks in central Africa, with case fatality rates ranging from 25 to 90%. Fatal outcomes have been associated with a late and dysregulated immune response to infection, very likely due to the virus targeting key host immune cells, such as macrophages and dendritic cells (DCs that are necessary to mediate effective innate and adaptive immune responses. Despite major progress in the development of vaccine candidates for filovirus infections, a licensed vaccine or therapy for human use is still not available. During the last ten years, important progress has been made in understanding the molecular mechanisms of filovirus pathogenesis. Several lines of evidence implicate the impairment of the host interferon (IFN antiviral innate immune response by MARV or EBOV as an important determinant of virulence. In vitro and in vivo experimental infections with recombinant Zaire Ebola virus (ZEBOV, the best characterized filovirus, demonstrated that the viral protein VP35 plays a key role in inhibiting the production of IFN-α/β. Further, the action of VP35 is synergized by the inhibition of cellular responses to IFN-α/β by the minor matrix viral protein VP24. The dual action of these viral proteins may contribute to an efficient initial virus replication and dissemination in the host. Noticeably, the analogous function of these viral proteins in MARV has not been reported. Because the IFN response is a major component of the innate immune response to virus infection, this chapter reviews recent findings on the molecular mechanisms of IFN-mediated antiviral evasion by filovirus infection.

  6. A heritable antiviral RNAi response limits Orsay virus infection in Caenorhabditis elegans N2.

    Directory of Open Access Journals (Sweden)

    Mark G Sterken

    Full Text Available Orsay virus (OrV is the first virus known to be able to complete a full infection cycle in the model nematode species Caenorhabditis elegans. OrV is transmitted horizontally and its infection is limited by antiviral RNA interference (RNAi. However, we have no insight into the kinetics of OrV replication in C. elegans. We developed an assay that infects worms in liquid, allowing precise monitoring of the infection. The assay revealed a dual role for the RNAi response in limiting Orsay virus infection in C. elegans. Firstly, it limits the progression of the initial infection at the step of recognition of dsRNA. Secondly, it provides an inherited protection against infection in the offspring. This establishes the heritable RNAi response as anti-viral mechanism during OrV infections in C. elegans. Our results further illustrate that the inheritance of the anti-viral response is important in controlling the infection in the canonical wild type Bristol N2. The OrV replication kinetics were established throughout the worm life-cycle, setting a standard for further quantitative assays with the OrV-C. elegans infection model.

  7. AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system.

    Science.gov (United States)

    Schuck, Jana; Gursinsky, Torsten; Pantaleo, Vitantonio; Burgyán, Jozsef; Behrens, Sven-Erik

    2013-05-01

    AGO/RISC-mediated antiviral RNA silencing, an important component of the plant's immune response against RNA virus infections, was recapitulated in vitro. Cytoplasmic extracts of tobacco protoplasts were applied that supported Tombusvirus RNA replication, as well as the formation of RNA-induced silencing complexes (RISC) that could be functionally reconstituted with various plant ARGONAUTE (AGO) proteins. For example, when RISC containing AGO1, 2, 3 or 5 were programmed with exogenous siRNAs that specifically targeted the viral RNA, endonucleolytic cleavages occurred and viral replication was inhibited. Antiviral RNA silencing was disabled by the viral silencing suppressor p19 when this was present early during RISC formation. Notably, with replicating viral RNA, only (+)RNA molecules were accessible to RISC, whereas (-)RNA replication intermediates were not. The vulnerability of viral RNAs to RISC activity also depended on the RNA structure of the target sequence. This was most evident when we characterized viral siRNAs (vsiRNAs) that were particularly effective in silencing with AGO1- or AGO2/RISC. These vsiRNAs targeted similar sites, suggesting that accessible parts of the viral (+)RNA may be collectively attacked by different AGO/RISC. The in vitro system was, hence, established as a valuable tool to define and characterize individual molecular determinants of antiviral RNA silencing.

  8. Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes

    Directory of Open Access Journals (Sweden)

    Eloi R. Verrier

    2016-10-01

    Full Text Available Chronic hepatitis B, C, and D virus (HBV, HCV, and HDV infections are the leading causes of liver disease and cancer worldwide. Recently, the solute carrier and sodium taurocholate co-transporter NTCP has been identified as a receptor for HBV and HDV. Here, we uncover NTCP as a host factor regulating HCV infection. Using gain- and loss-of-function studies, we show that NTCP mediates HCV infection of hepatocytes and is relevant for cell-to-cell transmission. NTCP regulates HCV infection by augmenting the bile-acid-mediated repression of interferon-stimulated genes (ISGs, including IFITM3. In conclusion, our results uncover NTCP as a mediator of innate antiviral immune responses in the liver, and they establish a role for NTCP in the infection process of multiple viruses via distinct mechanisms. Collectively, our findings suggest a role for solute carriers in the regulation of innate antiviral responses, and they have potential implications for virus-host interactions and antiviral therapies.

  9. Activation of cGAS-dependent antiviral responses by DNA intercalating agents.

    Science.gov (United States)

    Pépin, Geneviève; Nejad, Charlotte; Thomas, Belinda J; Ferrand, Jonathan; McArthur, Kate; Bardin, Philip G; Williams, Bryan R G; Gantier, Michael P

    2017-01-09

    Acridine dyes, including proflavine and acriflavine, were commonly used as antiseptics before the advent of penicillins in the mid-1940s. While their mode of action on pathogens was originally attributed to their DNA intercalating activity, work in the early 1970s suggested involvement of the host immune responses, characterized by induction of interferon (IFN)-like activities through an unknown mechanism. We demonstrate here that sub-toxic concentrations of a mixture of acriflavine and proflavine instigate a cyclic-GMP-AMP (cGAMP) synthase (cGAS)-dependent type-I IFN antiviral response. This pertains to the capacity of these compounds to induce low level DNA damage and cytoplasmic DNA leakage, resulting in cGAS-dependent cGAMP-like activity. Critically, acriflavine:proflavine pre-treatment of human primary bronchial epithelial cells significantly reduced rhinovirus infection. Collectively, our findings constitute the first evidence that non-toxic DNA binding agents have the capacity to act as indirect agonists of cGAS, to exert potent antiviral effects in mammalian cells. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Non-Specific dsRNA-Mediated Antiviral Response in the Honey Bee

    Science.gov (United States)

    Flenniken, Michelle L.; Andino, Raul

    2013-01-01

    Honey bees are essential pollinators of numerous agricultural crops. Since 2006, honey bee populations have suffered considerable annual losses that are partially attributed to Colony Collapse Disorder (CCD). CCD is an unexplained phenomenon that correlates with elevated incidence of pathogens, including RNA viruses. Honey bees are eusocial insects that live in colonies of genetically related individuals that work in concert to gather and store nutrients. Their social organization provides numerous benefits, but also facilitates pathogen transmission between individuals. To investigate honey bee antiviral defense mechanisms, we developed an RNA virus infection model and discovered that administration of dsRNA, regardless of sequence, reduced virus infection. Our results suggest that dsRNA, a viral pathogen associated molecular pattern (PAMP), triggers an antiviral response that controls virus infection in honey bees. PMID:24130869

  11. Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses.

    Science.gov (United States)

    Liu, Yingqi; Zhu, Zixiang; Zhang, Miaotao; Zheng, Haixue

    2015-10-28

    Foot-and-mouth disease virus (FMDV) leader protein (L(pro)) is a papain-like proteinase, which plays an important role in FMDV pathogenesis. L(pro) exists as two forms, Lab and Lb, due to translation being initiated from two different start codons separated by 84 nucleotides. L(pro) self-cleaves from the nascent viral polyprotein precursor as the first mature viral protein. In addition to its role as a viral proteinase, L(pro) also has the ability to antagonize host antiviral effects. To promote FMDV replication, L(pro) can suppress host antiviral responses by three different mechanisms: (1) cleavage of eukaryotic translation initiation factor 4 γ (eIF4G) to shut off host protein synthesis; (2) inhibition of host innate immune responses through restriction of interferon-α/β production; and (3) L(pro) can also act as a deubiquitinase and catalyze deubiquitination of innate immune signaling molecules. In the light of recent functional and biochemical findings regarding L(pro), this review introduces the basic properties of L(pro) and the mechanisms by which it antagonizes host antiviral responses.

  12. Human Cytomegalovirus Encoded miR-US25-1-5p Attenuates CD147/EMMPRIN-Mediated Early Antiviral Response

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2017-12-01

    Full Text Available Cellular receptor-mediated signaling pathways play critical roles during the initial immune response to Human Cytomegalovirus (HCMV infection. However, the involvement of type-I transmembrane glycoprotein CD147/EMMPRIN (extracellular matrix metalloproteinase inducer in the antiviral response to HCMV infection is still unknown. Here, we demonstrated the specific knockdown of CD147 significantly decreased HCMV-induced activation of NF-κB and Interferon-beta (IFN-β, which contribute to the cellular antiviral responses. Next, we confirmed that HCMV-encoded miR-US25-1-5p could target the 3′ UTR (Untranslated Region of CD147 mRNA, and thus facilitate HCMV lytic propagation at a low multiplicity of infection (MOI. The expression and secretion of Cyclophilin A (sCyPA, as a ligand for CD147 and a proinflammatory cytokine, were up-regulated in response to HCMV stimuli. Finally, we confirmed that CD147 mediated HCMV-triggered antiviral signaling via the sCyPA-CD147-ERK (extracellular regulated protein kinases/NF-κB axis signaling pathway. These findings reveal an important HCMV mechanism for evading antiviral innate immunity through its encoded microRNA by targeting transmembrane glycoprotein CD147, and a potential cause of HCMV inflammatory disorders due to the secretion of proinflammatory cytokine CyPA.

  13. Viral Response to Specifically Targeted Antiviral Therapy for Hepatitis C and the Implications for Treatment Success

    Directory of Open Access Journals (Sweden)

    Curtis L Cooper

    2010-01-01

    Full Text Available Currently, hepatitis C virus (HCV antiviral therapy is characterized by long duration, a multitude of side effects, difficult administration and suboptimal success; clearly, alternatives are needed. Collectively, specifically targeted antiviral therapy for HCV (STAT-C molecules achieve rapid viral suppression and very high rapid virological response rates, and improve sustained virological response rates. The attrition rate of agents within this class has been high due to various toxicities. Regardless, several STAT-C molecules are poised to become the standard of care for HCV treatment in the foreseeable future. Optimism must be tempered with concerns related to the rapid development of drug resistance with resulting HCV rebound. Strategies including induction dosing with interferon and ribavirin, use of combination high-potency STAT-C molecules and an intensive emphasis on adherence to HCV antiviral therapy will be critical to the success of this promising advance in HCV therapy.

  14. Neonatal plasmacytoid dendritic cells (pDCs display subset variation but can elicit potent anti-viral innate responses.

    Directory of Open Access Journals (Sweden)

    Xiaoming Zhang

    Full Text Available Neonates are highly susceptible to infectious diseases and defective antiviral pDC immune responses have been proposed to contribute to this phenomenon. Isolated cord blood pDCs innately responded to a variety of TLR7 and TLR9 dependent viruses, including influenza A virus (IAV, human immunodeficiency virus (HIV or herpes-simplex virus (HSV by efficiently producing IFN-α, TNF-α as well as chemokines. Interestingly, following activation by CpGA, but not viruses, cord pDCs tend to survive less efficiently. We found that a hallmark of pDCs in neonates is an extended CD2+pDCs compartment compared to adult pDCs without affecting the antiviral IFN-α response. Within CD2+pDCs, we identified a subpopulation expressing CD5 and responsible for IL-12p40 production, however this population is significantly decreased in cord blood compared to adult blood. Therefore, neonatal pDCs clearly display variation in phenotype and subset composition, but without major consequences for their antiviral responses.

  15. Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes.

    Science.gov (United States)

    Verrier, Eloi R; Colpitts, Che C; Bach, Charlotte; Heydmann, Laura; Zona, Laetitia; Xiao, Fei; Thumann, Christine; Crouchet, Emilie; Gaudin, Raphaël; Sureau, Camille; Cosset, François-Loïc; McKeating, Jane A; Pessaux, Patrick; Hoshida, Yujin; Schuster, Catherine; Zeisel, Mirjam B; Baumert, Thomas F

    2016-10-25

    Chronic hepatitis B, C, and D virus (HBV, HCV, and HDV) infections are the leading causes of liver disease and cancer worldwide. Recently, the solute carrier and sodium taurocholate co-transporter NTCP has been identified as a receptor for HBV and HDV. Here, we uncover NTCP as a host factor regulating HCV infection. Using gain- and loss-of-function studies, we show that NTCP mediates HCV infection of hepatocytes and is relevant for cell-to-cell transmission. NTCP regulates HCV infection by augmenting the bile-acid-mediated repression of interferon-stimulated genes (ISGs), including IFITM3. In conclusion, our results uncover NTCP as a mediator of innate antiviral immune responses in the liver, and they establish a role for NTCP in the infection process of multiple viruses via distinct mechanisms. Collectively, our findings suggest a role for solute carriers in the regulation of innate antiviral responses, and they have potential implications for virus-host interactions and antiviral therapies. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Human influenza is more effective than avian influenza at antiviral suppression in airway cells.

    Science.gov (United States)

    Hsu, Alan Chen-Yu; Barr, Ian; Hansbro, Philip M; Wark, Peter A

    2011-06-01

    Airway epithelial cells are the initial site of infection with influenza viruses. The innate immune responses of airway epithelial cells to infection are important in limiting virus replication and spread. However, relatively little is known about the importance of this innate antiviral response to infection. Avian influenza viruses are a potential source of future pandemics; therefore, it is critical to examine the effectiveness of the host antiviral system to different influenza viruses. We used a human influenza (H3N2) and a low-pathogenic avian influenza (H11N9) to assess and compare the antiviral responses of Calu-3 cells. After infection, H3N2 replicated more effectively than the H11N9 in Calu-3 cells. This was not due to differential expression of sialic acid residues on Calu-3 cells, but was attributed to the interference of host antiviral responses by H3N2. H3N2 induced a delayed antiviral signaling and impaired type I and type III IFN induction compared with the H11N9. The gene encoding for nonstructural (NS) 1 protein was transfected into the bronchial epithelial cells (BECs), and the H3N2 NS1 induced a greater inhibition of antiviral responses compared with the H11N9 NS1. Although the low-pathogenic avian influenza virus was capable of infecting BECs, the human influenza virus replicated more effectively than avian influenza virus in BECs, and this was due to a differential ability of the two NS1 proteins to inhibit antiviral responses. This suggests that the subversion of human antiviral responses may be an important requirement for influenza viruses to adapt to the human host and cause disease.

  17. Identification of Secreted Proteins Involved in Nonspecific dsRNA-Mediated Lutzomyia longipalpis LL5 Cell Antiviral Response

    Directory of Open Access Journals (Sweden)

    Andrea Martins-da-Silva

    2018-01-01

    Full Text Available Hematophagous insects transmit infectious diseases. Sand flies are vectors of leishmaniasis, but can also transmit viruses. We have been studying immune responses of Lutzomyia longipalpis, the main vector of visceral leishmaniasis in the Americas. We identified a non-specific antiviral response in L. longipalpis LL5 embryonic cells when treated with non-specific double-stranded RNAs (dsRNAs. This response is reminiscent of interferon response in mammals. We are investigating putative effectors for this antiviral response. Secreted molecules have been implicated in immune responses, including interferon-related responses. We conducted a mass spectrometry analysis of conditioned medium from LL5 cells 24 and 48 h after dsRNA or mock treatment. We identified 304 proteins. At 24 h, 19 proteins had an abundance equal or greater than 2-fold change, while the levels of 17 proteins were reduced when compared to control cells. At the 48 h time point, these numbers were 33 and 71, respectively. The two most abundant secreted peptides at 24 h in the dsRNA-transfected group were phospholipid scramblase, an interferon-inducible protein that mediates antiviral activity, and forskolin-binding protein (FKBP, a member of the immunophilin family, which mediates the effect of immunosuppressive drugs. The transcription profile of most candidates did not follow the pattern of secreted protein abundance.

  18. Is sustained virological response a marker of treatment efficacy in patients with chronic hepatitis C viral infection with no response or relapse to previous antiviral intervention?

    DEFF Research Database (Denmark)

    Gurusamy, Kurinchi S; Wilson, Edward; Koretz, Ronald L

    2013-01-01

    Randomised clinical trials (RCTs) of antiviral interventions in patients with chronic hepatitis C virus (HCV) infection use sustained virological response (SVR) as the main outcome. There is sparse information on long-term mortality from RCTs.......Randomised clinical trials (RCTs) of antiviral interventions in patients with chronic hepatitis C virus (HCV) infection use sustained virological response (SVR) as the main outcome. There is sparse information on long-term mortality from RCTs....

  19. Peripheral blood monocyte subsets predict antiviral response in chronic hepatitis C.

    Science.gov (United States)

    Rodríguez-Muñoz, Y; Martín-Vílchez, S; López-Rodríguez, R; Hernández-Bartolomé, A; Trapero-Marugán, M; Borque, M J; Moreno-Otero, R; Sanz-Cameno, P

    2011-10-01

    Hepatitis C virus infection evolves into chronic progressive liver disease in a significant percentage of patients. Monocytes constitute a diverse group of myeloid cells that mediate innate and adaptive immune response. In addition to proinflammatory CD16+ monocytes, a Tie-2+ subgroup - Tie-2 expressing monocytes (TEMs) - that has robust proangiogenic potential has been recently defined. To study the heterogeneity of peripheral blood monocytes in chronic hepatitis C (CHC) patients and to examine their proposed pathophysiological roles on disease progression and response to antiviral therapy. We studied CD16+ and Tie-2+ peripheral monocyte subpopulations in 21 healthy subjects and 39 CHC patients in various stages of disease and responses to antiviral treatment using flow cytometry. Expression profiles of proangiogenic and tissue remodelling factors in monocyte supernatants were measured using ELISA and protein arrays. Intrahepatic expression of CD14, CD31 and Tie-2 was analysed using immunofluorescence. Increases of certain peripheral monocyte subsets were observed in the blood of CHC patients, wherein those cells with proinflammatory (CD16+) or proangiogenic (TEMs) potential expanded (P TEMs were significantly increased in nonresponders, particularly those with lower CD16 expression. In addition, many angiogenic factors were differentially expressed by peripheral monocytes from control or CHC patients, such as angiopoietin-1 and angiogenin (P TEMs were distinguished within portal infiltrates of CHC patients. These findings suggest for the first time the relevance of peripheral monocytes phenotypes for the achievement of response to treatment. Hence, the study of monocyte subset regulation might effect improved CHC prognoses and adjuvant therapies. © 2011 Blackwell Publishing Ltd.

  20. Evasion of Early Antiviral Responses by Herpes Simplex Viruses

    Science.gov (United States)

    Suazo, Paula A.; Ibañez, Francisco J.; Retamal-Díaz, Angello R.; Paz-Fiblas, Marysol V.; Bueno, Susan M.; Kalergis, Alexis M.; González, Pablo A.

    2015-01-01

    Besides overcoming physical constraints, such as extreme temperatures, reduced humidity, elevated pressure, and natural predators, human pathogens further need to overcome an arsenal of antimicrobial components evolved by the host to limit infection, replication and optimally, reinfection. Herpes simplex virus-1 (HSV-1) and herpes simplex virus-2 (HSV-2) infect humans at a high frequency and persist within the host for life by establishing latency in neurons. To gain access to these cells, herpes simplex viruses (HSVs) must replicate and block immediate host antiviral responses elicited by epithelial cells and innate immune components early after infection. During these processes, infected and noninfected neighboring cells, as well as tissue-resident and patrolling immune cells, will sense viral components and cell-associated danger signals and secrete soluble mediators. While type-I interferons aim at limiting virus spread, cytokines and chemokines will modulate resident and incoming immune cells. In this paper, we discuss recent findings relative to the early steps taking place during HSV infection and replication. Further, we discuss how HSVs evade detection by host cells and the molecular mechanisms evolved by these viruses to circumvent early antiviral mechanisms, ultimately leading to neuron infection and the establishment of latency. PMID:25918478

  1. HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation

    International Nuclear Information System (INIS)

    Okumura, Atsushi; Alce, Tim; Lubyova, Barbora; Ezelle, Heather; Strebel, Klaus; Pitha, Paula M.

    2008-01-01

    The activation of IRF-3 during the early stages of viral infection is critical for the initiation of the antiviral response; however the activation of IRF-3 in HIV-1 infected cells has not yet been characterized. We demonstrate that the early steps of HIV-1 infection do not lead to the activation and nuclear translocation of IRF-3; instead, the relative levels of IRF-3 protein are decreased due to the ubiquitin-associated proteosome degradation. Addressing the molecular mechanism of this effect we show that the degradation is independent of HIV-1 replication and that virion-associated accessory proteins Vif and Vpr can independently degrade IRF-3. The null mutation of these two genes reduced the capacity of the HIV-1 virus to down modulate IRF-3 levels. The degradation was associated with Vif- and Vpr-mediated ubiquitination of IRF-3 and was independent of the activation of IRF-3. N-terminal lysine residues were shown to play a critical role in the Vif- and Vpr-mediated degradation of IRF-3. These data implicate Vif and Vpr in the disruption of the initial antiviral response and point to the need of HIV-1 to circumvent the antiviral response during the very early phase of replication

  2. Bugs Are Not to Be Silenced: Small RNA Pathways and Antiviral Responses in Insects.

    Science.gov (United States)

    Mongelli, Vanesa; Saleh, Maria-Carla

    2016-09-29

    Like every other organism on Earth, insects are infected with viruses, and they rely on RNA interference (RNAi) mechanisms to circumvent viral infections. A remarkable characteristic of RNAi is that it is both broadly acting, because it is triggered by double-stranded RNA molecules derived from virtually any virus, and extremely specific, because it targets only the particular viral sequence that initiated the process. Reviews covering the different facets of the RNAi antiviral immune response in insects have been published elsewhere. In this review, we build a framework to guide future investigation. We focus on the remaining questions and avenues of research that need to be addressed to move the field forward, including issues such as the activity of viral suppressors of RNAi, comparative genomics, the development of detailed maps of the subcellular localization of viral replication complexes with the RNAi machinery, and the regulation of the antiviral RNAi response.

  3. Meningitis Caused by Toscana Virus Is Associated with Strong Antiviral Response in the CNS and Altered Frequency of Blood Antigen-Presenting Cells

    Directory of Open Access Journals (Sweden)

    Stefania Varani

    2015-11-01

    Full Text Available Toscana virus (TOSV is a Phlebotomus-transmitted RNA virus and a frequent cause of human meningitis and meningoencephalitis in Southern Europe during the summer season. While evidence for TOSV-related central nervous system (CNS cases is increasing, little is known about the host defenses against TOSV. We evaluated innate immune response to TOSV by analyzing frequency and activation of blood antigen-presenting cells (APCs and cytokine levels in plasma and cerebrospinal fluid (CSF from patients with TOSV neuroinvasive infection and controls. An altered frequency of different blood APC subsets was observed in TOSV-infected patients, with signs of monocytic deactivation. Nevertheless, a proper or even increased responsiveness of toll-like receptor 3 and 7/8 was observed in blood APCs of these patients as compared to healthy controls. Systemic levels of cytokines remained low in TOSV-infected patients, while levels of anti-inflammatory and antiviral mediators were significantly higher in CSF from TOSV-infected patients as compared to patients with other infectious and noninfectious neurological diseases. Thus, the early host response to TOSV appears effective for viral clearance, by proper response to TLR3 and TLR7/8 agonists in peripheral blood and by a strong and selective antiviral and anti-inflammatory response in the CNS.

  4. Middle East Respiratory Coronavirus Accessory Protein 4a Inhibits PKR-Mediated Antiviral Stress Responses

    NARCIS (Netherlands)

    Rabouw, Huib H; Langereis, Martijn A; Knaap, Robert C M; Dalebout, Tim J; Canton, Javier; Sola, Isabel; Enjuanes, Luis; Bredenbeek, Peter J; Kikkert, Marjolein; de Groot, Raoul J; van Kuppeveld, Frank J M

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory infections that can be life-threatening. To establish an infection and spread, MERS-CoV, like most other viruses, must navigate through an intricate network of antiviral host responses. Besides the well-known type I

  5. Alveolar macrophage–derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes

    Science.gov (United States)

    Goritzka, Michelle; Makris, Spyridon; Kausar, Fahima; Durant, Lydia R.; Pereira, Catherine; Kumagai, Yutaro; Culley, Fiona J.; Mack, Matthias; Akira, Shizuo

    2015-01-01

    Type I interferons (IFNs) are important for host defense from viral infections, acting to restrict viral production in infected cells and to promote antiviral immune responses. However, the type I IFN system has also been associated with severe lung inflammatory disease in response to respiratory syncytial virus (RSV). Which cells produce type I IFNs upon RSV infection and how this directs immune responses to the virus, and potentially results in pathological inflammation, is unclear. Here, we show that alveolar macrophages (AMs) are the major source of type I IFNs upon RSV infection in mice. AMs detect RSV via mitochondrial antiviral signaling protein (MAVS)–coupled retinoic acid–inducible gene 1 (RIG-I)–like receptors (RLRs), and loss of MAVS greatly compromises innate immune restriction of RSV. This is largely attributable to loss of type I IFN–dependent induction of monocyte chemoattractants and subsequent reduced recruitment of inflammatory monocytes (infMo) to the lungs. Notably, the latter have potent antiviral activity and are essential to control infection and lessen disease severity. Thus, infMo recruitment constitutes an important and hitherto underappreciated, cell-extrinsic mechanism of type I IFN–mediated antiviral activity. Dysregulation of this system of host antiviral defense may underlie the development of RSV-induced severe lung inflammation. PMID:25897172

  6. La respuesta inmune antiviral

    Directory of Open Access Journals (Sweden)

    Rainel Sánchez de la Rosa

    1998-02-01

    Full Text Available Se expone que los virus son parásitos intracelulares obligados, puesto que no tienen metabolismo propio; esto obliga al sistema inmune a poner en marcha sus mecanismos más especializados para reconocer y eliminar, tanto a los virus libres, como a las células infectadas. Se señala que las células presentadoras de antígenos, los linfocitos B y los T unidos al complejo mayor de histocompatibilidad, forman parte de la organización de la respuesta inmune antiviral; la inducción de esta respuesta con proteínas, péptidos y ADN desnudo, son alternativas actuales tanto en la prevención como en el tratamiento de las infecciones viralesIt is explained that viruses are compulsory intracellular parasites, since they don't have their own metabolism, which makes the immune system to start its mest specialized mechanisms to recognize and eliminate the free viruses and the infected cells. It is stated that the cells presenting antigens, and the B and T lymphocytes together with the major histocompatibility complex, are part of the organization of the immune antiviral response. The induction of this response with proteins, peptides and naked DNA are the present alternatives for the prevention and treatment of viral infections

  7. Effect of Qianggan Pills combined with antiviral treatment on the fibrosis indexes, immune and inflammatory response in patients with compensated hepatitis b cirrhosis

    Directory of Open Access Journals (Sweden)

    Hong-Gang Huang

    2017-04-01

    Full Text Available Objective: To study the effect of Qianggan Pills combined with antiviral treatment on the fibrosis indexes, immune and inflammatory response in patients with compensated hepatitis b cirrhosis. Methods: A total of 88 patients with compensated hepatitis b cirrhosis treated in our hospital between April 2013 and March 2016 were collected and divided into observation group and control group according to single blind randomized control. Observation group of patients accepted Qianggan Pills combined with antiviral treatment and control group of patients received antiviral treatment alone. After 6 months of treatment, chemiluminescence method was used to detect serum fibrosis indexes, flow cytometer was used to detect peripheral blood T lymphocyte subset levels, and enzyme-linked immunosorbent assay (ELISA was used to detect serum levels of inflammatory factors. Results: Before treatment, differences in fibrosis indexes, immune and inflammatory response indexes were not statistically significant between two groups of patients; after 6 months of treatment, serum LN, HA and Ⅳ-C levels of observation group were lower than those of control group, peripheral blood CD3+ and CD4+ T lymphocyte levels as well as CD4+/CD8+ ratio were higher than those of control group, and CD8+ T lymphocyte level was lower than that of control group; serum PCT and CRP levels were lower than those of control group while IL-10 and IL-13 levels were higher than those of control group. Conclusion: Qianggan Pills combined with antiviral treatment can inhibit the fibrosis process, strengthen the body's immune function and also relieve systemic inflammatory response in patients with compensated hepatitis b cirrhosis.

  8. Novel drugs targeting Toll-like receptors for antiviral therapy.

    Science.gov (United States)

    Patel, Mira C; Shirey, Kari Ann; Pletneva, Lioubov M; Boukhvalova, Marina S; Garzino-Demo, Alfredo; Vogel, Stefanie N; Blanco, Jorge Cg

    2014-09-01

    Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved 'pathogen-associated molecular patterns' of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release 'danger-associated molecular patterns' that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy.

  9. Spliceosome SNRNP200 Promotes Viral RNA Sensing and IRF3 Activation of Antiviral Response.

    Directory of Open Access Journals (Sweden)

    Nicolas Tremblay

    2016-07-01

    Full Text Available Spliceosomal SNRNP200 is a Ski2-like RNA helicase that is associated with retinitis pigmentosa 33 (RP33. Here we found that SNRNP200 promotes viral RNA sensing and IRF3 activation through the ability of its amino-terminal Sec63 domain (Sec63-1 to bind RNA and to interact with TBK1. We show that SNRNP200 relocalizes into TBK1-containing cytoplasmic structures upon infection, in contrast to the RP33-associated S1087L mutant, which is also unable to rescue antiviral response of SNRNP200 knockdown cells. This functional rescue correlates with the Sec63-1-mediated binding of viral RNA. The hindered IFN-β production of knockdown cells was further confirmed in peripheral blood cells of RP33 patients bearing missense mutation in SNRNP200 upon infection with Sendai virus (SeV. This work identifies a novel immunoregulatory role of the spliceosomal SNRNP200 helicase as an RNA sensor and TBK1 adaptor for the activation of IRF3-mediated antiviral innate response.

  10. Use of competitive polymerase chain reaction to determine HIV-1 levels in response to antiviral treatments

    NARCIS (Netherlands)

    Bruisten, S. M.; Koppelman, M. H.; Roos, M. T.; Loeliger, A. E.; Reiss, P.; Boucher, C. A.; Huisman, H. G.

    1993-01-01

    OBJECTIVE: To develop a competitive polymerase chain reaction technique with which to evaluate the usefulness of HIV-1 level as a marker of response to antiviral treatment. DESIGN: HIV-1 sequences were assessed by competitive polymerase chain reaction in four subjects participating in a double-blind

  11. Amphipathic DNA polymers exhibit antiviral activity against systemic Murine Cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Juteau Jean-Marc

    2009-12-01

    Full Text Available Abstract Background Phosphorothioated oligonucleotides (PS-ONs have a sequence-independent, broad spectrum antiviral activity as amphipathic polymers (APs and exhibit potent in vitro antiviral activity against a broad spectrum of herpesviruses: HSV-1, HSV-2, HCMV, VZV, EBV, and HHV-6A/B, and in vivo activity in a murine microbiocide model of genital HSV-2 infection. The activity of these agents against animal cytomegalovirus (CMV infections in vitro and in vivo was therefore investigated. Results In vitro, a 40 mer degenerate AP (REP 9 inhibited both murine CMV (MCMV and guinea pig CMV (GPCMV with an IC50 of 0.045 μM and 0.16 μM, respectively, and a 40 mer poly C AP (REP 9C inhibited MCMV with an IC50 of 0.05 μM. Addition of REP 9 to plaque assays during the first two hours of infection inhibited 78% of plaque formation whereas addition of REP 9 after 10 hours of infection did not significantly reduce the number of plaques, indicating that REP 9 antiviral activity against MCMV occurs at early times after infection. In a murine model of CMV infection, systemic treatment for 5 days significantly reduced virus replication in the spleens and livers of infected mice compared to saline-treated control mice. REP 9 and REP 9C were administered intraperitoneally for 5 consecutive days at 10 mg/kg, starting 2 days prior to MCMV infection. Splenomegaly was observed in infected mice treated with REP 9 but not in control mice or in REP 9 treated, uninfected mice, consistent with mild CpG-like activity. When REP 9C (which lacks CpG motifs was compared to REP 9, it exhibited comparable antiviral activity as REP 9 but was not associated with splenomegaly. This suggests that the direct antiviral activity of APs is the predominant therapeutic mechanism in vivo. Moreover, REP 9C, which is acid stable, was effective when administered orally in combination with known permeation enhancers. Conclusion These studies indicate that APs exhibit potent, well tolerated

  12. Antiviral type I and type III interferon responses in the central nervous system.

    Science.gov (United States)

    Sorgeloos, Frédéric; Kreit, Marguerite; Hermant, Pascale; Lardinois, Cécile; Michiels, Thomas

    2013-03-15

    The central nervous system (CNS) harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i) preventing neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic viruses that target the IFN pathway.

  13. Antiviral Type I and Type III Interferon Responses in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Thomas Michiels

    2013-03-01

    Full Text Available The central nervous system (CNS harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i preventing neuroinvasion and infection of CNS cells; ii the identity of IFN-producing cells in the CNS; iii the antiviral activity of ISGs; and iv the activity of viral proteins of neurotropic viruses that target the IFN pathway.

  14. Clinical impact of non-organ-specific autoantibodies on the response to combined antiviral treatment in patients with hepatitis C.

    Science.gov (United States)

    Muratori, Paolo; Muratori, Luigi; Guidi, Marcello; Granito, Alessandro; Susca, Micaela; Lenzi, Marco; Bianchi, Francesco B

    2005-02-15

    Hepatitis C virus (HCV)-related chronic hepatitis is frequently associated with non-organ-specific autoantibodies (NOSAs), but available data about the relationship between NOSA positivity and the effect of antiviral therapy in persons with hepatitis C are few and controversial. Our aim was to evaluate the impact of NOSA positivity on the outcome of combined antiviral therapy in HCV-positive patients. A total of 143 consecutive adult patients with hepatitis C were studied. Antinuclear antibody (ANA), anti-smooth muscle antibody (SMA), and anti-liver/kidney microsomal antibody type 1 (LKM1) were detected by indirect immunofluorescence. All patients were treatment naive and received combined antiviral therapy (interferon [IFN]-ribavirin) after enrollment in the study. Patients were classified as nonresponders if HCV RNA was detectable after 6 months of therapy, as relapsers if abnormal transaminase levels and reactivation of HCV replication were observed after the end of treatment, and as long-term responders if transaminase levels were persistently normal and HCV RNA was undetectable 6 months after the end of treatment. Thirty-seven patients (25%) were NOSA positive (SMA was detected in 19 patients, ANA in 10, ANA and SMA in 4, LKM1 in 3, and SMA and LKM1 in 1). The prevalence of long-term response was similar between NOSA-positive patients and NOSA-negative patients (48.6% vs. 56.6%; P=not significant). Compared with HCV genotype 1 (HCV-1), HCV genotypes other than 1 were more often associated with long-term response among NOSA-positive patients (93.3% vs. 30%; P=.0017). The overall rate of long-term response, irrespective of NOSA status, was 54.5%. Detection of HCV-1 and elevated gamma-glutamyl transpeptidase serum levels were independent negative prognostic factors of treatment response (P=.007 and P=.026, respectively). Combined antiviral treatment (IFN-ribavirin) is safe and effective in NOSA-positive patients with hepatitis C, even if long-term response is

  15. Interactions of macrophages with probiotic bacteria lead to increased antiviral response against vesicular stomatitis virus

    DEFF Research Database (Denmark)

    Ivec, Martin; Botic, Tanja; Koren, Srecko

    2007-01-01

    and by producing chemokines and immunoregulatory cytokines that enable the adaptive immune response to recognize infected cells and perform antiviral effector functions. Probiotics, as a part of the normal gut intestinal flora, are important in supporting a functional yet balanced immune system. Improving our...... understanding of their role in the activation of macrophages and their stimulation of proinflammatory cytokine production in early viral infection was the main goal of this study. Our in vitro model study showed that probiotic bacteria, either from the species Lactobacillus or Bifidobacteria have the ability...... dehydrogenases activity could be implied as the first indicator of potential inhibitory effects of the probiotics on virus replication. The interactions between probiotic bacteria, macrophages and vesicular stomatitis virus (VSV), markedly depended on the bacterial strain studied....

  16. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.

    Science.gov (United States)

    Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo

    2015-02-01

    Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A simple, rapid, and sensitive system for the evaluation of anti-viral drugs in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoguang [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Department of Medical Microbiology, Harbin Medical University, Harbin 150086 (China); Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 (Japan); Qian, Hua [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 (Japan); Miyamoto, Fusako [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Naito, Takeshi [Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Kawaramachi, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Kawaji, Kumi [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Kajiwara, Kazumi [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); JST Innovation Plaza Kyoto, Japan Science and Technology Agency, Nishigyo-ku, Kyoto 615-8245 (Japan); Hattori, Toshio [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Matsuoka, Masao [Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Kawaramachi, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Watanabe, Kentaro; Oishi, Shinya; Fujii, Nobutaka [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); and others

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We established a novel, simple and rapid in vivo system for evaluation of anti-HIV-1 drugs with rats. Black-Right-Pointing-Pointer The system may be applicable for other antiviral drugs, and/or useful for initial screening in vivo. Black-Right-Pointing-Pointer In this system, TRI-1144 displayed the most potent anti-HIV-1 activity in vivo. -- Abstract: The lack of small animal models for the evaluation of anti-human immunodeficiency virus type 1 (HIV-1) agents hampers drug development. Here, we describe the establishment of a simple and rapid evaluation system in a rat model without animal infection facilities. After intraperitoneal administration of test drugs to rats, antiviral activity in the sera was examined by the MAGI assay. Recently developed inhibitors for HIV-1 entry, two CXCR4 antagonists, TF14016 and FC131, and four fusion inhibitors, T-20, T-20EK, SC29EK, and TRI-1144, were evaluated using HIV-1{sub IIIB} and HIV-1{sub BaL} as representative CXCR4- and CCR5-tropic HIV-1 strains, respectively. CXCR4 antagonists were shown to only possess anti-HIV-1{sub IIIB} activity, whereas fusion inhibitors showed both anti-HIV-1{sub IIIB} and anti-HIV-1{sub BaL} activities in rat sera. These results indicate that test drugs were successfully processed into the rat sera and could be detected by the MAGI assay. In this system, TRI-1144 showed the most potent and sustained antiviral activity. Sera from animals not administered drugs showed substantial anti-HIV-1 activity, indicating that relatively high dose or activity of the test drugs might be needed. In conclusion, the novel rat system established here, 'phenotypic drug evaluation', may be applicable for the evaluation of various antiviral drugs in vivo.

  18. A simple, rapid, and sensitive system for the evaluation of anti-viral drugs in rats

    International Nuclear Information System (INIS)

    Li, Xiaoguang; Qian, Hua; Miyamoto, Fusako; Naito, Takeshi; Kawaji, Kumi; Kajiwara, Kazumi; Hattori, Toshio; Matsuoka, Masao; Watanabe, Kentaro; Oishi, Shinya; Fujii, Nobutaka

    2012-01-01

    Highlights: ► We established a novel, simple and rapid in vivo system for evaluation of anti-HIV-1 drugs with rats. ► The system may be applicable for other antiviral drugs, and/or useful for initial screening in vivo. ► In this system, TRI-1144 displayed the most potent anti-HIV-1 activity in vivo. -- Abstract: The lack of small animal models for the evaluation of anti-human immunodeficiency virus type 1 (HIV-1) agents hampers drug development. Here, we describe the establishment of a simple and rapid evaluation system in a rat model without animal infection facilities. After intraperitoneal administration of test drugs to rats, antiviral activity in the sera was examined by the MAGI assay. Recently developed inhibitors for HIV-1 entry, two CXCR4 antagonists, TF14016 and FC131, and four fusion inhibitors, T-20, T-20EK, SC29EK, and TRI-1144, were evaluated using HIV-1 IIIB and HIV-1 BaL as representative CXCR4- and CCR5-tropic HIV-1 strains, respectively. CXCR4 antagonists were shown to only possess anti-HIV-1 IIIB activity, whereas fusion inhibitors showed both anti-HIV-1 IIIB and anti-HIV-1 BaL activities in rat sera. These results indicate that test drugs were successfully processed into the rat sera and could be detected by the MAGI assay. In this system, TRI-1144 showed the most potent and sustained antiviral activity. Sera from animals not administered drugs showed substantial anti-HIV-1 activity, indicating that relatively high dose or activity of the test drugs might be needed. In conclusion, the novel rat system established here, “phenotypic drug evaluation”, may be applicable for the evaluation of various antiviral drugs in vivo.

  19. Aminoadamantanes versus other antiviral drugs for chronic hepatitis C

    DEFF Research Database (Denmark)

    Lamers, Mieke H; Broekman, Mark; Drenth, Joost Ph

    2014-01-01

    months after the end of treatment) in approximately 40% to 80% of treated patients, depending on viral genotype. Recently, a new class of drugs have emerged for hepatitis C infection, the direct acting antivirals, which in combination with standard therapy or alone can lead to sustained virological...... response in 80% or more of treated patients. Aminoadamantanes, mostly amantadine, are antiviral drugs used for the treatment of patients with chronic hepatitis C. We have previously systematically reviewed amantadine versus placebo or no intervention and found no significant effects of the amantadine...... on all-cause mortality or liver-related morbidity and on adverse events in patients with hepatitis C. Overall, we did not observe a significant effect of amantadine on sustained virological response. In this review, we systematically review aminoadamantanes versus other antiviral drugs. OBJECTIVES...

  20. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    Directory of Open Access Journals (Sweden)

    Feixiong Cheng

    2016-09-01

    Full Text Available Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase. Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline that may be potential for antiviral indication (e.g. anti-Ebola. In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  1. Antiviral activity of a small molecule deubiquitinase inhibitor occurs via induction of the unfolded protein response.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Perry

    Full Text Available Ubiquitin (Ub is a vital regulatory component in various cellular processes, including cellular responses to viral infection. As obligate intracellular pathogens, viruses have the capacity to manipulate the ubiquitin (Ub cycle to their advantage by encoding Ub-modifying proteins including deubiquitinases (DUBs. However, how cellular DUBs modulate specific viral infections, such as norovirus, is poorly understood. To examine the role of DUBs during norovirus infection, we used WP1130, a small molecule inhibitor of a subset of cellular DUBs. Replication of murine norovirus in murine macrophages and the human norovirus Norwalk virus in a replicon system were significantly inhibited by WP1130. Chemical proteomics identified the cellular DUB USP14 as a target of WP1130 in murine macrophages, and pharmacologic inhibition or siRNA-mediated knockdown of USP14 inhibited murine norovirus infection. USP14 is a proteasome-associated DUB that also binds to inositol-requiring enzyme 1 (IRE1, a critical mediator of the unfolded protein response (UPR. WP1130 treatment of murine macrophages did not alter proteasome activity but activated the X-box binding protein-1 (XBP-1 through an IRE1-dependent mechanism. In addition, WP1130 treatment or induction of the UPR also reduced infection of other RNA viruses including encephalomyocarditis virus, Sindbis virus, and La Crosse virus but not vesicular stomatitis virus. Pharmacologic inhibition of the IRE1 endonuclease activity partially rescued the antiviral effect of WP1130. Taken together, our studies support a model whereby induction of the UPR through cellular DUB inhibition blocks specific viral infections, and suggest that cellular DUBs and the UPR represent novel targets for future development of broad spectrum antiviral therapies.

  2. CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production

    Science.gov (United States)

    Khairnar, Vishal; Duhan, Vikas; Maney, Sathish Kumar; Honke, Nadine; Shaabani, Namir; Pandyra, Aleksandra A.; Seifert, Marc; Pozdeev, Vitaly; Xu, Haifeng C.; Sharma, Piyush; Baldin, Fabian; Marquardsen, Florian; Merches, Katja; Lang, Elisabeth; Kirschning, Carsten; Westendorf, Astrid M.; Häussinger, Dieter; Lang, Florian; Dittmer, Ulf; Küppers, Ralf; Recher, Mike; Hardt, Cornelia; Scheffrahn, Inka; Beauchemin, Nicole; Göthert, Joachim R.; Singer, Bernhard B.; Lang, Philipp A.; Lang, Karl S.

    2015-01-01

    B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1−/− mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1−/− mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses. PMID:25692415

  3. An RNA polymerase II-driven Ebola virus minigenome system as an advanced tool for antiviral drug screening.

    Science.gov (United States)

    Nelson, Emily V; Pacheco, Jennifer R; Hume, Adam J; Cressey, Tessa N; Deflubé, Laure R; Ruedas, John B; Connor, John H; Ebihara, Hideki; Mühlberger, Elke

    2017-10-01

    Ebola virus (EBOV) causes a severe disease in humans with the potential for significant international public health consequences. Currently, treatments are limited to experimental vaccines and therapeutics. Therefore, research into prophylaxis and antiviral strategies to combat EBOV infections is of utmost importance. The requirement for high containment laboratories to study EBOV infection is a limiting factor for conducting EBOV research. To overcome this issue, minigenome systems have been used as valuable tools to study EBOV replication and transcription mechanisms and to screen for antiviral compounds at biosafety level 2. The most commonly used EBOV minigenome system relies on the ectopic expression of the T7 RNA polymerase (T7), which can be limiting for certain cell types. We have established an improved EBOV minigenome system that utilizes endogenous RNA polymerase II (pol II) as a driver for the synthesis of minigenome RNA. We show here that this system is as efficient as the T7-based minigenome system, but works in a wider range of cell types, including biologically relevant cell types such as bat cells. Importantly, we were also able to adapt this system to a reliable and cost-effective 96-well format antiviral screening assay with a Z-factor of 0.74, indicative of a robust assay. Using this format, we identified JG40, an inhibitor of Hsp70, as an inhibitor of EBOV replication, highlighting the potential for this system as a tool for antiviral drug screening. In summary, this updated EBOV minigenome system provides a convenient and effective means of advancing the field of EBOV research. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. TRBP and eIF6 homologue in Marsupenaeus japonicus play crucial roles in antiviral response.

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    Full Text Available Plants and invertebrates can suppress viral infection through RNA silencing, mediated by RNA-induced silencing complex (RISC. Trans-activation response RNA-binding protein (TRBP, consisting of three double-stranded RNA-binding domains, is a component of the RISC. In our previous paper, a TRBP homologue in Fenneropenaeus chinensis (Fc-TRBP was reported to directly bind to eukaryotic initiation factor 6 (Fc-eIF6. In this study, we further characterized the function of TRBP and the involvement of TRBP and eIF6 in antiviral RNA interference (RNAi pathway of shrimp. The double-stranded RNA binding domains (dsRBDs B and C of the TRBP from Marsupenaeus japonicus (Mj-TRBP were found to mediate the interaction of TRBP and eIF6. Gel-shift assays revealed that the N-terminal of Mj-TRBP dsRBD strongly binds to double-stranded RNA (dsRNA and that the homodimer of the TRBP mediated by the C-terminal dsRBD increases the affinity to dsRNA. RNAi against either Mj-TRBP or Mj-eIF6 impairs the dsRNA-induced sequence-specific RNAi pathway and facilitates the proliferation of white spot syndrome virus (WSSV. These results further proved the important roles of TRBP and eIF6 in the antiviral response of shrimp.

  5. Provider-patient in-office discussions of response to hepatitis C antiviral therapy and impact on patient comprehension.

    Science.gov (United States)

    Hamilton, Heidi E; Nelson, Meaghan; Martin, Paul; Cotler, Scott J

    2006-04-01

    Providers need to communicate projected response rates effectively to enable patients with hepatitis C virus to make informed decisions about therapy. This study used interactional sociolinguistics (1) to evaluate how gastroenterologists and allied health professionals communicate information regarding response rates to antiviral therapy, (2) to determine how these discussions relate to where the patient is in the continuum of evaluation and treatment, (3) to assess whether patients were aligned with providers in their perceptions of response rates after office visits, and (4) to identify factors that improve provider-patient alignment. Gastroenterologists, allied health professionals, and patients with hepatitis C virus were videotaped and audiotaped during regularly scheduled visits. Postvisit interviews were conducted separately with patients and providers. Visits and postvisits were transcribed and analyzed using validated sociolinguistic techniques. The phase of hepatitis C virus treatment shaped the benchmarks of response talk, although across the treatment continuum providers overwhelmingly made strategic use of positive statistics, providing motivation. In postvisit interviews, 55% of providers and patients were aligned on response rates. Patients with a favorable outcome and patients who asked response-related questions in the visit were more likely to be aligned with providers. Areas identified for improvement included the tendency to discuss response rates before an individualized assessment could be made, balancing motivation and accuracy, and assessing the patient's perspective before delivering any bad news, if necessary. Sociolinguistic analysis provides a powerful tool to evaluate provider-patient interactions and to identify ways to improve in-office communication regarding antiviral therapy.

  6. Antiviral immunity following smallpox virus infection: a case-control study.

    Science.gov (United States)

    Hammarlund, Erika; Lewis, Matthew W; Hanifin, Jon M; Mori, Motomi; Koudelka, Caroline W; Slifka, Mark K

    2010-12-01

    Outbreaks of smallpox (i.e., caused by variola virus) resulted in up to 30% mortality, but those who survived smallpox infection were regarded as immune for life. Early studies described the levels of neutralizing antibodies induced after infection, but smallpox was eradicated before contemporary methods for quantifying T-cell memory were developed. To better understand the levels and duration of immunity after smallpox infection, we performed a case-control study comparing antiviral CD4(+) and CD8(+) T-cell responses and neutralizing antibody levels of 24 smallpox survivors with the antiviral immunity observed in 60 smallpox-vaccinated (i.e., vaccinia virus-immune) control subjects. We found that the duration of immunity following smallpox infection was remarkably similar to that observed after smallpox vaccination, with antiviral T-cell responses that declined slowly over time and antiviral antibody responses that remained stable for decades after recovery from infection. These results indicate that severe, potentially life-threatening disease is not required for the development of sustainable long-term immunity. This study shows that the levels of immunity induced following smallpox vaccination are comparable in magnitude to that achieved through natural variola virus infection, and this may explain the notable success of vaccination in eradicating smallpox, one of the world's most lethal diseases.

  7. Antiviral Immunity following Smallpox Virus Infection: a Case-Control Study▿

    Science.gov (United States)

    Hammarlund, Erika; Lewis, Matthew W.; Hanifin, Jon M.; Mori, Motomi; Koudelka, Caroline W.; Slifka, Mark K.

    2010-01-01

    Outbreaks of smallpox (i.e., caused by variola virus) resulted in up to 30% mortality, but those who survived smallpox infection were regarded as immune for life. Early studies described the levels of neutralizing antibodies induced after infection, but smallpox was eradicated before contemporary methods for quantifying T-cell memory were developed. To better understand the levels and duration of immunity after smallpox infection, we performed a case-control study comparing antiviral CD4+ and CD8+ T-cell responses and neutralizing antibody levels of 24 smallpox survivors with the antiviral immunity observed in 60 smallpox-vaccinated (i.e., vaccinia virus-immune) control subjects. We found that the duration of immunity following smallpox infection was remarkably similar to that observed after smallpox vaccination, with antiviral T-cell responses that declined slowly over time and antiviral antibody responses that remained stable for decades after recovery from infection. These results indicate that severe, potentially life-threatening disease is not required for the development of sustainable long-term immunity. This study shows that the levels of immunity induced following smallpox vaccination are comparable in magnitude to that achieved through natural variola virus infection, and this may explain the notable success of vaccination in eradicating smallpox, one of the world's most lethal diseases. PMID:20926574

  8. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans.

    Directory of Open Access Journals (Sweden)

    Elena Sandalova

    Full Text Available Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR, proliferation (Ki-67/Bcl-2(low and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV. CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-gamma during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.

  9. Interferon induced IFIT family genes in host antiviral defense.

    Science.gov (United States)

    Zhou, Xiang; Michal, Jennifer J; Zhang, Lifan; Ding, Bo; Lunney, Joan K; Liu, Bang; Jiang, Zhihua

    2013-01-01

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IFN-stimulated genes. This family contains a cluster of duplicated loci. Most mammals have IFIT1, IFIT2, IFIT3 and IFIT5; however, bird, marsupial, frog and fish have only IFIT5. Regardless of species, IFIT5 is always adjacent to SLC16A12. IFIT family genes are predominantly induced by type I and type III interferons and are regulated by the pattern recognition and the JAK-STAT signaling pathway. IFIT family proteins are involved in many processes in response to viral infection. However, some viruses can escape the antiviral functions of the IFIT family by suppressing IFIT family genes expression or methylation of 5' cap of viral molecules. In addition, the variants of IFIT family genes could significantly influence the outcome of hepatitis C virus (HCV) therapy. We believe that our current review provides a comprehensive picture for the community to understand the structure and function of IFIT family genes in response to pathogens in human, as well as in animals.

  10. SPOC1-mediated antiviral host cell response is antagonized early in human adenovirus type 5 infection

    DEFF Research Database (Denmark)

    Schreiner, Sabrina; Kinkley, Sarah; Bürck, Carolin

    2013-01-01

    , and playing a role in DNA damage response. SPOC1 co-localized with viral replication centers in the host cell nucleus, interacted with Ad DNA, and repressed viral gene expression at the transcriptional level. We discovered that this SPOC1-mediated restriction imposed upon Ad growth is relieved by its...... viruses (HSV-1, HSV-2, HIV-1, and HCV) also depleted SPOC1 in infected cells. Our findings provide a general model for how pathogenic human viruses antagonize intrinsic SPOC1-mediated antiviral responses in their host cells. A better understanding of viral entry and early restrictive functions in host...

  11. ORF7-encoded accessory protein 7a of feline infectious peritonitis virus as a counteragent against IFN-α-induced antiviral response.

    Science.gov (United States)

    Dedeurwaerder, Annelike; Olyslaegers, Dominique A J; Desmarets, Lowiese M B; Roukaerts, Inge D M; Theuns, Sebastiaan; Nauwynck, Hans J

    2014-02-01

    The type I IFN-mediated immune response is the first line of antiviral defence. Coronaviruses, like many other viruses, have evolved mechanisms to evade this innate response, ensuring their survival. Several coronavirus accessory genes play a central role in these pathways, but for feline coronaviruses this has never to our knowledge been studied. As it has been demonstrated previously that ORF7 is essential for efficient replication in vitro and virulence in vivo of feline infectious peritonitis virus (FIPV), the role of this ORF in the evasion of the IFN-α antiviral response was investigated. Deletion of ORF7 from FIPV strain 79-1146 (FIPV-Δ7) rendered the virus more susceptible to IFN-α treatment. Given that ORF7 encodes two proteins, 7a and 7b, it was further explored which of these proteins is active in this mechanism. Providing 7a protein in trans rescued the mutant FIPV-Δ7 from IFN sensitivity, which was not achieved by addition of 7b protein. Nevertheless, addition of protein 7a to FIPV-Δ3Δ7, a FIPV mutant deleted in both ORF3 and ORF7, could no longer increase the replication capacity of this mutant in the presence of IFN. These results indicate that FIPV 7a protein is a type I IFN antagonist and protects the virus from the antiviral state induced by IFN, but it needs the presence of ORF3-encoded proteins to exert its antagonistic function.

  12. Antiviral and Inflammatory Cellular Signaling Associated with Enterovirus 71 Infection

    Directory of Open Access Journals (Sweden)

    Yuefei Jin

    2018-03-01

    Full Text Available Enterovirus 71 (EV71 infection has become a major threat to global public health, especially in infants and young children. Epidemiological studies have indicated that EV71 infection is responsible for severe and even fatal cases of hand, foot, and mouth disease (HFMD. Accumulated evidence indicates that EV71 infection triggers a plethora of interactive signaling pathways, resulting in host immune evasion and inflammatory response. This review mainly covers the effects of EV71 infection on major antiviral and inflammatory cellular signal pathways. EV71 can activate cellular signaling networks including multiple cell surface and intracellular receptors, intracellular kinases, calcium flux, and transcription factors that regulate antiviral innate immunity and inflammatory response. Cellular signaling plays a critical role in the regulation of host innate immune and inflammatory pathogenesis. Elucidation of antiviral and inflammatory cellular signaling pathways initiated by EV71 will not only help uncover the potential mechanisms of EV71 infection-induced pathogenesis, but will also provide clues for the design of therapeutic strategies against EV71 infection.

  13. Using the ferret as an animal model for investigating influenza antiviral effectiveness

    Directory of Open Access Journals (Sweden)

    Ding Yuan Oh

    2016-02-01

    Full Text Available The concern of the emergence of a pandemic influenza virus has sparked an increased effort towards the development and testing of novel influenza antivirals. Central to this is the animal model of influenza infection, which has played an important role in understanding treatment effectiveness and the effect of antivirals on host immune responses. Among the different animal models of influenza, ferrets can be considered the most suitable for antiviral studies as they display most of the human-like symptoms following influenza infections, they can be infected with human influenza virus without prior viral adaptation and have the ability to transmit influenza virus efficiently between one another. However, an accurate assessment of the effectiveness of an antiviral treatment in ferrets is dependent on three major experimental considerations encompassing firstly, the volume and titre of virus, and the route of viral inoculation. Secondly, the route and dose of drug administration, and lastly, the different methods used to assess clinical symptoms, viral shedding kinetics and host immune responses in the ferrets. A good understanding of these areas is necessary to achieve data that can accurately inform the human use of influenza antivirals. In this review, we discuss the current progress and the challenges faced in these three major areas when using the ferret model to measure influenza antiviral effectiveness.

  14. Antiviral resistance and the control of pandemic influenza.

    Directory of Open Access Journals (Sweden)

    Marc Lipsitch

    2007-01-01

    Full Text Available The response to the next influenza pandemic will likely include extensive use of antiviral drugs (mainly oseltamivir, combined with other transmission-reducing measures. Animal and in vitro studies suggest that some strains of influenza may become resistant to oseltamivir while maintaining infectiousness (fitness. Use of antiviral agents on the scale anticipated for the control of pandemic influenza will create an unprecedented selective pressure for the emergence and spread of these strains. Nonetheless, antiviral resistance has received little attention when evaluating these plans.We designed and analyzed a deterministic compartmental model of the transmission of oseltamivir-sensitive and -resistant influenza infections during a pandemic. The model predicts that even if antiviral treatment or prophylaxis leads to the emergence of a transmissible resistant strain in as few as 1 in 50,000 treated persons and 1 in 500,000 prophylaxed persons, widespread use of antivirals may strongly promote the spread of resistant strains at the population level, leading to a prevalence of tens of percent by the end of a pandemic. On the other hand, even in circumstances in which a resistant strain spreads widely, the use of antivirals may significantly delay and/or reduce the total size of the pandemic. If resistant strains carry some fitness cost, then, despite widespread emergence of resistance, antivirals could slow pandemic spread by months or more, and buy time for vaccine development; this delay would be prolonged by nondrug control measures (e.g., social distancing that reduce transmission, or use of a stockpiled suboptimal vaccine. Surprisingly, the model suggests that such nondrug control measures would increase the proportion of the epidemic caused by resistant strains.The benefits of antiviral drug use to control an influenza pandemic may be reduced, although not completely offset, by drug resistance in the virus. Therefore, the risk of resistance

  15. Ophthalmic antiviral chemotherapy : An overview

    Directory of Open Access Journals (Sweden)

    Athmanathan Sreedharan

    1997-01-01

    Full Text Available Antiviral drug development has been slow due to many factors. One such factor is the difficulty to block the viral replication in the cell without adversely affecting the host cell metabolic activity. Most of the antiviral compounds are analogs of purines and pyramidines. Currently available antiviral drugs mainly inhibit viral nucleic acid synthesis, hence act only on actively replicating viruses. This article presents an overview of some of the commonly used antiviral agents in clinical ophthalmology.

  16. T-bet- and STAT4-dependent IL-33 receptor expression directly promotes antiviral Th1 cell responses.

    Science.gov (United States)

    Baumann, Claudia; Bonilla, Weldy V; Fröhlich, Anja; Helmstetter, Caroline; Peine, Michael; Hegazy, Ahmed N; Pinschewer, Daniel D; Löhning, Max

    2015-03-31

    During infection, the release of damage-associated molecular patterns, so-called "alarmins," orchestrates the immune response. The alarmin IL-33 plays a role in a wide range of pathologies. Upon release, IL-33 signals through its receptor ST2, which reportedly is expressed only on CD4(+) T cells of the Th2 and regulatory subsets. Here we show that Th1 effector cells also express ST2 upon differentiation in vitro and in vivo during lymphocytic choriomeningitis virus (LCMV) infection. The expression of ST2 on Th1 cells was transient, in contrast to constitutive ST2 expression on Th2 cells, and marked highly activated effector cells. ST2 expression on virus-specific Th1 cells depended on the Th1-associated transcription factors T-bet and STAT4. ST2 deficiency resulted in a T-cell-intrinsic impairment of LCMV-specific Th1 effector responses in both mixed bone marrow-chimeric mice and adoptive cell transfer experiments. ST2-deficient virus-specific CD4(+) T cells showed impaired expansion, Th1 effector differentiation, and antiviral cytokine production. Consequently, these cells mediated little virus-induced immunopathology. Thus, IL-33 acts as a critical and direct cofactor to drive antiviral Th1 effector cell activation, with implications for vaccination strategies and immunotherapeutic approaches.

  17. Glucose-6-Phosphate Dehydrogenase Enhances Antiviral Response through Downregulation of NADPH Sensor HSCARG and Upregulation of NF-κB Signaling

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Wu

    2015-12-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD-deficient cells are highly susceptible to viral infection. This study examined the mechanism underlying this phenomenon by measuring the expression of antiviral genes—tumor necrosis factor alpha (TNF-α and GTPase myxovirus resistance 1 (MX1—in G6PD-knockdown cells upon human coronavirus 229E (HCoV-229E and enterovirus 71 (EV71 infection. Molecular analysis revealed that the promoter activities of TNF-α and MX1 were downregulated in G6PD-knockdown cells, and that the IκB degradation and DNA binding activity of NF-κB were decreased. The HSCARG protein, a nicotinamide adenine dinucleotide phosphate (NADPH sensor and negative regulator of NF-κB, was upregulated in G6PD-knockdown cells with decreased NADPH/NADP+ ratio. Treatment of G6PD-knockdown cells with siRNA against HSCARG enhanced the DNA binding activity of NF-κB and the expression of TNF-α and MX1, but suppressed the expression of viral genes; however, the overexpression of HSCARG inhibited the antiviral response. Exogenous G6PD or IDH1 expression inhibited the expression of HSCARG, resulting in increased expression of TNF-α and MX1 and reduced viral gene expression upon virus infection. Our findings suggest that the increased susceptibility of the G6PD-knockdown cells to viral infection was due to impaired NF-κB signaling and antiviral response mediated by HSCARG.

  18. Selective enhancement of radiation response of herpes simplex virus thymidine kinase transduced 9L gliosarcoma cells in vitro and in vivo by antiviral agents

    International Nuclear Information System (INIS)

    Kim, Jae Ho; Kim, Sang Hie; Kolozsvary, A.

    1995-01-01

    The purpose of this investigation was to demonstrate in a well-characterized tumor model that the radiosensitivity of tumor cells transduced with a herpes simplex virus thymidine kinase gene (HS-tk) would be selectively enhanced by antiviral agents. Rat 9L gliosarcoma cells transduced with a retroviral vector containing an HS-tk gene, 9L-tk cells were exposed to various doses or irradiation under either in vitro or in vivo conditions. The radiation sensitizing potential of two antiviral drugs, bromovinyl deoxyuridine (BVdU) and dihydroxymethyl ethyl methyl guanine (acyclovir), was evaluated in vitro. The radiosensitizing ability of BVdU was also evaluated with a 9L-tk tumor growing in the rat brain. Tumors growing in the right hemisphere of rat brains were irradiated stereotactically with single-dose irradiation. The radiation response of 9L-tk cells was selectively enhanced by antiviral agents relative to nontransduced cells. In the cell culture, when a 24-h drug exposure (20 μg/ml) preceded radiation, the sensitizer enhancement ratio (SER) for BVdU and acyclovir was 1.4 ± 0.1 and 1.3 ± 0.1, respectively. Exposure of cells to 10 μg/ml acyclovir for two 24-h periods both pre- and postirradiation resulted in a SER of 1.6 ± 0.1. In vivo, a significant increase in median survival time of rats with 9L-tk tumors was found when BVdU was administered prior to single-dose irradiation relative to the survival time of similar rats receiving radiation alone. An antiviral agent can enhance cell killing by radiation with selective action in cells transduced with the herpes simplex virus thymidine kinase gene. The results suggest that the three-pronged therapy of HS-tk gene transduction, systemically administered antiviral drug, and stereotactically targeted radiation therapy will improve the effectiveness of radiation therapy for the treatment of radioresistant tumors. 25 refs., 6 figs

  19. Selective enhancement of radiation response of herpes simplex virus thymidine kinase transduced 9L gliosarcoma cells in vitro and in vivo by antiviral agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Ho; Kim, Sang Hie; Kolozsvary, A. [Henry Ford Hospital, Detroit, MI (United States)] [and others

    1995-11-01

    The purpose of this investigation was to demonstrate in a well-characterized tumor model that the radiosensitivity of tumor cells transduced with a herpes simplex virus thymidine kinase gene (HS-tk) would be selectively enhanced by antiviral agents. Rat 9L gliosarcoma cells transduced with a retroviral vector containing an HS-tk gene, 9L-tk cells were exposed to various doses or irradiation under either in vitro or in vivo conditions. The radiation sensitizing potential of two antiviral drugs, bromovinyl deoxyuridine (BVdU) and dihydroxymethyl ethyl methyl guanine (acyclovir), was evaluated in vitro. The radiosensitizing ability of BVdU was also evaluated with a 9L-tk tumor growing in the rat brain. Tumors growing in the right hemisphere of rat brains were irradiated stereotactically with single-dose irradiation. The radiation response of 9L-tk cells was selectively enhanced by antiviral agents relative to nontransduced cells. In the cell culture, when a 24-h drug exposure (20 {mu}g/ml) preceded radiation, the sensitizer enhancement ratio (SER) for BVdU and acyclovir was 1.4 {plus_minus} 0.1 and 1.3 {plus_minus} 0.1, respectively. Exposure of cells to 10 {mu}g/ml acyclovir for two 24-h periods both pre- and postirradiation resulted in a SER of 1.6 {plus_minus} 0.1. In vivo, a significant increase in median survival time of rats with 9L-tk tumors was found when BVdU was administered prior to single-dose irradiation relative to the survival time of similar rats receiving radiation alone. An antiviral agent can enhance cell killing by radiation with selective action in cells transduced with the herpes simplex virus thymidine kinase gene. The results suggest that the three-pronged therapy of HS-tk gene transduction, systemically administered antiviral drug, and stereotactically targeted radiation therapy will improve the effectiveness of radiation therapy for the treatment of radioresistant tumors. 25 refs., 6 figs.

  20. Selective enhancement of radiation response of herpes simplex virus thymidine kinase transduced 9L gliosarcoma cells in vitro and in vivo by antiviral agents

    International Nuclear Information System (INIS)

    Jae, Ho Kim; Sang, Hie Kim; Kolozsvary, Andrew; Brown, Stephen L.; Ok, Bae Kim; Freytag, Svend O.

    1995-01-01

    Purpose: To demonstrate in a well-characterized tumor model that the radiosensitivity of tumor cells transduced with a herpes simplex virus thymidine kinase gene (HS-tk) would be selectively enhanced by antiviral agents. Methods and Materials: Rat 9L gliosarcoma cells transduced with a retroviral vector containing an HS-tk gene, 9L-tk cells were exposed to various doses of irradiation under either in vitro or in vivo conditions. The radiation sensitizing potential of two antiviral drugs, bromovinyl deoxyuridine (BVdU) and dihydroxymethyl ethyl methyl guanine (acyclovir), was evaluated in vitro. The radiosensitizing ability of BVdU was also evaluated with a 9L-tk tumor growing in the rat brain. Tumors growing in the right hemisphere of rat brains were irradiated stereotactically with single-dose irradiation. Results: The radiation response of 9L-tk cells was selectively enhanced by antiviral agents relative to nontransduced cells. In the cell culture, when a 24-h drug exposure (20 μg/ml) preceded radiation, the sensitizer enhancement ratio (SER) for BVdU and acyclovir was 1.4 ± 0.1 and 1.3 ± 0.1, respectively. Exposure of cells to 10 μg/ml acyclovir for two 24-h periods both pre- and postirradiation resulted in a SER of 1.6 ± 0.1. In vivo, a significant increase in median survival time of rats with 9L-tk tumors was found when BVdU was administered prior to single-dose irradiation relative to the survival time of similar rats receiving radiation alone. Conclusion: An antiviral agent can enhance cell killing by radiation with selective action in cells transduced with the herpes simplex virus thymidine kinase gene. The results suggest that the three-pronged therapy of HS-tk gene transduction, systemically administered antiviral drug, and stereotactically targeted radiation therapy will improve the effectiveness of radiation therapy for the treatment of radioresistant tumors

  1. Henipaviruses Employ a Multifaceted Approach to Evade the Antiviral Interferon Response

    Directory of Open Access Journals (Sweden)

    Megan L. Shaw

    2009-12-01

    Full Text Available Hendra and Nipah virus, which constitute the genus Henipavirus, are zoonotic paramyxoviruses that have been associated with sporadic outbreaks of severe disease and mortality in humans since their emergence in the late 1990s. Similar to other paramyxoviruses, their ability to evade the host interferon (IFN response is conferred by the P gene. The henipavirus P gene encodes four proteins; the P, V, W and C proteins, which have all been described to inhibit the antiviral response. Further studies have revealed that these proteins have overlapping but unique properties which enable the virus to block multiple signaling pathways in the IFN response. The best characterized of these is the JAK-STAT signaling pathway which is targeted by the P, V and W proteins via an interaction with the transcription factor STAT1. In addition the V and W proteins can both limit virus-induced induction of IFN but they appear to do this via distinct mechanisms that rely on unique sequences in their C-terminal domains. The ability to generate recombinant Nipah viruses now gives us the opportunity to determine the precise role for each of these proteins and address their contribution to pathogenicity. Additionally, the question of whether these multiple anti-IFN strategies are all active in the different mammalian hosts for henipaviruses, particularly the fruit bat reservoir, warrants further exploration.

  2. High throughput screening for small molecule enhancers of the interferon signaling pathway to drive next-generation antiviral drug discovery.

    Directory of Open Access Journals (Sweden)

    Dhara A Patel

    Full Text Available Most of current strategies for antiviral therapeutics target the virus specifically and directly, but an alternative approach to drug discovery might be to enhance the immune response to a broad range of viruses. Based on clinical observation in humans and successful genetic strategies in experimental models, we reasoned that an improved interferon (IFN signaling system might better protect against viral infection. Here we aimed to identify small molecular weight compounds that might mimic this beneficial effect and improve antiviral defense. Accordingly, we developed a cell-based high-throughput screening (HTS assay to identify small molecules that enhance the IFN signaling pathway components. The assay is based on a phenotypic screen for increased IFN-stimulated response element (ISRE activity in a fully automated and robust format (Z'>0.7. Application of this assay system to a library of 2240 compounds (including 2160 already approved or approvable drugs led to the identification of 64 compounds with significant ISRE activity. From these, we chose the anthracycline antibiotic, idarubicin, for further validation and mechanism based on activity in the sub-µM range. We found that idarubicin action to increase ISRE activity was manifest by other members of this drug class and was independent of cytotoxic or topoisomerase inhibitory effects as well as endogenous IFN signaling or production. We also observed that this compound conferred a consequent increase in IFN-stimulated gene (ISG expression and a significant antiviral effect using a similar dose-range in a cell-culture system inoculated with encephalomyocarditis virus (EMCV. The antiviral effect was also found at compound concentrations below the ones observed for cytotoxicity. Taken together, our results provide proof of concept for using activators of components of the IFN signaling pathway to improve IFN efficacy and antiviral immune defense as well as a validated HTS approach to identify

  3. HBV Bypasses the Innate Immune Response and Does Not Protect HCV From Antiviral Activity of Interferon.

    Science.gov (United States)

    Mutz, Pascal; Metz, Philippe; Lempp, Florian A; Bender, Silke; Qu, Bingqian; Schöneweis, Katrin; Seitz, Stefan; Tu, Thomas; Restuccia, Agnese; Frankish, Jamie; Dächert, Christopher; Schusser, Benjamin; Koschny, Ronald; Polychronidis, Georgios; Schemmer, Peter; Hoffmann, Katrin; Baumert, Thomas F; Binder, Marco; Urban, Stephan; Bartenschlager, Ralf

    2018-05-01

    Hepatitis C virus (HCV) infection is sensitive to interferon (IFN)-based therapy, whereas hepatitis B virus (HBV) infection is not. It is unclear whether HBV escapes detection by the IFN-mediated immune response or actively suppresses it. Moreover, little is known on how HBV and HCV influence each other in coinfected cells. We investigated interactions between HBV and the IFN-mediated immune response using HepaRG cells and primary human hepatocytes (PHHs). We analyzed the effects of HBV on HCV replication, and vice versa, at the single-cell level. PHHs were isolated from liver resection tissues from HBV-, HCV-, and human immunodeficiency virus-negative patients. Differentiated HepaRG cells overexpressing the HBV receptor sodium taurocholate cotransporting polypeptide (dHepaRGNTCP) and PHHs were infected with HBV. Huh7.5 cells were transfected with circular HBV DNA genomes resembling viral covalently closed circular DNA (cccDNA), and subsequently infected with HCV; this served as a model of HBV and HCV coinfection. Cells were incubated with IFN inducers, or IFNs, and antiviral response and viral replication were analyzed by immune fluorescence, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assays, and flow cytometry. HBV infection of dHepaRGNTCP cells and PHHs neither activated nor inhibited signaling via pattern recognition receptors. Incubation of dHepaRGNTCP cells and PHHs with IFN had little effect on HBV replication or levels of cccDNA. HBV infection of these cells did not inhibit JAK-STAT signaling or up-regulation of IFN-stimulated genes. In coinfected cells, HBV did not prevent IFN-induced suppression of HCV replication. In dHepaRGNTCP cells and PHHs, HBV evades the induction of IFN and IFN-induced antiviral effects. HBV infection does not rescue HCV from the IFN-mediated response. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. ANTI-VIRAL ACTIVITY OF GLYCIRRHETINIC AND GLYCIRRHIZIC ACIDS

    Directory of Open Access Journals (Sweden)

    V. V. Zarubaev

    2016-01-01

    Full Text Available Influenza is a highly contagious human disease. In the course of use of antiviral drugs drug-resistant strains of the virus are formed, resulting in reduced efficiency of the chemotherapy. The review describes the biological activity of glycirrhetinic (GLA and glycirrhizic (GA acids in terms of their use as a therapeutic agent for viral infections. So, these compounds are against a broad spectrum of viruses, including herpes, corona-, alphaand flaviviruses, human immunodeficiency virus, vaccinia virus, poliovirus type I, vesicular stomatitis virus and influenza A virus. These data indicate that anti-viral effect of these compounds is due to several types of activity — direct antiviral effects, effects on cellular proand anti-viral and immunomodulating pathways, in particular by activation of innate immunity system. GA interferes with early steps of the viral reproductive cycle such as virus binding to its receptor, the absorption of the virus by endocytosis or virus decapsidation in the cytoplasm. This is due to the effect of GA-induced reduction of membrane fluidity. Thus, one mechanism for the antiviral activity of GA is that GA molecule increases the rigidity of cellular and viral membranes after incorporation in there. This results in increasing of energy threshold required for the formation of negative curvature at the fusion zones, as well as difficult lateral migration of the virus-receptor complexes. In addition, glycyrrhizin prevents interaction of viral nucleoprotein with cellular protein HMGB1, which is necessary for the viral life cycle. Glycyrrhizin also inhibits the induction of oxidative stress during influenza infection, exhibiting antioxidant properties, which leads to a reduction of virus-induced production of cytokines/chemokines, without affecting the replication of the virus. A wide spectrum of biological activity and effect on various aspects of the viral pathogenesis substantiate the effect of GA and GLA as a component

  5. Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 genome editing enhances antiviral response in porcine cells

    Science.gov (United States)

    Type I interferons (IFN) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF7), the master regulator of IFN transcription. The role of 4EBPs in the negat...

  6. RNAi and Antiviral Defense in the Honey Bee

    Science.gov (United States)

    Brutscher, Laura M.; Flenniken, Michelle L.

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans. PMID:26798663

  7. RNAi and Antiviral Defense in the Honey Bee

    Directory of Open Access Journals (Sweden)

    Laura M. Brutscher

    2015-01-01

    Full Text Available Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD- affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans.

  8. Smallpox Antiviral Drug

    Science.gov (United States)

    2007-01-01

    Candida albicans] A G1L (590 aa) Flag VV(WR) 30/ENDIDEILGIAHLLEHLLISF/50 107/HIKELENEYYFRNEVFH/123 H41A 30/ENDIDEILGIAALLEHLLISF/50 107...RSV) (Table 1). Additional antiviral drug examples include the use of interferon for human papilloma virus ( HPV ) [Cantell, 1995]. Antivirals are most...low oral bioavailability, and quick elimination from plasma [Ghosn et al., 2004; Hostetler et al., 1994; Kempf et al., 1991; Matsumoto et al., 2001

  9. C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response.

    Directory of Open Access Journals (Sweden)

    Doug E Brackney

    2010-10-01

    Full Text Available Mosquitoes rely on RNA interference (RNAi as their primary defense against viral infections. To this end, the combination of RNAi and invertebrate cell culture systems has become an invaluable tool in studying virus-vector interactions. Nevertheless, a recent study failed to detect an active RNAi response to West Nile virus (WNV infection in C6/36 (Aedes albopictus cells, a mosquito cell line frequently used to study arthropod-borne viruses (arboviruses. Therefore, we sought to determine if WNV actively evades the host's RNAi response or if C6/36 cells have a dysfunctional RNAi pathway. C6/36 and Drosophila melanogaster S2 cells were infected with WNV (Flaviviridae, Sindbis virus (SINV, Togaviridae and La Crosse virus (LACV, Bunyaviridae and total RNA recovered from cell lysates. Small RNA (sRNA libraries were constructed and subjected to high-throughput sequencing. In S2 cells, virus-derived small interfering RNAs (viRNAs from all three viruses were predominantly 21 nt in length, a hallmark of the RNAi pathway. However, in C6/36 cells, viRNAs were primarily 17 nt in length from WNV infected cells and 26-27 nt in length in SINV and LACV infected cells. Furthermore, the origin (positive or negative viral strand and distribution (position along viral genome of S2 cell generated viRNA populations was consistent with previously published studies, but the profile of sRNAs isolated from C6/36 cells was altered. In total, these results suggest that C6/36 cells lack a functional antiviral RNAi response. These findings are analogous to the type-I interferon deficiency described in Vero (African green monkey kidney cells and suggest that C6/36 cells may fail to accurately model mosquito-arbovirus interactions at the molecular level.

  10. Bioprospecting of Red Sea Sponges for Novel Antiviral Pharmacophores

    KAUST Repository

    O'Rourke, Aubrie

    2015-05-01

    Natural products offer many possibilities for the treatment of disease. More than 70% of the Earth’s surface is ocean, and recent exploration and access has allowed for new additions to this catalog of natural treasures. The Central Red Sea off the coast of Saudi Arabia serves as a newly accessible location, which provides the opportunity to bioprospect marine sponges with the purpose of identifying novel antiviral scaffolds. Antivirals are underrepresented in present day clinical trials, as well as in the academic screens of marine natural product libraries. Here a high-throughput pipeline was initiated by prefacing the antiviral screen with an Image-based High-Content Screening (HCS) technique in order to identify candidates with antiviral potential. Prospective candidates were tested in a biochemical or cell-based assay for the ability to inhibit the NS3 protease of the West Nile Virus (WNV NS protease) as well as replication and reverse transcription of the Human Immunodeficiency Virus 1 (HIV-1). The analytical chemistry techniques of High-Performance Liquid Chromatograpy (HPLC), Liquid Chromatography-Mass Spectrometry (LC-MS), and Nuclear Magnetic Resonance (NMR) where used in order to identify the compounds responsible for the characteristic antiviral activity of the selected sponge fractions. We have identified a 3-alkyl pyridinium from Amphimedon chloros as the causative agent of the observed WNV NS3 protease inhibition in vitro. Additionally, we identified debromohymenialdisine, hymenialdisine, and oroidin from Stylissa carteri as prospective scaffolds capable of HIV-1 inhibition.

  11. Current antiviral drugs and their analysis in biological materials - Part II: Antivirals against hepatitis and HIV viruses.

    Science.gov (United States)

    Nováková, Lucie; Pavlík, Jakub; Chrenková, Lucia; Martinec, Ondřej; Červený, Lukáš

    2018-01-05

    This review is a Part II of the series aiming to provide comprehensive overview of currently used antiviral drugs and to show modern approaches to their analysis. While in the Part I antivirals against herpes viruses and antivirals against respiratory viruses were addressed, this part concerns antivirals against hepatitis viruses (B and C) and human immunodeficiency virus (HIV). Many novel antivirals against hepatitis C virus (HCV) and HIV have been introduced into the clinical practice over the last decade. The recent broadening portfolio of these groups of antivirals is reflected in increasing number of developed analytical methods required to meet the needs of clinical terrain. Part II summarizes the mechanisms of action of antivirals against hepatitis B virus (HBV), HCV, and HIV, their use in clinical practice, and analytical methods for individual classes. It also provides expert opinion on state of art in the field of bioanalysis of these drugs. Analytical methods reflect novelty of these chemical structures and use by far the most current approaches, such as simple and high-throughput sample preparation and fast separation, often by means of UHPLC-MS/MS. Proper method validation based on requirements of bioanalytical guidelines is an inherent part of the developed methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. La protéine CG4572 de Drosophile et la propagation du signal ARNi immun antiviral

    OpenAIRE

    Karlikow , Margot

    2015-01-01

    During viral infection, cell survival will depend on adequately giving, receiving and processing information to establish an efficient antiviral immune response. Cellular communication is therefore essential to allow the propagation of immune signals that will confer protection to the entire organism.The major antiviral defense in insects is the RNA interference (RNAi) mechanism that is activated by detection of viral double-stranded RNA (dsRNA). The antiviral RNAi mechanism can be divided in...

  13. Chemokines cooperate with TNF to provide protective anti-viral immunity and to enhance inflammation.

    Science.gov (United States)

    Alejo, Alí; Ruiz-Argüello, M Begoña; Pontejo, Sergio M; Fernández de Marco, María Del Mar; Saraiva, Margarida; Hernáez, Bruno; Alcamí, Antonio

    2018-05-03

    The role of cytokines and chemokines in anti-viral defense has been demonstrated, but their relative contribution to protective anti-viral responses in vivo is not fully understood. Cytokine response modifier D (CrmD) is a secreted receptor for TNF and lymphotoxin containing the smallpox virus-encoded chemokine receptor (SECRET) domain and is expressed by ectromelia virus, the causative agent of the smallpox-like disease mousepox. Here we show that CrmD is an essential virulence factor that controls natural killer cell activation and allows progression of fatal mousepox, and demonstrate that both SECRET and TNF binding domains are required for full CrmD activity. Vaccination with recombinant CrmD protects animals from lethal mousepox. These results indicate that a specific set of chemokines enhance the inflammatory and protective anti-viral responses mediated by TNF and lymphotoxin, and illustrate how viruses optimize anti-TNF strategies with the addition of a chemokine binding domain as soluble decoy receptors.

  14. The Denver Tube Combined with Antiviral Drugs In the Treatment of HBV-related Cirrhosis with Refractory Ascites: A Report of Three Cases

    Directory of Open Access Journals (Sweden)

    Wang Xiao-jin

    2014-03-01

    Full Text Available Treatment of nucleos(tide antiviral drugs for decompensated HBV-related cirrhosis can significantly improve the prognosis. But those patients with refractory ascites possibly deteriorate due to the complications of ascites before any benefit from anti-viral drugs could be observed. Therefore, it is important to find a way to help the patients with HBV-related cirrhosis and refractory ascites to receive the full benefits from antiviral therapy. Peritoneovenous shunt (PVS using Denver tube enables ascites to continuously bypass into systemic circulation, thereby reducing ascites and albumin input and improving quality of life. We report herein 3 cases of decompensated HBV-related cirrhosis with refractory ascites, PVS using Denver tube was combined with lamivudine for antiviral treatment before and after. Then, ascites was alleviated significantly or disapeared and viral responsed well. All patients achieved a satisfactory long-term survival from 6.7 to 14.7 years. It was suggested that the Denver shunt could be used as an adjuvant method to antiviral drugs for decompensated HBV-related cirrhosis with refractory ascites to help the patients reap the full benefits and maximize efficacy of antiviral treatment.

  15. Epimedium koreanum Nakai Displays Broad Spectrum of Antiviral Activity in Vitro and in Vivo by Inducing Cellular Antiviral State

    Directory of Open Access Journals (Sweden)

    Won-Kyung Cho

    2015-01-01

    Full Text Available Epimedium koreanum Nakai has been extensively used in traditional Korean and Chinese medicine to treat a variety of diseases. Despite the plant’s known immune modulatory potential and chemical make-up, scientific information on its antiviral properties and mode of action have not been completely investigated. In this study, the broad antiviral spectrum and mode of action of an aqueous extract from Epimedium koreanum Nakai was evaluated in vitro, and moreover, the protective effect against divergent influenza A subtypes was determined in BALB/c mice. An effective dose of Epimedium koreanum Nakai markedly reduced the replication of Influenza A Virus (PR8, Vesicular Stomatitis Virus (VSV, Herpes Simplex Virus (HSV and Newcastle Disease Virus (NDV in RAW264.7 and HEK293T cells. Mechanically, we found that an aqueous extract from Epimedium koreanum Nakai induced the secretion of type I IFN and pro-inflammatory cytokines and the subsequent stimulation of the antiviral state in cells. Among various components present in the extract, quercetin was confirmed to have striking antiviral properties. The oral administration of Epimedium koreanum Nakai exhibited preventive effects on BALB/c mice against lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3 and H9N2. Therefore, an extract of Epimedium koreanum Nakai and its components play roles as immunomodulators in the innate immune response, and may be potential candidates for prophylactic or therapeutic treatments against diverse viruses in animal and humans.

  16. Human and Mouse Eosinophils Have Antiviral Activity against Parainfluenza Virus.

    Science.gov (United States)

    Drake, Matthew G; Bivins-Smith, Elizabeth R; Proskocil, Becky J; Nie, Zhenying; Scott, Gregory D; Lee, James J; Lee, Nancy A; Fryer, Allison D; Jacoby, David B

    2016-09-01

    Respiratory viruses cause asthma exacerbations. Because eosinophils are the prominent leukocytes in the airways of 60-70% of patients with asthma, we evaluated the effects of eosinophils on a common respiratory virus, parainfluenza 1, in the lung. Eosinophils recruited to the airways of wild-type mice after ovalbumin sensitization and challenge significantly decreased parainfluenza virus RNA in the lungs 4 days after infection compared with nonsensitized animals. This antiviral effect was also seen in IL-5 transgenic mice with an abundance of airway eosinophils (NJ.1726) but was lost in transgenic eosinophil-deficient mice (PHIL) and in IL-5 transgenic mice crossed with eosinophil-deficient mice (NJ.1726-PHIL). Loss of the eosinophil granule protein eosinophil peroxidase, using eosinophil peroxidase-deficient transgenic mice, did not reduce eosinophils' antiviral effect. Eosinophil antiviral mechanisms were also explored in vitro. Isolated human eosinophils significantly reduced parainfluenza virus titers. This effect did not involve degradation of viral RNA by eosinophil granule RNases. However, eosinophils treated with a nitric oxide synthase inhibitor lost their antiviral activity, suggesting eosinophils attenuate viral infectivity through production of nitric oxide. Consequently, eosinophil nitric oxide production was measured with an intracellular fluorescent probe. Eosinophils produced nitric oxide in response to virus and to a synthetic agonist of the virus-sensing innate immune receptor, Toll-like receptor (TLR) 7. IFNγ increased expression of eosinophil TLR7 and potentiated TLR7-induced nitric oxide production. These results suggest that eosinophils promote viral clearance in the lung and contribute to innate immune responses against respiratory virus infections in humans.

  17. Viruses transfer the antiviral second messenger cGAMP between cells.

    Science.gov (United States)

    Bridgeman, A; Maelfait, J; Davenne, T; Partridge, T; Peng, Y; Mayer, A; Dong, T; Kaever, V; Borrow, P; Rehwinkel, J

    2015-09-11

    Cyclic GMP-AMP synthase (cGAS) detects cytosolic DNA during virus infection and induces an antiviral state. cGAS signals by synthesis of a second messenger, cyclic GMP-AMP (cGAMP), which activates stimulator of interferon genes (STING). We show that cGAMP is incorporated into viral particles, including lentivirus and herpesvirus virions, when these are produced in cGAS-expressing cells. Virions transferred cGAMP to newly infected cells and triggered a STING-dependent antiviral program. These effects were independent of exosomes and viral nucleic acids. Our results reveal a way by which a signal for innate immunity is transferred between cells, potentially accelerating and broadening antiviral responses. Moreover, infection of dendritic cells with cGAMP-loaded lentiviruses enhanced their activation. Loading viral vectors with cGAMP therefore holds promise for vaccine development. Copyright © 2015, American Association for the Advancement of Science.

  18. Antiviral Goes Viral: Harnessing CRISPR/Cas9 to Combat Viruses in Humans.

    Science.gov (United States)

    Soppe, Jasper Adriaan; Lebbink, Robert Jan

    2017-10-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems are RNA-guided sequence-specific prokaryotic antiviral immune systems. In prokaryotes, small RNA molecules guide Cas effector endonucleases to invading foreign genetic elements in a sequence-dependent manner, resulting in DNA cleavage by the endonuclease upon target binding. A rewired CRISPR/Cas9 system can be used for targeted and precise genome editing in eukaryotic cells. CRISPR/Cas has also been harnessed to target human pathogenic viruses as a potential new antiviral strategy. Here, we review recent CRISPR/Cas9-based approaches to combat specific human viruses in humans and discuss challenges that need to be overcome before CRISPR/Cas9 may be used in the clinic as an antiviral strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Antiviral properties of photosensitizers

    International Nuclear Information System (INIS)

    Hudson, J.B.; Towers, G.H.N.

    1988-01-01

    We have studied the antiviral properties of three different groups of photo-sensitizers, viz. (i) various furyl compounds; (ii) β-carboline alkaloids; (iii) thiophenes and their acetylene derivatives. In general the antiviral potency of the furyl compounds correlated with their ability to produce DNA photoadducts. Among the naturally occurring β-carboline alkaloids, harmine was considerably more potent (in the presence of long wavelength UV radiation, UVA) than several other harmane-related compounds. Slight alterations in chemical structure had profound effects on their antiviral activities. Harmine was shown to inactivate the DNA-virus murine cytomegalovirus (MCMV) by inhibiting viral gene expression, although other targets may also exist. Several eudistomins, carboline derivatives isolated from a tunicate, were also photoactive against viruses. Various plant thiophenes and polyacetylenes were studied in detail. These compounds also required UVA for antiviral activity, and some of them were extremely potent against viruses with membranes, e.g. α-terthienyl, which showed significant activity at only 10 -5 μg/ml. When MCMV had been treated with α-terthienyl plus UVA, the virus retained its integrity and penetrated cells normally; but the virus did not replicate. (author)

  20. Metabolic syndrome is associated with poor treatment response to antiviral therapy in chronic hepatitis C genotype 3 patients.

    Science.gov (United States)

    Aziz, Hafsa; Gill, Uzma; Raza, Abida; Gill, Muzaffar L

    2014-05-01

    Hepatitis C viral (HCV) infection is caused by an RNA virus. HCV infection is considered to induce systemic disease that causes steatosis, alters lipid metabolism, and results in metabolic syndrome. This study aimed to investigate the therapeutic outcome in HCV genotype 3 patients with metabolic syndrome. A total of 621 HCV-positive patients who visited the hospital for treatment were screened. Among these, 441 patients were enrolled for antiviral therapy. These enrolled patients were assessed for metabolic syndrome according to the International Diabetes Federation criteria. Group A included patients with metabolic syndrome and group B included patients without metabolic syndrome. All patients received peginterferon-α2a (180 μg/week) and ribavirin (10 mg/kg/day) for 6 months. The prevalence of metabolic syndrome in chronic HCV patients was 37.9%. We observed that metabolic syndrome was more common among female compared with male participants (43.9 vs. 28.8%, P=0.005). It was found that sustained virologic response (SVR) rates were significantly higher in the patients in group B (without metabolic syndrome) compared with the patients in group A who had metabolic syndrome (72.2 vs. 43.7%, Pmetabolic syndrome and a correlation of metabolic syndrome with nonresponse to antiviral therapy was observed. An interesting correlation among metabolic syndrome, age, and SVR was found: with age, SVR decreases, while metabolic syndrome increases. Metabolic syndrome has an influence on therapeutic outcomes in terms of SVR. Moreover, this information can identify patients who might have a low chance of attaining an SVR and a timely decision may protect the patients from the adverse effects of therapy.

  1. Unidentified angular recurrent ulceration responsive to antiviral therapy

    Directory of Open Access Journals (Sweden)

    Rahmi Amtha

    2013-03-01

    Full Text Available Background: Recurrent ulcer on angular area is usually called stomatitis angularis. It is caused by many factors such as vertical dimension reduce, vitamin B12, and immune system deficiency, C. albicans and staphylococcus involvement. Clinically is characterized by painful fissure with erythematous base without fever. Purpose: to describe an unidentified angular ulcer proceeded by recurrent ulcers with no response of topical therapy. Case: An 18-years old male came to Oral Medicine clinic in RSCM who complained of angular recurrent ulcers since 3 years ago which developed on skin and bleed easily on mouth opening. Patient had fever before the onset of ulcers. Large, painful, irregular ulcers covered by red crustae on angular area bilaterally. Patient has been treated with various drugs without improvement and lead to mouth opening limitation. Intra oral shows herpetiformtype of ulcer and swollen of gingival. Case management: Provisional diagnosis was established as viral infection thus acyclovir 200 mg five times daily for two weeks and topical anti inflammation gel were administered. Blood test for IgG/IgM of HSV1 and HSV2 were non reactive, however ulceration showed a remarkable improvement. The ulcers healed completely after next 2 weeks with acyclovir. Conclusion: The angular ulceration on above patient failed to fulfill the criteria of stomatitis angularis or herpes labialis lesion. However it showed a good response to antiviral. Therefore, unidentified angular ulceration was appointed, as the lesion might be triggered by other type of human herpes virus or types of virus that response to acyclovir.Latar belakang: ulser rekuren pada sudut mulut biasanya disebut stomatitis angularis. Kelainan ini disebabkan oleh banyak faktor seperti berkurangnya dimensi vertikal, defisiensi vitamin B12 dan sistem kekebalan tubuh, infeksi C. albicans serta staphylococcus. Secara klinis kelainan ini ditandai dengan fisur sakit pada sudut mulut dengan dasar

  2. Anti-viral RNA silencing: do we look like plants ?

    Directory of Open Access Journals (Sweden)

    Lecellier Charles-Henri

    2006-01-01

    Full Text Available Abstract The anti-viral function of RNA silencing was first discovered in plants as a natural manifestation of the artificial 'co-suppression', which refers to the extinction of endogenous gene induced by homologous transgene. Because silencing components are conserved among most, if not all, eukaryotes, the question rapidly arose as to determine whether this process fulfils anti-viral functions in animals, such as insects and mammals. It appears that, whereas the anti-viral process seems to be similarly conserved from plants to insects, even in worms, RNA silencing does influence the replication of mammalian viruses but in a particular mode: micro(miRNAs, endogenous small RNAs naturally implicated in translational control, rather than virus-derived small interfering (siRNAs like in other organisms, are involved. In fact, these recent studies even suggest that RNA silencing may be beneficial for viral replication. Accordingly, several large DNA mammalian viruses have been shown to encode their own miRNAs. Here, we summarize the seminal studies that have implicated RNA silencing in viral infection and compare the different eukaryotic responses.

  3. Direct-acting antiviral therapy decreases hepatocellular carcinoma recurrence rate in cirrhotic patients with chronic hepatitis C.

    Science.gov (United States)

    Virlogeux, Victor; Pradat, Pierre; Hartig-Lavie, Kerstin; Bailly, François; Maynard, Marianne; Ouziel, Guillaume; Poinsot, Domitille; Lebossé, Fanny; Ecochard, Marie; Radenne, Sylvie; Benmakhlouf, Samir; Koffi, Joseph; Lack, Philippe; Scholtes, Caroline; Uhres, Anne-Claire; Ducerf, Christian; Mabrut, Jean-Yves; Rode, Agnès; Levrero, Massimo; Combet, Christophe; Merle, Philippe; Zoulim, Fabien

    2017-08-01

    Arrival of direct-acting antiviral agents against hepatitis C virus with high-sustained virological response rates and very few side effects has drastically changed the management of hepatitis C virus infection. The impact of direct-acting antiviral exposure on hepatocellular carcinoma recurrence after a first remission in patients with advanced fibrosis remains to be clarified. 68 consecutive hepatitis C virus patients with a first hepatocellular carcinoma diagnosis and under remission, subsequently treated or not with a direct-acting antiviral combination, were included. Clinical, biological and virological data were collected at first hepatocellular carcinoma diagnosis, at remission and during the surveillance period. All patients were cirrhotic. Median age was 62 years and 76% of patients were male. Twenty-three patients (34%) were treated with direct-acting antivirals and 96% of them achieved sustained virological response. Median time between hepatocellular carcinoma remission and direct-acting antivirals initiation was 7.2 months (IQR: 3.6-13.5; range: 0.3-71.4) and median time between direct-acting antivirals start and hepatocellular carcinoma recurrence was 13.0 months (IQR: 9.2-19.6; range: 3.0-24.7). Recurrence rate was 1.7/100 person-months among treated patients vs 4.2/100 person-months among untreated patients (P=.008). In multivariate survival analysis, the hazard ratio for hepatocellular carcinoma recurrence after direct-acting antivirals exposure was 0.24 (95% confidence interval: 0.10-0.55; PHepatocellular carcinoma recurrence rate was significantly lower among patients treated with direct-acting antivirals compared with untreated patients. Given the potential impact of our observation, large-scale prospective cohort studies are needed to confirm these results. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Antiviral Drug Research Proposal Activity

    Directory of Open Access Journals (Sweden)

    Lisa Injaian

    2011-03-01

    Full Text Available The development of antiviral drugs provides an excellent example of how basic and clinical research must be used together in order to achieve the final goal of treating disease. A Research Oriented Learning Activity was designed to help students to better understand how basic and clinical research can be combined toward a common goal. Through this project students gained a better understanding of the process of scientific research and increased their information literacy in the field of virology. The students worked as teams to research the many aspects involved in the antiviral drug design process, with each student becoming an "expert" in one aspect of the project. The Antiviral Drug Research Proposal (ADRP culminated with students presenting their proposals to their peers and local virologists in a poster session. Assessment data showed increased student awareness and knowledge of the research process and the steps involved in the development of antiviral drugs as a result of this activity.

  5. Sustained and transient oscillations and chaos induced by delayed antiviral immune response in an immunosuppressive infection model.

    Science.gov (United States)

    Shu, Hongying; Wang, Lin; Watmough, James

    2014-01-01

    Sustained and transient oscillations are frequently observed in clinical data for immune responses in viral infections such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus. To account for these oscillations, we incorporate the time lag needed for the expansion of immune cells into an immunosuppressive infection model. It is shown that the delayed antiviral immune response can induce sustained periodic oscillations, transient oscillations and even sustained aperiodic oscillations (chaos). Both local and global Hopf bifurcation theorems are applied to show the existence of periodic solutions, which are illustrated by bifurcation diagrams and numerical simulations. Two types of bistability are shown to be possible: (i) a stable equilibrium can coexist with another stable equilibrium, and (ii) a stable equilibrium can coexist with a stable periodic solution.

  6. Innate and intrinsic antiviral immunity in skin.

    Science.gov (United States)

    Kawamura, Tatsuyoshi; Ogawa, Youichi; Aoki, Rui; Shimada, Shinji

    2014-09-01

    As the body's most exposed interface with the environment, the skin is constantly challenged by potentially pathogenic microbes, including viruses. To sense the invading viruses, various types of cells resident in the skin express many different pattern-recognition receptors (PRRs) such as C-type lectin receptors (CLRs), Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and cytosolic DNA sensors, that can detect the pathogen-associated molecular patterns (PAMPs) of the viruses. The detection of viral PAMPs initiates two major innate immune signaling cascades: the first involves the activation of the downstream transcription factors, such as interferon regulatory factors (IRFs), nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), which cooperate to induce the transcription of type I interferons and pro-inflammatory cytokines. The second signaling pathway involves the caspase-1-mediated processing of IL-1β and IL-18 through the formation of an inflammasome complex. Cutaneous innate immunity including the production of the innate cytokines constitutes the first line of host defence that limits the virus dissemination from the skin, and also plays an important role in the activation of adaptive immune response, which represents the second line of defence. More recently, the third immunity "intrinsic immunity" has emerged, that provides an immediate and direct antiviral defense mediated by host intrinsic restriction factors. This review focuses on the recent advances regarding the antiviral immune systems, highlighting the innate and intrinsic immunity against the viral infections in the skin, and describes how viral components are recognized by cutaneous immune systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy.

    Science.gov (United States)

    Chen, Shuliang; Yu, Xiao; Guo, Deyin

    2018-01-16

    Currently, a new gene editing tool-the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system-is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy.

  8. What You Should Know about Flu Antiviral Drugs

    Science.gov (United States)

    ... Other What You Should Know About Flu Antiviral Drugs Language: English (US) Español Recommend on Facebook Tweet ... used to treat flu illness. What are antiviral drugs? Antiviral drugs are prescription medicines (pills, liquid, an ...

  9. Budesonide and formoterol reduce early innate anti-viral immune responses in vitro.

    Directory of Open Access Journals (Sweden)

    Janet M Davies

    Full Text Available Asthma is a chronic inflammatory airways disease in which respiratory viral infections frequently trigger exacerbations. Current treatment of asthma with combinations of inhaled corticosteroids and long acting beta2 agonists improves asthma control and reduces exacerbations but what impact this might have on innate anti-viral immunity is unclear. We investigated the in vitro effects of asthma drugs on innate anti-viral immunity. Peripheral blood mononuclear cells (PBMC from healthy and asthmatic donors were cultured for 24 hours with the Toll-like receptor 7 agonist, imiquimod, or rhinovirus 16 (RV16 in the presence of budesonide and/or formoterol. Production of proinflammatory cytokines and expression of anti-viral intracellular signalling molecules were measured by ELISA and RT-PCR respectively. In PBMC from healthy donors, budesonide alone inhibited IP-10 and IL-6 production induced by imiquimod in a concentration-dependent manner and the degree of inhibition was amplified when budesonide and formoterol were used in combination. Formoterol alone had little effect on these parameters, except at high concentrations (10⁻⁶ M when IL-6 production increased. In RV16 stimulated PBMC, the combination of budesonide and formoterol inhibited IFNα and IP-10 production in asthmatic as well as healthy donors. Combination of budesonide and formoterol also inhibited RV16-stimulated expression of the type I IFN induced genes myxovirus protein A and 2', 5' oligoadenylate synthetise. Notably, RV16 stimulated lower levels of type Myxovirus A and oligoadenylate synthase in PBMC of asthmatics than control donors. These in vitro studies demonstrate that combinations of drugs commonly used in asthma therapy inhibit both early pro-inflammatory cytokines and key aspects of the type I IFN pathway. These findings suggest that budesonide and formoterol curtail excessive inflammation induced by rhinovirus infections in patients with asthma, but whether this inhibits

  10. Viruses and Antiviral Immunity in Drosophila

    Science.gov (United States)

    Xu, Jie; Cherry, Sara

    2013-01-01

    Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools available in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue. PMID:23680639

  11. Assessment of Inhibition of Ebola Virus Progeny Production by Antiviral Compounds.

    Science.gov (United States)

    Falzarano, Darryl

    2017-01-01

    Assessment of small molecule compounds against filoviruses, such as Ebola virus, has identified numerous compounds that appear to have antiviral activity and should presumably be further investigated in animal efficacy trials. However, despite the many compounds that are purported to have good antiviral activity in in vitro studies, there are few instances where any efficacy has been reported in nonhuman primate models. Many of the high-throughput screening assays use reporter systems that only recapitulate a portion of the virus life cycle, while other assays only assess antiviral activity at relatively early time points. Moreover, many assays do not assess virus progeny production. A more in-depth evaluation of small numbers of test compounds is useful to economize resources and to generate higher quality antiviral hits. Assessing virus progeny production as late as 5 days post-infection allows for the elimination of compounds that have initial antiviral effects that are not sustained or where the virus rapidly develops resistance. While this eliminates many potential lead compounds that may be worthy of further structure-activity relationship (SAR) development, it also quickly excludes compounds that in their current form are unlikely to be effective in animal models. In addition, the inclusion of multiple assays that assess both cell viability and cell cytotoxicity, via different mechanisms, provides a more thorough assessment to exclude compounds that are not direct-acting antivirals.

  12. Clinical features and effect of antiviral therapy on anti-liver/kidney microsomal antibody type 1 positive chronic hepatitis C.

    Science.gov (United States)

    Ferri, Silvia; Muratori, Luigi; Quarneti, Chiara; Muratori, Paolo; Menichella, Rita; Pappas, Georgios; Granito, Alessandro; Ballardini, Giorgio; Bianchi, Francesco B; Lenzi, Marco

    2009-06-01

    Anti-liver/kidney microsomal antibody type 1 (anti-LKM1), a serological marker of type 2 autoimmune hepatitis, is also detected in a small proportion of patients with hepatitis C. This study aimed to evaluate clinical features and effect of antiviral therapy in patients with hepatitis C who are anti-LKM1 positive. Sixty consecutive anti-LKM1 positive and 120 age and sex-matched anti-LKM1 negative chronic hepatitis C patients were assessed at diagnosis and during follow-up. Of these, 26 anti-LKM1 positive and 72 anti-LKM1 negative received antiviral therapy. Anti-LKM1 was detected by indirect immunofluorescence and immunoblot. Number of HCV-infected hepatocytes and intrahepatic CD8+ lymphocytes was determined by immunohistochemistry. At diagnosis anti-LKM1 positive patients had higher IgG levels and more intrahepatic CD8+ lymphocytes (p 0.022 and 0.046, respectively). Viral genotypes distribution and response to therapy were identical. Hepatic flares during antiviral treatment only occurred in a minority of patients in concomitance with anti-LKM1 positivity. Immune system activation is more pronounced in anti-LKM1 positive patients with hepatitis C, possibly representing the expression of autoimmune mechanisms of liver damage. Antiviral treatment is as beneficial in these patients as in anti-LKM1 negative patients, and the rare necroinflammatory flares are effectively controlled by corticosteroids, allowing subsequent resumption of antiviral therapy.

  13. A petunia ethylene-responsive element binding factor, PhERF2, plays an important role in antiviral RNA silencing.

    Science.gov (United States)

    Sun, Daoyang; Nandety, Raja Sekhar; Zhang, Yanlong; Reid, Michael S; Niu, Lixin; Jiang, Cai-Zhong

    2016-05-01

    Virus-induced RNA silencing is involved in plant antiviral defense and requires key enzyme components, including RNA-dependent RNA polymerases (RDRs), Dicer-like RNase III enzymes (DCLs), and Argonaute proteins (AGOs). However, the transcriptional regulation of these critical components is largely unknown. In petunia (Petunia hybrida), an ethylene-responsive element binding factor, PhERF2, is induced by Tobacco rattle virus (TRV) infection. Inclusion of a PhERF2 fragment in a TRV silencing construct containing reporter fragments of phytoene desaturase (PDS) or chalcone synthase (CHS) substantially impaired silencing efficiency of both the PDS and CHS reporters. Silencing was also impaired in PhERF2- RNAi lines, where TRV-PhPDS infection did not show the expected silencing phenotype (photobleaching). In contrast, photobleaching in response to infiltration with the TRV-PhPDS construct was enhanced in plants overexpressing PhERF2 Transcript abundance of the RNA silencing-related genes RDR2, RDR6, DCL2, and AGO2 was lower in PhERF2-silenced plants but higher in PhERF2-overexpressing plants. Moreover, PhERF2-silenced lines showed higher susceptibility to Cucumber mosaic virus (CMV) than wild-type (WT) plants, while plants overexpressing PhERF2 exhibited increased resistance. Interestingly, growth and development of PhERF2-RNAi lines were substantially slower, whereas the overexpressing lines were more vigorous than the controls. Taken together, our results indicate that PhERF2 functions as a positive regulator in antiviral RNA silencing. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Antiviral treatment for Bell's palsy (idiopathic facial paralysis).

    Science.gov (United States)

    Gagyor, Ildiko; Madhok, Vishnu B; Daly, Fergus; Somasundara, Dhruvashree; Sullivan, Michael; Gammie, Fiona; Sullivan, Frank

    2015-11-09

    Corticosteroids are widely used in the treatment of idiopathic facial paralysis (Bell's palsy), but the effectiveness of additional treatment with an antiviral agent is uncertain. Significant morbidity can be associated with severe cases of Bell's palsy. This review was first published in 2001 and revised several times, most recently in 2009. This version replaces an update of the review in Issue 7 of the Cochrane Library subsequently withdrawn because of an ongoing investigation into the reliability of data from an included study. To assess the effects of antiviral treatments alone or in combination with any other therapy for Bell's palsy. On 7 October 2014 we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE, EMBASE, LILACS, DARE, NHS EED, and HTA. We also reviewed the bibliographies of the identified trials and contacted trial authors and known experts in the field and relevant drug companies to identify additional published or unpublished data. We searched clinical trials registries for ongoing studies. We considered randomised controlled trials or quasi-randomised controlled trials of antivirals with and without corticosteroids versus control therapies for the treatment of Bell's palsy. We excluded trials that had a high risk of bias in several domains. Pairs of authors independently assessed trials for relevance, eligibility, and risk of bias, using standard Cochrane procedures. Ten trials, including 2280 participants, met the inclusion criteria and are included in the final analysis. Some of the trials were small, and a number were at high or unclear risk of bias. Other trials did not meet current best standards in allocation concealment and blinding. Incomplete recoveryWe found a significant benefit from adding antivirals to corticosteroids in comparison with corticosteroids alone for people with Bell's palsy (risk ratio (RR) 0.61, 95% confidence interval (CI) 0.39 to 0.97, n = 1315). For people with severe Bell

  15. The role of fluoxetine in antiviral therapy for chronic hepatitis C

    Directory of Open Access Journals (Sweden)

    QIN Yuan

    2016-09-01

    Full Text Available More than 20% of chronic hepatitis C (CHC patients receiving the antiviral therapy with interferonα(IFNα experience depression, and fluoxetine is often used to alleviate this symptom. Fluoxetine has anti-inflammatory properties and can change the synthesis of liver lipids, but its influence on antiviral therapy for CHC and related mechanism remain unknown. Recent studies show that fluoxetine can inhibit hepatitis C virus (HCV infection and reduce the production of reactive oxygen species (ROS and lipid accumulation in Huh7.5 cells; in addition, it can promote the antiviral effect mediated by IFNα through activating STAT1 and JNK signaling pathways and thus reduce HCV viral load and the level of alanine aminotransferase in CHC patients. Fluoxetine elevates PPAR response element activity in CHC patients, and its inhibitory effect on HCV infection and lipid accumulation were partly reversed by antagonists including PPARβ/γ, suggesting that fluoxetine inhibits HCV infection, ROS production, and lipid accumulation through regulating PPARβ/γ and JNK/STAT pathways.

  16. Which Plant Proteins Are Involved in Antiviral Defense? Review on In Vivo and In Vitro Activities of Selected Plant Proteins against Viruses

    Directory of Open Access Journals (Sweden)

    Oskar Musidlak

    2017-11-01

    Full Text Available Plants have evolved a variety of defense mechanisms to tackle virus attack. Endogenous plant proteins can function as virus suppressors. Different types of proteins mediate defense responses against plant viruses. Pathogenesis-related (PR proteins are activated upon pathogen infections or in different stress situations and their production is one of many components in plant defense. Ribosome-inactivating proteins (RIPs suppress translation by enzymatically damaging ribosomes and they have been found to have antiviral activity. RNA-binding proteins (RBPs bind to target RNAs via specialized RNA-binding domain and can directly or indirectly function in plant defense system against RNA viruses. Proteins involved in silencing machinery, namely Dicer-like (DCL proteins, Argonaute (AGO proteins, and RNA-dependent RNA polymerases (RDRs confer innate antiviral defense in plants as they are able to degrade foreign RNA of viral origin. This review aims to provide a comprehensive and up-to-date picture of plant proteins participating in antiviral defense. As a result we discuss proteins conferring plant antiviral resistance and their potential future applications in different fields of life including agriculture and medicine.

  17. Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection.

    Science.gov (United States)

    Tomosada, Yohsuke; Chiba, Eriko; Zelaya, Hortensia; Takahashi, Takuya; Tsukida, Kohichiro; Kitazawa, Haruki; Alvarez, Susana; Villena, Julio

    2013-08-15

    Some studies have shown that nasally administered immunobiotics had the potential to improve the outcome of influenza virus infection. However, the capacity of immunobiotics to improve protection against respiratory syncytial virus (RSV) infection was not investigated before. The aims of this study were: a) to evaluate whether the nasal administration of Lactobacillus rhamnosus CRL1505 (Lr05) and L. rhamnosus CRL1506 (Lr06) are able to improve respiratory antiviral defenses and beneficially modulate the immune response triggered by TLR3/RIG-I activation; b) to investigate whether viability of Lr05 or Lr06 is indispensable to modulate respiratory immunity and; c) to evaluate the capacity of Lr05 and Lr06 to improve the resistance of infant mice against RSV infection. Nasally administered Lr05 and Lr06 differentially modulated the TLR3/RIG-I-triggered antiviral respiratory immune response. Lr06 administration significantly modulated the production of IFN-α, IFN-β and IL-6 in the response to poly(I:C) challenge, while nasal priming with Lr05 was more effective to improve levels of IFN-γ and IL-10. Both viable Lr05 and Lr06 strains increased the resistance of infant mice to RSV infection while only heat-killed Lr05 showed a protective effect similar to those observed with viable strains. The present work demonstrated that nasal administration of immunobiotics is able to beneficially modulate the immune response triggered by TLR3/RIG-I activation in the respiratory tract and to increase the resistance of mice to the challenge with RSV. Comparative studies using two Lactobacillus rhamnosus strains of the same origin and with similar technological properties showed that each strain has an specific immunoregulatory effect in the respiratory tract and that they differentially modulate the immune response after poly(I:C) or RSV challenges, conferring different degree of protection and using distinct immune mechanisms. We also demonstrated in this work that it is possible

  18. Identification of DreI as an antiviral factor regulated by RLR signaling pathway.

    Directory of Open Access Journals (Sweden)

    Shun Li

    Full Text Available BACKGROUND: Retinoic acid-inducible gene I (RIG-I-like receptors (RLRs had been demonstrated to prime interferon (IFN response against viral infection via the conserved RLR signaling in fish, and a novel fish-specific gene, the grass carp reovirus (GCRV-induced gene 2 (Gig2, had been suggested to play important role in host antiviral response. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we cloned and characterized zebrafish Gig2 homolog (named Danio rerio Gig2-I, DreI, and revealed its antiviral role and expressional regulation signaling pathway. RT-PCR, Western blot and promoter activity assay indicate that DreI can be induced by poly I:C, spring viremia of carp virus (SVCV and recombinant IFN (rIFN, showing that DreI is a typical ISG. Using the pivotal signaling molecules of RLR pathway, including RIG-I, MDA5 and IRF3 from crucian carp, it is found that DreI expression is regulated by RLR cascade and IRF3 plays an important role in this regulation. Furthermore, promoter mutation assay confirms that the IFN-stimulated regulatory elements (ISRE in the 5' flanking region of DreI is essential for its induction. Finally, overexpression of DreI leads to establish a strong antiviral state against SVCV and Rana grylio virus (RGV infection in EPC (Epithelioma papulosum cyprinid cells. CONCLUSIONS/SIGNIFICANCE: These data indicate that DreI is an antiviral protein, which is regulated by RLR signaling pathway.

  19. The effectiveness of different antiviral treatment regimens in patients with chronic hepatitis C infected with genotype 3 virus

    Directory of Open Access Journals (Sweden)

    E.V. Riabokon

    2018-02-01

    Full Text Available Background. Chronic hepatitis C (CHC remains one of the most urgent problems of modern infectology. In recent years, the principles of antiviral therapy have substantially changed due to the emergence of new drugs with a direct mechanism of action and the development of non-interferon treatment regimens. Two regimens included HCV NS5B polymerase inhibitors were available in Ukraine for treating CHC patients infected with genotype 3 virus. Objective: to analyze the effectiveness of different schemes of antiviral treatment in patients with chronic hepatitis C infected with genotype 3 virus. Materials and methods. The study included 66 patients with CHC infected with genotype 3 virus. All patients underwent study of liver fibrosis degree by the method of fibrotest; in the dynamics, we have tested viral load, liver tests, indicators of complete blood count, functional kidney tests. Antiviral treatment and analysis of its effectiveness were carried out in accordance with the Unified Protocol of the Ministry of Health of Ukraine. Results. According to the results of treating CHC patients infected with genotype 3 virus, high efficacy of both applied schemes of antiviral therapy in clinical practice is shown. A rapid virologic response occurred in 93.5 % of CHC patients treated with peginterferon (peg-IFN α2a + sofosbuvir (SOF + ribavirin (RBV regimen, and in 82.9 % of patients receiving non-interferon therapy with SOF + RBV. The immediate response to treatment was achieved according to treatment regimens in 90.3 and 94.3 % of patients. Sustained virological response at week 24 after antiviral treatment was noted in 87.5 and 91.4 % of patients, respectively. The frequency of virological response to antiviral treatment in CHC patients infected with genotype 3 virus did not depend on the stage of liver fibrosis, either in the use of non-interferon treatment by SOF + RBV scheme, or in the treatment with interferon-containing scheme included the drug with

  20. Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses

    Directory of Open Access Journals (Sweden)

    Maria Dolores Fernandez-Garcia

    2016-02-01

    Full Text Available The live attenuated yellow fever virus (YFV vaccine 17D stands as a “gold standard” for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation.

  1. Phosphatidyl Inositol 3 Kinase-Gamma Balances Antiviral and Inflammatory Responses During Influenza A H1N1 Infection: From Murine Model to Genetic Association in Patients

    Directory of Open Access Journals (Sweden)

    Cristiana C. Garcia

    2018-05-01

    Full Text Available Influenza A virus (IAV infection causes severe pulmonary disease characterized by intense leukocyte infiltration. Phosphoinositide-3 kinases (PI3Ks are central signaling enzymes, involved in cell growth, survival, and migration. Class IB PI3K or phosphatidyl inositol 3 kinase-gamma (PI3Kγ, mainly expressed by leukocytes, is involved in cell migration during inflammation. Here, we investigated the contribution of PI3Kγ for the inflammatory and antiviral responses to IAV. PI3Kγ knockout (KO mice were highly susceptible to lethality following infection with influenza A/WSN/33 H1N1. In the early time points of infection, infiltration of neutrophils was higher than WT mice whereas type-I and type-III IFN expression and p38 activation were reduced in PI3Kγ KO mice resulting in higher viral loads when compared with WT mice. Blockade of p38 in WT macrophages infected with IAV reduced levels of interferon-stimulated gene 15 protein to those induced in PI3Kγ KO macrophages, suggesting that p38 is downstream of antiviral responses mediated by PI3Kγ. PI3Kγ KO-derived fibroblasts or macrophages showed reduced type-I IFN transcription and altered pro-inflammatory cytokines suggesting a cell autonomous imbalance between inflammatory and antiviral responses. Seven days after IAV infection, there were reduced infiltration of natural killer cells and CD8+ T lymphocytes, increased concentration of inflammatory cytokines in bronchoalveolar fluid, reduced numbers of resolving macrophages, and IL-10 levels in PI3Kγ KO. This imbalanced environment in PI3Kγ KO-infected mice culminated in enhanced lung neutrophil infiltration, reactive oxygen species release, and lung damage that together with the increased viral loads, contributed to higher mortality in PI3Kγ KO mice compared with WT mice. In humans, we tested the genetic association of disease severity in influenza A/H1N1pdm09-infected patients with three potentially functional PIK3CG single

  2. Imaging analysis of nuclear antiviral factors through direct detection of incoming adenovirus genome complexes

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Tetsuro [Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, Université de Bordeaux, Bordeaux 33076 (France); Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575 (Japan); Will, Hans [Department of Tumor Biology, University Hospital Hamburg-Eppendorf, 20246 Hamburg (Germany); Nagata, Kyosuke [Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575 (Japan); Wodrich, Harald, E-mail: harald.wodrich@u-bordeaux.fr [Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, Université de Bordeaux, Bordeaux 33076 (France)

    2016-04-22

    Recent studies involving several viral systems have highlighted the importance of cellular intrinsic defense mechanisms through nuclear antiviral proteins that restrict viral propagation. These factors include among others components of PML nuclear bodies, the nuclear DNA sensor IFI16, and a potential restriction factor PHF13/SPOC1. For several nuclear replicating DNA viruses, it was shown that these factors sense and target viral genomes immediately upon nuclear import. In contrast to the anticipated view, we recently found that incoming adenoviral genomes are not targeted by PML nuclear bodies. Here we further explored cellular responses against adenoviral infection by focusing on specific conditions as well as additional nuclear antiviral factors. In line with our previous findings, we show that neither interferon treatment nor the use of specific isoforms of PML nuclear body components results in co-localization between incoming adenoviral genomes and the subnuclear domains. Furthermore, our imaging analyses indicated that neither IFI16 nor PHF13/SPOC1 are likely to target incoming adenoviral genomes. Thus our findings suggest that incoming adenoviral genomes may be able to escape from a large repertoire of nuclear antiviral mechanisms, providing a rationale for the efficient initiation of lytic replication cycle. - Highlights: • Host nuclear antiviral factors were analyzed upon adenovirus genome delivery. • Interferon treatments fail to permit PML nuclear bodies to target adenoviral genomes. • Neither Sp100A nor B targets adenoviral genomes despite potentially opposite roles. • The nuclear DNA sensor IFI16 does not target incoming adenoviral genomes. • PHF13/SPOC1 targets neither incoming adenoviral genomes nor genome-bound protein VII.

  3. Imaging analysis of nuclear antiviral factors through direct detection of incoming adenovirus genome complexes

    International Nuclear Information System (INIS)

    Komatsu, Tetsuro; Will, Hans; Nagata, Kyosuke; Wodrich, Harald

    2016-01-01

    Recent studies involving several viral systems have highlighted the importance of cellular intrinsic defense mechanisms through nuclear antiviral proteins that restrict viral propagation. These factors include among others components of PML nuclear bodies, the nuclear DNA sensor IFI16, and a potential restriction factor PHF13/SPOC1. For several nuclear replicating DNA viruses, it was shown that these factors sense and target viral genomes immediately upon nuclear import. In contrast to the anticipated view, we recently found that incoming adenoviral genomes are not targeted by PML nuclear bodies. Here we further explored cellular responses against adenoviral infection by focusing on specific conditions as well as additional nuclear antiviral factors. In line with our previous findings, we show that neither interferon treatment nor the use of specific isoforms of PML nuclear body components results in co-localization between incoming adenoviral genomes and the subnuclear domains. Furthermore, our imaging analyses indicated that neither IFI16 nor PHF13/SPOC1 are likely to target incoming adenoviral genomes. Thus our findings suggest that incoming adenoviral genomes may be able to escape from a large repertoire of nuclear antiviral mechanisms, providing a rationale for the efficient initiation of lytic replication cycle. - Highlights: • Host nuclear antiviral factors were analyzed upon adenovirus genome delivery. • Interferon treatments fail to permit PML nuclear bodies to target adenoviral genomes. • Neither Sp100A nor B targets adenoviral genomes despite potentially opposite roles. • The nuclear DNA sensor IFI16 does not target incoming adenoviral genomes. • PHF13/SPOC1 targets neither incoming adenoviral genomes nor genome-bound protein VII.

  4. Bilirubin: an endogenous molecule with antiviral activity in vitro.

    Directory of Open Access Journals (Sweden)

    Rosaria eSantangelo

    2012-03-01

    Full Text Available Bilirubin-IX-alpha (BR is the final product of heme metabolism through the heme oxygenase/biliverdin reductase (HO/BVR system. Previous papers reported on the microbicidal effects of the HO by-products biliverdin-IX-alpha, carbon monoxide and iron, through either direct or indirect mechanisms. In this paper the evidence of a virucidal effect of BR against human herpes simplex virus type 1 (HSV-1 and the enterovirus EV71 was provided. Bilirubin-IX-alpha, at concentrations 1-10 µM, close to those found in blood and tissues, significantly reduced HSV-1 and EV71 replication in Hep-2 and Vero cell lines, respectively. Bilirubin-IX-alpha inhibited viral infection of Hep-2 and Vero cells when given 2 hours before, concomitantly and 2 hours after viral infection. Furthermore, BR retained its antiviral activity even complexed with a saturating concentration of human serum-albumin. Moreover, 10 µM BR increased the formation of nitric oxide and the phosphorylation of JNK in Vero and Hep-2 cell lines, respectively, thus implying a role of these two pathways in the mechanism of antiviral activity of the bile pigment. In conclusion, these results support the antiviral effect of BR against HSV-1 and enterovirus in vitro, and put the basis for further basic and clinical studies to understand the real role of BR as an endogenous antiviral molecule.

  5. Virus-Heat Shock Protein Interaction and a Novel Axis for Innate Antiviral Immunity

    Directory of Open Access Journals (Sweden)

    Michael Oglesbee

    2012-09-01

    Full Text Available Virus infections induce heat shock proteins that in turn enhance virus gene expression, a phenomenon that is particularly well characterized for the major inducible 70 kDa heat shock protein (hsp70. However, hsp70 is also readily induced by fever, a phylogenetically conserved response to microbial infections, and when released from cells, hsp70 can stimulate innate immune responses through toll like receptors 2 and 4 (TLR2 and 4. This review examines how the virus-hsp70 relationship can lead to host protective innate antiviral immunity, and the importance of hsp70 dependent stimulation of virus gene expression in this host response. Beginning with the well-characterized measles virus-hsp70 relationship and the mouse model of neuronal infection in brain, we examine data indicating that the innate immune response is not driven by intracellular sensors of pathogen associated molecular patterns, but rather by extracellular ligands signaling through TLR2 and 4. Specifically, we address the relationship between virus gene expression, extracellular release of hsp70 (as a damage associated molecular pattern, and hsp70-mediated induction of antigen presentation and type 1 interferons in uninfected macrophages as a novel axis of antiviral immunity. New data are discussed that examines the more broad relevance of this protective mechanism using vesicular stomatitis virus, and a review of the literature is presented that supports the probable relevance to both RNA and DNA viruses and for infections both within and outside of the central nervous system.

  6. The role of CC chemokine receptor 5 in antiviral immunity

    DEFF Research Database (Denmark)

    Nansen, Anneline; Christensen, Jan Pravsgaard; Andreasen, Susanne Ørding

    2002-01-01

    The CC chemokine receptor CCR5 is an important coreceptor for human immunodeficiency virus (HIV), and there is a major thrust to develop anti-CCR5-based therapies for HIV-1. However, it is not known whether CCR5 is critical for a normal antiviral T-cell response. This study investigated the immune...

  7. Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses.

    Science.gov (United States)

    Fernandez-Garcia, Maria Dolores; Meertens, Laurent; Chazal, Maxime; Hafirassou, Mohamed Lamine; Dejarnac, Ophélie; Zamborlini, Alessia; Despres, Philippe; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Jouvenet, Nolwenn; Amara, Ali

    2016-02-09

    The live attenuated yellow fever virus (YFV) vaccine 17D stands as a "gold standard" for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E) protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation. The yellow fever virus (YFV) vaccine 17D is one of the safest and most effective live virus vaccines ever developed. The molecular determinants for virulence attenuation and immunogenicity of 17D are poorly understood. 17D was generated by serially passaging the virulent Asibi strain in vertebrate tissues. Here we examined the entry mechanisms engaged by YFV Asibi and the 17D vaccine. We found the two viruses use different entry

  8. Antiviral Defense Mechanisms in Honey Bees

    Science.gov (United States)

    Brutscher, Laura M.; Daughenbaugh, Katie F.; Flenniken, Michelle L.

    2015-01-01

    Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation. PMID:26273564

  9. RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA: a new antiviral pathway

    Directory of Open Access Journals (Sweden)

    Saurabh Chattopadhyay

    2016-11-01

    Full Text Available Abstract The innate immune response is the first line of host defense to eliminate viral infection. Pattern recognition receptors in the cytosol, such as RIG-I-like receptors (RLR and Nod-like receptors (NLR, and membrane bound Toll like receptors (TLR detect viral infection and initiate transcription of a cohort of antiviral genes, including interferon (IFN and interferon stimulated genes (ISGs, which ultimately block viral replication. Another mechanism to reduce viral spread is through RIPA, the RLR-induced IRF3-mediated pathway of apoptosis, which causes infected cells to undergo premature death. The transcription factor IRF3 can mediate cellular antiviral responses by both inducing antiviral genes and triggering apoptosis through the activation of RIPA. The mechanism of IRF3 activation in RIPA is distinct from that of transcriptional activation; it requires linear polyubiquitination of specific lysine residues of IRF3. Using RIPA-active, but transcriptionally inactive, IRF3 mutants, it was shown that RIPA can prevent viral replication and pathogenesis in mice.

  10. Intelligent MONitoring System for antiviral pharmacotherapy in patients with chronic hepatitis C (SiMON-VC

    Directory of Open Access Journals (Sweden)

    Luis Margusino-Framiñán

    2017-01-01

    Full Text Available Two out of six strategic axes of pharmaceutical care in our hospital are quality and safety of care, and the incorporation of information technologies. Based on this, an information system was developed in the outpatient setting for pharmaceutical care of patients with chronic hepatitis C, SiMON-VC, which would improve the quality and safety of their pharmacotherapy. The objective of this paper is to describe requirements, structure and features of Si- MON-VC. Requirements demanded were that the information system would enter automatically all critical data from electronic clinical records at each of the visits to the Outpatient Pharmacy Unit, allowing the generation of events and alerts, documenting the pharmaceutical care provided, and allowing the use of data for research purposes. In order to meet these requirements, 5 sections were structured for each patient in SiMON-VC: Main Record, Events, Notes, Monitoring Graphs and Tables, and Follow-up. Each section presents a number of tabs with those coded data needed to monitor patients in the outpatient unit. The system automatically generates alerts for assisted prescription validation, efficacy and safety of using antivirals for the treatment of this disease. It features a completely versatile Indicator Control Panel, where temporary monitoring standards and alerts can be set. It allows the generation of reports, and their export to the electronic clinical record. It also allows data to be exported to the usual operating systems, through Big Data and Business Intelligence. Summing up, we can state that SiMON-VC improves the quality of pharmaceutical care provided in the outpatient pharmacy unit to patients with chronic hepatitis C, increasing the safety of antiviral therapy.

  11. Global Screening of Antiviral Genes that Suppress Baculovirus Transgene Expression in Mammalian Cells.

    Science.gov (United States)

    Wang, Chia-Hung; Naik, Nenavath Gopal; Liao, Lin-Li; Wei, Sung-Chan; Chao, Yu-Chan

    2017-09-15

    Although baculovirus has been used as a safe and convenient gene delivery vector in mammalian cells, baculovirus-mediated transgene expression is less effective in various mammalian cell lines. Identification of the negative regulators in host cells is necessary to improve baculovirus-based expression systems. Here, we performed high-throughput shRNA library screening, targeting 176 antiviral innate immune genes, and identified 43 host restriction factor genes in a human A549 lung carcinoma cell line. Among them, suppression of receptor interaction protein kinase 1 (RIP1, also known as RIPK1) significantly increased baculoviral transgene expression without resulting in significant cell death. Silencing of RIP1 did not affect viral entry or cell viability, but it did inhibit nuclear translocation of the IRF3 and NF-κB transcription factors. Also, activation of downstream signaling mediators (such as TBK1 and IRF7) was affected, and subsequent interferon and cytokine gene expression levels were abolished. Further, Necrostatin-1 (Nec-1)-an inhibitor of RIP1 kinase activity-dramatically increased baculoviral transgene expression in RIP1-silenced cells. Using baculovirus as a model system, this study presents an initial investigation of large numbers of human cell antiviral innate immune response factors against a "nonadaptive virus." In addition, our study has made baculovirus a more efficient gene transfer vector for some of the most frequently used mammalian cell systems.

  12. WITHDRAWN. Antiviral treatment for Bell's palsy (idiopathic facial paralysis).

    Science.gov (United States)

    Gagyor, Ildiko; Madhok, Vishnu B; Daly, Fergus; Somasundara, Dhruvashree; Sullivan, Michael; Gammie, Fiona; Sullivan, Frank

    2015-05-04

    Corticosteroids are widely used in the treatment of idiopathic facial paralysis (Bell's palsy), but the effectiveness of additional treatment with an antiviral agent is uncertain. Significant morbidity can be associated with severe cases of Bell's palsy. To assess the effects of antiviral treatments alone or in combination with any other therapy for Bell's palsy. On 7 October 2014 we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE, EMBASE, LILACS, DARE, NHS EED, and HTA. We also reviewed the bibliographies of the identified trials and contacted trial authors and known experts in the field and relevant drug companies to identify additional published or unpublished data. We searched clinical trials registries for ongoing studies. We considered randomised controlled trials or quasi-randomised controlled trials of antivirals with and without corticosteroids versus control therapies for the treatment of Bell's palsy. We excluded trials that had a high risk of bias in several domains. Pairs of authors independently assessed trials for relevance, eligibility, and risk of bias, using standard Cochrane procedures. Eleven trials, including 2883 participants, met the inclusion criteria and are included in the final analysis. We added four studies to the previous review for this update. Some of the trials were small, and a number were at high or unclear risk of bias. Other trials did not meet current best standards in allocation concealment and blinding. Incomplete recoveryWe found no significant benefit from adding antivirals to corticosteroids in comparison with corticosteroids alone for people with Bell's palsy (risk ratio (RR) 0.69, 95% confidence interval (CI) 0.47 to 1.02, n = 1715). For people with severe Bell's palsy (House-Brackmann scores of 5 and 6 or the equivalent in other scales), we found a reduction in the rate of incomplete recovery at month six when antivirals plus corticosteroids were used (RR 0.64, 95% CI 0.41 to 0

  13. Antibiotic-Mediated Inhibition of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV Infection: A Novel Quinolone Function Which Potentiates the Antiviral Cytokine Response in MARC-145 Cells and Pig Macrophages

    Directory of Open Access Journals (Sweden)

    William A. Cafruny

    2008-01-01

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV is an economically significant agent for which there currently are no effective treatments. Development of antiviral agents for PRRSV as well as many other viruses has been limited by toxicity of known antiviral compounds. In contrast, antibiotics for non-virus microbial infections have been widely useful, in part because of their acceptable toxicity in animals. We report here the discovery that the quinolonecontaining compound Plasmocin™, as well as the quinolones nalidixic acid and ciprofloxacin, have potent anti-PRRSV activity in vitro. PRRSV replication was inhibited by these antibiotics in both cultured MARC-145 cells and cultured primary alveolar porcine macrophages (PAMs. Furthermore, sub-optimal concentrations of nalidixic acid synergized with antiviral cytokines (AK-2 or IFN-γ to quantitatively and qualitatively inhibit PRRSV replication in MARC-145 cells or PAMs. The antiviral activity of Plasmocin and nalidixic acid correlated with reduced actin expression in MARC-145 cells. Replication of the related lactate dehydrogenase-elevating virus (LDV was also inhibited in primary mouse macrophages by Plasmocin. These results are significant to the development of antiviral strategies with potentially reduced toxicity, and provide a model system to better understand regulation of arterivirus replication.

  14. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses

    Science.gov (United States)

    Montanuy, Imma; Alejo, Ali; Alcami, Antonio

    2011-01-01

    Eradication of smallpox was accomplished 30 yr ago, but poxviral infections still represent a public health concern due to the potential release of variola virus or the emergence of zoonotic poxviruses, such as monkeypox virus. A critical determinant of poxvirus virulence is the inhibition of interferons (IFNs) by the virus-encoded type I IFN-binding protein (IFNα/βBP). This immunomodulatory protein is secreted and has the unique property of interacting with the cell surface in order to prevent IFN-mediated antiviral responses. However, the mechanism of its attachment to the cell surface remains unknown. Using surface plasmon resonance and cell-binding assays, we report that the IFNα/βBP from vaccinia virus, the smallpox vaccine, interacts with cell surface glycosaminoglycans (GAGs). Analysis of the contribution of different regions of the protein to cell surface binding demonstrated that clusters of basic residues in the first immunoglobulin domain mediate GAG interactions. Furthermore, mutation of the GAG-interaction motifs does not affect its IFN-binding and -blocking capacity. Functional conservation of GAG-binding sites is demonstrated for the IFNα/βBP from variola and monkeypox viruses, extending our understanding of immune modulation by the most virulent human poxviruses. These results are relevant for the design of improved vaccines and intervention strategies.—Montanuy, I., Alejo, A., Alcami, A. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses. PMID:21372110

  15. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection.

    Directory of Open Access Journals (Sweden)

    Piotr Orlowski

    Full Text Available The interaction between silver nanoparticles and herpesviruses is attracting great interest due to their antiviral activity and possibility to use as microbicides for oral and anogenital herpes. In this work, we demonstrate that tannic acid modified silver nanoparticles sized 13 nm, 33 nm and 46 nm are capable of reducing HSV-2 infectivity both in vitro and in vivo. The antiviral activity of tannic acid modified silver nanoparticles was size-related, required direct interaction and blocked virus attachment, penetration and further spread. All tested tannic acid modified silver nanoparticles reduced both infection and inflammatory reaction in the mouse model of HSV-2 infection when used at infection or for a post-infection treatment. Smaller-sized nanoparticles induced production of cytokines and chemokines important for anti-viral response. The corresponding control buffers with tannic acid showed inferior antiviral effects in vitro and were ineffective in blocking in vivo infection. Our results show that tannic acid modified silver nanoparticles are good candidates for microbicides used in treatment of herpesvirus infections.

  16. Decision Making with Regard to Antiviral Intervention during an Influenza Pandemic

    Science.gov (United States)

    Shim, Eunha; Chapman, Gretchen B.; Galvani, Alison P.

    2012-01-01

    Background Antiviral coverage is defined by the proportion of the population that takes antiviral prophylaxis or treatment. High coverage of an antiviral drug has epidemiological and evolutionary repercussions. Antivirals select for drug resistance within the population, and individuals may experience adverse effects. To determine optimal antiviral coverage in the context of an influenza outbreak, we compared 2 perspectives: 1) the individual level (the Nash perspective), and 2) the population level (utilitarian perspective). Methods We developed an epidemiological game-theoretic model of an influenza pandemic. The data sources were published literature and a national survey. The target population was the US population. The time horizon was 6 months. The perspective was individuals and the population overall. The interventions were antiviral prophylaxis and treatment. The outcome measures were the optimal coverage of antivirals in an influenza pandemic. Results At current antiviral pricing, the optimal Nash strategy is 0% coverage for prophylaxis and 30% coverage for treatment, whereas the optimal utilitarian strategy is 19% coverage for prophylaxis and 100% coverage for treatment. Subsidizing prophylaxis by $440 and treatment by $85 would bring the Nash and utilitarian strategies into alignment. For both prophylaxis and treatment, the optimal antiviral coverage decreases as pricing of antivirals increases. Our study does not incorporate the possibility of an effective vaccine and lacks probabilistic sensitivity analysis. Our survey also does not completely represent the US population. Because our model assumes a homogeneous population and homogeneous antiviral pricing, it does not incorporate heterogeneity of preference. Conclusions The optimal antiviral coverage from the population perspective and individual perspectives differs widely for both prophylaxis and treatment strategies. Optimal population and individual strategies for prophylaxis and treatment might

  17. Single-epitope DNA vaccination prevents exhaustion and facilitates a broad antiviral CD8+ T cell response during chronic viral infection

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Christensen, Jan Pravsgaard

    2004-01-01

    Induction of a monospecific antiviral CD8+ T cell response may pose a risk to the host due to the narrow T cell response induced. At the individual level, this may result in selection of CD8+ T cell escape variants, particularly during chronic viral infection. Second, prior immunization toward a ...... with escape variants. These findings underscore that a monospecific vaccine may induce efficient protective immunity given the right set of circumstances....... of DNA vaccines encoding immunodominant epitopes of lymphocytic choriomeningitis virus (LCMV). We analyzed the spectrum of the CD8+ T cell response and the susceptibility to infection in H-2(b) and H-2(d) mice. Priming for a monospecific, CD8+ T cell response did not render mice susceptible to viral...... variants. Thus, vaccinated mice were protected against chronic infection with LCMV, and no evidence indicating biologically relevant viral escape was obtained. In parallel, a broad and sustained CD8+ T cell response was generated upon infection, and in H-2(d) mice epitope spreading was observed. Even after...

  18. New pathogenic viruses and novel antiviral drugs

    NARCIS (Netherlands)

    Berkhout, Ben; Eggink, Dirk

    2011-01-01

    The journal Antiviral Research was conceived and born in 1980, and launched in 1981, a time when very few antiviral drugs were around. This 30-year celebration meeting was convened by the publisher Elsevier and chaired by Eric de Clercq (Leuven University), who has acted as editor-in-chief for the

  19. Defense and counterdefense in the RNAi-based antiviral immune system in insects

    NARCIS (Netherlands)

    van Mierlo, J.T.; van Cleef, K.W.; Rij, R.P. van

    2011-01-01

    RNA interference (RNAi) is an important pathway to combat virus infections in insects and plants. Hallmarks of antiviral RNAi in these organisms are: (1) an increase in virus replication after inactivation of major actors in the RNAi pathway, (2) production of virus-derived small interfering RNAs

  20. Drug-induced Sweet's syndrome secondary to hepatitis C antiviral therapy.

    Science.gov (United States)

    Gheorghe, Liana; Cotruta, Bogdan; Trifu, Viorel; Cotruta, Cristina; Becheanu, Gabriel; Gheorghe, Cristian

    2008-09-01

    Pegylated interferon-alpha in combination with ribavirin currently represents the therapeutic standard for the hepatitis C virus infection. Interferon based therapy may be responsible for many cutaneous side effects. We report a case of drug-induced Sweet's syndrome secondary to hepatitis C antiviral therapy. To our knowledge, this is the first reported case of Sweet's syndrome in association with pegylated interferon-alpha therapy.

  1. Utility of humanized BLT mice for analysis of dengue virus infection and antiviral drug testing.

    Science.gov (United States)

    Frias-Staheli, Natalia; Dorner, Marcus; Marukian, Svetlana; Billerbeck, Eva; Labitt, Rachael N; Rice, Charles M; Ploss, Alexander

    2014-02-01

    Dengue virus (DENV) is the cause of a potentially life-threatening disease that affects millions of people worldwide. The lack of a small animal model that mimics the symptoms of DENV infection in humans has slowed the understanding of viral pathogenesis and the development of therapies and vaccines. Here, we investigated the use of humanized "bone marrow liver thymus" (BLT) mice as a model for immunological studies and assayed their applicability for preclinical testing of antiviral compounds. Human immune system (HIS) BLT-NOD/SCID mice were inoculated intravenously with a low-passage, clinical isolate of DENV-2, and this resulted in sustained viremia and infection of leukocytes in lymphoid and nonlymphoid organs. In addition, DENV infection increased serum cytokine levels and elicited DENV-2-neutralizing human IgM antibodies. Following restimulation with DENV-infected dendritic cells, in vivo-primed T cells became activated and acquired effector function. An adenosine nucleoside inhibitor of DENV decreased the circulating viral RNA when administered simultaneously or 2 days postinfection, simulating a potential treatment protocol for DENV infection in humans. In summary, we demonstrate that BLT mice are susceptible to infection with clinical DENV isolates, mount virus-specific adaptive immune responses, and respond to antiviral drug treatment. Although additional refinements to the model are required, BLT mice are a suitable platform to study aspects of DENV infection and pathogenesis and for preclinical testing of drug and vaccine candidates. IMPORTANCE Infection with dengue virus remains a major medical problem. Progress in our understanding of the disease and development of therapeutics has been hampered by the scarcity of small animal models. Here, we show that humanized mice, i.e., animals engrafted with components of a human immune system, that were infected with a patient-derived dengue virus strain developed clinical symptoms of the disease and mounted

  2. Enhanced sensitivity in detection of antiviral antibody responses using biotinylation of foot-and-mouth disease virus (FMDV) capsids.

    Science.gov (United States)

    Kenney, Mary; Waters, Ryan A; Rieder, Elizabeth; Pega, Juan; Perez-Filguera, Mariano; Golde, William T

    2017-11-01

    Analysis of the immune response to infection of livestock by foot-and-mouth disease virus (FMDV) is most often reported as the serum antibody response to the virus. While measurement of neutralizing antibody has been sensitive and specific, measurements of the quality of the antibody response are less robust. Determining the immunoglobulin (Ig) isotype of the serum antibody response provides a deeper understanding of the biology of the response and more sensitive methods for these assays will facilitate analyses of B cell mediated immunity. We tested the hypothesis that using the virus as the molecular probe could be achieved by adding tags to the surface of the FMDV capsid, and that would enhance sensitivity in assays for anti-FMDV antibody responses. The use of a FLAG-tagged virus in these assays failed to yield improvement whereas chemically biotinylating the virus capsid resulted in significant enhancement of the signal. Here we describe methods using biotinylated virus for measuring anti-viral antibody in serum and antibody secreting cells (ASCs) in blood that are sensitive and specific. Finally, we describe using the biotinylated virus in flow cytometry where such assays should greatly enhance the analysis of anti-virus antibody producing B cells, allowing the investigator to focus on only the FMDV specific B cells when analyzing the development of the B cell response to either infection or vaccination. Published by Elsevier B.V.

  3. Free fatty acids induce ER stress and block antiviral activity of interferon alpha against hepatitis C virus in cell culture

    Directory of Open Access Journals (Sweden)

    Gunduz Feyza

    2012-08-01

    Full Text Available Abstract Background Hepatic steatosis is recognized as a major risk factor for liver disease progression and impaired response to interferon based therapy in chronic hepatitis C (CHC patients. The mechanism of response to interferon-alpha (IFN-α therapy under the condition of hepatic steatosis is unexplored. We investigated the effect of hepatocellular steatosis on hepatitis C virus (HCV replication and IFN-α antiviral response in a cell culture model. Methods Sub-genomic replicon (S3-GFP and HCV infected Huh-7.5 cells were cultured with a mixture of saturated (palmitate and unsaturated (oleate long-chain free fatty acids (FFA. Intracytoplasmic fat accumulation in these cells was visualized by Nile red staining and electron microscopy then quantified by microfluorometry. The effect of FFA treatment on HCV replication and IFN-α antiviral response was measured by flow cytometric analysis, Renilla luciferase activity, and real-time RT-PCR. Results FFA treatment induced dose dependent hepatocellular steatosis and lipid droplet accumulation in the HCV replicon cells was confirmed by Nile red staining, microfluorometry, and by electron microscopy. Intracellular fat accumulation supports replication more in the persistently HCV infected culture than in the sub-genomic replicon (S3-GFP cell line. FFA treatment also partially blocked IFN-α response and viral clearance by reducing the phosphorylation of Stat1 and Stat2 dependent IFN-β promoter activation. We show that FFA treatment induces endoplasmic reticulum (ER stress response and down regulates the IFNAR1 chain of the type I IFN receptor leading to defective Jak-Stat signaling and impaired antiviral response. Conclusion These results suggest that intracellular fat accumulation in HCV cell culture induces ER stress, defective Jak-Stat signaling, and attenuates the antiviral response, thus providing an explanation to the clinical observation regarding how hepatocellular steatosis influences IFN

  4. New antivirals for the treatment of chronic hepatitis B.

    Science.gov (United States)

    Soriano, Vincent; Barreiro, Pablo; Benitez, Laura; Peña, Jose M; de Mendoza, Carmen

    2017-07-01

    Current treatment with oral nucleos(t)ides entecavir or tenofovir provide sustained suppression of HBV replication and clinical benefit in most chronic hepatitis B virus (HBV) infected persons. However, HBV rebound generally occurs upon drug discontinuation due to persistence of genomic HBV reservoirs as episomic cccDNA and chromosomic integrated HBV-DNA. There is renewed enthusiasm on HBV drug discovery following recent successes with antivirals for hepatitis C and immunotherapies for some cancers. Areas covered: New drugs that target distinct steps of the HBV life cycle are been developed, including inhibitors of viral entry, new polymerase inhibitors, capsid and assembly inhibitors, virus release blockers, and disruptors of cccDNA formation and transcription. Alongside these antivirals, agents that enhance anti-HBV specific immune responses are being tested, including TLR agonists, checkpoint inhibitors and therapeutic vaccines. Expert opinion: The achievement of a 'functional cure' for chronic HBV infection, with sustained HBsAg clearance and undetectable viremia once medications are stopped, represents the next step in the pace towards HBV elimination. Hopefully, the combination of new drugs that eliminate or functionally inactivate the genomic HBV reservoirs (cccDNA and integrated HBV-DNA) along with agents that enhance or activate immune responses against HBV will lead to a 'definitive cure' for chronic HBV infection.

  5. Direct-acting antivirals for chronic hepatitis C

    DEFF Research Database (Denmark)

    Jakobsen, Janus C; Nielsen, Emil Eik; Feinberg, Joshua

    2017-01-01

    BACKGROUND: Millions of people worldwide suffer from hepatitis C, which can lead to severe liver disease, liver cancer, and death. Direct-acting antivirals (DAAs), e.g. sofosbuvir, are relatively new and expensive interventions for chronic hepatitis C, and preliminary results suggest that DAAs may...... eradicate hepatitis C virus (HCV) from the blood (sustained virological response). Sustained virological response (SVR) is used by investigators and regulatory agencies as a surrogate outcome for morbidity and mortality, based solely on observational evidence. However, there have been no randomised trials...... hepatitis C-related morbidity, serious adverse events, and health-related quality of life. Our secondary outcomes were all-cause mortality, ascites, variceal bleeding, hepato-renal syndrome, hepatic encephalopathy, hepatocellular carcinoma, non-serious adverse events (each reported separately), and SVR. We...

  6. Antiviral Goes Viral : Harnessing CRISPR/Cas9 to Combat Viruses in Humans

    NARCIS (Netherlands)

    Soppe, Jasper Adriaan; Lebbink, Robert Jan

    2017-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems are RNA-guided sequence-specific prokaryotic antiviral immune systems. In prokaryotes, small RNA molecules guide Cas effector endonucleases to invading foreign genetic elements in a

  7. Antiviral Activity of Polyacrylic and Polymethacrylic Acids

    Science.gov (United States)

    De Somer, P.; De Clercq, E.; Billiau, A.; Schonne, E.; Claesen, M.

    1968-01-01

    Polyacrylic acid (PAA) and polymethacrylic acid (PMAA) were investigated for their antiviral properties in tissue culture. Compared to other related polyanions, as dextran sulfate, polystyrene sulfonate, polyvinyl sulfate, and polyphloroglucinol phosphate, PAA and PMAA were found to be significantly more antivirally active and less cytotoxic. PMAA added 24 hr prior to virus inoculation inhibited viral growth most efficiently but it was still effective when added 3 hr after infection. Neither a direct irreversible action on the virus nor inhibition of virus penetration into the cell could explain the antiviral activity of PMAA. PMAA inhibited the adsorption of the virus to the host cell and suppressed the one-cycle viral synthesis in tissue cultures inoculated with infectious RNA. PMID:4302187

  8. Antiviral activity of human lactoferrin: inhibition of alphavirus interaction with heparan sulfate

    International Nuclear Information System (INIS)

    Waarts, Barry-Lee; Aneke, Onwuchekwa J.C.; Smit, Jolanda M.; Kimata, Koji; Bittman, Robert; Meijer, Dirk K.F.; Wilschut, Jan

    2005-01-01

    Human lactoferrin is a component of the non-specific immune system with distinct antiviral properties. We used alphaviruses, adapted to interaction with heparan sulfate (HS), as a tool to investigate the mechanism of lactoferrin's antiviral activity. Lactoferrin inhibited infection of BHK-21 cells by HS-adapted, but not by non-adapted, Sindbis virus (SIN) or Semliki Forest virus (SFV). Lactoferrin also inhibited binding of radiolabeled HS-adapted viruses to BHK-21 cells or liposomes containing lipid-conjugated heparin as a receptor analog. On the other hand, low-pH-induced fusion of the viruses with liposomes, which occurs independently of virus-receptor interaction, was unaffected. Studies involving preincubation of virus or cells with lactoferrin suggested that the protein does not bind to the virus, but rather blocks HS-moieties on the cell surface. Charge-modified human serum albumin, with a net positive charge, had a similar antiviral effect against HS-adapted SIN and SFV, suggesting that the antiviral activity of lactoferrin is related to its positive charge. It is concluded that human lactoferrin inhibits viral infection by interfering with virus-receptor interaction rather than by affecting subsequent steps in the viral cell entry or replication processes

  9. Recent developments in antiviral agents against enterovirus 71 infection.

    Science.gov (United States)

    Tan, Chee Wah; Lai, Jeffrey Kam Fatt; Sam, I-Ching; Chan, Yoke Fun

    2014-02-12

    Enterovirus 71 (EV-71) is the main etiological agent of hand, foot and mouth disease (HFMD). Recent EV-71 outbreaks in Asia-Pacific were not limited to mild HFMD, but were associated with severe neurological complications such as aseptic meningitis and brainstem encephalitis, which may lead to cardiopulmonary failure and death. The absence of licensed therapeutics for clinical use has intensified research into anti-EV-71 development. This review highlights the potential antiviral agents targeting EV-71 attachment, entry, uncoating, translation, polyprotein processing, virus-induced formation of membranous RNA replication complexes, and RNA-dependent RNA polymerase. The strategies for antiviral development include target-based synthetic compounds, anti-rhinovirus and poliovirus libraries screening, and natural compound libraries screening. Growing knowledge of the EV-71 life cycle will lead to successful development of antivirals. The continued effort to develop antiviral agents for treatment is crucial in the absence of a vaccine. The coupling of antivirals with an effective vaccine will accelerate eradication of the disease.

  10. Discovery of potent broad spectrum antivirals derived from marine actinobacteria.

    Directory of Open Access Journals (Sweden)

    Avi Raveh

    Full Text Available Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable

  11. Perspective of Use of Antiviral Peptides against Influenza Virus

    Directory of Open Access Journals (Sweden)

    Sylvie Skalickova

    2015-10-01

    Full Text Available The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20th century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides.

  12. An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway.

    Directory of Open Access Journals (Sweden)

    Kevin A Robertson

    2016-03-01

    Full Text Available In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1. Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.

  13. An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway

    Science.gov (United States)

    Robertson, Kevin A.; Hsieh, Wei Yuan; Forster, Thorsten; Blanc, Mathieu; Lu, Hongjin; Crick, Peter J.; Yutuc, Eylan; Watterson, Steven; Martin, Kimberly; Griffiths, Samantha J.; Enright, Anton J.; Yamamoto, Mami; Pradeepa, Madapura M.; Lennox, Kimberly A.; Behlke, Mark A.; Talbot, Simon; Haas, Jürgen; Dölken, Lars; Griffiths, William J.; Wang, Yuqin; Angulo, Ana; Ghazal, Peter

    2016-01-01

    In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway. PMID:26938778

  14. NaVirCept - Nucleic Acid-Based Anti-Viral Project

    International Nuclear Information System (INIS)

    Stephen, E. R.; Wong, J.; Van Loon, D.

    2007-01-01

    Vaccines are generally considered to be the most effective countermeasures to bacterial and viral diseases, however, licensed vaccines against many disease agents are either not available or their efficacies have not been demonstrated. Vaccines are generally agent specific in terms of treatment spectrum and are subject to defeat through natural mutation or through directed efforts. With respect to viral therapeutics, one of the major limitations associated with antiviral drugs is acquired drug resistance caused by antigenic shift or drift. A number of next-generation prophylactic and/or therapeutic measures are on the horizon. Of these, nucleic acid-based drugs are showing great antiviral potential. These drugs elicit long-lasting, broad spectrum protective immune responses, especially to respiratory viral pathogens. The Nucleic Acid-Based Antiviral (NaVirCept) project provides the opportunity to demonstrate the effectiveness of novel medical countermeasures against military-significant endemic and other viral threat agents. This project expands existing DRDC drug delivery capability development, in the form of proprietary liposome intellectual property, by coupling it with leading-edge nucleic acid-based technology to deliver effective medical countermeasures that will protect deployed personnel and the warfighter against a spectrum of viral disease agents. The technology pathway will offer a means to combat emerging viral diseases or modified threat agents such as the bird flu or reconstructed Spanish flu without going down the laborious, time-consuming and expensive paths to develop countermeasures for each new and/or emerging viral disease organism.(author)

  15. Antiviral activity of ovine interferon tau 4 against foot-and-mouth disease virus.

    Science.gov (United States)

    Usharani, Jayaramaiah; Park, Sun Young; Cho, Eun-Ju; Kim, Chungsu; Ko, Young-Joon; Tark, Dongseob; Kim, Su-Mi; Park, Jong-Hyeon; Lee, Kwang-Nyeong; Lee, Myoung-Heon; Lee, Hyang-Sim

    2017-07-01

    Foot-and-mouth disease (FMD) is an economically important disease in most parts of the world and new therapeutic agents are needed to protect the animals before vaccination can trigger the host immune response. Although several interferons have been used for their antiviral activities against Foot-and-mouth disease virus (FMDV), ovine interferon tau 4 (OvIFN-τ4), with a broad-spectrum of action, cross-species antiviral activity, and lower incidence of toxicity in comparison to other type І interferons, has not yet been evaluated for this indication. This is the first study to evaluate the antiviral activity of OvIFN-τ4 against various strains of FMDV. The effective anti-cytopathic concentration of OvIFN-τ4 and its effectiveness pre- and post-infection with FMDV were tested in vitro in LFBK cells. In vivo activity of OvIFN-τ4 was then confirmed in a mouse model of infection. OvIFN-τ4 at a concentration of 500 ng, protected mice until 5days post-FMDV challenge and provided 90% protection for 10 days following FMDV challenge. These results suggest that OvIFN-τ4 could be used as an alternative to other interferons or antiviral agents at the time of FMD outbreak. Copyright © 2017. Published by Elsevier B.V.

  16. Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response

    OpenAIRE

    Marques, Joao T.; Rebouillat, Dominique; Ramana, Chilakamarti V.; Murakami, Junko; Hill, Jason E.; Gudkov, Andrei; Silverman, Robert H.; Stark, George R.; Williams, Bryan R. G.

    2005-01-01

    p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus la...

  17. Transgenic Clustered Regularly Interspaced Short Palindromic Repeat/Cas9-Mediated Viral Gene Targeting for Antiviral Therapy of Bombyx mori Nucleopolyhedrovirus.

    Science.gov (United States)

    Chen, Shuqing; Hou, Chengxiang; Bi, Honglun; Wang, Yueqiang; Xu, Jun; Li, Muwang; James, Anthony A; Huang, Yongping; Tan, Anjiang

    2017-04-15

    We developed a novel antiviral strategy by combining transposon-based transgenesis and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system for the direct cleavage of Bombyx mori nucleopolyhedrovirus (BmNPV) genome DNA to promote virus clearance in silkworms. We demonstrate that transgenic silkworms constitutively expressing Cas9 and guide RNAs targeting the BmNPV immediate early-1 ( ie-1 ) and me53 genes effectively induce target-specific cleavage and subsequent mutagenesis, especially large (∼7-kbp) segment deletions in BmNPV genomes, and thus exhibit robust suppression of BmNPV proliferation. Transgenic animals exhibited higher and inheritable resistance to BmNPV infection than wild-type animals. Our approach will not only contribute to modern sericulture but also shed light on future antiviral therapy. IMPORTANCE Pathogen genome targeting has shown its potential in antiviral research. However, transgenic CRISPR/Cas9 system-mediated viral genome targeting has not been reported as an antiviral strategy in a natural animal host of a virus. Our data provide an effective approach against BmNPV infection in a real-world biological system and demonstrate the potential of transgenic CRISPR/Cas9 systems in antiviral research in other species. Copyright © 2017 Chen et al.

  18. New Approaches for Quantitating the Inhibition of HIV-1 Replication by Antiviral Drugs in vitro and in vivo

    Science.gov (United States)

    McMahon, Moira A.; Shen, Lin; Siliciano, Robert F.

    2014-01-01

    Purpose of review With highly active anti-retroviral therapy (HAART), HIV-1 infection has become a manageable lifelong disease. Developing optimal treatment regimens requires understanding how to best measure anti-HIV activity in vitro and how drug dose response curves generated in vitro correlate with in vivo efficacy. Recent findings Several recent studies have indicated that conventional multi-round infectivity assays are inferior to single cycle assays at both low and high levels of inhibition. Multi-round infectivity assays can fail to detect subtle but clinically significant anti-HIV activity. The discoveries of the anti-HIV activity of the hepatitis B drug entecavir and the herpes simplex drug acyclovir were facilitated by single round infectivity assays. Recent studies using a single round infectivity assay have shown that a previously neglected parameter, the dose response curve slope, is an extremely important determinant of antiviral activity. Some antiretroviral drugs have steep slopes that result in extraordinary levels of antiviral activity. The instantaneous inhibitory potential (IIP), the log reduction in infectivity in a single round assay at clinical drug concentrations, has been proposed as a novel index for comparing antiviral activity. Summary Among in vitro measures of antiviral activity, single round infection assays have the advantage of measure instantaneous inhibition by a drug. Re-evaluating the antiviral activity of approved HIV-1 drugs has shown that the slope parameter is an important factor in drug activity. Determining the IIP by using a single round infectivity assay may provide important insights that can predict the in vivo efficacy of anti-HIV-1 drugs. PMID:19841584

  19. Systemic corticosteroids and early administration of antiviral agents for pneumonia with acute wheezing due to influenza A(H1N1pdm09 in Japan.

    Directory of Open Access Journals (Sweden)

    Koichiro Kudo

    Full Text Available BACKGROUND: Pneumonia patients with wheezing due to influenza A(H1N1pdm09 were frequently treated with systemic corticosteroids in Japan although systemic corticosteroid for critically ill patients with pneumonia caused by influenza A(H1N1pdm09 has been controversial. Applicability of systemic corticosteroid treatment needs to be evaluated. METHODS/PRINCIPAL FINDINGS: We retrospectively reviewed 89 subjects who were diagnosed with influenza A(H1N1pdm09 and admitted to a national hospital, Tokyo during the pandemic period. The median age of subjects (45 males was 8 years (range, 0-71. All subjects were treated with antiviral agents and the median time from symptom onset to initiation of antiviral agents was 2 days (range, 0-7. Subjects were classified into four groups: upper respiratory tract infection, wheezing illness, pneumonia with wheezing, and pneumonia without wheezing. The characteristics of each group was evaluated. A history of asthma was found more frequently in the wheezing illness (55.6% and pneumonia with wheezing (43.3% groups than in the other two groups (p = 0.017. Corticosteroid treatment was assessed among subjects with pneumonia. Oxygen saturation was lower in subjects receiving corticosteroids (steroid group than in subjects not receiving corticosteroids (no-steroid group (p<0.001. The steroid group required greater oxygen supply than the no-steroid group (p<0.001. No significant difference was found by the Kaplan-Meier method between the steroid and the no-steroid groups in hours to fever alleviation from the initiation of antiviral agents and hospitalization days. In logistic regression analysis, wheezing, pneumonia and oxygen saturation were independent factors associated with using systemic corticosteroids. CONCLUSION: Patients with wheezing and a history of asthma were frequently found in the study subjects. Systemic corticosteroids together with early administration of antiviral agents to pneumonia with wheezing and

  20. Antiviral potential of a diterpenoid compound sugiol from Metasequoia glyptostroboides.

    Science.gov (United States)

    Bajpai, Vivek K; Kim, Na-Hyung; Kim, Kangmin; Kang, Sun Chul

    2016-05-01

    This research reports first time antiviral activity of sugiol, a diterpenoid isolated from Metasequoia glyptostroboides in terms of its ability to inhibit in vitro growth of H1N1 influenza virus. Antiviral potential of sugiol was evaluated through hcytopathogenic reduction assay using Madin-Darby canine kidney (MDCK) cell line. Sugiol (500 μg/ml) was found to exhibit considerable anti-cytopathic effect on MDCK cell line confirming its antiviral efficacy against H1N1 influenza virus. These findings strongly reinforce the suggestion that sugiol could be a candidate of choice in combinational regimen with potential antiviral efficacy.

  1. Self-interest versus group-interest in antiviral control

    NARCIS (Netherlands)

    Boven, M. van; Klinkenberg, D.; Pen, I.; Weissing, F.J.; Heesterbeek, J.A.P.

    2008-01-01

    Antiviral agents have been hailed to hold considerable promise for the treatment and prevention of emerging viral diseases like H5N1 avian influenza and SARS. However, antiviral drugs are not completely harmless, and the conditions under which individuals are willing to participate in a

  2. Antiviral agents: structural basis of action and rational design.

    Science.gov (United States)

    Menéndez-Arias, Luis; Gago, Federico

    2013-01-01

    During the last 30 years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs inhibiting hepatitis C virus replication. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by using a computer-based approach. We provide examples illustrating structure-based antiviral drug development, specifically neuraminidase inhibitors against influenza virus (e.g. oseltamivir and zanamivir) and human immunodeficiency virus type 1 protease inhibitors (i.e. the development of darunavir from early peptidomimetic compounds such as saquinavir). A number of drugs in preclinical development acting against picornaviruses, hepatitis B virus and human immunodeficiency virus and their mechanism of action are presented to show how viral capsids can be exploited as targets of antiviral therapy.

  3. Potential Antiviral Agents from Marine Fungi: An Overview

    Directory of Open Access Journals (Sweden)

    Soheil Zorofchian Moghadamtousi

    2015-07-01

    Full Text Available Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity.

  4. Efficacy and safety of direct-acting antivirals-based antiviral therapies for hepatitis C virus patients with stage 4-5 chronic kidney disease: a meta-analysis.

    Science.gov (United States)

    Li, Tao; Qu, Yundong; Guo, Ying; Wang, Yan; Wang, Lei

    2017-07-01

    The aim of this study was to assess the efficacy and safety of direct-acting antivirals (DAA)-based antiviral therapies for HCV patients with stage 4-5 chronic kidney disease. We conducted a systematic literature search in PubMed, EMBASE, Web of Science, and CENTRAL on the Cochrane Library without time and language limitations. The search strategy used was "(End stage renal disease OR chronic kidney failure OR severe renal impairment OR chronic kidney disease OR dialysis) AND (sofosbuvir OR simeprevir OR grazoprevir OR elbasvir OR ombitasvir OR paritaprevir OR ritonavir OR dasabuvir OR daclatasvir OR asuparevir OR direct-acting antiviral OR DAA)". Sustained virologic response at 12 weeks after the end of treatment (SVR12), adverse events (AEs) and/or serious adverse events (SAEs) with 95% confidence intervals (CI) were pooled. Eleven studies, comprising a total of 264 patients were included for our meta-analysis. The pooled SVR12 rate were 93.2% (95% CI 89.9%-95.9%, I 2 =0.0%), 89.4% (95% CI 82.0%-95.0%, I 2 =0.0%) and 94.7% (95% CI 91.0%-97.5%, I 2 =0.0%) in total population, patients with sofosbuvir-based therapies and patients with non-sofosbuvir-based therapies respectively. For HCV genotype 1 patients, the pooled SVR12 rate was 93.1% (95% CI 88.3%-96.7%, I 2 =20.0%). The pooled incidence of SAEs was 12.1% (95% CI 6.2%-19.7%, I 2 =55.0%). The pooled discontinuation rate because of AEs or SAEs in our meta-analysis was 2.2% (95% CI 0.8%-4.4%, I 2 =0.0%). DAA-based antiviral therapies are effective and well-tolerated for HCV patients with stage 4-5 chronic kidney disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Mechanisms of Hepatitis C Viral Resistance to Direct Acting Antivirals.

    Science.gov (United States)

    Ahmed, Asma; Felmlee, Daniel J

    2015-12-18

    There has been a remarkable transformation in the treatment of chronic hepatitis C in recent years with the development of direct acting antiviral agents targeting virus encoded proteins important for viral replication including NS3/4A, NS5A and NS5B. These agents have shown high sustained viral response (SVR) rates of more than 90% in phase 2 and phase 3 clinical trials; however, this is slightly lower in real-life cohorts. Hepatitis C virus resistant variants are seen in most patients who do not achieve SVR due to selection and outgrowth of resistant hepatitis C virus variants within a given host. These resistance associated mutations depend on the class of direct-acting antiviral drugs used and also vary between hepatitis C virus genotypes and subtypes. The understanding of these mutations has a clear clinical implication in terms of choice and combination of drugs used. In this review, we describe mechanism of action of currently available drugs and summarize clinically relevant resistance data.

  6. Experimental in vitro and in vivo systems for studying the innate immune response during dengue virus infections.

    Science.gov (United States)

    Kitab, Bouchra; Kohara, Michinori; Tsukiyama-Kohara, Kyoko

    2018-03-08

    Dengue is the most prevalent arboviral disease in humans and leads to significant morbidity and socioeconomic burden in tropical and subtropical areas. Dengue is caused by infection with any of the four closely related serotypes of dengue virus (DENV1-4) and usually manifests as a mild febrile illness, but may develop into fatal dengue hemorrhagic fever and shock syndrome. There are no specific antiviral therapies against dengue because understanding of DENV biology is limited. A tetravalent chimeric dengue vaccine, Dengvaxia, has finally been licensed for use, but its efficacy was significantly lower against DENV-2 infections and in dengue-naïve individuals. The identification of mechanisms underlying the interactions between DENV and immune responses will help to determine efficient therapeutic and preventive options. It has been well established how the innate immune system responds to DENV infection and how DENV overcomes innate antiviral defenses, however further progress in this field remains hampered by the absence of appropriate experimental dengue models. Herein, we review the available in vitro and in vivo approaches to study the innate immune responses to DENV.

  7. Bioprospecting of Red Sea Sponges for Novel Antiviral Pharmacophores

    KAUST Repository

    O'Rourke, Aubrie

    2015-01-01

    the coast of Saudi Arabia serves as a newly accessible location, which provides the opportunity to bioprospect marine sponges with the purpose of identifying novel antiviral scaffolds. Antivirals are underrepresented in present day clinical trials, as well

  8. Nose-to-Brain Delivery of Antiviral Drugs: A Way to Overcome Their Active Efflux?

    Directory of Open Access Journals (Sweden)

    Alessandro Dalpiaz

    2018-03-01

    Full Text Available Although several viruses can easily infect the central nervous system (CNS, antiviral drugs often show dramatic difficulties in penetrating the brain from the bloodstream since they are substrates of active efflux transporters (AETs. These transporters, located in the physiological barriers between blood and the CNS and in macrophage membranes, are able to recognize their substrates and actively efflux them into the bloodstream. The active transporters currently known to efflux antiviral drugs are P-glycoprotein (ABCB1 or P-gp or MDR1, multidrug resistance-associated proteins (ABCC1 or MRP1, ABCC4 or MRP4, ABCC5 or MRP5, and breast cancer resistance protein (ABCG2 or BCRP. Inhibitors of AETs may be considered, but their co-administration causes serious unwanted effects. Nasal administration of antiviral drugs is therefore proposed in order to overcome the aforementioned problems, but innovative devices, formulations (thermoreversible gels, polymeric micro- and nano-particles, solid lipid microparticles, nanoemulsions, absorption enhancers (chitosan, papaverine, and mucoadhesive agents (chitosan, polyvinilpyrrolidone are required in order to selectively target the antiviral drugs and, possibly, the AET inhibitors in the CNS. Moreover, several prodrugs of antiretroviral agents can inhibit or elude the AET systems, appearing as interesting substrates for innovative nasal formulations able to target anti-Human Immunodeficiency Virus (HIV agents into macrophages of the CNS, which are one of the most important HIV Sanctuaries of the body.

  9. Antiviral Activity of Lambda Interferon in Chickens

    Science.gov (United States)

    Reuter, Antje; Soubies, Sebastien; Härtle, Sonja; Schusser, Benjamin; Kaspers, Bernd

    2014-01-01

    Interferons (IFNs) are essential components of the antiviral defense system of vertebrates. In mammals, functional receptors for type III IFN (lambda interferon [IFN-λ]) are found mainly on epithelial cells, and IFN-λ was demonstrated to play a crucial role in limiting viral infections of mucosal surfaces. To determine whether IFN-λ plays a similar role in birds, we produced recombinant chicken IFN-λ (chIFN-λ) and we used the replication-competent retroviral RCAS vector system to generate mosaic-transgenic chicken embryos that constitutively express chIFN-λ. We could demonstrate that chIFN-λ markedly inhibited replication of various virus strains, including highly pathogenic influenza A viruses, in ovo and in vivo, as well as in epithelium-rich tissue and cell culture systems. In contrast, chicken fibroblasts responded poorly to chIFN-λ. When applied in vivo to 3-week-old chickens, recombinant chIFN-λ strongly induced the IFN-responsive Mx gene in epithelium-rich organs, such as lungs, tracheas, and intestinal tracts. Correspondingly, these organs were found to express high transcript levels of the putative chIFN-λ receptor alpha chain (chIL28RA) gene. Transfection of chicken fibroblasts with a chIL28RA expression construct rendered these cells responsive to chIFN-λ treatment, indicating that receptor expression determines cell type specificity of IFN-λ action in chickens. Surprisingly, mosaic-transgenic chickens perished soon after hatching, demonstrating a detrimental effect of constitutive chIFN-λ expression. Our data highlight fundamental similarities between the IFN-λ systems of mammals and birds and suggest that type III IFN might play a role in defending mucosal surfaces against viral intruders in most if not all vertebrates. PMID:24371053

  10. STING agonists enable antiviral cross-talk between human cells and confer protection against genital herpes in mice.

    Science.gov (United States)

    Skouboe, Morten K; Knudsen, Alice; Reinert, Line S; Boularan, Cedric; Lioux, Thierry; Perouzel, Eric; Thomsen, Martin K; Paludan, Søren R

    2018-04-01

    In recent years, there has been an increasing interest in immunomodulatory therapy as a means to treat various conditions, including infectious diseases. For instance, Toll-like receptor (TLR) agonists have been evaluated for treatment of genital herpes. However, although the TLR7 agonist imiquimod was shown to have antiviral activity in individual patients, no significant effects were observed in clinical trials, and the compound also exhibited significant side effects, including local inflammation. Cytosolic DNA is detected by the enzyme cyclic GMP-AMP (2'3'-cGAMP) synthase (cGAS) to stimulate antiviral pathways, mainly through induction of type I interferon (IFN)s. cGAS is activated upon DNA binding to produce the cyclic dinucleotide (CDN) 2'3'-cGAMP, which in turn binds and activates the adaptor protein Stimulator of interferon genes (STING), thus triggering type I IFN expression. In contrast to TLRs, STING is expressed broadly, including in epithelial cells. Here we report that natural and non-natural STING agonists strongly induce type I IFNs in human cells and in mice in vivo, without stimulating significant inflammatory gene expression. Systemic treatment with 2'3'-cGAMP reduced genital herpes simplex virus (HSV) 2 replication and improved the clinical outcome of infection. More importantly, local application of CDNs at the genital epithelial surface gave rise to local IFN activity, but only limited systemic responses, and this treatment conferred total protection against disease in both immunocompetent and immunocompromised mice. In direct comparison between CDNs and TLR agonists, only CDNs acted directly on epithelial cells, hence allowing a more rapid and IFN-focused immune response in the vaginal epithelium. Thus, specific activation of the STING pathway in the vagina evokes induction of the IFN system but limited inflammatory responses to allow control of HSV2 infections in vivo.

  11. Management of hepatitis C infection in the era of direct-acting antiviral therapy

    Science.gov (United States)

    Zain, L. H.; Sungkar, T.

    2018-03-01

    Hepatitis C viral infection globally affects millions of people and commonly results in debilitating complications and mortality. Initial mainstay therapy consisted of pegylated interferon α (pegIFNα) with additional ribavirin that showed unsatisfactory cure rate, common side effects and complicated dosing, contributing to high discontinuation rate. Over the last few years, newer antivirals have been extensively studied, that are Direct-Acting Antivirals (DAAs). Specifically targeting viral protein mainly during replication phase, DAAs showed greater cure rate (commonly measured as sustained virologic response), improved safety profile and shorter treatment duration compared to traditional interferon-ribavirin therapy. Current guidelines have also included Interferon-free, often ribavirin-free, DAAs combinations that suggest promising outcomes. The current review highlights development of rapidly growing hepatitis C treatment including DAAs recommendations.

  12. Antiviral treatment among older adults hospitalized with influenza, 2006-2012.

    Directory of Open Access Journals (Sweden)

    Mary Louise Lindegren

    Full Text Available To describe antiviral use among older, hospitalized adults during six influenza seasons (2006-2012 in Davidson County, Tennessee, USA.Among adults ≥50 years old hospitalized with symptoms of respiratory illness or non-localizing fever, we collected information on provider-initiated influenza testing and nasal/throat swabs for influenza by RT-PCR in a research laboratory, and calculated the proportion treated with antivirals.We enrolled 1753 adults hospitalized with acute respiratory illness. Only 26% (457/1753 of enrolled patients had provider-initiated influenza testing. Thirty-eight patients had a positive clinical laboratory test, representing 2.2% of total patients and 8.3% of tested patients. Among the 38 subjects with clinical laboratory-confirmed influenza, 26.3% received antivirals compared to only 4.5% of those with negative clinical influenza tests and 0.7% of those not tested (p<0.001. There were 125 (7.1% patients who tested positive for influenza in the research laboratory. Of those with research laboratory-confirmed influenza, 0.9%, 2.7%, and 2.8% received antivirals (p=.046 during pre-pandemic, pandemic, and post-pandemic influenza seasons, respectively. Both research laboratory-confirmed influenza (adjusted odds ratio [AOR] 3.04 95%CI 1.26-7.35 and clinical laboratory-confirmed influenza (AOR 3.05, 95%CI 1.07-8.71 were independently associated with antiviral treatment. Severity of disease, presence of a high-risk condition, and symptom duration were not associated with antiviral use.In urban Tennessee, antiviral use was low in patients recognized to have influenza by the provider as well as those unrecognized to have influenza. The use of antivirals remained low despite recommendations to treat all hospitalized patients with confirmed or suspected influenza.

  13. Nuclear trafficking of proteins from RNA viruses: potential target for antivirals?

    Science.gov (United States)

    Caly, Leon; Wagstaff, Kylie M; Jans, David A

    2012-09-01

    A key aspect of the infectious cycle of many viruses is the transport of specific viral proteins into the host cell nucleus to perturb the antiviral response. Examples include a number of RNA viruses that are significant human pathogens, such as human immunodeficiency virus (HIV)-1, influenza A, dengue, respiratory syncytial virus and rabies, as well agents that predominantly infect livestock, such as Rift valley fever virus and Venezuelan equine encephalitis virus. Inhibiting the nuclear trafficking of viral proteins as a therapeutic strategy offers an attractive possibility, with important recent progress having been made with respect to HIV-1 and dengue. The results validate nuclear protein import as an antiviral target, and suggest the identification and development of nuclear transport inhibitors as a viable therapeutic approach for a range of human and zoonotic pathogenic viruses. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Studies on Antiviral and Immuno-Regulation Activity of Low Molecular Weight Fucoidan from Laminaria japonica

    Science.gov (United States)

    Sun, Taohua; Zhang, Xinhui; Miao, Ying; Zhou, Yang; Shi, Jie; Yan, Meixing; Chen, Anjin

    2018-06-01

    The antiviral activity in vitro and in vivo and the effect of the immune system of two fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica (LMW fucoidans) were investigated in order to examine the possible mechanism. In vitro, I-type influenza virus, adenovirus and Parainfluenza virus I were used to infect Hep-2, Hela and MDCK cells, respectively. And 50% tissue culture infective dose was calculated to detect the antiviral activity of two LMW fucoidans. The results indicated that compared with the control group, 2 kinds of LMW fucoidans had remarkable antiviral activity in vitro in middle and high doses, while at low doses, the antiviral activity of 2 kinds of LMW fucoidans was not statistically different from that in the blank control group. And there was no statistically difference between two LMW fucoidans in antiviral activity. In vivo, LMW fucoidans could prolong the survival time of virus-infected mice, and could improve the lung index of virus-infected mice significantly, which have statistical differences with the control group significantly ( p 0.05). In this study, it was shown that both of two LMW fucoidans (LF1, LF2) could increase the thymus index, spleen index, phagocytic index, phagocytosis coefficient and half hemolysin value in middle and high doses, which suggested that LMW fucoidans could play an antiviral role by improving the quality of immune organs, improving immune cell phagocytosis and humoral immunity.

  15. Antiviral Drugs: Seasonal Flu

    Centers for Disease Control (CDC) Podcasts

    2010-09-29

    In this podcast, Dr. Joe Bresee explains the nature of antiviral drugs and how they are used for seasonal flu.  Created: 9/29/2010 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 9/29/2010.

  16. Type I interferon production during herpes simplex virus infection is controlled by cell-type-specific viral recognition through Toll-like receptor 9, the mitochondrial antiviral signaling protein pathway, and novel recognition systems

    DEFF Research Database (Denmark)

    Rasmussen, Simon Brandtoft; Sørensen, Louise Nørgaard; Malmgaard, Lene

    2007-01-01

    Recognition of viruses by germ line-encoded pattern recognition receptors of the innate immune system is essential for rapid production of type I interferon (IFN) and early antiviral defense. We investigated the mechanisms of viral recognition governing production of type I IFN during herpes...... simplex virus (HSV) infection. We show that early production of IFN in vivo is mediated through Toll-like receptor 9 (TLR9) and plasmacytoid dendritic cells, whereas the subsequent alpha/beta IFN (IFN-alpha/beta) response is derived from several cell types and induced independently of TLR9...

  17. Antiviral potency and functional analysis of tetherin orthologues encoded by horse and donkey.

    Science.gov (United States)

    Yin, Xin; Guo, Miaomiao; Gu, Qinyong; Wu, Xingliang; Wei, Ping; Wang, Xiaojun

    2014-08-27

    Tetherin is an interferon-inducible host cell factor that blocks the viral particle release of the enveloped viruses. Most knowledge regarding the interaction between tetherin and viruses has been obtained using the primate lentiviral system. However, much less is known about the functional roles of tetherin on other lentiviruses. Equine infectious anemia virus (EIAV) is an important macrophage-tropic lentivirus that has been widely used as a practical model for investigating the evolution of the host-virus relationship. The host range of EIAV is reported to include all members of the Equidae family. However, EIAV has different clinical responses in horse and donkey. It's intriguing to investigate the similarities and differences between the tetherin orthologues encoded by horse and donkey. We report here that there are two equine tetherin orthologues. Compared to horse tetherin, there are three valine amino acid deletions within the transmembrane domain and three distinct mutations within the ectodomain of donkey tetherin. However, the antiviral activity of donkey tetherin was not affected by amino acid deletion or substitution. In addition, both tetherin orthologues encoded by horse and donkey are similarly sensitive to EIAV Env protein, and equally activate NF-κB signaling. Our data suggest that both tetherin orthologues encoded by horse and donkey showed similar antiviral activities and abilities to induce NF-κB signaling. In addition, the phenomenon about the differential responses of horses and donkeys to infection with EIAV was not related with the differences in the structure of the corresponding tetherin orthologues.

  18. Protective Effect of Panax notoginseng Root Water Extract against Influenza A Virus Infection by Enhancing Antiviral Interferon-Mediated Immune Responses and Natural Killer Cell Activity

    Directory of Open Access Journals (Sweden)

    Jang-Gi Choi

    2017-11-01

    Full Text Available Influenza is an acute respiratory illness caused by the influenza A virus, which causes economic losses and social disruption mainly by increasing hospitalization and mortality rates among the elderly and people with chronic diseases. Influenza vaccines are the most effective means of preventing seasonal influenza, but can be completely ineffective if there is an antigenic mismatch between the seasonal vaccine virus and the virus circulating in the community. In addition, influenza viruses resistant to antiviral drugs are emerging worldwide. Thus, there is an urgent need to develop new vaccines and antiviral drugs against these viruses. In this study, we conducted in vitro and in vivo analyses of the antiviral effect of Panax notoginseng root (PNR, which is used as an herbal medicine and nutritional supplement in Korea and China. We confirmed that PNR significantly prevented influenza virus infection in a concentration-dependent manner in mouse macrophages. In addition, PNR pretreatment inhibited viral protein (PB1, PB2, HA, NA, M1, PA, M2, and NP and viral mRNA (NS1, HA, PB2, PA, NP, M1, and M2 expression. PNR pretreatment also increased the secretion of pro-inflammatory cytokines [tumor necrosis factor alpha and interleukin 6] and interferon (IFN-beta and the phosphorylation of type-I IFN-related proteins (TANK-binding kinase 1, STAT1, and IRF3 in vitro. In mice exposed to the influenza A H1N1 virus, PNR treatment decreased mortality by 90% and prevented weight loss (by approximately 10% compared with the findings in untreated animals. In addition, splenocytes from PNR-administered mice displayed significantly enhanced natural killer (NK cell activity against YAC-1 cells. Taking these findings together, PNR stimulates an antiviral response in murine macrophages and mice that protects against viral infection, which may be attributable to its ability to stimulate NK cell activity. Further investigations are needed to reveal the molecular

  19. Antiviral lead compounds from marine sponges

    KAUST Repository

    Sagar, Sunil

    2010-10-11

    Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed. 2010 by the authors; licensee MDPI.

  20. Type I and Type III Interferons Display Different Dependency on Mitogen-Activated Protein Kinases to Mount an Antiviral State in the Human Gut.

    Science.gov (United States)

    Pervolaraki, Kalliopi; Stanifer, Megan L; Münchau, Stephanie; Renn, Lynnsey A; Albrecht, Dorothee; Kurzhals, Stefan; Senís, Elena; Grimm, Dirk; Schröder-Braunstein, Jutta; Rabin, Ronald L; Boulant, Steeve

    2017-01-01

    Intestinal epithelial cells (IECs) are constantly exposed to commensal flora and pathogen challenges. How IECs regulate their innate immune response to maintain gut homeostasis remains unclear. Interferons (IFNs) are cytokines produced during infections. While type I IFN receptors are ubiquitously expressed, type III IFN receptors are expressed only on epithelial cells. This epithelium specificity strongly suggests exclusive functions at epithelial surfaces, but the relative roles of type I and III IFNs in the establishment of an antiviral innate immune response in human IECs are not clearly defined. Here, we used mini-gut organoids to define the functions of types I and III IFNs to protect the human gut against viral infection. We show that primary non-transformed human IECs, upon viral challenge, upregulate the expression of both type I and type III IFNs at the transcriptional level but only secrete type III IFN in the supernatant. However, human IECs respond to both type I and type III IFNs by producing IFN-stimulated genes that in turn induce an antiviral state. Using genetic ablation of either type I or type III IFN receptors, we show that either IFN can independently restrict virus infection in human IECs. Importantly, we report, for the first time, differences in the mechanisms by which each IFN establishes the antiviral state. Contrary to type I IFN, the antiviral activity induced by type III IFN is strongly dependent on the mitogen-activated protein kinases signaling pathway, suggesting a pathway used by type III IFNs that non-redundantly contributes to the antiviral state. In conclusion, we demonstrate that human intestinal epithelial cells specifically regulate their innate immune response favoring type III IFN-mediated signaling, which allows for efficient protection against pathogens without producing excessive inflammation. Our results strongly suggest that type III IFN constitutes the frontline of antiviral response in the human gut. We propose that

  1. Zinc-finger antiviral protein inhibits XMRV infection.

    Directory of Open Access Journals (Sweden)

    Xinlu Wang

    Full Text Available BACKGROUND: The zinc-finger antiviral protein (ZAP is a host factor that specifically inhibits the replication of certain viruses, including Moloney murine leukemia virus (MoMLV, HIV-1, and certain alphaviruses and filoviruses. ZAP binds to specific viral mRNAs and recruits cellular mRNA degradation machinery to degrade the target RNA. The common features of ZAP-responsive RNA sequences remain elusive and thus whether a virus is susceptible to ZAP can only be determined experimentally. Xenotropic murine leukemia virus-related virus (XMRV is a recently identified γ-retrovirus that was originally thought to be involved in prostate cancer and chronic fatigue syndrome but recently proved to be a laboratory artefact. Nonetheless, XMRV as a new retrovirus has been extensively studied. Since XMRV and MoMLV share only 67.9% sequence identity in the 3'UTRs, which is the target sequence of ZAP in MoMLV, whether XMRV is susceptible to ZAP remains to be determined. FINDINGS: We constructed an XMRV-luc vector, in which the coding sequences of Gag-Pol and part of Env were replaced with luciferase-coding sequence. Overexpression of ZAP potently inhibited the expression of XMRV-luc in a ZAP expression-level-dependent manner, while downregulation of endogenous ZAP rendered cells more sensitive to infection. Furthermore, ZAP inhibited the spreading of replication-competent XMRV. Consistent with the previously reported mechanisms by which ZAP inhibits viral infection, ZAP significantly inhibited the accumulation of XMRV-luc mRNA in the cytoplasm. The ZAP-responsive element in XMRV mRNA was mapped to the 3'UTR. CONCLUSIONS: ZAP inhibits XMRV replication by preventing the accumulation of viral mRNA in the cytoplasm. Documentation of ZAP inhibiting XMRV helps to broaden the spectrum of ZAP's antiviral activity. Comparison of the target sequences of ZAP in XMRV and MoMLV helps to better understand the features of ZAP-responsive elements.

  2. DMPD: Regulation of mitochondrial antiviral signaling pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18549796 Regulation of mitochondrial antiviral signaling pathways. Moore CB, Ting J...P. Immunity. 2008 Jun;28(6):735-9. (.png) (.svg) (.html) (.csml) Show Regulation of mitochondrial antiviral ...signaling pathways. PubmedID 18549796 Title Regulation of mitochondrial antiviral signaling pathways. Author

  3. Anti-viral effect of herbal medicine Korean traditional Cynanchum ...

    African Journals Online (AJOL)

    Background: Pestiviruses in general, and Bovine Viral Diarrhea (BVD) in particular, present several potential targets for directed antiviral therapy. Material and Methods: The antiviral effect of Cynanchum paniculatum (Bge.) Kitag (Dog strangling vine: DS) extract on the bovine viral diarrhea (BVD) virus was tested. First ...

  4. Antimicrobial, antiviral and antioxidant activities of "água-mel" from Portugal.

    Science.gov (United States)

    Miguel, Maria G; Faleiro, Leonor; Antunes, Maria D; Aazza, Smail; Duarte, Joana; Silvério, Ana R

    2013-06-01

    "Água-mel" is a honey-based product produced in Portugal for ancient times. Several attributes have been reported to "água-mel" particularly in the alleviation of simple symptoms of upper respiratory tract. Samples of "água-mel" from diverse beekeepers from different regions of Portugal were studied in what concerns antimicrobial, antioxidant and antiviral properties. The amounts of phenol and brown pigment were also evaluated and correlated with the antioxidant activities. A great variability on the levels of these compounds was found among samples which were responsible for the variability detected also on the antioxidant activities, independent on the method used. Generally, antioxidant activity correlated better with brown pigments' amount than with phenols' content. The antimicrobial activity found for "água-mel" samples confirm the virtues reported by popular findings. In addition, this work also reveals the antiviral properties of "água-mel" evidenced by a decrease on the infectivity of the Qβ bacteriophage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. RIG-I Like Receptors in Antiviral Immunity and Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Michael Gale Jr.

    2011-06-01

    Full Text Available The RNA helicase family of RIG-I-like receptors (RLRs is a key component of host defense mechanisms responsible for detecting viruses and triggering innate immune signaling cascades to control viral replication and dissemination. As cytoplasm-based sensors, RLRs recognize foreign RNA in the cell and activate a cascade of antiviral responses including the induction of type I interferons, inflammasome activation, and expression of proinflammatory cytokines and chemokines. This review provides a brief overview of RLR function, ligand interactions, and downstream signaling events with an expanded discussion on the therapeutic potential of targeting RLRs for immune stimulation and treatment of virus infection.

  6. Antiviral Screening of Multiple Compounds against Ebola Virus.

    Science.gov (United States)

    Dowall, Stuart D; Bewley, Kevin; Watson, Robert J; Vasan, Seshadri S; Ghosh, Chandradhish; Konai, Mohini M; Gausdal, Gro; Lorens, James B; Long, Jason; Barclay, Wendy; Garcia-Dorival, Isabel; Hiscox, Julian; Bosworth, Andrew; Taylor, Irene; Easterbrook, Linda; Pitman, James; Summers, Sian; Chan-Pensley, Jenny; Funnell, Simon; Vipond, Julia; Charlton, Sue; Haldar, Jayanta; Hewson, Roger; Carroll, Miles W

    2016-10-27

    In light of the recent outbreak of Ebola virus (EBOV) disease in West Africa, there have been renewed efforts to search for effective antiviral countermeasures. A range of compounds currently available with broad antimicrobial activity have been tested for activity against EBOV. Using live EBOV, eighteen candidate compounds were screened for antiviral activity in vitro. The compounds were selected on a rational basis because their mechanisms of action suggested that they had the potential to disrupt EBOV entry, replication or exit from cells or because they had displayed some antiviral activity against EBOV in previous tests. Nine compounds caused no reduction in viral replication despite cells remaining healthy, so they were excluded from further analysis (zidovudine; didanosine; stavudine; abacavir sulphate; entecavir; JB1a; Aimspro; celgosivir; and castanospermine). A second screen of the remaining compounds and the feasibility of appropriateness for in vivo testing removed six further compounds (ouabain; omeprazole; esomeprazole; Gleevec; D-LANA-14; and Tasigna). The three most promising compounds (17-DMAG; BGB324; and NCK-8) were further screened for in vivo activity in the guinea pig model of EBOV disease. Two of the compounds, BGB324 and NCK-8, showed some effect against lethal infection in vivo at the concentrations tested, which warrants further investigation. Further, these data add to the body of knowledge on the antiviral activities of multiple compounds against EBOV and indicate that the scientific community should invest more effort into the development of novel and specific antiviral compounds to treat Ebola virus disease.

  7. Antiviral Screening of Multiple Compounds against Ebola Virus

    Directory of Open Access Journals (Sweden)

    Stuart D. Dowall

    2016-10-01

    Full Text Available In light of the recent outbreak of Ebola virus (EBOV disease in West Africa, there have been renewed efforts to search for effective antiviral countermeasures. A range of compounds currently available with broad antimicrobial activity have been tested for activity against EBOV. Using live EBOV, eighteen candidate compounds were screened for antiviral activity in vitro. The compounds were selected on a rational basis because their mechanisms of action suggested that they had the potential to disrupt EBOV entry, replication or exit from cells or because they had displayed some antiviral activity against EBOV in previous tests. Nine compounds caused no reduction in viral replication despite cells remaining healthy, so they were excluded from further analysis (zidovudine; didanosine; stavudine; abacavir sulphate; entecavir; JB1a; Aimspro; celgosivir; and castanospermine. A second screen of the remaining compounds and the feasibility of appropriateness for in vivo testing removed six further compounds (ouabain; omeprazole; esomeprazole; Gleevec; D-LANA-14; and Tasigna. The three most promising compounds (17-DMAG; BGB324; and NCK-8 were further screened for in vivo activity in the guinea pig model of EBOV disease. Two of the compounds, BGB324 and NCK-8, showed some effect against lethal infection in vivo at the concentrations tested, which warrants further investigation. Further, these data add to the body of knowledge on the antiviral activities of multiple compounds against EBOV and indicate that the scientific community should invest more effort into the development of novel and specific antiviral compounds to treat Ebola virus disease.

  8. Mechanisms of Hepatitis C Viral Resistance to Direct Acting Antivirals

    Directory of Open Access Journals (Sweden)

    Asma Ahmed

    2015-12-01

    Full Text Available There has been a remarkable transformation in the treatment of chronic hepatitis C in recent years with the development of direct acting antiviral agents targeting virus encoded proteins important for viral replication including NS3/4A, NS5A and NS5B. These agents have shown high sustained viral response (SVR rates of more than 90% in phase 2 and phase 3 clinical trials; however, this is slightly lower in real-life cohorts. Hepatitis C virus resistant variants are seen in most patients who do not achieve SVR due to selection and outgrowth of resistant hepatitis C virus variants within a given host. These resistance associated mutations depend on the class of direct-acting antiviral drugs used and also vary between hepatitis C virus genotypes and subtypes. The understanding of these mutations has a clear clinical implication in terms of choice and combination of drugs used. In this review, we describe mechanism of action of currently available drugs and summarize clinically relevant resistance data.

  9. Public preferences for vaccination and antiviral medicines under different pandemic flu outbreak scenarios.

    Science.gov (United States)

    Rubinstein, Helena; Marcu, Afrodita; Yardley, Lucy; Michie, Susan

    2015-02-27

    During the 2009-2010 A(H1N1) pandemic, many people did not seek care quickly enough, failed to take a full course of antivirals despite being authorised to receive them, and were not vaccinated. Understanding facilitators and barriers to the uptake of vaccination and antiviral medicines will help inform campaigns in future pandemic influenza outbreaks. Increasing uptake of vaccines and antiviral medicines may need to address a range of drivers of behaviour. The aim was to identify facilitators of and barriers to being vaccinated and taking antiviral medicines in uncertain and severe pandemic influenza scenarios using a theoretical model of behaviour change, COM-B. Focus groups and interviews with 71 members of the public in England who varied in their at-risk status. Participants responded to uncertain and severe scenarios, and to messages giving advice on vaccination and antiviral medicines. Data were thematically analysed using the theoretical framework provided by the COM-B model. Influences on uptake of vaccines and antiviral medicines - capabilities, motivations and opportunities - are part of an inter-related behavioural system and different components influenced each other. An identity of being healthy and immune from infection was invoked to explain feelings of invulnerability and hence a reduced need to be vaccinated, especially during an uncertain scenario. The identity of being a 'healthy person' also included beliefs about avoiding medicine and allowing the body to fight disease 'naturally'. This was given as a reason for using alternative precautionary behaviours to vaccination. This identity could be held by those not at-risk and by those who were clinically at-risk. Promoters and barriers to being vaccinated and taking antiviral medicines are multi-dimensional and communications to promote uptake are likely to be most effective if they address several components of behaviour. The benefit of using the COM-B model is that it is at the core of an

  10. Antiviral Activities of Several Oral Traditional Chinese Medicines against Influenza Viruses.

    Science.gov (United States)

    Ma, Lin-Lin; Ge, Miao; Wang, Hui-Qiang; Yin, Jin-Qiu; Jiang, Jian-Dong; Li, Yu-Huan

    2015-01-01

    Influenza is still a serious threat to human health with significant morbidity and mortality. The emergence of drug-resistant influenza viruses poses a great challenge to existing antiviral drugs. Traditional Chinese medicines (TCMs) may be an alternative to overcome the challenge. Here, 10 oral proprietary Chinese medicines were selected to evaluate their anti-influenza activities. These drugs exhibit potent inhibitory effects against influenza A H1N1, influenza A H3N2, and influenza B virus. Importantly, they demonstrate potent antiviral activities against drug-resistant strains. In the study of mechanisms, we found that Xiaoqinglong mixture could increase antiviral interferon production by activating p38 MAPK, JNK/SAPK pathway, and relative nuclear transcription factors. Lastly, our studies also indicate that some of these medicines show inhibitory activities against EV71 and CVB strains. In conclusion, the 10 traditional Chinese medicines, as kind of compound combination medicines, show broad-spectrum antiviral activities, possibly also including inhibitory activities against strains resistant to available antiviral drugs.

  11. Baseline MELD score predicts hepatic decompensation during antiviral therapy in patients with chronic hepatitis C and advanced cirrhosis.

    Directory of Open Access Journals (Sweden)

    Georg Dultz

    Full Text Available In patients with advanced liver cirrhosis due to chronic hepatitis C virus (HCV infection antiviral therapy with peginterferon and ribavirin is feasible in selected cases only due to potentially life-threatening side effects. However, predictive factors associated with hepatic decompensation during antiviral therapy are poorly defined.In a retrospective cohort study, 68 patients with HCV-associated liver cirrhosis (mean MELD score 9.18 ± 2.72 were treated with peginterferon and ribavirin. Clinical events indicating hepatic decompensation (onset of ascites, hepatic encephalopathy, upper gastrointestinal bleeding, hospitalization as well as laboratory data were recorded at baseline and during a follow up period of 72 weeks after initiation of antiviral therapy. To monitor long term sequelae of end stage liver disease an extended follow up for HCC development, transplantation and death was applied (240 weeks, ± SD 136 weeks.Eighteen patients (26.5% achieved a sustained virologic response. During the observational period a hepatic decompensation was observed in 36.8%. Patients with hepatic decompensation had higher MELD scores (10.84 vs. 8.23, p14, respectively. Baseline MELD score was significantly associated with the risk for transplantation/death (p<0.001.Our data suggest that the baseline MELD score predicts the risk of hepatic decompensation during antiviral therapy and thus contributes to decision making when antiviral therapy is discussed in HCV patients with advanced liver cirrhosis.

  12. Restrictions for reimbursement of interferon-free direct-acting antiviral drugs for HCV infection in Europe

    NARCIS (Netherlands)

    Marshall, Alison D.; Cunningham, Evan B.; Nielsen, Stine; Aghemo, Alessio; Alho, Hannu; Backmund, Markus; Bruggmann, Philip; Dalgard, Olav; Seguin-Devaux, Carole; Flisiak, Robert; Foster, Graham R.; Gheorghe, Liana; Goldberg, David; Goulis, Ioannis; Hickman, Matthew; Hoffmann, Patrick; Jancorienė, Ligita; Jarcuska, Peter; Kåberg, Martin; Kostrikis, Leondios G.; Makara, Mihály; Maimets, Matti; Marinho, Rui Tato; Matičič, Mojca; Norris, Suzanne; Ólafsson, Sigurður; Øvrehus, Anne; Pawlotsky, Jean-Michel; Pocock, James; Robaeys, Geert; Roncero, Carlos; Simonova, Marieta; Sperl, Jan; Tait, Michele; Tolmane, Ieva; Tomaselli, Stefan; van der Valk, Marc; Vince, Adriana; Dore, Gregory J.; Lazarus, Jeffrey V.; Grebely, Jason

    2018-01-01

    All-oral direct-acting antiviral drugs (DAAs) for hepatitis C virus, which have response rates of 95% or more, represent a major clinical advance. However, the high list price of DAAs has led many governments to restrict their reimbursement. We reviewed the availability of, and national criteria

  13. Oscillations in serum ferritin associated with antiviral therapy in chronic hepatitis C Oscilaciones de la ferritina sérica asociadas al tratamiento antiviral en la hepatitis crónica por virus C

    Directory of Open Access Journals (Sweden)

    J. M. Ladero

    2009-01-01

    Full Text Available Background: hyperferritinemia is often found in patients with chronic hepatitis C (CHC and is predictive of poorer response to antiviral therapy. Objective: to investigate changes in ferritinemia during and after antiviral therapy. Patients and methods: serum ferritin levels were measured in 262 CHC patients (163 males, mean age 48.5 years ± 10.1 before and during antiviral therapy, and six months post-treatment in all 154 patients whit undetectable serum HCV-RNA after therapy completion. Results: baseline serum ferritin was higher in patients with primary therapeutic failure than in those reaching sustained viral response (330 ± 291 ng/mL vs. 211 ± 192 ng/mL, p = 0.002. Serum ferritin transiently increased during therapy from baseline (257 ± 242 ng/mL vs. 875 ± 630 ng/mL, p Antecedentes: la hiperferritinemia es frecuente en los enfermos con hepatitis crónica C (HCC y reduce las probabilidades de respuesta al tratamiento antiviral. Objetivo: investigar las variaciones de la ferritina sérica durante y después del tratamiento y su relación con la respuesta al mismo. Pacientes y métodos: la ferritina sérica se ha medido en 262 enfermos con HCC (163 hombres, edad media 48,5 años ± 10,1 antes y durante el tratamiento antiviral, y a los 6 meses de finalizado en los 154 enfermos con viremia indetectable al final del tratamiento. Resultados: la ferritina sérica basal era más alta en enfermos con fracaso terapéutico primario que en los que consiguieron respuesta viral sostenida (RVS (330 ± 291 ng/ml vs. 211 ± 192 ng/ml, p = 0,002. La ferritina sérica aumentó transitoriamente durante el tratamiento (257 ± 242 ng/ml vs. 875 ± 630 ng/ml, p < 0,001. La ferritina sérica descendió a valores inferiores a los basales seis meses después de finalizado el tratamiento en los pacientes con RVS (117 ± 102 ng/ml vs. 211± 192 ng/ml, p < 0,001 y, en menor grado, en los que sufrieron recidiva viral (217 ± 174 ng/ml vs. 257 ± 221 ng/m, p = 0

  14. Influence of antiviral therapy on survival of patients with hepatitis B ...

    African Journals Online (AJOL)

    The mortality rates in two groups were evaluated with Kaplan-Meier estimate. ... 274 (76.9 %) died, with 89 patients belonging to the antiviral group while the ... TACE is different from systemic ... and identification of study participants was not ..... Table 3: Cox regression analysis to deteermine variables associated with overall ...

  15. Antiviral activity and mechanism of action of arbidol against Hantaan ...

    African Journals Online (AJOL)

    Keywords: Hantavirus, Arbidol, Toll-like receptors, inducible nitric oxide synthase, Antiviral activity, ... hantavirus infection. Arbidol is a broad-spectrum antiviral compound that has been shown to have inhibitory effect on influenza virus [4,5], respiratory syncytial virus [6], ..... species in hantavirus cardiopulmonary syndrome.

  16. In vitro antiviral activity of plant extracts from Asteraceae medicinal plants.

    Science.gov (United States)

    Visintini Jaime, María F; Redko, Flavia; Muschietti, Liliana V; Campos, Rodolfo H; Martino, Virginia S; Cavallaro, Lucia V

    2013-07-27

    Due to the high prevalence of viral infections having no specific treatment and the constant appearance of resistant viral strains, the development of novel antiviral agents is essential. The aim of this study was to evaluate the antiviral activity against bovine viral diarrhea virus, herpes simplex virus type 1 (HSV-1), poliovirus type 2 (PV-2) and vesicular stomatitis virus of organic (OE) and aqueous extracts (AE) from: Baccharis gaudichaudiana, B. spicata, Bidens subalternans, Pluchea sagittalis, Tagetes minuta and Tessaria absinthioides. A characterization of the antiviral activity of B. gaudichaudiana OE and AE and the bioassay-guided fractionation of the former and isolation of one active compound is also reported. The antiviral activity of the OE and AE of the selected plants was evaluated by reduction of the viral cytopathic effect. Active extracts were then assessed by plaque reduction assays. The antiviral activity of the most active extracts was characterized by evaluating their effect on the pretreatment, the virucidal activity and the effect on the adsorption or post-adsorption period of the viral cycle. The bioassay-guided fractionation of B. gaudichaudiana OE was carried out by column chromatography followed by semipreparative high performance liquid chromatography fractionation of the most active fraction and isolation of an active compound. The antiviral activity of this compound was also evaluated by plaque assay. B. gaudichaudiana and B. spicata OE were active against PV-2 and VSV. T. absinthioides OE was only active against PV-2. The corresponding three AE were active against HSV-1. B. gaudichaudiana extracts (OE and AE) were the most selective ones with selectivity index (SI) values of 10.9 (PV-2) and > 117 (HSV-1). For this reason, both extracts of B. gaudichaudiana were selected to characterize their antiviral effects. Further bioassay-guided fractionation of B. gaudichaudiana OE led to an active fraction, FC (EC50 = 3.1 μg/ml; SI = 37

  17. The type I interferon response during viral infections: a "SWOT" analysis.

    Science.gov (United States)

    Gaajetaan, Giel R; Bruggeman, Cathrien A; Stassen, Frank R

    2012-03-01

    The type I interferon (IFN) response is a strong and crucial moderator for the control of viral infections. The strength of this system is illustrated by the fact that, despite some temporary discomfort like a common cold or diarrhea, most viral infections will not cause major harm to the healthy immunocompetent host. To achieve this, the immune system is equipped with a wide array of pattern recognition receptors and the subsequent coordinated type I IFN response orchestrated by plasmacytoid dendritic cells (pDCs) and conventional dendritic cells (cDCs). The production of type I IFN subtypes by dendritic cells (DCs), but also other cells is crucial for the execution of many antiviral processes. Despite this coordinated response, morbidity and mortality are still common in viral disease due to the ability of viruses to exploit the weaknesses of the immune system. Viruses successfully evade immunity and infection can result in aberrant immune responses. However, these weaknesses also open opportunities for improvement via clinical interventions as can be seen in current vaccination and antiviral treatment programs. The application of IFNs, Toll-like receptor ligands, DCs, and antiviral proteins is now being investigated to further limit viral infections. Unfortunately, a common threat during stimulation of immunity is the possible initiation or aggravation of autoimmunity. Also the translation from animal models to the human situation remains difficult. With a Strengths-Weaknesses-Opportunities-Threats ("SWOT") analysis, we discuss the interaction between host and virus as well as (future) therapeutic options, related to the type I IFN system. Copyright © 2011 John Wiley & Sons, Ltd.

  18. An antiviral protein from Bougainvillea spectabilis roots; purification and characterisation.

    Science.gov (United States)

    Balasaraswathi, R; Sadasivam, S; Ward, M; Walker, J M

    1998-04-01

    An antiviral protein active against mechanical transmission of tomato spotted wilt virus was identified in the root tissues of Bougainvillea spectabilis Willd. Bougainvillea Antiviral Protein I (BAP I) was purified to apparent homogeneity from the roots of Bougainvillea by ammonium sulphate precipitation, CM- and DEAE-Sepharose chromatography and reverse phase HPLC. BAP I is a highly basic protein (pI value > 8.6) with an Mr of 28,000. The N-terminal sequence of BAP I showed homology with other plant antiviral proteins. Preliminary tests suggest that purified BAP I is capable of interfering with in vitro protein synthesis.

  19. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects.

    Science.gov (United States)

    Jurgeit, Andreas; McDowell, Robert; Moese, Stefan; Meldrum, Eric; Schwendener, Reto; Greber, Urs F

    2012-01-01

    Viruses use a limited set of host pathways for infection. These pathways represent bona fide antiviral targets with low likelihood of viral resistance. We identified the salicylanilide niclosamide as a broad range antiviral agent targeting acidified endosomes. Niclosamide is approved for human use against helminthic infections, and has anti-neoplastic and antiviral effects. Its mode of action is unknown. Here, we show that niclosamide, which is a weak lipophilic acid inhibited infection with pH-dependent human rhinoviruses (HRV) and influenza virus. Structure-activity studies showed that antiviral efficacy and endolysosomal pH neutralization co-tracked, and acidification of the extracellular medium bypassed the virus entry block. Niclosamide did not affect the vacuolar H(+)-ATPase, but neutralized coated vesicles or synthetic liposomes, indicating a proton carrier mode-of-action independent of any protein target. This report demonstrates that physico-chemical interference with host pathways has broad range antiviral effects, and provides a proof of concept for the development of host-directed antivirals.

  20. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects.

    Directory of Open Access Journals (Sweden)

    Andreas Jurgeit

    Full Text Available Viruses use a limited set of host pathways for infection. These pathways represent bona fide antiviral targets with low likelihood of viral resistance. We identified the salicylanilide niclosamide as a broad range antiviral agent targeting acidified endosomes. Niclosamide is approved for human use against helminthic infections, and has anti-neoplastic and antiviral effects. Its mode of action is unknown. Here, we show that niclosamide, which is a weak lipophilic acid inhibited infection with pH-dependent human rhinoviruses (HRV and influenza virus. Structure-activity studies showed that antiviral efficacy and endolysosomal pH neutralization co-tracked, and acidification of the extracellular medium bypassed the virus entry block. Niclosamide did not affect the vacuolar H(+-ATPase, but neutralized coated vesicles or synthetic liposomes, indicating a proton carrier mode-of-action independent of any protein target. This report demonstrates that physico-chemical interference with host pathways has broad range antiviral effects, and provides a proof of concept for the development of host-directed antivirals.

  1. EXPRESSION OF ANTIVIRAL GENE ON TIGER SHRIMP Penaeus monodon AT DIFFERENT TISSUE AND BODY SIZE

    Directory of Open Access Journals (Sweden)

    Andi Parenrengi

    2012-12-01

    Full Text Available The role of tiger shrimp defense against invading pathogen on molecular level such antiviral gene expression is limited to be reported. Gene expression is a process which codes information of genes that is converted to the protein as a phenotype. Distribution of PmAV antivirus gene, that has been reported as an important gene on non-specific response immune, is needed to be observed to several organs/tissues and size of tiger shrimp. The aim of this study is to determine the distribution of gene antiviral expression at several organ/tissue and size of shrimp. The organs/tissues observed in this study were: gill, hepatopancres, muscle tissue, eyes, heart, stomach, gonad, and intestine. While the size of shrimp consisted of three groups, those are: (A 10-20 g/ind., (B 30-40 g/ind., and (C 60-70 g/ind. Analysis of antiviral gene expression was performed by RNA extraction, followed by the cDNA syntesis, and amplification of gene expression by semi-quantitative PCR. The result of PCR optimation showed the optimal concentration of cDNA and primer was 1 μL and 50 mol, respectively for PCR final volume of 25 μL. Antiviral gene was expressed on the hepatopancreas and stomach in percentage of 50.0% and 16.7%, respectively. While the highest percentage of individual expressing the antiviral gene was observed in the shrimp size of C (66.7%, followed by B (50.0% and A (16.7%. The result of study implied that the hepatopancreas has importantly involed in tiger shrimp defense mechanism on viral infection.

  2. Antiviral therapy for prevention of hepatocellular carcinoma in chronic hepatitis C

    DEFF Research Database (Denmark)

    Kimer, Nina; Dahl, Emilie Kristine; Gluud, Lise Lotte

    2012-01-01

    To determine whether antiviral therapy reduces the risk of developing hepatocellular carcinoma (HCC) in chronic hepatitis C.......To determine whether antiviral therapy reduces the risk of developing hepatocellular carcinoma (HCC) in chronic hepatitis C....

  3. Antiviral agents for infectious mononucleosis (glandular fever).

    Science.gov (United States)

    De Paor, Muireann; O'Brien, Kirsty; Fahey, Tom; Smith, Susan M

    2016-12-08

    Infectious mononucleosis (IM) is a clinical syndrome, usually caused by the Epstein Barr virus (EPV), characterised by lymphadenopathy, fever and sore throat. Most cases of symptomatic IM occur in older teenagers or young adults. Usually IM is a benign self-limiting illness and requires only symptomatic treatment. However, occasionally the disease course can be complicated or prolonged and lead to decreased productivity in terms of school or work. Antiviral medications have been used to treat IM, but the use of antivirals for IM is controversial. They may be effective by preventing viral replication which helps to keep the virus inactive. However, there are no guidelines for antivirals in IM. To assess the effects of antiviral therapy for infectious mononucleosis (IM). We searched the Cochrane Central Register of Controlled Trials (CENTRAL, Issue 3, March 2016), which contains the Cochrane Acute Respiratory Infections (ARI) Group's Specialised Register, MEDLINE (1946 to 15 April 2016), Embase (1974 to 15 April 2016), CINAHL (1981 to 15 April 2016), LILACS (1982 to 15 April 2016) and Web of Science (1955 to 15 April 2016). We searched the World Health Organization (WHO) International Clinical Trials Registry Platform and ClinicalTrials.gov for completed and ongoing trials. We included randomised controlled trials (RCTs) comparing antivirals versus placebo or no treatment in IM. We included trials of immunocompetent participants of any age or sex with clinical and laboratory-confirmed diagnosis of IM, who had symptoms for up to 14 days. Our primary outcomes were time to clinical recovery and adverse events and side effects of medication. Secondary outcomes included duration of abnormal clinical examination, complications, viral shedding, health-related quality of life, days missing from school or work and economic outcomes. Two review authors independently assessed studies for inclusion, assessed the included studies' risk of bias and extracted data using a

  4. DMPD: What is disrupting IFN-alpha's antiviral activity? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15283983 What is disrupting IFN-alpha's antiviral activity? Mbow ML, Sarisky RT. Tr...ends Biotechnol. 2004 Aug;22(8):395-9. (.png) (.svg) (.html) (.csml) Show What is disrupting IFN-alpha's ant...iviral activity? PubmedID 15283983 Title What is disrupting IFN-alpha's antiviral activity? Authors Mbow ML,

  5. Modeling Viral Infectious Diseases and Development of Antiviral Therapies Using Human Induced Pluripotent Stem Cell-Derived Systems.

    Science.gov (United States)

    Trevisan, Marta; Sinigaglia, Alessandro; Desole, Giovanna; Berto, Alessandro; Pacenti, Monia; Palù, Giorgio; Barzon, Luisa

    2015-07-13

    The recent biotechnology breakthrough of cell reprogramming and generation of induced pluripotent stem cells (iPSCs), which has revolutionized the approaches to study the mechanisms of human diseases and to test new drugs, can be exploited to generate patient-specific models for the investigation of host-pathogen interactions and to develop new antimicrobial and antiviral therapies. Applications of iPSC technology to the study of viral infections in humans have included in vitro modeling of viral infections of neural, liver, and cardiac cells; modeling of human genetic susceptibility to severe viral infectious diseases, such as encephalitis and severe influenza; genetic engineering and genome editing of patient-specific iPSC-derived cells to confer antiviral resistance.

  6. Modeling Viral Infectious Diseases and Development of Antiviral Therapies Using Human Induced Pluripotent Stem Cell-Derived Systems

    Directory of Open Access Journals (Sweden)

    Marta Trevisan

    2015-07-01

    Full Text Available The recent biotechnology breakthrough of cell reprogramming and generation of induced pluripotent stem cells (iPSCs, which has revolutionized the approaches to study the mechanisms of human diseases and to test new drugs, can be exploited to generate patient-specific models for the investigation of host–pathogen interactions and to develop new antimicrobial and antiviral therapies. Applications of iPSC technology to the study of viral infections in humans have included in vitro modeling of viral infections of neural, liver, and cardiac cells; modeling of human genetic susceptibility to severe viral infectious diseases, such as encephalitis and severe influenza; genetic engineering and genome editing of patient-specific iPSC-derived cells to confer antiviral resistance.

  7. Antibody-independent control of gamma-herpesvirus latency via B cell induction of anti-viral T cell responses.

    Directory of Open Access Journals (Sweden)

    Kelly B McClellan

    2006-06-01

    Full Text Available B cells can use antibody-dependent mechanisms to control latent viral infections. It is unknown whether this represents the sole function of B cells during chronic viral infection. We report here that hen egg lysozyme (HEL-specific B cells can contribute to the control of murine gamma-herpesvirus 68 (gammaHV68 latency without producing anti-viral antibody. HEL-specific B cells normalized defects in T cell numbers and proliferation observed in B cell-/- mice during the early phase of gammaHV68 latency. HEL-specific B cells also reversed defects in CD8 and CD4 T cell cytokine production observed in B cell-/- mice, generating CD8 and CD4 T cells necessary for control of latency. Furthermore, HEL-specific B cells were able to present virally encoded antigen to CD8 T cells. Therefore, B cells have antibody independent functions, including antigen presentation, that are important for control of gamma-herpesvirus latency. Exploitation of this property of B cells may allow enhanced vaccine responses to chronic virus infection.

  8. Update On Emerging Antivirals For The Management Of Herpes Simplex Virus Infections: A Patenting Perspective

    Science.gov (United States)

    Vadlapudi, Aswani D.; Vadlapatla, Ramya K.; Mitra, Ashim K.

    2015-01-01

    Herpes simplex virus (HSV) infections can be treated efficiently by the application of antiviral drugs. The herpes family of viruses is responsible for causing a wide variety of diseases in humans. The standard therapy for the management of such infections includes acyclovir (ACV) and penciclovir (PCV) with their respective prodrugs valaciclovir and famciclovir. Though effective, long term prophylaxis with the current drugs leads to development of drug-resistant viral isolates, particularly in immunocompromised patients. Moreover, some drugs are associated with dose-limiting toxicities which limit their further utility. Therefore, there is a need to develop new antiherpetic compounds with different mechanisms of action which will be safe and effective against emerging drug resistant viral isolates. Significant advances have been made towards the design and development of novel antiviral therapeutics during the last decade. As evident by their excellent antiviral activities, pharmaceutical companies are moving forward with several new compounds into various phases of clinical trials. This review provides an overview of structure and life cycle of HSV, progress in the development of new therapies, update on the advances in emerging therapeutics under clinical development and related recent patents for the treatment of Herpes simplex virus infections. PMID:23331181

  9. Fatty liver in hepatitis C patients post-sustained virological response with direct-acting antivirals

    Science.gov (United States)

    Noureddin, Mazen; Wong, Micaela M; Todo, Tsuyoshi; Lu, Shelly C; Sanyal, Arun J; Mena, Edward A

    2018-01-01

    AIM To determine steatosis and fibrosis prevalence in hepatitis C patients after a sustained virological response achieved with direct-acting antivirals. METHODS Transient elastography with controlled attenuation parameter (CAP) was used to assess hepatic steatosis post-sustained virological response (SVR); the CAP technology was not available in the United States at study initiation. Liver stiffness/fibrosis was measured before and 47 wk after treatment completion. Patients with genotype 3 and patients with cirrhosis were excluded. RESULTS One hundred and one patients were included in the study. Post-SVR there were decreases from baseline in alanine aminotransferase (ALT) (63.1 to 17.8 U/L), aspartate aminotransferase (51.8 to 21.5 U/L) and fibrosis score (7.4 to 6.1 kPa) (P steatosis on CAP; of these, 6.25% had advanced fibrosis. Patients with steatosis had higher body mass index (29.0 vs 26.1 kg/m2), glucose (107.8 vs 96.6 mg/dL), ALT (20.4 vs 15.3 mg/dL), CAP score (296.3 vs 212.4 dB/m) and fibrosis score (7.0 vs 5.3 kPa); P steatosis had change in fibrosis score post-SVR (7.7 kPa vs 7.0 kPa and 7.0 kPa vs 5.3 kPa); alternatively, (P steatosis continued to have clinically significant stiffness (≥ 7 kPa). CONCLUSION Fatty liver is very common in hepatitis C virus (HCV) patients post-SVR. These patients continue to have elevated mean fibrosis score (≥ 7 kPa) compared to those without fatty liver; some have advanced fibrosis. Long term follow up is needed to assess steatosis and fibrosis in HCV patients post-SVR. PMID:29568207

  10. Fatty liver in hepatitis C patients post-sustained virological response with direct-acting antivirals.

    Science.gov (United States)

    Noureddin, Mazen; Wong, Micaela M; Todo, Tsuyoshi; Lu, Shelly C; Sanyal, Arun J; Mena, Edward A

    2018-03-21

    To determine steatosis and fibrosis prevalence in hepatitis C patients after a sustained virological response achieved with direct-acting antivirals. Transient elastography with controlled attenuation parameter (CAP) was used to assess hepatic steatosis post-sustained virological response (SVR); the CAP technology was not available in the United States at study initiation. Liver stiffness/fibrosis was measured before and 47 wk after treatment completion. Patients with genotype 3 and patients with cirrhosis were excluded. One hundred and one patients were included in the study. Post-SVR there were decreases from baseline in alanine aminotransferase (ALT) (63.1 to 17.8 U/L), aspartate aminotransferase (51.8 to 21.5 U/L) and fibrosis score (7.4 to 6.1 kPa) ( P < 0.05). Post-SVR, 48 patients (47.5%) had steatosis on CAP; of these, 6.25% had advanced fibrosis. Patients with steatosis had higher body mass index (29.0 vs 26.1 kg/m 2 ), glucose (107.8 vs 96.6 mg/dL), ALT (20.4 vs 15.3 mg/dL), CAP score (296.3 vs 212.4 dB/m) and fibrosis score (7.0 vs 5.3 kPa); P < 0.05. Interestingly, compared to baseline, both patients with and without steatosis had change in fibrosis score post-SVR (7.7 kPa vs 7.0 kPa and 7.0 kPa vs 5.3 kPa); alternatively, ( P < 0.05) and therefore patients with steatosis continued to have clinically significant stiffness (≥ 7 kPa). Fatty liver is very common in hepatitis C virus (HCV) patients post-SVR. These patients continue to have elevated mean fibrosis score (≥ 7 kPa) compared to those without fatty liver; some have advanced fibrosis. Long term follow up is needed to assess steatosis and fibrosis in HCV patients post-SVR.

  11. DMPD: Negative regulation of cytoplasmic RNA-mediated antiviral signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18703349 Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Komur...Show Negative regulation of cytoplasmic RNA-mediated antiviral signaling. PubmedID 18703349 Title Negative r...egulation of cytoplasmic RNA-mediated antiviral signaling. Authors Komuro A, Bamm

  12. The future of antiviral immunotoxins

    DEFF Research Database (Denmark)

    Spiess, K.; Høy Jakobsen, Mette; Kledal, Thomas N

    2016-01-01

    There is a constant need for new therapeutic interventions in a wide range of infectious diseases. Over the past few years, the immunotoxins have entered the stage as promising antiviral treatments. Immunotoxins have been extensively explored in cancer treatment and have achieved FDA approval in ...

  13. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    Directory of Open Access Journals (Sweden)

    Akram Astani

    2011-01-01

    Full Text Available Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1 in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60–80% and sesquiterpenes suppressed herpes virus infection by 40–98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV.

  14. Longitudinal Liver Stiffness Assessment in Patients with Chronic Hepatitis C Undergoing Antiviral Therapy

    Science.gov (United States)

    Martinez, Stella M.; Foucher, Juliette; Combis, Jean-Marc; Métivier, Sophie; Brunetto, Maurizia; Capron, Dominique; Bourlière, Marc; Bronowicki, Jean-Pierre; Dao, Thong; Maynard-Muet, Marianne; Lucidarme, Damien; Merrouche, Wassil; Forns, Xavier; de Lédinghen, Victor

    2012-01-01

    Background/Aims Liver stiffness (LS) measurement by means of transient elastography (TE) is accurate to predict fibrosis stage. The effect of antiviral treatment and virologic response on LS was assessed and compared with untreated patients with chronic hepatitis C (CHC). Methods TE was performed at baseline, and at weeks 24, 48, and 72 in 515 patients with CHC. Results 323 treated (62.7%) and 192 untreated patients (37.3%) were assessed. LS experienced a significant decline in treated patients and remained stable in untreated patients at the end of study (P<0.0001). The decline was significant for patients with baseline LS ≥ 7.1 kPa (P<0.0001 and P 0.03, for LS ≥9.5 and ≥7.1 kPa vs lower values, respectively). Sustained virological responders and relapsers had a significant LS improvement whereas a trend was observed in nonresponders (mean percent change −16%, −10% and −2%, for SVR, RR and NR, respectively, P 0.03 for SVR vs NR). In multivariate analysis, high baseline LS (P<0.0001) and ALT levels, antiviral therapy and non-1 genotype were independent predictors of LS improvement. Conclusions LS decreases during and after antiviral treatment in patients with CHC. The decrease is significant in sustained responders and relapsers (particularly in those with high baseline LS) and suggests an improvement in liver damage. PMID:23082200

  15. Longitudinal liver stiffness assessment in patients with chronic hepatitis C undergoing antiviral therapy.

    Directory of Open Access Journals (Sweden)

    Stella M Martinez

    Full Text Available BACKGROUND/AIMS: Liver stiffness (LS measurement by means of transient elastography (TE is accurate to predict fibrosis stage. The effect of antiviral treatment and virologic response on LS was assessed and compared with untreated patients with chronic hepatitis C (CHC. METHODS: TE was performed at baseline, and at weeks 24, 48, and 72 in 515 patients with CHC. RESULTS: 323 treated (62.7% and 192 untreated patients (37.3% were assessed. LS experienced a significant decline in treated patients and remained stable in untreated patients at the end of study (P<0.0001. The decline was significant for patients with baseline LS ≥ 7.1 kPa (P<0.0001 and P 0.03, for LS ≥ 9.5 and ≥ 7.1 kPa vs lower values, respectively. Sustained virological responders and relapsers had a significant LS improvement whereas a trend was observed in nonresponders (mean percent change -16%, -10% and -2%, for SVR, RR and NR, respectively, P 0.03 for SVR vs NR. In multivariate analysis, high baseline LS (P<0.0001 and ALT levels, antiviral therapy and non-1 genotype were independent predictors of LS improvement. CONCLUSIONS: LS decreases during and after antiviral treatment in patients with CHC. The decrease is significant in sustained responders and relapsers (particularly in those with high baseline LS and suggests an improvement in liver damage.

  16. Research progress in antiviral therapy for chronic hepatitis C

    Directory of Open Access Journals (Sweden)

    YU Guoying

    2015-04-01

    Full Text Available Antiviral therapy is the most important treatment for chronic hepatitis C. This paper reviews the progress in antiviral treatment over recent years, including the combination therapy with polyethylene glycol-Interferon (PEG-IFN and ribavirin (RBV, specific target therapy, and gene therapy. The paper believes that the anti-hepatitis C virus treatment needs more effective drug combination therapies, shorter courses, less side effect, higher drug resistance threshold, etc.

  17. Factors affecting the purpose suppressive antiviral therapy for patients with recurrent genital herpes

    Directory of Open Access Journals (Sweden)

    I. S. Коlova

    2017-01-01

    Full Text Available Objective: To study the factors that influence the destination of suppressive antiviral therapy in patients with recurrent genital herpes doctors of different specialties.Material and Methods: The study was conducted based on an anonymous survey of professionals providing medical care to patients with genital herpes. The survey involved 67 experts – 44 dermatologist, 13 obstetricians and 10 urologists working in Skin and Venereal Diseases, Women’s consuitation post and Saint Petersburg clinics.Results: Most respondents indicated that among patients with genital herpes, seeking an appointment, dominated by patients with relapsing nature of the disease. Suppressive antiviral therapy is recommended 68,7% of specialists, including dermatologists 61,3%, 84,6% of obstetricians and gynecologists, and 80% of urologists. The main indications for its experts consider high frequency of relapses, the patient’s tendency to promiscuity, the desire of the patient with fewer relapses, and the emotional response of the patient for the presence of the disease. Do not prescribe suppressive therapy for recurrent genital herpes 31,4% of the doctors surveyed. Among the reasons for which are not appointed by the type of treatment, the patient is dominated by the rejection of this type of treatment, the lack of experience of the destination suppressive therapy, as well as the uncertainty of specialists in its effectiveness.Conclusion: Suppressive antiviral therapy is recommended 68,7% of specialists. Do not prescribe this type of treatment for recurrent genital herpes 31,4% of the doctors surveyed. The proportion of professionals who refuse the appointment of suppressive antiviral therapy, the highest among dermatologists (38,7% compared with 15,4% among obstetricians and 20% of urologists. The most frequent grounds for refusal from this type of treatment is the lack of confidence in its effectiveness. 

  18. Cellular Antiviral Factors that Target Particle Infectivity of HIV-1.

    Science.gov (United States)

    Goffinet, Christine

    2016-01-01

    In the past decade, the identification and characterization of antiviral genes with the ability to interfere with virus replication has established cell-intrinsic innate immunity as a third line of antiviral defense in addition to adaptive and classical innate immunity. Understanding how cellular factors have evolved to inhibit HIV-1 reveals particularly vulnerable points of the viral replication cycle. Many, but not all, antiviral proteins share type I interferon-upregulated expression and sensitivity to viral counteraction or evasion measures. Whereas well-established restriction factors interfere with early post-entry steps and release of HIV-1, recent research has revealed a diverse set of proteins that reduce the infectious quality of released particles using individual, to date poorly understood modes of action. These include induction of paucity of mature glycoproteins in nascent virions or self-incorporation into the virus particle, resulting in poor infectiousness of the virion and impaired spread of the infection. A better understanding of these newly discovered antiviral factors may open new avenues towards the design of drugs that repress the spread of viruses whose genomes have already integrated.

  19. Natural killer cells promote early CD8 T cell responses against cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Scott H Robbins

    2007-08-01

    Full Text Available Understanding the mechanisms that help promote protective immune responses to pathogens is a major challenge in biomedical research and an important goal for the design of innovative therapeutic or vaccination strategies. While natural killer (NK cells can directly contribute to the control of viral replication, whether, and how, they may help orchestrate global antiviral defense is largely unknown. To address this question, we took advantage of the well-defined molecular interactions involved in the recognition of mouse cytomegalovirus (MCMV by NK cells. By using congenic or mutant mice and wild-type versus genetically engineered viruses, we examined the consequences on antiviral CD8 T cell responses of specific defects in the ability of the NK cells to control MCMV. This system allowed us to demonstrate, to our knowledge for the first time, that NK cells accelerate CD8 T cell responses against a viral infection in vivo. Moreover, we identify the underlying mechanism as the ability of NK cells to limit IFN-alpha/beta production to levels not immunosuppressive to the host. This is achieved through the early control of cytomegalovirus, which dramatically reduces the activation of plasmacytoid dendritic cells (pDCs for cytokine production, preserves the conventional dendritic cell (cDC compartment, and accelerates antiviral CD8 T cell responses. Conversely, exogenous IFN-alpha administration in resistant animals ablates cDCs and delays CD8 T cell activation in the face of NK cell control of viral replication. Collectively, our data demonstrate that the ability of NK cells to respond very early to cytomegalovirus infection critically contributes to balance the intensity of other innate immune responses, which dampens early immunopathology and promotes optimal initiation of antiviral CD8 T cell responses. Thus, the extent to which NK cell responses benefit the host goes beyond their direct antiviral effects and extends to the prevention of innate

  20. Antiviral effect of lithium chloride on infection of cells by canine parvovirus.

    Science.gov (United States)

    Zhou, Pei; Fu, Xinliang; Yan, Zhongshan; Fang, Bo; Huang, San; Fu, Cheng; Hong, Malin; Li, Shoujun

    2015-11-01

    Canine parvovirus type 2 causes significant viral disease in dogs, with high morbidity, high infectivity, and high mortality. Lithium chloride is a potential antiviral drug for viruses. We determined the antiviral effect of Lithium Chloride on canine parvovirus type 2 in feline kidney cells. The viral DNA and proteins of canine parvovirus were suppressed in a dose-dependent manner by lithium chloride. Further investigation verified that viral entry into cells was inhibited in a dose-dependent manner by lithium chloride. These results indicated that lithium chloride could be a potential antiviral drug for curing dogs with canine parvovirus infection. The specific steps of canine parvovirus entry into cells that are affected by lithium chloride and its antiviral effect in vivo should be explored in future studies.

  1. Broad-spectrum antiviral properties of andrographolide.

    Science.gov (United States)

    Gupta, Swati; Mishra, K P; Ganju, Lilly

    2017-03-01

    Andrographolide, a diterpenoid, is known for its anti-inflammatory effects. It can be isolated from various plants of the genus Andrographis, commonly known as 'creat'. This purified compound has been tested for its anti-inflammatory effects in various stressful conditions, such as ischemia, pyrogenesis, arthritis, hepatic or neural toxicity, carcinoma, and oxidative stress, Apart from its anti-inflammatory effects, andrographolide also exhibits immunomodulatory effects by effectively enhancing cytotoxic T cells, natural killer (NK) cells, phagocytosis, and antibody-dependent cell-mediated cytotoxicity (ADCC). All these properties of andrographolide form the foundation for the use of this miraculous compound to restrain virus replication and virus-induced pathogenesis. The present article covers antiviral properties of andrographolide in variety of viral infections, with the hope of developing of a new highly potent antiviral drug with multiple effects.

  2. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    Directory of Open Access Journals (Sweden)

    Azin Ahmadi

    2015-01-01

    Full Text Available From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.

  3. IFN-λ and microRNAs are important modulators of the pulmonary innate immune response against influenza A (H1N2) infection in pigs

    DEFF Research Database (Denmark)

    Brogaard, Louise; Larsen, Lars E.; Heegaard, Peter Mikael Helweg

    2018-01-01

    the expression of miRNAs and protein coding genes in the lungs of pigs 1, 3, and 14 days after challenge with swine IAV (H1N2). Through RT-qPCR we observed a 400-fold relative increase in IFN-lambda 3 gene expression on day 1 after challenge, and a strong interferon-mediated antiviral response was observed......The innate immune system is paramount in the response to and clearance of influenza A virus (IAV) infection in non-immune individuals. Known factors include type I and III interferons and antiviral pathogen recognition receptors, and the cascades of antiviral and pro- and anti-inflammatory gene...

  4. Plants as sources of antiviral agents | Abonyi | African Journal of ...

    African Journals Online (AJOL)

    Antivirals are substances other than a virus or virus containing vaccine or specific antibody which can produce either a protective or therapeutic effect to the clear detectable advantage of the virus infected host. The search for antiviral agents began in earnest in the 1950s but this was directed mainly by chance, with little or ...

  5. Antiviral and cytotoxic activities of some Indonesian plants.

    Science.gov (United States)

    Lohézic-Le Dévéhat, F; Bakhtiar, A; Bézivin, C; Amoros, M; Boustie, J

    2002-08-01

    Ten methanolic extracts from eight Indonesian medicinal plants were phytochemically screened and evaluated for antiviral (HSV-1 and Poliovirus) and cytotoxic activities on murine and human cancer lines (3LL, L1210, K562, U251, DU145, MCF-7). Besides Melastoma malabathricum (Melastomataceae), the Indonesian Loranthaceae species among which Elytranthe tubaeflora, E. maingayi, E. globosa and Scurrula ferruginea exhibited attractive antiviral and cytotoxic activities. Piper aduncum (Piperaceae) was found active on Poliovirus. S. ferruginea was selected for further studies because of its activity on the U251 glioblastoma cells.

  6. RNA interference-mediated intrinsic antiviral immunity in invertebrates.

    Science.gov (United States)

    Nayak, Arabinda; Tassetto, Michel; Kunitomi, Mark; Andino, Raul

    2013-01-01

    In invertebrates such as insects and nematodes, RNA interference (RNAi) provides RNA-based protection against viruses. This form of immunity restricts viral replication and dissemination from infected cells and viruses, in turn, have evolved evasion mechanisms or RNAi suppressors to counteract host defenses. Recent advances indicate that, in addition to RNAi, other related small RNA pathways contribute to antiviral functions in invertebrates. This has led to a deeper understanding of fundamental aspects of small RNA-based antiviral immunity in invertebrates and its contribution to viral spread and pathogenesis.

  7. Hepatitis B viral factors and treatment responses in chronic hepatitis B

    Directory of Open Access Journals (Sweden)

    Chih-Lin Lin

    2013-06-01

    Full Text Available Baseline and on-treatment hepatitis B viral factors are reported to affect treatment responses. A lower baseline hepatitis B virus (HBV DNA level is a strong predictor of the response to antiviral therapy. HBV genotype A/B patients have better responses to interferon-based therapy than those with genotypes C/D. Regarding the association of HBV mutants with responses to antiviral therapy, current evidence is limited. On-treatment viral suppression is the most important predictor of response to nucleoside analogs. On-treatment hepatitis B surface antigen decline is significantly associated with response to pegylated interferon. In the future, individualized therapy should be based on treatment efficacy, adverse effects, baseline and on-treatment predictors of antiviral therapy.

  8. Mushrooms as a source of substances with antiviral activity

    Directory of Open Access Journals (Sweden)

    Martyna Kandefer-Szerszeń

    2014-08-01

    Full Text Available Water extracts the fructifications of 56 species of fungi were examined as a source of antiviral substances with activity against VS and vaccinia viruses. Extracts from 16 fungal species exhibited the antiviral activity. Water extracts from Boletus edulis active against vaccinia virus and extract from Armillariella mellea active against VS virus are particularly worth nothing. Both of them in applied concentrations were not toxic in chick embryo fibroblasts tissue culture.

  9. Shrimp miR-12 Suppresses White Spot Syndrome Virus Infection by Synchronously Triggering Antiviral Phagocytosis and Apoptosis Pathways

    Science.gov (United States)

    Shu, Le; Zhang, Xiaobo

    2017-01-01

    Growing evidence has indicated that the innate immune system can be regulated by microRNAs (miRNAs). However, the mechanism underlying miRNA-mediated simultaneous activation of multiple immune pathways remains unknown. To address this issue, the role of host miR-12 in shrimp (Marsupenaeus japonicus) antiviral immune responses was characterized in the present study. The results indicated that miR-12 participated in virus infection, host phagocytosis, and apoptosis in defense against white spot syndrome virus invasion. miR-12 could simultaneously trigger phagocytosis, apoptosis, and antiviral immunity through the synchronous downregulation of the expression of shrimp genes [PTEN (phosphatase and tensin homolog) and BI-1(transmembrane BAX inhibitor motif containing 6)] and the viral gene (wsv024). Further analysis showed that miR-12 could synchronously mediate the 5′–3′ exonucleolytic degradation of its target mRNAs, and this degradation terminated in the vicinity of the 3′ untranslated region sequence complementary to the seed sequence of miR-12. Therefore, the present study showed novel aspects of the miRNA-mediated simultaneous regulation of multiple immune pathways. PMID:28824612

  10. Critical role of constitutive type I interferon response in bronchial epithelial cell to influenza infection.

    Directory of Open Access Journals (Sweden)

    Alan C-Y Hsu

    Full Text Available Innate antiviral responses in bronchial epithelial cells (BECs provide the first line of defense against respiratory viral infection and the effectiveness of this response is critically dependent on the type I interferons (IFNs. However the importance of the antiviral responses in BECs during influenza infection is not well understood. We profiled the innate immune response to infection with H3N2 and H5N1 virus using Calu-3 cells and primary BECs to model proximal airway cells. The susceptibility of BECs to influenza infection was not solely dependent on the sialic acid-bearing glycoprotein, and antiviral responses that occurred after viral endocytosis was more important in limiting viral replication. The early antiviral response and apoptosis correlated with the ability to limit viral replication. Both viruses reduced RIG-I associated antiviral responses and subsequent induction of IFN-β. However it was found that there was constitutive release of IFN-β by BECs and this was critical in inducing late antiviral signaling via type I IFN receptors, and was crucial in limiting viral infection. This study characterizes anti-influenza virus responses in airway epithelial cells and shows that constitutive IFN-β release plays a more important role in initiating protective late IFN-stimulated responses during human influenza infection in bronchial epithelial cells.

  11. Pharmacogenetics of hepatitis C: transition from interferon-based therapies to direct-acting antiviral agents

    Directory of Open Access Journals (Sweden)

    Kamal SM

    2014-06-01

    Full Text Available Sanaa M Kamal1,21Department of Medicine, Division of Hepatology, Gastroenterology and Tropical Medicine, Ain Shams Faculty of Medicine, Cairo, Egypt, 2Department of Medicine, Salman Bin Abdul Aziz College of Medicine, Kingdom of Saudi ArabiaAbstract: Hepatitis C virus (HCV has emerged as a major viral pandemic over the past two decades, infecting 170 million individuals, which equates to approximately 3% of the world's population. The prevalence of HCV varies according to geographic region, being highest in developing countries such as Egypt. HCV has a high tendency to induce chronic progressive liver damage in the form of hepatic fibrosis, cirrhosis, or liver cancer. To date, there is no vaccine against HCV infection. Combination therapy comprising PEGylated interferon-alpha and ribavirin has been the standard of care for patients with chronic hepatitis C for more than a decade. However, many patients still do not respond to therapy or develop adverse events. Recently, direct antiviral agents such as protease inhibitors, polymerase inhibitors, or NS5A inhibitors have been used to augment PEGylated interferon and ribavirin, resulting in better efficacy, better tolerance, and a shorter treatment duration. However, most clinical trials have focused on assessing the efficacy and safety of direct antiviral agents in patients with genotype 1, and the response of other HCV genotypes has not been elucidated. Moreover, the prohibitive costs of such triple therapies will limit their use in patients in developing countries where most of the HCV infection exists. Understanding the host and viral factors associated with viral clearance is necessary for individualizing therapy to maximize sustained virologic response rates, prevent progression to liver disease, and increase the overall benefits of therapy with respect to its costs. Genome wide studies have shown significant associations between a set of polymorphisms in the region of the interleukin-28B (IL

  12. Antiviral effect of diammonium glycyrrhizinate on cell infection by porcine parvovirus

    Science.gov (United States)

    Porcine parvovirus (PPV) can cause reproductive failure in swine resulting in economic losses to the industry. Antiviral effects of diammonium glycyrrhizinate (DG) have been reported on several animal viruses; however, to date it has yet to be tested on PPV. In this study, the antiviral activity of ...

  13. SOME ASPECTS OF THE MARKETING STUDIES FOR THE PHARMACEUTICAL MARKET OF ANTIVIRAL DRUGS

    Directory of Open Access Journals (Sweden)

    A. G. Salnikova

    2015-01-01

    Full Text Available Antiviral drugs are widely used in medicinal practice. They suppress the originator and stimulate the protection of an organism. The drugs are used for the treatment of flu and ARVI, herpetic infections, virus hepatitis, HIV-infection. Contemporary pharmaceutical market is represented by a wide range of antiviral drugs. Marketing studies are conducted to develop strategies, used for the enhancement of pharmacy organization activity efficiency. Conduction of the marketing researches of pharmaceutical market is the purpose of this study. We have used State Registry of Drugs, State Record of Drugs, List of vital drugs, questionnaires of pharmaceutical workers during our work. Historical, sociological, mathematical methods, and a method of expert evaluation were used in the paper. As the result of the study we have made the following conclusions. We have studied and generalized the literature data about classification and application of antiviral drugs, marketing, competition. The assortment of antiviral drugs on the pharmaceutical market of the Russian Federation was also studied. We have conducted an analysis for the obtainment of the information about antiviral drugs by pharmaceutical workers. We have determined the competitiveness of antiviral drugs, and on the basis of the research conducted we have submitted an offer for pharmaceutical organizations to form the range of antiviral drugs.

  14. Antiviral activity of some South American medicinal plants.

    Science.gov (United States)

    Abad, M J; Bermejo, P; Sanchez Palomino, S; Chiriboga, X; Carrasco, L

    1999-03-01

    Folk medicinal plants are potential sources of useful therapeutic compounds including some with antiviral activities. Extracts prepared from 10 South American medicinal plants (Baccharis trinervis, Baccharis teindalensis, Eupatorium articulatum, Eupatorium glutinosum, Tagetes pusilla, Neurolaena lobata, Conyza floribunda, Phytolacca bogotensis, Phytolacca rivinoides and Heisteria acuminata) were screened for in vitro antiviral activity against herpes simplex type I (HSV-1), vesicular stomatitis virus (VSV) and poliovirus type 1. The most potent inhibition was observed with an aqueous extract of B. trinervis, which inhibited HSV-1 replication by 100% at 50-200 micrograms/mL, without showing cytotoxic effects. Good activities were also found with the ethanol extract of H. acuminata and the aqueous extract of E. articulatum, which exhibited antiviral effects against both DNA and RNA viruses (HSV-1 and VSV, respectively) at 125-250 micrograms/mL. The aqueous extracts of T. pusilla (100-250 micrograms/mL), B. teindalensis (50-125 micrograms/mL) and E. glutinosum (50-125 micrograms/mL) also inhibited the replication of VSV, but none of the extracts tested had any effect on poliovirus replication.

  15. Antiviral lead compounds from marine sponges

    KAUST Repository

    Sagar, Sunil; Kaur, Mandeep; Minneman, Kenneth P.

    2010-01-01

    ). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due

  16. Antiviral Efficacy and Host Innate Immunity Associated with SB 9200 Treatment in the Woodchuck Model of Chronic Hepatitis B.

    Directory of Open Access Journals (Sweden)

    Kyle E Korolowicz

    Full Text Available SB 9200, an oral prodrug of the dinucleotide SB 9000, is being developed for the treatment of chronic hepatitis B virus (HBV infection and represents a novel class of antivirals. SB 9200 is thought to activate the viral sensor proteins, retinoic acid-inducible gene 1 (RIG-I and nucleotide-binding oligomerization domain-containing protein 2 (NOD2 resulting in interferon (IFN mediated antiviral immune responses in virus-infected cells. Additionally, the binding of SB 9200 to these sensor proteins could also sterically block the ability of the viral polymerase to access pre-genomic RNA for nucleic acid synthesis. The immune stimulating and direct antiviral properties of SB 9200 were evaluated in woodchucks chronically infected with woodchuck hepatitis virus (WHV by daily, oral dosing at 15 and 30 mg/kg for 12 weeks. Prolonged treatment resulted in 2.2 and 3.7 log10 reductions in serum WHV DNA and in 0.5 and 1.6 log10 declines in serum WHV surface antigen from pretreatment level with the lower or higher dose of SB 9200, respectively. SB 9200 treatment also resulted in lower hepatic levels of WHV nucleic acids and antigen and reduced liver inflammation. Following treatment cessation, recrudescence of viral replication was observed but with dose-dependent delays in viral relapse. The antiviral effects were associated with dose-dependent and long-lasting induction of IFN-α, IFN-β and IFN-stimulated genes in blood and liver, which correlated with the prolonged activation of the RIG-I/NOD2 pathway and hepatic presence of elevated RIG-I protein levels. These results suggest that in addition to a direct antiviral activity, SB 9200 induces antiviral immunity during chronic hepadnaviral infection via activation of the viral sensor pathway.

  17. A Critical Subset Model Provides a Conceptual Basis for the High Antiviral Activity of Major HIV Drugs**

    Science.gov (United States)

    Shen, Lin; Rabi, S. Alireza; Sedaghat, Ahmad R.; Shan, Liang; Lai, Jun; Xing, Sifei; Siliciano, Robert F.

    2012-01-01

    Control of HIV-1 replication was first achieved with regimens that included a nonnucleoside reverse transcriptase inhibitor (NNRTI) or a protease inhibitor (PI); however, an explanation for the high antiviral activity of these drugs has been lacking. Indeed, conventional pharmacodynamic measures like IC50 (drug concentration causing 50% inhibition) do not differentiate NNRTIs and PIs from less active nucleoside reverse transcriptase inhibitors (NRTIs). Drug inhibitory potential depends on the slope of the dose-response curve (m), which represents how inhibition increases as a function of increasing drug concentration and is related to the Hill coefficient, a measure of intramolecular cooperativity in ligand binding to a multivalent receptor. Although NNRTIs and PIs bind univalent targets, they unexpectedly exhibit cooperative dose-response curves (m > 1). We show that this cooperative inhibition can be explained by a model in which infectivity requires participation of multiple copies of a drug target in an individual life cycle stage. A critical subset of these target molecules must be in the unbound state. Consistent with experimental observations, this model predicts m > 1 for NNRTIs and PIs and m = 1 in situations where a single drug target/virus mediates a step in the life cycle, as is the case with NRTIs and integrase strand transfer inhibitors. This model was tested experimentally by modulating the number of functional drug targets per virus, and dose-response curves for modulated virus populations fit model predictions. This model explains the high antiviral activity of two drug classes important for successful HIV-1 treatment and defines a characteristic of good targets for antiviral drugs in general, namely, intermolecular cooperativity. PMID:21753122

  18. Antiviral activity of maca (Lepidium meyenii) against human influenza virus.

    Science.gov (United States)

    Del Valle Mendoza, Juana; Pumarola, Tomàs; Gonzales, Libertad Alzamora; Del Valle, Luis J

    2014-09-01

    To investigate antiviral activity of maca to reduce viral load in Madin-Darby canine kidney (MDCK) cells infected with influenza type A and B viruses (Flu-A and Flu-B, respectively). Maca were extracted with methanol (1:2, v/v). The cell viability and toxicity of the extracts were evaluated on MDCK cells using method MTT assay. Antiviral activity of compounds against Flu-A and Flu-B viruses was assayed using a test for determining the inhibition of the cytopathic effect on cell culture and multiplex RT-PCR. The methanol extract of maca showed low cytotoxicity and inhibited influenza-induced cytopathic effect significantly, while viral load was reduced via inhibition of viral growth in MDCK infected cells. Maca contains potent inhibitors of Flu-A and Flu-B with a selectivity index [cytotoxic concentration 50%/IC50] of 157.4 and 110.5, respectively. In vitro assays demonstrated that maca has antiviral activity not only against Flu-A (like most antiviral agents) but also Flu-B viruses, providing remarkable therapeutic benefits. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  19. EVALUATION OF EFFECTIVENESS OF ANTIVIRAL THERAPY FOR CHRONIC HEPATITIS C, CAUSED BY HCV GENOTYPE 6

    Directory of Open Access Journals (Sweden)

    D. A. Lioznov

    2017-01-01

    Full Text Available Objectives: Evaluating the effectiveness of 2 therapeutic schemes for chronic hepatitis C (genotype 6 which combined sofosbuvir and ribavirin, one of them also included pegylated interferon. Materials and methods: The study included 110 patients with chronic hepatitis C (genotype 6, who have undergone antiviral therapy (HTP in Hepatology Clinic inHo Chi Minh City,Vietnamfrom November 2015 to July 2016. 24 patients were treated by Pegylated interferon alfa-2a, ribavirin and sofosbuvir for 12 weeks, 86 patients – by sofosbuvir and ribavirin for 24 weeks. Non-interferon regimen was administered primarily to patients with contraindications to the use of interferon. To monitor the effectiveness of antiviral therapy, quantification of HCV RNA in serum was performed by PCR prior to treatment, at 4th, 12th or 24th week (depending on the observation group from the starting of treatment and at 12th, 24th week after completion of treatment. Results: All patients, who were treated with pegylated interferon, ribavirin and sofosbuvir, completed the full course of treatment and 100% of them are registered with sustained virological response at 12th and 24th week after the end of antiviral therapy (SVR-12 and SVR-24, respectively. In the group of patients, who treated with ribavirin and sofosbuvir, 97,7% of patients completed full course of treatment (SVR-12 was registered in 93% of patients, and SVR-24 – in 91,9% of patients. Of 75 patients without a history of HCC, SVR24 was registered in 74 people (98,7%, of 11 patients with HCC – in 5 patients (45,5%. SVR-24 was registered in 98% of patients with cirrhosis (F4 without HCC. Conclusion: The results can serve as a justification for the use of these schemes of antiviral therapy for special groups of patients and/or conditions when it is impossible to follow the latest recommendations, which will help to expand the access of patients to effective antiviral therapy for chronic hepatitis C.

  20. Potencial antiviral da quercetina sobre o parvovírus canino Antiviral potencial of quercetin in canine parvovirus

    Directory of Open Access Journals (Sweden)

    O.V. Carvalho

    2013-04-01

    Full Text Available Avaliou-se o efeito do flavonoide quercetina na replicação do parvovírus canino in vitro por meio do ensaio de determinação da atividade virucida (ensaio 1, ensaio de determinação da atividade sobre a célula (ensaio 2 e ensaio de tempo de adição das drogas em diferentes etapas do ciclo replicativo viral (ensaio 3. A quercetina apresentou significante atividade antiviral, com valores máximos de redução do título viral de 96,3% no ensaio 1, 90% no ensaio 2 e 90% no ensaio 3. Os efeitos mais expressivos ocorreram nas etapas de adsorção e penetração viral. Os resultados deste trabalho sugerem a importância da quercetina para a medicina veterinária.The in vitro effect of the flavonoid quercetin against canine parvovirus was evaluated. The antiviral activity of quercetin was evaluated by determining the virucidal activity (assay 1, determining the activity on the cell (assay 2 and using the time of addition assay to test the inhibition of the viral replication cycle (assay 3. Quercetin showed a significant antiviral activity, with maximum viral titer reduction of 96.3% in assay 1, 90% in assay 2 and 90% in assay 3. The most expressive effects occurred in the stages of viral adsorption and penetration. The results show the importance of quercetin for veterinary medicine.

  1. Identification of Novel 5,6-Dimethoxyindan-1-one Derivatives as Antiviral Agents.

    Science.gov (United States)

    Patil, Siddappa A; Patil, Vikrant; Patil, Renukadevi; Beaman, Kenneth; Patil, Shivaputra A

    2017-01-01

    Discovery of novel antiviral agents is essential because viral infection continues to threaten human life globally. Various heterocyclic small molecules have been developed as antiviral agents. The 5,6-dimethoxyindan-1-on nucleus is of considerable interest as this ring is the key constituent in a range of bioactive compounds, both naturally occurring and synthetic, and often of considerable complexity. The main purpose of this research was to discover and develop small molecule heterocycles as broad-spectrum of antiviral agents. A focused small set of 5,6-dimethoxyindan-1-one analogs (6-8) along with a thiopene derivative (9) was screened for selected viruses (Vaccinia virus - VACA, Human papillomavirus - HPV, Zika virus - ZIKV, Dengue virus - DENV, Measles virus - MV, Poliovirus 3 - PV, Rift Valley fever virus - RVFV, Tacaribe virus - TCRV, Venezuelan equine encephalitis virus - VEEV, Herpes simplex virus 1 -HSV-1 and Human cytomegalovirus - HCMV) using the National Institute of Allergy and Infectious Diseases (NIAID)'s Division of Microbiology and Infectious Diseases (DMID) antiviral screening program. These molecules demonstrated moderate to excellent antiviral activity towards variety of viruses. The 5,6-dimethoxyindan-1-one analog (7) demonstrated high efficacy towards vaccinia virus (EC50: 30.00 µM) in secondary plaque reduction assay. The thiophene analog (9) has shown very good viral inhibition towards several viruses such as Human papillomavirus, Measles virus, Rift Valley fever virus, Tacaribe virus and Herpes simplex virus 1. Our research identified a novel 5,6-dimethoxyindan-1-one analog (compound 7), as a potent antiviral agent for vaccinia virus, and heterocyclic chalcone analog (compound 9) as a broad spectrum antiviral agent. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Cytotoxic, Virucidal, and Antiviral Activity of South American Plant and Algae Extracts

    Directory of Open Access Journals (Sweden)

    Paula Faral-Tello

    2012-01-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 infection has a prevalence of 70% in the human population. Treatment is based on acyclovir, valacyclovir, and foscarnet, three drugs that share the same mechanism of action and of which resistant strains have been isolated from patients. In this aspect, innovative drug therapies are required. Natural products offer unlimited opportunities for the discovery of antiviral compounds. In this study, 28 extracts corresponding to 24 plant species and 4 alga species were assayed in vitro to detect antiviral activity against HSV-1. Six of the methanolic extracts inactivated viral particles by direct interaction and 14 presented antiviral activity when incubated with cells already infected. Most interesting antiviral activity values obtained are those of Limonium brasiliense, Psidium guajava, and Phyllanthus niruri, which inhibit HSV-1 replication in vitro with 50% effective concentration (EC50 values of 185, 118, and 60 μg/mL, respectively. For these extracts toxicity values were calculated and therefore selectivity indexes (SI obtained. Further characterization of the bioactive components of antiviral plants will pave the way for the discovery of new compounds against HSV-1.

  3. Non-MHC genes influence virus clearance through regulation of the antiviral T-cell response: correlation between virus clearance and Tc and Td activity in segregating backcross progeny

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Marker, O; Thomsen, Allan Randrup

    1994-01-01

    ) was followed by measurement of footpad swelling. Ten days after virus inoculation, the animals were sacrificed and spleen virus titer together with splenic Tc activity was measured. With regard to all three parameters a continuous distribution was observed in this backcross population. However, using cutoff...... values based on parental and F1 animals tested in parallel, 11/30 animals were assigned Tc responders, 23/30 DTH responders and 10/30 cleared virus with maximal efficiency. Comparison of responder status with regard to the different parameters revealed a strong correlation between Tc responsiveness...... and the ability to clear virus. Amongst Tc low responders a correlation between DTH reactivity and virus clearance was observed. Taken together, these results indicate that non-MHC genes affect virus clearance through regulation of the antiviral T-cell response, especially the virus-specific Tc response. However...

  4. Transdermal delivery and cutaneous targeting of antivirals using a penetration enhancer and lysolipid prodrugs.

    Science.gov (United States)

    Diblíková, Denisa; Kopečná, Monika; Školová, Barbora; Krečmerová, Marcela; Roh, Jaroslav; Hrabálek, Alexandr; Vávrová, Kateřina

    2014-04-01

    In this work, we investigate prodrug and enhancer approaches for transdermal and topical delivery of antiviral drugs belonging to the 2,6-diaminopurine acyclic nucleoside phosphonate (ANP) group. Our question was whether we can differentiate between transdermal and topical delivery, i.e., to control the delivery of a given drug towards either systemic absorption or retention in the skin. The in vitro transdermal delivery and skin concentrations of seven antivirals, including (R)- and (S)-9-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine (PMPDAP), (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine ((S)-HPMPDAP), its 8-aza analog, and their cyclic and hexadecyloxypropyl (HDP) prodrugs, was investigated with and without the penetration enhancer dodecyl-6-(dimethylamino)hexanoate (DDAK) using human skin. The ability of ANPs to cross the human skin barrier was very low (0.5-1.4 nmol/cm(2)/h), and the majority of the compounds were found in the stratum corneum, the uppermost skin layer. The combination of antivirals and the penetration enhancer DDAK proved to be a viable approach for transdermal delivery, especially in case of (R)-PMPDAP, an anti-HIV effective drug (30.2 ± 2.3 nmol/cm(2)/h). On the other hand, lysophospholipid-like HDP prodrugs, e.g., HDP-(S)-HPMPDAP, reached high concentrations in viable epidermis without significant systemic absorption. By using penetration enhancers or lysolipid prodrugs, it is possible to effectively target systemic diseases by the transdermal route or to target cutaneous pathologies by topical delivery.

  5. Antiviral therapy: a perspective

    Directory of Open Access Journals (Sweden)

    Shahidi Bonjar AH

    2016-02-01

    Full Text Available Amir Hashem Shahidi Bonjar Clinician Scientist, Institute of Applied Research in Dentistry, Kerman University of Medical Sciences, Kerman, Iran Abstract: This paper discusses extracorporeal removal of viral particles and their antigens from the blood as an auxiliary therapy. This hypothesis has not been reported before. In some chronic blood-borne viral infections, the virus remains systemic and persistent for extended periods of time, with adverse effects that weaken the immune system. Blood titers of virus and its toxins are proportional to the severity of the disease, and their reduction can alleviate symptoms, leading to improved health. Several blood-borne viral infections can be overcome by the young, but are life-threatening in the elderly. It is known that some older people have extreme difficulty tolerating viral infections such as influenza and the common cold. Further, several types of viral infection persist throughout the life of the individual and cannot be eliminated by conventional treatments. Well-known infections of this type include HIV and hepatitis B. In the case of Ebola virus, patients remain infectious as long as their blood contains the virus. According to the present hypothesis, an extracorporeal viral antibody column (EVAC is proposed for elimination or reduction of the blood viral titer when treating blood-borne viral infection. EVAC would selectively trap viral antigens and toxins in the blood into an extracorporeal circuit, while returning detoxified blood back to the patient’s body. It is anticipated that EVAC would reduce mortality caused by blood-borne viral infections in the elderly since reduction of blood virus titers would improve health, leading to improved overall patient performance. Such enhancement would also make conventional therapies even more effective. EVAC could have a lifesaving role in treatment of viral illness, especially those involving lethal viruses such as Ebola, where the patient

  6. Effect of antiviral prophylaxis on influenza outbreaks om aged care facilities in three local health districts in New South Wales, Australia, 2014

    Directory of Open Access Journals (Sweden)

    Tony Merritt

    2016-02-01

    Full Text Available Background: There was a record number (n = 111 of influenza outbreaks in aged care facilities in New South Wales, Australia during 2014. To determine the impact of antiviral prophylaxis recommendations in practice, influenza outbreak data were compared for facilities in which antiviral prophylaxis and treatment were recommended and for those in which antivirals were recommended for treatment only. Methods: Routinely collected outbreak data were extracted from the Notifiable Conditions Information Management System for two Local Health Districts where antiviral prophylaxis was routinely recommended and one Local Health District where antivirals were recommended for treatment but not routinely for prophylaxis. Data collected on residents included counts of influenza-like illness, confirmed influenza, hospitalizations and related deaths. Dates of onset, notification, influenza confirmation and antiviral recommendations were also collected for analysis. The Mann–Whitney U test was used to assess the significance of differences between group medians for key parameters. Results: A total of 41 outbreaks (12 in the prophylaxis group and 29 in the treatment-only group were included in the analysis. There was no significant difference in overall outbreak duration; outbreak duration after notification; or attack, hospitalization or case fatality rates between the two groups. The prophylaxis group had significantly higher cases with influenza-like illness (P = 0.03 and cases recommended antiviral treatment per facility (P = 0.01. Discussion: This study found no significant difference in key outbreak parameters between the two groups. However, further high quality evidence is needed to guide the use of antivirals in responding to influenza outbreaks in aged care facilities.

  7. SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1.

    Science.gov (United States)

    Brown, James R; Conn, Kristen L; Wasson, Peter; Charman, Matthew; Tong, Lily; Grant, Kyle; McFarlane, Steven; Boutell, Chris

    2016-07-01

    Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation. Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against infection. PML

  8. Antiviral treatment for chronic hepatitis C in patients with human immunodeficiency virus

    DEFF Research Database (Denmark)

    Iorio, Alfonso; Marchesini, Emanuela; Awad, Tahany

    2010-01-01

    Antiviral treatment for chronic hepatitis C may be less effective if patients are co-infected with human immunodeficiency virus (HIV).......Antiviral treatment for chronic hepatitis C may be less effective if patients are co-infected with human immunodeficiency virus (HIV)....

  9. Development and evaluation of aerosol delivery of antivirals for the treatment of equine virus induced respiratory infections

    International Nuclear Information System (INIS)

    Martens, J.G.

    1985-01-01

    An aerosol delivery system incorporating the DeVilbiss ultrasonic nebulizer was developed for antiviral chemotherapy of equine viral respiratory infections. The system's delivery capabilities were proven effective by two modes of analysis: (a) a non-destructive, non-invasive radioactive tracer method utilizing a saline solution of DTPA labelled 99mTc and, (b) an invasive-terminal study using fluorescent polystyrene monodispersed latex particles. Particles were efficiently distributed throughout the lung parenchyma with deposition more heavily concentrated in the tracheobronchial region. Amantadine HCl was administered to the lungs of a yearling horse and three yearling Shetland ponies over a single 15-30 minute period with no untoward side effects. Likewise, ribavirin was aerosolized into the respiratory trace of an adult pony and a yearling horse for 15-30 minutes twice a day for three and seven days respectively. Neither the horse nor pony demonstrated signs of clinical illness or other signs of ribavirin toxicity. Attempts to produce a reproducible equine influenza disease model were made. During these studies, the authors were unsuccessful in developing a consistent respiratory disease model. Without this model the efficacy of antiviral compounds cannot be assessed. From the data generated in these studies, the implication of equine influenza viruses as the major single etiological agents responsible for equine respiratory disease is brought into question. Further, the author proposed that equine respiratory disease is a multiple agent-induced disease, which needs extensive investigation

  10. Favipiravir elicits antiviral mutagenesis during virus replication in vivo.

    Science.gov (United States)

    Arias, Armando; Thorne, Lucy; Goodfellow, Ian

    2014-10-21

    Lethal mutagenesis has emerged as a novel potential therapeutic approach to treat viral infections. Several studies have demonstrated that increases in the high mutation rates inherent to RNA viruses lead to viral extinction in cell culture, but evidence during infections in vivo is limited. In this study, we show that the broad-range antiviral nucleoside favipiravir reduces viral load in vivo by exerting antiviral mutagenesis in a mouse model for norovirus infection. Increased mutation frequencies were observed in samples from treated mice and were accompanied with lower or in some cases undetectable levels of infectious virus in faeces and tissues. Viral RNA isolated from treated animals showed reduced infectivity, a feature of populations approaching extinction during antiviral mutagenesis. These results suggest that favipiravir can induce norovirus mutagenesis in vivo, which in some cases leads to virus extinction, providing a proof-of-principle for the use of favipiravir derivatives or mutagenic nucleosides in the clinical treatment of noroviruses.

  11. Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau)

    Science.gov (United States)

    Iberahim, Rashidah; Yaacob, Wan Ahmad; Ibrahim, Nazlina

    2015-09-01

    Goose grass also known as Eleusine indica (EI) is a local medicinal plant that displays antioxidant, antimicrobial and anticancer activities. The present study is to determine the phytochemical constituents, cytotoxicity and antiviral activities for both crude extract and fraction obtained from the plant. The crude extract contained more secondary metabolites compared to the hexane fraction as gauged using standard phytochemical tests. Cytotoxicity screening against Vero cells using MTT assay showed that the CC50 values for crude extract and hexane fraction were 2.07 and 5.62 mg/ml respectively. The antiviral activity towards Herpes Simplex Virus type 1 (HSV-1) was determined using plaque reduction assay. The selective indices (SI = CC50 / EC50) for both methanol extract and hexane fraction were 12.2 and 6.2 respectively. These results demonstrate that the extract prepared from E. indica possesses phytochemical compound that was non cytotoxic to the cell with potential antiviral activity.

  12. De novo characterization of the spleen transcriptome of the large yellow croaker (Pseudosciaena crocea) and analysis of the immune relevant genes and pathways involved in the antiviral response

    KAUST Repository

    Mu, Yinnan

    2014-05-12

    The large yellow croaker (Pseudosciaena crocea) is an economically important marine fish in China. To understand the molecular basis for antiviral defense in this species, we used Illumia paired-end sequencing to characterize the spleen transcriptome of polyriboinosinic:polyribocytidylic acid [poly(I:C)]-induced large yellow croakers. The library produced 56,355,728 reads and assembled into 108,237 contigs. As a result, 15,192 unigenes were found from this transcriptome. Gene ontology analysis showed that 4,759 genes were involved in three major functional categories: biological process, cellular component, and molecular function. We further ascertained that numerous consensus sequences were homologous to known immune-relevant genes. Kyoto Encyclopedia of Genes and Genomes orthology mapping annotated 5,389 unigenes and identified numerous immune-relevant pathways. These immune-relevant genes and pathways revealed major antiviral immunity effectors, including but not limited to: pattern recognition receptors, adaptors and signal transducers, the interferons and interferon-stimulated genes, inflammatory cytokines and receptors, complement components, and B-cell and T-cell antigen activation molecules. Moreover, the partial genes of Toll-like receptor signaling pathway, RIG-I-like receptors signaling pathway, Janus kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway, and T-cell receptor (TCR) signaling pathway were found to be changed after poly(I:C) induction by real-time polymerase chain reaction (PCR) analysis, suggesting that these signaling pathways may be regulated by poly(I:C), a viral mimic. Overall, the antivirus-related genes and signaling pathways that were identified in response to poly(I:C) challenge provide valuable leads for further investigation of the antiviral defense mechanism in the large yellow croaker. © 2014 Mu et al.

  13. De novo characterization of the spleen transcriptome of the large yellow croaker (Pseudosciaena crocea and analysis of the immune relevant genes and pathways involved in the antiviral response.

    Directory of Open Access Journals (Sweden)

    Yinnan Mu

    Full Text Available The large yellow croaker (Pseudosciaena crocea is an economically important marine fish in China. To understand the molecular basis for antiviral defense in this species, we used Illumia paired-end sequencing to characterize the spleen transcriptome of polyriboinosinic:polyribocytidylic acid [poly(I:C]-induced large yellow croakers. The library produced 56,355,728 reads and assembled into 108,237 contigs. As a result, 15,192 unigenes were found from this transcriptome. Gene ontology analysis showed that 4,759 genes were involved in three major functional categories: biological process, cellular component, and molecular function. We further ascertained that numerous consensus sequences were homologous to known immune-relevant genes. Kyoto Encyclopedia of Genes and Genomes orthology mapping annotated 5,389 unigenes and identified numerous immune-relevant pathways. These immune-relevant genes and pathways revealed major antiviral immunity effectors, including but not limited to: pattern recognition receptors, adaptors and signal transducers, the interferons and interferon-stimulated genes, inflammatory cytokines and receptors, complement components, and B-cell and T-cell antigen activation molecules. Moreover, the partial genes of Toll-like receptor signaling pathway, RIG-I-like receptors signaling pathway, Janus kinase-Signal Transducer and Activator of Transcription (JAK-STAT signaling pathway, and T-cell receptor (TCR signaling pathway were found to be changed after poly(I:C induction by real-time polymerase chain reaction (PCR analysis, suggesting that these signaling pathways may be regulated by poly(I:C, a viral mimic. Overall, the antivirus-related genes and signaling pathways that were identified in response to poly(I:C challenge provide valuable leads for further investigation of the antiviral defense mechanism in the large yellow croaker.

  14. De novo characterization of the spleen transcriptome of the large yellow croaker (Pseudosciaena crocea) and analysis of the immune relevant genes and pathways involved in the antiviral response

    KAUST Repository

    Mu, Yinnan; Li, Mingyu; Ding, Feng; Ding, Yang; Ao, Jingqun; Hu, Songnian; Chen, Xinhua

    2014-01-01

    The large yellow croaker (Pseudosciaena crocea) is an economically important marine fish in China. To understand the molecular basis for antiviral defense in this species, we used Illumia paired-end sequencing to characterize the spleen transcriptome of polyriboinosinic:polyribocytidylic acid [poly(I:C)]-induced large yellow croakers. The library produced 56,355,728 reads and assembled into 108,237 contigs. As a result, 15,192 unigenes were found from this transcriptome. Gene ontology analysis showed that 4,759 genes were involved in three major functional categories: biological process, cellular component, and molecular function. We further ascertained that numerous consensus sequences were homologous to known immune-relevant genes. Kyoto Encyclopedia of Genes and Genomes orthology mapping annotated 5,389 unigenes and identified numerous immune-relevant pathways. These immune-relevant genes and pathways revealed major antiviral immunity effectors, including but not limited to: pattern recognition receptors, adaptors and signal transducers, the interferons and interferon-stimulated genes, inflammatory cytokines and receptors, complement components, and B-cell and T-cell antigen activation molecules. Moreover, the partial genes of Toll-like receptor signaling pathway, RIG-I-like receptors signaling pathway, Janus kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway, and T-cell receptor (TCR) signaling pathway were found to be changed after poly(I:C) induction by real-time polymerase chain reaction (PCR) analysis, suggesting that these signaling pathways may be regulated by poly(I:C), a viral mimic. Overall, the antivirus-related genes and signaling pathways that were identified in response to poly(I:C) challenge provide valuable leads for further investigation of the antiviral defense mechanism in the large yellow croaker. © 2014 Mu et al.

  15. Efficacy of Antiviral Drugs against Feline Immunodeficiency Virus

    Directory of Open Access Journals (Sweden)

    Katrin Hartmann

    2015-12-01

    Full Text Available Feline immunodeficiency virus (FIV is one of the most common infectious agents affecting cats worldwide .FIV and human immunodeficiency virus (HIV share many properties: both are lifelong persistent lentiviruses that are similar genetically and morphologically and both viruses propagate in T-lymphocytes, macrophages, and neural cells. Experimentally infected cats have measurable immune suppression, which sometimes progresses to an acquired immunodeficiency syndrome. A transient initial state of infection is followed by a long latent stage with low virus replication and absence of clinical signs. In the terminal stage, both viruses can cause severe immunosuppression. Thus, FIV infection in cats has become an important natural model for studying HIV infection in humans, especially for evaluation of antiviral compounds. Of particular importance for chemotherapeutic studies is the close similarity between the reverse transcriptase (RT of FIV and HIV, which results in high in vitro susceptibility of FIV to many RT-targeted antiviral compounds used in the treatment of HIV-infected patients. Thus, the aim of this article is to provide an up-to-date review of studies on antiviral treatment of FIV, focusing on commercially available compounds for human or animal use.

  16. Strategies for antiviral stockpiling for future influenza pandemics: a global epidemic-economic perspective.

    Science.gov (United States)

    Carrasco, Luis R; Lee, Vernon J; Chen, Mark I; Matchar, David B; Thompson, James P; Cook, Alex R

    2011-09-07

    Influenza pandemics present a global threat owing to their potential mortality and substantial economic impacts. Stockpiling antiviral drugs to manage a pandemic is an effective strategy to offset their negative impacts; however, little is known about the long-term optimal size of the stockpile under uncertainty and the characteristics of different countries. Using an epidemic-economic model we studied the effect on total mortality and costs of antiviral stockpile sizes for Brazil, China, Guatemala, India, Indonesia, New Zealand, Singapore, the UK, the USA and Zimbabwe. In the model, antivirals stockpiling considerably reduced mortality. There was greater potential avoidance of expected costs in the higher resourced countries (e.g. from $55 billion to $27 billion over a 30 year time horizon for the USA) and large avoidance of fatalities in those less resourced (e.g. from 11.4 to 2.3 million in Indonesia). Under perfect allocation, higher resourced countries should aim to store antiviral stockpiles able to cover at least 15 per cent of their population, rising to 25 per cent with 30 per cent misallocation, to minimize fatalities and economic costs. Stockpiling is estimated not to be cost-effective for two-thirds of the world's population under current antivirals pricing. Lower prices and international cooperation are necessary to make the life-saving potential of antivirals cost-effective in resource-limited countries.

  17. Evaluation of in vitro antiviral activity of a brown alga ( Cystoseira ...

    African Journals Online (AJOL)

    The hot water extract of a brown marine alga, Cystoseira myrica, from the Persian Gulf was evaluated as an antiviral compound against KOS strain of HSV-1 in cell culture. The extract exhibited antiviral activity against herpes simplex virus type 1 (HSV-1) not only during absorption of virus to the cells, but also on post ...

  18. Pokeweed Antiviral Protein: Its Cytotoxicity Mechanism and Applications in Plant Disease Resistance

    Directory of Open Access Journals (Sweden)

    Rong Di

    2015-03-01

    Full Text Available Pokeweed antiviral protein (PAP is a 29 kDa type I ribosome inactivating protein (RIP found in pokeweed plants. Pokeweed produces different forms of PAP. This review focuses on the spring form of PAP isolated from Phytolacca americana leaves. PAP exerts its cytotoxicity by removing a specific adenine from the α-sarcin/ricin loop of the large ribosomal RNA. Besides depurination of the rRNA, PAP has additional activities that contribute to its cytotoxicity. The mechanism of PAP cytotoxicity is summarized based on evidence from the analysis of transgenic plants and the yeast model system. PAP was initially found to be anti-viral when it was co-inoculated with plant viruses onto plants. Transgenic plants expressing PAP and non-toxic PAP mutants have displayed broad-spectrum resistance to both viral and fungal infection. The mechanism of PAP-induced disease resistance in transgenic plants is summarized.

  19. Antiviral RNA silencing suppression activity of Tomato spotted wilt virus NSs protein.

    Science.gov (United States)

    Ocampo Ocampo, T; Gabriel Peralta, S M; Bacheller, N; Uiterwaal, S; Knapp, A; Hennen, A; Ochoa-Martinez, D L; Garcia-Ruiz, H

    2016-06-17

    In addition to regulating gene expression, RNA silencing is an essential antiviral defense system in plants. Triggered by double-stranded RNA, silencing results in degradation or translational repression of target transcripts. Viruses are inducers and targets of RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressors that interfere with this process, such as the Tomato spotted wilt virus (TSWV) NSs protein. The mechanism by which NSs suppresses RNA silencing and its role in viral infection and movement remain to be determined. We cloned NSs from the Hawaii isolate of TSWV and using two independent assays show for the first time that this protein restored pathogenicity and supported the formation of local infection foci by suppressor-deficient Turnip mosaic virus and Turnip crinkle virus. Demonstrating the suppression of RNA silencing directed against heterologous viruses establishes the foundation to determine the means used by NSs to block this antiviral process.

  20. Protocatechuic acid (PCA) induced a better antiviral effect by immune enhancement in SPF chickens.

    Science.gov (United States)

    Guo, Yongxia; Zhang, Qiang; Zuo, Zonghui; Chu, Jun; Xiao, Hongzhi; Javed, M Tariq; He, Cheng

    2018-01-01

    Protocatechuic acid (PCA) is an antiviral agent against Avian Influenza virus (AIV) and Infectious Bursal Disease (IBD) virus, but its antiviral mechanism is unknown. In this study, we evaluated the humoral and cellular responses to PCA in specific pathogen-free (SPF) chickens. One hundred forty 35-day-old SPF chickens were randomly divided into 7 groups. The birds were inoculated with the commercial, attenuated Newcastle Disease Virus (NDV) vaccine and then received orally with 10, 20 or 40 mg/kg body weight of PCA for 30 days. Immune organ indexes, anti-Newcastle Disease Virus (NDV) antibodies and lymphocyte proliferation, but not body weight, were significantly increased in chicken treated with 40 mg/kg PCA, compared to the control birds treated with Astragalus polysaccharide (ASP). Survival rate was 70% and 60%, respectively, in the chickens with 40 mg/kg PCA, 20 mg/kg PCA while 50% survival was found in the birds treated with 125 mg/kg ASP. PCA treatment resulted in significantly lower viral load and reduced shedding. These results indicate that PCA may improve poultry health by enhancing both the humoral and cellular immune response. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Tracking TCRβ sequence clonotype expansions during antiviral therapy using high-throughput sequencing of the hypervariable region

    Directory of Open Access Journals (Sweden)

    Mark W Robinson

    2016-04-01

    Full Text Available To maintain a persistent infection viruses such as hepatitis C virus (HCV employ a range of mechanisms that subvert protective T cell responses. The suppression of antigen-specific T cell responses by HCV hinders efforts to profile T cell responses during chronic infection and antiviral therapy. Conventional methods of detecting antigen-specific T cells utilise either antigen stimulation (e.g. ELISpot, proliferation assays, cytokine production or antigen-loaded tetramer staining. This limits the ability to profile T cell responses during chronic infection due to suppressed effector function and the requirement for prior knowledge of antigenic viral peptide sequences. Recently high-throughput sequencing (HTS technologies have been developed for the analysis of T cell repertoires. In the present study we have assessed the feasibility of HTS of the TCRβ complementarity determining region (CDR3 to track T cell expansions in an antigen-independent manner. Using sequential blood samples from HCV-infected individuals undergoing anti-viral therapy we were able to measure the population frequencies of >35,000 TCRβ sequence clonotypes in each individual over the course of 12 weeks. TRBV/TRBJ gene segment usage varied markedly between individuals but remained relatively constant within individuals across the course of therapy. Despite this stable TRBV/TRBJ gene segment usage, a number of TCRβ sequence clonotypes showed dramatic changes in read frequency. These changes could not be linked to therapy outcomes in the present study however the TCRβ CDR3 sequences with the largest fold changes did include sequences with identical TRBV/TRBJ gene segment usage and high joining region homology to previously published CDR3 sequences from HCV-specific T cells targeting the HLA-B*0801-restricted 1395HSKKKCDEL1403 and HLA-A*0101–restricted 1435ATDALMTGY1443 epitopes. The pipeline developed in this proof of concept study provides a platform for the design of

  2. Actinobacteria from Termite Mounds Show Antiviral Activity against Bovine Viral Diarrhea Virus, a Surrogate Model for Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Marina Aiello Padilla

    2015-01-01

    Full Text Available Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV. Two bacterial strains were identified as active, with percentages of inhibition (IP equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection.

  3. Exploiting Genetic Interference for Antiviral Therapy.

    Directory of Open Access Journals (Sweden)

    Elizabeth J Tanner

    2016-05-01

    Full Text Available Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus's inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles-the evolution of drug resistance and targeting therapy to high-risk populations-both of which impede treatment in resource-poor settings.

  4. Antiviral Properties of Caffeic Acid Phenethyl Ester and Its Potential Application

    Directory of Open Access Journals (Sweden)

    Haci Kemal Erdemli

    2015-12-01

    Full Text Available Caffeic acid phenethyl ester (CAPE is found in variety of plants and well known active ingredient of the honeybee propolis. CAPE showed anti-inflammatory, anticarcinogenic, antimitogenic, antiviral and immunomodulatory properties in several studies. The beneficial effects of CAPE on different health issues attracted scientists to make more studies on CAPE. Specifically, the anti-viral effects of CAPE and its molecular mechanisms may reveal the important properties of virus-induced diseases. CAPE and its targets may have important roles to design new therapeutics and understand the molecular mechanisms of virus related diseases. In this mini-review, we summarize the antiviral effects of CAPE under the light of medical and chemical literature. [J Intercult Ethnopharmacol 2015; 4(4.000: 344-347

  5. Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents

    DEFF Research Database (Denmark)

    Xiao, Fei; Fofana, Isabel; Heydmann, Laura

    2014-01-01

    Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies....... In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV...... genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host...

  6. Accessory factors of cytoplasmic viral RNA sensors required for antiviral innate immune response

    Directory of Open Access Journals (Sweden)

    Hiroyuki eOshiumi

    2016-05-01

    Full Text Available Type I interferon (IFN induces many antiviral factors in host cells. RIG-I-like receptors (RLRs are cytoplasmic viral RNA sensors that trigger the signal to induce the innate immune response that includes type I IFN production. RIG-I and MDA5 are RLRs that form nucleoprotein filaments along viral double-stranded RNA, resulting in the activation of MAVS adaptor molecule. The MAVS protein forms a prion-like aggregation structure, leading to type I IFN production. RIG-I and MDA5 undergo post-translational modification. TRIM25 and Riplet ubiquitin ligases deliver a K63-linked polyubiquitin moiety to the RIG-I N-terminal caspase activation and recruitment domains (CARDs and C-terminal region; the polyubiquitin chain then stabilizes the two-CARD tetramer structure required for MAVS assembly. MDA5 activation is regulated by phosphorylation. RIOK3 is a protein kinase that phosphorylates the MDA5 protein in a steady state, and PP1α/γ dephosphorylate this protein, resulting in its activation. RIG-I and MDA5 require cytoplasmic RNA helicases for their efficient activation. LGP2, another RLR, is an RNA helicase involved in RLR signaling. This protein does not possess N-terminal CARDs and thus cannot trigger downstream signaling by itself. Recent studies have revealed that this protein modulates MDA5 filament formation, resulting in enhanced type I IFN production. Several other cytoplasmic RNA helicases are involved in RLR signaling. DDX3, DHX29, DHX36, and DDX60 RNA helicases have been reported to be involved in RLR-mediated type I IFN production after viral infection. However, the underlying mechanism is largely unknown. Future studies are required to reveal the role of RNA helicases in the RLR signaling pathway.

  7. Antiviral Roles of Abscisic Acid in Plants

    Directory of Open Access Journals (Sweden)

    Mazen Alazem

    2017-10-01

    Full Text Available Abscisic acid (ABA is a key hormone involved in tuning responses to several abiotic stresses and also has remarkable impacts on plant defense against various pathogens. The roles of ABA in plant defense against bacteria and fungi are multifaceted, inducing or reducing defense responses depending on its time of action. However, ABA induces different resistance mechanisms to viruses regardless of the induction time. Recent studies have linked ABA to the antiviral silencing pathway, which interferes with virus accumulation, and the micro RNA (miRNA pathway through which ABA affects the maturation and stability of miRNAs. ABA also induces callose deposition at plasmodesmata, a mechanism that limits viral cell-to-cell movement. Bamboo mosaic virus (BaMV is a member of the potexvirus group and is one of the most studied viruses in terms of the effects of ABA on its accumulation and resistance. In this review, we summarize how ABA interferes with the accumulation and movement of BaMV and other viruses. We also highlight aspects of ABA that may have an effect on other types of resistance and that require further investigation.

  8. USE OF HEMATOPOIETIC GROWTH FACTOR IN THE MANAGEMENT OF HEMATOLOGICAL SIDE EFFECTS ASSOCIATED TO ANTIVIRAL TREATMENT FOR HCV HEPATITIS

    Directory of Open Access Journals (Sweden)

    Paola Mancino

    2010-03-01

    Full Text Available Haematological abnormalities are common during combination antiviral therapy for chronic hepatitis C. Although dose reduction or discontinuation can easily treat these side effects, they can adversely affect the efficacy of combination antiviral therapy reducing the likelihood of a sustained viral response (SVR. To avoid potentially diminishing a patient’s chance of response, many physicians have begun using growth factors off-label to manage anaemia and neutropenia in hepatitis C. Haematopoietic growth factors are generally well tolerated and they may be useful for managing haematological side effects of anti-HCV therapy improving patients’ quality of life. To date, the role and benefit of these agents during anti-HCV therapy and their positive impact on SVR have not conclusively determined in the published studies. However, the possibility of a benefit to individual outpatients remains, and an individualized approach is recommended. This review explores the incidence, clinical significance, and management of anaemia, neutropenia and thrombocytopenia associated with combination therapy for HCV infection.

  9. Antiviral activity of an N-allyl acridone against dengue virus

    OpenAIRE

    Mazzucco, María Belén; Talarico, Laura Beatriz; Vatansever, Sezen; Carro, Ana Clara; Fascio, Mirta Liliana; D'Accorso, Norma Beatriz; Garcia, Cybele; Damonte, Elsa Beatriz

    2016-01-01

    Dengue virus (DENV), a member of the family Flaviviridae, is at present the most widespread causative agent of a human viral disease transmitted by mosquitoes. Despite the increasing incidence of this pathogen, there are no antiviral drugs or vaccines currently available for treatment or prevention. In a previous screening assay, we identified a group of N-allyl acridones as effective virus inhibitors. Here, the antiviral activity and mode of action targeted to viral RNA replication of one of...

  10. Development of Small-Molecule Antivirals for Ebola

    Czech Academy of Sciences Publication Activity Database

    Janeba, Zlatko

    2015-01-01

    Roč. 35, č. 6 (2015), s. 1175-1194 ISSN 0198-6325 Institutional support: RVO:61388963 Keywords : antiviral * filovirus * Ebola virus * Marburg virus * hemorrhagic fever Subject RIV: CC - Organic Chemistry Impact factor: 9.135, year: 2015

  11. The Antiviral Effect of Baicalin on Enterovirus 71 In Vitro

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2015-08-01

    Full Text Available Baicalin is a flavonoid compound extracted from Scutellaria roots that has been reported to possess antibacterial, anti-inflammatory, and antiviral activities. However, the antiviral effect of baicalin on enterovirus 71 (EV71 is still unknown. In this study, we found that baicalin showed inhibitory activity on EV71 infection and was independent of direct virucidal or prophylactic effect and inhibitory viral absorption. The expressions of EV71/3D mRNA and polymerase were significantly blocked by baicalin treatment at early stages of EV71 infection. In addition, baicalin could decrease the expressions of FasL and caspase-3, as well as inhibit the apoptosis of EV71-infected human embryonal rhabdomyosarcoma (RD cells. Altogether, these results indicate that baicalin exhibits potent antiviral effect on EV71 infection, probably through inhibiting EV71/3D polymerase expression and Fas/FasL signaling pathways.

  12. The E3 Ubiquitin Ligase TRIM40 Attenuates Antiviral Immune Responses by Targeting MDA5 and RIG-I

    Directory of Open Access Journals (Sweden)

    Chunyuan Zhao

    2017-11-01

    Full Text Available Retinoic acid-inducible gene-I (RIG-I-like receptors (RLRs, including melanoma differentiation-associated gene 5 (MDA5 and RIG-I, are crucial for host recognition of non-self RNAs, especially viral RNA. Thus, the expression and activation of RLRs play fundamental roles in eliminating the invading RNA viruses and maintaining immune homeostasis. However, how RLR expression is tightly regulated remains to be further investigated. In this study, we identified a major histocompatibility complex (MHC-encoded gene, tripartite interaction motif 40 (TRIM40, as a suppressor of RLR signaling by directly targeting MDA5 and RIG-I. TRIM40 binds to MDA5 and RIG-I and promotes their K27- and K48-linked polyubiquitination via its E3 ligase activity, leading to their proteasomal degradation. TRIM40 deficiency enhances RLR-triggered signaling. Consequently, TRIM40 deficiency greatly enhances antiviral immune responses and decreases viral replication in vivo. Thus, we demonstrate that TRIM40 limits RLR-triggered innate activation, suggesting TRIM40 as a potential therapeutic target for the control of viral infection.

  13. Evaluation of the combination effect of different antiviral compounds against HIV in vitro

    DEFF Research Database (Denmark)

    Sørensen, A M; Nielsen, C; Mathiesen, Lars Reinhardt

    1993-01-01

    by combining many evaluated antiviral agents with AZT. We observed a difference in the degree of synergism depending on the evaluated compound; the results indicate that compounds with the same target in the viral replicative cycle (ddI: 2',3'-dideoxyinosine, didanosine; d4T: 2',3'-dideoxy-2......3'-azido-3'deoxythymidine (AZT), a clinically used anti-HIV compound, was evaluated for antiviral effect on HIV infection in combination with other antiviral compounds in vitro. Interactions were evaluated by the median-effect principle and the isobologram technique. Synergistic effect was obtained...... with the adhesion/penetration process of virus (ConA: Concanavalin A; DS: dextran sulfate) were most potent with AZT when used in rather high concentrations. At this moment in the HIV epidemic, these observations suggest that combinations of antiviral compounds should be evaluated in clinical trials, with the major...

  14. Evaluation of the combination effect of different antiviral compounds against HIV in vitro

    DEFF Research Database (Denmark)

    Sørensen, A M; Nielsen, C; Mathiesen, Lars Reinhardt

    1993-01-01

    3'-azido-3'deoxythymidine (AZT), a clinically used anti-HIV compound, was evaluated for antiviral effect on HIV infection in combination with other antiviral compounds in vitro. Interactions were evaluated by the median-effect principle and the isobologram technique. Synergistic effect was obtained...... by combining many evaluated antiviral agents with AZT. We observed a difference in the degree of synergism depending on the evaluated compound; the results indicate that compounds with the same target in the viral replicative cycle (ddI: 2',3'-dideoxyinosine, didanosine; d4T: 2',3'-dideoxy-2...

  15. Species-independent bioassay for sensitive quantification of antiviral type I interferons

    Directory of Open Access Journals (Sweden)

    Penski Nicola

    2010-02-01

    Full Text Available Abstract Background Studies of the host response to infection often require quantitative measurement of the antiviral type I interferons (IFN-α/β in biological samples. The amount of IFN is either determined via its ability to suppress a sensitive indicator virus, by an IFN-responding reporter cell line, or by ELISA. These assays however are either time-consuming and lack convenient readouts, or they are rather insensitive and restricted to IFN from a particular host species. Results An IFN-sensitive, Renilla luciferase-expressing Rift Valley fever virus (RVFV-Ren was generated using reverse genetics. Human, murine and avian cells were tested for their susceptibility to RVFV-Ren after treatment with species-specific IFNs. RVFV-Ren was able to infect cells of all three species, and IFN-mediated inhibition of viral reporter activity occurred in a dose-dependent manner. The sensitivity limit was found to be 1 U/ml IFN, and comparison with a standard curve allowed to determine the activity of an unknown sample. Conclusions RVFV-Ren replicates in cells of several species and is highly sensitive to pre-treatment with IFN. These properties allowed the development of a rapid, sensitive, and species-independent antiviral assay with a convenient luciferase-based readout.

  16. Antiviral activity of Lactobacillus reuteri Protectis against Coxsackievirus A and Enterovirus 71 infection in human skeletal muscle and colon cell lines.

    Science.gov (United States)

    Ang, Lei Yin Emily; Too, Horng Khit Issac; Tan, Eng Lee; Chow, Tak-Kwong Vincent; Shek, Lynette Pei-Chi; Tham, Elizabeth Huiwen; Alonso, Sylvie

    2016-06-24

    Recurrence of hand, foot and mouth disease (HFMD) pandemics continues to threaten public health. Despite increasing awareness and efforts, effective vaccine and drug treatment have yet to be available. Probiotics have gained recognition in the field of healthcare worldwide, and have been extensively prescribed to babies and young children to relieve gastrointestinal (GI) disturbances and diseases, associated or not with microbial infections. Since the faecal-oral axis represents the major route of HFMD transmission, transient persistence of probiotic bacteria in the GI tract may confer some protection against HFMD and limit transmission among children. In this work, the antiviral activity of two commercially available probiotics, namely Lactobacillus reuteri Protectis (L. reuteri Protectis) and Lactobacillus casei Shirota (L. casei Shirota), was assayed against Coxsackieviruses and Enterovirus 71 (EV71), the main agents responsible for HFMD. In vitro infection set-ups using human skeletal muscle and colon cell lines were designed to assess the antiviral effect of the probiotic bacteria during entry and post-entry steps of the infection cycle. Our findings indicate that L. reuteri Protectis displays a significant dose-dependent antiviral activity against Coxsackievirus type A (CA) strain 6 (CA6), CA16 and EV71, but not against Coxsackievirus type B strain 2. Our data support that the antiviral effect is likely achieved through direct physical interaction between bacteria and virus particles, which impairs virus entry into its mammalian host cell. In contrast, no significant antiviral effect was observed with L. casei Shirota. Should the antiviral activity of L. reuteri Protectis observed in vitro be translated in vivo, such probiotics-based therapeutic approach may have the potential to address the urgent need for a safe and effective means to protect against HFMD and limit its transmission among children.

  17. Antiviral activity of exopolysaccharides from Arthrospira platensis against koi herpesvirus.

    Science.gov (United States)

    Reichert, M; Bergmann, S M; Hwang, J; Buchholz, R; Lindenberger, C

    2017-10-01

    Although koi herpesvirus (KHV) has a history of causing severe economic losses in common carp and koi farms, there are still no treatments available on the market. Thus, the aim of this study was to test exopolysaccharides (EPS) for its antiviral activity against KHV, by monitoring inhibition and cytotoxic effects in common carp brain cells. These substances can be easily extracted from extracellular algae supernatant and were identified as groups of sulphated polysaccharides. In order to reach this aim, Arthrospira platensis, which is well known for its antiviral activity of intra- and extracellular compounds towards mammalian herpesviruses, was investigated as standard organism and compared to commercial antiviral drug, ganciclovir, which inhibits the viral DNA polymerization. The antiviral activity of polysaccharides of A. platensis against KHV was confirmed in vitro using qualitative assessment of KHV life cycle genes, and it was found by RT-PCR that EPS, applied at a concentration of >18 μg mL -1 and a multiplicity of infection (MOI) of 0.45 of KHV, suppressed the viral replication in common carp brain (CCB) cells even after 22 days post-infection, entirely. Further, this study presents first data indicating an enormous potential using polysaccharides as an additive for aquacultures to lower or hinder the spread of the KHV and koi herpesvirus disease (KHVD) in future. © 2017 John Wiley & Sons Ltd.

  18. Elimination of immunodominant epitopes from multispecific DNA-based vaccines allows induction of CD8 T cells that have a striking antiviral potential

    DEFF Research Database (Denmark)

    Riedl, Petra; Wieland, Andreas; Lamberth, Kasper

    2009-01-01

    Immunodominance limits the TCR diversity of specific antiviral CD8 T cell responses elicited by vaccination or infection. To prime multispecific T cell responses, we constructed DNA vaccines that coexpress chimeric, multidomain Ags (with CD8 T cell-defined epitopes of the hepatitis B virus (HBV...... cell immunity by multidomain Ags. The "weak" (i.e., easily suppressed) K(b)/C(93-100)-specific CD8 T cell response was efficiently elicited by a HBV core Ag-encoding vector in 1.4HBV-S(mut) tg mice (that harbor a replicating HBV genome that produces HBV surface, core, and precore Ag in the liver). K......(b)/C(93-100)-specific CD8 T cells accumulated in the liver of vaccinated 1.4HBV-S(mut) transgenic mice where they suppressed HBV replication. Subdominant epitopes in vaccines can hence prime specific CD8 T cell immunity in a tolerogenic milieu that delivers specific antiviral effects to HBV...

  19. Antiviral activity of maca (Lepidium meyenii) against human influenza virus

    OpenAIRE

    Del Valle Mendoza, Juana; Pumarola, Tomas; Alzamora Gonzales, Libertad; Valle Mendoza, Luis Javier del

    2014-01-01

    Objective To investigate antiviral activity of maca to reduce viral load in Madin-Darby canine kidney (MDCK) cells infected with influenza type A and B viruses (Flu-A and Flu-B, respectively). Methods Maca were extracted with methanol (1:2, v/v). The cell viability and toxicity of the extracts were evaluated on MDCK cells using method MTT assay. Antiviral activity of compounds against Flu-A and Flu-B viruses was assayed using a test for determining the inhibition of the cytopathic ...

  20. Autoantigen La promotes efficient RNAi, antiviral response, and transposon silencing by facilitating multiple-turnover RISC catalysis.

    Science.gov (United States)

    Liu, Ying; Tan, Huiling; Tian, Hui; Liang, Chunyang; Chen, She; Liu, Qinghua

    2011-11-04

    The effector of RNA interference (RNAi) is the RNA-induced silencing complex (RISC). C3PO promotes the activation of RISC by degrading the Argonaute2 (Ago2)-nicked passenger strand of duplex siRNA. Active RISC is a multiple-turnover enzyme that uses the guide strand of siRNA to direct the Ago2-mediated sequence-specific cleavage of complementary mRNA. How this effector step of RNAi is regulated is currently unknown. Here, we used the human Ago2 minimal RISC system to purify Sjögren's syndrome antigen B (SSB)/autoantigen La as an activator of the RISC-mediated mRNA cleavage activity. Our reconstitution studies showed that La could promote multiple-turnover RISC catalysis by facilitating the release of cleaved mRNA from RISC. Moreover, we demonstrated that La was required for efficient RNAi, antiviral defense, and transposon silencing in vivo. Taken together, the findings of C3PO and La reveal a general concept that regulatory factors are required to remove Ago2-cleaved products to assemble or restore active RISC. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. The aryl hydrocarbon receptor is a modulator of anti-viral immunity

    Science.gov (United States)

    Head, Jennifer L.; Lawrence, B. Paige

    2009-01-01

    Although immune modulation by AhR ligands has been studied for many years, the impact of AhR activation on host defenses against viral infection has not, until recently, garnered much attention. The development of novel reagents and model systems, new information regarding antiviral immunity, and a growing appreciation for the global health threat posed by viruses have invigorated interest in understanding how environmental signals affect susceptibility to and pathological consequences of viral infection. Using influenza A virus as a model of respiratory viral infection, recent studies show that AhR activation cues signaling events in both leukocytes and non-immune cells. Functional alterations include suppressed lymphocyte responses and increased inflammation in the infected lung. AhR-mediated events within and extrinsic to hematopoietic cells has been investigated using bone marrow chimeras, which show that AhR alters different elements of the immune response by affecting different tissue targets. In particular, suppressed CD8+ T cell responses are due to deregulated events within leukocytes themselves, whereas increased neutrophil recruitment to and IFN-γ levels in the lung result from AhR-regulated events extrinsic to bone marrow-derived cells. This latter discovery suggests that epithelial and endothelial cells are overlooked targets of AhR-mediated changes in immune function. Further support that AhR influences host cell responses to viral infection are provided by several studies demonstrating that AhR interacts directly with viral proteins and affects viral latency. While AhR clearly modulates host responses to viral infection, we still have much to understand about the complex interactions between immune cells, viruses, and the host environment. PMID:19027719

  2. Application of Orem self-care theory on injection of interferon antiviral therapy in patients with

    Directory of Open Access Journals (Sweden)

    Xiujuan Tao

    2015-01-01

    Full Text Available Guided by Orem self-care theory, the nursing staff evaluate the injection of interferon antiviral therapy in patients, finding that patients with the presence of self-care was insufficient, so effective nursing care in different periods of application of different nursing system was necessary.

  3. An antiviral RISC isolated from Tobacco rattle virus-infected plants.

    Science.gov (United States)

    Ciomperlik, Jessica J; Omarov, Rustem T; Scholthof, Herman B

    2011-03-30

    The RNAi model predicts that during antiviral defense a RNA-induced silencing complex (RISC) is programmed with viral short-interfering RNAs (siRNAs) to target the cognate viral RNA for degradation. We show that infection of Nicotiana benthamiana with Tobacco rattle virus (TRV) activates an antiviral nuclease that specifically cleaves TRV RNA in vitro. In agreement with known RISC properties, the nuclease activity was inhibited by NaCl and EDTA and stimulated by divalent metal cations; a novel property was its preferential targeting of elongated RNA molecules. Intriguingly, the specificity of the TRV RISC could be reprogrammed by exogenous addition of RNA (containing siRNAs) from plants infected with an unrelated virus, resulting in a newly acquired ability of RISC to target this heterologous genome in vitro. Evidently the virus-specific nuclease complex from N. benthamiana represents a genuine RISC that functions as a readily employable and reprogrammable antiviral defense unit. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. The Antiviral Mechanism of an Influenza A Virus Nucleoprotein-Specific Single-Domain Antibody Fragment

    Energy Technology Data Exchange (ETDEWEB)

    Hanke, Leo; Knockenhauer, Kevin E.; Brewer, R. Camille; van Diest, Eline; Schmidt, Florian I.; Schwartz, Thomas U.; Ploegh, Hidde L. (Whitehead); (MIT)

    2016-12-13

    Alpaca-derived single-domain antibody fragments (VHHs) that target the influenza A virus nucleoprotein (NP) can protect cells from infection when expressed in the cytosol. We found that one such VHH, αNP-VHH1, exhibits antiviral activity similar to that of Mx proteins by blocking nuclear import of incoming viral ribonucleoproteins (vRNPs) and viral transcription and replication in the nucleus. We determined a 3.2-Å crystal structure of αNP-VHH1 in complex with influenza A virus NP. The VHH binds to a nonconserved region on the body domain of NP, which has been associated with binding to host factors and serves as a determinant of host range. Several of the NP/VHH interface residues determine sensitivity of NP to antiviral Mx GTPases. The structure of the NP/αNP-VHH1 complex affords a plausible explanation for the inhibitory properties of the VHH and suggests a rationale for the antiviral properties of Mx proteins. Such knowledge can be leveraged for much-needed novel antiviral strategies.

    IMPORTANCEInfluenza virus strains can rapidly escape from protection afforded by seasonal vaccines or acquire resistance to available drugs. Additional ways to interfere with the virus life cycle are therefore urgently needed. The influenza virus nucleoprotein is one promising target for antiviral interventions. We have previously isolated alpaca-derived single-domain antibody fragments (VHHs) that protect cells from influenza virus infection if expressed intracellularly. We show here that one such VHH exhibits antiviral activities similar to those of proteins of the cellular antiviral defense (Mx proteins). We determined the three-dimensional structure of this VHH in complex with the influenza virus nucleoprotein and identified the interaction site, which overlaps regions that determine sensitivity of the virus to Mx proteins. Our data define a new vulnerability of influenza virus, help us to better understand the cellular antiviral mechanisms, and

  5. Antiviral activity of Aloe vera against herpes simplex virus type 2: An ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... In this study we tested the antiviral activity of a crude hot glycerine extract of Aloe vera gel which was grown in Bushehr (Southwest of Iran) against HSV-2 replication in Vero cell line. The extract showed antiviral activity against HSV-2 not only before attachment and entry of virus to the Vero cells but also.

  6. Biochemical and biophysical characterization of cell-free synthesized Rift Valley fever virus nucleoprotein capsids enables in vitro screening to identify novel antivirals.

    Science.gov (United States)

    Broce, Sean; Hensley, Lisa; Sato, Tomoharu; Lehrer-Graiwer, Joshua; Essrich, Christian; Edwards, Katie J; Pajda, Jacqueline; Davis, Christopher J; Bhadresh, Rami; Hurt, Clarence R; Freeman, Beverly; Lingappa, Vishwanath R; Kelleher, Colm A; Karpuj, Marcela V

    2016-05-14

    Viral capsid assembly involves the oligomerization of the capsid nucleoprotein (NP), which is an essential step in viral replication and may represent a potential antiviral target. An in vitro transcription-translation reaction using a wheat germ (WG) extract in combination with a sandwich ELISA assay has recently been used to identify small molecules with antiviral activity against the rabies virus. Here, we examined the application of this system to viruses with capsids with a different structure, such as the Rift Valley fever virus (RVFV), the etiological agent of a severe emerging infectious disease. The biochemical and immunological characterization of the in vitro-generated RVFV NP assembly products enabled the distinction between intermediately and highly ordered capsid structures. This distinction was used to establish a screening method for the identification of potential antiviral drugs for RVFV countermeasures. These results indicated that this unique analytical system, which combines nucleoprotein oligomerization with the specific immune recognition of a highly ordered capsid structure, can be extended to various viral families and used both to study the early stages of NP assembly and to assist in the identification of potential antiviral drugs in a cost-efficient manner. Reviewed by Jeffry Skolnick and Noah Isakov. For the full reviews please go to the Reviewers' comments section.

  7. The antiviral effect of jiadifenoic acids C against coxsackievirus B3

    Directory of Open Access Journals (Sweden)

    Miao Ge

    2014-08-01

    Full Text Available Coxsackievirus B type 3 (CVB3 is one of the major causative pathogens associated with viral meningitis and myocarditis, which are widespread in the human population and especially prevalent in neonates and children. These infections can result in dilated cardiomyopathy (DCM and other severe clinical complications. There are no vaccines or drugs approved for the prevention or therapy of CVB3-induced diseases. During screening for anti-CVB3 candidates in our previous studies, we found that jiadifenoic acids C exhibited strong antiviral activities against CVB3 as well as other strains of Coxsackie B viruses (CVBs. The present studies were carried out to evaluate the antiviral activities of jiadifenoic acids C. Results showed that jiadifenoic acids C could reduce CVB3 RNA and proteins synthesis in a dose-dependent manner. Jiadifenoic acids C also had a similar antiviral effect on the pleconaril-resistant variant of CVB3. We further examined the impact of jiadifenoic acids C on the synthesis of viral structural and non-structural proteins, finding that jiadifenoic acids C could reduce VP1 and 3D protein production. A time-course study with Vero cells showed that jiadifenoic acids C displayed significant antiviral activities at 0–6 h after CVB3 inoculation, indicating that jiadifenoic acids C functioned at an early step of CVB3 replication. However, jiadifenoic acids C had no prophylactic effect against CVB3. Taken together, we show that jiadifenoic acids C exhibit strong antiviral activities against all strains of CVB, including the pleconaril-resistant variant. Our study could provide a significant lead for anti-CVB3 drug development.

  8. Antiviral activity of Petiveria alliacea against the bovine viral diarrhea virus.

    Science.gov (United States)

    Ruffa, M J; Perusina, M; Alfonso, V; Wagner, M L; Suriano, M; Vicente, C; Campos, R; Cavallaro, L

    2002-07-01

    Natural products are a relevant source of antiviral drugs. Five medicinal plants used in Argentina have been assayed to detect inhibition of viral growth. Antiviral activity of the infusions and methanolic extracts of Aristolochia macroura, Celtis spinosa, Plantago major, Schinus areira, Petiveria alliacea and four extracts obtained from the leaves and stems of the last plant were evaluated by the plaque assay. P. alliacea, unlike A. macroura, C. spinosa, P. major and S. areira, inhibited bovine viral diarrhea virus (BVDV) replication. Neither P. alliacea nor the assays of the other plants were active against herpes simplex virus type 1, poliovirus type 1, adenovirus serotype 7 and vesicular stomatitis virus type 1. Four extracts of P. alliacea were assayed to detect anti-BVDV activity. Ethyl acetate (EC(50) of 25 microg/ml) and dichloromethane (EC(50) of 43 microg/ml) extracts were active; moreover, promising SI (IC(50)/EC(50)) values were obtained. BVDV is highly prevalent in the cattle population, there are no antiviral compounds available; additionally, it is a viral model of the hepatitis C virus. For these reasons and in view of the results obtained, the isolation and characterization of the antiviral components present in the P. alliacea extracts is worth carrying out in the future. Copyright 2002 S. Karger AG, Basel

  9. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs.

    Science.gov (United States)

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F; Lecuit, Marc

    2016-05-12

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents.

  10. La respuesta inmune antiviral

    OpenAIRE

    Sánchez de la Rosa, Rainel; Sánchez de la Rosa, Ernesto; Rodríguez Hernández, Néstor

    1998-01-01

    Se expone que los virus son parásitos intracelulares obligados, puesto que no tienen metabolismo propio; esto obliga al sistema inmune a poner en marcha sus mecanismos más especializados para reconocer y eliminar, tanto a los virus libres, como a las células infectadas. Se señala que las células presentadoras de antígenos, los linfocitos B y los T unidos al complejo mayor de histocompatibilidad, forman parte de la organización de la respuesta inmune antiviral; la inducción de esta respuesta c...

  11. The role of fluoxetine in antiviral therapy for chronic hepatitis C

    OpenAIRE

    QIN Yuan; ZHANG Ying; ZHAO Jieru

    2016-01-01

    More than 20% of chronic hepatitis C (CHC) patients receiving the antiviral therapy with interferonα(IFNα) experience depression, and fluoxetine is often used to alleviate this symptom. Fluoxetine has anti-inflammatory properties and can change the synthesis of liver lipids, but its influence on antiviral therapy for CHC and related mechanism remain unknown. Recent studies show that fluoxetine can inhibit hepatitis C virus (HCV) infection and reduce the production of reactive oxygen species (...

  12. Regulation of the Host Antiviral State by Intercellular Communications

    Directory of Open Access Journals (Sweden)

    Sonia Assil

    2015-08-01

    Full Text Available Viruses usually induce a profound remodeling of host cells, including the usurpation of host machinery to support their replication and production of virions to invade new cells. Nonetheless, recognition of viruses by the host often triggers innate immune signaling, preventing viral spread and modulating the function of immune cells. It conventionally occurs through production of antiviral factors and cytokines by infected cells. Virtually all viruses have evolved mechanisms to blunt such responses. Importantly, it is becoming increasingly recognized that infected cells also transmit signals to regulate innate immunity in uninfected neighboring cells. These alternative pathways are notably mediated by vesicular secretion of various virus- and host-derived products (miRNAs, RNAs, and proteins and non-infectious viral particles. In this review, we focus on these newly-described modes of cell-to-cell communications and their impact on neighboring cell functions. The reception of these signals can have anti- and pro-viral impacts, as well as more complex effects in the host such as oncogenesis and inflammation. Therefore, these “broadcasting” functions, which might be tuned by an arms race involving selective evolution driven by either the host or the virus, constitute novel and original regulations of viral infection, either highly localized or systemic.

  13. From genome to antivirals: SARS as a test tube.

    Science.gov (United States)

    Kliger, Yossef; Levanon, Erez Y; Gerber, Doron

    2005-03-01

    The severe acute respiratory syndrome (SARS) epidemic brought into the spotlight the need for rapid development of effective anti-viral drugs against newly emerging viruses. Researchers have leveraged the 20-year battle against AIDS into a variety of possible treatments for SARS. Most prominently, based solely on viral genome information, silencers of viral genes, viral-enzyme blockers and viral-entry inhibitors were suggested as potential therapeutic agents for SARS. In particular, inhibitors of viral entry, comprising therapeutic peptides, were based on the recently launched anti-HIV drug enfuvirtide. This could represent one of the most direct routes from genome sequencing to the discovery of antiviral drugs.

  14. A general strategy to endow natural fusion-protein-derived peptides with potent antiviral activity.

    Directory of Open Access Journals (Sweden)

    Antonello Pessi

    Full Text Available Fusion between the viral and target cell membranes is an obligatory step for the infectivity of all enveloped virus, and blocking this process is a clinically validated therapeutic strategy.Viral fusion is driven by specialized proteins which, although specific to each virus, act through a common mechanism, the formation of a complex between two heptad repeat (HR regions. The HR regions are initially separated in an intermediate termed "prehairpin", which bridges the viral and cell membranes, and then fold onto each other to form a 6-helical bundle (6HB, driving the two membranes to fuse. HR-derived peptides can inhibit viral infectivity by binding to the prehairpin intermediate and preventing its transition to the 6HB.The antiviral activity of HR-derived peptides differs considerably among enveloped viruses. For weak inhibitors, potency can be increased by peptide engineering strategies, but sequence-specific optimization is time-consuming. In seeking ways to increase potency without changing the native sequence, we previously reported that attachment to the HR peptide of a cholesterol group ("cholesterol-tagging" dramatically increases its antiviral potency, and simultaneously increases its half-life in vivo. We show here that antiviral potency may be increased by combining cholesterol-tagging with dimerization of the HR-derived sequence, using as examples human parainfluenza virus, Nipah virus, and HIV-1. Together, cholesterol-tagging and dimerization may represent strategies to boost HR peptide potency to levels that in some cases may be compatible with in vivo use, possibly contributing to emergency responses to outbreaks of existing or novel viruses.

  15. Evasion of antiviral innate immunity by Theiler's virus L* protein through direct inhibition of RNase L.

    Directory of Open Access Journals (Sweden)

    Frédéric Sorgeloos

    Full Text Available Theiler's virus is a neurotropic picornavirus responsible for chronic infections of the central nervous system. The establishment of a persistent infection and the subsequent demyelinating disease triggered by the virus depend on the expression of L*, a viral accessory protein encoded by an alternative open reading frame of the virus. We discovered that L* potently inhibits the interferon-inducible OAS/RNase L pathway. The antagonism of RNase L by L* was particularly prominent in macrophages where baseline oligoadenylate synthetase (OAS and RNase L expression levels are elevated, but was detectable in fibroblasts after IFN pretreatment. L* mutations significantly affected Theiler's virus replication in primary macrophages derived from wild-type but not from RNase L-deficient mice. L* counteracted the OAS/RNase L pathway through direct interaction with the ankyrin domain of RNase L, resulting in the inhibition of this enzyme. Interestingly, RNase L inhibition was species-specific as Theiler's virus L* protein blocked murine RNase L but not human RNase L or RNase L of other mammals or birds. Direct RNase L inhibition by L* and species specificity were confirmed in an in vitro assay performed with purified proteins. These results demonstrate a novel viral mechanism to elude the antiviral OAS/RNase L pathway. By targeting the effector enzyme of this antiviral pathway, L* potently inhibits RNase L, underscoring the importance of this enzyme in innate immunity against Theiler's virus.

  16. Molecular Characterization, Tissue Distribution and Expression, and Potential Antiviral Effects of TRIM32 in the Common Carp (Cyprinus carpio)

    Science.gov (United States)

    Wang, Yeda; Li, Zeming; Lu, Yuanan; Hu, Guangfu; Lin, Li; Zeng, Lingbing; Zhou, Yong; Liu, Xueqin

    2016-01-01

    Tripartite motif-containing protein 32 (TRIM32) belongs to the tripartite motif (TRIM) family, which consists of a large number of proteins containing a RING (Really Interesting New Gene) domain, one or two B-box domains, and coiled coil motif followed by different C-terminal domains. The TRIM family is known to be implicated in multiple cellular functions, including antiviral activity. However, it is presently unknown whether TRIM32 of common carp (Cyprinus carpio) has the antiviral effect. In this study, the sequence, expression, and antiviral function of TRIM32 homolog from common carp were analyzed. The full-length coding sequence region of trim32 was cloned from common carp. The results showed that the expression of TRIM32 (mRNA) was highest in the brain, remained stably expressed during embryonic development, and significantly increased following spring viraemia of carp virus (SVCV) infection. Transient overexpression of TRIM32 in affected Epithelioma papulosum cyprinid cells led to significant decrease of SVCV production as compared to the control group. These results suggested a potentially important role of common carp TRIM32 in enhancing host immune response during SVCV infection both in vivo and in vitro. PMID:27735853

  17. Interferon-Mediated Regression of Fibrosis During Antiviral Therapy for Chronic Hepatitis C in Different Variants of IL28B Gene Polymorphism

    Directory of Open Access Journals (Sweden)

    D.Ye. Telegin

    2014-02-01

    Full Text Available The article considers the relationship between the degree of reduction of HCV-induced liver fibrosis by the end of antiviral therapy (AVT for chronic hepatitis C (CHC and the main variants of IL28b gene polymorphism. Materials and Methods. Retrospectively we analyzed the outcomes of treatment of 324 patients who received standard antiviral therapy (a combination of pegylated interferons PegIFN-alpha2b or PegIFN-alpha2a and ribavirin for CHC genotype 1b. The total duration of treatment was 12 months. We evaluated three types of virologic response: rapid (RVR, 4th week of AVT, early (EVR, 12th week of AVT and sustained (SVR, 24th week after the AVT. Results and Discussion. All types of detected changes of fibrosis stages by the end of antiviral treatment in comparison with baseline values were distributed into the following groups : 1 — a significant reduction of fibrosis (25 % of treated patients, 2 — moderate decrease in fibrosis (64 % patients, 3 — unchanged degree of fibrosis (7.6 %, increased fibrosis (3.4 %. A comparison of fibrosis dynamics during antiviral therapy was carried out in the two groups of patients: without (N = 110 and with (N = 214 T-allele of the gene IL28b. The most significant decrease in the degree of fibrosis detected among patients with favorable CC gene IL28b variant, because exactly in this group of patients the frequency of SVR was highest. Among those who have reached sustained aviremia, the lowest degree of reduction of fibrosis was found in T-allele carriers of the gene IL28b. Conclusions. The findings suggest that not all patients with CHC who achieved sustained virologic response escape the risks associated with the effects of viral persistence of HCV.

  18. Antiviral activities of streptomycetes against tobacco mosaic virus ...

    African Journals Online (AJOL)

    Mahera Shinwari

    2012-01-26

    Jan 26, 2012 ... Key words: Antiviral activity, tobacco mosaic virus, actinomycetes, Streptomyces, Datura metel ... have received less attention than those caused by fungal .... leaves were divided in to three partitions each containing triplicates.

  19. Recent advances in therapeutic recruitment of mammalian RNAi and bacterial CRISPR-Cas DNA interference pathways as emerging antiviral strategies.

    Science.gov (United States)

    Chin, Wei-Xin; Ang, Swee Kim; Chu, Justin Jang Hann

    2017-01-01

    In invertebrate eukaryotes and prokaryotes, respectively, the RNAi and clustered regularly interspaced short palindromic repeats-CRISPR-associated (CRISPR-Cas) pathways are highly specific and efficient RNA and DNA interference systems, and are well characterised as potent antiviral systems. It has become possible to recruit or reconstitute these pathways in mammalian cells, where they can be directed against desired host or viral targets. The RNAi and CRISPR-Cas systems can therefore yield ideal antiviral therapeutics, capable of specific and efficient viral inhibition with minimal off-target effects, but development of such therapeutics can be slow. This review covers recent advances made towards developing RNAi or CRISPR-Cas strategies for clinical use. These studies address the delivery, toxicity or target design issues that typically plague the in vivo or clinical use of these technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Synthetic RNAs Mimicking Structural Domains in the Foot-and-Mouth Disease Virus Genome Elicit a Broad Innate Immune Response in Porcine Cells Triggered by RIG-I and TLR Activation.

    Science.gov (United States)

    Borrego, Belén; Rodríguez-Pulido, Miguel; Revilla, Concepción; Álvarez, Belén; Sobrino, Francisco; Domínguez, Javier; Sáiz, Margarita

    2015-07-17

    The innate immune system is the first line of defense against viral infections. Exploiting innate responses for antiviral, therapeutic and vaccine adjuvation strategies is being extensively explored. We have previously described, the ability of small in vitro RNA transcripts, mimicking the sequence and structure of different domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome (ncRNAs), to trigger a potent and rapid innate immune response. These synthetic non-infectious molecules have proved to have a broad-range antiviral activity and to enhance the immunogenicity of an FMD inactivated vaccine in mice. Here, we have studied the involvement of pattern-recognition receptors (PRRs) in the ncRNA-induced innate response and analyzed the antiviral and cytokine profiles elicited in swine cultured cells, as well as peripheral blood mononuclear cells (PBMCs).

  1. Current Landscape of Antiviral Drug Discovery [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Wade Blair

    2016-02-01

    Full Text Available Continued discovery and development of new antiviral medications are paramount for global human health, particularly as new pathogens emerge and old ones evolve to evade current therapeutic agents. Great success has been achieved in developing effective therapies to suppress human immunodeficiency virus (HIV and hepatitis B virus (HBV; however, the therapies are not curative and therefore current efforts in HIV and HBV drug discovery are directed toward longer-acting therapies and/or developing new mechanisms of action that could potentially lead to cure, or eradication, of the virus. Recently, exciting early clinical data have been reported for novel antivirals targeting respiratory syncytial virus (RSV and influenza (flu. Preclinical data suggest that these new approaches may be effective in treating high-risk patients afflicted with serious RSV or flu infections. In this review, we highlight new directions in antiviral approaches for HIV, HBV, and acute respiratory virus infections.

  2. [Studies on evaluation of natural products for antiviral effects and their applications].

    Science.gov (United States)

    Hayashi, Toshimitsu

    2008-01-01

    In the search for novel antiviral molecules from natural products, we have discovered various antiviral molecules with characteristic mechanisms of action. Scopadulciol (SDC), isolated from the tropical medicinal plant Scoparia dulcis L., showed stimulatory effects on the antiviral potency of acyclovir (ACV) or ganciclovir (GCV). This effect of SDC was exerted via the activation of viral thymidine kinase (HSV-1 TK) and, as a result, an increase in the cellular concentration of the active form of ACV/GCV, i.e., the triphosphate of ACV or GCV. On the basis of these experimental results, cancer gene therapy using the HSV-1 tk gene and ACV/GCV together with SDC was found to be effective in suppressing the growth of cancer cells in animals. Acidic polysaccharides such as calcium spirulan (Ca-SP) from Spirulina platensis, nostoflan from Nostoc flagelliforme, and a fucoidan from the sporophyll of Undaria pinnatifida (mekabu fucoidan) were also found to be potent inhibitors against several enveloped viruses. Their antiviral potency was dependent on molecular weight and content of the sulfate or carboxyl group as well as counterion species chelating with sulfate groups, indicating the importance of the three-dimensional structure of the molecules. In addition, unlike dextran sulfate, Ca-SP was shown to target not only viral absorption/penetration stages but also some replication stages of progeny viruses after penetration into cells. When mekabu fucoidan or nostoflan was administered with oseltamivir phosphate, their synergistic antiviral effects on influenza A virus were confirmed in vitro as well as in vivo.

  3. Arginine-rich histones have strong antiviral activity for influenza A viruses.

    Science.gov (United States)

    Hoeksema, Marloes; Tripathi, Shweta; White, Mitchell; Qi, Li; Taubenberger, Jeffery; van Eijk, Martin; Haagsman, Henk; Hartshorn, Kevan L

    2015-10-01

    While histones are best known for DNA binding and transcription-regulating properties, they also have antimicrobial activity against a broad range of potentially pathogenic organisms. Histones are abundant in neutrophil extracellular traps, where they play an important role in NET-mediated antimicrobial killing. Here, we show anti-influenza activity of histones against both seasonal H3N2 and H1N1, but not pandemic H1N1. The arginine rich histones, H3 and H4, had greater neutralizing and viral aggregating activity than the lysine rich histones, H2A and H2B. Of all core histones, histone H4 is most potent in neutralizing IAV, and incubation with IAV with histone H4 results in a decrease in uptake and viral replication by epithelial cells when measured by qRT-PCR. The antiviral activity of histone H4 is mediated principally by direct effects on viral particles. Histone H4 binds to IAV as assessed by ELISA and co-sedimentation of H4 with IAV. H4 also induces aggregation, as assessed by confocal microscopy and light transmission assays. Despite strong antiviral activity against the seasonal IAV strains, H4 was inactive against pandemic H1N1. These findings indicate a possible role for histones in the innate immune response against IAV. © The Author(s) 2015.

  4. Tailoring acyclovir prodrugs with enhanced antiviral activity: rational design, synthesis, human plasma stability and in vitro evaluation.

    Science.gov (United States)

    Chayrov, Radoslav L; Stylos, Evgenios K; Chatziathanasiadou, Maria V; Chuchkov, Kiril N; Tencheva, Aleksandra I; Kostagianni, Androniki D; Milkova, Tsenka S; Angelova, Assia L; Galabov, Angel S; Shishkov, Stoyan A; Todorov, Daniel G; Tzakos, Andreas G; Stankova, Ivanka G

    2018-05-19

    Bile acid prodrugs have served as a viable strategy for refining the pharmaceutical profile of parent drugs through utilizing bile acid transporters. A series of three ester prodrugs of the antiherpetic drug acyclovir (ACV) with the bile acids cholic, chenodeoxycholic and deoxycholic were synthesized and evaluated along with valacyclovir for their in vitro antiviral activity against herpes simplex viruses type 1 and type 2 (HSV-1, HSV-2). The in vitro antiviral activity of the three bile acid prodrugs was also evaluated against Epstein-Barr virus (EBV). Plasma stability assays, utilizing ultra-high performance liquid chromatography coupled with tandem mass spectrometry, in vitro cytotoxicity and inhibitory experiments were conducted in order to establish the biological profile of ACV prodrugs. The antiviral assays demonstrated that ACV-cholate had slightly better antiviral activity than ACV against HSV-1, while it presented an eight-fold higher activity with respect to ACV against HSV-2. ACV-chenodeoxycholate presented a six-fold higher antiviral activity against HSV-2 with respect to ACV. Concerning EBV, the highest antiviral effect was demonstrated by ACV-chenodeoxycholate. Human plasma stability assays revealed that ACV-deoxycholate was more stable than the other two prodrugs. These results suggest that decorating the core structure of ACV with bile acids could deliver prodrugs with amplified antiviral activity.

  5. Complementarity-Determining Region 3 Size Spectratypes of T Cell Receptor β Chains in CD8+ T Cells following Antiviral Treatment of Chronic Hepatitis B▿

    Science.gov (United States)

    Ma, Shi-Wu; Li, Yong-Yin; Zhang, Guang-Wen; Huang, Xuan; Sun, Jian; Li, Chris; Abbott, William G. H.; Hou, Jin-Lin

    2011-01-01

    An increased CD8+ T cell response to hepatitis B virus (HBV) peptides occurs between 12 and 24 weeks after starting antiviral therapy for chronic hepatitis B. It is not known whether these cells have antiviral function. The aim of this study was to determine whether clonal expansions of CD8+ T cells at these time points predict the virological response to therapy. Peripheral blood CD8+ T cells were obtained from 20 patients treated with lamivudine or telbivudine for chronic hepatitis B at baseline, 12 weeks, and 24 weeks. The CDR3 spectratype of each T cell receptor (TCR) β chain variable region (Vβ) gene family was analyzed, and the changes in the numbers of Vβ families with clonal expansions were compared in subjects with (n = 12) and without (n = 8) a virological response (52 week HBV DNA < 300 copies/ml). The number of CD8+ TCR Vβ families with clonal expansions at 12 weeks relative to baseline (median [10th to 90th percentile], +2.5 [0 to +7] versus +1 [0 to +2], P = 0.03) and at 24 weeks relative to 12 weeks (+1 [0 to +2] versus −1 [−3 to +4], P = 0.006) was higher in subjects with a virological response versus subjects without a virological response, as were interleukin-2 (IL-2) but not IL-21 mRNA levels in peripheral blood mononuclear cells. The duration of new expansions at 12 weeks was higher (P < 0.0001) in responders. Increased numbers of CD8+ T cell expansions after antiviral therapy are associated with a virological response to treatment. These CD8+ T cells are a potential target for a therapeutic vaccine for chronic hepatitis B. PMID:21098256

  6. Bell's Palsy: Treatment with Steroids and Antiviral Drugs

    Science.gov (United States)

    ... Drooping of a corner of the mouth • Difficulty smiling, frowning, or making other facial expressions • Twitching or ... no definite added improvement. If there is any benefit to adding an antiviral to steroid treatment, it ...

  7. Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer.

    Science.gov (United States)

    Marelli, Giulia; Howells, Anwen; Lemoine, Nicholas R; Wang, Yaohe

    2018-01-01

    Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.

  8. Duox2-induced innate immune responses in the respiratory epithelium and intranasal delivery of Duox2 DNA using polymer that mediates immunization.

    Science.gov (United States)

    Jeon, Yung Jin; Kim, Hyun Jik

    2018-05-01

    Respiratory mucosa especially nasal epithelium is well known as the first-line barrier of air-borne pathogens. High levels of reactive oxygen species (ROS) are detected in in vitro cultured human epithelial cells and in vivo lung. With identification of NADPH oxidase (Nox) system of respiratory epithelium, the antimicrobial role of ROS has been studied. Duox2 is the most abundant Nox isoform and produces the regulated amount of ROS in respiratory epithelium. Duox2-derived ROS are involved in antiviral innate immune responses but more studies are needed to verify the mechanism. In respiratory epithelium, Duox2-derived ROS is critical for recognition of virus through families retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) at the early stage of antiviral innate immune responses. Various secreted interferons (IFNs) play essential roles for antiviral host defense by downstream cell signaling, and transcription of IFN-stimulated genes is started to suppress viral replication. Type I and type III IFNs are verified more responsible for influenza A virus (IAV) infection in respiratory epithelium and Duox2 is required to regulate IFN-related immune responses. Transient overexpression of Duox2 using cationic polymer polyethylenimine (PEI) induces secretion of type I and type III IFNs and significantly attenuated IAV replication in respiratory epithelium. Here, we discuss Duox2-mediated antiviral innate immune responses and the role of Duox2 as a mucosal vaccine to resist respiratory viral infection.

  9. Antiviral Activity of Novel Quinoline Derivatives against Dengue Virus Serotype 2

    Directory of Open Access Journals (Sweden)

    Carolina de la Guardia

    2018-03-01

    Full Text Available Dengue virus causes dengue fever, a debilitating disease with an increasing incidence in many tropical and subtropical territories. So far, there are no effective antivirals licensed to treat this virus. Here we describe the synthesis and antiviral activity evaluation of two compounds based on the quinoline scaffold, which has shown potential for the development of molecules with various biological activities. Two of the tested compounds showed dose-dependent inhibition of dengue virus serotype 2 in the low and sub micromolar range. The compounds 1 and 2 were also able to impair the accumulation of the viral envelope glycoprotein in infected cells, while showing no sign of direct virucidal activity and acting possibly through a mechanism involving the early stages of the infection. The results are congruent with previously reported data showing the potential of quinoline derivatives as a promising scaffold for the development of new antivirals against this important virus.

  10. In Vitro Study of Eight Indonesian Natural Extracts as Antiviral Against Dengue Virus

    Directory of Open Access Journals (Sweden)

    Leli Saptawati

    2017-07-01

    Full Text Available 800x600 Background: Dengue hemorrhagic fever (DHF caused by a dengue viruses is still a major problem in tropical countries, including Indonesia. World Health Organization data showed that over 40% of world population are at risk of DHF.1In 2014 there were 71.668 of DHF cases in 34 provinces with 641 death.2 In Central Java in 2013, the incidence rate and fatality rate of DHF was 45.52 in 100.000 populations and 1.21% respectively.3 Until nowadays, there is no vaccine or effective therapy is available as yet.4 Thus research on discovering specific antiviral against dengue is needed. Indonesia is rich in indigenous herbal plants, which may has potential antiviral activity, such as Psidium guajava (Jambu biji, Euphorbia hirta (Patikn kerbau, Piper bettle L (Sirih, Carica papaya (Pepaya, Curcuma longa L(Kunyit/turmeric, Phyllanthus niruri L (meniran, Andrographis paniculata (Sambiloto, Cymbopogon citrates (Serai. Previous studies show that these plants have antiviral and antibacterial properties.5However, there is only limited study of these plants against dengue virus . Objective: This study aimed to know whether these plants have potential activity against dengue virus in vitro. Method: Leave extracts of eight indigenous herbal plants as mention before were originated from Solo, Central Java, the crude extracts were tested in vitro against dengue virus serotype 2 (DENV-2 strain NGC using Huh7it-1 cell line. Those crude extracts were screened for antiviral activity using doses of 20mg/ml. Candidates that showed inhibition activity were further tested in various doses to determine IC50 and CC50. Result: From eight leave extracts tested, one of them i.e Carica papaya (pepaya inhibited virus replication up to 89,5%. Dose dependent assay with C.papaya resulted in IC50, CC50 and selectivity index 6,57 μg/mL, 244,76 μg/mL and 37, 25 μg/mL respectively. Conclusion: C.papaya has potential antiviral activity against dengue virus in vitro. Further study

  11. Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes

    International Nuclear Information System (INIS)

    Mestankova, Hana; Schirmer, Kristin; Escher, Beate I.; Gunten, Urs von

    2012-01-01

    The antiviral agent oseltamivir acid (OA, the active metabolite of Tamiflu ® ) may occur at high concentrations in wastewater during pandemic influenza events. To eliminate OA and its antiviral activity from wastewater, ozonation and advanced oxidation processes were investigated. For circumneutral pH, kinetic measurements yielded second-order rate constants of 1.7 ± 0.1 × 10 5 and 4.7 ± 0.2 × 10 9 M −1 s −1 for the reaction of OA with ozone and hydroxyl radical, respectively. During the degradation of OA by both oxidants, the antiviral activity of the treated aqueous solutions was measured by inhibition of neuraminidase activity of two different viral strains. A transient, moderate (two-fold) increase in antiviral activity was observed in solutions treated up to a level of 50% OA transformation, while for higher degrees of transformation the activity corresponded to that caused exclusively by OA. OA was efficiently removed by ozonation in a wastewater treatment plant effluent, suggesting that ozonation can be applied to remove OA from wastewater. - Highlights: ► Oseltamivir acid (OA) is oxidized by ozone and hydroxyl radical. ► Kinetics: We determined rate constants for the reaction with these oxidants. ► The specific activity of OA as neuraminidase inhibitor disappeared during oxidation. ► Ozonation and advanced oxidation can effectively remove OA from wastewaters. - Ozone and hydroxyl radical treatment processes can degrade aqueous oseltamivir acid and remove its antiviral activity.

  12. A small effect of adding antiviral agents in treating patients with severe Bell palsy.

    Science.gov (United States)

    van der Veen, Erwin L; Rovers, Maroeska M; de Ru, J Alexander; van der Heijden, Geert J

    2012-03-01

    In this evidence-based case report, the authors studied the following clinical question: What is the effect of adding antiviral agents to corticosteroids in the treatment of patients with severe or complete Bell palsy? The search yielded 250 original research articles. The 6 randomized trials of these that could be used all reported low-quality data for answering the clinical question; apart from apparent flaws, they did not primarily include patients with severe or complete Bell palsy. Complete functional facial nerve recovery was seen in 75% of the patients receiving prednisolone only and in 83% with additional antiviral treatment. The pooled risk difference of 7% (95% confidence interval, -1% to 15%) results in a number needed to treat of 14 (ie, slightly favors adding an antiviral agent). The authors conclude that although a strong recommendation for adding antiviral agents to corticosteroids to further improve the recovery of patients with severe Bell palsy is precluded by the lack of robust evidence, it should be discussed with the patient.

  13. Antiviral Prophylaxis and H1N1

    Centers for Disease Control (CDC) Podcasts

    2011-07-14

    Dr. Richard Pebody, a consultant epidemiologist at the Health Protection Agency in London, UK, discusses the use of antiviral post-exposure prophylaxis and pandemic H1N1.  Created: 7/14/2011 by National Center for Emerging Zoonotic and Infectious Diseases (NCEZID).   Date Released: 7/18/2011.

  14. Quantitative Analysis of a Parasitic Antiviral Strategy

    OpenAIRE

    Kim, Hwijin; Yin, John

    2004-01-01

    We extended a computer simulation of viral intracellular growth to study a parasitic antiviral strategy that diverts the viral replicase toward parasite growth. This strategy inhibited virus growth over a wide range of conditions, while minimizing host cell perturbations. Such parasitic strategies may inhibit the development of drug-resistant virus strains.

  15. Antiviral stockpiles for influenza pandemics from the household perspective: treatment alone versus treatment with prophylaxis.

    Science.gov (United States)

    Kwok, Kin On; Leung, Gabriel M; Mak, Peter; Riley, Steven

    2013-06-01

    Model-based studies of antiviral use to mitigate the impact of moderate and severe influenza pandemics implicitly take the viewpoint of a central public health authority. However, it seems likely that the key decision of when to use antivirals will be made at the household level. We used a stochastic compartmental model of the transmission of influenza within and between households to evaluate the expected mortality under two strategies: households saving available antivirals for treatment only and households implementing prophylaxis as well as treatment. Given that every individual in the population was allocated a single course of antivirals, we investigated the impact of these two strategies for a wide range of AVED, the efficacy of antivirals in preventing death in severe cases (AVED=1 for complete protection). We found a cross-over point for our baseline parameter values in a regime where antivirals were still highly effective in reducing the chance of death: below AVED=0.9 the optimal strategy was for households to use both treatment and prophylaxis. We also considered the possibility that a small number of households might "cheat" by choosing to follow the treatment-only strategy when other households were following treatment with prophylaxis. The cross-over point for cheating households was considerably lower, at AVED=0.6, but substantially above 0. These results suggest that unless antivirals are almost completely effective in reducing the chance of death in serious cases, households will likely be better served implementing prophylaxis as well as treatment. More generally, our study illustrates the potential value of considering viewpoints other than a central authority when conducting model-based analysis of interventions against infectious disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond

    Directory of Open Access Journals (Sweden)

    Mikhail M. Pooggin

    2018-04-01

    Full Text Available Viruses have compact genomes and usually translate more than one protein from polycistronic RNAs using leaky scanning, frameshifting, stop codon suppression or reinitiation mechanisms. Viral (pre-genomic RNAs often contain long 5′-leader sequences with short upstream open reading frames (uORFs and secondary structure elements, which control both translation initiation and replication. In plants, viral RNA and DNA are targeted by RNA interference (RNAi generating small RNAs that silence viral gene expression, while viral proteins are recognized by innate immunity and autophagy that restrict viral infection. In this review we focus on plant pararetroviruses of the family Caulimoviridae and describe the mechanisms of uORF- and secondary structure-driven ribosome shunting, leaky scanning and reinitiation after translation of short and long uORFs. We discuss conservation of these mechanisms in different genera of Caulimoviridae, including host genome-integrated endogenous viral elements, as well as in other viral families, and highlight a multipurpose use of the highly-structured leader sequence of plant pararetroviruses in regulation of translation, splicing, packaging, and reverse transcription of pregenomic RNA (pgRNA, and in evasion of RNAi. Furthermore, we illustrate how targeting of several host factors by a pararetroviral effector protein can lead to transactivation of viral polycistronic translation and concomitant suppression of antiviral defenses. Thus, activation of the plant protein kinase target of rapamycin (TOR by the Cauliflower mosaic virus transactivator/viroplasmin (TAV promotes reinitiation of translation after long ORFs on viral pgRNA and blocks antiviral autophagy and innate immunity responses, while interaction of TAV with the plant RNAi machinery interferes with antiviral silencing.

  17. Design, Synthesis and Antiviral Activity of 5-Hydroxymethyl-3-phosphonyl-4,5-dihydrofuran Analogs of Nucleotides

    International Nuclear Information System (INIS)

    Lee, Hee Yoon; Lee, Ki Ho; Hah, Jung Hwan; Moon, Deuk Kyu; Lee, Chong Kyo

    2010-01-01

    We have designed and synthesized functionalized dihydrofurylphosphonates that are constrained analogs of 1-alkenyl-phosphonate derivatives of purine/pyrimidine nucleotides as they bear phosphonyl groups at the 3-position and bases at the methyl group of the 5-position of the furan ring. This newly designed dihydrofurylphosphonate analogs of nucleotide showed antiviral activity. Through the current synthetic strategy, structural diversification can be easily attainable for structure activity relationship study and for the better antiviral compounds. Phosphonate esters play an important role in studying the biological system as a hydrolytically stable replacement of phosphate groups and as prodrugs of phosphonates. In continuation of our study on the chemistry of 1-alkenylphosphonates, we were interested in designing and developing versatile synthetic routes to conformationally constrained structures of al-kenylphosphonate nucleotide analogs

  18. Generation of antiviral transgenic chicken using spermatogonial ...

    African Journals Online (AJOL)

    This study was conducted in order to generate anti-viral transgenic chickens through transfected spermatogonial stem cell with fusion gene EGFP-MMx. After injecting fusion gene EGFP-MMx into testes, tissues frozen section, polymerase chain reaction (PCR) and dot blot of testes was performed at 30, 40, 50, 60, 70 and 80 ...

  19. IFN regulatory factor 1 restricts hepatitis E virus replication by activating STAT1 to induce antiviral IFN-stimulated genes.

    Science.gov (United States)

    Xu, Lei; Zhou, Xinying; Wang, Wenshi; Wang, Yijin; Yin, Yuebang; Laan, Luc J W van der; Sprengers, Dave; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei

    2016-10-01

    IFN regulatory factor 1 (IRF1) is one of the most important IFN-stimulated genes (ISGs) in cellular antiviral immunity. Although hepatitis E virus (HEV) is a leading cause of acute hepatitis worldwide, how ISGs counteract HEV infection is largely unknown. This study was conducted to investigate the effect of IRF1 on HEV replication. Multiple cell lines were used in 2 models that harbor HEV. In different HEV cell culture systems, IRF1 effectively inhibited HEV replication. IRF1 did not trigger IFN production, and chromatin immunoprecipitation sequencing data analysis revealed that IRF1 bound to the promoter region of signal transducers and activators of transcription 1 (STAT1). Functional assay confirmed that IRF1 could drive the transcription of STAT1, resulting in elevation of total and phosphorylated STAT1 proteins and further activating the transcription of a panel of downstream antiviral ISGs. By pharmacological inhibitors and RNAi-mediated gene-silencing approaches, we revealed that antiviral function of IRF1 is dependent on the JAK-STAT cascade. Furthermore, induction of ISGs and the anti-HEV effect of IRF1 overlapped that of IFNα, but was potentiated by ribavirin. We demonstrated that IRF1 effectively inhibits HEV replication through the activation of the JAK-STAT pathway, and the subsequent transcription of antiviral ISGs, but independent of IFN production.-Xu, L., Zhou, X., Wang, W., Wang, Y., Yin, Y., van der Laan, L. J. W., Sprengers, D., Metselaar, H. J., Peppelenbosch, M. P., Pan, Q. IFN regulatory factor 1 restricts hepatitis E virus replication by activating STAT1 to induce antiviral IFN-stimulated genes. © FASEB.

  20. Atividade antiviral de extratos de plantas medicinais disponíveis comercialmente frente aos herpesvírus suíno e bovino Antiviral activity of commercially available medicinal plants on suid and bovine herpesviruses

    Directory of Open Access Journals (Sweden)

    V.M. Kaziyama

    2012-01-01

    Full Text Available O presente trabalho teve como objetivo pesquisar a atividade antiviral in vitro de plantas medicinais disponíveis comercialmente sobre herpesvírus suíno (SuHV-1 e bovino (BoHV-1. As espécies adquiridas foram Mikania glomerata, Cymbopogon citratus, Equisetum arvense, Peumus boldus, Solanum paniculatum, Malva sylvestris, Piper umbellatun e Solidago microglossa. A citotoxicidade dos extratos foi avaliada na linhagem celular MDBK pelas alterações morfológicas das células e obtenção da concentração máxima não citotóxica (CMNC de cada planta. A atividade antiviral foi realizada com os extratos em suas respectivas CMNC e avaliada com base na redução do título viral e expressos em porcentagem de inibição. Os extratos aquosos de Peumus boldus e Solanum paniculatum apresentaram atividade antiviral sobre o SuHV-1 com 98% de inibição viral enquanto o de Peumus boldus inibiu apenas o BoHV-1 em 99%.This paper aims to find commercially available medicinal plants showing antiviral activity in vitro on suid and bovine herpesviruses. The following species were tested: Mikania glomerata, Cymbopogon citratus, Equisetum arvense, Peumus boldus, Solanum paniculatum, Malva sylvestris, Piper umbellatun and Solidago microglossa. The cytotoxicity was evaluated by morphological changes in cells determining the maximum not cytotoxic concentration (MNCC. The antiviral activity was evaluated by viral title reduction. The extracts from Peumus boldus and Solanum paniculatum showed antiviral activity against SuHV-1 with 98% of inhibition. The extract of Peumus boldus also showed activity against BoHV-1 with 99% of inhibition.

  1. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review.

    Science.gov (United States)

    Akram, Muhammad; Tahir, Imtiaz Mahmood; Shah, Syed Muhammad Ali; Mahmood, Zahed; Altaf, Awais; Ahmad, Khalil; Munir, Naveed; Daniyal, Muhammad; Nasir, Suhaila; Mehboob, Huma

    2018-05-01

    Viral infections are being managed therapeutically through available antiviral regimens with unsatisfactory clinical outcomes. The refractory viral infections resistant to available antiviral drugs are alarming threats and a serious health concern. For viral hepatitis, the interferon and vaccine therapies solely are not ultimate solutions due to recurrence of hepatitis C virus. Owing to the growing incidences of viral infections and especially of resistant viral strains, the available therapeutic modalities need to be improved, complemented with the discovery of novel antiviral agents to combat refractory viral infections. It is widely accepted that medicinal plant heritage is nature gifted, precious, and fueled with the valuable resources for treatment of metabolic and infectious disorders. The aims of this review are to assemble the facts and to conclude the therapeutic potential of medicinal plants in the eradication and management of various viral diseases such as influenza, human immunodeficiency virus (HIV), herpes simplex virus (HSV), hepatitis, and coxsackievirus infections, which have been proven in diverse clinical studies. The articles, published in the English language since 1982 to 2017, were included from Web of Science, Cochrane Library, AMED, CISCOM, EMBASE, MEDLINE, Scopus, and PubMed by using relevant keywords including plants possessing antiviral activity, the antiviral effects of plants, and plants used in viral disorders. The scientific literature mainly focusing on plant extracts and herbal products with therapeutic efficacies against experimental models of influenza, HIV, HSV, hepatitis, and coxsackievirus were included in the study. Pure compounds possessing antiviral activity were excluded, and plants possessing activity against viruses other than viruses in inclusion criteria were excluded. Hundreds of plant extracts with antiviral effect were recognized. However, the data from only 36 families investigated through in vitro and in vivo

  2. In-vitro antiviral efficacy of ribavirin and interferon-alpha against canine distemper virus.

    Science.gov (United States)

    Carvalho, Otávio V; Saraiva, Giuliana L; Ferreira, Caroline G T; Felix, Daniele M; Fietto, Juliana L R; Bressan, Gustavo C; Almeida, Márcia R; Silva Júnior, Abelardo

    2014-10-01

    Canine distemper is a highly contagious disease with high incidence and lethality in the canine population. The objective of this study was to evaluate the efficacy of antiviral action with ribavirin (RBV), interferon-alpha (IFNα), and combinations of RBV and IFNα against canine distemper virus (CDV). Vero cells inoculated with CDV were treated with RBV, IFNα, and combinations of these drugs. The efficacy to inhibit viral replication was evaluated by adding the compounds at different times to determine which step of the viral replicative process was affected. Both drugs were effective against CDV in vitro. The IFNα was the most active compound, with an average IC50 (50% inhibitory concentration) value lower than the IC50 of the RBV. Ribavirin (RBV) was more selective than IFNα, however, and neither drug showed extracellular antiviral activity. The combination of RBV and IFNα exhibited antiviral activity for the intra- and extracellular stages of the replicative cycle of CDV, although the intracellular viral inhibition was higher. Both RBV and IFNα showed high antiviral efficacy against CDV, and furthermore, RBV + IFNα combinations have shown greater interference range in viral infectivity. These compounds could potentially be used to treat clinical disease associated with CDV infection.

  3. Probiotics as Antiviral Agents in Shrimp Aquaculture

    Directory of Open Access Journals (Sweden)

    Bestha Lakshmi

    2013-01-01

    Full Text Available Shrimp farming is an aquaculture business for the cultivation of marine shrimps or prawns for human consumption and is now considered as a major economic and food production sector as it is an increasingly important source of protein available for human consumption. Intensification of shrimp farming had led to the development of a number of diseases, which resulted in the excessive use of antimicrobial agents, which is finally responsible for many adverse effects. Currently, probiotics are chosen as the best alternatives to these antimicrobial agents and they act as natural immune enhancers, which provoke the disease resistance in shrimp farm. Viral diseases stand as the major constraint causing an enormous loss in the production in shrimp farms. Probiotics besides being beneficial bacteria also possess antiviral activity. Exploitation of these probiotics in treatment and prevention of viral diseases in shrimp aquaculture is a novel and efficient method. This review discusses the benefits of probiotics and their criteria for selection in shrimp aquaculture and their role in immune power enhancement towards viral diseases.

  4. Developing antiviral surgical gown using nonwoven fabrics for ...

    African Journals Online (AJOL)

    EB

    Developing antiviral surgical gown using nonwoven fabrics for health care sector. *Parthasarathi V, Thilagavathi G. Department of Fashion Technology, PSG college of Technology, Peelamedu, Coimbatore – 641 004,. India. Abstract. Background: Healthcare workers' uniforms including surgical gowns are used as barriers ...

  5. INVESTMENT IN ANTIVIRAL DRUGS : A REAL OPTIONS APPROACH

    NARCIS (Netherlands)

    Attema, Arthur E.; Lugner, Anna K.; Feenstra, Talitha L.

    2010-01-01

    Real options analysis is a promising approach to model investment under uncertainty. We employ this approach to value stockpiling of antiviral drugs as a precautionary measure against a possible influenza pandemic. Modifications of the real options approach to include risk attitude and deviations

  6. Cytotoxicity and antiviral activities of Asplenium nidus, Phaleria macrocarpa and Eleusine indica

    Science.gov (United States)

    Tahir, Mariya Mohd; Ibrahim, Nazlina; Yaacob, Wan Ahmad

    2014-09-01

    Three local medicinal plants namely Asplenium nidus (langsuyar), Eleusine indica (sambau) and Phaleria macrocarpa (mahkota dewa) were screened for the cytotoxicity and antiviral activities. Six plant extracts were prepared including the aqueous and methanol extracts from A. nidus leaf and root, aqueous extract from dried whole plant of E. indica and methanol extract from P. macrocarpa fruits. Cytotoxicity screening in Vero cell line by MTT assay showed that the CC50 values ranged from 15 to 60 mg/mL thus indicating the safety of the extracts even at high concentrations. Antiviral properties of the plant extracts were determined by plaque reduction assay. The EC50 concentrations were between 3.2 to 47 mg/mL. The selectivity indices (SI = CC50/EC50) of each tested extracts ranged from 4.3 to 63.25 indicating the usefulness of the extracts as potential antiviral agents.

  7. Aciclovir: nuevo antiviral

    Directory of Open Access Journals (Sweden)

    G. Repetto

    2017-05-01

    Full Text Available El aciclovir es un antiviral útil en infecciones graves causadas por el virus varicela-zoster. Es bien tolerado con escasas reacciones adversas. En pacientes deshidratados, en insuficiencia renal o si la infusión endovenosa es muy rápida, puede ocacionar una "nefropatía obstructiva" transitoria. Existen preparados de uso tópico, oftálmico, endovenoso y oral; esta última vía constituye una ventaja sobre la vidarabina con la que tiene en común el espectro de actividad. En razón de su selectividad, riesgo de resistencia y número reducido de antivirales, su prescripción debe restringirse a infecciones graves causadas por los agentes inmunodeprimidos; excluyendo por lo tanto las comunes y autolimitadas, frecuentes en el individuo normal.

  8. Stockpiling anti-viral drugs for a pandemic: the role of Manufacturer Reserve Programs.

    Science.gov (United States)

    Harrington, Joseph E; Hsu, Edbert B

    2010-05-01

    To promote stockpiling of anti-viral drugs by non-government organizations such as hospitals, drug manufacturers have introduced Manufacturer Reserve Programs which, for an annual fee, provide the right to buy in the event of a severe outbreak of influenza. We show that these programs enhance drug manufacturer profits but could either increase or decrease the amount of pre-pandemic stockpiling of anti-viral drugs.

  9. Development and characterization of a model system to study amphibian immune responses to iridoviruses

    International Nuclear Information System (INIS)

    Gantress, Jennifer; Maniero, Gregory D.; Cohen, Nicholas; Robert, Jacques

    2003-01-01

    The recent realization that viruses within the family Iridoviridae may contribute to the worldwide decline in amphibians makes it urgent to understand amphibian antiviral immune defenses. We present evidence that establishes the frog Xenopus laevis as an important model with which to study anti-iridovirus immunity. Adults resist high doses of FV3 infection, showing only transitory signs of pathology. By contrast, naturally MHC class-I-deficient tadpoles are highly susceptible to FV3 infection. Monitoring of viral DNA by PCR indicates a preferential localization of FV3 DNA in the kidney, with the inbred MHC homozygous J strain appearing to be more susceptible. Clearance of virus as measured by detection of FV3 DNA and also the disappearance of pathological and behavioral symptoms of infection, acceleration of viral clearance, and detection of IgY anti-FV3 antibodies after a second injection of FV3 are all consistent with the involvement of both cellular and humoral adaptive antiviral immune responses

  10. A systems biology approach reveals that tissue tropism to West Nile virus is regulated by antiviral genes and innate immune cellular processes.

    Directory of Open Access Journals (Sweden)

    Mehul S Suthar

    2013-02-01

    Full Text Available The actions of the RIG-I like receptor (RLR and type I interferon (IFN signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV. In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen and nonpermissive (liver tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs(-/- × Ifnar(-/- mice revealed the loss of expression of several key components within the natural killer (NK cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs(-/- × Ifnar(-/- infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue

  11. Prolonged influenza virus shedding and emergence of antiviral resistance in immunocompromised patients and ferrets.

    Directory of Open Access Journals (Sweden)

    Erhard van der Vries

    Full Text Available Immunocompromised individuals tend to suffer from influenza longer with more serious complications than otherwise healthy patients. Little is known about the impact of prolonged infection and the efficacy of antiviral therapy in these patients. Among all 189 influenza A virus infected immunocompromised patients admitted to ErasmusMC, 71 were hospitalized, since the start of the 2009 H1N1 pandemic. We identified 11 (15% cases with prolonged 2009 pandemic virus replication (longer than 14 days, despite antiviral therapy. In 5 out of these 11 (45% cases oseltamivir resistant H275Y viruses emerged. Given the inherent difficulties in studying antiviral efficacy in immunocompromised patients, we have infected immunocompromised ferrets with either wild-type, or oseltamivir-resistant (H275Y 2009 pandemic virus. All ferrets showed prolonged virus shedding. In wild-type virus infected animals treated with oseltamivir, H275Y resistant variants emerged within a week after infection. Unexpectedly, oseltamivir therapy still proved to be partially protective in animals infected with resistant virus. Immunocompromised ferrets offer an attractive alternative to study efficacy of novel antiviral therapies.

  12. Triazole nucleoside derivatives bearing aryl functionalities on the nucleobases show antiviral and anticancer activity.

    Science.gov (United States)

    Xia, Yi; Qu, Fanqi; Peng, Ling

    2010-08-01

    Synthetic nucleoside mimics are important candidates in the searing for antiviral and anticancer drugs. Ribavirin, the first antiviral nucleoside drug, is unique in its antiviral activity with mutilple modes of action, which are mainly due to its special triazole heterocycle as nucleobase. Additionally, introducing aromatic functionalities to the nucleobase is able to confer novel mechanisms of action for nucleoside mimics. With the aim to combine the special characteristics of unnatural triazole heterocycles with those of the appended aromatic groups on the nucleobases, novel 1,2,4-triazole nucleoside analogs bearing aromatic moieties were designed and developed. The present short review summarizes the molecular design, chemical synthesis and biological activity of these triazole nucleoside analogs. Indeed, the discovery of antiviral and anticancer activities shown by these triazole nucleosides as well as the new mechanism underlying the biological activity by one of the anticancer leads has validated the rationale for molecular design and impacted us to further explore the concept with the aim of developing structurally novel nucleoside drug candidates with new modes of action.

  13. In vitro antiviral activity of chestnut and quebracho woods extracts against avian reovirus and metapneumovirus.

    Science.gov (United States)

    Lupini, C; Cecchinato, M; Scagliarini, A; Graziani, R; Catelli, E

    2009-12-01

    Field evidences have suggested that a natural extract, containing tannins, could be effective against poultry enteric viral infections. Moreover previous studies have shown that vegetable tannins can have antiviral activity against human viruses. Based on this knowledge three different Chestnut (Castanea spp.) wood extracts and one Quebracho (Schinopsis spp.) wood extract, all containing tannins and currently used in the animal feed industry, were tested for in vitro antiviral activity against avian reovirus (ARV) and avian metapneumovirus (AMPV). The MTT assay was used to evaluate the 50% cytotoxic compounds concentration (CC(50)) on Vero cells. The antiviral properties were tested before and after the adsorption of the viruses to Vero cells. Antiviral activities were expressed as IC(50) (concentration required to inhibit 50% of viral cytopathic effect). CC(50)s of tested compounds were > 200 microg/ml. All compounds had an extracellular antiviral effect against both ARV and AMPV with IC(50) values ranging from 25 to 66 microg/ml. Quebracho extract had also evident intracellular anti-ARV activity (IC(50) 24 microg/ml). These preliminary results suggest that the examined vegetable extracts might be good candidates in the control of some avian virus infections. Nevertheless further in vivo experiments are required to confirm these findings.

  14. Comparative cost-effectiveness of antiviral therapies in patients with chronic hepatitis B: a systematic review of economic evidence.

    Science.gov (United States)

    Sun, Xin; Qin, Wen-Xia; Li, You-Ping; Jiang, Xu-Hua

    2007-09-01

    Economic efficiency of the alternative antiviral therapies for chronic hepatitis B has not been systematically investigated and their quality remains unknown. The aim of the present study was to systematically overview economic evidence of antiviral therapies for chronic hepatitis B. We searched six databases and eight major journals supplemented with screening references of eligible studies. Full economic evaluations comparing alternative antiviral therapies in patients with chronic hepatitis B virus infection were included. Two investigators assessed the study quality and transferability, independently. Data were analyzed qualitatively with adjustment when appropriate. Fourteen studies (six modeling vs eight trials and database analyses) were included. Quality was high in five studies, moderate in one US and five Chinese studies, and low in three Chinese studies. The major problems of quality are costing methods and analysis and the presentation of results. In Australia and Poland, lamivudine-preferred strategies dominated interferon (IFN)-alpha and its related strategy from the health-care sector perspective. In the US, adefovir salvage produced US$8446 per additional quality-adjusted life years (QALY) compared with IFN-alpha. In Spain, the cost of adefovir was US$34,840 for additional virological response. In Taiwan, the use of pegylated IFN-alpha (pegIFN-alpha) produced US$11,711.4 per additional QALY, compared with lamivudine. In China, the incremental cost-effectiveness ratios of combination therapy lamivudine ranged from US$2860 to US$22,160 per additional loss of hepatitis B e antigen (HBeAg), and IFN-alpha versus lamivudine ranged from US$2490 to US$8890 per additional loss of HBeAg. The cost-effectiveness frontiers of treatment alternatives vary and are influenced by the comparators and socioeconomic conditions of countries. Lamivudine-containing therapy is cost-effective when newer antiviral agents (e.g. adefovir/pegIFN-alpha) were not available

  15. Ribavirin: recent insights into antiviral mechanisms of action.

    Science.gov (United States)

    Reyes, G R

    2001-09-01

    Ribavirin, a nucleoside analog, used in combination with interferon-alpha (IFN alpha) results in a substantial improvement in the sustained virologic response in chronic hepatitis C. Identified antiviral mechanisms of action for ribavirin include: (i) inhibition of viral encoded polymerases; (ii) inhibition of genomic RNA capping; and (iii) inhibition of cellular encoded enzymes that control de novo synthesis of purine nucleosides. More recently, ribavirin has been shown to engender a bias toward helper T-cell (CD4+) type 1 (Th1) cytokine responses in models of immunity. Recent detailed analysis has also shown that ribavirin can be utilized and incorporated by the polio viral polymerase into genomic and antigenomic transcripts, and is capable of base pairing with either UMP (uridine monophosphate) or CMP (cytidine monophosphate). This results in ribavirin-mediated mutagenesis of the viral genome and has the potential to push the virus beyond tolerable set points in its mutation rate, leading to an overall reduced fitness of the viral population. Of the many mechanisms of action demonstrated for ribavirin, the current clinical trials of selective inosine 5'-monophosphate dehydrogenase (IMPDH) inhibitors and immunomodulating agents in hepatitis may facilitate our understanding of what activity (if any) predominates when ribavirin is used in combination with IFN alpha.

  16. Arbidol (Umifenovir): A broad-spectrum antiviral drug that inhibits medically important arthropod-borne flaviviruses

    Czech Academy of Sciences Publication Activity Database

    Haviernik, J.; Štefánik, M.; Fojtíková, M.; Kali, S.; Tordo, N.; Rudolf, Ivo; Hubálek, Zdeněk; Eyer, Luděk; Růžek, Daniel

    2018-01-01

    Roč. 10, č. 4 (2018), č. článku 184. ISSN 1999-4915 R&D Projects: GA ČR(CZ) GA16-20054S Institutional support: RVO:68081766 ; RVO:60077344 Keywords : Antiviral activity * Arbidol * Cell-type dependent antiviral effect * Cytotoxicity * Flavivirus * Umifenovir Subject RIV: EE - Microbiology, Virology OBOR OECD: Virology Impact factor: 3.465, year: 2016

  17. Antiviral Efficacy of Verdinexor In Vivo in Two Animal Models of Influenza A Virus Infection

    Science.gov (United States)

    Perwitasari, Olivia; Johnson, Scott; Yan, Xiuzhen; Register, Emery; Crabtree, Jackelyn; Gabbard, Jon; Howerth, Elizabeth; Shacham, Sharon; Carlson, Robert; Tamir, Sharon; Tripp, Ralph A.

    2016-01-01

    Influenza A virus (IAV) causes seasonal epidemics of respiratory illness that can cause mild to severe illness and potentially death. Antiviral drugs are an important countermeasure against IAV; however, drug resistance has developed, thus new therapeutic approaches are being sought. Previously, we demonstrated the antiviral activity of a novel nuclear export inhibitor drug, verdinexor, to reduce influenza replication in vitro and pulmonary virus burden in mice. In this study, in vivo efficacy of verdinexor was further evaluated in two animal models or influenza virus infection, mice and ferrets. In mice, verdinexor was efficacious to limit virus shedding, reduce pulmonary pro-inflammatory cytokine expression, and moderate leukocyte infiltration into the bronchoalveolar space. Similarly, verdinexor-treated ferrets had reduced lung pathology, virus burden, and inflammatory cytokine expression in the nasal wash exudate. These findings support the anti-viral efficacy of verdinexor, and warrant its development as a novel antiviral therapeutic for influenza infection. PMID:27893810

  18. Antiviral Efficacy of Verdinexor In Vivo in Two Animal Models of Influenza A Virus Infection.

    Directory of Open Access Journals (Sweden)

    Olivia Perwitasari

    Full Text Available Influenza A virus (IAV causes seasonal epidemics of respiratory illness that can cause mild to severe illness and potentially death. Antiviral drugs are an important countermeasure against IAV; however, drug resistance has developed, thus new therapeutic approaches are being sought. Previously, we demonstrated the antiviral activity of a novel nuclear export inhibitor drug, verdinexor, to reduce influenza replication in vitro and pulmonary virus burden in mice. In this study, in vivo efficacy of verdinexor was further evaluated in two animal models or influenza virus infection, mice and ferrets. In mice, verdinexor was efficacious to limit virus shedding, reduce pulmonary pro-inflammatory cytokine expression, and moderate leukocyte infiltration into the bronchoalveolar space. Similarly, verdinexor-treated ferrets had reduced lung pathology, virus burden, and inflammatory cytokine expression in the nasal wash exudate. These findings support the anti-viral efficacy of verdinexor, and warrant its development as a novel antiviral therapeutic for influenza infection.

  19. Impact of a new reimbursement program on hepatitis B antiviral medication cost and utilization in Beijing, China.

    Directory of Open Access Journals (Sweden)

    Qian Qiu

    Full Text Available BACKGROUND: Hepatitis B virus (HBV infection is a significant clinical and financial burden for chronic hepatitis B (CHB patients. In Beijing, China, partial reimbursement on antiviral agents was first implemented for the treatment of CHB patients in July 1, 2011. AIMS: In this study, we describe the medical cost and utilization rates of antiviral therapy for CHB patients to explore the impact of the new partial reimbursement policy on the medical care cost, the composition, and antivirals utilization. METHODS: Clinical and claims data of a retrospective cohort of 92,776 outpatients and 2,774 inpatients with non-cirrhotic CHB were retrieved and analyzed from You'an Hospital, Beijing between February 14, 2008 and December 31, 2012. The propensity score matching was used to adjust factors associated with the annual total cost, including age, gender, medical insurance type and treatment indicator. RESULTS: Compared to patients who paid out-of-pocket, medical cost, especially antiviral costs increased greater among patients with medical insurance after July 1, 2011, the start date of reimbursement policy. Outpatients with medical insurance had 16% more antiviral utilization; usage increased 3% among those who paid out-of-pocket after the new partial reimbursement policy was implemented. CONCLUSIONS: Direct medical costs and antiviral utilization rates of CHB patients with medical insurance were higher than those from paid out-of-pocket payments, even after adjusting for inflation and other factors. Thus, a new partial reimbursement program may positively optimize the cost and standardization of antiviral treatment.

  20. Preemptive antiviral therapy with entecavir can reduce acute deterioration of hepatic function following transarterial chemoembolization

    Directory of Open Access Journals (Sweden)

    Sun Hong Yoo

    2016-12-01

    Full Text Available Background/Aims Hepatic damage during transarterial chemoembolization (TACE is a critical complication in patients with hepatitis B virus (HBV-related hepatocellular carcinoma (HCC. Apart from its role in preventing HBV reactivation, there is some evidence for the benefits of preemptive antiviral therapy in TACE. This study evaluated the effect of preemptive antiviral therapy on acute hepatic deterioration following TACE. Methods This retrospective observational study included a prospectively collected cohort of 108 patients with HBV-related HCC who underwent TACE between January 2007 and January 2013. Acute hepatic deterioration following TACE was evaluated. Treatment-related hepatic decompensation was defined as newly developed encephalopathy, ascites, variceal bleeding, elevation of the bilirubin level, prolongation of prothrombin time, or elevation of the Child-Pugh score by ≥2 within 2 weeks following TACE. Univariate and multivariate analyses were conducted to identify factors influencing treatment-related decompensation. Preemptive antiviral therapy involves directing prophylaxis only toward high-risk chronic hepatitis B patients in an attempt to prevent the progression of liver disease. We regarded at least 6 months as a significant duration of preemptive antiviral treatment before diagnosis of HCC. Results Of the 108 patients, 30 (27.8% patients received preemptive antiviral therapy. Treatment-related decompensation was observed in 25 (23.1% patients during the follow-up period. Treatment-related decompensation following TACE was observed more frequently in the nonpreemptive group than in the preemptive group (29.5% vs. 6.7%, P=0.008. In the multivariate analysis, higher serum total bilirubin (Hazard ratio [HR] =3.425, P=0.013, hypoalbuminemia (HR=3.990, P=0.015, and absence of antiviral therapy (HR=7.597, P=0.006 were significantly associated with treatment-related hepatic decompensation. Conclusions Our findings suggest that

  1. Arbidol: a broad-spectrum antiviral that inhibits acute and chronic HCV infection

    Directory of Open Access Journals (Sweden)

    Pécheur Eve-Isabelle

    2006-07-01

    Full Text Available Abstract Arbidol (ARB is an antiviral compound that was originally proven effective for treatment of influenza and several other respiratory viral infections. The broad spectrum of ARB anti-viral activity led us to evaluate its effect on hepatitis C virus (HCV infection and replication in cell culture. Long-term ARB treatment of Huh7 cells chronically replicating a genomic length genotype 1b replicon resulted in sustained reduction of viral RNA and protein expression, and eventually cured HCV infected cells. Pre-treatment of human hepatoma Huh7.5.1 cells with 15 μM ARB for 24 to 48 hours inhibited acute infection with JFH-1 virus by up to 1000-fold. The inhibitory effect of ARB on HCV was not due to generalized cytotoxicity, nor to augmentation of IFN antiviral signaling pathways, but involved impaired virus-mediated membrane fusion. ARB's affinity for membranes may inhibit several aspects of the HCV lifecycle that are membrane-dependent.

  2. Alisporivir Has Limited Antiviral Effects Against Ebola Virus Strains Makona and Mayinga.

    Science.gov (United States)

    Chiramel, Abhilash I; Banadyga, Logan; Dougherty, Jonathan D; Falzarano, Darryl; Martellaro, Cynthia; Brees, Dominique; Taylor, R Travis; Ebihara, Hideki; Best, Sonja M

    2016-10-15

    Antiviral therapeutics with existing clinical safety profiles would be highly desirable in an outbreak situation, such as the 2013-2016 emergence of Ebola virus (EBOV) in West Africa. Although, the World Health Organization declared the end of the outbreak early 2016, sporadic cases of EBOV infection have since been reported. Alisporivir is the most clinically advanced broad-spectrum antiviral that functions by targeting a host protein, cyclophilin A (CypA). A modest antiviral effect of alisporivir against contemporary (Makona) but not historical (Mayinga) EBOV strains was observed in tissue culture. However, this effect was not comparable to observations for an alisporivir-susceptible virus, the flavivirus tick-borne encephalitis virus. Thus, EBOV does not depend on (CypA) for replication, in contrast to many other viruses pathogenic to humans. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Khachatoorian, Ronik, E-mail: RnKhch@ucla.edu [Molecular Biology Interdepartmental Ph.D. Program (MBIDP), Molecular Biology Institute, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); Molecular Biology Institute, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); Arumugaswami, Vaithilingaraja, E-mail: VArumugaswami@mednet.ucla.edu [Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); Department of Surgery, Regenerative Medicine Institute at Cedars-Sinai Medical Center, Los Angeles, California, CA (United States); Raychaudhuri, Santanu, E-mail: SRaychau@ucla.edu [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); Yeh, George K., E-mail: GgYeh@ucla.edu [Molecular Biology Interdepartmental Ph.D. Program (MBIDP), Molecular Biology Institute, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); Molecular Biology Institute, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); Maloney, Eden M., E-mail: EMaloney@ucla.edu [Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California, CA (United States); Wang, Julie, E-mail: JulieW1521@ucla.edu [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); and others

    2012-11-25

    We have previously demonstrated that quercetin, a bioflavonoid, blocks hepatitis C virus (HCV) proliferation by inhibiting NS5A-driven internal ribosomal entry site (IRES)-mediated translation of the viral genome. Here, we investigate the mechanisms of antiviral activity of quercetin and six additional bioflavonoids. We demonstrate that catechin, naringenin, and quercetin possess significant antiviral activity, with no associated cytotoxicity. Infectious virion secretion was not significantly altered by these bioflavonoids. Catechin and naringenin demonstrated stronger inhibition of infectious virion assembly compared to quercetin. Quercetin markedly blocked viral translation whereas catechin and naringenin demonstrated mild activity. Similarly quercetin completely blocked NS5A-augmented IRES-mediated translation in an IRES reporter assay, whereas catechin and naringenin had only a mild effect. Moreover, quercetin differentially inhibited HSP70 induction compared to catechin and naringenin. Thus, the antiviral activity of these bioflavonoids is mediated through different mechanisms. Therefore combination of these bioflavonoids may act synergistically against HCV.

  4. Immunobiotics for the Bovine Host: Their Interaction with Intestinal Epithelial Cells and Their Effect on Antiviral Immunity

    Directory of Open Access Journals (Sweden)

    Julio Villena

    2018-03-01

    Full Text Available The scientific community has reported several cases of microbes that exhibit elevated rates of antibiotic resistance in different regions of the planet. Due to this emergence of antimicrobial resistant microorganisms, the use of antibiotics as promoters of livestock animals’ growth is being banned in most countries around the world. One of the challenges of agricultural immunology therefore is to find alternatives by modulating the immune system of animals in drug-independent safe food production systems. In this regard, in an effort to supplant antibiotics from bovine feeds, several alternatives were proposed including the use of immunomodulatory probiotics (immunobiotics. The purpose of this review is to provide an update of the status of the modulation of intestinal antiviral innate immunity of the bovine host by immunobiotics, and the beneficial impact of immunobiotics on viral infections, focused on intestinal epithelial cells (IECs. The results of our group, which demonstrate the capacity of immunobiotic strains to beneficially modulate Toll-like receptor 3-triggered immune responses in bovine IECs and improve the resistance to viral infections, are highlighted. This review provides comprehensive information on the innate immune response of bovine IECs against virus, which can be further investigated for the development of strategies aimed to improve defenses in the bovine host.

  5. A Newly Emergent Turkey Arthritis Reovirus Shows Dominant Enteric Tropism and Induces Significantly Elevated Innate Antiviral and T Helper-1 Cytokine Responses.

    Directory of Open Access Journals (Sweden)

    Tamer A Sharafeldin

    Full Text Available Newly emergent turkey arthritis reoviruses (TARV were isolated from tendons of lame 15-week-old tom turkeys that occasionally had ruptured leg tendons. Experimentally, these TARVs induced remarkable tenosynovitis in gastrocnemius tendons of turkey poults. The current study aimed to characterize the location and the extent of virus replication as well as the cytokine response induced by TARV during the first two weeks of infection. One-week-old male turkeys were inoculated orally with TARV (O'Neil strain. Copy numbers of viral genes were estimated in intestines, internal organs and tendons at ½, 1, 2, 3, 4, 7, 14 days Post inoculation (dpi. Cytokine profile was measured in intestines, spleen and leg tendons at 0, 4, 7 and 14 dpi. Viral copy number peaked in jejunum, cecum and bursa of Fabricius at 4 dpi. Copy numbers increased dramatically in leg tendons at 7 and 14 dpi while minimal copies were detected in internal organs and blood during the same period. Virus was detected in cloacal swabs at 1-2 dpi, and peaked at 14 dpi indicating enterotropism of the virus and its early shedding in feces. Elevation of IFN-α and IFN-β was observed in intestines at 7 dpi as well as a prominent T helper-1 response (IFN-γ at 7 and 14 dpi. IFN-γ and IL-6 were elevated in gastrocnemius tendons at 14 dpi. Elevation of antiviral cytokines in intestines occurred at 7dpi when a significant decline of viral replication in intestines was observed. T helper-1 response in intestines and leg tendons was the dominant T-helper response. These results suggest the possible correlation between viral replication and cytokine response in early infection of TARV in turkeys. Our findings provide novel insights which help elucidate viral pathogenesis in turkey tendons infected with TARV.

  6. Antiviral Activity of Peanut (Arachis hypogaea L.) Skin Extract Against Human Influenza Viruses.

    Science.gov (United States)

    Makau, Juliann Nzembi; Watanabe, Ken; Mohammed, Magdy M D; Nishida, Noriyuki

    2018-05-30

    The high propensity of influenza viruses to develop resistance to antiviral drugs necessitates the continuing search for new therapeutics. Peanut skins, which are low-value byproducts of the peanut industry, are known to contain high levels of polyphenols. In this study, we investigated the antiviral activity of ethanol extracts of peanut skins against various influenza viruses using cell-based assays. Extracts with a higher polyphenol content exhibited higher antiviral activities, suggesting that the active components are the polyphenols. An extract prepared from roasted peanut skins effectively inhibited the replication of influenza virus A/WSN/33 with a half maximal inhibitory concentration of 1.3 μg/mL. Plaque assay results suggested that the extract inhibits the early replication stages of the influenza virus. It demonstrated activity against both influenza type A and type B viruses. Notably, the extract exhibited a potent activity against a clinical isolate of the 2009 H1N1 pandemic, which had reduced sensitivity to oseltamivir. Moreover, a combination of peanut skin extract with the anti-influenza drugs, oseltamivir and amantadine, synergistically increased their antiviral activity. These data demonstrate the potential application of peanut skin extract in the development of new therapeutic options for influenza management.

  7. Phytochemical screening, cytotoxicity and antiviral activity of hexane fraction of Phaleria macrocarpa fruits

    Science.gov (United States)

    Ismaeel, Mahmud Yusef Yusef; Yaacob, Wan Ahmad; Tahir, Mariya Mohd.; Ibrahim, Nazlina

    2015-09-01

    Phaleria macrocarpa fruits have been widely used in the traditional medicine for the treatment of several infections. The current study was done to determine the phytochemical content, cytotoxicity and antiviral activity of the hexane fraction (HF) of P. macrocarpa fruits. In the hexane fraction of P. macarocarpa fruits, phytochemical screening showed the presence of terpenoids whereas saponins, alkaloids, tannins and anthraquinones were not present. Evaluation on Vero cell lines by using MTT assay showed that the 50% cytotoxic concentration (CC50) value was 0.48 mg/mL indicating that the fraction is not cytotoxic. Antiviral properties of the plant extracts were determined by plaque reduction assay. The effective concentration (EC50) was 0.18 mg/mL. Whereas the selective index (SI = CC50/EC50) of hexane fraction is 2.6 indicating low to moderate potential as antiviral agent.

  8. DMPD: TLR3 in antiviral immunity: key player or bystander? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16027039 TLR3 in antiviral immunity: key player or bystander? Schroder M, Bowie AG.... Trends Immunol. 2005 Sep;26(9):462-8. (.png) (.svg) (.html) (.csml) Show TLR3 in antiviral immunity: key player... or bystander? PubmedID 16027039 Title TLR3 in antiviral immunity: key player or bystander? Authors Schr... File (.png) SVG File (.svg) HTML File (.html) CSML File (.csml) Open .csml file with CIOPlayer Open .csml file with CIOPlayer... - ※CIO Playerのご利用上の注意 Open .csml file with CIO Open .csml file with CIO - ※CIOのご利用上の注意 ...

  9. Temperature influences the expression profiling of immune response genes in rainbow trout following DNA vaccination and VHS virus infection

    DEFF Research Database (Denmark)

    Einer-Jensen, Katja; Gautier, Laurent; Rasmussen, Jesper Skou

    balancing mechanism of the immune system. An experimental VHSV challenge was performed 7 weeks pv. Similar protection levels of approximately 10% mortality were found for the vaccinated fish, regardless of temperature during immunisation and challenge, whereas the course and level of mortality among...... an early unspecific antiviral response as well as a long-lasting specific protection. However, temperature appears to influence immune response with respect to the nature and duration of the protective mechanisms. In this study, groups of fish were temperature acclimated, vaccinated and challenged at three...... different temperatures (5, 10 and 15ºC). Tissue and organ samples were collected at numerous time points post vaccination (pv) and post viral challenge (pch). Then, gene expression levels of a two immune genes (Vig-1 and Mx3) involved in unspecific antiviral response mechanisms were determined by Q...

  10. Trappin-2/elafin modulate innate immune responses of human endometrial epithelial cells to PolyI:C.

    Directory of Open Access Journals (Sweden)

    Anna G Drannik

    Full Text Available BACKGROUND: Upon viral recognition, innate and adaptive antiviral immune responses are initiated by genital epithelial cells (ECs to eradicate or contain viral infection. Such responses, however, are often accompanied by inflammation that contributes to acquisition and progression of sexually transmitted infections (STIs. Hence, interventions/factors enhancing antiviral protection while reducing inflammation may prove beneficial in controlling the spread of STIs. Serine antiprotease trappin-2 (Tr and its cleaved form, elafin (E, are alarm antimicrobials secreted by multiple cells, including genital epithelia. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated whether and how each Tr and E (Tr/E contribute to antiviral defenses against a synthetic mimic of viral dsRNA, polyinosine-polycytidylic acid (polyI:C and vesicular stomatitis virus. We show that delivery of a replication-deficient adenovector expressing Tr gene (Ad/Tr to human endometrial epithelial cells, HEC-1A, resulted in secretion of functional Tr, whereas both Tr/E were detected in response to polyI:C. Moreover, Tr/E were found to significantly reduce viral replication by either acting directly on virus or through enhancing polyI:C-driven antiviral protection. The latter was associated with reduced levels of pro-inflammatory factors IL-8, IL-6, TNFα, lowered expression of RIG-I, MDA5 and attenuated NF-κB activation. Interestingly, enhanced polyI:C-driven antiviral protection of HEC-Ad/Tr cells was partially mediated through IRF3 activation, but not associated with higher induction of IFNβ, suggesting multiple antiviral mechanisms of Tr/E and the involvement of alternative factors or pathways. CONCLUSIONS AND SIGNIFICANCE: This is the first evidence of both Tr/E altering viral binding/entry, innate recognition and mounting of antiviral and inflammatory responses in genital ECs that could have significant implications for homeostasis of the female genital tract.

  11. Inkjet printing of antiviral PCL nanoparticles and anticancer cyclodextrin inclusion complexes on bioadhesive film for cervical administration.

    Science.gov (United States)

    Varan, Cem; Wickström, Henrika; Sandler, Niklas; Aktaş, Yeşim; Bilensoy, Erem

    2017-10-15

    Personalized medicine is an important treatment approach for diseases like cancer with high intrasubject variability. In this framework, printing is one of the most promising methods since it permits dose and geometry adjustment of the final product. With this study, a combination product consisting of anticancer (paclitaxel) and antiviral (cidofovir) drugs was manufactured by inkjet printing onto adhesive film for local treatment of cervical cancers as a result of HPV infection. Furthermore, solubility problem of paclitaxel was overcome by maintaining this poorly soluble drug in a cyclodextrin inclusion complex and release of cidofovir was controlled by encapsulation in polycaprolactone nanoparticles. In vitro characterization studies of printed film formulations were performed and cell culture studies showed that drug loaded film formulation was effective on human cervical adenocarcinoma cells. Our study suggests that inkjet printing technology can be utilized in the development of antiviral/anticancer combination dosage forms for mucosal application. The drug amount in the delivery system can be accurately controlled and modified. Moreover, prolonged drug release time can be obtained. Printing of anticancer and antiviral drugs on film seem to be a potential approach for HPV-related cervical cancer treatment and a good candidate for further studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. In vitro characterization of the antiviral activity of fucoidan from Cladosiphon okamuranus against Newcastle Disease Virus

    Directory of Open Access Journals (Sweden)

    Elizondo-Gonzalez Regina

    2012-12-01

    Full Text Available Abstract Background Newcastle Disease Virus (NDV causes a serious infectious disease in birds that results in severe losses in the worldwide poultry industry. Despite vaccination, NDV outbreaks have increased the necessity of alternative prevention and control measures. Several recent studies focused on antiviral compounds obtained from natural resources. Many extracts from marine organisms have been isolated and tested for pharmacological purposes, and their antiviral activity has been demonstrated in vitro and in vivo. Fucoidan is a sulfated polysaccharide present in the cell wall matrix of brown algae that has been demonstrated to inhibit certain enveloped viruses with low toxicity. This study evaluated the potential antiviral activity and the mechanism of action of fucoidan from Cladosiphon okamuranus against NDV in the Vero cell line. Methods The cytotoxicity of fucoidan was determined by the MTT assay. To study its antiviral activity, fusion and plaque-forming unit (PFU inhibition assays were conducted. The mechanism of action was determined by time of addition, fusion inhibition, and penetration assays. The NDV vaccine strain (La Sota was used in the fusion inhibition assays. PFU and Western blot experiments were performed using a wild-type lentogenic NDV strain. Results Fucoidan exhibited antiviral activity against NDV La Sota, with an obtained IS50 >2000. In time of addition studies, we observed viral inhibition in the early stages of infection (0–60 min post-infection. The inhibition of viral penetration experiments with a wild-type NDV strain supported this result, as these experiments demonstrated a 48% decrease in viral infection as well as reduced HN protein expression. Ribavirin, which was used as an antiviral control, exhibited lower antiviral activity than fucoidan and high toxicity at active doses. In the fusion assays, the number of syncytia was significantly reduced (70% inhibition when fucoidan was added before cleavage of

  13. Developing antiviral surgical gown using nonwoven fabrics for ...

    African Journals Online (AJOL)

    Objectives: To develop antiviral surgical gown comprising of Polypropylene nonwoven as outer layer, Polytetrafluroethylene (PTFE) film as middle layer and polyester nonwoven as inner layer and the surgical gown with a basic weight of 70 g/m2. Methods: The titanium dioxide (TiO2) nano dispersion was prepared with ...

  14. Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola, Influenza, and Other RNA Viruses.

    Science.gov (United States)

    Fuchs, Jonas; Hölzer, Martin; Schilling, Mirjam; Patzina, Corinna; Schoen, Andreas; Hoenen, Thomas; Zimmer, Gert; Marz, Manja; Weber, Friedemann; Müller, Marcel A; Kochs, Georg

    2017-08-01

    Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts. IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including activity

  15. [Clinical significance of drug resistance-associated mutations in treatment of hepatitis C with direct-acting antiviral agents].

    Science.gov (United States)

    Li, Z; Chen, Z W; Ren, H; Hu, P

    2017-03-20

    Direct-acting antiviral agents (DAAs) achieve a high sustained virologic response rate in the treatment of chronic hepatitis C virus infection. However, drug resistance-associated mutations play an important role in treatment failure and have attracted more and more attention. This article elaborates on the clinical significance of drug resistance-associated mutations from the aspects of their definition, association with genotype, known drug resistance-associated mutations and their prevalence rates, the impact of drug resistance-associated mutations on treatment naive and treatment-experienced patients, and the role of clinical detection, in order to provide a reference for clinical regimens with DAAs and help to achieve higher sustained virologic response rates.

  16. Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection

    International Nuclear Information System (INIS)

    Zhang, Wenjing; Tao, Junyan; Yang, Xiaoping; Yang, Zhuliang; Zhang, Li; Liu, Hongsheng; Wu, Kailang; Wu, Jianguo

    2014-01-01

    Highlights: • Triterpenoids GLTA and GLTB display anti-EV71 activities without cytotoxicity. • The compounds prevent EV71 infection by blocking adsorption of the virus to the cells. • GLTA and GLTB bind to EV71 capsid at the hydrophobic pocket to block EV71 uncoating. • The two compounds significantly inhibit the replication of EV71 viral RNA. • GLTA and GLTB may be used as potential therapeutic agents to treat EV71 infection. - Abstract: Enterovirus 71 (EV71) is a major causative agent for hand, foot and mouth disease (HFMD), and fatal neurological and systemic complications in children. However, there is currently no clinical approved antiviral drug available for the prevention and treatment of the viral infection. Here, we evaluated the antiviral activities of two Ganoderma lucidum triterpenoids (GLTs), Lanosta-7,9(11),24-trien-3-one,15;26-dihydroxy (GLTA) and Ganoderic acid Y (GLTB), against EV71 infection. The results showed that the two natural compounds display significant anti-EV71 activities without cytotoxicity in human rhabdomyosarcoma (RD) cells as evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay. The mechanisms by which the two compounds affect EV71 infection were further elucidated by three action modes using Ribavirin, a common antiviral drug, as a positive control. The results suggested that GLTA and GLTB prevent EV71 infection through interacting with the viral particle to block the adsorption of virus to the cells. In addition, the interactions between EV71 virion and the compounds were predicated by computer molecular docking, which illustrated that GLTA and GLTB may bind to the viral capsid protein at a hydrophobic pocket (F site), and thus may block uncoating of EV71. Moreover, we demonstrated that GLTA and GLTB significantly inhibit the replication of the viral RNA (vRNA) of EV71 replication through blocking EV71 uncoating. Thus, GLTA and GLTB may represent two potential

  17. Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenjing; Tao, Junyan; Yang, Xiaoping [State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072 (China); Yang, Zhuliang [Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201 (China); Zhang, Li; Liu, Hongsheng [Department of Academy of Sciences, Liaoning University, Shenyang 110036 (China); Wu, Kailang [State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072 (China); Wu, Jianguo, E-mail: jwu@whu.edu.cn [State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072 (China)

    2014-07-04

    Highlights: • Triterpenoids GLTA and GLTB display anti-EV71 activities without cytotoxicity. • The compounds prevent EV71 infection by blocking adsorption of the virus to the cells. • GLTA and GLTB bind to EV71 capsid at the hydrophobic pocket to block EV71 uncoating. • The two compounds significantly inhibit the replication of EV71 viral RNA. • GLTA and GLTB may be used as potential therapeutic agents to treat EV71 infection. - Abstract: Enterovirus 71 (EV71) is a major causative agent for hand, foot and mouth disease (HFMD), and fatal neurological and systemic complications in children. However, there is currently no clinical approved antiviral drug available for the prevention and treatment of the viral infection. Here, we evaluated the antiviral activities of two Ganoderma lucidum triterpenoids (GLTs), Lanosta-7,9(11),24-trien-3-one,15;26-dihydroxy (GLTA) and Ganoderic acid Y (GLTB), against EV71 infection. The results showed that the two natural compounds display significant anti-EV71 activities without cytotoxicity in human rhabdomyosarcoma (RD) cells as evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay. The mechanisms by which the two compounds affect EV71 infection were further elucidated by three action modes using Ribavirin, a common antiviral drug, as a positive control. The results suggested that GLTA and GLTB prevent EV71 infection through interacting with the viral particle to block the adsorption of virus to the cells. In addition, the interactions between EV71 virion and the compounds were predicated by computer molecular docking, which illustrated that GLTA and GLTB may bind to the viral capsid protein at a hydrophobic pocket (F site), and thus may block uncoating of EV71. Moreover, we demonstrated that GLTA and GLTB significantly inhibit the replication of the viral RNA (vRNA) of EV71 replication through blocking EV71 uncoating. Thus, GLTA and GLTB may represent two potential

  18. Design and evaluation of novel interferon lambda analogs with enhanced antiviral activity and improved drug attributes

    Directory of Open Access Journals (Sweden)

    Yu D

    2016-01-01

    Full Text Available Debin Yu,1 Mingzhi Zhao,2 Liwei Dong,1 Lu Zhao,1 Mingwei Zou,3 Hetong Sun,4 Mengying Zhang,4 Hongyu Liu,4 Zhihua Zou1 1National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 2State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China; 3Department of Psychology, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, USA; 4Prosit Sole Biotechnology, Co., Ltd., Beijing, People’s Republic of China Abstract: Type III interferons (IFNs (also called IFN-λ: IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4 are critical players in the defense against viral infection of mucosal epithelial cells, where the activity of type I IFNs is weak, and unlike type I IFNs that are associated with severe and diverse side effects, type III IFNs cause minimal side effects due to the highly restricted expression of their receptors, and thus appear to be promising agents for the treatment and prevention of respiratory and gastrointestinal viral infection. However, the antiviral potency of natural type III IFNs is weak compared to type I and, although IFN-λ3 possesses the highest bioactivity among the type III IFNs, IFN-λ1, instead of IFN-λ3, is being developed as a therapeutic drug due to the difficulty to express IFN-λ3 in the prokaryotic expression system. Here, to develop optimal IFN-λ molecules with improved drug attributes, we designed a series of IFN-λ analogs by replacing critical amino acids of IFN-λ1 with the IFN-λ3 counterparts, and vice versa. Four of the designed analogs were successfully expressed in Escherichia coli with high yield and were easily purified from inclusion bodies. Interestingly, all four analogs showed potent activity in inducing the

  19. Antiviral Resistance to Influenza Viruses: Clinical and Epidemiological Aspects

    NARCIS (Netherlands)

    van der Vries, E.

    2017-01-01

    There are three classes of antiviral drugs approved for the treatment of influenza: the M2 ion channel inhibitors (amantadine, rimantadine), neuraminidase (NA) inhibitors (laninamivir, oseltamivir, peramivir, zanamivir), and the protease inhibitor (favipiravir); some of the agents are only available

  20. The challenge of treating hepatitis C virus-associated cryoglobulinemic vasculitis in the era of anti-CD20 monoclonal antibodies and direct antiviral agents.

    Science.gov (United States)

    Roccatello, Dario; Sciascia, Savino; Rossi, Daniela; Solfietti, Laura; Fenoglio, Roberta; Menegatti, Elisa; Baldovino, Simone

    2017-06-20

    Mixed cryoglobulinemia syndrome (MC) is a systemic vasculitis involving kidneys, joints, skin, and peripheral nerves. While many autoimmune, lymphoproliferative, and neoplastic disorders have been associated with this disorder, hepatitis C virus (HCV) is known to be the etiologic agent in the majority of patients. Therefore, clinical research has focused on anti-viral drugs and, more recently, on the new, highly potent Direct-acting Antiviral Agents (DAAs). These drugs assure sustained virologic response (SVR) rates >90%. Nevertheless, data on their efficacy in patients with HCV-associated cryoglobulinemic vasculitis are disappointing, possibly due to the inability of the drugs to suppress the immune-mediated process once it has been triggered.Despite the potential risk of exacerbation of the infection, immunosuppression has traditionally been regarded as the first-line intervention in cryoglobulinemic vasculitis, especially if renal involvement is severe. Biologic agents have raised hopes for more manageable therapeutic approaches, and Rituximab (RTX), an anti CD20 monoclonal antibody, is the most widely used biologic drug. It has proved to be safer than conventional immunosuppressants, thus substantially changing the natural history of HCV-associated cryoglobulinemic vasculitis by providing long-term remission, especially with intensive regimens.The present review focuses on the new therapeutic opportunities offered by the combination of biological drugs, mainly Rituximab, with DAAs.

  1. An integrated approach of network-based systems biology, molecular docking, and molecular dynamics approach to unravel the role of existing antiviral molecules against AIDS-associated cancer.

    Science.gov (United States)

    Omer, Ankur; Singh, Poonam

    2017-05-01

    A serious challenge in cancer treatment is to reposition the activity of various already known drug candidates against cancer. There is a need to rewrite and systematically analyze the detailed mechanistic aspect of cellular networks to gain insight into the novel role played by various molecules. Most Human Immunodeficiency Virus infection-associated cancers are caused by oncogenic viruses like Human Papilloma Viruses and Epstein-Bar Virus. As the onset of AIDS-associated cancers marks the severity of AIDS, there might be possible interconnections between the targets and mechanism of both the diseases. We have explored the possibility of certain antiviral compounds to act against major AIDS-associated cancers: Kaposi's Sarcoma, Non-Hodgkin Lymphoma, and Cervical Cancer with the help of systems pharmacology approach that includes screening for targets and molecules through the construction of a series of drug-target and drug-target-diseases network. Two molecules (Calanolide A and Chaetochromin B) and the target "HRAS" were finally screened with the help of molecular docking and molecular dynamics simulation. The results provide novel antiviral molecules against HRAS target to treat AIDS defining cancers and an insight for understanding the pharmacological, therapeutic aspects of similar unexplored molecules against various cancers.

  2. Antiviral evaluation of an Hsp90 inhibitor, gedunin, against dengue ...

    African Journals Online (AJOL)

    Further, in silico molecular docking data revealed strong interaction of gedunin with the ATP/ADP ... Keywords: Dengue virus replication, Hsp90, Gedunin, Antiviral, Molecular docking ..... Conformational dynamics of the molecular chaperone.

  3. Ebola haemorrhagic fever virus: pathogenesis, immune responses, potential prevention.

    Science.gov (United States)

    Marcinkiewicz, Janusz; Bryniarski, Krzysztof; Nazimek, Katarzyna

    2014-01-01

    Ebola zoonotic RNA filovirus represents human most virulent and lethal pathogens, which induces acute hemorrhagic fever and death within few days in a range of 60-90% of symptomatic individuals. Last outbreak in 2014 in West Africa caused panic that Ebola epidemic can be spread to other continents. Number of deaths in late December reached almost 8,000 individuals out of more than 20,000 symptomatic patients. It seems that only a coordinated international response could counteract the further spread of Ebola. Major innate immunity mechanisms against Ebola are associated with the production of interferons, that are inhibited by viral proteins. Activation of host NK cells was recognized as a leading immune function responsible for recovery of infected people. Uncontrolled cell infection by Ebola leads to an impairment of immunity with cytokine storm, coagulopathy, systemic bleeding, multi-organ failure and death. Tested prevention strategies to induce antiviral immunity include: i. recombinant virus formulations (vaccines); ii. cocktail of monoclonal antibodies (serotherapy); iii. alternative RNA-interference-based antiviral methods. Maintaining the highest standards of aseptic and antiseptic precautions is equally important. Present brief review summarizes a current knowledge concerning pathogenesis of Ebola hemorrhagic disease and the virus interaction with the immune system and discusses recent advances in prevention of Ebola infection by vaccination and serotherapy.

  4. Extraribosomal l13a is a specific innate immune factor for antiviral defense.

    Science.gov (United States)

    Mazumder, Barsanjit; Poddar, Darshana; Basu, Abhijit; Kour, Ravinder; Verbovetskaya, Valentina; Barik, Sailen

    2014-08-01

    We report a novel extraribosomal innate immune function of mammalian ribosomal protein L13a, whereby it acts as an antiviral agent. We found that L13a is released from the 60S ribosomal subunit in response to infection by respiratory syncytial virus (RSV), an RNA virus of the Pneumovirus genus and a serious lung pathogen. Unexpectedly, the growth of RSV was highly enhanced in L13a-knocked-down cells of various lineages as well as in L13a knockout macrophages from mice. In all L13a-deficient cells tested, translation of RSV matrix (M) protein was specifically stimulated, as judged by a greater abundance of M protein and greater association of the M mRNA with polyribosomes, while general translation was unaffected. In silico RNA folding analysis and translational reporter assays revealed a putative hairpin in the 3'untranslated region (UTR) of M mRNA with significant structural similarity to the cellular GAIT (gamma-activated inhibitor of translation) RNA hairpin, previously shown to be responsible for assembling a large, L13a-containing ribonucleoprotein complex that promoted translational silencing in gamma interferon (IFN-γ)-activated myeloid cells. However, RNA-protein interaction studies revealed that this complex, which we named VAIT (respiratory syncytial virus-activated inhibitor of translation) is functionally different from the GAIT complex. VAIT is the first report of an extraribosomal L13a-mediated, IFN-γ-independent innate antiviral complex triggered in response to virus infection. We provide a model in which the VAIT complex strongly hinders RSV replication by inhibiting the translation of the rate-limiting viral M protein, which is a new paradigm in antiviral defense. The innate immune mechanisms of host cells are diverse in nature and act as a broad-spectrum cellular defense against viruses. Here, we report a novel innate immune mechanism functioning against respiratory syncytial virus (RSV), in which the cellular ribosomal protein L13a is released

  5. Antiviral acyclic nucleoside phosphonates: New structures and prodrugs

    Czech Academy of Sciences Publication Activity Database

    Krečmerová, Marcela; Tichý, Tomáš; Pomeisl, Karel; Andrei, G.; Balzarini, J.; Snoeck, R.

    2016-01-01

    Roč. 1, č. 2 (2016), s. 37 [PharmaMed-2016. International Conference on Medicinal and Pharmaceutical Chemistry . 05.12.2016-07.12.2016, Dubai] R&D Projects: GA ČR(CZ) GA14-00522S Institutional support: RVO:61388963 Keywords : acyclic nucleoside phosphonates * prodrugs * antivirals * 5-azacytosine Subject RIV: CC - Organic Chemistry

  6. Knowledge, attitudes, and practices of business travelers regarding influenza and the use of antiviral medication.

    Science.gov (United States)

    Helfenberger, Salome; Tschopp, Alois; Robyn, Luc; Hatz, Christoph; Schlagenhauf, Patricia

    2010-01-01

    This study aimed to determine the knowledge, attitudes, and practices of Swiss business travelers with regard to influenza and the use of antiviral medication. Questionnaires, available in three languages, were distributed manually and online through companies, organizations, and travel medicine specialists in Switzerland to business travelers who were traveling during the period January 2005 to April 2009. In total, 661 questionnaires were fully completed and evaluated. A total of 58.9% (n = 388) of the respondents stated that they had contracted influenza in the past; some 48.6% (n = 321) of the travelers had been vaccinated against seasonal influenza at least once in their lifetime; 87.1% (n = 576) of the travelers knew that influenza can be transmitted by droplets; and 62.3% (n = 412) were aware of transmission by direct contact. Almost all respondents (96.8%; n = 633) recognized fever as a main symptom of influenza, 80.0% (n = 523) knew about muscular aches and pain, 79.5% (n = 520) about shivering, and 72.9% (n = 477) about joint pain. Some 38.0% (n = 250) of the respondents stated that the annual vaccination is their preferred prevention method for influenza, 35.6% (n = 234) would neither do an annual vaccination nor carry antiviral medication, 16.0% (n = 105) would carry antiviral medication, 8.5% (n = 56) would prefer to do both the annual vaccination and to carry antivirals, and 2.0% (n = 13) would use antivirals as influenza prophylaxis. Regarding prevention, the majority (78.9%; n = 498) of the travelers did not seek advice on influenza before going on their last business trip, 58.0% (n = 381) did not take any preventive measures against influenza, 27.2% (n = 179) had their annual vaccination, and 15.7% (n = 103) observed hand hygiene. Of the travelers, 9.7% (n = 64) carried antiviral medication on their last business trip and 7.0% (n = 46) actually used this medication. Business travelers have a good knowledge about the transmission and the symptoms of

  7. Interaction Research on the Antiviral Molecule Dufulin Targeting on Southern Rice Black Streaked Dwarf Virus P9-1 Nonstructural Protein

    Directory of Open Access Journals (Sweden)

    Zhenchao Wang

    2015-03-01

    Full Text Available ern rice black streaked dwarf virus (SRBSDV causes severe harm to rice production. Unfortunately, studies on effective antiviral drugs against SRBSDV and interaction mechanism of antiviral molecule targeting on SRBSDV have not been reported. This study found dufulin (DFL, an ideal anti-SRBSDV molecule, and investigated the interactions of DFL targeting on the nonstructural protein P9-1. The biological sequence information and bonding characterization of DFL to four kinds of P9-1 protein were described with fluorescence titration (FT and microscale thermophoresis (MST assays. The sequence analysis indicated that P9-1 had highly-conserved C- and N-terminal amino acid residues and a hypervariable region that differed from 131 aa to 160 aa. Consequently, wild-type (WT-His-P9-1, 23 C-terminal residues truncated (TR-ΔC23-His-P9-1, 6 N-terminal residues truncated (TR-ΔN6-His-P9-1, and Ser138 site-directed (MU-138-His-P9-1 mutant proteins were expressed. The FT and MST assay results indicated that DFL bounded to WT-His-P9-1 with micromole affinity and the 23 C-terminal amino acids were the potential targeting site. This system, which combines a complete sequence analysis, mutant protein expression, and binding action evaluating system, could further advance the understanding of the interaction abilities between antiviral drugs and their targets.

  8. The value of some genetic factors for prediction of chronic hepatitis C antiviral treatment effectiveness

    Directory of Open Access Journals (Sweden)

    V. M. Mitsura

    2014-01-01

    Full Text Available Aim: To determine the value of gene polymorphisms of interleukin-28B (IL28B, RNase L, HLA DRB1*1101 and HLADQB1*03 alleles as predictors of antiviral treatment efficacy in patients with chronic hepatitis C (CHC.Material and methods. A total of 156 in-patients with chronic hepatitis C (65.4% men, 62.4% had genotype 1 hepatitis C virus – HCV were studied. The results of treatment with interferon (IFN and ribavirin (RBV were analyzed in 74 patients. Polymerase chain reaction identified single nucleotide polymorphisms (SNP of the gene IL28B 39743165T>G (rs8099917, SNP 39738787C> T (rs12979860, RNase L gene (1385G>A, HLA DRB1*1101 and HLA-DQB1*03 alleles.Results. In patients with HCV genotype 1 mutant alleles were more common in SNP 39743165T>G (p=0.001 and 39738787C>T (p=0.0002 than in patients with other genotypes. Response to therapy IFN/RBV was higher in those with “favorable” TT variant (SNP 39743165T>G and CC (SNP 39738787C>T, in those with their combination virologic response ffect were found according to genes IL28B and RNase L SNP variants, DRB1*1101 and HLA-DQB1*03 alleles.Conclusion. Testing for SNP 39738787C>T of IL28B gene is recommended before starting therapy IFN / RBV for all patients with genotype 1 HCV as a predictor of treatment response. Testing SNP 1385G>A gene RNase L and DRB1*1101, HLA-DQB1*03 alleles has no apparent prognostic value for patients with CHC antiviral therapy.

  9. The pharmaceuticalisation of security: Molecular biomedicine, antiviral stockpiles, and global health security.

    Science.gov (United States)

    Elbe, Stefan

    2014-12-01

    Pharmaceuticals are now critical to the security of populations. Antivirals, antibiotics, next-generation vaccines, and antitoxins are just some of the new 'medical countermeasures' that governments are stockpiling in order to defend their populations against the threat of pandemics and bioterrorism. How has security policy come to be so deeply imbricated with pharmaceutical logics and solutions? This article captures, maps, and analyses the 'pharmaceuticalisation' of security. Through an in-depth analysis of the prominent antiviral medication Tamiflu , it shows that this pharmaceutical turn in security policy is intimately bound up with the rise of a molecular vision of life promulgated by the biomedical sciences. Caught in the crosshairs of powerful commercial, political, and regulatory pressures, governments are embracing a molecular biomedicine promising to secure populations pharmaceutically in the twenty-first century. If that is true, then the established disciplinary view of health as a predominantly secondary matter of 'low' international politics is mistaken. On the contrary, the social forces of health and biomedicine are powerful enough to influence the core practices of international politics - even those of security. For a discipline long accustomed to studying macrolevel processes and systemic structures, it is in the end also our knowledge of the minute morass of molecules that shapes international relations.

  10. Meeting report: 28th International Conference on Antiviral Research in Rome, Italy.

    Science.gov (United States)

    Vere Hodge, R Anthony

    2015-11-01

    The 28th International Conference on Antiviral Research (ICAR) was held in Rome, Italy from May 11 to 15, 2015. This article summarizes the principal invited lectures. Phillip Furman, the Elion award recipient, described the research leading to sofosbuvir. Dennis Liotta, who received the Holý award, described how an investigation into HIV entry inhibitors led to a new therapy for cancer patients. Erica Ollmann Saphire, winner of the Prusoff Young Investigator award, explored the world of viral proteins and how they remodel to perform different essential roles in viral replication. The keynote addresses, by Raffaele De Francesco and Michael Manns, reported on the remarkable progress made in the therapy of chronic HCV infections. A third keynote address, by Armand Sprecher, related the difficulties and successes of Médicins Sans Frontières in West Africa ravaged by the Ebola outbreak. There were three mini-symposia on RNA Viruses, Antiviral Chemistry and Emerging Viruses. There was a good collection of talks on RNA viruses (norovirus, rabies, dengue, HEV, HCV, and RSV). A highlight of the chemistry was the preparation of prodrugs for nucleotide triphosphates as this opens a door to new options. The third mini-symposium emphasized how research work in the antiviral area is continuing to expand and needs to do so with a sense of urgency. Although this meeting report covers only a few of the presentations, it aims to illustrate the great diversity of topics discussed at ICAR, bringing together knowledge and expertise from the whole spectrum of antiviral research. Copyright © 2015. Published by Elsevier B.V.

  11. Alpinone exhibited immunomodulatory and antiviral activities in Atlantic salmon.

    Science.gov (United States)

    Valenzuela, Beatriz; Rodríguez, Felipe E; Modak, Brenda; Imarai, Mónica

    2018-03-01

    In this study, we seek to identify flavonoids able to regulate the gene expression of a group of cytokines important for the control of infections in Atlantic salmon (Salmo salar). Particularly, we studied the potential immunomodulatory effects of two flavonoids, Alpinone and Pinocembrine, which were isolated and purified from resinous exudates of Heliotropium huascoense and Heliotropium sinuatum, respectively. The transcript levels of TNF-α and IL-1 (inflammatory cytokines), IFN-γ and IL-12 (T helper 1 type cytokines), IL4/13A (Th2-type cytokine), IL-17 (Th17 type cytokine) TGF-β1 (regulatory cytokine) and IFN-α (antiviral cytokine) were quantified by qRT-PCR in kidneys of flavonoid-treated and control fish. We demonstrated that the administration of a single intramuscular dose of purified Alpinone increased the transcriptional expression of five cytokines, named TNF-α, IL-1, IFN-α, IFN-γ and TGF-β1 in treated fish compared to untreated fish. Conversely, administration of purified Pinocembrine reduced the transcriptional expression of TNF-α, IL-1 and IL-12 in the kidney of treated fish. No other changes were observed. Interestingly, Alpinone also induced in vitro antiviral effects against Infectious Salmon Anaemia virus. Results showed that Alpinone but not Pinocembrine induces the expression of cytokines, which in vertebrates are essential to control viral infections while Pinocembrine reduces pro-inflammatory cytokines. Altogether results suggest that Alpinone is a good candidate to be further tested as immunostimulant and antiviral drug. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Antiviral Activity of Some Plants Used in Nepalese Traditional Medicine

    Directory of Open Access Journals (Sweden)

    M. Rajbhandari

    2009-01-01

    Full Text Available Methanolic extracts of 41 plant species belonging to 27 families used in the traditional medicine in Nepal have been investigated for in vitro antiviral activity against Herpes simplex virus type 1 (HSV-1 and influenza virus A by dye uptake assay in the systems HSV-1/Vero cells and influenza virus A/MDCK cells. The extracts of Astilbe rivularis, Bergenia ciliata, Cassiope fastigiata and Thymus linearis showed potent anti-herpes viral activity. The extracts of Allium oreoprasum, Androsace strigilosa, Asparagus filicinus, Astilbe rivularis, Bergenia ciliata and Verbascum thapsus exhibited strong anti-influenza viral activity. Only the extracts of A. rivularis and B. ciliata demonstrated remarkable activity against both viruses.

  13. Quantitative autoradiographic mapping of herpes simplex virus encephalitis with a radiolabeled antiviral drug

    International Nuclear Information System (INIS)

    Saito, Y.; Price, R.W.; Rottenberg, D.A.; Fox, J.J.; Su, T.L.; Watanabe, K.A.; Philips, F.S.

    1982-01-01

    2'-Fluoro-5-methyl-1-ν-D-arabinosyluracil (FMAU) labeled with carbon-14 was used to image herpes simplex virus type 1-infected regions of rat brain by quantitative autoradiography. FMAU is a potent antiviral pyrimidine nucleoside which is selectively phosphorylated by virus-coded thymidine kinase. When the labeled FMAU was administered 6 hours before the rats were killed, the selective uptake and concentration of the drug and its metabolites by infected cells (defined by immunoperoxidase staining of viral antigens) allowed quantitative definition and mapping of HSV-1-infected structures in autoradiograms of brain sections. These results shown that quantitative autoradiography can be used to characterize the local metabolism of antiviral drugs by infected cells in vivo. They also suggest that the selective uptake of drugs that exploit viral thymidine kinase for their antiviral effect can, by appropriate labeling, be used in conjunction with clinical neuroimaging techniques to define infected regions of human brain, thereby providing a new approach to the diagnosis of herpes encephalitis in man

  14. Antiviral activity of viro care gz-08 against newcastle disease virus in poultry and its in-vitro cytotoxicity assay

    International Nuclear Information System (INIS)

    Rasool, M.H.; Afzal, A.M.

    2014-01-01

    Newcastle disease (ND), one of the most important disease of poultry throughout the World is caused by Newcastle Disease Virus (NDV). It is causing huge economic losses in poultry industry of Pakistan. Regardless of vaccination, other prevention and control measures are necessary to prevent ND outbreaks. Natural resources have been exploited to obtain antiviral compounds in several latest studies. In this study, the antiviral activity of Viro Care GZ-081 was checked up in-vitro, in-ovo and in-vivo. The cytotoxicity assay of the product was performed using Vero cell line. All the trials revealed that the stock solution and 1:2 dilution of GZ-08 had some antiviral activity as well as were cytotoxic. As the concentration decreased, cytotoxicity as well as antiviral activities were lost. Based on these findings, it was concluded that GZ-08 sanitizer or spray can be used as antiviral agent to clean or disinfect some non-living surfaces against different viruses in general and NDV in particular. However, in-vivo use of GZ-08 in poultry against NDV is recommended only as pre-treatment with ND vaccines as it significantly reduced morbidity and mortality as compared to the use of vaccines alone. However, further work is recommended in future on GZ-08 for its use as post-treatment of ND as well as on other antiviral compounds of natural origin to develop a novel antiviral drug against NDV in poultry. (author)

  15. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    International Nuclear Information System (INIS)

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-01-01

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways

  16. Effect of ethanol on innate antiviral pathways and HCV replication in human liver cells

    Directory of Open Access Journals (Sweden)

    Fausto Nelson

    2005-12-01

    Full Text Available Abstract Alcohol abuse reduces response rates to IFN therapy in patients with chronic hepatitis C. To model the molecular mechanisms behind this phenotype, we characterized the effects of ethanol on Jak-Stat and MAPK pathways in Huh7 human hepatoma cells, in HCV replicon cell lines, and in primary human hepatocytes. High physiological concentrations of acute ethanol activated the Jak-Stat and p38 MAPK pathways and inhibited HCV replication in several independent replicon cell lines. Moreover, acute ethanol induced Stat1 serine phosphorylation, which was partially mediated by the p38 MAPK pathway. In contrast, when combined with exogenously applied IFN-α, ethanol inhibited the antiviral actions of IFN against HCV replication, involving inhibition of IFN-induced Stat1 tyrosine phosphorylation. These effects of alcohol occurred independently of i alcohol metabolism via ADH and CYP2E1, and ii cytotoxic or cytostatic effects of ethanol. In this model system, ethanol directly perturbs the Jak-Stat pathway, and HCV replication. Infection with Hepatitis C virus is a significant cause of morbidity and mortality throughout the world. With a propensity to progress to chronic infection, approximately 70% of patients with chronic viremia develop histological evidence of chronic liver diseases including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. The situation is even more dire for patients who abuse ethanol, where the risk of developing end stage liver disease is significantly higher as compared to HCV patients who do not drink 12. Recombinant interferon alpha (IFN-α therapy produces sustained responses (ie clearance of viremia in 8–12% of patients with chronic hepatitis C 3. Significant improvements in response rates can be achieved with IFN plus ribavirin combination 456 and pegylated IFN plus ribavirin 78 therapies. However, over 50% of chronically infected patients still do not clear viremia. Moreover, HCV-infected patients who abuse

  17. HIV enhancing activity of semen impairs the antiviral efficacy of microbicides

    Science.gov (United States)

    Zirafi, Onofrio; Kim, Kyeong-Ae; Roan, Nadia R.; Kluge, Silvia F.; Müller, Janis A.; Jiang, Shibo; Mayer, Benjamin; Greene, Warner C.; Kirchhoff, Frank; Münch, Jan

    2015-01-01

    Topically applied microbicides potently inhibit HIV in vitro but have largely failed to exert protective effects in clinical trials. One possible reason for this discrepancy is that the preclinical testing of microbicides does not faithfully reflect the conditions of HIV sexual transmission. Here, we report that candidate microbicides that target HIV components show greatly reduced antiviral efficacy in the presence of semen, the main vector for HIV transmission. This diminished antiviral activity was dependent on the ability of amyloid fibrils in semen to enhance the infectivity of HIV. Thus, the anti-HIV efficacy of microbicides determined in the absence of semen greatly underestimated the drug concentrations needed to block semen-exposed virus. One notable exception was Maraviroc. This HIV entry inhibitor targets the host cell CCR5 coreceptor and was highly active against both untreated and semen-exposed HIV. These data help explain why microbicides have failed to protect against HIV in clinical trials and suggest that antiviral compounds targeting host factors hold promise for further development. These findings also suggest that the in vitro efficacy of candidate microbicides should be determined in the presence of semen to identify the best candidates for the prevention of HIV sexual transmission. PMID:25391483

  18. In vitro inhibition of canine distemper virus by flavonoids and phenolic acids: implications of structural differences for antiviral design.

    Science.gov (United States)

    Carvalho, O V; Botelho, C V; Ferreira, C G T; Ferreira, H C C; Santos, M R; Diaz, M A N; Oliveira, T T; Soares-Martins, J A P; Almeida, M R; Silva, A

    2013-10-01

    Infection caused by canine distemper virus (CDV) is a highly contagious disease with high incidence and lethality in the canine population. Antiviral activity of flavonoids quercetin, morin, rutin and hesperidin, and phenolic cinnamic, trans-cinnamic and ferulic acids were evaluated in vitro against the CDV using the time of addition assay to determine which step of the viral replicative cycle was affected. All flavonoids displayed great viral inhibition when they were added at the times 0 (adsorption) and 1h (penetration) of the viral replicative cycle. Both quercetin and hesperidin presented antiviral activity at the time 2h (intracellular). In the other hand, cinnamic acid showed antiviral activity at the times 0 and 2h while trans-cinnamic acid showed antiviral effect at the times -1h (pre-treatment) and 0 h. Ferulic acid inhibited CDV replicative cycle at the times 0 and 1h. Our study revealed promising candidates to be considered in the treatment of CDV. Structural differences among compounds and correlation to their antiviral activity were also explored. Our analysis suggest that these compounds could be useful in order to design new antiviral drugs against CDV as well as other viruses of great meaning in veterinary medicine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Light-activated nanotube–porphyrin conjugates as effective antiviral agents

    International Nuclear Information System (INIS)

    Banerjee, Indrani; Douaisi, Marc P; Mondal, Dhananjoy; Kane, Ravi S

    2012-01-01

    Porphyrins have been used for photodynamic therapy (PDT) against a wide range of targets like bacteria, viruses and tumor cells. In this work, we report porphyrin-conjugated multi-walled carbon nanotubes (NT-P) as potent antiviral agents. Specifically, we used Protoporphyrin IX (PPIX), which we attached to acid-functionalized multi-walled carbon nanotubes (MWNTs). We decided to use carbon nanotubes as scaffolds because of their ease of recovery from a solution through filtration. In the presence of visible light, NT-P was found to significantly reduce the ability of Influenza A virus to infect mammalian cells. NT-P may be used effectively against influenza viruses with little or no chance of them developing resistance to the treatment. Furthermore, NT-P can be easily recovered through filtration which offers a facile strategy to reuse the active porphyrin moiety to its fullest extent. Thus NT-P conjugates represent a new approach for preparing ex vivo reusable antiviral agents. (paper)

  20. Systemic antibody response to nano-size calcium phospate biocompatible adjuvant adsorbed HEV-71 killed vaccine

    OpenAIRE

    Saeed, Mohamed Ibrahim; Omar, Abd Rahaman; Hussein, Mohd Zobir; Elkhidir, Isam Mohamed; Sekawi, Zamberi

    2015-01-01

    Purpose Since 1980s, human enterovirus-71 virus (HEV-71) is one of the common infectious disease in Asian Pacific region since late 1970s without effective commercial antiviral or protective vaccine is unavailable yet. The work examines the role of vaccine adjuvant particle size and the route of administration on postvaccination antibody response towards HEV-71 vaccine adsorbed to calcium phosphate (CaP) adjuvant. Materials and Methods First, CaP nano-particles were compared to a commercial m...

  1. Antiviral Inhibition of Enveloped Virus Release by Tetherin/BST-2: Action and Counteraction

    Directory of Open Access Journals (Sweden)

    Stuart J. D. Neil

    2011-05-01

    Full Text Available Tetherin (BST2/CD317 has been recently recognized as a potent interferon-induced antiviral molecule that inhibits the release of diverse mammalian enveloped virus particles from infected cells. By targeting an immutable structure common to all these viruses, the virion membrane, evasion of this antiviral mechanism has necessitated the development of specific countermeasures that directly inhibit tetherin activity. Here we review our current understanding of the molecular basis of tetherin’s mode of action, the viral countermeasures that antagonize it, and how virus/tetherin interactions may affect viral transmission and pathogenicity.

  2. Antiviral activity of the dichloromethane extracts from Artocarpus heterophyllus leaves against hepatitis C virus

    OpenAIRE

    Achmad Fuad Hafid; Chie Aoki-Utsubo; Adita Ayu Permanasari; Myrna Adianti; Lydia Tumewu; Aty Widyawaruyanti; Sri Puji Astuti Wahyuningsih; Tutik Sri Wahyuni; Maria Inge Lusida; Soetjipto; Hak Hotta

    2017-01-01

    Objective: To determine anti-viral activities of three Artocarpus species: Artocarpus altilis, Artocarpus camansi, and Artocarpus heterophyllus (A. heterophyllus) against Hepatitis C Virus (HCV). Methods: Antiviral activities of the crude extracts were examined by cell culture method using Huh7it-1 cells and HCV genotype 2a strain JFH1. The mode of action for anti-HCV activities was determined by time-of-addition experiments. The effect on HCV RNA replication and HCV accumulation in cells ...

  3. IRF-4 and c-Rel expression in antiviral-resistant adult T-cell leukemia/lymphoma

    OpenAIRE

    Ramos, Juan Carlos; Ruiz, Phillip; Ratner, Lee; Reis, Isildinha M.; Brites, Carlos; Pedroso, Celia; Byrne, Gerald E.; Toomey, Ngoc L.; Andela, Valentine; Harhaj, Edward W.; Lossos, Izidore S.; Harrington, William J.

    2007-01-01

    Adult T-cell leukemia/lymphoma (ATLL) is a generally fatal malignancy. Most ATLL patients fare poorly with conventional chemotherapy; however, antiviral therapy with zidovudine (AZT) and interferon alpha (IFN-α) has produced long-term clinical remissions. We studied primary ATLL tumors and identified molecular features linked to sensitivity and resistance to antiviral therapy. Enhanced expression of the proto-oncogene c-Rel was noted in 9 of 27 tumors. Resistant tumors exhibited c-Rel (6 of 1...

  4. Antiviral effects of Curcuma longa L. against dengue virus in vitro and in vivo

    Science.gov (United States)

    Ichsyani, M.; Ridhanya, A.; Risanti, M.; Desti, H.; Ceria, R.; Putri, D. H.; Sudiro, T. M.; Dewi, B. E.

    2017-12-01

    Dengue is the most common infective disease caused by dengue virus (DENV) and endemic diseases in tropical and subtropical areas. Until now, there is no specific antiviral for dengue infection. It is known that viral load is related to disease severity. Curcuma longa L. (turmeric) with curcumin as major active compound has been identified for its antiviral effect. This study to determine antiviral effect of C. longa extract on DENV-2 in vitro and in vivo along with its toxicity in liver and kidney of ddY mice. Antiviral activity (IC50) and toxicity (CC50) in vitro was examined on Huh7it-1 cells by focus assay and a MTT assay, respectively. To determine the selectivity index (SI), we used CC50 and IC50 value. The safe doses obtained were used for toxicity tests of liver and kidney with histopathological and biochemical observations. The C. longa extracts was given orally with dose of 0.147 mg/mL for each mice at 2 hours after injected with DENV-2 infected Huh7it-1 cells. Serum was collected from intraorbital at 6 hours and 24 hours after infection and focus assay was used to determine viral load. In this study, the acquired value of IC50 was 17,91 μg/mL whereas the value of CC50 was 85,4 μg/mL. The value of SI of C. longa was 4.8. In vivo, we found that C. longa remarkable reduced of viral load after 24 hour. Histopathological examination showed no specific abnormalities in liver and kidney. There was no significant increase in levels of SGPT, SGOT, urea, and creatinine. From this study it can be concluded that C. longa could potentially be used as antiviral against DENV with low cytotoxicity and effective inhibition.

  5. IRF-4 and c-Rel expression in antiviral-resistant adult T-cell leukemia/lymphoma

    Science.gov (United States)

    Ramos, Juan Carlos; Ruiz, Phillip; Ratner, Lee; Reis, Isildinha M.; Brites, Carlos; Pedroso, Celia; Byrne, Gerald E.; Toomey, Ngoc L.; Andela, Valentine; Harhaj, Edward W.; Lossos, Izidore S.

    2007-01-01

    Adult T-cell leukemia/lymphoma (ATLL) is a generally fatal malignancy. Most ATLL patients fare poorly with conventional chemotherapy; however, antiviral therapy with zidovudine (AZT) and interferon alpha (IFN-α) has produced long-term clinical remissions. We studied primary ATLL tumors and identified molecular features linked to sensitivity and resistance to antiviral therapy. Enhanced expression of the proto-oncogene c-Rel was noted in 9 of 27 tumors. Resistant tumors exhibited c-Rel (6 of 10; 60%) more often than did sensitive variants (1 of 9; 11%). This finding was independent of the disease form. Elevated expression of the putative c-Rel target, interferon regulatory factor-4 (IRF-4), was observed in 10 (91%) of 11 nonresponders and in all tested patients with c-Rel+ tumors and occurred in the absence of the HTLV-1 oncoprotein Tax. In contrast, tumors in complete responders did not express c-Rel or IRF-4. Gene rearrangement studies demonstrated the persistence of circulating T-cell clones in long-term survivors maintained on antiviral therapy. The expression of nuclear c-Rel and IRF-4 occurs in the absence of Tax in primary ATLL and is associated with antiviral resistance. These molecular features may help guide treatment. AZT and IFN-α is a suppressive rather than a curative regimen, and patients in clinical remission should remain on maintenance therapy indefinitely. PMID:17138822

  6. Immunity in the Vagina (Part II): Anti-HIV Activity and Antiviral Content of Human Vaginal Secretions

    Science.gov (United States)

    Patel, Mickey V.; Ghosh, Mimi; Fahey, John V.; Ochsenbauer, Christina; Rossoll, Richard M.; Wira, Charles R.

    2015-01-01

    Problem Whether the concentrations of antiviral proteins, and anti-HIV activity, within human vaginal secretions changes across the menstrual cycle is unknown. Method of Study Using a menstrual cup, vaginal secretions from premenopausal women were recovered at the proliferative (d6–8), mid-cycle (d13–15) and secretory (d21–23) stages of the menstrual cycle. Antiviral protein concentration was determined by ELISA, and anti-HIV activity assessed using the TZM-bl reporter cell line. Results CCL20, RANTES, elafin, HBD2, SDF-1α and IL-8 levels were detectable in the secretions. Vaginal secretions had anti-HIV activity against specific clade B strains of HIV, with significant inhibition of IIIB and increased infectivity of transmitted/founder CH077.t. No significant differences in either antiviral protein concentration or anti-HIV activity with respect to menstrual cycle stage were measured, but marked differences were observed in both parameters over the course of the cycle between different women, and in consecutive cycles from the same woman. Conclusion The vagina contains a complement of antiviral proteins. The variation in anti-HIV activity demonstrates that immune protection in the vagina is not constant. Intra- and inter-individual variations suggest that factors in addition to sex hormones influence antiviral protection. Lastly, the menstrual cup is a new model for recovering undiluted vaginal secretions from women throughout their reproductive life. PMID:24806967

  7. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro

    International Nuclear Information System (INIS)

    Pei, Ying; Chen, Zhen-Ping; Ju, Huai-Qiang; Komatsu, Masaaki; Ji, Yu-hua; Liu, Ge; Guo, Chao-wan; Zhang, Ying-Jun; Yang, Chong-Ren; Wang, Yi-Fei; Kitazato, Kaio

    2011-01-01

    Research highlights: → We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. → Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. → Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impaired significantly in MEF-atg7 -/- cells (autophagy-defective cells) derived from an atg7 -/- knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.

  8. Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling.

    Science.gov (United States)

    Zhang, Qingzhan; Yoo, Dongwan

    2016-12-02

    Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are emerged and reemerging viruses in pigs, and together with transmissible gastroenteritis virus (TGEV), pose significant economic concerns to the swine industry. These viruses infect epithelial cells of the small intestine and cause watery diarrhea, dehydration, and a high mortality in neonatal piglets. Type I interferons (IFN-α/β) are major antiviral cytokines forming host innate immunity, and in turn, these enteric coronaviruses have evolved to modulate the host innate immune signaling during infection. Accumulating evidence however suggests that IFN induction and signaling in the intestinal epithelial cells differ from other epithelial cells, largely due to distinct features of the gut epithelial mucosal surface and commensal microflora, and it appears that type III interferon (IFN-λ) plays a key role to maintain the antiviral state in the gut. This review describes the recent understanding on the immune evasion strategies of porcine enteric coronaviruses and the role of different types of IFNs for intestinal antiviral innate immunity. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Antiviral activity of some Tunisian medicinal plants against Herpes simplex virus type 1.

    Science.gov (United States)

    Sassi, A Ben; Harzallah-Skhiri, F; Bourgougnon, N; Aouni, M

    2008-01-10

    Fifteen species of Tunisian traditional medicinal plants, belonging to 10 families, were selected for this study. They were Inula viscosa (L.) Ait and Reichardia tingitana (L.) Roth ssp. discolor (Pom.) Batt. (Asteraceae), Mesembryanthemum cristallinum L. and M. nodiflorum L. (Aizoaceae), Arthrocnemum indicum (Willd.) Moq., Atriplex inflata Muell., A. parvifolia Lowe var. ifiniensis (Caball) Maire, and Salicornia fruticosa L. (Chenopodiaceae), Cistus monspeliensis L. (Cistaceae), Juniperus phoenicea L. (Cupressaceae), Erica multiflora L. (Ericaceae), Frankenia pulverulenta L. (Frankeniaceae), Hypericum crispum L. (Hypericaceae), Plantago coronopus L. ssp. eu-coronopus Pilger var. vulgaris G.G. (Plantaginaceae) and Zygophyllum album L. (Zygophyllaceae). Fifty extracts prepared from those plants were screened in order to assay their antiviral activity against Herpes simplex virus type 1 (HSV-1), using neutral red incorporation. Extracts from eight plants among these 15 showed some degree of antiviral activity, while the methanolic extract of E. multiflora was highly active with EC(50) of 132.6 microg mL(-1). These results corroborate that medicinal plants from Tunisia can be a rich source of potential antiviral compounds.

  10. Separation methods for acyclovir and related antiviral compounds.

    Science.gov (United States)

    Loregian, A; Gatti, R; Palù, G; De Palo, E F

    2001-11-25

    Acyclovir (ACV) is an antiviral drug, which selectively inhibits replication of members of the herpes group of DNA viruses with low cell toxicity. Valaciclovir (VACV), a prodrug of ACV is usually preferred in the oral treatment of viral infections, mainly herpes simplex virus (HSV). Also other analogues such as ganciclovir and penciclovir are discussed here. The former acts against cytomegalovirus (CMV) in general and the latter against CMV retinitis. The action mechanism of these antiviral drugs is presented briefly here, mainly via phosphorylation and inhibition of the viral DNA polymerase. The therapeutic use and the pharmacokinetics are also outlined. The measurement of the concentration of acyclovir and related compounds in biological samples poses a particularly significant challenge because these drugs tend to be structurally similar to endogenous substances. The analysis requires the use of highly selective analytical techniques and chromatography methods are a first choice to determine drug content in pharmaceuticals and to measure them in body fluids. Chromatography can be considered the procedure of choice for the bio-analysis of this class of antiviral compounds, as this methodology is characterised by good specificity and accuracy and it is particularly useful when metabolites need to be monitored. Among chromatographic techniques, the reversed-phase (RP) HPLC is widely used for the analysis. C18 Silica columns from 7.5 to 30 cm in length are used, the separation is carried out mainly at room temperature and less than 10 min is sufficient for the analysis at 1.0-1.5 ml/min of flow-rate. The separation methods require an isocratic system, and various authors have proposed a variety of mobile phases. The detection requires absorbance or fluorescence measurements carried out at 250-254 nm and at lambdaex=260-285 nm, lambdaem=375-380 nm, respectively. The detection limit is about 0.3-10 ng/ml but the most important aspect is related to the sample treatment

  11. An index of the ratio of inflammatory to antiviral cell types mediates the effects of social adversity and age on chronic illness.

    Science.gov (United States)

    Simons, Ronald L; Lei, Man-Kit; Beach, Steven R H; Barr, Ashley B; Cutrona, Carolyn E; Gibbons, Frederick X; Philibert, Robert A

    2017-07-01

    It is assumed that both social stress and chronological age increase the risk of chronic illness, in part, through their effect on systemic inflammation. Unfortunately, observational studies usually employ single-marker measures of inflammation (e.g., Interleukin-6, C-reactive protein) that preclude strong tests for mediational effects. The present study investigated the extent to which the effects of socioeconomic disadvantage and age on onset of chronic illness is mediated by dominance of the innate (inflammatory) over the acquired (antiviral) components of the immune system. We assessed inflammation using the ratio of inflammatory to antiviral cell types (ITACT Ratio). This approach provided a stronger test of evolutionary arguments regarding the effect of social stress on chronic inflammation than is the case with cytokine measures, and afforded an opportunity to replicate findings obtained utilizing mRNA. We used structural equation modeling and longitudinal data from a sample of 100 middle-age African American women to perform our analyses. Dominance of inflammatory over antiviral cell activity was associated with each of the eight illnesses included in our chronic illness measure. Both socioeconomic disadvantage and age were also associated with inflammatory dominance. Pursuant to the central focus of the study, the effects of socioeconomic adversity and age on increased illness were mediated by our measure of inflammatory dominance. The indirect effect of these variables through inflammatory cell profile was significant, with neither socioeconomic disadvantage nor age showing a significant association with illness once the impact of inflammatory cell profile was taken into account. First, the analysis provides preliminary validation of a new measure of inflammation that is calculated based on the ratio of inflammatory to antiviral white blood cells. Second, our results support the hypothesis that socioeconomic disadvantage and chronological age increase

  12. Marburg Virus Reverse Genetics Systems

    Directory of Open Access Journals (Sweden)

    Kristina Maria Schmidt

    2016-06-01

    Full Text Available The highly pathogenic Marburg virus (MARV is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems.

  13. [Adenovirus-mediated canine interferon-gamma expression and its antiviral activity against canine parvovirus].

    Science.gov (United States)

    Zhang, Kao; Jin, Huijun; Zhong, Fei; Li, Xiujin; Neng, Changai; Chen, Huihui; Li, Wenyan; Wen, Jiexia

    2012-11-04

    To construct recombinant adenovirus containing canine interferon-gamma (cIFN-gamma) gene and to investigate its antiviral activity against canine parvovirus in Madin-Darby canine kidney cells (MDCK). [Methods] The cIFN-gamma gene was inserted into adenovirus shuttle plasmid to construct pShuttle3-cIFN-gamma expression vector, from which the cIFN-gamma expression cassette was transferred into the adenovirus genomic plasmid pAdeno-X by specific restriction sites to generate recombinant adenovirus genomic plasmid pAd-cIFN-gamma. The pAd-cIFN-gamma plasmid was linearized by digestion and transfected into human embryonic kidney (HEK) 293T cells to generate the replication-defective cIFN-gamma recombinant adenovirus (Ad-cIFN-gamma). To analyze its anti-canine parvovirus activity, the MDCK cells were pre-infected by Ad-cIFN-gamma recombinant adenovirus, and then infected by canine parvovirus. The antiviral activity of the Ad-cIFN-gamma recombinant adenovirus against parvovirus was analyzed. The recombinant adenovirus containing cIFN-gamma gene was constructed by the ligation method. The recombinant adenovirus could mediates recombinant cIFN-gamma secretory expression in MDCK cells. The Ad-cIFN-gamma recombinant adenovirus could significantly inhibit canine parvovirus replication in MDCK cells pre-infected with the recombinant adenovirus. These results indicate that the Ad-cIFN-gamma recombinant adenovirus has the potent antiviral activity against canine parvovirus. The Ad-cIFN-gamma recombinant adenovirus was successfully constructed by the ligation method and possessed a powerful antiviral activity against canine parvovirus.

  14. Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro.

    Science.gov (United States)

    Zhou, Wei; Zeng, Cheng; Liu, RenHua; Chen, Jie; Li, Ru; Wang, XinYan; Bai, WenWen; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Prodigiosin, the tripyrrole red pigment, is a bacterial secondary metabolite with multiple bioactivities; however, the antiviral activity has not been reported yet. In the present study, we found the antiviral activity of bacterial prodigiosin on Bombyx mori nucleopolyhedrovirus (BmNPV)-infected cells in vitro, with specific modes of action. Prodigiosin at nontoxic concentrations selectively killed virus-infected cells, inhibited viral gene transcription, especially viral early gene ie-1, and prevented virus-mediated membrane fusion. Under prodigiosin treatment, both progeny virus production and viral DNA replication were significantly inhibited. Fluorescent assays showed that prodigiosin predominantly located in cytoplasm which suggested it might interact with cytoplasm factors to inhibit virus replication. In conclusion, the present study clearly indicates that prodigiosin possesses significant antiviral activity against BmNPV.

  15. Innate immunity in the vagina (Part II): Anti-HIV activity and antiviral content of human vaginal secretions.

    Science.gov (United States)

    Patel, Mickey V; Ghosh, Mimi; Fahey, John V; Ochsenbauer, Christina; Rossoll, Richard M; Wira, Charles R

    2014-07-01

    Whether the concentrations of antiviral proteins, and anti-HIV activity, within human vaginal secretions change across the menstrual cycle is unknown. Using a menstrual cup, vaginal secretions from pre-menopausal women were recovered at the proliferative (d6-8), mid-cycle (d13-15), and secretory (d21-23) stages of the menstrual cycle. Antiviral protein concentration was determined by ELISA, and anti-HIV activity assessed using the TZM-bl reporter cell line. CCL20, RANTES, elafin, HBD2, SDF-1α, and IL-8 levels were detectable in the secretions. Vaginal secretions had anti-HIV activity against specific clade B strains of HIV, with significant inhibition of IIIB and increased infectivity of transmitted/founder CH077.t. No significant differences in either antiviral protein concentration or anti-HIV activity with respect to menstrual cycle stage were measured, but marked differences were observed in both parameters over the course of the cycle between different women and in consecutive cycles from the same woman. The vagina contains a complement of antiviral proteins. The variation in anti-HIV activity demonstrates that immune protection in the vagina is not constant. Intra- and interindividual variations suggest that factors in addition to sex hormones influence antiviral protection. Lastly, the menstrual cup is a new model for recovering undiluted vaginal secretions from women throughout their reproductive life. © 2014 John Wiley & Sons Ltd.

  16. Synthesis, biological evaluation and molecular modeling investigation of some new Benzimidazole analogs as antiviral agents

    International Nuclear Information System (INIS)

    Goda, Fatma E.; Tantawy, Atif S.; Abou-Zeid, Laila A.; Badr, Sahar M.; Selim, Khalid B.

    2008-01-01

    A set heterocyclic benzimidazole derivatives bearing 1, 3, 5-triazine group with different substituents at C-2 and C-5 of the benzimidazole ring have been synthesized and evaluated for their antiviral activities against HASV-1. The structures of these compounds have been established by analytical data, IR spectra, H NMR and mass spectra. Compounds 8a and 8b proved to be the most active antiherpetic agents in this study, at EC 50% concentrations of 2.9. 3.4 mg/ml, respectively. Computational evaluation of the quantum chemical descriptors such as hydrphobicity (log P), HOMO-LUMO and the gap energy were calculated and correlated with the antiviral activity. The tested compounds showed proper degree of hydrophobicity ( 5). The HOMO-LUMO gap energy values of the tested compounds are comparable with the observed values for the antiviral drug Acyclovir. (author)

  17. Testing of disease-resistance of pokeweed antiviral protein gene ...

    African Journals Online (AJOL)

    Transformation of pokeweed antiviral protein gene (PAP) into plants was shown to improve plant resistance to several viruses or fungi pathogens with no much negative effect on plant growth. The non-virulent defective PAP inhibits only the virus but does not interfere with the host. A non-virulent defective PAP gene ...

  18. Detection of bcl-2 translocation in patients with chronic hepatitis C and its possible relation to antiviral therapy: preliminary study

    International Nuclear Information System (INIS)

    Ibrahim, N.S.; Hanna, M.O.F.; Farid, R.J.; Zayed, N.A.; Hunter, S.S.; Esmat, J.

    2007-01-01

    It has been suggested that t(14; 18) translocation of bcl-2 to the immunoglobulin heavy chain (IgH) locus may contribute to the pathogenesis of lymphoproliferative disorders (LPD) related to hepatitis C virus (HCV) infection. The present study aimed to assess the prevalence of bcl-2 translocation in Egyptian chronic HCV patients and to investigate the effect of combination antiviral therapy of interferon a and ribavirin on t(14;18). Fifty five chronic HCV patients were studied for the prevalence of t(l4; 18). These patients were classified into 2 groups, 33 non treated HCV patients and 22 treated HCV patients with antiviral therapy as well as control group of age and sex matched individuals. The bcl-2/IgH rearrangement was detected in peripheral blood mononuclear cells (PBMCs) by nested polymerase chain reaction. All patients have undergone HCV viral determination by real time PCR. Bcl-2/IgH translocation was detected in 21 (38.2%) of all 55 chronically infected HCV patients. Considering all patients with chronic HCV-infection, bcl-2 rearrangement was slightly more frequent in the non treated group than in those who underwent treatment with interferon plus ribavirin but the difference was not statistically significant, although treated patients showed biochemical and virologic response at the end of 6 months of antiviral therapy. In conclusion, t(l4;18) in PBMCs is a frequent finding in chronic HCV infection

  19. In Vitro Antiviral Activity and Resistance Profile Characterization of the Hepatitis C Virus NS5A Inhibitor Ledipasvir.

    Science.gov (United States)

    Cheng, Guofeng; Tian, Yang; Doehle, Brian; Peng, Betty; Corsa, Amoreena; Lee, Yu-Jen; Gong, Ruoyu; Yu, Mei; Han, Bin; Xu, Simin; Dvory-Sobol, Hadas; Perron, Michel; Xu, Yili; Mo, Hongmei; Pagratis, Nikos; Link, John O; Delaney, William

    2016-01-11

    Ledipasvir (LDV; GS-5885), a component of Harvoni (a fixed-dose combination of LDV with sofosbuvir [SOF]), is approved to treat chronic hepatitis C virus (HCV) infection. Here, we report key preclinical antiviral properties of LDV, including in vitro potency, in vitro resistance profile, and activity in combination with other anti-HCV agents. LDV has picomolar antiviral activity against genotype 1a and genotype 1b replicons with 50% effective concentration (EC50) values of 0.031 nM and 0.004 nM, respectively. LDV is also active against HCV genotypes 4a, 4d, 5a, and 6a with EC50 values of 0.11 to 1.1 nM. LDV has relatively less in vitro antiviral activity against genotypes 2a, 2b, 3a, and 6e, with EC50 values of 16 to 530 nM. In vitro resistance selection with LDV identified the single Y93H and Q30E resistance-associated variants (RAVs) in the NS5A gene; these RAVs were also observed in patients after a 3-day monotherapy treatment. In vitro antiviral combination studies indicate that LDV has additive to moderately synergistic antiviral activity when combined with other classes of HCV direct-acting antiviral (DAA) agents, including NS3/4A protease inhibitors and the nucleotide NS5B polymerase inhibitor SOF. Furthermore, LDV is active against known NS3 protease and NS5B polymerase inhibitor RAVs with EC50 values equivalent to those for the wild type. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Synthesis and Antiviral Activity of 3-Aminoindole Nucleosides of 2-Acetamido-2-deoxy-D-glucose

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrahman, Adel A. H.; Elessawy, Farag A.; Barakat, Yousif A. [Menoufia Univ., Shebin El-Koam (Egypt); Ellatif, Mona M. Abd [The British Univ. in Egypt, Cairo (Egypt)

    2012-10-15

    A new method for the construction of 3-aminoindole nucleosides of 2-acetamido-2-deoxy-D-glucose based is presented. Nitration and acetylation of the indole nucleosides by acetic anhydride-nitric acid mixture followed by reduction using silver catalyst (SNSM) impregnated on silica gel, afforded the corresponding amino indole nucleosides. The nucleosides were tested for antiviral activity against hepatitis B virus (HBV) to show different degrees of antiviral activities or inhibitory actions.

  1. Targeting APOBEC3A to the viral nucleoprotein complex confers antiviral activity

    Directory of Open Access Journals (Sweden)

    Strebel Klaus

    2007-08-01

    Full Text Available Abstract Background APOBEC3 (A3 proteins constitute a family of cytidine deaminases that provide intracellular resistance to retrovirus replication and to transposition of endogenous retroelements. A3A has significant homology to the C-terminus of A3G but has only a single cytidine deaminase active site (CDA, unlike A3G, which has a second N-terminal CDA previously found to be important for Vif sensitivity and virus encapsidation. A3A is packaged into HIV-1 virions but, unlike A3G, does not have antiviral properties. Here, we investigated the reason for the lack of A3A antiviral activity. Results Sequence alignment of A3G and A3A revealed significant homology of A3A to the C-terminal region of A3G. However, while A3G co-purified with detergent-resistant viral nucleoprotein complexes (NPC, virus-associated A3A was highly detergent-sensitive leading us to speculate that the ability to assemble into NPC may be a property conveyed by the A3G N-terminus. To test this model, we constructed an A3G-3A chimeric protein, in which the N-terminal half of A3G was fused to A3A. Interestingly, the A3G-3A chimera was packaged into HIV-1 particles and, unlike A3A, associated with the viral NPC. Furthermore, the A3G-3A chimera displayed strong antiviral activity against HIV-1 and was sensitive to inhibition by HIV-1 Vif. Conclusion Our results suggest that the A3G N-terminal domain carries determinants important for targeting the protein to viral NPCs. Transfer of this domain to A3A results in A3A targeting to viral NPCs and confers antiviral activity.

  2. Club cells surviving influenza A virus infection induce temporary nonspecific antiviral immunity.

    Science.gov (United States)

    Hamilton, Jennifer R; Sachs, David; Lim, Jean K; Langlois, Ryan A; Palese, Peter; Heaton, Nicholas S

    2016-04-05

    A brief window of antigen-nonspecific protection has been observed after influenza A virus (IAV) infection. Although this temporary immunity has been assumed to be the result of residual nonspecific inflammation, this period of induced immunity has not been fully studied. Because IAV has long been characterized as a cytopathic virus (based on its ability to rapidly lyse most cell types in culture), it has been a forgone conclusion that directly infected cells could not be contributing to this effect. Using a Cre recombinase-expressing IAV, we have previously shown that club cells can survive direct viral infection. We show here not only that these cells can eliminate all traces of the virus and survive but also that they acquire a heightened antiviral response phenotype after surviving. Moreover, we experimentally demonstrate temporary nonspecific viral immunity after IAV infection and show that surviving cells are required for this phenotype. This work characterizes a virally induced modulation of the innate immune response that may represent a new mechanism to prevent viral diseases.

  3. Epimedium koreanum Nakai Water Extract Exhibits Antiviral Activity against Porcine Epidermic Diarrhea Virus In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Won-Kyung Cho

    2012-01-01

    Full Text Available Porcine epidemic diarrhea virus (PEDV causes diarrhea of pigs age-independently and death of young piglets, resulting in economic loss of porcine industry. We have screened 333 natural oriental herbal medicines to search for new antiviral candidates against PEDV. We found that two herbal extracts, KIOM 198 and KIOM 124, contain significant anti-PED viral effect. KIOM 198 and KIOM 124 were identified as Epimedium koreanum Nakai and Lonicera japonica Thunberg, respectively. The further plaque and CPE inhibition assay in vitro showed that KIOM 198 has much stronger antiviral activity than KIOM 124. Additionally, KIOM 198 exhibited a similar extent of antiviral effect against other subtypes of Corona virus such as sm98 and TGE viruses. Cytotoxicity results showed that KIOM 198 is nontoxic on the cells and suggest that it can be delivered safely for therapy. Furthermore, when we orally administered KIOM 198 to piglets and then infected them with PEDV, the piglets did not show any disease symptoms like diarrhea and biopsy results showed clean intestine, whereas control pigs without KIOM 198 treatment exhibited PED-related severe symptoms. These results imply that KIOM 198 contains strong antiviral activity and has a potential to be developed as an antiviral phytomedicine to treat PEDV-related diseases in pigs.

  4. Modelling Hepatitis B Virus Antiviral Therapy and Drug Resistant Mutant Strains

    Science.gov (United States)

    Bernal, Julie; Dix, Trevor; Allison, Lloyd; Bartholomeusz, Angeline; Yuen, Lilly

    Despite the existence of vaccines, the Hepatitis B virus (HBV) is still a serious global health concern. HBV targets liver cells. It has an unusual replication process involving an RNA pre-genome that the reverse transcriptase domain of the viral polymerase protein translates into viral DNA. The reverse transcription process is error prone and together with the high replication rates of the virus, allows the virus to exist as a heterogeneous population of mutants, known as a quasispecies, that can adapt and become resistant to antiviral therapy. This study presents an individual-based model of HBV inside an artificial liver, and associated blood serum, undergoing antiviral therapy. This model aims to provide insights into the evolution of the HBV quasispecies and the individual contribution of HBV mutations in the outcome of therapy.

  5. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity.

    Science.gov (United States)

    Xia, Pengyan; Ye, Buqing; Wang, Shuo; Zhu, Xiaoxiao; Du, Ying; Xiong, Zhen; Tian, Yong; Fan, Zusen

    2016-04-01

    Cyclic GMP-AMP synthase (cGAS) senses cytosolic DNA during viral infection and catalyzes synthesis of the dinucleotide cGAMP, which activates the adaptor STING to initiate antiviral responses. Here we found that deficiency in the carboxypeptidase CCP5 or CCP6 led to susceptibility to DNA viruses. CCP5 and CCP6 were required for activation of the transcription factor IRF3 and interferons. Polyglutamylation of cGAS by the enzyme TTLL6 impeded its DNA-binding ability, whereas TTLL4-mediated monoglutamylation of cGAS blocked its synthase activity. Conversely, CCP6 removed the polyglutamylation of cGAS, whereas CCP5 hydrolyzed the monoglutamylation of cGAS, which together led to the activation of cGAS. Therefore, glutamylation and deglutamylation of cGAS tightly modulate immune responses to infection with DNA viruses.

  6. Antiviral activity of the extracts of Rhodophyceae from Morocco

    African Journals Online (AJOL)

    Administrator

    2010-11-15

    Nov 15, 2010 ... replication of HSV-1 in vitro at an EC50 (Effective Concentration 50%) ranging from <2.5 to 75.9 µg mL-1. No cytotoxic effect ... Keywords: Antiviral, Aqueous extracts, Organic extracts, Rhodophyceae, Herpes simplex virus. INTRODUCTION ... from a species of Bryopsis as a possible treatment of lung cancer ...

  7. Antiviral Activity of Natural Products Extracted from Marine Organisms

    Directory of Open Access Journals (Sweden)

    Sobia Tabassum

    2011-11-01

    Full Text Available Many epidemics have broken out over the centuries. Hundreds and thousands of humans have died over a disease. Available treatments for infectious diseases have always been limited. Some infections are more deadly than the others, especially viral pathogens. These pathogens have continuously resisted all kinds of medical treatment, due to a need for new treatments to be developed. Drugs are present in nature and are also synthesized in vitro and they help in combating diseases and restoring health. Synthesizing drugs is a hard and time consuming task, which requires a lot of man power and financial aid. However, the natural compounds are just lying around on the earth, may it be land or water. Over a thousand novel compounds isolated from marine organisms are used as antiviral agents. Others are being pharmacologically tested. Today, over forty antiviral compounds are present in the pharmacological market. Some of these compounds are undergoing clinical and pre-clinical stages. Marine compounds are paving the way for a new trend in modern medicine.

  8. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Ying, E-mail: peiying-19802@163.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Chen, Zhen-Ping, E-mail: 530670663@qq.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Ju, Huai-Qiang, E-mail: 344464448@qq.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Komatsu, Masaaki, E-mail: komatsu-ms@igakuken.or.jp [Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613 (Japan); Ji, Yu-hua, E-mail: tjyh@jnu.edu.cn [Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Liu, Ge, E-mail: lggege_15@hotmail.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Guo, Chao-wan, E-mail: chaovan_kwok@hotmail.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Zhang, Ying-Jun, E-mail: zhangyj@mail.kib.ac.cn [Kunming Institute of Botany, the Chinese Academy of Sciences, Yunnan, Kunming 650204 (China); Yang, Chong-Ren, E-mail: cryang@mail.kib.ac.cn [Kunming Institute of Botany, the Chinese Academy of Sciences, Yunnan, Kunming 650204 (China); Wang, Yi-Fei, E-mail: twang-yf@163.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Kitazato, Kaio, E-mail: kkholi@msn.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan)

    2011-02-11

    Research highlights: {yields} We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. {yields} Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. {yields} Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impaired significantly in MEF-atg7{sup -/-} cells (autophagy-defective cells) derived from an atg7{sup -/-} knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.

  9. Rapid response systems.

    Science.gov (United States)

    Lyons, Patrick G; Edelson, Dana P; Churpek, Matthew M

    2018-07-01

    Rapid response systems are commonly employed by hospitals to identify and respond to deteriorating patients outside of the intensive care unit. Controversy exists about the benefits of rapid response systems. We aimed to review the current state of the rapid response literature, including evolving aspects of afferent (risk detection) and efferent (intervention) arms, outcome measurement, process improvement, and implementation. Articles written in English and published in PubMed. Rapid response systems are heterogeneous, with important differences among afferent and efferent arms. Clinically meaningful outcomes may include unexpected mortality, in-hospital cardiac arrest, length of stay, cost, and processes of care at end of life. Both positive and negative interventional studies have been published, although the two largest randomized trials involving rapid response systems - the Medical Early Response and Intervention Trial (MERIT) and the Effect of a Pediatric Early Warning System on All-Cause Mortality in Hospitalized Pediatric Patients (EPOCH) trial - did not find a mortality benefit with these systems, albeit with important limitations. Advances in monitoring technologies, risk assessment strategies, and behavioral ergonomics may offer opportunities for improvement. Rapid responses may improve some meaningful outcomes, although these findings remain controversial. These systems may also improve care for patients at the end of life. Rapid response systems are expected to continue evolving with novel developments in monitoring technologies, risk prediction informatics, and work in human factors. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs.

    Science.gov (United States)

    Gerlach, Thomas; Hensen, Luca; Matrosovich, Tatyana; Bergmann, Janina; Winkler, Michael; Peteranderl, Christin; Klenk, Hans-Dieter; Weber, Friedemann; Herold, Susanne; Pöhlmann, Stefan; Matrosovich, Mikhail

    2017-06-01

    The replication and pathogenicity of influenza A viruses (IAVs) critically depend on their ability to tolerate the antiviral interferon (IFN) response. To determine a potential role for the IAV hemagglutinin (HA) in viral sensitivity to IFN, we studied the restriction of IAV infection in IFN-β-treated human epithelial cells by using 2:6 recombinant IAVs that shared six gene segments of A/Puerto Rico/8/1934 virus (PR8) and contained HAs and neuraminidases of representative avian, human, and zoonotic H5N1 and H7N9 viruses. In A549 and Calu-3 cells, viruses displaying a higher pH optimum of HA-mediated membrane fusion, H5N1-PR8 and H7N9-PR8, were less sensitive to the IFN-induced antiviral state than their counterparts with HAs from duck and human viruses, which fused at a lower pH. The association between a high pH optimum of fusion and reduced IFN sensitivity was confirmed by using HA point mutants of A/Hong Kong/1/1968-PR8 that differed solely by their fusion properties. Furthermore, similar effects of the viral fusion pH on IFN sensitivity were observed in experiments with (i) primary human type II alveolar epithelial cells and differentiated cultures of human airway epithelial cells, (ii) nonrecombinant zoonotic and pandemic IAVs, and (iii) preparations of IFN-α and IFN-λ1. A higher pH of membrane fusion and reduced sensitivity to IFN correlated with lower restriction of the viruses in MDCK cells stably expressing the IFN-inducible transmembrane proteins IFITM2 and IFITM3, which are known to inhibit viral fusion. Our results reveal that the pH optimum of HA-driven membrane fusion of IAVs is a determinant of their sensitivity to IFN and IFITM proteins. IMPORTANCE The IFN system constitutes an important innate defense against viral infection. Substantial information is available on how IAVs avoid detection by sensors of the IFN system and disable IFN signaling pathways. Much less is known about the ability of IAVs to tolerate the antiviral activity of IFN

  11. The science of direct-acting antiviral and host-targeted agent therapy.

    Science.gov (United States)

    Pawlotsky, Jean-Michel

    2012-01-01

    Direct-acting antiviral drugs targeting two major steps of the HCV life cycle, polyprotein processing and replication, and cyclophilin inhibitors, that target a host cell protein required to interact with the replication complex, have reached clinical development. In order to achieve a sustained virological response, that is, a cure of the HCV infection, it is necessary to shut down virus production, to maintain viral inhibition throughout treatment and to induce a significant, slower second-phase decline in HCV RNA levels that leads to definitive clearance of infected cells. Recent findings suggest that the interferon era is coming to an end in hepatitis C therapy and HCV infection can be cured by all-oral interferon-free treatment regimens within 12 to 24 weeks. Further results are awaited that will allow the establishment of an ideal first-line all-oral, interferon-free treatment regimen for patients with chronic HCV infection.

  12. Whole genome HBV deletion profiles and the accumulation of preS deletion mutant during antiviral treatment

    Science.gov (United States)

    2012-01-01

    were not responsible for antiviral resistance, implying the coordination between wild type and mutant strains during viral survival and disease development. Conclusions We present the HBV deletion distribution patterns and preS deletion substructures in viral genomes that are prevalent in northern China. The accumulation of preS deletion mutants during nucleos(t)ide analog therapy may be due to viral escape from host immuno-surveillance. PMID:23272650

  13. Atividade antiviral do extrato de própolis contra o calicivírus felino, adenovírus canino 2 e vírus da diarréia viral bovina Antiviral activity of propolis extracts against feline calicivirus, canine adenovirus 2, and bovine viral diarrhea virus

    Directory of Open Access Journals (Sweden)

    Ana Paula Cueto

    2011-10-01

    Full Text Available Dentre as propriedades biológicas da própolis, a atividade antimicrobiana tem merecido destacada atenção. Neste artigo, descreve-se a atividade antiviral de dois extratos etanólicos de própolis (EP1 e EP2 frente aos vírus: calicivírus felino (FCV, adenovírus canino tipo 2 (CAV-2 e vírus da diarréia viral bovina (BVDV. Um dos extratos (EP1 foi obtido por extração etanólica de própolis obtida da região central do Estado do Rio Grande do Sul e o segundo (EP2, obtido comercialmente de uma empresa de Minas Gerais. A análise dos extratos de própolis através da cromatografia líquida de alta eficiência (CLAE identificou a presença de flavonóides como: rutina, quercetina e ácido gálico. A atividade antiviral bem como a citotoxicidade dos extratos aos cultivos celulares foram avaliadas através do MTT [3- (4,5 dimetiltiazol-2yl-2-5-difenil-2H tetrazolato de bromo]. Ambos os extratos evidenciaram atividade antiviral frente ao BVDV e CAV-2 quando acrescidos ao cultivo celular anteriormente à inoculação viral. Os extratos foram menos efetivos contra o FCV em comparação aos resultados obtidos com os outros vírus, e a atividade antiviral neste caso foi observada apenas quando a própolis estava presente após a inoculação viral. O extrato obtido no laboratório (EP1 apresentou valores mais altos de índice de seletividade (IS=CC50/ CE50, quando comparado à outra amostra (EP2. Em resumo, a própolis apresentou atividade antiviral frente a três diferentes vírus, o que a torna alvo para o desenvolvimento de novos compostos naturais com atividade antiviral.Propolis is a resinous substance produced by bees for which several biological activities have been attributed. In this article, the antiviral activity of two propolis extracts was tested against bovine viral diarrhea virus (BVDV, canine adenovirus type 2 (CAV-2, and feline calicivirus (FCV. One of the extracts was obtained by ethanolic extraction of propolis from the Santa

  14. 78 FR 57166 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-09-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  15. Antiviral evaluation of an Hsp90 inhibitor, gedunin, against dengue ...

    African Journals Online (AJOL)

    Purpose: To evaluate the antiviral potential of a tetranortriterpenoid, gedunin, against dengue virus (DENV) replication by targeting the host chaperone, Hsp90. Methods: The compound, gedunin, was tested against the replication of DENV in vitro using BHK-15 cells transfected with DENV-2 subgenomic replicon. Molecular ...

  16. 75 FR 16151 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-03-31

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  17. 76 FR 62418 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-10-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  18. Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS

    DEFF Research Database (Denmark)

    Reinert, Line S; Lopušná, Katarína; Winther, Henriette

    2016-01-01

    Herpes simplex encephalitis (HSE) is the most common form of acute viral encephalitis in industrialized countries. Type I interferon (IFN) is important for control of herpes simplex virus (HSV-1) in the central nervous system (CNS). Here we show that microglia are the main source of HSV-induced t......Herpes simplex encephalitis (HSE) is the most common form of acute viral encephalitis in industrialized countries. Type I interferon (IFN) is important for control of herpes simplex virus (HSV-1) in the central nervous system (CNS). Here we show that microglia are the main source of HSV......-induced type I IFN expression in CNS cells and these cytokines are induced in a cGAS-STING-dependent manner. Consistently, mice defective in cGAS or STING are highly susceptible to acute HSE. Although STING is redundant for cell-autonomous antiviral resistance in astrocytes and neurons, viral replication...... is strongly increased in neurons in STING-deficient mice. Interestingly, HSV-infected microglia confer STING-dependent antiviral activities in neurons and prime type I IFN production in astrocytes through the TLR3 pathway. Thus, sensing of HSV-1 infection in the CNS by microglia through the cGAS-STING pathway...

  19. Inhibition of enterovirus 71 (EV-71 infections by a novel antiviral peptide derived from EV-71 capsid protein VP1.

    Directory of Open Access Journals (Sweden)

    Chee Wah Tan

    Full Text Available Enterovirus 71 (EV-71 is the main causative agent of hand, foot and mouth disease (HFMD. In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50 values ranging from 6-9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71.

  20. In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids.

    Science.gov (United States)

    Chiang, L C; Chiang, W; Liu, M C; Lin, C C

    2003-08-01

    The aim of this study was to search for new antiviral agents from Chinese herbal medicine. Pure flavonoids and aqueous extracts of Caesalpinia pulcherrima Swartz were used in experiments to test their influence on a series of viruses, namely herpesviruses (HSV-1, HSV-2) and adenoviruses (ADV-3, ADV-8, ADV-11). The EC50 was defined as the concentration required to achieve 50% protection against virus-induced cytopathic effects, and the selectivity index (SI) was determined as the ratio of CC50 (concentration of 50% cellular cytotoxicity) to EC50. Results showed that aqueous extracts of C. pulcherrima and its related quercetin possessed a broad-spectrum antiviral activity. Among them, the strongest activities against ADV-8 were fruit and seed (EC50 = 41.2 mg/l, SI = 83.2), stem and leaf (EC50 = 61.8 mg/l, SI = 52.1) and flower (EC50 = 177.9 mg/l, SI = 15.5), whereas quercetin possessed the strongest anti-ADV-3 activity (EC50 = 24.3 mg/l, SI = 20.4). In conclusion, some compounds of C. pulcherrima which possess antiviral activities may be derived from the flavonoid of quercetin. The mode of action of quercetin against HSV-1 and ADV-3 was found to be at the early stage of multiplication and with SI values greater than 20, suggesting the potential use of this compound for treatment of the infection caused by these two viruses.

  1. Direct-acting antivirals for chronic hepatitis C

    DEFF Research Database (Denmark)

    Jakobsen, Janus C; Nielsen, Emil Eik; Feinberg, Joshua

    2017-01-01

    and Drug Administration (FDA) (www.fda.gov), and pharmaceutical company sources for ongoing or unpublished trials. Searches were last run in October 2016. SELECTION CRITERIA: Randomised clinical trials comparing DAAs versus no intervention or placebo, alone or with co-interventions, in adults with chronic......BACKGROUND: Millions of people worldwide suffer from hepatitis C, which can lead to severe liver disease, liver cancer, and death. Direct-acting antivirals (DAAs) are relatively new and expensive interventions for chronic hepatitis C, and preliminary results suggest that DAAs may eradicate...

  2. Resistance Mechanisms in Hepatitis C Virus: implications for Direct-Acting Antiviral Use.

    Science.gov (United States)

    Bagaglio, Sabrina; Uberti-Foppa, Caterina; Morsica, Giulia

    2017-07-01

    Multiple direct-acting antiviral (DAA)-based regimens are currently approved that provide one or more interferon-free treatment options for hepatitis C virus (HCV) genotypes (G) 1-6. The choice of a DAA regimen, duration of therapy, and use of ribavirin depends on multiple viral and host factors, including HCV genotype, the detection of resistance-associated amino acid (aa) substitutions (RASs), prior treatment experience, and presence of cirrhosis. In regard to viral factors that may guide the treatment choice, the most important is the infecting genotype because a number of DAAs are genotype-designed. The potency and the genetic barrier may also impact the choice of treatment. One important and debated possible virologic factor that may negatively influence the response to DAAs is the presence of baseline RASs. Baseline resistance testing is currently not routinely considered or recommended for initiating HCV treatment, due to the overall high response rates (sustained virological response >90%) obtained. Exceptions are patients infected by HCV G1a when initiating treatment with simeprevir and elbasvir/grazoprevir or in those with cirrhosis prior to daclatasvir/sofosbuvir treatment because of natural polymorphisms demonstrated in sites of resistance. On the basis of these observations, first-line strategies should be optimized to overcome treatment failure due to HCV resistance.

  3. Effectiveness of direct-acting antiviral therapy for hepatitis C in difficult-to-treat patients in a safety-net health system: a retrospective cohort study.

    Science.gov (United States)

    Yek, Christina; de la Flor, Carolina; Marshall, John; Zoellner, Cindy; Thompson, Grace; Quirk, Lisa; Mayorga, Christian; Turner, Barbara J; Singal, Amit G; Jain, Mamta K

    2017-11-20

    Direct-acting antivirals (DAAs) have revolutionized chronic hepatitis C (HCV) treatment, but real-world effectiveness among vulnerable populations, including uninsured patients, is lacking. This study was conducted to characterize the effectiveness of DAAs in a socioeconomically disadvantaged and underinsured patient cohort. This retrospective observational study included all patients undergoing HCV treatment with DAA-based therapy between April 2014 and June 2016 at a large urban safety-net health system (Parkland Health and Hospital System, Dallas, TX, USA). The primary outcome was sustained virologic response (SVR), with secondary outcomes including treatment discontinuation, treatment relapse, and loss to follow-up. DAA-based therapy was initiated in 512 patients. The cohort was socioeconomically disadvantaged (56% uninsured and 13% Medicaid), with high historic rates of alcohol (41%) and substance (50%) use, and mental health disorders (38%). SVR was achieved in 90% of patients (n = 459); 26 patients (5%) were lost to follow-up. SVR was significantly lower in patients with decompensated cirrhosis (82% SVR; OR 0.37, 95% CI 0.16-0.85) but did not differ by insurance status (P = 0.98) or alcohol/substance use (P = 0.34). Reasons for treatment failure included loss to follow-up (n = 26, 5%), viral relapse (n = 16, 3%), non-treatment-related death (n = 7, 1%), and treatment discontinuation (n = 4, 1%). Of patients with viral relapse, 6 reported non-compliance and have not been retreated, 5 have been retreated and achieved SVR, 4 have undergone resistance testing but not yet initiated retreatment, and 1 was lost to follow-up. Effective outcomes with DAA-based therapy can be achieved in difficult-to-treat underinsured populations followed in resource-constrained safety-net health systems.

  4. Treatment of Decompensated Cirrhosis Secondary to Hepatitis C with Antiviral Therapy

    International Nuclear Information System (INIS)

    Khokhar, N.; Qureshi, M.O.; Niazi, T.K.

    2013-01-01

    Objective: To treat decompensated hepatitis C patient with interferon, ribavirin and amantidine to ascertain the sustained viral response. Study Design: Descriptive study. Place and Duration of Study: Shifa International Hospital, Islamabad, from January 2007 to January 2012. Methodology: HCV PCR patients with decompensated hepatitis C, who had developed a complication like ascites, encephalopathy or variceal bleeding were included in the study. Those with uncontrolled ascites or other complications were excluded. Treatment with standard interferon 3 miU subcutaneously three times a week along with ribavirin 800 mg to 1200 mg and amantidine 100 mg b.i.d. was administered for 12 months. Patients were followed every month with CBC and ALT and HCV PCR was performed after 3 months to document early viral response. They had HCV PCR at the end of the treatment to document end of treatment response. All were further followed for another 6 months at monthly intervals and HCV PCR was performed at the end of this period to document sustained viral response. Results: In all, 165 patients were treated. Treatment had to be discontinued in 42 (26%) patients. Out of these, 16 patients died. Thus, 123 completed treatment. Sustained viral response was documented in 58 out of the 123 (47%) patients. Hepatic encephalopathy, gastrointestinal bleeding, sepsis and development of ascites were the major complications during treatment. Conclusion: Forty seven percent of patients with decompensated hepatitis C cirrhosis were able to achieve sustained viral response after one year treatment with anti-viral therapy. However, complications developed during treatment and, therefore, frequent and close monitoring is necessary in these patients. (author)

  5. Discovery of dapivirine, a nonnucleoside HIV-1 reverse transcriptase inhibitor, as a broad-spectrum antiviral against both influenza A and B viruses.

    Science.gov (United States)

    Hu, Yanmei; Zhang, Jiantao; Musharrafieh, Rami Ghassan; Ma, Chunlong; Hau, Raymond; Wang, Jun

    2017-09-01

    The emergence of multidrug-resistant influenza viruses poses a persistent threat to public health. The current prophylaxis and therapeutic interventions for influenza virus infection have limited efficacy due to the continuous antigenic drift and antigenic shift of influenza viruses. As part of our ongoing effort to develop the next generation of influenza antivirals with broad-spectrum antiviral activity and a high genetic barrier to drug resistance, in this study we report the discovery of dapivirine, an FDA-approved HIV nonnucleoside reverse transcriptase inhibitor, as a broad-spectrum antiviral against multiple strains of influenza A and B viruses with low micromolar efficacy. Mechanistic studies revealed that dapivirine inhibits the nuclear entry of viral ribonucleoproteins at the early stage of viral replication. As a result, viral RNA and protein synthesis were inhibited. Furthermore, dapivirine has a high in vitro genetic barrier to drug resistance, and its antiviral activity is synergistic with oseltamivir carboxylate. In summary, the in vitro antiviral results of dapivirine suggest it is a promising candidate for the development of the next generation of dual influenza and HIV antivirals. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Between Scylla and Charybdis: the role of the human immune system in the pathogenesis of hepatitis C.

    Science.gov (United States)

    Spengler, Ulrich; Nischalke, Hans Dieter; Nattermann, Jacob; Strassburg, Christian P

    2013-11-28

    Hepatitis C virus (HCV) frequently elicits only mild immune responses so that it can often establish chronic infection. In this case HCV antigens persist and continue to stimulate the immune system. Antigen persistence then leads to profound changes in the infected host's immune responsiveness, and eventually contributes to the pathology of chronic hepatitis. This topic highlight summarizes changes associated with chronic hepatitis C concerning innate immunity (interferons, natural killer cells), adaptive immune responses (immunoglobulins, T cells, and mechanisms of immune regulation (regulatory T cells). Our overview clarifies that a strong anti-HCV immune response is frequently associated with acute severe tissue damage. In chronic hepatitis C, however, the effector arms of the immune system either become refractory to activation or take over regulatory functions. Taken together these changes in immunity may lead to persistent liver damage and cirrhosis. Consequently, effector arms of the immune system will not only be considered with respect to antiviral defence but also as pivotal mechanisms of inflammation, necrosis and progression to cirrhosis. Thus, avoiding Scylla - a strong, sustained antiviral immune response with inital tissue damage - takes the infected host to virus-triggered immunopathology, which ultimately leads to cirrhosis and liver cancer - the realm of Charybdis.

  7. Molecular Sleds and More: Novel Antiviral Agents via Single-Molecule Biology (441st Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Mangel, Wally (Ph.D., Biology Department)

    2008-10-15

    Vaccines are effective against viruses such as polio and measles, but vaccines against other important viruses, such as HIV and flu viruses, may be impossible to obtain. These viruses change their genetic makeup each time they replicate so that the immune system cannot recognize all their variations. Hence it is important to develop new antiviral agents that inhibit virus replication. During this lecture, Dr. Mangel will discuss his group's work with a model system, the human adenovirus, which causes, among other ailments, pink eye, blindness and obesity. Mangel's team has developed a promising drug candidate that works by inihibiting adenovirus proteinase, an enzyme necessary for viral replication.

  8. Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response

    Science.gov (United States)

    Marques, Joao T.; Rebouillat, Dominique; Ramana, Chilakamarti V.; Murakami, Junko; Hill, Jason E.; Gudkov, Andrei; Silverman, Robert H.; Stark, George R.; Williams, Bryan R. G.

    2005-01-01

    p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus lacking the dsRNA binding protein E3L can also induce this effect, indicating that dsRNA formed during viral infection is likely the trigger for down-regulation of p53. The mechanism of down-regulation of p53 by dsRNA relies on translation inhibition mediated by the PKR and RNase L pathways. In the absence of p53, the replication of both EMCV and HPIV3 was retarded, whereas, conversely, VSV replication was enhanced. Cell cycle analysis indicated that wild-type (WT) but not p53 knockout (KO) fibroblasts undergo an early-G1 arrest following dsRNA treatment. Moreover, in WT cells the onset of dsRNA-induced apoptosis begins after p53 levels are down-regulated, whereas p53 KO cells, which lack the early-G1 arrest, rapidly undergo apoptosis. Hence, our data suggest that the down-regulation of p53 facilitates apoptosis, thereby limiting viral replication. PMID:16103161

  9. Novel α,β-unsaturated amide derivatives bearing α-amino phosphonate moiety as potential antiviral agents.

    Science.gov (United States)

    Lan, Xianmin; Xie, Dandan; Yin, Limin; Wang, Zhenzhen; Chen, Jin; Zhang, Awei; Song, Baoan; Hu, Deyu

    2017-09-15

    Based on flexible construction and broad bioactivity of ferulic acid, a series of novel α,β-unsaturated amide derivatives bearing α-aminophosphonate moiety were designed, synthesized and systematically evaluated for their antiviral activity. Bioassay results indicated that some compounds exhibited good antiviral activities against cucumber mosaic virus (CMV) and tobacco mosaic virus (TMV) in vivo. Especially, compound g18 showed excellent curative and protective activities against CMV, with half-maximal effective concentration (EC 50 ) values of 284.67μg/mL and 216.30μg/mL, which were obviously superior to that of Ningnanmycin (352.08μg/mL and 262.53μg/mL). Preliminary structure-activity relationships (SARs) analysis revealed that the introduction of electron-withdrawing group at the 2-position or 4-position of the aromatic ring is favorable for antiviral activity. Present work provides a promising template for development of potential inhibitor of plant virus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Antiviral Activities and Putative Identification of Compounds in Microbial Extracts from the Hawaiian Coastal Waters

    Directory of Open Access Journals (Sweden)

    Yuanan Lu

    2012-02-01

    Full Text Available Marine environments are a rich source of significant bioactive compounds. The Hawaiian archipelago, located in the middle of the Pacific Ocean, hosts diverse microorganisms, including many endemic species. Thirty-eight microbial extracts from Hawaiian coastal waters were evaluated for their antiviral activity against four mammalian viruses including herpes simplex virus type one (HSV-1, vesicular stomatitis virus (VSV, vaccinia virus and poliovirus type one (poliovirus-1 using in vitro cell culture assay. Nine of the 38 microbial crude extracts showed antiviral potencies and three of these nine microbial extracts exhibited significant activity against the enveloped viruses. A secosteroid, 5α(H,17α(H,(20R-beta-acetoxyergost-8(14-ene was putatively identified and confirmed to be the active compound in these marine microbial extracts. These results warrant future in-depth tests on the isolation of these active elements in order to explore and validate their antiviral potential as important therapeutic remedies.

  11. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways.

    Directory of Open Access Journals (Sweden)

    Stephanie M Rainey

    2016-04-01

    Full Text Available The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus. Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3' open reading frame than the 5' non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia's antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to

  12. Herpesvirus infections in immunocompromised patients : treatment, treatment failure and antiviral resistance

    NARCIS (Netherlands)

    Beek, Martha Trijntje van der

    2012-01-01

    The research described in this thesis aims to study determinants of the course and outcome of treatment of herpesvirus infections in immunocompromised patients. Both viral factors, such as antiviral resistance, and patient factors, including immunological parameters, were investigated. Techniques to

  13. Asymmetric positive feedback loops reliably control biological responses.

    Science.gov (United States)

    Ratushny, Alexander V; Saleem, Ramsey A; Sitko, Katherine; Ramsey, Stephen A; Aitchison, John D

    2012-04-24

    Positive feedback is a common mechanism enabling biological systems to respond to stimuli in a switch-like manner. Such systems are often characterized by the requisite formation of a heterodimer where only one of the pair is subject to feedback. This ASymmetric Self-UpREgulation (ASSURE) motif is central to many biological systems, including cholesterol homeostasis (LXRα/RXRα), adipocyte differentiation (PPARγ/RXRα), development and differentiation (RAR/RXR), myogenesis (MyoD/E12) and cellular antiviral defense (IRF3/IRF7). To understand why this motif is so prevalent, we examined its properties in an evolutionarily conserved transcriptional regulatory network in yeast (Oaf1p/Pip2p). We demonstrate that the asymmetry in positive feedback confers a competitive advantage and allows the system to robustly increase its responsiveness while precisely tuning the response to a consistent level in the presence of varying stimuli. This study reveals evolutionary advantages for the ASSURE motif, and mechanisms for control, that are relevant to pharmacologic intervention and synthetic biology applications.

  14. Antiviral Protein of Momordica charantia L. Inhibits Different Subtypes of Influenza A

    Directory of Open Access Journals (Sweden)

    Viroj Pongthanapisith

    2013-01-01

    Full Text Available The new antiviral activity of the protein extracted from Momordica charantia was determined with different subtypes of influenza A. The protein was purified from the seed of M. charantia using an anion exchanger and a Fast Protein Liquid Chromatography (FPLC system. At the concentration of 1.401 mg/mL, the protein did not exhibit cytotoxicity in Madin-Darby canine kidney cells (MDCK but inhibited FFU influenza A/PR/8/34 H1N1 virus at 56.50%, 65.72%, and 100% inhibition by the protein treated before the virus (pretreated, the protein treated alongside with the virus (simultaneously treated, and the protein treated after the virus (posttreated during incubation, respectively. Using 5, 25, and 100 TCID50 of influenza A/New Caledonia/20/99 H1N1, A/Fujian/411/01 H3N2 and A/Thailand/1(KAN-1/2004 H5N1, the IC50 was calculated to be 100, 150, and 200; 75, 175, and 300; and 40, 75, and 200 μg/mL, respectively. Our present finding indicated that the plant protein inhibited not only H1N1 and H3N2 but also H5N1 subtype. As a result of the broad spectrum of its antiviral activity, this edible plant can be developed as an effective therapeutic agent against various and even new emerging subtypes of influenza A.

  15. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections.

    Science.gov (United States)

    Lembo, David; Donalisio, Manuela; Civra, Andrea; Argenziano, Monica; Cavalli, Roberta

    2018-01-01

    Viral infections represent a public health problem and one of the leading causes of global mortality. Nanomedicine strategies can be considered a powerful tool to enhance the effectiveness of antiviral drugs, often associated with solubility and bioavailability issues. Consequently, high doses and frequent administrations are required, resulting in adverse side effects. To overcome these limitations, various nanomedicine platforms have been designed. Areas covered: This review focuses on the state of the art of organic-based nanoparticles for the delivery of approved antivirals. A brief description of the main characteristics of nanocarriers is followed by an overview of the most promising research addressing the treatment of most important viral infections. Expert opinion: The activity of antiviral drugs could be improved with nanomedicine formulations. Indeed, nanoparticles can affect the fate of the encapsulated drugs, allowing controlled release kinetics, enhanced bioavailability, modified pharmacokinetics, and reduced side effects. In addition, the physicochemical properties of nanocarriers can enable their capability to target specific sites and to interact with virus structures. In this regard, nanomedicines can be considered an opportunity to enhance the therapeutic index of antivirals. Efficacy, safety, and manufacturing issues need to be carefully assessed to bring this promising approach to the clinic.

  16. A novel three-dimensional cell culture method enhances antiviral drug screening in primary human cells.

    Science.gov (United States)

    Koban, Robert; Neumann, Markus; Daugs, Aila; Bloch, Oliver; Nitsche, Andreas; Langhammer, Stefan; Ellerbrok, Heinz

    2018-02-01

    Gefitinib is a specific inhibitor of the epidermal growth factor receptor (EGFR) and FDA approved for treatment of non-small cell lung cancer. In a previous study we could show the in vitro efficacy of gefitinib for treatment of poxvirus infections in monolayer (2D) cultivated cell lines. Permanent cell lines and 2D cultures, however, are known to be rather unphysiological; therefore it is difficult to predict whether determined effective concentrations or the drug efficacy per se are transferable to the in vivo situation. 3D cell cultures, which meanwhile are widely distributed across all fields of research, are a promising tool for more predictive in vitro investigations of antiviral compounds. In this study the spreading of cowpox virus and the antiviral efficacy of gefitinib were analyzed in primary human keratinocytes (NHEK) grown in a novel 3D extracellular matrix-based cell culture model and compared to the respective monolayer culture. 3D-cultivated NHEK grew in a polarized and thus a more physiological manner with altered morphology and close cell-cell contact. Infected cultures showed a strongly elevated sensitivity towards gefitinib. EGFR phosphorylation, cell proliferation, and virus replication were significantly reduced in 3D cultures at gefitinib concentrations which were at least 100-fold lower than those in monolayer cultures and well below the level of cytotoxicity. Our newly established 3D cell culture model with primary human cells is an easy-to-handle alternative to conventional monolayer cell cultures and previously described more complex 3D cell culture systems. It can easily be adapted to other cell types and a broad spectrum of viruses for antiviral drug screening and many other aspects of virus research under more in vivo-like conditions. In consequence, it may contribute to a more targeted realization of necessary in vivo experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Enterovirus 71 antagonizes the antiviral activity of host STAT3 and IL-6R with partial dependence on virus-induced miR-124.

    Science.gov (United States)

    Chang, Zhangmei; Wang, Yan; Bian, Liang; Liu, Qingqing; Long, Jian-Er

    2017-12-01

    Enterovirus 71 (EV71) has caused major outbreaks of hand, foot and mouth disease. EV71 infections increase the production of many host cytokines and pro-inflammatory factors, including interleukin (IL)-6, IL-10 and COX-2. Some of these molecules could stimulate the signal transducer and activator of transcription 3 (STAT3), which plays a key role in regulating host immune responses and several viral diseases. However, the role of STAT3 in EV71 infection remains unknown. This study found that the phosphorylation levels of STAT3 (p Y705 -STAT3) are closely related to EV71 infection. Further experiments revealed that STAT3 exerts an anti-EV71 activity. However, the antiviral activity of STAT3 is partially antagonized by EV71-induced miR-124, which directly targets STAT3 mRNA. Similarly, IL-6R, the α-subunit of the IL-6 receptor complex, exhibits anti-EV71 activity and is directly targeted by the virus-induced miR-124. These results indicate that EV71 can evade host IL-6R- and STAT3-mediated antiviral activities by EV71-induced miR-124. This suggests that controlling miR-124 and the downstream targets, IL-6R and STAT3, might benefit the antiviral treatment of EV71 infection.

  18. Tannins from Hamamelis virginiana bark extract: characterization and improvement of the antiviral efficacy against influenza A virus and human papillomavirus.

    Directory of Open Access Journals (Sweden)

    Linda L Theisen

    Full Text Available Antiviral activity has been demonstrated for different tannin-rich plant extracts. Since tannins of different classes and molecular weights are often found together in plant extracts and may differ in their antiviral activity, we have compared the effect against influenza A virus (IAV of Hamamelis virginiana L. bark extract, fractions enriched in tannins of different molecular weights and individual tannins of defined structures, including pseudotannins. We demonstrate antiviral activity of the bark extract against different IAV strains, including the recently emerged H7N9, and show for the first time that a tannin-rich extract inhibits human papillomavirus (HPV type 16 infection. As the best performing antiviral candidate, we identified a highly potent fraction against both IAV and HPV, enriched in high molecular weight condensed tannins by ultrafiltration, a simple, reproducible and easily upscalable method. This ultrafiltration concentrate and the bark extract inhibited early and, to a minor extent, later steps in the IAV life cycle and tannin-dependently inhibited HPV attachment. We observed interesting mechanistic differences between tannin structures: High molecular weight tannin containing extracts and tannic acid (1702 g/mol inhibited both IAV receptor binding and neuraminidase activity. In contrast, low molecular weight compounds (<500 g/mol such as gallic acid, epigallocatechin gallate or hamamelitannin inhibited neuraminidase but not hemagglutination. Average molecular weight of the compounds seemed to positively correlate with receptor binding (but not neuraminidase inhibition. In general, neuraminidase inhibition seemed to contribute little to the antiviral activity. Importantly, antiviral use of the ultrafiltration fraction enriched in high molecular weight condensed tannins and, to a lesser extent, the unfractionated bark extract was preferable over individual isolated compounds. These results are of interest for developing and

  19. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

    Science.gov (United States)

    Baril, Martin; Es-Saad, Salwa; Chatel-Chaix, Laurent; Fink, Karin; Pham, Tram; Raymond, Valérie-Ann; Audette, Karine; Guenier, Anne-Sophie; Duchaine, Jean; Servant, Marc; Bilodeau, Marc; Cohen, Eric; Grandvaux, Nathalie; Lamarre, Daniel

    2013-01-01

    To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1) promoter following Sendai virus (SeV) infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1) upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3) inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

  20. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

    Directory of Open Access Journals (Sweden)

    Martin Baril

    Full Text Available To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1 promoter following Sendai virus (SeV infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I-like receptor (RLR-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1 upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3 inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

  1. Hedging against antiviral resistance during the next influenza pandemic using small stockpiles of an alternative chemotherapy.

    Directory of Open Access Journals (Sweden)

    Joseph T Wu

    2009-05-01

    Full Text Available The effectiveness of single-drug antiviral interventions to reduce morbidity and mortality during the next influenza pandemic will be substantially weakened if transmissible strains emerge which are resistant to the stockpiled antiviral drugs. We developed a mathematical model to test the hypothesis that a small stockpile of a secondary antiviral drug could be used to mitigate the adverse consequences of the emergence of resistant strains.We used a multistrain stochastic transmission model of influenza to show that the spread of antiviral resistance can be significantly reduced by deploying a small stockpile (1% population coverage of a secondary drug during the early phase of local epidemics. We considered two strategies for the use of the secondary stockpile: early combination chemotherapy (ECC; individuals are treated with both drugs in combination while both are available; and sequential multidrug chemotherapy (SMC; individuals are treated only with the secondary drug until it is exhausted, then treated with the primary drug. We investigated all potentially important regions of unknown parameter space and found that both ECC and SMC reduced the cumulative attack rate (AR and the resistant attack rate (RAR unless the probability of emergence of resistance to the primary drug p(A was so low (less than 1 in 10,000 that resistance was unlikely to be a problem or so high (more than 1 in 20 that resistance emerged as soon as primary drug monotherapy began. For example, when the basic reproductive number was 1.8 and 40% of symptomatic individuals were treated with antivirals, AR and RAR were 67% and 38% under monotherapy if p(A = 0.01. If the probability of resistance emergence for the secondary drug was also 0.01, then SMC reduced AR and RAR to 57% and 2%. The effectiveness of ECC was similar if combination chemotherapy reduced the probabilities of resistance emergence by at least ten times. We extended our model using travel data between 105

  2. The effects of mind-body therapies on the immune system: meta-analysis.

    Directory of Open Access Journals (Sweden)

    Nani Morgan

    Full Text Available Psychological and health-restorative benefits of mind-body therapies have been investigated, but their impact on the immune system remain less defined.To conduct the first comprehensive review of available controlled trial evidence to evaluate the effects of mind-body therapies on the immune system, focusing on markers of inflammation and anti-viral related immune responses.Data sources included MEDLINE, CINAHL, SPORTDiscus, and PsycINFO through September 1, 2013. Randomized controlled trials published in English evaluating at least four weeks of Tai Chi, Qi Gong, meditation, or Yoga that reported immune outcome measures were selected. Studies were synthesized separately by inflammatory (n = 18, anti-viral related immunity (n = 7, and enumerative (n = 14 outcomes measures. We performed random-effects meta-analyses using standardized mean difference when appropriate.Thirty-four studies published in 39 articles (total 2, 219 participants met inclusion criteria. For inflammatory measures, after 7 to 16 weeks of mind-body intervention, there was a moderate effect on reduction of C-reactive protein (effect size [ES], 0.58; 95% confidence interval [CI], 0.04 to 1.12, a small but not statistically significant reduction of interleukin-6 (ES, 0.35; 95% CI, -0.04 to 0.75, and negligible effect on tumor necrosis factor-α (ES, 0.21; 95% CI, -0.15 to 0.58. For anti-viral related immune and enumerative measures, there were negligible effects on CD4 counts (ES, 0.15; 95% CI, -0.04 to 0.34 and natural killer cell counts (ES, 0.12, 95% CI -0.21 to 0.45. Some evidence indicated mind-body therapies increase immune responses to vaccination.Mind-body therapies reduce markers of inflammation and influence virus-specific immune responses to vaccination despite minimal evidence suggesting effects on resting anti-viral or enumerative measures. These immunomodulatory effects, albeit incomplete, warrant further methodologically rigorous studies to determine

  3. Antiviral activity of shikonin ester derivative PMM-034 against enterovirus 71 in vitro

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2017-08-01

    Full Text Available Human enterovirus 71 (EV71 is the major causative agent of hand, foot, and mouth disease (HFMD, particularly in infants and children below 4 years of age. Shikonin is a bioactive compound with anti-inflammatory, antiviral, and antibacterial activities derived from the roots of the Chinese medicinal herb Lithospermum erythrorhizon. This study aimed to examine the antiviral activity of PMM-034, a shikonin ester derivative, against EV71 in rhabdomyosarcoma (RD cells. Cytotoxicity of PMM-034 on RD cells was determined using WST-1 assay. Dose- and time-dependent effects of PMM-034 on EV71 replication in RD cells were determined using plaque reduction assay. mRNA expression levels of EV71/VP1 and pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α were determined by real-time RT-PCR, and EV71/VP1 and phospho-p65 protein expressions were determined by western blot analysis. PMM-034 exhibited only weak cytotoxicity against RD cells. However, PMM-034 exhibited significant antiviral activity against EV71 in RD cells with 50% inhibitory concentration of 2.31 μg/mL. The VP1 mRNA and protein levels were significantly reduced in cells treated with PMM-034. Furthermore, relative mRNA expression levels of IL-1β, IL-6, IL-8, and TNF-α significantly decreased in the cells treated with PMM-034, while the phospho-p65 protein expression was also significantly lower in the treated cells. These results indicated that PMM-034 suppressed the expressions of pro-inflammatory cytokines in RD cells, exhibiting antiviral activity against EV71, as evidenced by the reduced VP1 mRNA and protein levels in PMM-034-treated cells. Thus, PMM-034 is a promising candidate for further development as an EV71 inhibitor.

  4. Zika antiviral chemotherapy: identification of drugs and promising starting points for drug discovery from an FDA-approved library [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bruno S. Pascoalino

    2016-10-01

    Full Text Available Background The recent epidemics of Zika virus (ZIKV implicated it as the cause of serious and potentially lethal congenital conditions such microcephaly and other central nervous system defects, as well as the development of the Guillain-Barré syndrome in otherwise healthy patients. Recent findings showed that anti-Dengue antibodies are capable of amplifying ZIKV infection by a mechanism similar to antibody-dependent enhancement, increasing the severity of the disease. This scenario becomes potentially catastrophic when the global burden of Dengue and the advent of the newly approved anti-Dengue vaccines in the near future are taken into account. Thus, antiviral chemotherapy should be pursued as a priority strategy to control the spread of the virus and prevent the complications associated with Zika. Methods Here we describe a fast and reliable cell-based, high-content screening assay for discovery of anti-ZIKV compounds. This methodology has been used to screen the National Institute of Health Clinical Collection compound library, a small collection of FDA-approved drugs. Results and conclusion From 725 FDA-approved compounds triaged, 29 (4% were found to have anti-Zika virus activity, of which 22 had confirmed (76% of confirmation by dose-response curves. Five candidates presented selective activity against ZIKV infection and replication in a human cell line. These hits have abroad spectrum of chemotypes and therapeutic uses, offering valuable opportunities for selection of leads for antiviral drug discovery.

  5. Antivirals Use During the Pandemic H1N1 2009 Outbreak

    Centers for Disease Control (CDC) Podcasts

    2012-01-23

    Charisma Atkins, CDC public health analyst, discusses antiviral use during the 2009 H1N1 pandemic flu outbreak.  Created: 1/23/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 1/23/2012.

  6. Immune Responses in the Central Nervous System Are Anatomically Segregated in a Non-Human Primate Model of Human Immunodeficiency Virus Infection

    Directory of Open Access Journals (Sweden)

    Barbara Tavano

    2017-03-01

    Full Text Available The human immunodeficiency virus (HIV accesses the central nervous system (CNS early during infection, leading to HIV-associated cognitive impairment and establishment of a viral reservoir. Here, we describe a dichotomy in inflammatory responses in different CNS regions in simian immunodeficiency virus (SIV-infected macaques, a model for HIV infection. We found increased expression of inflammatory genes and perivascular leukocyte infiltration in the midbrain of SIV-infected macaques. Conversely, the frontal lobe showed downregulation of inflammatory genes associated with interferon-γ and interleukin-6 pathways, and absence of perivascular cuffing. These immunologic alterations were not accompanied by differences in SIV transcriptional activity within the tissue. Altered expression of genes associated with neurotoxicity was observed in both midbrain and frontal lobe. The segregation of inflammatory responses to specific regions of the CNS may both account for HIV-associated neurological symptoms and constitute a critical hurdle for HIV eradication by shielding the CNS viral reservoir from antiviral immunity.

  7. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research.

    Science.gov (United States)

    Simmons, Graham; Zmora, Pawel; Gierer, Stefanie; Heurich, Adeline; Pöhlmann, Stefan

    2013-12-01

    The severe acute respiratory syndrome (SARS) pandemic revealed that zoonotic transmission of animal coronaviruses (CoV) to humans poses a significant threat to public health and warrants surveillance and the development of countermeasures. The activity of host cell proteases, which cleave and activate the SARS-CoV spike (S) protein, is essential for viral infectivity and constitutes a target for intervention. However, the identities of the proteases involved have been unclear. Pioneer studies identified cathepsins and type II transmembrane serine proteases as cellular activators of SARS-CoV and demonstrated that several emerging viruses might exploit these enzymes to promote their spread. Here, we will review the proteolytic systems hijacked by SARS-CoV for S protein activation, we will discuss their contribution to viral spread in the host and we will outline antiviral strategies targeting these enzymes. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses.'' Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Direct Acting Antivirals in Patients with Chronic Hepatitis C and Down Syndrome

    Directory of Open Access Journals (Sweden)

    Eric R. Yoo

    2016-01-01

    Full Text Available Patients with Down syndrome who received blood transfusions, likely in conjunction with cardiothoracic surgery for congenital heart disease and prior to the implementation of blood-donor screening for hepatitis C virus infection, face a substantial risk of acquiring the infection. In the past, interferon-based therapy for chronic hepatitis C infection in patients with Down syndrome was noted to have lower efficacy and potentially higher risk of adverse effects. Recently, the treatment for chronic hepatitis C has been revolutionized with the introduction of interferon-free direct acting antivirals with favorable safety, tolerability, and efficacy profile. Based on our experiences, the newly approved sofosbuvir-based direct acting antiviral therapy is well tolerated and highly efficacious in this subpopulation of hepatitis C virus infected patients with Down syndrome.

  9. Foot-and-mouth disease virus infection suppresses autophagy and NF-кB antiviral responses via degradation of ATG5-ATG12 by 3Cpro.

    Science.gov (United States)

    Fan, Xuxu; Han, Shichong; Yan, Dan; Gao, Yuan; Wei, Yanquan; Liu, Xiangtao; Liao, Ying; Guo, Huichen; Sun, Shiqi

    2017-01-19

    Autophagy-related protein ATG5-ATG12 is an essential complex for the autophagophore elongation in autophagy, which has been reported to be involved in foot-and-mouth disease virus (FMDV) replication. Previous reports show that ATG5-ATG12 positively or negatively regulates type I interferon (IFN-α/β) pathway during virus infection. In this study, we found that FMDV infection rapidly induced LC3 lipidation and GFP-LC3 subcellular redistribution at the early infection stage in PK-15 cells. Along with infection time course to 2-5 h.p.i., the levels of LC3II and ATG5-ATG12 were gradually reduced. Further study showed that ATG5-ATG12 was degraded by viral protein 3C pro , demonstrating that FMDV suppresses autophagy along with viral protein production. Depletion of ATG5-ATG12 by siRNA knock down significantly increased the FMDV yields, whereas overexpression of ATG5-ATG12 had the opposite effects, suggesting that degradation of ATG5-ATG12 benefits virus growth. Further experiment showed that overexpression of ATG5-ATG12 positively regulated NF-кB pathway during FMDV infection, marked with promotion of IKKα/β phosphorylation and IκBα degradation, inhibition of p65 degradation, and facilitation of p65 nuclear translocation. Meanwhile, ATG5-ATG12 also promoted the phosphorylation of TBK1 and activation of IRF3 via preventing TRAF3 degradation. The positive regulation of NF-кB and IRF3 pathway by ATG5-ATG12 resulted in enhanced expression of IFN-β, chemokines/cytokines, and IFN stimulated genes, including anti-viral protein PKR. Altogether, above findings suggest that ATG5-ATG12 positively regulate anti-viral NF-κB and IRF3 signaling during FMDV infection, thereby limiting FMDV proliferation. FMDV has evolved mechanisms to counteract the antiviral function of ATG5-ATG12, via degradation of them by viral protein 3C pro .

  10. A population approach to disease management: hepatitis C direct-acting antiviral use in a large health care system.

    Science.gov (United States)

    Belperio, Pamela S; Backus, Lisa I; Ross, David; Neuhauser, Melinda M; Mole, Larry A

    2014-06-01

    The introduction of the first direct-acting antiviral agents (DAAs) for the treatment of hepatitis C virus (HCV), telaprevir and boceprevir, marked a unique event in which 2 disease-changing therapies received FDA approval at the same time. Comparative safety and effectiveness data in real-world populations upon which to make formulary decisions did not exist. To describe the implementation, measurement, and outcomes of an enduring population-based approach of surveillance of medication management for HCV. The foundation of the population approach to HCV medication management used by the Department of Veterans Affairs (VA) relied upon a basic framework of (a) providing data for effective regional and local management, (b) education and training, (c) real-time oversight and feedback from a higher organization level, and (d) prompt outcome sharing. These population-based processes spanned across the continuum of the direct-acting antiviral oversight process. We used the VA's HCV Clinical Case Registry-which includes pharmacy, laboratory, and diagnosis information for all HCV-infected veterans from all VA facilities-to assess DAA treatment eligibility, DAA uptake and timing, appropriate use of DAAs including HCV RNA monitoring and medication possession ratios (MPR), nonconcordance with guidance for adjunct erythropoiesis-stimulating agent (ESA) and granulocyte colony-stimulating factor (GCSF) use, hematologic adverse effects, discontinuation rates, and early and sustained virologic responses. Training impact was assessed via survey and change in pharmacist scope of practice. One year after FDA approval, DAAs had been prescribed at 120 of 130 VA facilities. Over 680 VA providers participated in live educational training programs including 380 pharmacists, and pharmacists with a scope of practice for HCV increased from 59 to 110 pharmacists (86%). HCV RNA futility testing improved such that only 1%-3% of veterans did not have appropriate testing compared with 15%-17% 6

  11. Evidence-based guideline update: steroids and antivirals for Bell palsy: report of the Guideline Development Subcommittee of the American Academy of Neurology.

    Science.gov (United States)

    Gronseth, Gary S; Paduga, Remia

    2012-11-27

    To review evidence published since the 2001 American Academy of Neurology (AAN) practice parameter regarding the effectiveness, safety, and tolerability of steroids and antiviral agents for Bell palsy. We searched Medline and the Cochrane Database of Controlled Clinical Trials for studies published since January 2000 that compared facial functional outcomes in patients with Bell palsy receiving steroids/antivirals with patients not receiving these medications. We graded each study (Class I-IV) using the AAN therapeutic classification of evidence scheme. We compared the proportion of patients recovering facial function in the treated group with the proportion of patients recovering facial function in the control group. Nine studies published since June 2000 on patients with Bell palsy receiving steroids/antiviral agents were identified. Two of these studies were rated Class I because of high methodologic quality. For patients with new-onset Bell palsy, steroids are highly likely to be effective and should be offered to increase the probability of recovery of facial nerve function (2 Class I studies, Level A) (risk difference 12.8%-15%). For patients with new-onset Bell palsy, antiviral agents in combination with steroids do not increase the probability of facial functional recovery by >7%. Because of the possibility of a modest increase in recovery, patients might be offered antivirals (in addition to steroids) (Level C). Patients offered antivirals should be counseled that a benefit from antivirals has not been established, and, if there is a benefit, it is likely that it is modest at best.

  12. Resistance to antivirals in human cytomegalovirus: mechanisms and clinical significance.

    Science.gov (United States)

    Pérez, J L

    1997-09-01

    Long term therapies needed for managing human cytomegalovirus (HCMV) infections in immunosupressed patients provided the background for the emergence of the resistance to antivirals active against HCMV. In addition, laboratory selected mutants have also been readily achieved. Both clinical and laboratory resistant strains share the same determinants of resistance. Ganciclovir resistance may be due to a few mutations in the HCMV UL97 gene and/or viral DNA pol gene, the former being responsible for about 70% of clinical resistant isolates. Among them, V464, V594, S595 and F595 are the most frequent mutations. Because of their less extensive clinical use, much less is known about resistance to foscarnet and cidofovir (formerly, HPMPC) but in both cases, it has been associated to mutations in the DNA pol. Ganciclovir resistant strains showing DNA pol mutations are cross-resistant to cidofovir and their corresponding IC50 are normally higher than those from strains harboring only mutations at the UL97 gene. To date, foscarnet resistance seems to be independent of both ganciclovir and cidofovir resistance.

  13. CNS activity of Pokeweed Anti-viral Protein (PAP in mice infected with Lymphocytic Choriomeningitis Virus (LCMV

    Directory of Open Access Journals (Sweden)

    Tibbles Heather E

    2005-02-01

    Full Text Available Abstract Background Others and we have previously described the potent in vivo and in vitro activity of the broad-spectrum antiviral agent PAP (Pokeweed antiviral protein against a wide range of viruses. The purpose of the present study was to further elucidate the anti-viral spectrum of PAP by examining its effects on the survival of mice challenged with lymphocytic choriomeningitis virus (LCMV. Methods We examined the therapeutic effect of PAP in CBA mice inoculated with intracerebral injections of the WE54 strain of LCMV at a 1000 PFU dose level that is lethal to 100% of mice within 7–9 days. Mice were treated either with vehicle or PAP administered intraperitoneally 24 hours prior to, 1 hour prior to and 24 hours, 48 hours 72 hours and 96 hours after virus inoculation. Results PAP exhibits significant in vivo anti- LCMV activity in mice challenged intracerebrally with an otherwise invariably fatal dose of LCMV. At non-toxic dose levels, PAP significantly prolonged survival in the absence of the majority of disease-associated symptoms. The median survival time of PAP-treated mice was >21 days as opposed to 7 days median survival for the control (p = 0.0069. Conclusion Our results presented herein provide unprecedented experimental evidence that PAP exhibits antiviral activity in the CNS of LCMV-infected mice.

  14. Antiviral activity of Justicia gendarussa Burm.f. leaves against HIV ...

    African Journals Online (AJOL)

    Backgrounds: Justicia gendarussa Burm.f. has been known to have anti-HIV activity. This study was conducted to evaluate the effect of incubation time on the antiviral activity of the J. gendarussa leaves extract on HIV-infected MT-4 cells in vitro. Molecular docking test was also conducted to determine the interaction of ...

  15. Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses.

    Science.gov (United States)

    Nácher-Vázquez, Montserrat; Ballesteros, Natalia; Canales, Ángeles; Rodríguez Saint-Jean, Sylvia; Pérez-Prieto, Sara Isabel; Prieto, Alicia; Aznar, Rosa; López, Paloma

    2015-06-25

    Viral infections in the aquaculture of salmonids can lead to high mortality and substantial economic losses. Thus, there is industrial interest in new molecules active against these viruses. Here we describe the production, purification, and the physicochemical and structural characterization of high molecular weight dextrans synthesized by Lactobacillus sakei MN1 and Leuconostoc mesenteroides RTF10. The purified dextrans, and commercial dextrans with molecular weights ranging from 10 to 2000kDa, were assayed in infected BF-2 and EPC fish cell-line monolayers for antiviral activity. Only T2000 and dextrans from MN1 and RTF10 had significant antiviral activity. This was similar to results obtained against infectious pancreatic necrosis virus. However the dextran from MN1 showed ten-fold higher activity against hematopoietic necrosis virus than T2000. In vivo assays using the MN1 polymer confirmed the in vitro results and revealed immunomodulatory activity. These results together with the high levels of dextran production (2gL(-1)) by Lb. sakei MN1, indicate the compounds potential utility as an antiviral agent in aquaculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Characterization of the Zika virus induced small RNA response in Aedes aegypti cells.

    Directory of Open Access Journals (Sweden)

    Margus Varjak

    2017-10-01

    Full Text Available RNA interference (RNAi controls arbovirus infections in mosquitoes. Two different RNAi pathways are involved in antiviral responses: the PIWI-interacting RNA (piRNA and exogenous short interfering RNA (exo-siRNA pathways, which are characterized by the production of virus-derived small RNAs of 25-29 and 21 nucleotides, respectively. The exo-siRNA pathway is considered to be the key mosquito antiviral response mechanism. In Aedes aegypti-derived cells, Zika virus (ZIKV-specific siRNAs were produced and loaded into the exo-siRNA pathway effector protein Argonaute 2 (Ago2; although the knockdown of Ago2 did not enhance virus replication. Enhanced ZIKV replication was observed in a Dcr2-knockout cell line suggesting that the exo-siRNA pathway is implicated in the antiviral response. Although ZIKV-specific piRNA-sized small RNAs were detected, these lacked the characteristic piRNA ping-pong signature motif and were bound to Ago3 but not Piwi5 or Piwi6. Silencing of PIWI proteins indicated that the knockdown of Ago3, Piwi5 or Piwi6 did not enhance ZIKV replication and only Piwi4 displayed antiviral activity. We also report that the expression of ZIKV capsid (C protein amplified the replication of a reporter alphavirus; although, unlike yellow fever virus C protein, it does not inhibit the exo-siRNA pathway. Our findings elucidate ZIKV-mosquito RNAi interactions that are important for understanding its spread.

  17. JAK-inhibitor tofacitinib suppresses interferon alfa production by plasmacytoid dendritic cells and inhibits arthrogenic and antiviral effects of interferon alfa.

    Science.gov (United States)

    Boor, Patrick P C; de Ruiter, Petra E; Asmawidjaja, Patrick S; Lubberts, Erik; van der Laan, Luc J W; Kwekkeboom, Jaap

    2017-10-01

    Tofacitinib is an oral Janus kinase inhibitor that is effective for the treatment of rheumatoid arthritis and shows encouraging therapeutic effects in several other autoimmune diseases. A prominent adverse effect of tofacitinib therapy is the increased risk of viral infections. Despite its advanced stage of clinical development, the modes of action that mediate the beneficial and adverse effects of tofacitinib in autoimmune diseases remain unclear. Interferon alfa (IFNα) produced by plasmacytoid dendritic cells (PDCs) is critically involved in the pathogenesis of many systemic autoimmune diseases and in immunity to viral infections. Using in vitro culture models with human cells, we studied the effects of tofacitinib on PDC survival and IFNα production, and on arthrogenic and antiviral effects of IFNα. Tofacitinib inhibited the expression of antiapoptotic BCL-A1 and BCL-XL in human PDC and induced PDC apoptosis. TLR7 stimulation upregulated the levels of antiapoptotic Bcl-2 family members and prevented the induction of PDC apoptosis by tofacitinib. However, tofacitinib robustly inhibited the production of IFNα by toll like receptor-stimulated PDC. In addition, tofacitinib profoundly suppressed IFNα-induced upregulation of TLR3 on synovial fibroblasts, thereby inhibiting their cytokine and protease production in response to TLR3 ligation. Finally, tofacitinib counteracted the suppressive effects of IFNα on viral replication. Tofacitinib inhibits PDC survival and IFNα production and suppresses arthrogenic and antiviral effects of IFNα signaling. Inhibition of the IFNα pathway at 2 levels may contribute to the beneficial effects of tofacitinib in autoimmune diseases and explain the increased viral infection rates observed during tofacitinib treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. RNAi: antiviral therapy against dengue virus.

    Science.gov (United States)

    Idrees, Sobia; Ashfaq, Usman A

    2013-03-01

    Dengue virus infection has become a global threat affecting around 100 countries in the world. Currently, there is no licensed antiviral agent available against dengue. Thus, there is a strong need to develop therapeutic strategies that can tackle this life threatening disease. RNA interference is an important and effective gene silencing process which degrades targeted RNA by a sequence specific process. Several studies have been conducted during the last decade to evaluate the efficiency of siRNA in inhibiting dengue virus replication. This review summarizes siRNAs as a therapeutic approach against dengue virus serotypes and concludes that siRNAs against virus and host genes can be next generation treatment of dengue virus infection.

  19. Indian marine bivalves: Potential source of antiviral drugs

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterji, A.; Ansari, Z.A.; Ingole, B.S.; Bichurina, M.A.; Sovetova, M.; Boikov, Y.A.

    in large quantities by traditional methods and sold live in the market for human consumption. The economically important sp e cies of marine bivalves are green mussel ( Perna viridis ), e s tuarine oyster ( Crassostrea madrasensis ), giant oyster... in developing an effecti ve drug has been the unique characteristics of antigenic variation of virus resulting in the emergence of new variant virus strains 14 . There are a number of antiviral drugs introduced in the market such as tricyclic sy m- metric...

  20. ANTIMICROBIAL, ENTOMOPATHOGENIC AND ANTIVIRAL ACTIVITY OF GAUPSIN BIOPREPARATION CREATED ON THE BASIS OF Pseudomonas chlororaphis STRAINS

    Directory of Open Access Journals (Sweden)

    E. A. Kiprianova

    2017-02-01

    Full Text Available The aim of this review was to present the results of more than ten-year study of gaupsin biopreparation created on the basis of two strains Pseudomonas chlororaphis subsp. aureofaciens UCM В-111 and UCM В-306 with antifungal, entomopathogenic and antiviral activities. Data about antibiotic substances produced by these strains — phenazine and phenylpyrrole derivatives — are presented. Entomocidal properties against the wide spectrum of insect pests have been found out in the strains-producers. Antiviral activity of gaupsin due to the production of thermostable exopolymers containing neutral monosaccharides has been shown using the tobacco mosaic virus as a model. Lipopolysaccharides of the strains В-111 and В-306 also appeared to be highly active antiviral agents. Structure of their O-specific polysaccharides has been established. The last one are structurally heterogenic, presented by linear tri-and tetrasaccharide repeated links and have specific structure that has not been described previously.

  1. Liver stiffness becomes stable in patients with chronic hepatitis C three months after ALT normalization due to antiviral therapy

    Directory of Open Access Journals (Sweden)

    CHEN Feikai

    2013-10-01

    Full Text Available ObjectiveTo investigate the time for liver stiffness measurement (LSM to become stable in chronic hepatitis C (CHC patients with elevated alanine aminotransferase (ALT levels after ALT normalization due to antiviral therapy. MethodsCHC patients who sought initial treatment at Peking University People′s Hospital were screened for elevated ALT levels from May 2011. Liver stiffness was determined by FibroScan. A total of 29 patients had been included in the study by September 2012, who were followed up regularly after antiviral treatment. ALT tests were repeated every four weeks and LSM every eight weeks until their medians did not change significantly. Comparisons of matched data at two adjacent time points were made with the non-parametric Wilcoxon test, while multiple comparisons of repeated measurements were performed using Bonferroni correction. Correlation between two variables was analyzed with the Spearman rank test. ResultsPatients were followed up until 24 weeks after antiviral treatment, and 24 patients were included in analysis. The median ALT levels were 64, 26, 21, 20, and 22 U/L at baseline and 4, 8, 12, and 24 weeks, respectively (P= 0.000, 0.006, 0.337, and 0.109 for comparisons between two adjacent values. ALT decreased significantly below 1 ULN at 4 weeks after antiviral therapy and stabilized at 8 weeks. The median LSM values were 8.7, 7.8, 6.8, and 6.7 kPa at baseline and 8, 16, and 24 weeks, respectively (P= 0.009, 0.001, and 0188 for comparisons between two adjacent values. LSM decreased significantly within 16 weeks after antiviral therapy and stabilized afterwards. LSM stabilized 12 weeks after ALT normalization. ConclusionLSM becomes stable in CHC patients with elevated ALT levels three months after ALT normalization due to antiviral therapy.

  2. Cost-effectiveness analysis of antiviral therapy in patients with advanced hepatitis B virus-related hepatocellular carcinoma treated with sorafenib.

    Science.gov (United States)

    Zhang, Pengfei; Yang, Yu; Wen, Feng; Wheeler, John; Fu, Ping; Li, Qiu

    2016-12-01

    Antiviral therapy has been demonstrated to significantly improve the survival in patients with advanced hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). The aim of the study was to investigate the cost-effectiveness of antiviral therapy in patients with advanced HBV-related HCC treated with sorafenib. To conduct the analysis, a Markov model comprising three health states (progression-free survival, progressive disease, and death) was created. The efficacy data were derived from medical records. Cost data were collected based on the Chinese national drug prices. Utility data came from the previously published studies. One-way sensitivity analyses as well as probabilistic sensitivity analyses were performed to explore model uncertainties. In the base-case analysis, addition of antiviral therapy to sorafenib generated an effectiveness of 0.68 quality-adjusted life years (QALYs) at a cost of $25 026.04, while sorafenib monotherapy gained an effectiveness of 0.42 QALYs at a cost of $20 249.64. The incremental cost-effectiveness ratio (ICER) was $18 370.77/QALY for antiviral therapy group versus non-antiviral therapy group. On the other hand, the ICER between the two groups in patients with high or low HBV-DNA load, with or without cirrhosis, normal or elevated alanine aminotransferase/aspartate aminotransferase were $16 613.97/QALY, $19 774.16/QALY, $14 587.66/QALY, $19 873.84/QALY, $17 947.07/QALY, and $18 785.58/QALY, respectively. Based on the cost-effectiveness threshold ($20 301.00/QALY in China), addition of antiviral therapy to sorafenib is considered to be a cost-effective option compared with sorafenib monotherapy in patients with advanced HBV-related HCC in China from the patient's perspective. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  3. Synergistic antiviral effect in vitro of azidothymidine and amphotericin B methyl ester in combination on HIV infection

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Svenningsen, A

    1992-01-01

    The nucleoside analogue azidothymidine (AZT) and the methyl ester of amphotericin B (AME) were assayed for antiviral effect on HIV infection singly and in combination. Both compounds were effective in inhibiting HIV infection of MT-4 cells. At concentrations where either compound alone had no sig...... synergistic antiviral properties. Amphotericin B itself significantly reduced HIV infectivity in vitro and should not be used as an antifungal agent in cultures intended to propagate HIV....

  4. Atividade antiviral de Musa acuminata Colla, Musaceae

    Directory of Open Access Journals (Sweden)

    Fernanda Otaviano Martins

    Full Text Available O presente trabalho avalia a atividade antiviral de extratos e frações de Musa acuminata Colla, Musaceae, coletada em duas regiões do Estado do Rio de Janeiro (Petrópolis e Santo Antônio de Pádua. As inflorescências de M. acuminata apresentaram excelente atividade para os dois vírus avaliados: herpesvírus simples humano tipo 1 e herpesvírus simples humano tipo 2, ambos resistentes ao Aciclovir. Os resultados indicam que os extratos de M. acuminata testados podem constituir alvo potencial para uso em terapias antivirais.

  5. Essential Oil Composition, Antioxidant, Cytotoxic and Antiviral Activities of Teucrium pseudochamaepitys Growing Spontaneously in Tunisia

    Directory of Open Access Journals (Sweden)

    Saoussen Hammami

    2015-11-01

    Full Text Available The chemical composition, antioxidant, cytotoxic and antiviral activities of the essential oil obtained by hydrodistillation from the aerial parts of Teucrium pseudochamaepitys (Lamiaceae collected from Zaghouan province of Tunisia are reported. The essential oil was analyzed by gas chromatography equipped with a flame ionization detector (GC-FID and gas chromatography coupled with mass spectrometry (GC/MS. Thirty-one compounds were identified representing 88.6% of the total essential oil. Hexadecanoic acid was found to be the most abundant component (26.1% followed by caryophyllene oxide (6.3%, myristicin (4.9% and α-cubebene (3.9%. The antioxidant capacity of the oil was measured on the basis of the scavenging activity to the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH. The IC50 value of the oil was evaluated as 0.77 mg·mL−1. In addition, the essential oil was found to possess moderate cytotoxic effects on the HEp-2 cell line (50% cytotoxic concentration (CC50 = 653.6 µg·mL−1. The potential antiviral effect was tested against Coxsackievirus B (CV-B, a significant human and mouse pathogen that causes pediatric central nervous system disease, commonly with acute syndromes. The reduction of viral infectivity by the essential oil was measured using a cytopathic (CPE reduction assay.

  6. Evasion of Cytosolic DNA-Stimulated Innate Immune Responses by Herpes Simplex Virus 1.

    Science.gov (United States)

    Zheng, Chunfu

    2018-03-15

    Recognition of virus-derived nucleic acids by host pattern recognition receptors (PRRs) is crucial for early defense against viral infections. Recent studies revealed that PRRs also include several newly identified DNA sensors, most of which could activate the downstream adaptor stimulator of interferon genes (STING) and lead to the production of host antiviral factors. Herpes simplex virus 1 (HSV-1) is extremely successful in establishing effective infections, due to its capacity to counteract host innate antiviral responses. In this Gem, I summarize the most recent findings on the molecular mechanisms utilized by HSV-1 to target different steps of the cellular DNA-sensor-mediated antiviral signal pathway. Copyright © 2018 American Society for Microbiology.

  7. [A new challenge in clinical practice: resistance to directly acting antivirals in hepatitis C treatment].

    Science.gov (United States)

    Chen, Z W; Hu, P; Ren, H

    2016-03-20

    Directly acting antivirals (DAAs) is a major treatment of hepatitis C virus (HCV) overseas. But DAAs resistance is getting more and more clinicians' attention. DAAs have not been approved in China to date, even though some of them are in clinical trials. However, a good knowledge of DAAs resistance is important on optimizing HCV treatment regimens, increasing sustained virological response (SVR) and decreasing treatment failure in clinical. In this review, DAAs resistance mechanism and virologic barrier to resistance, the prevalence of pre-existing DAAs resistance-associated variants (RAVs), the impact of RAVs on treatment outcome, the options of treatment regimens after resistance and drug resistance testing are discussed, hoping to provide some help for DAAs' standardized treatment in China in the future.

  8. Predictors Associated with Increase in Skeletal Muscle Mass after Sustained Virological Response in Chronic Hepatitis C Treated with Direct Acting Antivirals

    Directory of Open Access Journals (Sweden)

    Kazunori Yoh

    2017-10-01

    Full Text Available Aims: We aimed to examine changes in skeletal muscle mass in chronic hepatitis C (CHC patients undergoing interferon (IFN-free direct acting antivirals (DAAs therapy who achieved sustained virological response (SVR. Patients and methods: A total of 69 CHC patients treated with DAAs were analyzed. We compared the changes in skeletal muscle index (SMI using bio-impedance analysis at baseline and SMI at SVR. SMI was calculated as the sum of skeletal muscle mass in upper and lower extremities divided by height squared (cm2/m2. Further, we identified pretreatment parameters contributing to the increased SMI at SVR. Results: SMI in males at baseline ranged from 6.73 to 9.08 cm2/m2 (median, 7.65 cm2/m2, while that in females ranged from 4.45 to 7.27 cm2/m2 (median, 5.81 cm2/m2. At SVR, 36 patients (52.2% had increased SMI as compared with baseline. In the univariate analysis, age (p = 0.0392, hyaluronic acid (p = 0.0143, and branched-chain amino acid to tyrosine ratio (BTR (p = 0.0024 were significant pretreatment factors linked to increased SMI at SVR. In the multivariate analysis, only BTR was an independent predictor linked to the increased SMI at SVR (p = 0.0488. Conclusion: Pretreatment BTR level can be helpful for predicting increased SMI after SVR in CHC patients undergoing IFN-free DAAs therapy.

  9. Anti-viral therapy is associated with improved survival but is underutilised in patients with hepatitis B virus-related hepatocellular carcinoma: real-world east and west experience.

    Science.gov (United States)

    Chen, V L; Yeh, M-L; Le, A K; Jun, M; Saeed, W K; Yang, J D; Huang, C-F; Lee, H Y; Tsai, P-C; Lee, M-H; Giama, N; Kim, N G; Nguyen, P P; Dang, H; Ali, H A; Zhang, N; Huang, J-F; Dai, C-Y; Chuang, W-L; Roberts, L R; Jun, D W; Lim, Y-S; Yu, M-L; Nguyen, M H

    2018-07-01

    Hepatitis B virus (HBV) is the leading cause of hepatocellular carcinoma (HCC) worldwide. It remains incompletely understood in the real world how anti-viral therapy affects survival after HCC diagnosis. This was an international multicentre cohort study of 2518 HBV-related HCC cases diagnosed between 2000 and 2015. Cox proportional hazards models were utilised to estimate hazard ratios (HR) with 95% (CI) for anti-viral therapy and cirrhosis on patients' risk of death. Approximately, 48% of patients received anti-viral therapy at any time, but only 17% were on therapy at HCC diagnosis (38% at US centres, 11% at Asian centres). Anti-viral therapy would have been indicated for >60% of the patients not on anti-viral therapy based on American criteria. Patients with cirrhosis had lower 5-year survival (34% vs 46%; P < 0.001) while patients receiving anti-viral therapy had increased 5-year survival compared to untreated patients (42% vs 25% with cirrhosis and 58% vs 36% without cirrhosis; P < 0.001 for both). Similar findings were seen for other patient subgroups by cancer stages and cancer treatment types. Anti-viral therapy was associated with a decrease in risk of death, whether started before or after HCC diagnosis (adjusted HR 0.62 and 0.79, respectively; P < 0.001). Anti-viral therapy improved overall survival in patients with HBV-related HCC across cancer stages and treatment types but was underutilised at both US and Asia centres. Expanded use of anti-viral therapy in HBV-related HCC and better linkage-to-care for HBV patients are needed. © 2018 John Wiley & Sons Ltd.

  10. In vitro antiviral activity of aqueous extract of Phaleria macrocarpa fruit against herpes simplex virus type 1

    Science.gov (United States)

    Ismaeel, Mahmud Yusef Yusef; Dyari, Herryawan Ryadi Eziwar; Yaacob, Wan Ahmad; Ibrahim, Nazlina

    2018-04-01

    Phaleria macrocarpa fruits have been used as herbal medicine for several diseases. This study aims to determine the cytotoxicity and antiviral activity of aqueous extract of P. macrocarpa fruit (AEPMF). Phytochemical analysis showed the presence of steroids, tannins, flavones aglycones, saponins, terpenoids and alkaloids. AEPMF was found to contain protein with the concentration of 740 µg/mL. The cytotoxicity towards Vero cell was evaluated using MTT assay with 50% cytotoxic concentration (CC50) value of AEPMF 5 mg/mL. The finding indicates that AEPMF is safe and not toxic towards Vero cells. Screening by plaque reduction assay showed that AEPMF have antiviral activity against herpes simplex virus type 1 (HSV-1) with effective concentration (EC50) was 0.28 mg/mL. The selective index (SI=CC50/EC50) of AEPMF is 17.9 indicating AEPMF have potential for further evaluation in antiviral activity.

  11. Antibacterial, Antiviral, and Oxygen-Sensing Nanoparticles Prepared from Electrospun Materials

    Czech Academy of Sciences Publication Activity Database

    Henke, P.; Kirakci, Kaplan; Kubát, Pavel; Fraiberk, M.; Forstová, J.; Mosinger, Jiří

    2016-01-01

    Roč. 8, č. 38 (2016), s. 25127-25136 ISSN 1944-8244 R&D Projects: GA ČR(CZ) GA16-15020S; GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 ; RVO:61388955 Keywords : antibacterial * antiviral * nanoparticles * oxygen-sensing * singlet oxygen Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 7.504, year: 2016

  12. Chronic Hepatitis C and Antiviral Treatment Regimens: Where Can Psychology Contribute?

    Science.gov (United States)

    Evon, Donna M.; Golin, Carol E.; Fried, Michael W.; Keefe, Francis J.

    2013-01-01

    Objective: Our goal was to evaluate the existing literature on psychological, social, and behavioral aspects of chronic hepatitis C viral (HCV) infection and antiviral treatment; provide the state of the behavioral science in areas that presently hinder HCV-related health outcomes; and make recommendations for areas in which clinical psychology…

  13. Identification of Mx gene nucleotide dimorphism (G/A as genetic marker for antiviral activity in Egyptian chickens

    Directory of Open Access Journals (Sweden)

    Mohamed S. Hassanane

    2018-06-01

    Full Text Available Egyptian chickens, representing 2 breeds and 7 strains, were genotyped using the PCR-RFLP and sequencing techniques for detection of a non-synonymous dimorphism (G/A in exon 14 of chicken Myxovirus resistance (Mx gene. This dimorphic position is responsible for altering Mx protein’s antiviral activity. Polymerase Chain reactions were performed using Egyptian chickens DNA and specific primer set to amplify Mx DNA fragments of 299 or 301 bp, containing the dimorphic position. Amplicons were cut with restriction enzyme Hpy81. Genotype and allele frequencies for the resistant allele A and sensitive allele G were calculated in all the tested chickens. Results of PCR-RFLP were confirmed by sequencing. The three genotypes AA, AG, GG at the target nucleotide position in Mx gene were represented in all the studied Egyptian chicken breeds and strains except Baladi strain which showed only one genotype AA. The average allele frequency of the resistant A allele in the tested birds (0.67 was higher than the sensitive G allele average frequency in the same birds (0.33. Appling PCR-RFLP technique in the breeding program can be used to select chickens carrying the A allele with high frequencies. This will help in improving poultry breeding in Egypt by producing infectious disease-resistant chickens. Keywords: Egyptian chickens, Antiviral activity, Mx gene, Genotyping, PCR-RFLP

  14. SUMO-interacting motifs of human TRIM5α are important for antiviral activity.

    Directory of Open Access Journals (Sweden)

    Gloria Arriagada

    2011-04-01

    Full Text Available Human TRIM5α potently restricts particular strains of murine leukemia viruses (the so-called N-tropic strains but not others (the B- or NB-tropic strains during early stages of infection. We show that overexpression of SUMO-1 in human 293T cells, but not in mouse MDTF cells, profoundly blocks N-MLV infection. This block is dependent on the tropism of the incoming virus, as neither B-, NB-, nor the mutant R110E of N-MLV CA (a B-tropic switch are affected by SUMO-1 overexpression. The block occurred prior to reverse transcription and could be abrogated by large amounts of restricted virus. Knockdown of TRIM5α in 293T SUMO-1-overexpressing cells resulted in ablation of the SUMO-1 antiviral effects, and this loss of restriction could be restored by expression of a human TRIM5α shRNA-resistant plasmid. Amino acid sequence analysis of human TRIM5α revealed a consensus SUMO conjugation site at the N-terminus and three putative SUMO interacting motifs (SIMs in the B30.2 domain. Mutations of the TRIM5α consensus SUMO conjugation site did not affect the antiviral activity of TRIM5α in any of the cell types tested. Mutation of the SIM consensus sequences, however, abolished TRIM5α antiviral activity against N-MLV. Mutation of lysines at a potential site of SUMOylation in the CA region of the Gag gene reduced the SUMO-1 block and the TRIM5α restriction of N-MLV. Our data suggest a novel aspect of TRIM5α-mediated restriction, in which the presence of intact SIMs in TRIM5α, and also the SUMO conjugation of CA, are required for restriction. We propose that at least a portion of the antiviral activity of TRIM5α is mediated through the binding of its SIMs to SUMO-conjugated CA.

  15. Changes in soluble factor-mediated CD8+ cell-derived antiviral activity in cynomolgus macaques infected with simian immunodeficiency virus SIVmac251: relationship to biological markers of progression.

    Science.gov (United States)

    Dioszeghy, Vincent; Benlhassan-Chahour, Kadija; Delache, Benoit; Dereuddre-Bosquet, Nathalie; Aubenque, Celine; Gras, Gabriel; Le Grand, Roger; Vaslin, Bruno

    2006-01-01

    Cross-sectional studies have shown that the capacity of CD8+ cells from human immunodeficiency virus (HIV)-infected patients and simian immunodeficiency virus (SIV) SIVmac-infected macaques to suppress the replication of human and simian immunodeficiency viruses in vitro depends on the clinical stage of disease, but little is known about changes in this antiviral activity over time in individual HIV-infected patients or SIV-infected macaques. We assessed changes in the soluble factor-mediated noncytolytic antiviral activity of CD8+ cells over time in eight cynomolgus macaques infected with SIVmac251 to determine the pathophysiological role of this activity. CD8+ cell-associated antiviral activity increased rapidly in the first week after viral inoculation and remained detectable during the early phase of infection. The net increase in antiviral activity of CD8+ cells was correlated with plasma viral load throughout the 15 months of follow-up. CD8+ cells gradually lost their antiviral activity over time and acquired virus replication-enhancing capacity. Levels of antiviral activity correlated with CD4+ T-cell counts after viral set point. Concentrations of beta-chemokines and interleukin-16 in CD8+ cell supernatants were not correlated with this antiviral activity, and alpha-defensins were not detected. The soluble factor-mediated antiviral activity of CD8+ cells was neither cytolytic nor restricted to major histocompatibility complex. This longitudinal study strongly suggests that the increase in noncytolytic antiviral activity from baseline and the maintenance of this increase over time in cynomolgus macaques depend on both viral replication and CD4+ T cells.

  16. Changes in Soluble Factor-Mediated CD8+ Cell-Derived Antiviral Activity in Cynomolgus Macaques Infected with Simian Immunodeficiency Virus SIVmac251: Relationship to Biological Markers of Progression†

    Science.gov (United States)

    Dioszeghy, Vincent; Benlhassan-Chahour, Kadija; Delache, Benoit; Dereuddre-Bosquet, Nathalie; Aubenque, Celine; Gras, Gabriel; Le Grand, Roger; Vaslin, Bruno

    2006-01-01

    Cross-sectional studies have shown that the capacity of CD8+ cells from human immunodeficiency virus (HIV)-infected patients and simian immunodeficiency virus (SIV) SIVmac-infected macaques to suppress the replication of human and simian immunodeficiency viruses in vitro depends on the clinical stage of disease, but little is known about changes in this antiviral activity over time in individual HIV-infected patients or SIV-infected macaques. We assessed changes in the soluble factor-mediated noncytolytic antiviral activity of CD8+ cells over time in eight cynomolgus macaques infected with SIVmac251 to determine the pathophysiological role of this activity. CD8+ cell-associated antiviral activity increased rapidly in the first week after viral inoculation and remained detectable during the early phase of infection. The net increase in antiviral activity of CD8+ cells was correlated with plasma viral load throughout the 15 months of follow-up. CD8+ cells gradually lost their antiviral activity over time and acquired virus replication-enhancing capacity. Levels of antiviral activity correlated with CD4+ T-cell counts after viral set point. Concentrations of β-chemokines and interleukin-16 in CD8+ cell supernatants were not correlated with this antiviral activity, and α-defensins were not detected. The soluble factor-mediated antiviral activity of CD8+ cells was neither cytolytic nor restricted to major histocompatibility complex. This longitudinal study strongly suggests that the increase in noncytolytic antiviral activity from baseline and the maintenance of this increase over time in cynomolgus macaques depend on both viral replication and CD4+ T cells. PMID:16352548

  17. Arthropod-borne flaviviruses and RNA interference : seeking new approaches for antiviral therapy

    NARCIS (Netherlands)

    Diosa-Toro, Mayra; Urcuqui-Inchima, Silvio; Smit, Jolanda M

    2013-01-01

    Flaviviruses are the most prevalent arthropod-borne viruses worldwide, and nearly half of the 70 Flavivirus members identified are human pathogens. Despite the huge clinical impact of flaviviruses, there is no specific human antiviral therapy available to treat infection with any of the

  18. In-Cell Western Assays to Evaluate Hantaan Virus Replication as a Novel Approach to Screen Antiviral Molecules and Detect Neutralizing Antibody Titers

    Directory of Open Access Journals (Sweden)

    Hong-Wei Ma

    2017-06-01

    Full Text Available Hantaviruses encompass rodent-borne zoonotic pathogens that cause severe hemorrhagic fever disease with high mortality rates in humans. Detection of infectious virus titer lays a solid foundation for virology and immunology researches. Canonical methods to assess viral titers rely on visible cytopathic effects (CPE, but Hantaan virus (HTNV, the prototype hantavirus maintains a relatively sluggish life cycle and does not produce CPE in cell culture. Here, an in-cell Western (ICW assay was utilized to rapidly measure the expression of viral proteins in infected cells and to establish a novel approach to detect viral titers. Compared with classical approaches, the ICW assay is accurate and time- and cost-effective. Furthermore, the ICW assay provided a high-throughput platform to screen and identify antiviral molecules. Potential antiviral roles of several DExD/H box helicase family members were investigated using the ICW assay, and the results indicated that DDX21 and DDX60 reinforced IFN responses and exerted anti-hantaviral effects, whereas DDX50 probably promoted HTNV replication. Additionally, the ICW assay was also applied to assess NAb titers in patients and vaccine recipients. Patients with prompt production of NAbs tended to have favorable disease outcomes. Modest NAb titers were found in vaccinees, indicating that current vaccines still require improvements as they cannot prime host humoral immunity with high efficiency. Taken together, our results indicate that the use of the ICW assay to evaluate non-CPE Hantaan virus titer demonstrates a significant improvement over current infectivity approaches and a novel technique to screen antiviral molecules and detect NAb efficacies.

  19. Antiviral Effects of Saffron and its Major Ingredients.

    Science.gov (United States)

    Soleymani, Sepehr; Zabihollahi, Rezvan; Shahbazi, Sepideh; Bolhassani, Azam

    2018-01-01

    The lack of an effective vaccine against viral infections, toxicity of the synthetic anti-viral drugs and the generation of resistant viral strains led to discover novel inhibitors. Recently, saffron and its compounds were used to treat different pathological conditions. In this study, we tested the anti-HSV-1 and anti-HIV-1 activities of Iranian saffron extract and its major ingredients including crocin and picrocrocin as well as cytotoxicity in vitro. The data showed that the aqueous saffron extract was not active against HIV-1 and HSV-1 virions at certain doses (i.e., a mild activity), but crocin and picrocrocin indicated significant anti-HSV-1 and also anti-HIV-1 activities. Crocin inhibited the HSV replication at before and after entry of virions into Vero cells. Indeed, crocin carotenoid suppressed HSV penetration in the target cells as well as disturbed virus replication after entry into the cells. Picrocrocin was also effective for inhibiting virus entry and also its replication. This monoterpen aldehyde showed higher anti-HSV effects after virus penetrating in the cells. Generally, these sugar-containing compounds extracted from saffron showed to be effective antiherpetic drug candidates. The recent study is the first report suggesting antiviral activities for saffron extract and its major ingredients. Crocin and picrocrocin could be a promising anti-HSV and anti-HIV agent for herbal therapy against viral infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Antiviral Activity of Sukomycin Against Potato Virus Y And Tomato Mosaic Virus

    Directory of Open Access Journals (Sweden)

    Nikolay Petrov

    2016-12-01

    Full Text Available Potato virus Y (PVY and Tomato mosaic virus (ToMV are one of the most important plant viruses that strongly influence the quality and quantity of vegetable production and cause substantial losses to farmers. The most convetional and common method of pest and disease control is trough the use of pesticides. Unfortunately, most of them are synthetic compounds without antiviral activities and possess inherent toxicities that endanger the health of the farm operators, consumers and the environment. In order to carry out a control of viral infections in plants and to reduce the loss of production it is necessary the search for alternative and environmentally friendly methods for control. Sukomycin is a complex of substances with antimicrobial and antiviral activities produced from Streptomyces hygroscopicus isolated from soil. This natural complex reduces significantly symptoms and DAS-ELISA values of Potato virus Y and Tomato mosaic virus in tobacco plants.

  1. Eosinophils Promote Antiviral Immunity in Mice Infected with Influenza A Virus.

    Science.gov (United States)

    Samarasinghe, Amali E; Melo, Rossana C N; Duan, Susu; LeMessurier, Kim S; Liedmann, Swantje; Surman, Sherri L; Lee, James J; Hurwitz, Julia L; Thomas, Paul G; McCullers, Jonathan A

    2017-04-15

    Eosinophils are multifunctional cells of the innate immune system linked to allergic inflammation. Asthmatics were more likely to be hospitalized but less likely to suffer severe morbidity and mortality during the 2009 influenza pandemic. These epidemiologic findings were recapitulated in a mouse model of fungal asthma wherein infection during heightened allergic inflammation was protective against influenza A virus (IAV) infection and disease. Our goal was to delineate a mechanism(s) by which allergic asthma may alleviate influenza disease outcome, focused on the hypothesis that pulmonary eosinophilia linked with allergic respiratory disease is able to promote antiviral host defenses against the influenza virus. The transfer of eosinophils from the lungs of allergen-sensitized and challenged mice into influenza virus-infected mice resulted in reduced morbidity and viral burden, improved lung compliance, and increased CD8 + T cell numbers in the airways. In vitro assays with primary or bone marrow-derived eosinophils were used to determine eosinophil responses to the virus using the laboratory strain (A/PR/08/1934) or the pandemic strain (A/CA/04/2009) of IAV. Eosinophils were susceptible to IAV infection and responded by activation, piecemeal degranulation, and upregulation of Ag presentation markers. Virus- or viral peptide-exposed eosinophils induced CD8 + T cell proliferation, activation, and effector functions. Our data suggest that eosinophils promote host cellular immunity to reduce influenza virus replication in lungs, thereby providing a novel mechanism by which hosts with allergic asthma may be protected from influenza morbidity. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. Genistein, a general kinase inhibitor, as a potential antiviral for arenaviral hemorrhagic fever as described in the Pirital virus-Syrian golden hamster model.

    Science.gov (United States)

    Vela, Eric M; Knostman, Katherine A; Mott, Jason M; Warren, Richard L; Garver, Jennifer N; Vela, Lela Johnson; Stammen, Rachelle L

    2010-09-01

    Arenaviruses are rodent-borne negative strand RNA viruses and infection of these viruses in humans may result in disease and hemorrhagic fever. To date, supportive care, ribavirin, and in some cases immune plasma remain the foremost treatment options for arenaviral hemorrhagic fever. Research with the hemorrhagic fever causing-arenaviruses usually requires a Biosafety level (BSL)-4 environment; however, surrogate animal model systems have been developed to preliminarily study and screen various vaccines and antivirals. The Syrian golden hamster-Pirital virus (PIRV) surrogate model of hemorrhagic fever provides an opportunity to test new antivirals in an ABSL-3 setting. Thus, we challenged hamsters, implanted with telemetry, with PIRV and observed viremia and tissue viral titers, and changes in core body temperature, hematology, clinical chemistry, and coagulation parameters. Physical signs of disease of the PIRV-infected hamsters included weight loss, lethargy, petechial rashes, epistaxis, ocular orbital and rectal hemorrhage, and visible signs of neurologic disorders. However, treating animals with genistein, a plant derived isoflavone and general kinase inhibitor, resulted in increased survival rates and led to an improved clinical profile. In all, the results from this study demonstrate the potential of a general kinase inhibitor genistein as an antiviral against arenaviral hemorrhagic fever. 2010 Elsevier B.V. All rights reserved.

  3. Antiviral therapy: a perspective.

    Science.gov (United States)

    Shahidi Bonjar, Amir Hashem

    2016-01-01

    This paper discusses extracorporeal removal of viral particles and their antigens from the blood as an auxiliary therapy. This hypothesis has not been reported before. In some chronic blood-borne viral infections, the virus remains systemic and persistent for extended periods of time, with adverse effects that weaken the immune system. Blood titers of virus and its toxins are proportional to the severity of the disease, and their reduction can alleviate symptoms, leading to improved health. Several blood-borne viral infections can be overcome by the young, but are life-threatening in the elderly. It is known that some older people have extreme difficulty tolerating viral infections such as influenza and the common cold. Further, several types of viral infection persist throughout the life of the individual and cannot be eliminated by conventional treatments. Well-known infections of this type include HIV and hepatitis B. In the case of Ebola virus, patients remain infectious as long as their blood contains the virus. According to the present hypothesis, an extracorporeal viral antibody column (EVAC) is proposed for elimination or reduction of the blood viral titer when treating blood-borne viral infection. EVAC would selectively trap viral antigens and toxins in the blood into an extracorporeal circuit, while returning detoxified blood back to the patient's body. It is anticipated that EVAC would reduce mortality caused by blood-borne viral infections in the elderly since reduction of blood virus titers would improve health, leading to improved overall patient performance. Such enhancement would also make conventional therapies even more effective. EVAC could have a lifesaving role in treatment of viral illness, especially those involving lethal viruses such as Ebola, where the patient's recovery to a large extent depends on their general health status. EVAC would be for single use and appropriately disposed of after each detoxification procedure. When sufficient

  4. In vivo evaluation of toxicity and antiviral activity of polyrhodanine nanoparticles by using the chicken embryo model.

    Science.gov (United States)

    Nazaktabar, Ahmad; Lashkenari, Mohammad Soleimani; Araghi, Atefeh; Ghorbani, Mohsen; Golshahi, Hannaneh

    2017-10-01

    Evaluation of the potential cytotoxicity of polyrhodanine nanoparticles is an important factor for its biological applications. In current study, for the first time histopathological and biochemical analysis of polyrhodanine besides of its antiviral activity against Newcastle disease virus (NDV) were examined on chicken embryo model. Polyrhodanine was synthesized by the chemical oxidative polymerization method. The obtained nanoparticles were characterized by scanning electron microscopy (SEM), and Fourier transform infrared (FTIR). Different doses of polyrhodanine nanoparticles were injected into the albumen in 4-day-old embryonic eggs for groups: (0.1ppm, 1ppm, 10ppm and 100ppm), while the Control group received only normal saline. The gross examination of chicks revealed no abnormality. No pathological changes were detected in microscopical examination of the liver, kidney, spleen, heart, bursa of Fabricius and central nervous system tissues. Blood serum biochemical indices showed no significant differences between control and treatment groups. Interestingly, polyrhodanine nanoparticles showed strong antiviral activity against NDV in ovo. These preliminary findings suggest that polyrhodanine nanoparticles without any toxicity effect could be utilized in controlling Newcastle disease in chickens. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. In vitro evaluation of antiviral and virucidal activity of a high molecular weight hyaluronic acid

    Directory of Open Access Journals (Sweden)

    Blasi Elisabetta

    2011-03-01

    Full Text Available Abstract Background hyaluronic acid (HA, a non-sulphated glycosaminoglycan, is present in synovial fluid, vitreous humour serum and many connective tissues. Pharmaceutical preparations of HA are used in clinical practice for wound healing, joint pain, kerato-conjunctivitis, asthma, mouth care, oesophageal-reflux, and gastritis. Moreover, it is used as a filler to counteract ageing and facial lipoatrophy. Our study aims at investigating the in vitro antiviral activity of a high molecular weight HA. Methods the MTT test was used to rule out the potential toxic effects of HA on the different cell lines used in the antiviral assays. The antiviral activity of HA against Coxsackievirus B5, Herpes Simplex Virus-1, Mumps Virus, Adenovirus-5, Influenza Virus A/H1N1, Human Herpesvirus-6, Porcine Parvovirus, Porcine Reproductive and Respiratory Syndrome Virus was assessed by virus yield assays. Results the most effective inhibition was observed against Coxsackievirus B5, with 3Log reduction of the virus yield at 4 mg/ml, and a reduction of 3.5Log and 2Log, at 2 mg/ml and 1 mg/ml, respectively: the selectivity index was 16. Mumps virus was highly inhibited too showing a reduction of 1.7Log at 1 mg/ml and 1Log at 4 mg/ml and 2 mg/ml (selectivity index = 12. The selectivity index for Influenza Virus was 12 with the highest inhibition (1Log observed at 4 mg/ml. Herpes Simplex Virus-1 and Porcine Parvovirus were mildly inhibited, whereas no antiviral activity was observed with respect to Adenovirus-5, Human Herpesvirus-6, Porcine Reproductive and Respiratory Syndrome Virus. No HA virucidal activity was ever observed against any of the viruses tested. Kinetic experiments showed that both Coxsackievirus B5 and Herpes simplex virus-1 replication were consistently inhibited, not influenced by the time of HA addition, during the virus replication cycle. Conclusions the spectrum of the antiviral activity exhibited by HA against both RNA and DNA viruses, known to have

  6. Diminished humoral responses against and reduced gene expression levels of human endogenous retrovirus-K (HERV-K) in psoriasis.

    Science.gov (United States)

    Gupta, Rashmi; Michaud, Henri-Alexandre; Zeng, Xue; Debbaneh, Maya; Arron, Sarah T; Jones, R Brad; Ormsby, Christopher E; Nixon, Douglas F; Liao, Wilson

    2014-09-16

    Psoriasis is a multifactorial, chronic disease of skin affecting 2-3% of the world's population. Genetic studies of psoriasis have identified a number of susceptibility genes that are involved in anti-viral immunity. Furthermore, physiological studies have also found an increase in anti-viral proteins in psoriatic skin. These findings suggest the presence of an anti-viral state in psoriatic skin. However, the triggers for this anti-viral cascade and its consequences for host immunity are not known. Endogenous retroviruses have previously been described in many autoimmune diseases including psoriasis. In the present study we examined the humoral immune response against human endogenous retrovirus-K (HERV-K) proteins and the cutaneous expression levels of multiple HERV-K genes in psoriasis patients and healthy controls. In psoriatic sera we observed a significant decrease in IgM response against three HERV-K proteins: Env surface unit (SU), Env transmembrane protein (TM), and Gag capsid (CA) in comparison to sera obtained from blood bank healthy controls. A decrease in IgG response was also observed against CA. Furthermore, using quantitative RT-PCR we observed a decrease in the expression of HERV-K Env, Gag, Pol and Rec as well as ERV-9 genes in lesional psoriatic skin as compared to healthy skin. Together, our results suggest that the pro-inflammatory, anti-viral state in psoriasis is associated with diminished expression of HERV-K gene transcripts and a concomitant decrease in humoral responses to HERV-K. Our results indicate that a simple model where continuous, minimally changing HERV-K expression serves as an antigenic trigger in psoriasis might not be correct and further studies are needed to decipher the possible relationship between psoriasis and HERVs.

  7. Deep sequencing analysis of HBV genotype shift and correlation with antiviral efficiency during adefovir dipivoxil therapy.

    Directory of Open Access Journals (Sweden)

    Yuwei Wang

    Full Text Available Viral genotype shift in chronic hepatitis B (CHB patients during antiviral therapy has been reported, but the underlying mechanism remains elusive.38 CHB patients treated with ADV for one year were selected for studying genotype shift by both deep sequencing and Sanger sequencing method.Sanger sequencing method found that 7.9% patients showed mixed genotype before ADV therapy. In contrast, all 38 patients showed mixed genotype before ADV treatment by deep sequencing. 95.5% mixed genotype rate was also obtained from additional 200 treatment-naïve CHB patients. Of the 13 patients with genotype shift, the fraction of the minor genotype in 5 patients (38% increased gradually during the course of ADV treatment. Furthermore, responses to ADV and HBeAg seroconversion were associated with the high rate of genotype shift, suggesting drug and immune pressure may be key factors to induce genotype shift. Interestingly, patients with genotype C had a significantly higher rate of genotype shift than genotype B. In genotype shift group, ADV treatment induced a marked enhancement of genotype B ratio accompanied by a reduction of genotype C ratio, suggesting genotype C may be more sensitive to ADV than genotype B. Moreover, patients with dominant genotype C may have a better therapeutic effect. Finally, genotype shifts was correlated with clinical improvement in terms of ALT.Our findings provided a rational explanation for genotype shift among ADV-treated CHB patients. The genotype and genotype shift might be associated with antiviral efficiency.

  8. A single WAP domain (SWD)-containing protein with antiviral activity from Pacific white shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Yang, Linwei; Niu, Shengwen; Gao, Jiefeng; Zuo, Hongliang; Yuan, Jia; Weng, Shaoping; He, Jianguo; Xu, Xiaopeng

    2018-02-01

    The single whey acidic protein (WAP) domain (SWD)-containing proteins, also called type III crustins, are a group of antimicrobial peptides (AMPs) in crustaceans. At present, a number of SWDs have been identified in shrimp, which showed essential antibacterial activities. However, the roles of SWDs in antiviral immune responses have not been reported up to now. In this study, a novel SWD (LvSWD3) was identified from Pacific white shrimp, Litopenaeus vannamei, which contained a typical single WAP domain homologous to those of other crustacean SWDs. Although lacking the pro and arg-rich region between the signal peptide and the WAP domain, LvSWD3 was closely clustered with other shrimp SWDs in the phylogenetic tree. Similar to many shrimp SWDs, the highest expression of LvSWD3 was detected in hemocytes. The LvSWD3 expression exhibited only limited changes after challenges with Vibrio parahaemolyticus, Poly (I:C) and lipopolysaccharide, but was significantly up-regulated after white spot syndrome virus (WSSV) infection. Silencing of LvSWDs significantly accelerated the death of the WSSV-infected but not the V. parahaemolyticus-infected shrimp. The recombinant LvSWD3 protein did not show proteinase inhibitory and antibacterial activities but could significantly postpone the death of WSSV-infected shrimp and reduce the viral load in tissues. These suggested that LvSWD3 was a novel SWD with antiviral activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Two Modes of the Axonal Interferon Response Limit Alphaherpesvirus Neuroinvasion

    Directory of Open Access Journals (Sweden)

    Ren Song

    2016-02-01

    Full Text Available Infection by alphaherpesviruses, including herpes simplex virus (HSV and pseudorabies virus (PRV, typically begins at epithelial surfaces and continues into the peripheral nervous system (PNS. Inflammatory responses are induced at the infected peripheral site prior to invasion of the PNS. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which includes the interferons (IFNs. The fundamental question is how do PNS cell bodies respond to these distant, potentially damaging events experienced by axons. Using compartmented cultures that physically separate neuron axons from cell bodies, we found that pretreating isolated axons with beta interferon (IFN-β or gamma interferon (IFN-γ significantly diminished the number of herpes simplex virus 1 (HSV-1 and PRV particles moving in axons toward the cell bodies in a receptor-dependent manner. Exposing axons to IFN-β induced STAT1 phosphorylation (p-STAT1 only in axons, while exposure of axons to IFN-γ induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated antiviral effects induced by IFN-γ, but not those induced by IFN-β. Proteomic analysis of IFN-β- or IFN-γ-treated axons identified several differentially regulated proteins. Therefore, unlike treatment with IFN-γ, IFN-β induces a noncanonical, local antiviral response in axons. The activation of a local IFN response in axons represents a new paradigm for cytokine control of neuroinvasion.

  10. Liver metastasis from neuroendocrine carcinoma after the use of the new direct-action antivirals against hepatitis C virus in a patient with past history of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    María Caldas

    Full Text Available The use of the new direct-action antivirals against hepatitis C virus provides very high viral eradication rates. However, various recently published articles recommend caution with their use after the appearance of some cases of de novo tumors (originated in hepatic and extra-hepatic locations and a possible shorter time period of recurrence of hepatocellular carcinomas previously treated with surgery or loco-regional therapies. The sudden drop of the number of natural killer cells secondary to the use of these new medicines has been suggested as one of the possible mechanisms responsible for this process. However, due to the controversy concerning this subject and the absence of long-term follow-up studies in clinical practice, caution is needed before definitive conclusions are settled. We present the case report of a patient diagnosed of chronic liver disease secondary to hepatitis C virus infection and a past history of hepatocellular carcinoma in complete remission after radiofrequency ablation. He was treated with the new direct-action antivirals reaching sustained viral response. Six months later, the patient was diagnosed with liver metastasis from a small-cell neuroendocrine tumor of unknown primary site.

  11. Differential Contribution of RNA Interference Components in Response to Distinct Fusarium graminearum Virus Infections.

    Science.gov (United States)

    Yu, Jisuk; Lee, Kyung-Mi; Cho, Won Kyong; Park, Ju Yeon; Kim, Kook-Hyung

    2018-05-01

    graminearum react to mycovirus infections, we characterized the role(s) of RNAi components involved in the antiviral defense response against Fusarium graminearum viruses (FgVs). We observed differences in the levels of induction of RNA silencing-related genes, including FgDICER-2 and FgAGO-1 , in response to infection by three different FgVs. FgAGO-1 can efficiently induce a robust RNAi response against FgV1 infection, but FgDICER genes might be relatively redundant to FgAGO-1 with respect to antiviral defense. However, the contribution of this gene in the response to the other FgV infections might be small. Compared to previous studies of Cryphonectria parasitica , which showed dicer-like protein 2 and Argonaute-like protein 2 to be important in antiviral RNA silencing, our results showed that F. graminearum developed a more complex and robust RNA silencing system against mycoviruses and that FgDICER-1 and FgDICER-2 and FgAGO-1 and FgAGO-2 had redundant roles in antiviral RNA silencing. Copyright © 2018 American Society for Microbiology.

  12. In Vitro Bioavailability Study of an Antiviral Compound Enisamium Iodide

    OpenAIRE

    Eleonore Haltner-Ukomadu; Svitlana Gureyeva; Oleksii Burmaka; Andriy Goy; Lutz Mueller; Grygorii Kostyuk; Victor Margitich

    2018-01-01

    An investigation into the biopharmaceutics classification and a study of the in vitro bioavailability (permeability and solubility) of the antiviral compound enisamium iodide (4-(benzylcarbamoyl)-1-methylpyridinium iodide) were carried out. The solubility of enisamium iodide was determined in four different buffers. Apparent intestinal permeability (Papp) of enisamium iodide was assessed using human colon carcinoma (Caco-2) cells at three concentrations. The solubility of enisamium iodide in ...

  13. Treatment of chronic hepatitis C with direct-acting antivirals: The role of resistance.

    Science.gov (United States)

    Jiménez-Pérez, Miguel; González-Grande, Rocío; España Contreras, Pilar; Pinazo Martínez, Isabel; de la Cruz Lombardo, Jesús; Olmedo Martín, Raúl

    2016-08-07

    The use of direct-acting antivirals (DAAs) to treat chronic hepatitis C has resulted in a significant increase in rates of sustained viral response (around 90%-95%) as compared with the standard treatment of peginterferon/ribavirin. Despite this, however, the rates of therapeutic failure in daily clinical practice range from 10%-15%. Most of these cases are due to the presence of resistant viral variants, resulting from mutations produced by substitutions of amino acids in the viral target protein that reduce viral sensitivity to DAAs, thus limiting the efficacy of these drugs. The high genetic diversity of hepatitis C virus has resulted in the existence of resistance-associated variants (RAVs), sometimes even before starting treatment with DAAs, though generally at low levels. These pre-existing RAVs do not appear to impact on the sustained viral response, whereas those that appear after DAA therapy could well be determinant in virological failure with future treatments. As well as the presence of RAVs, virological failure to treatment with DAAs is generally associated with other factors related with a poor response, such as the degree of fibrosis, the response to previous therapy, the viral load or the viral genotype. Nonetheless, viral breakthrough and relapse can still occur in the absence of detectable RAVs and after the use of highly effective DAAs, so that the true clinical impact of the presence of RAVs in therapeutic failure remains to be determined.

  14. Broad and potent antiviral activity of the NAE inhibitor MLN4924.

    Science.gov (United States)

    Le-Trilling, Vu Thuy Khanh; Megger, Dominik A; Katschinski, Benjamin; Landsberg, Christine D; Rückborn, Meike U; Tao, Sha; Krawczyk, Adalbert; Bayer, Wibke; Drexler, Ingo; Tenbusch, Matthias; Sitek, Barbara; Trilling, Mirko

    2016-02-01

    In terms of infected human individuals, herpesviruses range among the most successful virus families. Subclinical herpesviral infections in healthy individuals contrast with life-threatening syndromes under immunocompromising and immunoimmature conditions. Based on our finding that cytomegaloviruses interact with Cullin Roc ubiquitin ligases (CRLs) in the context of interferon antagonism, we systematically assessed viral dependency on CRLs by utilizing the drug MLN4924. CRL activity is regulated through the conjugation of Cullins with the ubiquitin-like molecule Nedd8. By inhibiting the Nedd8-activating Enzyme (NAE), MLN4924 interferes with Nedd8 conjugation and CRL activity. MLN4924 exhibited pronounced antiviral activity against mouse and human cytomegalovirus, herpes simplex virus (HSV)- 1 (including multi-drug resistant clinical isolates), HSV-2, adeno and influenza viruses. Human cytomegalovirus genome amplification was blocked at nanomolar MLN4924 concentrations. Global proteome analyses revealed that MLN4924 blocks cytomegaloviral replication despite increased IE1 amounts. Expression of dominant negative Cullins assigned this IE regulation to defined Cullin molecules and phenocopied the antiviral effect of MLN4924.

  15. An in vitro reprogrammable antiviral RISC with size-preferential ribonuclease activity.

    Science.gov (United States)

    Omarov, Rustem T; Ciomperlik, Jessica; Scholthof, Herman B

    2016-03-01

    Infection of Nicotiana benthamiana plants with Tomato bushy stunt virus (TBSV) mutants compromised for silencing suppression induces formation of an antiviral RISC (vRISC) that can be isolated using chromatography procedures. The isolated vRISC sequence-specifically degrades TBSV RNA in vitro, its activity can be down-regulated by removing siRNAs, and re-stimulated by exogenous supply of siRNAs. vRISC is most effective at hydrolyzing the ~4.8kb genomic RNA, but less so for a ~2.2kb TBSV subgenomic mRNA (sgRNA1), while the 3' co-terminal sgRNA2 of ~0.9kb appears insensitive to vRISC cleavage. Moreover, experiments with in vitro generated 5' co-terminal viral transcripts show that RNAs of ~2.7kb are efficiently cleaved while those of ~1.1kb or shorter are unaffected. The isolated antiviral ribonuclease complex fails to degrade ~0.4kb defective interfering RNAs (DIs) in vitro, agreeing with findings that in plants DIs are not targeted by silencing. Copyright © 2016. Published by Elsevier Inc.

  16. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy

    Science.gov (United States)

    Kranz, Lena M.; Diken, Mustafa; Haas, Heinrich; Kreiter, Sebastian; Loquai, Carmen; Reuter, Kerstin C.; Meng, Martin; Fritz, Daniel; Vascotto, Fulvia; Hefesha, Hossam; Grunwitz, Christian; Vormehr, Mathias; Hüsemann, Yves; Selmi, Abderraouf; Kuhn, Andreas N.; Buck, Janina; Derhovanessian, Evelyna; Rae, Richard; Attig, Sebastian; Diekmann, Jan; Jabulowsky, Robert A.; Heesch, Sandra; Hassel, Jessica; Langguth, Peter; Grabbe, Stephan; Huber, Christoph; Türeci, Özlem; Sahin, Ugur

    2016-06-01

    Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encoded antigen by DC populations and macrophages in various lymphoid compartments. RNA-LPX triggers interferon-α (IFNα) release by plasmacytoid DCs and macrophages. Consequently, DC maturation in situ and inflammatory immune mechanisms reminiscent of those in the early systemic phase of viral infection are activated. We show that RNA-LPX encoding viral or mutant neo-antigens or endogenous self-antigens induce strong effector and memory T-cell responses, and mediate potent IFNα-dependent rejection of progressive tumours. A phase I dose-escalation trial testing RNA-LPX that encode shared tumour antigens is ongoing. In the first three melanoma patients treated at a low-dose level, IFNα and strong antigen-specific T-cell responses were induced, supporting the identified mode of action and potency. As any polypeptide-based antigen can be encoded as RNA, RNA-LPX represent a universally applicable vaccine class for systemic DC targeting and synchronized induction of both highly potent adaptive as well as type-I-IFN-mediated innate immune mechanisms for cancer immunotherapy.

  17. Manipulation of host factors optimizes the pathogenesis of western equine encephalitis virus infections in mice for antiviral drug development

    Science.gov (United States)

    Blakely, Pennelope K.; Delekta, Phillip C.; Miller, David J.; Irani, David N.

    2014-01-01

    While alphaviruses spread naturally via mosquito vectors, some can also be transmitted as aerosols making them potential bioterrorism agents. One such pathogen, western equine encephalitis virus (WEEV), causes fatal human encephalitis via multiple routes of infection and thus presumably via multiple mechanisms. Although WEEV also produces acute encephalitis in non-human primates, a small animal model that recapitulates features of human disease would be useful for both pathogenesis studies and to evaluate candidate antiviral therapies. We have optimized conditions to infect mice with a low passage isolate of WEEV, thereby allowing detailed investigation of virus tropism, replication, neuroinvasion, and neurovirulence. We find that host factors strongly influence disease outcome, and in particular that age, gender and genetic background all have significant effects on disease susceptibility independent of virus tropism or replication within the central nervous system. Our data show that experimental variables can be adjusted in mice to recapitulate disease features known to occur in both non-human primates and humans, thus aiding further study of WEEV pathogenesis and providing a realistic therapeutic window for antiviral drug delivery. PMID:25361697

  18. Intestinal innate antiviral immunity and immunobiotics: beneficial effects against rotavirus infection

    Directory of Open Access Journals (Sweden)

    Julio Villena

    2016-12-01

    Full Text Available The mucosal tissues of the gastrointestinal tract are the main portal entry of pathogens such as rotavirus (RVs, which is a leading cause of death due to diarrhea among young children across the globe and a major cause of severe acute intestinal infection in livestock animals. The interactions between intestinal epithelial cells (IECs and immune cells with RVs have been studied for several years, and now it is known that the innate immune responses triggered by this virus can have both beneficial and detrimental effects for the host. It was demonstrated that natural RVs infection in infants and experimental challenges in mice result in the intestinal activation of pattern recognition receptors (PRRs like Toll-like receptor 3 (TLR3 and striking secretion of pro-inflammatory mediators that can lead to increased local tissue damage and immunopathology. Therefore, modulating desregulated intestinal immune responses triggered by PRRs activation are a significant promise for reducing the burden of RVs diseases. The ability of immunoregulatory probiotic microorganisms (immunobiotics to protect against intestinal infections such as those caused by RVs, are among the oldest effects studied for these important group of beneficial microbes. In this review, we provide an update of the current status on the modulation of intestinal antiviral innate immunity by immunobiotics, and their beneficial impact on RVs infection. In addition, we describe the research of our group that demonstrated the capacity of immunobiotic strains to beneficially modulated TLR3-triggered immune response in IECs, reduce the disruption of intestinal homeostasis caused by intraepithelial lymphocytes, and improve the resistance to RVs infections.

  19. Immunobiotic Bifidobacteria Strains Modulate Rotavirus Immune Response in Porcine Intestinal Epitheliocytes via Pattern Recognition Receptor Signaling.

    Directory of Open Access Journals (Sweden)

    Takamasa Ishizuka

    Full Text Available In this work, we aimed to characterize the antiviral response of an originally established porcine intestinal epithelial cell line (PIE cells by evaluating the molecular innate immune response to rotavirus (RVs. In addition, we aimed to select immunomodulatory bacteria with antiviral capabilities. PIE cells were inoculated with RVs isolated from different host species and the infective titers and the molecular innate immune response were evaluated. In addition, the protection against RVs infection and the modulation of immune response by different lactic acid bacteria (LAB strains was studied. The RVs strains OSU (porcine and UK (bovine effectively infected PIE cells. Our results also showed that RVs infection in PIE cells triggered TLR3-, RIG-I- and MDA-5-mediated immune responses with activation of IRF3 and NF-κB, induction of IFN-β and up-regulation of the interferon stimulated genes MxA and RNase L. Among the LAB strains tested, Bifidobacterium infantis MCC12 and B. breve MCC1274 significantly reduced RVs titers in infected PIE cells. The beneficial effects of both bifidobacteria were associated with reduction of A20 expression, and improvements of IRF-3 activation, IFN-β production, and MxA and RNase L expressions. These results indicate the value of PIE cells for studying RVs molecular innate immune response in pigs and for the selection of beneficial bacteria with antiviral capabilities.

  20. Synergistic effects of thymoquinone and curcumin on immune response and anti-viral activity against avian influenza virus (H9N2) in turkeys.

    Science.gov (United States)

    Umar, S; Shah, M A A; Munir, M T; Yaqoob, M; Fiaz, M; Anjum, S; Kaboudi, K; Bouzouaia, M; Younus, M; Nisa, Q; Iqbal, M; Umar, W

    2016-07-01

    The main objective of this study was to determine the possible effects of thymoquinone (TQ) and curcumin (Cur) on immune-response and pathogenesis of H9N2 avian influenza virus (AIV) in turkeys. The experiment was performed on 75 non-vaccinated mixed-sex turkey poults, divided into 5 experimental groups (A, B, C, D, and E) of 15 birds each. Group A was kept as non-infected and a non-treated negative control (ctrl group) while group B was kept as infected and non-treated positive control (H9N2 group). Turkeys in groups A and B received normal commercial feed while turkeys in groups C and D received TQ, and Cur respectively, and group E concurrently received TQ and Cur from d one through the entire experiment period. All groups were challenged intra-nasally with H9N2 AIV (A/chicken/Pakistan/10RS3039-284-48/2010) at the fourth wk of age except group A. Infected turkeys showed clinical signs of different severity, showing the most prominent disease signs in turkeys in group B. All infected turkeys showed positive results for virus shedding; however, the pattern of virus shedding was different, and with turkeys in group B showing more pronounced virus secretion than the turkeys in the other groups receiving different levels of TQ and Cur. Moreover, significantly higher antibody titer against H9N2 AIV in turkeys shows the immunomodulatory nature of TQ and Cur. Similarly, increased cytokine gene expression suggests antiviral behavior of TQ and Cur especially in combination, leading to suppressed pathogenesis of H9N2 viruses. However, reduced virus shedding and enhanced immune responses were more pronounced in those turkeys receiving TQ and Cur concurrently. This study showed that supplements of TQ and Cur in combination would significantly enhance immune responsiveness and suppress pathogenicity of influenza viruses in turkeys. © 2016 Poultry Science Association Inc.