WorldWideScience

Sample records for systemes industriels complexes

  1. impacts des rejets industriels sur les eaux souterraines

    African Journals Online (AJOL)

    USER

    pollution et sont nombreuses, notamment les usines sidérurgiques, métalliques et pétrochimiques. Leurs rejets ont des effets néfastes sur les eaux de la région. Actuellement, les effluents industriels situés dans la région de Berrahal, contiennent d'importantes quantités de produits chimiques organiques et inorganiques et ...

  2. Nouvelles approches ergonomiques de la cartographie des risques industriels

    Directory of Open Access Journals (Sweden)

    Éliane Propeck-Zimmermann

    2009-12-01

    Full Text Available Les cartes actuelles présentent des insuffisances pour une gestion territoriale des risques industriels. En redéfinissant le concept de «situation à risques» et en l'implémentant dans un SIG, on peut disposer à la demande d'informations riches et variées: cartes analytiques, de synthèse, typologies, requêtes spatiales diverses. Les recherches en cours visent à développer une interface ergonomique pour faciliter la concertation entre différents acteurs.

  3. Industrial gases. Special issue; Industriele gassen. Thema

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, A.; Voermans, F. (ed.)

    2004-07-01

    In three articles attention is paid to the use of synthesis gas in the Netherlands. In the first article the growing market for synthesis gas is discussed, in the second article it is argued that the energy efficiency of the production of nitrogen can be improved, and the third article is about cooling an ice track by means of carbon dioxide. [Dutch] In 3 artikelen wordt aandacht besteed aan het gebruik van industriele gassen. In het eerste artikel wordt de sterk groeiende markt voor synthese gas besproken, in het tweede artikel wordt aangegeven hoe de efficiency van stikstofproduktie kan worden verbeterd, en het derde artikele gaat in op het gebruik van kooldioxide in de koeling van een ijsbaan.

  4. Elaboration et Suivi des Budgets de Marketing Industriel: le Système ADVISOR

    OpenAIRE

    Choffray, Jean-Marie; Delabre, Gilles

    1982-01-01

    Cet article revoit les problèmes posés par l'élaboration et le suivi des budgets de marketing dans un environnement industriel. Il présente le système ADVISOR pour lequel nous avons développé un programme interactif adapté aux besoins des entreprises Françaises.

  5. DESIGNOR: une méthode nouvelle d'aide à la conception des produits industriels

    OpenAIRE

    Choffray, Jean-Marie

    1980-01-01

    Cet article présente une méthode nouvelle, appelée DESIGNOR, d'aide à la décision marketing. Son objectif est d'accroître la créativité au cours du processus de développement d'un nouveau produit industriel et de réduire les risques d'échec commercial.

  6. L’écologie industrielle : quand l’écosystème industriel devient un vecteur du développement durable

    Directory of Open Access Journals (Sweden)

    Arnaud Diemer

    2007-08-01

    Full Text Available L’écologie industrielle, définie par Robert Frosch (1995 comme « l’ensemble des pratiques destinées à réduire la pollution industrielle », nous amène à penser que l’écosystème industriel peut être un véritable vecteur du développement durable. L’ingénierie écologique et l’écotechnologie recommandent aux industriels de procéder à un ensemble d’opérations de rationalisation de la production (optimisation des consommations énergétiques et matérielles, minimisation des déchets à la source,réutilisation des rejets pour servir de matières premières à d’autres processus de production. Les symbioses industrielles et les parcs éco-industriels sont généralement présentés comme des modèles de rationalisation industrielle et des illustrations tangibles du développement durable.Industrial ecology is defined by Robert Frosch (1995 as practices intended to reduce industrial pollution. That leads us to think industrial ecosystem as a vector of sustainable development.Ecological engineering and ecotechnology recommend managers to rationalize the production process (optimization of material consumptions, minimization of bads…. Industrial symbiosis and industrial parks are generally presented as models of industrial rationalization and tangible illustrations of the sustainable development.

  7. Generative Fertigung im Maschinenbau - industrieller 3D-Druck auf dem Weg in die Serienproduktion

    OpenAIRE

    Müller, Bernhard

    2014-01-01

    3D-Druck ist aktuell medial omnipräsent, sein Potential für echte industrielle Anwendungen, v. a. im Maschinenbauumfeld, wird kontrovers diskutiert. Der Vortrag gibt einen fundierten Einblick in den Stand der Technik zum industriellen 3D-Druck (Generative Fertigung , Additive Manufacturing) und zeigt spezifische Potentiale mit industrieller Relevanz auf. Dabei werden ebenso Praxisbeispiele aus heutiger Anwendung in der Industrie gezeigt als auch Zukunftsszenarien für potentielle Anwendungen e...

  8. Draught control by means of industrial air curtains. Background information on the design of industrial air curtains; Tochtbestrijding met industriele luchtgordijnen. Achtergronden bij ontwerp van industriele luchtgrodijnen

    Energy Technology Data Exchange (ETDEWEB)

    Cremers, B. [Biddle, Kootstertille (Netherlands); Traversar, R. [TNO Milieu, Energie en Procesinnovatie TNO-MEP, Apeldoorn (Netherlands)

    2008-02-15

    In industrial buildings a balanced ventilation is not common property. Due to increasing differences in pressure across the front much cold outside air enters the building, resulting in poor comfort near the door. A good air curtain can heat up large amounts of incoming cold outside air in such a way that energy saving is optimal and comfort remains high. (mk) [Dutch] Bij industriele gebouwen is gebalanceerde ventilatie geen gemeengoed. Door oplopende drukverschillen over de gevel komt veel koude buitenlucht naar binnen en is het comfort vlak achter de deur erg laag. Een goed luchtgordijn kan grote hoeveelheden binnenkomende koude buitenlucht zodanig opwarmen dat de energiebesparing optimaal is en het comfort hoog blijft.

  9. Les Parcs Industriels Fournisseurs ou le choix de la proximité géographique

    OpenAIRE

    Sonia Adam-Ledunois; Jérôme Guédon; Sophie Renault

    2008-01-01

    International audience; La proximité géographique est régulièrement présentée comme le remède à de nombreux maux, la solution à des relations distendues voire rompues, et cela tant sur un plan social qu'économique. Nombre de décisions ou démarches, civiles, politiques ou stratégiques, placent ainsi la proximité au cœur des dispositifs envisagés (emplois de proximité, police de proximité, fête des voisins, pôle de compétitivité, systèmes de production localisés, districts industriels, etc.). L...

  10. Sociologie du travail et critique du temps industriel The Sociology of Labor and a critical vision of industrial Time

    Directory of Open Access Journals (Sweden)

    Jens Thoemmes

    2009-07-01

    Full Text Available La sociologie du travail a développé un point de vue particulier sur l'analyse des temporalités sociales. L'objectif de cet article est de montrer l'élaboration progressive d'une critique d'un temps industriel unique et unifiant. Cette critique s'appuie sur trois éléments : la multiplicité des temporalités de l’activité professionnelle, le caractère déstructurant du travail industriel et l'émergence d'un temps des loisirs. Ce point de vue a été élaboré par la sociologie du travail en France après 1945, notamment par Georges Friedmann, Pierre Naville et William Grossin.  Avant d’aborder cette période nous voudrions  interroger le moment de la fondation de la sociologie. En mobilisant des travaux peu connus de Max Weber sur le travail, nous verrons en quoi il est un précurseur de l’analyse des attitudes diversifiées des individus et des collectifs à l’égard du temps. Cette perspective lie, dès les premières enquêtes sociologiques, le travail industriel à une interrogation sur les temporalités.The sociology of work and labor developed a particular viewpoint on the analysis of social times. The objective of this article is to show how a criticism of a unique and unifying industrial time progressively grew up. Such criticism leans on three elements: the multiplicity of social times linked to the occupational activity, the disintegrating nature of work in the manufacturing process and the emergence of leisure-time. This point of view was elaborated by the sociology of work in France after 1945, notably by Georges Friedmann, Pierre Naville and William Grossin. Before approaching this period we question the moment of the foundation of sociology. By mobilizing little known research by Max Weber on the manufacturing process, we shall see in what way he was a precursor of the analysis of diversified attitudes regarding time by individuals and groups.

  11. Ocean Data Assimilation Systems for GODAE

    Science.gov (United States)

    2009-09-01

    Scientist, Conseil National de la Recherche Scientifique I Laboratoire des Ecoulements Geophysiques et Industriels (CNRS/LECI), Grenoble, France. Ichiro... Geophysiques et Industriels, Grenoble, France. Anthony Weaver is Senior Researcher, Centre Europeen de Recherche et de Formation Avancee en Calcul Scientifique

  12. Generalized Combination Complex Synchronization for Fractional-Order Chaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Cuimei Jiang

    2015-07-01

    Full Text Available Based on two fractional-order chaotic complex drive systems and one fractional-order chaotic complex response system with different dimensions, we propose generalized combination complex synchronization. In this new synchronization scheme, there are two complex scaling matrices that are non-square matrices. On the basis of the stability theory of fractional-order linear systems, we design a general controller via active control. Additionally, by virtue of two complex scaling matrices, generalized combination complex synchronization between fractional-order chaotic complex systems and real systems is investigated. Finally, three typical examples are given to demonstrate the effectiveness and feasibility of the schemes.

  13. Et arkitektonisk anliggende

    DEFF Research Database (Denmark)

    Dahl, Torben

    2004-01-01

    En satsning på industriel innovation må tage udgangspunkt i at etablere samarbejde mellem byggeriets parter, og projekteringen bør medtænke de kvalitative tilskud, som en avanceret industriel produktion tilbyder. Det kræver forståelse og udnyttelse af de teknologiske potentialer, der ligger i...... industriel produktion fra udvikling af komponenter over åbne systemer og byggeriets processer til det endelige værk....

  14. Les hydrocarbures aromatiques polycycliques dans l'environnement : la réhabilitation des anciens sites industriels The Polycyclic Aromatic Hydrocarbons in the Environment : the Former Industrial Sites Remediation

    Directory of Open Access Journals (Sweden)

    Costes J. M.

    2006-12-01

    Full Text Available Les hydrocarbures aromatiques polycycliques ou HAP peuvent être d'origine naturelle mais ils proviennent principalement des processus de pyrolyse. On peut les retrouver dans les sols de certains anciens sites industriels. Cela peut être le cas des sites d'anciennes usines à gaz. Même si aucune conséquence sur la santé humaine n'a été signalée et même si les risques paraissent virtuels, le principe de précaution rend nécessaire de s'occuper des risques liés à ces anciens sites industriels. Gaz de France, propriétaire de 467 sites d'anciennes usines à gaz assume l'héritage industriel dans le cadre d'un protocole signé avec le ministère de l'Environnement. Après une étude des sols, une évaluation des risques est réalisée. En fonction des résultats de cette évaluation des risques et de l'usage du site (actuel et prévu, des solutions de traitement peuvent être mises en Suvre. Parmi les techniques applicables aux sols pollués par des HAP, un intérêt particulier s'est porté sur les traitements biologiques, en pleine évolution, qui offrent une solution économique bien adaptée au traitement de grands volumes de sols souillés par une pollution organique moyennement concentrée. Polycyclic aromatic hydrocarbons (PAHs can be found under natural conditions but they can be produced by pyrolysis processes. They can be found in former industrial sites subsoil, especially on Manufactured Gas Plant sites (MGP sites. Gaz de France has inherited the patrimony of former French gas companies on nationalisation in 1946; consequently, Gaz De France is still the owner of 467 of manufactured gas plants. Even if no impact on human health has been detected and even if the risks seem to be virtual, Gaz de France has to prevent any environmental consequence due to the possible presence of residues in the subsoil of the sites: a protocol has been signed with the French Ministry of Environment. Following the investigations on the site, a

  15. Complex Adaptive Systems of Systems (CASOS) engineering environment.

    Energy Technology Data Exchange (ETDEWEB)

    Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

    2012-02-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

  16. Underground seasonal storage of industrial waste heat; Saisonale Speicherung industrieller Abwaerme im Untergrund

    Energy Technology Data Exchange (ETDEWEB)

    Reuss, M.; Mueller, J. [Bayerische Landesanstalt fuer Landtechnik, TU Muenchen-Weihenstephan, Freising (Germany)

    1998-12-31

    The thermal efficiency of subject systems, especially at higher temperatures is influenced by heat and humidity transport underground. Thermal conductivity and specific thermal capacity depend on the humidity content of the soil. A simulation model was developed that describes the coupled heat and humidity transport in the temperature range up to 90 C. This model will be validated in laboratory and field tests and then be used for designing and analysing underground stores. Pilot plants for the storage of industrial waste heat were designed and planned on the basis of this simulation. In both cases these are cogeneration plants whose waste heat was to be used for space heating and as process energy. Both plants have a very high demand of electric energy which is mostly supplied by the cogeneration plant. The waste heat is put into the store during the summer. In the winter heat is supplied by both the store and the cogeneration plant. In both cases the store has a volume of approx. 15,000 cubic metres with 140 and 210 pits located in a depth of 30 and 40 metres. The plants are used to carry out extensive measurements for the validation of simulation models. (orig.) [Deutsch] Die thermische Leistungsfaehigkeit solcher Systeme wird insbesondere im hoeheren Temperaturbereich durch den Waerme- und Feuchtetransport im Untergrund beeinflusst. Sowohl die Waermeleitfaehigkeit als auch die spezifische Waermekapazitaet sind vom Feuchtegehalt des Bodens abhaengig. Es wurde ein Simulationsmodell entwickelt, das den gekoppelten Waerme- und Feuchtetransport im Temperaturbereich bis 90 C beschreibt. Dieses Modell wird an Labor- und Feldexperimenten validiert und dient dann zur Auslegung und Analyse von Erdwaermesonden-Speichern. Basierend auf diesen theoretischen Grundlagenarbeiten wurden Pilotanlagen zur saisonalen Speicherung industrieller Abwaerme ausgelegt und geplant. In beiden Faellen handelt es sich um Kraft/Waermekopplungsanlagen, deren Abwaerme zur Gebaeudeheizung und

  17. Optimistaion énergétique d'un ensemble industriel Energy Optimization of an Industrial Installation

    Directory of Open Access Journals (Sweden)

    Raimbault C.

    2006-11-01

    Full Text Available Cet article porte sur la mise au point d'une méthode d'optimisation du système de production d'utilités d'un ensemble industriel et l'étude de dispositifs destinés à économiser l'énergie. Le programme d'optimisation fait appel à la programmation linéaire. Un programme générateur de matrice et un programme de traduction des résultats ont été mis au point. On dispose ainsi d'un programme d'optimisation adapté à tout système de production d'utilités. Différents dispositifs permettant d'économiser l'énergie ont été étudiés. L'étude a porté, d'une part, sur des dispositifs classiques tels que les dispositifs de récupération de chaleur sur les fumées et, d'autre part, sur des dispositifs nouveaux. Des solutions nouvelles ont été recherchées dans deux domaines qui sont apparus essentiels : production combinée de travail et de chaleur et valorisation de calories à bas niveau. Enfin la méthode d'optimisation a été appliquée au cas d'une raffinerie réelle dont l'étude avait été effectuée récemment. L'optimisation sur une base économique a permis de dégager une économie de 9,3 % sur la consommation d'énergie, mais a surtout démontré les larges possibilités de la méthode dans son application à un cas concret. This article describes the development of a method for optimizing utilities production systems for on industrial installation and the study of energy-saving systems. The optimization program makes use of linear programming. A matrix-generating program and a result-translating program were developed. The result is an optimization program suited for any utilities production system. Different energy-saving systems were examined, including conventional systems such as heat-recovery devices as well as new systems. New solutions were sought for in two fields which appear essential, i. e. the combined production of work and heat and the valorization of low-level calories. The optimization method was

  18. Modeling Complex Systems

    CERN Document Server

    Boccara, Nino

    2010-01-01

    Modeling Complex Systems, 2nd Edition, explores the process of modeling complex systems, providing examples from such diverse fields as ecology, epidemiology, sociology, seismology, and economics. It illustrates how models of complex systems are built and provides indispensable mathematical tools for studying their dynamics. This vital introductory text is useful for advanced undergraduate students in various scientific disciplines, and serves as an important reference book for graduate students and young researchers. This enhanced second edition includes: . -recent research results and bibliographic references -extra footnotes which provide biographical information on cited scientists who have made significant contributions to the field -new and improved worked-out examples to aid a student’s comprehension of the content -exercises to challenge the reader and complement the material Nino Boccara is also the author of Essentials of Mathematica: With Applications to Mathematics and Physics (Springer, 2007).

  19. Extending Life Concepts to Complex Systems

    Directory of Open Access Journals (Sweden)

    Jean Le Fur

    2013-01-01

    Full Text Available There is still no consensus definition of complex systems. This article explores, as a heuristic approach, the possibility of using notions associated with life as transversal concepts for defining complex systems. This approach is developed within a general classification of systems, with complex systems considered as a general ‘living things’ category and living organisms as a specialised class within this category. Concepts associated with life are first explored in the context of complex systems: birth, death and lifetime, adaptation, ontogeny and growth, reproduction. Thereafter, a refutation approach is used to test the proposed classification against a set of diverse systems, including a reference case, edge cases and immaterial complex systems. The summary of this analysis is then used to generate a definition of complex systems, based on the proposal, and within the background of cybernetics, complex adaptive systems and biology. Using notions such as ‘birth’ or ‘lifespan’ as transversal concepts may be of heuristic value for the generic characterization of complex systems, opening up new lines of research for improving their definition.

  20. Complex Systems: An Introduction

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 9. Complex Systems: An Introduction - Anthropic Principle, Terrestrial Complexity, Complex Materials. V K Wadhawan. General Article Volume 14 Issue 9 September 2009 pp 894-906 ...

  1. Complex Systems and Dependability

    CERN Document Server

    Zamojski, Wojciech; Sugier, Jaroslaw

    2012-01-01

    Typical contemporary complex system is a multifaceted amalgamation of technical, information, organization, software and human (users, administrators and management) resources. Complexity of such a system comes not only from its involved technical and organizational structure but mainly from complexity of information processes that must be implemented in the operational environment (data processing, monitoring, management, etc.). In such case traditional methods of reliability analysis focused mainly on technical level are usually insufficient in performance evaluation and more innovative meth

  2. Encyclopedia of Complexity and Systems Science

    CERN Document Server

    Meyers, Robert A

    2009-01-01

    Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, stochastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms. Examples of near-term problems and major unknowns that can be approached through complexity and systems science include: The structure, history and future of the universe; the biological basis of consciousness; the integration of genomics, proteomics and bioinformatics as systems biology; human longevity limits; the limits of computing; sustainability of life on earth; predictability, dynamics and extent of earthquakes, hurricanes, tsunamis, and other n...

  3. Adaptive generalized combination complex synchronization of uncertain real and complex nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shi-bing, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn [School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236041 (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xing-yuan, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xiu-you [School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236041 (China); Zhou, Yu-fei [College of Electrical Engineering and Automation, Anhui University, Hefei 230601 (China)

    2016-04-15

    With comprehensive consideration of generalized synchronization, combination synchronization and adaptive control, this paper investigates a novel adaptive generalized combination complex synchronization (AGCCS) scheme for different real and complex nonlinear systems with unknown parameters. On the basis of Lyapunov stability theory and adaptive control, an AGCCS controller and parameter update laws are derived to achieve synchronization and parameter identification of two real drive systems and a complex response system, as well as two complex drive systems and a real response system. Two simulation examples, namely, ACGCS for chaotic real Lorenz and Chen systems driving a hyperchaotic complexsystem, and hyperchaotic complex Lorenz and Chen systems driving a real chaotic Lü system, are presented to verify the feasibility and effectiveness of the proposed scheme.

  4. Management of complex dynamical systems

    Science.gov (United States)

    MacKay, R. S.

    2018-02-01

    Complex dynamical systems are systems with many interdependent components which evolve in time. One might wish to control their trajectories, but a more practical alternative is to control just their statistical behaviour. In many contexts this would be both sufficient and a more realistic goal, e.g. climate and socio-economic systems. I refer to it as ‘management’ of complex dynamical systems. In this paper, some mathematics for management of complex dynamical systems is developed in the weakly dependent regime, and questions are posed for the strongly dependent regime.

  5. Control of complex systems

    CERN Document Server

    Albertos, Pedro; Blanke, Mogens; Isidori, Alberto; Schaufelberger, Walter; Sanz, Ricardo

    2001-01-01

    The world of artificial systems is reaching complexity levels that es­ cape human understanding. Surface traffic, electricity distribution, air­ planes, mobile communications, etc. , are examples that demonstrate that we are running into problems that are beyond classical scientific or engi­ neering knowledge. There is an ongoing world-wide effort to understand these systems and develop models that can capture its behavior. The reason for this work is clear, if our lack of understanding deepens, we will lose our capability to control these systems and make they behave as we want. Researchers from many different fields are trying to understand and develop theories for complex man-made systems. This book presents re­ search from the perspective of control and systems theory. The book has grown out of activities in the research program Control of Complex Systems (COSY). The program has been sponsored by the Eu­ ropean Science Foundation (ESF) which for 25 years has been one of the leading players in stimula...

  6. Synchronization in node of complex networks consist of complex chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qiang, E-mail: qiangweibeihua@163.com [Beihua University computer and technology College, BeiHua University, Jilin, 132021, Jilin (China); Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024 (China); Xie, Cheng-jun [Beihua University computer and technology College, BeiHua University, Jilin, 132021, Jilin (China); Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin (China); Liu, Hong-jun [School of Information Engineering, Weifang Vocational College, Weifang, 261041 (China); Li, Yan-hui [The Library, Weifang Vocational College, Weifang, 261041 (China)

    2014-07-15

    A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  7. Multi-agent and complex systems

    CERN Document Server

    Ren, Fenghui; Fujita, Katsuhide; Zhang, Minjie; Ito, Takayuki

    2017-01-01

    This book provides a description of advanced multi-agent and artificial intelligence technologies for the modeling and simulation of complex systems, as well as an overview of the latest scientific efforts in this field. A complex system features a large number of interacting components, whose aggregate activities are nonlinear and self-organized. A multi-agent system is a group or society of agents which interact with others cooperatively and/or competitively in order to reach their individual or common goals. Multi-agent systems are suitable for modeling and simulation of complex systems, which is difficult to accomplish using traditional computational approaches.

  8. European Conference on Complex Systems 2012

    CERN Document Server

    Kirkilionis, Markus; Nicolis, Gregoire

    2013-01-01

    The European Conference on Complex Systems, held under the patronage of the Complex Systems Society, is an annual event that has become the leading European conference devoted to complexity science. ECCS'12, its ninth edition, took place in Brussels, during the first week of September 2012. It gathered about 650 scholars representing a wide range of topics relating to complex systems research, with emphasis on interdisciplinary approaches. More specifically, the following tracks were covered:  1. Foundations of Complex Systems 2. Complexity, Information and Computation 3. Prediction, Policy and Planning, Environment 4. Biological Complexity 5. Interacting Populations, Collective Behavior 6. Social Systems, Economics and Finance This book contains a selection of the contributions presented at the conference and its satellite meetings. Its contents reflect the extent, diversity and richness of research areas in the field, both fundamental and applied.  

  9. Le néo-corporatisme réinterpellé : analyse comparée de deux politiques d'accès à l'emploi, l'apprentissage industriel en Belgique et le contrat de qualification "jeunes" en France

    OpenAIRE

    Levêque, Audrey

    2006-01-01

    The comparative study of the "apprentissage industriel" in French speaking Belgium and of the "contrat de qualification jeunes" in France shows the maintenance of the neo corporatist model of social State. The analysis of the emergence and of the implementation of these two employment public policies for low qualified young permit to understand how they are appropriated on the ground, especially in the metallurgy sector. If these policies are intended for those low qualified young, the implem...

  10. Reduction of Subjective and Objective System Complexity

    Science.gov (United States)

    Watson, Michael D.

    2015-01-01

    Occam's razor is often used in science to define the minimum criteria to establish a physical or philosophical idea or relationship. Albert Einstein is attributed the saying "everything should be made as simple as possible, but not simpler". These heuristic ideas are based on a belief that there is a minimum state or set of states for a given system or phenomena. In looking at system complexity, these heuristics point us to an idea that complexity can be reduced to a minimum. How then, do we approach a reduction in complexity? Complexity has been described as a subjective concept and an objective measure of a system. Subjective complexity is based on human cognitive comprehension of the functions and inter relationships of a system. Subjective complexity is defined by the ability to fully comprehend the system. Simplifying complexity, in a subjective sense, is thus gaining a deeper understanding of the system. As Apple's Jonathon Ive has stated," It's not just minimalism or the absence of clutter. It involves digging through the depth of complexity. To be truly simple, you have to go really deep". Simplicity is not the absence of complexity but a deeper understanding of complexity. Subjective complexity, based on this human comprehension, cannot then be discerned from the sociological concept of ignorance. The inability to comprehend a system can be either a lack of knowledge, an inability to understand the intricacies of a system, or both. Reduction in this sense is based purely on a cognitive ability to understand the system and no system then may be truly complex. From this view, education and experience seem to be the keys to reduction or eliminating complexity. Objective complexity, is the measure of the systems functions and interrelationships which exist independent of human comprehension. Jonathon Ive's statement does not say that complexity is removed, only that the complexity is understood. From this standpoint, reduction of complexity can be approached

  11. Increase of Organization in Complex Systems

    OpenAIRE

    Georgiev, Georgi Yordanov; Daly, Michael; Gombos, Erin; Vinod, Amrit; Hoonjan, Gajinder

    2013-01-01

    Measures of complexity and entropy have not converged to a single quantitative description of levels of organization of complex systems. The need for such a measure is increasingly necessary in all disciplines studying complex systems. To address this problem, starting from the most fundamental principle in Physics, here a new measure for quantity of organization and rate of self-organization in complex systems based on the principle of least (stationary) action is applied to a model system -...

  12. Anti-synchronization between different chaotic complex systems

    International Nuclear Information System (INIS)

    Liu Ping; Liu Shutang

    2011-01-01

    Many studies on the anti-synchronization of nonlinear real dynamic systems have been carried out, whereas the anti-synchronization of chaotic complex systems has not been studied extensively. In this work, the anti-synchronization between a new chaotic complex system and a complex Lorenz system and that between a new chaotic complex system and a complex Lue system were separately investigated by active control and nonlinear control methods, and explicit expressions were derived for the controllers that are used to achieve the anti-synchronization of chaotic complex systems. These expressions were tested numerically and excellent agreement was found. Concerning the new chaotic complex system, we discuss its dynamical properties including dissipation, chaotic behavior, fixed points, and their stability and invariance.

  13. Complexity of Economical Systems

    Directory of Open Access Journals (Sweden)

    G. P. Pavlos

    2015-01-01

    Full Text Available In this study new theoretical concepts are described concerning the interpretation of economical complex dynamics. In addition a summary of an extended algorithm of nonlinear time series analysis is provided which is applied not only in economical time series but also in other physical complex systems (e.g. [22, 24]. In general, Economy is a vast and complicated set of arrangements and actions wherein agents—consumers, firms, banks, investors, government agencies—buy and sell, speculate, trade, oversee, bring products into being, offer services, invest in companies, strategize, explore, forecast, compete, learn, innovate, and adapt. As a result the economic and financial variables such as foreign exchange rates, gross domestic product, interest rates, production, stock market prices and unemployment exhibit large-amplitude and aperiodic fluctuations evident in complex systems. Thus, the Economics can be considered as spatially distributed non-equilibrium complex system, for which new theoretical concepts, such as Tsallis non extensive statistical mechanics and strange dynamics, percolation, nonGaussian, multifractal and multiscale dynamics related to fractional Langevin equations can be used for modeling and understanding of the economical complexity locally or globally.

  14. Modeling Complex Systems

    International Nuclear Information System (INIS)

    Schreckenberg, M

    2004-01-01

    This book by Nino Boccara presents a compilation of model systems commonly termed as 'complex'. It starts with a definition of the systems under consideration and how to build up a model to describe the complex dynamics. The subsequent chapters are devoted to various categories of mean-field type models (differential and recurrence equations, chaos) and of agent-based models (cellular automata, networks and power-law distributions). Each chapter is supplemented by a number of exercises and their solutions. The table of contents looks a little arbitrary but the author took the most prominent model systems investigated over the years (and up until now there has been no unified theory covering the various aspects of complex dynamics). The model systems are explained by looking at a number of applications in various fields. The book is written as a textbook for interested students as well as serving as a comprehensive reference for experts. It is an ideal source for topics to be presented in a lecture on dynamics of complex systems. This is the first book on this 'wide' topic and I have long awaited such a book (in fact I planned to write it myself but this is much better than I could ever have written it!). Only section 6 on cellular automata is a little too limited to the author's point of view and one would have expected more about the famous Domany-Kinzel model (and more accurate citation!). In my opinion this is one of the best textbooks published during the last decade and even experts can learn a lot from it. Hopefully there will be an actualization after, say, five years since this field is growing so quickly. The price is too high for students but this, unfortunately, is the normal case today. Nevertheless I think it will be a great success! (book review)

  15. Complexity in Dynamical Systems

    Science.gov (United States)

    Moore, Cristopher David

    The study of chaos has shown us that deterministic systems can have a kind of unpredictability, based on a limited knowledge of their initial conditions; after a finite time, the motion appears essentially random. This observation has inspired a general interest in the subject of unpredictability, and more generally, complexity; how can we characterize how "complex" a dynamical system is?. In this thesis, we attempt to answer this question with a paradigm of complexity that comes from computer science, we extract sets of symbol sequences, or languages, from a dynamical system using standard methods of symbolic dynamics; we then ask what kinds of grammars or automata are needed a generate these languages. This places them in the Chomsky heirarchy, which in turn tells us something about how subtle and complex the dynamical system's behavior is. This gives us insight into the question of unpredictability, since these automata can also be thought of as computers attempting to predict the system. In the culmination of the thesis, we find a class of smooth, two-dimensional maps which are equivalent to the highest class in the Chomsky heirarchy, the turning machine; they are capable of universal computation. Therefore, these systems possess a kind of unpredictability qualitatively different from the usual "chaos": even if the initial conditions are known exactly, questions about the system's long-term dynamics are undecidable. No algorithm exists to answer them. Although this kind of unpredictability has been discussed in the context of distributed, many-degree-of -freedom systems (for instance, cellular automata) we believe this is the first example of such phenomena in a smooth, finite-degree-of-freedom system.

  16. Complex logistics audit system

    Directory of Open Access Journals (Sweden)

    Zuzana Marková

    2010-02-01

    Full Text Available Complex logistics audit system is a tool for realization of logistical audit in the company. The current methods for logistics auditare based on “ad hok” analysis of logisticsl system. This paper describes system for complex logistics audit. It is a global diagnosticsof logistics processes and functions of enterprise. The goal of logistics audit is to provide comparative documentation for managementabout state of logistics in company and to show the potential of logistics changes in order to achieve more effective companyperformance.

  17. Computer aided analysis and design of industrial energy systems; Rechnergestuetzte Analyse und Konzeption industrieller Energiesysteme

    Energy Technology Data Exchange (ETDEWEB)

    Augenstein, Eckardt Marc Guenter

    2009-03-02

    In this dissertation the concept and implementation of a software system supporting the analysis and the design of industrial energy systems is presented. As a basis, a software framework was designed supplying a domain specific object model allowing the description of energy systems as well as the energy auditing projects performed with the software. Moreover, a set of graphical and textual editors needed to model the examined systems is part of the framework. On the other hand, the professional methods for analysis, assessment and optimization of energy systems are implemented in modules integrated into the system via a plug-in interface. The object model whose definition was based on a meta model approach allows the description of network like structures typical to energy systems. In order to keep track of the different work steps performed during an analysis project, these steps are reflected in the object model as ''method applications'' using a tree as the basic structure of a project. In order to allow the compatibility of information a set of conventions for the evaluation of energy flows and system balances was introduced. Moreover, all data elements used in modules or model components are derived from a central database guaranteeing a consistent usage of terms, descriptions, validity ranges and data types. The single professional modules like simulators or optimization methods access the object model via an appropriate software interface. Moreover, they make use of the framework's user interface engine by delivering a generic description of dialog screens and result reports. As all modules share the same set of objects modelling the components of the energy system surveyed, the flow of information from module to module can be designed virtually seamless. Compared to a number of stand-alone solutions, this integrated design approach has the advantage that by combining a set of specialized methods an overall solution for complex

  18. Measuring Complexity of SAP Systems

    Directory of Open Access Journals (Sweden)

    Ilja Holub

    2016-10-01

    Full Text Available The paper discusses the reasons of complexity rise in ERP system SAP R/3. It proposes a method for measuring complexity of SAP. Based on this method, the computer program in ABAP for measuring complexity of particular SAP implementation is proposed as a tool for keeping ERP complexity under control. The main principle of the measurement method is counting the number of items or relations in the system. The proposed computer program is based on counting of records in organization tables in SAP.

  19. European Conference on Complex Systems

    CERN Document Server

    Pellegrini, Francesco; Caldarelli, Guido; Merelli, Emanuela

    2016-01-01

    This work contains a stringent selection of extended contributions presented at the meeting of 2014 and its satellite meetings, reflecting scope, diversity and richness of research areas in the field, both fundamental and applied. The ECCS meeting, held under the patronage of the Complex Systems Society, is an annual event that has become the leading European conference devoted to complexity science. It offers cutting edge research and unique opportunities to study novel scientific approaches in a multitude of application areas. ECCS'14, its eleventh occurrence, took place in Lucca, Italy. It gathered some 650 scholars representing a wide range of topics relating to complex systems research, with emphasis on interdisciplinary approaches. The editors are among the best specialists in the area. The book is of great interest to scientists, researchers and graduate students in complexity, complex systems and networks.

  20. Third International Conference on Complex Systems

    CERN Document Server

    Minai, Ali A; Unifying Themes in Complex Systems

    2006-01-01

    In recent years, scientists have applied the principles of complex systems science to increasingly diverse fields. The results have been nothing short of remarkable: their novel approaches have provided answers to long-standing questions in biology, ecology, physics, engineering, computer science, economics, psychology and sociology. The Third International Conference on Complex Systems attracted over 400 researchers from around the world. The conference aimed to encourage cross-fertilization between the many disciplines represented and to deepen our understanding of the properties common to all complex systems. This volume contains over 35 papers selected from those presented at the conference on topics including: self-organization in biology, ecological systems, language, economic modeling, ecological systems, artificial life, robotics, and complexity and art. ALI MINAI is an Affiliate of the New England Complex Systems Institute and an Associate Professor in the Department of Electrical and Computer Engine...

  1. Sixth International Conference on Complex Systems

    CERN Document Server

    Minai, Ali; Bar-Yam, Yaneer; Unifying Themes in Complex Systems

    2008-01-01

    The International Conference on Complex Systems (ICCS) creates a unique atmosphere for scientists of all fields, engineers, physicians, executives, and a host of other professionals to explore the common themes and applications of complex systems science. In June 2006, 500 participants convened in Boston for the sixth ICCS, exploring an array of topics, including networks, systems biology, evolution and ecology, nonlinear dynamics and pattern formation, as well as neural, psychological, psycho-social, socio-economic, and global systems. This volume selects 77 papers from over 300 presented at the conference. With this new volume, Unifying Themes in Complex Systems continues to build common ground between the wide-ranging domains of complex systems science.

  2. Philosophy of complex systems

    CERN Document Server

    2011-01-01

    The domain of nonlinear dynamical systems and its mathematical underpinnings has been developing exponentially for a century, the last 35 years seeing an outpouring of new ideas and applications and a concomitant confluence with ideas of complex systems and their applications from irreversible thermodynamics. A few examples are in meteorology, ecological dynamics, and social and economic dynamics. These new ideas have profound implications for our understanding and practice in domains involving complexity, predictability and determinism, equilibrium, control, planning, individuality, responsibility and so on. Our intention is to draw together in this volume, we believe for the first time, a comprehensive picture of the manifold philosophically interesting impacts of recent developments in understanding nonlinear systems and the unique aspects of their complexity. The book will focus specifically on the philosophical concepts, principles, judgments and problems distinctly raised by work in the domain of comple...

  3. Large-scale Complex IT Systems

    OpenAIRE

    Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2011-01-01

    This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that identifies the major challen...

  4. Large-scale complex IT systems

    OpenAIRE

    Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2012-01-01

    12 pages, 2 figures This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that ident...

  5. Églises et temples en bassins industriels : Belfort-Héricourt-Montbéliard (Franche-Comté (1944-2008

    Directory of Open Access Journals (Sweden)

    Yves-Claude Lequin

    2009-11-01

    Full Text Available Si l’on en juge par l’exemple de Belfort-Montbéliard, nombreux furent les lieux de culte - catholiques et luthériens - construits dans les bassins industriels français entre 1950 et 1968. Étapes : églises modernes « en majesté » vers 1950, églises sobres aux formes arrondies dans les ZUP vers 1960, préfabriqués après 1964, quasi arrêt en 1968, reconversion du bâti à partir de 1990. Raisons de cet essor puissant et du rapide déclin : les tensions sociales et les évolutions mentales des paroissiens.From the example of Belfort-Montbéliard, a fair number of places of worship - Catholic and Lutheran - were built in French industrial basins between 1950 and 1968. Stages: modern “in majesty” churches around 1950, sober buildings with curved shapes in priority development areas around 1960, prefabricated buildings after 1964, hardly any construction in 1968, conversion of buildings as from 1990. Reasons for this marked growth and for the swift decline: social tensions and evolution of parishioners ‘minds.

  6. 5th International Conference on Complex Systems

    CERN Document Server

    Braha, Dan; Bar-Yam, Yaneer

    2011-01-01

    The International Conference on Complex Systems (ICCS) creates a unique atmosphere for scientists of all fields, engineers, physicians, executives, and a host of other professionals to explore common themes and applications of complex system science. With this new volume, Unifying Themes in Complex Systems continues to build common ground between the wide-ranging domains of complex system science.

  7. 7th International Conference on Complex Systems

    CERN Document Server

    Braha, Dan; Bar-Yam, Yaneer

    2012-01-01

    The International Conference on Complex Systems (ICCS) creates a unique atmosphere for scientists of all fields, engineers, physicians, executives, and a host of other professionals to explore common themes and applications of complex system science. With this new volume, Unifying Themes in Complex Systems continues to build common ground between the wide-ranging domains of complex system science.

  8. Reliability of large and complex systems

    CERN Document Server

    Kolowrocki, Krzysztof

    2014-01-01

    Reliability of Large and Complex Systems, previously titled Reliability of Large Systems, is an innovative guide to the current state and reliability of large and complex systems. In addition to revised and updated content on the complexity and safety of large and complex mechanisms, this new edition looks at the reliability of nanosystems, a key research topic in nanotechnology science. The author discusses the importance of safety investigation of critical infrastructures that have aged or have been exposed to varying operational conditions. This reference provides an asympt

  9. Geographical National Condition and Complex System

    Directory of Open Access Journals (Sweden)

    WANG Jiayao

    2016-01-01

    Full Text Available The significance of studying the complex system of geographical national conditions lies in rationally expressing the complex relationships of the “resources-environment-ecology-economy-society” system. Aiming to the problems faced by the statistical analysis of geographical national conditions, including the disunity of research contents, the inconsistency of range, the uncertainty of goals, etc.the present paper conducted a range of discussions from the perspectives of concept, theory and method, and designed some solutions based on the complex system theory and coordination degree analysis methods.By analyzing the concepts of geographical national conditions, geographical national conditions survey and geographical national conditions statistical analysis, as well as investigating the relationships between theirs, the statistical contents and the analytical range of geographical national conditions are clarified and defined. This investigation also clarifies the goals of the statistical analysis by analyzing the basic characteristics of the geographical national conditions and the complex system, and the consistency between the analysis of the degree of coordination and statistical analyses. It outlines their goals, proposes a concept for the complex system of geographical national conditions, and it describes the concept. The complex system theory provides new theoretical guidance for the statistical analysis of geographical national conditions. The degree of coordination offers new approaches on how to undertake the analysis based on the measurement method and decision-making analysis scheme upon which the complex system of geographical national conditions is based. It analyzes the overall trend via the degree of coordination of the complex system on a macro level, and it determines the direction of remediation on a micro level based on the degree of coordination among various subsystems and of single systems. These results establish

  10. La montagne, lieu de développement industriel : l’exemple du Languedoc-Roussillon

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available Michel WieninRiches en énergie (rivières, bois, puis houille, en matières premières minérales et en produits d’élevage, les régions de montagne ont développé tôt une industrie qui profite de l’essor des transports au XIXe siècle. Loin des grands bassins miniers, les vallées se transforment en une succession de bourgs industriels, accédant beaucoup plus vite à la modernité que les plaines restées agricoles ou que les villages d’altitude, à l’écart du progrès. Délimité par le Massif Central et les Pyrénées, le Languedoc-Roussillon présente une plaine évoluant vers une quasi-monoculture de la vigne et des vallées de montagne qui se tournent vers l’industrie textile et métallurgique.France’s mountain regions, which are rich in varied sources of energy (rivers, woods, then coal, in mineral resources and in products derived from livestock rearing, developed industries at an early date, benefiting from the development of new transport networks during the 19th century. Far from the major mining basins, the mountain valleys were transformed into a succession of industrial villages, reaching modernity more rapidly than the plains, still devoted to agriculture, or the villages high in the mountains and isolated from such progress. Bordered by the Massif Central and the Pyrenees, the region of Languedoc-Roussillon comprises a plain which evolved towards a mono-activity of wine production and the mountain valleys which witnessed the development of textile and metallurgical industries.

  11. Fourth International Conference on Complex Systems

    CERN Document Server

    Minai, Ali A; Unifying Themes in Complex Systems IV

    2008-01-01

    In June of 2002, over 500 professors, students and researchers met in Boston, Massachusetts for the Fourth International Conference on Complex Systems. The attendees represented a remarkably diverse collection of fields: biology, ecology, physics, engineering, computer science, economics, psychology and sociology, The goal of the conference was to encourage cross-fertilization between the many disciplines represented and to deepen understanding of the properties common to all complex systems. This volume contains 43 papers selected from the more than 200 presented at the conference. Topics include: cellular automata, neurology, evolution, computer science, network dynamics, and urban planning. About NECSI: For over 10 years, The New England Complex Systems Institute (NECSI) has been instrumental in the development of complex systems science and its applications. NECSI conducts research, education, knowledge dissemination, and community development around the world for the promotion of the study of complex sys...

  12. Physical approach to complex systems

    Science.gov (United States)

    Kwapień, Jarosław; Drożdż, Stanisław

    2012-06-01

    Typically, complex systems are natural or social systems which consist of a large number of nonlinearly interacting elements. These systems are open, they interchange information or mass with environment and constantly modify their internal structure and patterns of activity in the process of self-organization. As a result, they are flexible and easily adapt to variable external conditions. However, the most striking property of such systems is the existence of emergent phenomena which cannot be simply derived or predicted solely from the knowledge of the systems’ structure and the interactions among their individual elements. This property points to the holistic approaches which require giving parallel descriptions of the same system on different levels of its organization. There is strong evidence-consolidated also in the present review-that different, even apparently disparate complex systems can have astonishingly similar characteristics both in their structure and in their behaviour. One can thus expect the existence of some common, universal laws that govern their properties. Physics methodology proves helpful in addressing many of the related issues. In this review, we advocate some of the computational methods which in our opinion are especially fruitful in extracting information on selected-but at the same time most representative-complex systems like human brain, financial markets and natural language, from the time series representing the observables associated with these systems. The properties we focus on comprise the collective effects and their coexistence with noise, long-range interactions, the interplay between determinism and flexibility in evolution, scale invariance, criticality, multifractality and hierarchical structure. The methods described either originate from “hard” physics-like the random matrix theory-and then were transmitted to other fields of science via the field of complex systems research, or they originated elsewhere but

  13. Exergetic balances and analysis in a Process Simulator: A way to enhance Process Energy Integration

    OpenAIRE

    Ghannadzadeh, Ali

    2013-01-01

    Dans un contexte de réduction des émissions de gaz à effet de serre (GES) et de forte volatilité du prix des énergies, les investissements en efficacité énergétique des sites industriels résultent souvent d'un processus de décision complexe. L'industriel doit pouvoir disposer d'outils lui permettant d'élaborer les solutions d'efficacité énergétique envisageables sur son site. Outre la recherche des sources d'énergie alternatives, que sont les énergies renouvelables, qui n'atteindront leur mat...

  14. What Is a Complex Innovation System?

    Science.gov (United States)

    Katz, J. Sylvan

    2016-01-01

    Innovation systems are sometimes referred to as complex systems, something that is intuitively understood but poorly defined. A complex system dynamically evolves in non-linear ways giving it unique properties that distinguish it from other systems. In particular, a common signature of complex systems is scale-invariant emergent properties. A scale-invariant property can be identified because it is solely described by a power law function, f(x) = kxα, where the exponent, α, is a measure of scale-invariance. The focus of this paper is to describe and illustrate that innovation systems have properties of a complex adaptive system. In particular scale-invariant emergent properties indicative of their complex nature that can be quantified and used to inform public policy. The global research system is an example of an innovation system. Peer-reviewed publications containing knowledge are a characteristic output. Citations or references to these articles are an indirect measure of the impact the knowledge has on the research community. Peer-reviewed papers indexed in Scopus and in the Web of Science were used as data sources to produce measures of sizes and impact. These measures are used to illustrate how scale-invariant properties can be identified and quantified. It is demonstrated that the distribution of impact has a reasonable likelihood of being scale-invariant with scaling exponents that tended toward a value of less than 3.0 with the passage of time and decreasing group sizes. Scale-invariant correlations are shown between the evolution of impact and size with time and between field impact and sizes at points in time. The recursive or self-similar nature of scale-invariance suggests that any smaller innovation system within the global research system is likely to be complex with scale-invariant properties too. PMID:27258040

  15. What Is a Complex Innovation System?

    Directory of Open Access Journals (Sweden)

    J Sylvan Katz

    Full Text Available Innovation systems are sometimes referred to as complex systems, something that is intuitively understood but poorly defined. A complex system dynamically evolves in non-linear ways giving it unique properties that distinguish it from other systems. In particular, a common signature of complex systems is scale-invariant emergent properties. A scale-invariant property can be identified because it is solely described by a power law function, f(x = kxα, where the exponent, α, is a measure of scale-invariance. The focus of this paper is to describe and illustrate that innovation systems have properties of a complex adaptive system. In particular scale-invariant emergent properties indicative of their complex nature that can be quantified and used to inform public policy. The global research system is an example of an innovation system. Peer-reviewed publications containing knowledge are a characteristic output. Citations or references to these articles are an indirect measure of the impact the knowledge has on the research community. Peer-reviewed papers indexed in Scopus and in the Web of Science were used as data sources to produce measures of sizes and impact. These measures are used to illustrate how scale-invariant properties can be identified and quantified. It is demonstrated that the distribution of impact has a reasonable likelihood of being scale-invariant with scaling exponents that tended toward a value of less than 3.0 with the passage of time and decreasing group sizes. Scale-invariant correlations are shown between the evolution of impact and size with time and between field impact and sizes at points in time. The recursive or self-similar nature of scale-invariance suggests that any smaller innovation system within the global research system is likely to be complex with scale-invariant properties too.

  16. Synchronization and emergence in complex systems

    Indian Academy of Sciences (India)

    ... complex systems. Fatihcan M Atay. Synchronization, Coupled Systems and Networks Volume 77 Issue 5 November 2011 pp 855-863 ... We show how novel behaviour can emerge in complex systems at the global level through synchronization of the activities of their constituent units. Two mechanisms are suggested for ...

  17. Infinite Particle Systems: Complex Systems III

    Directory of Open Access Journals (Sweden)

    Editorial Board

    2008-06-01

    Full Text Available In the years 2002-2005, a group of German and Polish mathematicians worked under a DFG research project No 436 POL 113/98/0-1 entitled "Methods of stochastic analysis in the theory of collective phenomena: Gibbs states and statistical hydrodynamics". The results of their study were summarized at the German-Polish conference, which took place in Poland in October 2005. The venue of the conference was Kazimierz Dolny upon Vistula - a lovely town and a popular place for various cultural, scientific, and even political events of an international significance. The conference was also attended by scientists from France, Italy, Portugal, UK, Ukraine, and USA, which predetermined its international character. Since that time, the conference, entitled "Infinite Particle Systems: Complex Systems" has become an annual international event, attended by leading scientists from Germany, Poland and many other countries. The present volume of the "Condensed Matter Physics" contains proceedings of the conference "Infinite Particle Systems: Complex Systems III", which took place in June 2007.

  18. From System Complexity to Emergent Properties

    CERN Document Server

    Aziz-Alaoui, M. A

    2009-01-01

    Emergence and complexity refer to the appearance of higher-level properties and behaviours of a system that obviously comes from the collective dynamics of that system's components. These properties are not directly deductable from the lower-level motion of that system. Emergent properties are properties of the "whole'' that are not possessed by any of the individual parts making up that whole. Such phenomena exist in various domains and can be described, using complexity concepts and thematic knowledges. This book highlights complexity modelling through dynamical or behavioral systems. The pluridisciplinary purposes, developped along the chapters, are enable to design links between a wide-range of fundamental and applicative Sciences. Developing such links - instead of focusing on specific and narrow researches - is characteristic of the Science of Complexity that we try to promote by this contribution.

  19. Complex Systems Design & Management : Proceedings of the Third International Conference on Complex Systems Design & Management

    CERN Document Server

    Caseau, Yves; Krob, Daniel; Rauzy, Antoine

    2013-01-01

    This book contains all refereed papers that were accepted to the third edition of the « Complex Systems Design & Management » (CSD&M 2012) international conference that took place in Paris (France) from December 12-14, 2012. (Website: http://www.csdm2012.csdm.fr)  These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (transport, defense & security, electronics, energy & environment, e-services), scientific & technical topics (systems fundamentals, systems architecture& engineering, systems metrics & quality, systemic  tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2012 conference is organized under the guidance of the CESAMES non-profit organization (http://www.cesames.net).

  20. The Meaning of System: Towards a Complexity Orientation in Systems Thinking

    DEFF Research Database (Denmark)

    Leleur, Steen

    2014-01-01

    for systems practice. It is argued that complexity theory and thinking with reference to Luhmann a.o. ought to be recognised and paid attention to by the systems community. Overall, it is found that a complexity orientation may contribute to extend and enrich the explanatory power of current systems theory......This article reviews the generic meaning of ‘system’ and complements more conventional system notions with a system perception based on recent complexity theory. With system as the core concept of systems theory, its actual meaning is not just of theoretical interest but is highly relevant also...... when used to complex real-world problems. As regards systems practice it is found that selective use and combination of five presented research approaches (functionalist, interpretive, emancipatory, postmodern and complexity) which function as different but complementing ‘epistemic lenses’ in a process...

  1. Sandpile model for relaxation in complex systems

    International Nuclear Information System (INIS)

    Vazquez, A.; Sotolongo-Costa, O.; Brouers, F.

    1997-10-01

    The relaxation in complex systems is, in general, nonexponential. After an initial rapid decay the system relaxes slowly following a long time tail. In the present paper a sandpile moderation of the relaxation in complex systems is analysed. Complexity is introduced by a process of avalanches in the Bethe lattice and a feedback mechanism which leads to slower decay with increasing time. In this way, some features of relaxation in complex systems: long time tails relaxation, aging, and fractal distribution of characteristic times, are obtained by simple computer simulations. (author)

  2. Embracing uncertainty, managing complexity: applying complexity thinking principles to transformation efforts in healthcare systems.

    Science.gov (United States)

    Khan, Sobia; Vandermorris, Ashley; Shepherd, John; Begun, James W; Lanham, Holly Jordan; Uhl-Bien, Mary; Berta, Whitney

    2018-03-21

    Complexity thinking is increasingly being embraced in healthcare, which is often described as a complex adaptive system (CAS). Applying CAS to healthcare as an explanatory model for understanding the nature of the system, and to stimulate changes and transformations within the system, is valuable. A seminar series on systems and complexity thinking hosted at the University of Toronto in 2016 offered a number of insights on applications of CAS perspectives to healthcare that we explore here. We synthesized topics from this series into a set of six insights on how complexity thinking fosters a deeper understanding of accepted ideas in healthcare, applications of CAS to actors within the system, and paradoxes in applications of complexity thinking that may require further debate: 1) a complexity lens helps us better understand the nebulous term "context"; 2) concepts of CAS may be applied differently when actors are cognizant of the system in which they operate; 3) actor responses to uncertainty within a CAS is a mechanism for emergent and intentional adaptation; 4) acknowledging complexity supports patient-centred intersectional approaches to patient care; 5) complexity perspectives can support ways that leaders manage change (and transformation) in healthcare; and 6) complexity demands different ways of implementing ideas and assessing the system. To enhance our exploration of key insights, we augmented the knowledge gleaned from the series with key articles on complexity in the literature. Ultimately, complexity thinking acknowledges the "messiness" that we seek to control in healthcare and encourages us to embrace it. This means seeing challenges as opportunities for adaptation, stimulating innovative solutions to ensure positive adaptation, leveraging the social system to enable ideas to emerge and spread across the system, and even more important, acknowledging that these adaptive actions are part of system behaviour just as much as periods of stability are. By

  3. Systems Approach to Tourism: A Methodology for Defining Complex Tourism System

    Directory of Open Access Journals (Sweden)

    Jere Jakulin Tadeja

    2017-08-01

    Full Text Available Background and Purpose: The complexity of the tourism system, as well as modelling in a frame of system dynamics, will be discussed in this paper. The phaenomenon of tourism, which possesses the typical properties of global and local organisations, will be presented as an open complex system with all its elements, and an optimal methodology to explain the relations among them. The approach we want to present is due to its transparency an excellent tool for searching systems solutions and serves also as a strategic decision-making assessment. We will present systems complexity and develop three models of a complex tourism system: the first one will present tourism as an open complex system with its elements, which operate inside of a tourism market area. The elements of this system present subsystems, which relations and interdependencies will be explained with two models: causal-loop diagram and a simulation model in frame of systems dynamics.

  4. Metasynthetic computing and engineering of complex systems

    CERN Document Server

    Cao, Longbing

    2015-01-01

    Provides a comprehensive overview and introduction to the concepts, methodologies, analysis, design and applications of metasynthetic computing and engineering. The author: Presents an overview of complex systems, especially open complex giant systems such as the Internet, complex behavioural and social problems, and actionable knowledge discovery and delivery in the big data era. Discusses ubiquitous intelligence in complex systems, including human intelligence, domain intelligence, social intelligence, network intelligence, data intelligence and machine intelligence, and their synergy thro

  5. Complexity: Outline of the NWO strategic theme Dynamics of complex systems

    NARCIS (Netherlands)

    Burgers, G.; Doelman, A.; Frenken, K.; Hogeweg, P.; Hommes, C.; van der Maas, H.; Mulder, B.; Stam, K.; van Steen, M.; Zandee, L.

    2008-01-01

    Dynamics of complex systems is one of the program 5 themes in the NWO (Netherlands Organisation for Scientific Research) strategy for the years 2007-2011. The ambition of the current proposal is to initiate integrated activities in the field of complex systems within the Netherlands, to provide

  6. Complexity : outline of the NWO strategic theme dynamics of complex systems

    NARCIS (Netherlands)

    Burgers, G.; Doelman, A.; Frenken, K.; Hogeweg, P.; Hommes, C.; Maas, van der H.; Mulder, B.; Stam, K.; Steen, van M.; Zandee, L.

    2008-01-01

    Dynamics of complex systems is one of the program 5 themes in the NWO (Netherlands Organisation for Scientific Research) strategy for the years 2007-2011. The ambition of the current proposal is to initiate integrated activities in the field of complex systems within the Netherlands, to provide

  7. Complex systems fractionality, time-delay and synchronization

    CERN Document Server

    Sun, Jian-Qiao

    2012-01-01

    "Complex Systems: Fractionality, Time-delay and Synchronization" covers the most recent developments and advances in the theory and application of complex systems in these areas. Each chapter was written by scientists highly active in the field of complex systems. The book discusses a new treatise on fractional dynamics and control, as well as the new methods for differential delay systems and control. Lastly, a theoretical framework for the complexity and synchronization of complex system is presented. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. It can also serve as a reference book for graduate students in physics, applied mathematics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Jian-Qiao Sun is a Professor at the University of California, Merced, USA.

  8. Mining sensor data from complex systems

    NARCIS (Netherlands)

    Vespier, Ugo

    2015-01-01

    Today, virtually everything, from natural phenomena to complex artificial and physical systems, can be measured and the resulting information collected, stored and analyzed in order to gain new insight. This thesis shows how complex systems often exhibit diverse behavior at different temporal

  9. Towards an evaluation framework for complex social systems

    Science.gov (United States)

    McDonald, Diane M.; Kay, Nigel

    While there is growing realisation that the world in which we live in is highly complex with multiple interdependencies and irreducibly open to outside influence, how to make these 'systems' more manageable is still a significant outstanding issue. As (2004) suggests, applying the theoretical principles of Complex Systems may help solve complex problems in this complex world. While Bar-Yam provides examples of forward-thinking organisations which have begun to see the relevance of complex systems principles, for many organisations the language and concepts of complexity science such as self-organisation and unpredictability while they make theoretical sense offer no practical or acceptable method of implementation to those more familiar with definitive facts and classical hierarchical, deterministic approaches to control. Complexity Science explains why designed systems or interventions may not function as anticipated in differing environments, without providing a silver bullet which enables control or engineering of the system to ensure the desired results. One familiar process which might, if implemented with complex systems in mind, provide the basis of an accessible and understandable framework that enables policy makers and practitioners to better design and manage complex socio-technical systems is that of evaluation.

  10. A System for Complex Robotic Welding

    DEFF Research Database (Denmark)

    Madsen, Ole; Sørensen, Carsten Bro; Olsen, Birger

    2002-01-01

    This paper presents the architecture of a system for robotic welding of complex tasks. The system integrates off-line programming, control of redundant robots, collision-free motion planning and sensor-based control. An implementation for pipe structure welding made at Odense Steel Shipyard Ltd......., Denmark, demonstrates the system can be used for automatic welding of complex products in one-of-a-kind production....

  11. Analysis and control of complex dynamical systems robust bifurcation, dynamic attractors, and network complexity

    CERN Document Server

    Imura, Jun-ichi; Ueta, Tetsushi

    2015-01-01

    This book is the first to report on theoretical breakthroughs on control of complex dynamical systems developed by collaborative researchers in the two fields of dynamical systems theory and control theory. As well, its basic point of view is of three kinds of complexity: bifurcation phenomena subject to model uncertainty, complex behavior including periodic/quasi-periodic orbits as well as chaotic orbits, and network complexity emerging from dynamical interactions between subsystems. Analysis and Control of Complex Dynamical Systems offers a valuable resource for mathematicians, physicists, and biophysicists, as well as for researchers in nonlinear science and control engineering, allowing them to develop a better fundamental understanding of the analysis and control synthesis of such complex systems.

  12. Modeling Power Systems as Complex Adaptive Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  13. Le néo-corporatisme réinterpellé : analyse comparée de deux politiques d'accès à l'emploi, l'apprentissage industriel en Belgique et le contrat de qualification "jeunes" en France

    OpenAIRE

    Levêque, Audrey

    2006-01-01

    L'étude comparative de l'apprentissage industriel en Belgique francophone et du contrat de qualification "jeunes" en France permet de réinterpeller le modèle néo-corporatiste d'Etat social. L'analyse de l'émergence et de la mise en oeuvre de ces deux politiques publiques d'accès à l'emploi pour les jeunes peu qualifiés permet de comprendre comment elles sont réappropriées par les acteurs de terrain et ce, plus particulièrement dans la branche de la métallurgie. Si ces politiques s'adressent t...

  14. Modelling methodology for engineering of complex sociotechnical systems

    CSIR Research Space (South Africa)

    Oosthuizen, R

    2014-10-01

    Full Text Available Different systems engineering techniques and approaches are applied to design and develop complex sociotechnical systems for complex problems. In a complex sociotechnical system cognitive and social humans use information technology to make sense...

  15. Stephen Jay Kline on systems, or physics, complex systems, and the gap between.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Philip LaRoche

    2011-06-01

    At the end of his life, Stephen Jay Kline, longtime professor of mechanical engineering at Stanford University, completed a book on how to address complex systems. The title of the book is 'Conceptual Foundations of Multi-Disciplinary Thinking' (1995), but the topic of the book is systems. Kline first establishes certain limits that are characteristic of our conscious minds. Kline then establishes a complexity measure for systems and uses that complexity measure to develop a hierarchy of systems. Kline then argues that our minds, due to their characteristic limitations, are unable to model the complex systems in that hierarchy. Computers are of no help to us here. Our attempts at modeling these complex systems are based on the way we successfully model some simple systems, in particular, 'inert, naturally-occurring' objects and processes, such as what is the focus of physics. But complex systems overwhelm such attempts. As a result, the best we can do in working with these complex systems is to use a heuristic, what Kline calls the 'Guideline for Complex Systems.' Kline documents the problems that have developed due to 'oversimple' system models and from the inappropriate application of a system model from one domain to another. One prominent such problem is the Procrustean attempt to make the disciplines that deal with complex systems be 'physics-like.' Physics deals with simple systems, not complex ones, using Kline's complexity measure. The models that physics has developed are inappropriate for complex systems. Kline documents a number of the wasteful and dangerous fallacies of this type.

  16. Complex engineering systems science meets technology

    CERN Document Server

    Minai, Ali A; Bar-Yam, Yaneer

    2006-01-01

    Every time that we take money out of an ATM, surf the internet or simply turn on a light switch, we enjoy the benefits of complex engineered systems. Systems like power grids and global communication networks are so ubiquitous in our daily lives that we usually take them for granted, only noticing them when they break down. But how do such amazing technologies and infrastructures come to be what they are? How are these systems designed? How do distributed networks work? How are they made to respond rapidly in 'real time'? And as the demands that we place on these systems become increasingly complex, are traditional systems-engineering practices still relevant? This volume examines the difficulties that arise in creating highly complex engineered systems and new approaches that are being adopted. Topics addressed range from the formal representation and classification of distributed networked systems to revolutionary engineering practices inspired by biological evolution. By bringing together the latest resear...

  17. Decentralized control of complex systems

    CERN Document Server

    Siljak, Dragoslav D

    2011-01-01

    Complex systems require fast control action in response to local input, and perturbations dictate the use of decentralized information and control structures. This much-cited reference book explores the approaches to synthesizing control laws under decentralized information structure constraints.Starting with a graph-theoretic framework for structural modeling of complex systems, the text presents results related to robust stabilization via decentralized state feedback. Subsequent chapters explore optimization, output feedback, the manipulative power of graphs, overlapping decompositions and t

  18. Complexity and Control: Towards a Rigorous Behavioral Theory of Complex Dynamical Systems

    Science.gov (United States)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    We introduce our motive for writing this book on complexity and control with a popular "complexity myth," which seems to be quite wide spread among chaos and complexity theory fashionistas: quote>Low-dimensional systems usually exhibit complex behaviours (which we know fromMay's studies of the Logisticmap), while high-dimensional systems usually exhibit simple behaviours (which we know from synchronisation studies of the Kuramoto model)...quote> We admit that this naive view on complex (e.g., human) systems versus simple (e.g., physical) systems might seem compelling to various technocratic managers and politicians; indeed, the idea makes for appealing sound-bites. However, it is enough to see both in the equations and computer simulations of pendula of various degree - (i) a single pendulum, (ii) a double pendulum, and (iii) a triple pendulum - that this popular myth is plain nonsense. The only thing that we can learn from it is what every tyrant already knows: by using force as a strong means of control, it is possible to effectively synchronise even hundreds of millions of people, at least for a while.

  19. The Meaning of System: Towards a Complexity Orientation in Systems Thinking

    DEFF Research Database (Denmark)

    Leleur, Steen

    2017-01-01

    when used to complex real-world problems. As regards systems practice it is found that selective use and combination of five presented research approaches (functionalist, interpretive, emancipatory, postmodern and complexity) which function as different but complementing ‘epistemic lenses’ in a process...... described as constructive circularity, may strengthen the exploration and learning efforts in systems-based intervention.......This article reviews the generic meaning of ‘system’ and complements more conventional system notions with a system perception based on recent complexity theory. With system as the core concept of systems theory, its actual meaning is not just of theoretical interest but is highly relevant also...

  20. Complex Physical, Biophysical and Econophysical Systems

    Science.gov (United States)

    Dewar, Robert L.; Detering, Frank

    1. Introduction to complex and econophysics systems: a navigation map / T. Aste and T. Di Matteo -- 2. An introduction to fractional diffusion / B. I. Henry, T.A.M. Langlands and P. Straka -- 3. Space plasmas and fusion plasmas as complex systems / R. O. Dendy -- 4. Bayesian data analysis / M. S. Wheatland -- 5. Inverse problems and complexity in earth system science / I. G. Enting -- 6. Applied fluid chaos: designing advection with periodically reoriented flows for micro to geophysical mixing and transport enhancement / G. Metcalfe -- 7. Approaches to modelling the dynamical activity of brain function based on the electroencephalogram / D. T. J. Liley and F. Frascoli -- 8. Jaynes' maximum entropy principle, Riemannian metrics and generalised least action bound / R. K. Niven and B. Andresen -- 9. Complexity, post-genomic biology and gene expression programs / R. B. H. Williams and O. J.-H. Luo -- 10. Tutorials on agent-based modelling with NetLogo and network analysis with Pajek / M. J. Berryman and S. D. Angus.

  1. Automatic Emergence Detection in Complex Systems

    Directory of Open Access Journals (Sweden)

    Eugene Santos

    2017-01-01

    Full Text Available Complex systems consist of multiple interacting subsystems, whose nonlinear interactions can result in unanticipated (emergent system events. Extant systems analysis approaches fail to detect such emergent properties, since they analyze each subsystem separately and arrive at decisions typically through linear aggregations of individual analysis results. In this paper, we propose a quantitative definition of emergence for complex systems. We also propose a framework to detect emergent properties given observations of its subsystems. This framework, based on a probabilistic graphical model called Bayesian Knowledge Bases (BKBs, learns individual subsystem dynamics from data, probabilistically and structurally fuses said dynamics into a single complex system dynamics, and detects emergent properties. Fusion is the central element of our approach to account for situations when a common variable may have different probabilistic distributions in different subsystems. We evaluate our detection performance against a baseline approach (Bayesian Network ensemble on synthetic testbeds from UCI datasets. To do so, we also introduce a method to simulate and a metric to measure discrepancies that occur with shared/common variables. Experiments demonstrate that our framework outperforms the baseline. In addition, we demonstrate that this framework has uniform polynomial time complexity across all three learning, fusion, and reasoning procedures.

  2. Synthesis and Assimilation Systems - Essential Adjuncts to the Global Ocean Observing System

    Science.gov (United States)

    2011-02-16

    141 Laboratoire des Ecoulements Geophysiques et Industriels, CNRS, BP53, 38041 Grenoble Cedex 9, France, Bernard. Barnier(a).hmg. inpg. fr "’’NOAA...coaps.fsu.vdu "" Laboratoire des Ecoulements Geophysiques et Indus triels, CNRS, BP53, 38041 Grenoble Cedex 9, France, Pierre. Brasseurfdi.hmg. inpg. fr m

  3. Managing Schools as Complex Adaptive Systems: A Strategic Perspective

    Science.gov (United States)

    Fidan, Tuncer; Balci, Ali

    2017-01-01

    This conceptual study examines the analogies between schools and complex adaptive systems and identifies strategies used to manage schools as complex adaptive systems. Complex adaptive systems approach, introduced by the complexity theory, requires school administrators to develop new skills and strategies to realize their agendas in an…

  4. Complexity in electronic negotiation support systems.

    Science.gov (United States)

    Griessmair, Michele; Strunk, Guido; Vetschera, Rudolf; Koeszegi, Sabine T

    2011-10-01

    It is generally acknowledged that the medium influences the way we communicate and negotiation research directs considerable attention to the impact of different electronic communication modes on the negotiation process and outcomes. Complexity theories offer models and methods that allow the investigation of how pattern and temporal sequences unfold over time in negotiation interactions. By focusing on the dynamic and interactive quality of negotiations as well as the information, choice, and uncertainty contained in the negotiation process, the complexity perspective addresses several issues of central interest in classical negotiation research. In the present study we compare the complexity of the negotiation communication process among synchronous and asynchronous negotiations (IM vs. e-mail) as well as an electronic negotiation support system including a decision support system (DSS). For this purpose, transcripts of 145 negotiations have been coded and analyzed with the Shannon entropy and the grammar complexity. Our results show that negotiating asynchronically via e-mail as well as including a DSS significantly reduces the complexity of the negotiation process. Furthermore, a reduction of the complexity increases the probability of reaching an agreement.

  5. Advances in complex societal, environmental and engineered systems

    CERN Document Server

    Essaaidi, Mohammad

    2017-01-01

    This book addresses recent technological progress that has led to an increased complexity in many natural and artificial systems. The resulting complexity research due to the emergence of new properties and spatio-temporal interactions among a large number of system elements - and between the system and its environment - is the primary focus of this text. This volume is divided into three parts: Part one focuses on societal and ecological systems, Part two deals with approaches for understanding, modeling, predicting and mastering socio-technical systems, and Part three includes real-life examples. Each chapter has its own special features; it is a self-contained contribution of distinguished experts working on different fields of science and technology relevant to the study of complex systems. Advances in Complex Systems of Contemporary Reality: Societal, Environmental and Engineered Systems will provide postgraduate students, researchers and managers with qualitative and quantitative methods for handling th...

  6. Understanding complex urban systems multidisciplinary approaches to modeling

    CERN Document Server

    Gurr, Jens; Schmidt, J

    2014-01-01

    Understanding Complex Urban Systems takes as its point of departure the insight that the challenges of global urbanization and the complexity of urban systems cannot be understood – let alone ‘managed’ – by sectoral and disciplinary approaches alone. But while there has recently been significant progress in broadening and refining the methodologies for the quantitative modeling of complex urban systems, in deepening the theoretical understanding of cities as complex systems, or in illuminating the implications for urban planning, there is still a lack of well-founded conceptual thinking on the methodological foundations and the strategies of modeling urban complexity across the disciplines. Bringing together experts from the fields of urban and spatial planning, ecology, urban geography, real estate analysis, organizational cybernetics, stochastic optimization, and literary studies, as well as specialists in various systems approaches and in transdisciplinary methodologies of urban analysis, the volum...

  7. Observation-Driven Configuration of Complex Software Systems

    Science.gov (United States)

    Sage, Aled

    2010-06-01

    The ever-increasing complexity of software systems makes them hard to comprehend, predict and tune due to emergent properties and non-deterministic behaviour. Complexity arises from the size of software systems and the wide variety of possible operating environments: the increasing choice of platforms and communication policies leads to ever more complex performance characteristics. In addition, software systems exhibit different behaviour under different workloads. Many software systems are designed to be configurable so that policies can be chosen to meet the needs of various stakeholders. For complex software systems it can be difficult to accurately predict the effects of a change and to know which configuration is most appropriate. This thesis demonstrates that it is useful to run automated experiments that measure a selection of system configurations. Experiments can find configurations that meet the stakeholders' needs, find interesting behavioural characteristics, and help produce predictive models of the system's behaviour. The design and use of ACT (Automated Configuration Tool) for running such experiments is described, in combination a number of search strategies for deciding on the configurations to measure. Design Of Experiments (DOE) is discussed, with emphasis on Taguchi Methods. These statistical methods have been used extensively in manufacturing, but have not previously been used for configuring software systems. The novel contribution here is an industrial case study, applying the combination of ACT and Taguchi Methods to DC-Directory, a product from Data Connection Ltd (DCL). The case study investigated the applicability of Taguchi Methods for configuring complex software systems. Taguchi Methods were found to be useful for modelling and configuring DC- Directory, making them a valuable addition to the techniques available to system administrators and developers.

  8. Design tools for complex dynamic security systems.

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Raymond Harry; Rigdon, James Brian; Rohrer, Brandon Robinson; Laguna, Glenn A.; Robinett, Rush D. III (.; ); Groom, Kenneth Neal; Wilson, David Gerald; Bickerstaff, Robert J.; Harrington, John J.

    2007-01-01

    The development of tools for complex dynamic security systems is not a straight forward engineering task but, rather, a scientific task where discovery of new scientific principles and math is necessary. For years, scientists have observed complex behavior but have had difficulty understanding it. Prominent examples include: insect colony organization, the stock market, molecular interactions, fractals, and emergent behavior. Engineering such systems will be an even greater challenge. This report explores four tools for engineered complex dynamic security systems: Partially Observable Markov Decision Process, Percolation Theory, Graph Theory, and Exergy/Entropy Theory. Additionally, enabling hardware technology for next generation security systems are described: a 100 node wireless sensor network, unmanned ground vehicle and unmanned aerial vehicle.

  9. Complexity in practice: understanding primary care as a complex adaptive system

    Directory of Open Access Journals (Sweden)

    Beverley Ellis

    2010-06-01

    Conclusions The results are real-world exemplars of the emergent properties of complex adaptive systems. Improving clinical governance in primary care requires both complex social interactions and underpinning informatics. The socio-technical lessons learned from this research should inform future management approaches.

  10. Methodology for Measuring the Complexity of Enterprise Information Systems

    Directory of Open Access Journals (Sweden)

    Ilja Holub

    2016-07-01

    Full Text Available The complexity of enterprise information systems is currently a challenge faced not only by IT professionals and project managers, but also by the users of such systems. Current methodologies and frameworks used to design and implement information systems do not specifically deal with the issue of their complexity and, apart from few exceptions, do not at all attempt to simplify the complexity. This article presents the author's own methodology for managing complexity, which can be used to complement any other methodology and which helps limit the growth of complexity. It introduces its own definition and metric of complexity, which it defines as the sum of entities of the individual UML models of the given system, which are selected according to the MMDIS methodology so as to consistently describe all relevant content dimensions of the system. The main objective is to propose a methodology to manage information system complexity and to verify it in practice on a real-life SAP implementation project.

  11. Risk Modeling of Interdependent Complex Systems of Systems: Theory and Practice.

    Science.gov (United States)

    Haimes, Yacov Y

    2018-01-01

    The emergence of the complexity characterizing our systems of systems (SoS) requires a reevaluation of the way we model, assess, manage, communicate, and analyze the risk thereto. Current models for risk analysis of emergent complex SoS are insufficient because too often they rely on the same risk functions and models used for single systems. These models commonly fail to incorporate the complexity derived from the networks of interdependencies and interconnectedness (I-I) characterizing SoS. There is a need to reevaluate currently practiced risk analysis to respond to this reality by examining, and thus comprehending, what makes emergent SoS complex. The key to evaluating the risk to SoS lies in understanding the genesis of characterizing I-I of systems manifested through shared states and other essential entities within and among the systems that constitute SoS. The term "essential entities" includes shared decisions, resources, functions, policies, decisionmakers, stakeholders, organizational setups, and others. This undertaking can be accomplished by building on state-space theory, which is fundamental to systems engineering and process control. This article presents a theoretical and analytical framework for modeling the risk to SoS with two case studies performed with the MITRE Corporation and demonstrates the pivotal contributions made by shared states and other essential entities to modeling and analysis of the risk to complex SoS. A third case study highlights the multifarious representations of SoS, which require harmonizing the risk analysis process currently applied to single systems when applied to complex SoS. © 2017 Society for Risk Analysis.

  12. The sleeping brain as a complex system.

    Science.gov (United States)

    Olbrich, Eckehard; Achermann, Peter; Wennekers, Thomas

    2011-10-13

    'Complexity science' is a rapidly developing research direction with applications in a multitude of fields that study complex systems consisting of a number of nonlinear elements with interesting dynamics and mutual interactions. This Theme Issue 'The complexity of sleep' aims at fostering the application of complexity science to sleep research, because the brain in its different sleep stages adopts different global states that express distinct activity patterns in large and complex networks of neural circuits. This introduction discusses the contributions collected in the present Theme Issue. We highlight the potential and challenges of a complex systems approach to develop an understanding of the brain in general and the sleeping brain in particular. Basically, we focus on two topics: the complex networks approach to understand the changes in the functional connectivity of the brain during sleep, and the complex dynamics of sleep, including sleep regulation. We hope that this Theme Issue will stimulate and intensify the interdisciplinary communication to advance our understanding of the complex dynamics of the brain that underlies sleep and consciousness.

  13. Third International Conference on Complex Systems

    CERN Document Server

    Minai, Ali A; Unifying Themes in Complex Systems

    2006-01-01

    In recent years, scientists have applied the principles of complex systems science to increasingly diverse fields. The results have been nothing short of remarkable: their novel approaches have provided answers to long-standing questions in biology, ecology, physics, engineering, computer science, economics, psychology and sociology. The Third International Conference on Complex Systems attracted over 400 researchers from around the world. The conference aimed to encourage cross-fertilization between the many disciplines represented and to deepen our understanding of the properties common to all complex systems. This volume contains selected transcripts from presentations given at the conference. Speakers include: Chris Adami, Kenneth Arrow, Michel Baranger, Dan Braha, Timothy Buchman, Michael Caramanis, Kathleen Carley, Greg Chaitin, David Clark, Jack Cohen, Jim Collins, George Cowan, Clay Easterly, Steven Eppinger, Irving Epstein, Dan Frey, Ary Goldberger, Helen Harte, Leroy Hood, Don Ingber, Atlee Jackson,...

  14. A Memristor-Based Hyperchaotic ComplexSystem and Its Adaptive Complex Generalized Synchronization

    Directory of Open Access Journals (Sweden)

    Shibing Wang

    2016-02-01

    Full Text Available This paper introduces a new memristor-based hyperchaotic complexsystem (MHCLS and investigates its adaptive complex generalized synchronization (ACGS. Firstly, the complex system is constructed based on a memristor-based hyperchaotic real Lü system, and its properties are analyzed theoretically. Secondly, its dynamical behaviors, including hyperchaos, chaos, transient phenomena, as well as periodic behaviors, are explored numerically by means of bifurcation diagrams, Lyapunov exponents, phase portraits, and time history diagrams. Thirdly, an adaptive controller and a parameter estimator are proposed to realize complex generalized synchronization and parameter identification of two identical MHCLSs with unknown parameters based on Lyapunov stability theory. Finally, the numerical simulation results of ACGS and its applications to secure communication are presented to verify the feasibility and effectiveness of the proposed method.

  15. Synchronization coupled systems to complex networks

    CERN Document Server

    Boccaletti, Stefano; del Genio, Charo I; Amann, Andreas

    2018-01-01

    A modern introduction to synchronization phenomena, this text presents recent discoveries and the current state of research in the field, from low-dimensional systems to complex networks. The book describes some of the main mechanisms of collective behaviour in dynamical systems, including simple coupled systems, chaotic systems, and systems of infinite-dimension. After introducing the reader to the basic concepts of nonlinear dynamics, the book explores the main synchronized states of coupled systems and describes the influence of noise and the occurrence of synchronous motion in multistable and spatially-extended systems. Finally, the authors discuss the underlying principles of collective dynamics on complex networks, providing an understanding of how networked systems are able to function as a whole in order to process information, perform coordinated tasks, and respond collectively to external perturbations. The demonstrations, numerous illustrations and application examples will help advanced graduate s...

  16. Confluence and convergence: team effectiveness in complex systems.

    Science.gov (United States)

    Porter-OʼGrady, Tim

    2015-01-01

    Complex adaptive systems require nursing leadership to rethink organizational work and the viability and effectiveness of teams. Much of emergent thinking about complexity and systems and organizations alter the understanding of the nature and function of teamwork and the configuration and leadership of team effort. Reflecting on basic concepts of complexity and their application to team formation, dynamics, and outcomes lays an important foundation for effectively guiding the strategic activity of systems through the focused tactical action of teams. Basic principles of complexity, their impact on teams, and the fundamental elements of team effectiveness are explored.

  17. Complex systems relationships between control, communications and computing

    CERN Document Server

    2016-01-01

    This book gives a wide-ranging description of the many facets of complex dynamic networks and systems within an infrastructure provided by integrated control and supervision: envisioning, design, experimental exploration, and implementation. The theoretical contributions and the case studies presented can reach control goals beyond those of stabilization and output regulation or even of adaptive control. Reporting on work of the Control of Complex Systems (COSY) research program, Complex Systems follows from and expands upon an earlier collection: Control of Complex Systems by introducing novel theoretical techniques for hard-to-control networks and systems. The major common feature of all the superficially diverse contributions encompassed by this book is that of spotting and exploiting possible areas of mutual reinforcement between control, computing and communications. These help readers to achieve not only robust stable plant system operation but also properties such as collective adaptivity, integrity an...

  18. Semiotics of constructed complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Landauer, C.; Bellman, K.L.

    1996-12-31

    The scope of this paper is limited to software and other constructed complex systems mediated or integrated by software. Our research program studies foundational issues that we believe will help us develop a theoretically sound approach to constructing complex systems. There have really been only two theoretical approaches that have helped us understand and develop computational systems: mathematics and linguistics. We show how semiotics can also play a role, whether we think of it as part of these other theories or as subsuming one or both of them. We describe our notion of {open_quotes}computational semiotics{close_quotes}, which we define to be the study of computational methods of dealing with symbols, show how such a theory might be formed, and describe what we might get from it in terms of more interesting use of symbols by computing systems. This research was supported in part by the Federal Highway Administration`s Office of Advanced Research and by the Advanced Research Projects Agency`s Software and Intelligent Systems Technology Office.

  19. Complex energy system management using optimization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bridgeman, Stuart; Hurdowar-Castro, Diana; Allen, Rick; Olason, Tryggvi; Welt, Francois

    2010-09-15

    Modern energy systems are often very complex with respect to the mix of generation sources, energy storage, transmission, and avenues to market. Historically, power was provided by government organizations to load centers, and pricing was provided in a regulatory manner. In recent years, this process has been displaced by the independent system operator (ISO). This complexity makes the operation of these systems very difficult, since the components of the system are interdependent. Consequently, computer-based large-scale simulation and optimization methods like Decision Support Systems are now being used. This paper discusses the application of a DSS to operations and planning systems.

  20. Complex systems and networks dynamics, controls and applications

    CERN Document Server

    Yu, Xinghuo; Chen, Guanrong; Yu, Wenwu

    2016-01-01

    This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of ...

  1. Classroom-oriented research from a complex systems perspective

    Directory of Open Access Journals (Sweden)

    Diane Larsen-Freeman

    2016-09-01

    Full Text Available Bringing a complex systems perspective to bear on classroom-oriented research challenges researchers to think differently, seeing the classroom ecology as one dynamic system nested in a hierarchy of such systems at different levels of scale, all of which are spatially and temporally situated. This article begins with an introduction to complex dynamic systems theory, in which challenges to traditional ways of conducting classroom research are interwoven. It concludes with suggestions for research methods that are more consistent with the theory. Research does not become easier when approached from a complex systems perspective, but it has the virtue of reflecting the way the world works.

  2. Collectives and the design of complex systems

    CERN Document Server

    Wolpert, David

    2004-01-01

    Increasingly powerful computers are making possible distributed systems comprised of many adaptive and self-motivated computational agents. Such systems, when distinguished by system-level performance criteria, are known as "collectives." Collectives and the Design of Complex Systems lays the foundation for a science of collectives and describes how to design them for optimal performance. An introductory survey chapter is followed by descriptions of information-processing problems that can only be solved by the joint actions of large communities of computers, each running its own complex, decentralized machine-learning algorithm. Subsequent chapters analyze the dynamics and structures of collectives, as well as address economic, model-free, and control-theory approaches to designing complex systems. The work assumes a modest understanding of basic statistics and calculus. Topics and Features: Introduces the burgeoning science of collectives and its practical applications in a single useful volume Combines ap...

  3. Complex and adaptive dynamical systems a primer

    CERN Document Server

    Gros, Claudius

    2013-01-01

    Complex system theory is rapidly developing and gaining importance, providing tools and concepts central to our modern understanding of emergent phenomena. This primer offers an introduction to this area together with detailed coverage of the mathematics involved. All calculations are presented step by step and are straightforward to follow. This new third edition comes with new material, figures and exercises. Network theory, dynamical systems and information theory, the core of modern complex system sciences, are developed in the first three chapters, covering basic concepts and phenomena like small-world networks, bifurcation theory and information entropy. Further chapters use a modular approach to address the most important concepts in complex system sciences, with the emergence and self-organization playing a central role. Prominent examples are self-organized criticality in adaptive systems, life at the edge of chaos, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase...

  4. Energy Flows in Low-Entropy Complex Systems

    Directory of Open Access Journals (Sweden)

    Eric J. Chaisson

    2015-12-01

    Full Text Available Nature’s many complex systems—physical, biological, and cultural—are islands of low-entropy order within increasingly disordered seas of surrounding, high-entropy chaos. Energy is a principal facilitator of the rising complexity of all such systems in the expanding Universe, including galaxies, stars, planets, life, society, and machines. A large amount of empirical evidence—relating neither entropy nor information, rather energy—suggests that an underlying simplicity guides the emergence and growth of complexity among many known, highly varied systems in the 14-billion-year-old Universe, from big bang to humankind. Energy flows are as centrally important to life and society as they are to stars and galaxies. In particular, the quantity energy rate density—the rate of energy flow per unit mass—can be used to explicate in a consistent, uniform, and unifying way a huge collection of diverse complex systems observed throughout Nature. Operationally, those systems able to utilize optimal amounts of energy tend to survive and those that cannot are non-randomly eliminated.

  5. Signs, Systems and Complexity of Transmedia Storytelling

    Directory of Open Access Journals (Sweden)

    Renira Rampazzo Gambarato

    2012-12-01

    Full Text Available This article addresses key concepts such as sign, system and complexity in order to approach transmedia storytelling and better understand its intricate nature. The theoretical framework chosen to investigate transmedia storytelling meanders is Semiotics by Charles Sanders Peirce (1839-1914 and General Systems Theory by Mario Bunge (1919-. The complexity of transmedia storytelling is not simply the one of the signs of the works included in a transmedia franchise. It also includes the complexity of the dispositions of users/consumers/players as interpreters of semiotic elements (e.g. characters, themes, environments, events and outcomes presented by transmedia products. It extends further to the complexity of social, cultural, economical and political constructs. The German transmedia narrative The Ultimate SuperHero-Blog by Stefan Gieren and Sofia’s Diary, a Portuguese multiplatform production by BeActive, are presented as examples of closed and open system transmedia storytelling respectively.

  6. Language Networks as Complex Systems

    Science.gov (United States)

    Lee, Max Kueiming; Ou, Sheue-Jen

    2008-01-01

    Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…

  7. Catastrophic failure in complex socio-technical systems

    International Nuclear Information System (INIS)

    Weir, D.

    2004-01-01

    This paper reviews the sequences leading to catastrophic failures in complex socio-technical systems. It traces some of the elements of an analytic framework to that proposed by Beer in Decision and Control, first published in 1966, and argues that these ideas are centrally relevant to a topic on which research interest has developed subsequently, the study of crises, catastrophes and disasters in complex socio-technical systems in high technology sectors. But while the system perspective is central, it is not by itself entirely adequate. The problems discussed cannot be discussed simply in terms of system parameters like variety, redundancy and complexity. Much empirical research supports the view that these systems typically operate in degraded mode. The degradations may be primarily initiated within the social components of the socio-technical system. Such variables as hierarchical position, actors' motivations and intentions are relevant to explain the ways in which communication systems typically operate to filter out messages from lower participants and to ignore the 'soft signals' issuing from small-scale and intermittent malfunctions. (author)

  8. Membrane tethering complexes in the endosomal system

    Directory of Open Access Journals (Sweden)

    Anne eSpang

    2016-05-01

    Full Text Available Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the CORVET complex, while fusion of late endosomes with lysosomes depends on the HOPS complex. Recycling through the TGN and to the plasma membrane is facilitated by the GARP and EARP complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, complexes that may be part of novel tethering complexes have been recently identified. Thus it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic.

  9. Managing Complex Dynamical Systems

    Science.gov (United States)

    Cox, John C.; Webster, Robert L.; Curry, Jeanie A.; Hammond, Kevin L.

    2011-01-01

    Management commonly engages in a variety of research designed to provide insight into the motivation and relationships of individuals, departments, organizations, etc. This paper demonstrates how the application of concepts associated with the analysis of complex systems applied to such data sets can yield enhanced insights for managerial action.

  10. Workshop on Nonlinear Phenomena in Complex Systems

    CERN Document Server

    1989-01-01

    This book contains a thorough treatment of neural networks, cellular-automata and synergetics, in an attempt to provide three different approaches to nonlinear phenomena in complex systems. These topics are of major interest to physicists active in the fields of statistical mechanics and dynamical systems. They have been developed with a high degree of sophistication and include the refinements necessary to work with the complexity of real systems as well as the more recent research developments in these areas.

  11. On synchronisation of a class of complex chaotic systems with complex unknown parameters via integral sliding mode control

    Science.gov (United States)

    Tirandaz, Hamed; Karami-Mollaee, Ali

    2018-06-01

    Chaotic systems demonstrate complex behaviour in their state variables and their parameters, which generate some challenges and consequences. This paper presents a new synchronisation scheme based on integral sliding mode control (ISMC) method on a class of complex chaotic systems with complex unknown parameters. Synchronisation between corresponding states of a class of complex chaotic systems and also convergence of the errors of the system parameters to zero point are studied. The designed feedback control vector and complex unknown parameter vector are analytically achieved based on the Lyapunov stability theory. Moreover, the effectiveness of the proposed methodology is verified by synchronisation of the Chen complex system and the Lorenz complex systems as the leader and the follower chaotic systems, respectively. In conclusion, some numerical simulations related to the synchronisation methodology is given to illustrate the effectiveness of the theoretical discussions.

  12. Complex and Adaptive Dynamical Systems A Primer

    CERN Document Server

    Gros, Claudius

    2011-01-01

    We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...

  13. Complex and adaptive dynamical systems a primer

    CERN Document Server

    Gros, Claudius

    2007-01-01

    We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...

  14. Synchronization in Complex Networks of Nonlinear Dynamical Systems

    CERN Document Server

    Wu, Chai Wah

    2007-01-01

    This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ide

  15. Large-scale computing techniques for complex system simulations

    CERN Document Server

    Dubitzky, Werner; Schott, Bernard

    2012-01-01

    Complex systems modeling and simulation approaches are being adopted in a growing number of sectors, including finance, economics, biology, astronomy, and many more. Technologies ranging from distributed computing to specialized hardware are explored and developed to address the computational requirements arising in complex systems simulations. The aim of this book is to present a representative overview of contemporary large-scale computing technologies in the context of complex systems simulations applications. The intention is to identify new research directions in this field and

  16. Vibrations and stability of complex beam systems

    CERN Document Server

    Stojanović, Vladimir

    2015-01-01

     This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It...

  17. Reliability assessment of complex electromechanical systems under epistemic uncertainty

    International Nuclear Information System (INIS)

    Mi, Jinhua; Li, Yan-Feng; Yang, Yuan-Jian; Peng, Weiwen; Huang, Hong-Zhong

    2016-01-01

    The appearance of macro-engineering and mega-project have led to the increasing complexity of modern electromechanical systems (EMSs). The complexity of the system structure and failure mechanism makes it more difficult for reliability assessment of these systems. Uncertainty, dynamic and nonlinearity characteristics always exist in engineering systems due to the complexity introduced by the changing environments, lack of data and random interference. This paper presents a comprehensive study on the reliability assessment of complex systems. In view of the dynamic characteristics within the system, it makes use of the advantages of the dynamic fault tree (DFT) for characterizing system behaviors. The lifetime of system units can be expressed as bounded closed intervals by incorporating field failures, test data and design expertize. Then the coefficient of variation (COV) method is employed to estimate the parameters of life distributions. An extended probability-box (P-Box) is proposed to convey the present of epistemic uncertainty induced by the incomplete information about the data. By mapping the DFT into an equivalent Bayesian network (BN), relevant reliability parameters and indexes have been calculated. Furthermore, the Monte Carlo (MC) simulation method is utilized to compute the DFT model with consideration of system replacement policy. The results show that this integrated approach is more flexible and effective for assessing the reliability of complex dynamic systems. - Highlights: • A comprehensive study on the reliability assessment of complex system is presented. • An extended probability-box is proposed to convey the present of epistemic uncertainty. • The dynamic fault tree model is built. • Bayesian network and Monte Carlo simulation methods are used. • The reliability assessment of a complex electromechanical system is performed.

  18. A new decision sciences for complex systems.

    Science.gov (United States)

    Lempert, Robert J

    2002-05-14

    Models of complex systems can capture much useful information but can be difficult to apply to real-world decision-making because the type of information they contain is often inconsistent with that required for traditional decision analysis. New approaches, which use inductive reasoning over large ensembles of computational experiments, now make possible systematic comparison of alternative policy options using models of complex systems. This article describes Computer-Assisted Reasoning, an approach to decision-making under conditions of deep uncertainty that is ideally suited to applying complex systems to policy analysis. The article demonstrates the approach on the policy problem of global climate change, with a particular focus on the role of technology policies in a robust, adaptive strategy for greenhouse gas abatement.

  19. Atomic switch networks as complex adaptive systems

    Science.gov (United States)

    Scharnhorst, Kelsey S.; Carbajal, Juan P.; Aguilera, Renato C.; Sandouk, Eric J.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.

    2018-03-01

    Complexity is an increasingly crucial aspect of societal, environmental and biological phenomena. Using a dense unorganized network of synthetic synapses it is shown that a complex adaptive system can be physically created on a microchip built especially for complex problems. These neuro-inspired atomic switch networks (ASNs) are a dynamic system with inherent and distributed memory, recurrent pathways, and up to a billion interacting elements. We demonstrate key parameters describing self-organized behavior such as non-linearity, power law dynamics, and multistate switching regimes. Device dynamics are then investigated using a feedback loop which provides control over current and voltage power-law behavior. Wide ranging prospective applications include understanding and eventually predicting future events that display complex emergent behavior in the critical regime.

  20. Systems thinking and complexity: considerations for health promoting schools.

    Science.gov (United States)

    Rosas, Scott R

    2017-04-01

    The health promoting schools concept reflects a comprehensive and integrated philosophy to improving student and personnel health and well-being. Conceptualized as a configuration of interacting, interdependent parts connected through a web of relationships that form a whole greater than the sum of its parts, school health promotion initiatives often target several levels (e.g. individual, professional, procedural and policy) simultaneously. Health promoting initiatives, such as those operationalized under the whole school approach, include several interconnected components that are coordinated to improve health outcomes in complex settings. These complex systems interventions are embedded in intricate arrangements of physical, biological, ecological, social, political and organizational relationships. Systems thinking and characteristics of complex adaptive systems are introduced in this article to provide a perspective that emphasizes the patterns of inter-relationships associated with the nonlinear, dynamic and adaptive nature of complex hierarchical systems. Four systems thinking areas: knowledge, networks, models and organizing are explored as a means to further manage the complex nature of the development and sustainability of health promoting schools. Applying systems thinking and insights about complex adaptive systems can illuminate how to address challenges found in settings with both complicated (i.e. multi-level and multisite) and complex aspects (i.e. synergistic processes and emergent outcomes). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Anomaly Detection for Complex Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — In performance maintenance in large, complex systems, sensor information from sub-components tends to be readily available, and can be used to make predictions about...

  2. SUPERCOMPUTER SIMULATION OF CRITICAL PHENOMENA IN COMPLEX SOCIAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Petrus M.A. Sloot

    2014-09-01

    Full Text Available The paper describes a problem of computer simulation of critical phenomena in complex social systems on a petascale computing systems in frames of complex networks approach. The three-layer system of nested models of complex networks is proposed including aggregated analytical model to identify critical phenomena, detailed model of individualized network dynamics and model to adjust a topological structure of a complex network. The scalable parallel algorithm covering all layers of complex networks simulation is proposed. Performance of the algorithm is studied on different supercomputing systems. The issues of software and information infrastructure of complex networks simulation are discussed including organization of distributed calculations, crawling the data in social networks and results visualization. The applications of developed methods and technologies are considered including simulation of criminal networks disruption, fast rumors spreading in social networks, evolution of financial networks and epidemics spreading.

  3. Leadership Behaviors of Management for Complex Adaptive Systems

    Science.gov (United States)

    2010-04-01

    Leadership Behaviors of Management for Complex Adaptive Systems Systems and Software Technology Conference April 2010 Dr. Suzette S. Johnson...2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Leadership Behaviors of Management for Complex Adaptive...as they evolve – Control is dispersed and decentralized – Simple rules and governance used to direct behavior • Complexity Leadership Theory – Built on

  4. Smart modeling and simulation for complex systems practice and theory

    CERN Document Server

    Ren, Fenghui; Zhang, Minjie; Ito, Takayuki; Tang, Xijin

    2015-01-01

    This book aims to provide a description of these new Artificial Intelligence technologies and approaches to the modeling and simulation of complex systems, as well as an overview of the latest scientific efforts in this field such as the platforms and/or the software tools for smart modeling and simulating complex systems. These tasks are difficult to accomplish using traditional computational approaches due to the complex relationships of components and distributed features of resources, as well as the dynamic work environments. In order to effectively model the complex systems, intelligent technologies such as multi-agent systems and smart grids are employed to model and simulate the complex systems in the areas of ecosystem, social and economic organization, web-based grid service, transportation systems, power systems and evacuation systems.

  5. Metric for Calculation of System Complexity based on its Connections

    Directory of Open Access Journals (Sweden)

    João Ricardo Braga de Paiva

    2017-02-01

    Full Text Available This paper proposes a methodology based on system connections to calculate its complexity. Two study cases are proposed: the dining Chinese philosophers’ problem and the distribution center. Both studies are modeled using the theory of Discrete Event Systems and simulations in different contexts were performed in order to measure their complexities. The obtained results present i the static complexity as a limiting factor for the dynamic complexity, ii the lowest cost in terms of complexity for each unit of measure of the system performance and iii the output sensitivity to the input parameters. The associated complexity and performance measures aggregate knowledge about the system.

  6. Morphogenetic Engineering Toward Programmable Complex Systems

    CERN Document Server

    Sayama, Hiroki; Michel, Olivier

    2012-01-01

    Generally, spontaneous pattern formation phenomena are random and repetitive, whereas elaborate devices are the deterministic product of human design. Yet, biological organisms and collective insect constructions are exceptional examples of complex systems that are both self-organized and architectural.   This book is the first initiative of its kind toward establishing a new field of research, Morphogenetic Engineering, to explore the modeling and implementation of “self-architecturing” systems. Particular emphasis is placed on the programmability and computational abilities of self-organization, properties that are often underappreciated in complex systems science—while, conversely, the benefits of self-organization are often underappreciated in engineering methodologies.   Altogether, the aim of this work is to provide a framework for and examples of a larger class of “self-architecturing” systems, while addressing fundamental questions such as   > How do biological organisms carry out morphog...

  7. Complex Time-Delay Systems Theory and Applications

    CERN Document Server

    Atay, Fatihcan M

    2010-01-01

    Time delays in dynamical systems arise as an inevitable consequence of finite speeds of information transmission. Realistic models increasingly demand the inclusion of delays in order to properly understand, analyze, design, and control real-life systems. The goal of this book is to present the state-of-the-art in research on time-delay dynamics in the framework of complex systems and networks. While the mathematical theory of delay equations is quite mature, its application to the particular problems of complex systems and complexity is a newly emerging field, and the present volume aims to play a pioneering role in this perspective. The chapters in this volume are authored by renowned experts and cover both theory and applications in a wide range of fields, with examples extending from neuroscience and biology to laser physics and vehicle traffic. Furthermore, all chapters include sufficient introductory material and extensive bibliographies, making the book a self-contained reference for both students and ...

  8. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    Science.gov (United States)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  9. A new decision sciences for complex systems

    OpenAIRE

    Lempert, Robert J.

    2002-01-01

    Models of complex systems can capture much useful information but can be difficult to apply to real-world decision-making because the type of information they contain is often inconsistent with that required for traditional decision analysis. New approaches, which use inductive reasoning over large ensembles of computational experiments, now make possible systematic comparison of alternative policy options using models of complex systems. This article describes Computer-Assisted Reasoning, an...

  10. Promoting evaluation capacity building in a complex adaptive system.

    Science.gov (United States)

    Lawrenz, Frances; Kollmann, Elizabeth Kunz; King, Jean A; Bequette, Marjorie; Pattison, Scott; Nelson, Amy Grack; Cohn, Sarah; Cardiel, Christopher L B; Iacovelli, Stephanie; Eliou, Gayra Ostgaard; Goss, Juli; Causey, Lauren; Sinkey, Anne; Beyer, Marta; Francisco, Melanie

    2018-04-10

    This study provides results from an NSF funded, four year, case study about evaluation capacity building in a complex adaptive system, the Nanoscale Informal Science Education Network (NISE Net). The results of the Complex Adaptive Systems as a Model for Network Evaluations (CASNET) project indicate that complex adaptive system concepts help to explain evaluation capacity building in a network. The NISE Network was found to be a complex learning system that was supportive of evaluation capacity building through feedback loops that provided for information sharing and interaction. Participants in the system had different levels of and sources of evaluation knowledge. To be successful at building capacity, the system needed to have a balance between both centralized and decentralized control, coherence, redundancy, and diversity. Embeddedness of individuals within the system also provided support and moved the capacity of the system forward. Finally, success depended on attention being paid to the control of resources. Implications of these findings are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Lie and Noether symmetries of systems of complex ordinary ...

    Indian Academy of Sciences (India)

    2014-07-02

    Jul 2, 2014 ... Abstract. The Lie and Noether point symmetry analyses of a kth-order system of m complex ordi- nary differential equations (ODEs) with m dependent variables are performed. The decomposition of complex symmetries of the given system of complex ODEs yields Lie- and Noether-like opera- tors.

  12. Managing Programmatic Risk for Complex Space System Developments

    Science.gov (United States)

    Panetta, Peter V.; Hastings, Daniel; Brumfield, Mark (Technical Monitor)

    2001-01-01

    Risk management strategies have become a recent important research topic to many aerospace organizations as they prepare to develop the revolutionary complex space systems of the future. Future multi-disciplinary complex space systems will make it absolutely essential for organizations to practice a rigorous, comprehensive risk management process, emphasizing thorough systems engineering principles to succeed. Project managers must possess strong leadership skills to direct high quality, cross-disciplinary teams for successfully developing revolutionary space systems that are ever increasing in complexity. Proactive efforts to reduce or eliminate risk throughout a project's lifecycle ideally must be practiced by all technical members in the organization. This paper discusses some of the risk management perspectives that were collected from senior managers and project managers of aerospace and aeronautical organizations by the use of interviews and surveys. Some of the programmatic risks which drive the success or failure of projects are revealed. Key findings lead to a number of insights for organizations to consider for proactively approaching the risks which face current and future complex space systems projects.

  13. Automated design of complex dynamic systems.

    Directory of Open Access Journals (Sweden)

    Michiel Hermans

    Full Text Available Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems.

  14. Diagnostics of the vibrations of complex rotor systems

    Science.gov (United States)

    Yugraytis, I. Y.; Ragulskis, K. M.; Ionushas, R. A.; Karuzhene, I. P.

    1973-01-01

    The parameters of the imbalance of a complex rotor system, having n parallel rotors and having six degrees of freedom, can be determined from the parameters of the vibrations of two appropriate degrees of freedom. This considerably simplifies diagnostics of the vibrations of complex rotor systems.

  15. Applications of Nonlinear Dynamics Model and Design of Complex Systems

    CERN Document Server

    In, Visarath; Palacios, Antonio

    2009-01-01

    This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.

  16. Some overdetermined systems of complex partial differential equations

    International Nuclear Information System (INIS)

    Le Hung Son.

    1990-01-01

    In this paper we extend some properties of analytic functions on several complex variables to solutions of overdetermined systems of complex partial differential equations. It is proved that many global properties of analytic functions are true for solutions of the Vekua system in special cases. The relation between analytic functions and solutions of quasi-linear systems is discussed in the paper. (author). 8 refs

  17. Fourth International Conference on Complex Systems Design & Management

    CERN Document Server

    Boulanger, Frédéric; Krob, Daniel; Marchal, Clotilde

    2014-01-01

    This book contains all refereed papers that were accepted to the fourth edition of the « Complex Systems Design & Management » (CSD&M 2013) international conference which took place in Paris (France) from December 4-6, 2013. These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (transport, defense & security, electronics, energy & environment, e-services), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, systemic tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2013 conference is organized under the guidance of the CESAMES non-profit organization

  18. Challenges in the analysis of complex systems: introduction and overview

    Science.gov (United States)

    Hastings, Harold M.; Davidsen, Jörn; Leung, Henry

    2017-12-01

    One of the main challenges of modern physics is to provide a systematic understanding of systems far from equilibrium exhibiting emergent behavior. Prominent examples of such complex systems include, but are not limited to the cardiac electrical system, the brain, the power grid, social systems, material failure and earthquakes, and the climate system. Due to the technological advances over the last decade, the amount of observations and data available to characterize complex systems and their dynamics, as well as the capability to process that data, has increased substantially. The present issue discusses a cross section of the current research on complex systems, with a focus on novel experimental and data-driven approaches to complex systems that provide the necessary platform to model the behavior of such systems.

  19. Complex Systems: Science for the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Shank, Charles V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Awschalom, David [Univ. of California, Santa Barbara, CA (United States); Bawendi, Moungi [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Frechet, Jean [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Murphy, Donald [Lucent Technologies (United States); Stupp, Sam [Northwestern Univ., Evanston, IL (United States); Wolynes, Peter [Univ. of Illinois, Urbana, IL (United States)

    1999-03-06

    The workshop was designed to help define new scientific directions related to complex systems in order to create new understanding about the nano world and complicated, multicomponent structures. Five emerging themes regarding complexity were covered: Collective Phenomena; Materials by Design; Functional Systems; Nature's Mastery; and New Tools.

  20. Project risk management in complex petrochemical system

    Directory of Open Access Journals (Sweden)

    Kirin Snežana

    2012-01-01

    Full Text Available Investigation of risk in complex industrial systems, as well as evaluation of main factors influencing decision making and implementation process using large petrochemical company as an example, has proved the importance of successful project risk management. This is even more emphasized when analyzing systems with complex structure, i.e. with several organizational units. It has been shown that successful risk management requires modern methods, based on adequate application of statistical analysis methods.

  1. What is complex in the complex world? Niklas Luhmann and the theory of social systems

    Directory of Open Access Journals (Sweden)

    Clarissa Eckert Baeta Neves

    Full Text Available This paper discusses Niklas Luhmann's understanding of complexity, its function in the theory and the different ways of its use. It starts with the paradigmatic change that occurred in the field of general Science, with the rupture of the Newtonian model. In the 20th century, the paradigm of order, symmetry, regularity, regulation of the intellect to things, collapses.Based on new formulations of Physics, Chemistry, etc., a new universe is built on bases radically opposed to those of modern Science.Chaos, the procedural irreversibility, indeterminism, the observer and the complexity are rehabilitated.This new conceptual context served as substratum to Niklas Luhmann's theoretical reflection.With his Theory of Social Systems, he proposes the reduction of the world's complexity.Social systems have the function of reducing complexity because of their difference in relation to the environment.On the other hand, the reduction of complexity also creates its own complexity. Luhmann defines complexity as the moment when it is not possible anymore for each element to relate at any moment with all the others. Complexity forces the selection, what means contingency and risk. Luhmann expands the concept of complexity when he introduces the figure of the observer and the distinction of complexity as a unit of a multiplicity. He also deals with the limit of relations in connection, the time factor, the self-reference of operations and the representation of complexity in the form of sense. To conclude, the paper discusses the complexity in the system of science, the way it reduces internal and external complexity, in accordance in its own operative basis.

  2. Entropy-based generating Markov partitions for complex systems

    Science.gov (United States)

    Rubido, Nicolás; Grebogi, Celso; Baptista, Murilo S.

    2018-03-01

    Finding the correct encoding for a generic dynamical system's trajectory is a complicated task: the symbolic sequence needs to preserve the invariant properties from the system's trajectory. In theory, the solution to this problem is found when a Generating Markov Partition (GMP) is obtained, which is only defined once the unstable and stable manifolds are known with infinite precision and for all times. However, these manifolds usually form highly convoluted Euclidean sets, are a priori unknown, and, as it happens in any real-world experiment, measurements are made with finite resolution and over a finite time-span. The task gets even more complicated if the system is a network composed of interacting dynamical units, namely, a high-dimensional complex system. Here, we tackle this task and solve it by defining a method to approximately construct GMPs for any complex system's finite-resolution and finite-time trajectory. We critically test our method on networks of coupled maps, encoding their trajectories into symbolic sequences. We show that these sequences are optimal because they minimise the information loss and also any spurious information added. Consequently, our method allows us to approximately calculate the invariant probability measures of complex systems from the observed data. Thus, we can efficiently define complexity measures that are applicable to a wide range of complex phenomena, such as the characterisation of brain activity from electroencephalogram signals measured at different brain regions or the characterisation of climate variability from temperature anomalies measured at different Earth regions.

  3. Application of Complex Adaptive Systems in Portfolio Management

    Science.gov (United States)

    Su, Zheyuan

    2017-01-01

    Simulation-based methods are becoming a promising research tool in financial markets. A general Complex Adaptive System can be tailored to different application scenarios. Based on the current research, we built two models that would benefit portfolio management by utilizing Complex Adaptive Systems (CAS) in Agent-based Modeling (ABM) approach.…

  4. Dependency visualization for complex system understanding

    Energy Technology Data Exchange (ETDEWEB)

    Smart, J. Allison Cory [Univ. of California, Davis, CA (United States)

    1994-09-01

    With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impaired as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new organizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.

  5. Distributed redundancy and robustness in complex systems

    KAUST Repository

    Randles, Martin

    2011-03-01

    The uptake and increasing prevalence of Web 2.0 applications, promoting new large-scale and complex systems such as Cloud computing and the emerging Internet of Services/Things, requires tools and techniques to analyse and model methods to ensure the robustness of these new systems. This paper reports on assessing and improving complex system resilience using distributed redundancy, termed degeneracy in biological systems, to endow large-scale complicated computer systems with the same robustness that emerges in complex biological and natural systems. However, in order to promote an evolutionary approach, through emergent self-organisation, it is necessary to specify the systems in an \\'open-ended\\' manner where not all states of the system are prescribed at design-time. In particular an observer system is used to select robust topologies, within system components, based on a measurement of the first non-zero Eigen value in the Laplacian spectrum of the components\\' network graphs; also known as the algebraic connectivity. It is shown, through experimentation on a simulation, that increasing the average algebraic connectivity across the components, in a network, leads to an increase in the variety of individual components termed distributed redundancy; the capacity for structurally distinct components to perform an identical function in a particular context. The results are applied to a specific application where active clustering of like services is used to aid load balancing in a highly distributed network. Using the described procedure is shown to improve performance and distribute redundancy. © 2010 Elsevier Inc.

  6. Etoile Project : Social Intelligent ICT-System for very large scale education in complex systems

    Science.gov (United States)

    Bourgine, P.; Johnson, J.

    2009-04-01

    The project will devise new theory and implement new ICT-based methods of delivering high-quality low-cost postgraduate education to many thousands of people in a scalable way, with the cost of each extra student being negligible (Socially Intelligent Resource Mining system to gather large volumes of high quality educational resources from the internet; new methods to deconstruct these to produce a semantically tagged Learning Object Database; a Living Course Ecology to support the creation and maintenance of evolving course materials; systems to deliver courses; and a ‘socially intelligent assessment system'. The system will be tested on one to ten thousand postgraduate students in Europe working towards the Complex System Society's title of European PhD in Complex Systems. Étoile will have a very high impact both scientifically and socially by (i) the provision of new scalable ICT-based methods for providing very low cost scientific education, (ii) the creation of new mathematical and statistical theory for the multiscale dynamics of complex systems, (iii) the provision of a working example of adaptation and emergence in complex socio-technical systems, and (iv) making a major educational contribution to European complex systems science and its applications.

  7. Discontinuity and complexity in nonlinear physical systems

    CERN Document Server

    Baleanu, Dumitru; Luo, Albert

    2014-01-01

    This unique book explores recent developments in experimental research in this broad field, organized in four distinct sections. Part I introduces the reader to the fractional dynamics and Lie group analysis for nonlinear partial differential equations. Part II covers chaos and complexity in nonlinear Hamiltonian systems, important to understand the resonance interactions in nonlinear dynamical systems, such as Tsunami waves and wildfire propagations; as well as Lev flights in chaotic trajectories, dynamical system synchronization and DNA information complexity analysis. Part III examines chaos and periodic motions in discontinuous dynamical systems, extensively present in a range of systems, including piecewise linear systems, vibro-impact systems and drilling systems in engineering. And in Part IV, engineering and financial nonlinearity are discussed. The mechanism of shock wave with saddle-node bifurcation and rotating disk stability will be presented, and the financial nonlinear models will be discussed....

  8. Complex network synchronization of chaotic systems with delay coupling

    International Nuclear Information System (INIS)

    Theesar, S. Jeeva Sathya; Ratnavelu, K.

    2014-01-01

    The study of complex networks enables us to understand the collective behavior of the interconnected elements and provides vast real time applications from biology to laser dynamics. In this paper, synchronization of complex network of chaotic systems has been studied. Every identical node in the complex network is assumed to be in Lur’e system form. In particular, delayed coupling has been assumed along with identical sector bounded nonlinear systems which are interconnected over network topology

  9. Strategies of complexity leadership in governance systems

    NARCIS (Netherlands)

    Nooteboom, S.G.; Termeer, C.J.A.M.

    2013-01-01

    In complex governance systems, innovations may emerge, not controlled by a single leader, but enabled by many. We discuss how these leaders are embedded in networks and which strategies they use. The theoretical framework is based on Complexity Leadership Theory. We conducted participatory

  10. Statistical physics of complex systems a concise introduction

    CERN Document Server

    Bertin, Eric

    2016-01-01

    This course-tested primer provides graduate students and non-specialists with a basic understanding of the concepts and methods of statistical physics and demonstrates their wide range of applications to interdisciplinary topics in the field of complex system sciences, including selected aspects of theoretical modeling in biology and the social sciences. Generally speaking, the goals of statistical physics may be summarized as follows: on the one hand to study systems composed of a large number of interacting units, and on the other to predict the macroscopic, collective behavior of the system considered from the perspective of the microscopic laws governing the dynamics of the individual entities. These two goals are essentially also shared by what is now called 'complex systems science', and as such, systems studied in the framework of statistical physics may be considered to be among the simplest examples of complex systems – while also offering a rather well developed mathematical treatment. The second ...

  11. Stability of rotor systems: A complex modelling approach

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob

    1998-01-01

    The dynamics of a large class of rotor systems can be modelled by a linearized complex matrix differential equation of second order, Mz + (D + iG)(z) over dot + (K + iN)z = 0, where the system matrices M, D, G, K and N are real symmetric. Moreover M and K are assumed to be positive definite and D...... approach applying bounds of appropriate Rayleigh quotients. The rotor systems tested are: a simple Laval rotor, a Laval rotor with additional elasticity and damping in the bearings, and a number of rotor systems with complex symmetric 4 x 4 randomly generated matrices.......The dynamics of a large class of rotor systems can be modelled by a linearized complex matrix differential equation of second order, Mz + (D + iG)(z) over dot + (K + iN)z = 0, where the system matrices M, D, G, K and N are real symmetric. Moreover M and K are assumed to be positive definite and D...

  12. Understanding Complex Construction Systems Through Modularity

    DEFF Research Database (Denmark)

    Jensen, Tor Clarke; Bekdik, Baris; Thuesen, Christian

    2014-01-01

    This paper develops a framework for understanding complexity in construction projects by combining theories of complexity management and modularization. The framework incorporates three dimensions of product, process, and organizational modularity with the case of gypsum wall elements. The analysis...... system, rather than a modular, although the industry forces modular organizational structures. This creates a high complexity degree caused by the non-alignment of building parts and organizations and the frequent swapping of modules....... finds that the main driver of complexity is the fragmentation of the design and production, which causes the production modules to construct and install new product types and variants for each project as the designers are swapped for every project. The many interfaces are characteristics of an integral...

  13. Symmetric and Asymmetric Tendencies in Stable Complex Systems.

    Science.gov (United States)

    Tan, James P L

    2016-08-22

    A commonly used approach to study stability in a complex system is by analyzing the Jacobian matrix at an equilibrium point of a dynamical system. The equilibrium point is stable if all eigenvalues have negative real parts. Here, by obtaining eigenvalue bounds of the Jacobian, we show that stable complex systems will favor mutualistic and competitive relationships that are asymmetrical (non-reciprocative) and trophic relationships that are symmetrical (reciprocative). Additionally, we define a measure called the interdependence diversity that quantifies how distributed the dependencies are between the dynamical variables in the system. We find that increasing interdependence diversity has a destabilizing effect on the equilibrium point, and the effect is greater for trophic relationships than for mutualistic and competitive relationships. These predictions are consistent with empirical observations in ecology. More importantly, our findings suggest stabilization algorithms that can apply very generally to a variety of complex systems.

  14. From Hamiltonian chaos to complex systems a nonlinear physics approach

    CERN Document Server

    Leonetti, Marc

    2013-01-01

    From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach collects contributions on recent developments in non-linear dynamics and statistical physics with an emphasis on complex systems. This book provides a wide range of state-of-the-art research in these fields. The unifying aspect of this book is a demonstration of how similar tools coming from dynamical systems, nonlinear physics, and statistical dynamics can lead to a large panorama of  research in various fields of physics and beyond, most notably with the perspective of application in complex systems. This book also: Illustrates the broad research influence of tools coming from dynamical systems, nonlinear physics, and statistical dynamics Adopts a pedagogic approach to facilitate understanding by non-specialists and students Presents applications in complex systems Includes 150 illustrations From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach is an ideal book for graduate students and researchers working in applied...

  15. Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Hassan Saberi Nik

    2014-01-01

    Full Text Available We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results.

  16. Complexity Thinking in PE: Game-Centred Approaches, Games as Complex Adaptive Systems, and Ecological Values

    Science.gov (United States)

    Storey, Brian; Butler, Joy

    2013-01-01

    Background: This article draws on the literature relating to game-centred approaches (GCAs), such as Teaching Games for Understanding, and dynamical systems views of motor learning to demonstrate a convergence of ideas around games as complex adaptive learning systems. This convergence is organized under the title "complexity thinking"…

  17. Engineering Complex Embedded Systems with State Analysis and the Mission Data System

    Science.gov (United States)

    Ingham, Michel D.; Rasmussen, Robert D.; Bennett, Matthew B.; Moncada, Alex C.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer s intent, potentially leading to software errors. This problem is addressed by a systems engineering methodology called State Analysis, which provides a process for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using State Analysis and how these requirements inform the design of the system software, using representative spacecraft examples.

  18. Interacting complex systems: Theory and application to real-world situations

    Science.gov (United States)

    Piccinini, Nicola

    The interest in complex systems has increased exponentially during the past years because it was found helpful in addressing many of today's challenges. The study of the brain, biology, earthquakes, markets and social sciences are only a few examples of the fields that have benefited from the investigation of complex systems. Internet, the increased mobility of people and the raising energy demand are among the factors that brought in contact complex systems that were isolated till a few years ago. A theory for the interaction between complex systems is becoming more and more urgent to help mankind in this transition. The present work builds upon the most recent results in this field by solving a theoretical problem that prevented previous work to be applied to important complex systems, like the brain. It also shows preliminary laboratory results of perturbation of in vitro neural networks that were done to test the theory. Finally, it gives a preview of the studies that are being done to create a theory that is even closer to the interaction between real complex systems.

  19. Globaliserede byrum

    DEFF Research Database (Denmark)

    Reeh, Henrik

    2006-01-01

    Arkitektur, globalisering, byteori, bykultur, Islands Brygge, samtidskunst, udstillingssteder, gentrification, industriel arkitektur......Arkitektur, globalisering, byteori, bykultur, Islands Brygge, samtidskunst, udstillingssteder, gentrification, industriel arkitektur...

  20. Distributed redundancy and robustness in complex systems

    KAUST Repository

    Randles, Martin; Lamb, David J.; Odat, Enas M.; Taleb-Bendiab, Azzelarabe

    2011-01-01

    that emerges in complex biological and natural systems. However, in order to promote an evolutionary approach, through emergent self-organisation, it is necessary to specify the systems in an 'open-ended' manner where not all states of the system are prescribed

  1. System complexity and (im)possible sound changes

    NARCIS (Netherlands)

    Seinhorst, K.T.

    2016-01-01

    In the acquisition of phonological patterns, learners tend to considerably reduce the complexity of their input. This learning bias may also constrain the set of possible sound changes, which might be expected to contain only those changes that do not increase the complexity of the system. However,

  2. Collaborative Management of Risks and Complexity in Banking Systems

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2012-01-01

    Full Text Available This paper describes types of risks encountered in banking systems and ways to prevent and eliminate them. Banking systems are presented in order to have a view on banking activities and processes that generates risks. The risks in banking processes are analyzed and the collaborative character of risk management is highlighted. A way to control the risk in banking systems through information security is described. Risks arise from system complexity, thus evaluation and comparison of different configurations are bases for improvements. The Halstead relative complexity function synthesizes system complexity from the point of view of the size of the variables analyzed and the heterogeneity between the variables. Section four was realized by Catalin SBORA.

  3. Managing interoperability and complexity in health systems.

    Science.gov (United States)

    Bouamrane, M-M; Tao, C; Sarkar, I N

    2015-01-01

    In recent years, we have witnessed substantial progress in the use of clinical informatics systems to support clinicians during episodes of care, manage specialised domain knowledge, perform complex clinical data analysis and improve the management of health organisations' resources. However, the vision of fully integrated health information eco-systems, which provide relevant information and useful knowledge at the point-of-care, remains elusive. This journal Focus Theme reviews some of the enduring challenges of interoperability and complexity in clinical informatics systems. Furthermore, a range of approaches are proposed in order to address, harness and resolve some of the many remaining issues towards a greater integration of health information systems and extraction of useful or new knowledge from heterogeneous electronic data repositories.

  4. Classical and quantum mechanics of complex Hamiltonian systems ...

    Indian Academy of Sciences (India)

    Vol. 73, No. 2. — journal of. August 2009 physics pp. 287–297. Classical and quantum mechanics of complex. Hamiltonian systems: An extended complex phase space ... 1Department of Physics, Ramjas College (University Enclave), University of Delhi,. Delhi 110 ... 1.1 Motivation behind the study of complex Hamiltonians.

  5. Leadership and transitions: maintaining the science in complexity and complex systems.

    Science.gov (United States)

    Sturmberg, Joachim P; Martin, Carmel M

    2012-02-01

    It is the 'moral compass', however subtle, that underpins leadership. Leadership, meaning showing the way, demands as much conviction as gentile diplomacy in the discourse with supporters and detractors. In particular, leadership defends the goal by safeguarding its principles from its detractors. The authors writing in the Forum on Complexity in Medicine and Healthcare since its inception are leaders in an intellectual transition to complex systems thinking in medicine and health. © 2012 Blackwell Publishing Ltd.

  6. Complex motions and chaos in nonlinear systems

    CERN Document Server

    Machado, José; Zhang, Jiazhong

    2016-01-01

    This book brings together 10 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.

  7. Challenges in data science: a complex systems perspective

    International Nuclear Information System (INIS)

    Carbone, Anna; Jensen, Meiko; Sato, Aki-Hiro

    2016-01-01

    The ability to process and manage large data volumes has been proven to be not enough to tackle the current challenges presented by “Big Data”. Deep insight is required for understanding interactions among connected systems, space- and time- dependent heterogeneous data structures. Emergence of global properties from locally interacting data entities and clustering phenomena demand suitable approaches and methodologies recently developed in the foundational area of Data Science by taking a Complex Systems standpoint. Here, we deal with challenges that can be summarized by the question: “What can Complex Systems Science contribute to Big Data? ”. Such question can be reversed and brought to a superior level of abstraction by asking “What Knowledge can be drawn from Big Data?” These aspects constitute the main motivation behind this article to introduce a volume containing a collection of papers presenting interdisciplinary advances in the Big Data area by methodologies and approaches typical of the Complex Systems Science, Nonlinear Systems Science and Statistical Physics.

  8. Documentation Driven Development for Complex Real-Time Systems

    Science.gov (United States)

    2004-12-01

    This paper presents a novel approach for development of complex real - time systems , called the documentation-driven development (DDD) approach. This... time systems . DDD will also support automated software generation based on a computational model and some relevant techniques. DDD includes two main...stakeholders to be easily involved in development processes and, therefore, significantly improve the agility of software development for complex real

  9. Common cause failure analysis methodology for complex systems

    International Nuclear Information System (INIS)

    Wagner, D.P.; Cate, C.L.; Fussell, J.B.

    1977-01-01

    Common cause failure analysis, also called common mode failure analysis, is an integral part of a complex system reliability analysis. This paper extends existing methods of computer aided common cause failure analysis by allowing analysis of the complex systems often encountered in practice. The methods presented here aid in identifying potential common cause failures and also address quantitative common cause failure analysis

  10. Strategies and Rubrics for Teaching Complex Systems Theory to Novices (Invited)

    Science.gov (United States)

    Fichter, L. S.

    2010-12-01

    Bifurcation. Self-similarity. Fractal. Sensitive dependent. Agents. Self-organized criticality. Avalanche behavior. Power laws. Strange attractors. Emergence. The language of complexity is fundamentally different from the language of equilibrium. If students do not know these phenomena, and what they tell us about the pulse of dynamic systems, complex systems will be opaque. A complex system is a group of agents. (individual interacting units, like birds in a flock, sand grains in a ripple, or individual friction units along a fault zone), existing far from equilibrium, interacting through positive and negative feedbacks, following simple rules, forming interdependent, dynamic, evolutionary networks. Complex systems produce behaviors that cannot be predicted deductively from knowledge of the behaviors of the individual components themselves; they must be experienced. What complexity theory demonstrates is that, by following simple rules, all the agents end up coordinating their behavior—self organizing—so that what emerges is not chaos, but meaningful patterns. How can we introduce Freshman, non-science, general education students to complex systems theories, in 3 to 5 classes; in a way they really get it, and can use the principles to understand real systems? Complex systems theories are not a series of unconnected or disconnected equations or models; they are developed as narratives that makes sense of how all the pieces and properties are interrelated. The principles of complex systems must be taught as deliberately and systematically as the equilibrium principles normally taught; as, say, the systematic training from pre-algebra and geometry to algebra. We have developed a sequence of logically connected narratives (strategies and rubrics) that introduce complex systems principles using models that can be simulated in a computer, in class, in real time. The learning progression has a series of 12 models (e.g. logistic system, bifurcation diagrams, genetic

  11. Complex systems dynamics in aging: new evidence, continuing questions.

    Science.gov (United States)

    Cohen, Alan A

    2016-02-01

    There have long been suggestions that aging is tightly linked to the complex dynamics of the physiological systems that maintain homeostasis, and in particular to dysregulation of regulatory networks of molecules. This review synthesizes recent work that is starting to provide evidence for the importance of such complex systems dynamics in aging. There is now clear evidence that physiological dysregulation--the gradual breakdown in the capacity of complex regulatory networks to maintain homeostasis--is an emergent property of these regulatory networks, and that it plays an important role in aging. It can be measured simply using small numbers of biomarkers. Additionally, there are indications of the importance during aging of emergent physiological processes, functional processes that cannot be easily understood through clear metabolic pathways, but can nonetheless be precisely quantified and studied. The overall role of such complex systems dynamics in aging remains an important open question, and to understand it future studies will need to distinguish and integrate related aspects of aging research, including multi-factorial theories of aging, systems biology, bioinformatics, network approaches, robustness, and loss of complexity.

  12. Platform strategy for complex products and systems

    NARCIS (Netherlands)

    Alblas, A.A.

    2011-01-01

    The thesis of Alex Alblas presents a design reuse strategy for firms producing complex products and systems (CoPS). Examples of CoPS include industrial machinery, oil-rigs, electrical power distribution systems, integrated mail processing systems and printing press machinery. CoPS firms are

  13. Interdisciplinary Symposium on Complex Systems

    CERN Document Server

    Zelinka, Ivan; Rössler, Otto

    2014-01-01

    The book you hold in your hands is the outcome of the "ISCS 2013: Interdisciplinary Symposium on Complex Systems" held at the historical capital of Bohemia as a continuation of our series of symposia in the science of complex systems. Prague, one of the most beautiful European cities, has its own beautiful genius loci. Here, a great number of important discoveries were made and many important scientists spent fruitful and creative years to leave unforgettable traces. The perhaps most significant period was the time of Rudolf II who was a great supporter of the art and the science and attracted a great number of prominent minds to Prague. This trend would continue. Tycho Brahe, Niels Henrik Abel, Johannes Kepler, Bernard Bolzano, August Cauchy Christian Doppler, Ernst Mach, Albert Einstein and many others followed developing fundamental mathematical and physical theories or expanding them. Thus in the beginning of the 17th century, Kepler formulated here the first two of his three laws of planetary motion on ...

  14. Complex fluids in biological systems experiment, theory, and computation

    CERN Document Server

    2015-01-01

    This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solut...

  15. Electronique appliquée, électromécanique sous Simscape & SimPowerSystems (Matlab/Simulink)

    CERN Document Server

    Mokhtari, Mohand

    2012-01-01

    Cet ouvrage permet d'apprendre à utiliser les Outils Simscape et SimpowerSystems pour modéliser et simuler des circuits électroniques, électromécaniques et électronique de puissance. Pour utiliser ces deux outils, la connaissance de MATLAB et SIMULINK est indispensable. Cet ouvrage possède trois types de chapitres: prise en main de l'outil, description des différentes bibliothèques avec quelques applications et enfin chapitre d'applications très utilisées dans les domaines universitaires et industriels.

  16. The Self as a Complex Dynamic System

    Science.gov (United States)

    Mercer, Sarah

    2011-01-01

    This article explores the potential offered by complexity theories for understanding language learners' sense of self and attempts to show how the self might usefully be conceived of as a complex dynamic system. Rather than presenting empirical findings, the article discusses existent research on the self and aims at outlining a conceptual…

  17. Defining "The Weakest Link" Comparative Security in Complex Systems of Systems

    NARCIS (Netherlands)

    Pieters, Wolter

    2013-01-01

    Cloud architectures are complex socio-technical systems of systems, consisting not only of technological components and their connections, but also of physical premises and employees. When analysing security of such systems and considering countermeasures, the notion of "weakest link" often appears.

  18. Analysis of complex systems using neural networks

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms), to some of the problems of complex engineering systems has the potential to enhance the safety, reliability, and operability of these systems. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network (e.g., a fast Fourier transformation of the time-series data to produce a spectral plot of the data). Specific applications described include: (1) Diagnostics: State of the Plant (2) Hybrid System for Transient Identification, (3) Sensor Validation, (4) Plant-Wide Monitoring, (5) Monitoring of Performance and Efficiency, and (6) Analysis of Vibrations. Although specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems

  19. Evolution of complexity in RNA-like replicator systems

    Directory of Open Access Journals (Sweden)

    Hogeweg Paulien

    2008-03-01

    Full Text Available Abstract Background The evolution of complexity is among the most important questions in biology. The evolution of complexity is often observed as the increase of genetic information or that of the organizational complexity of a system. It is well recognized that the formation of biological organization – be it of molecules or ecosystems – is ultimately instructed by the genetic information, whereas it is also true that the genetic information is functional only in the context of the organization. Therefore, to obtain a more complete picture of the evolution of complexity, we must study the evolution of both information and organization. Results Here we investigate the evolution of complexity in a simulated RNA-like replicator system. The simplicity of the system allows us to explicitly model the genotype-phenotype-interaction mapping of individual replicators, whereby we avoid preconceiving the functionality of genotypes (information or the ecological organization of replicators in the model. In particular, the model assumes that interactions among replicators – to replicate or to be replicated – depend on their secondary structures and base-pair matching. The results showed that a population of replicators, originally consisting of one genotype, evolves to form a complex ecosystem of up to four species. During this diversification, the species evolve through acquiring unique genotypes with distinct ecological functionality. The analysis of this diversification reveals that parasitic replicators, which have been thought to destabilize the replicator's diversity, actually promote the evolution of diversity through generating a novel "niche" for catalytic replicators. This also makes the current replicator system extremely stable upon the evolution of parasites. The results also show that the stability of the system crucially depends on the spatial pattern formation of replicators. Finally, the evolutionary dynamics is shown to

  20. Evaluating Complex Healthcare Systems: A Critique of Four Approaches

    Directory of Open Access Journals (Sweden)

    Heather Boon

    2007-01-01

    Full Text Available The purpose of this paper is to bring clarity to the emerging conceptual and methodological literature that focuses on understanding and evaluating complex or ‘whole’ systems of healthcare. An international working group reviewed literature from interdisciplinary or interprofessional groups describing approaches to the evaluation of complex systems of healthcare. The following four key approaches were identified: a framework from the MRC (UK, whole systems research, whole medical systems research described by NCCAM (USA and a model from NAFKAM (Norway. Main areas of congruence include acknowledgment of the inherent complexity of many healthcare interventions and the need to find new ways to evaluate these; the need to describe and understand the components of complex interventions in context (as they are actually practiced; the necessity of using mixed methods including randomized clinical trials (RCTs (explanatory and pragmatic and qualitative approaches; the perceived benefits of a multidisciplinary team approach to research; and the understanding that methodological developments in this field can be applied to both complementary and alternative medicine (CAM as well as conventional therapies. In contrast, the approaches differ in the following ways: terminology used, the extent to which the approach attempts to be applicable to both CAM and conventional medical interventions; the prioritization of research questions (in order of what should be done first especially with respect to how the ‘definitive’ RCT fits into the process of assessing complex healthcare systems; and the need for a staged approach. There appears to be a growing international understanding of the need for a new perspective on assessing complex healthcare systems.

  1. Complex Engineered Systems: A New Paradigm

    Science.gov (United States)

    Mina, Ali A.; Braha, Dan; Bar-Yam, Yaneer

    Human history is often seen as an inexorable march towards greater complexity — in ideas, artifacts, social, political and economic systems, technology, and in the structure of life itself. While we do not have detailed knowledge of ancient times, it is reasonable to conclude that the average resident of New York City today faces a world of much greater complexity than the average denizen of Carthage or Tikal. A careful consideration of this change, however, suggests that most of it has occurred recently, and has been driven primarily by the emergence of technology as a force in human life. In the 4000 years separating the Indus Valley Civilization from 18th century Europe, human transportation evolved from the bullock cart to the hansom, and the methods of communication used by George Washington did not differ significantly from those used by Alexander or Rameses. The world has moved radically towards greater complexity in the last two centuries. We have moved from buggies and letter couriers to airplanes and the Internet — an increase in capacity, and through its diversity also in complexity, orders of magnitude greater than that accumulated through the rest of human history. In addition to creating iconic artifacts — the airplane, the car, the computer, the television, etc. — this change has had a profound effect on the scope of experience by creating massive, connected and multiultra- level systems — traffic networks, power grids, markets, multinational corporations — that defy analytical understanding and seem to have a life of their own. This is where complexity truly enters our lives.

  2. Integration of the immune system: a complex adaptive supersystem

    Science.gov (United States)

    Crisman, Mark V.

    2001-10-01

    Immunity to pathogenic organisms is a complex process involving interacting factors within the immune system including circulating cells, tissues and soluble chemical mediators. Both the efficiency and adaptive responses of the immune system in a dynamic, often hostile, environment are essential for maintaining our health and homeostasis. This paper will present a brief review of one of nature's most elegant, complex adaptive systems.

  3. Advanced Kalman Filter for Real-Time Responsiveness in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Gregory Francis [UNC-Chapel Hill/University of Central Florida; Zhang, Jinghe [UNC-Chapel Hill/Virginia Tech

    2014-06-10

    Complex engineering systems pose fundamental challenges in real-time operations and control because they are highly dynamic systems consisting of a large number of elements with severe nonlinearities and discontinuities. Today’s tools for real-time complex system operations are mostly based on steady state models, unable to capture the dynamic nature and too slow to prevent system failures. We developed advanced Kalman filtering techniques and the formulation of dynamic state estimation using Kalman filtering techniques to capture complex system dynamics in aiding real-time operations and control. In this work, we looked at complex system issues including severe nonlinearity of system equations, discontinuities caused by system controls and network switches, sparse measurements in space and time, and real-time requirements of power grid operations. We sought to bridge the disciplinary boundaries between Computer Science and Power Systems Engineering, by introducing methods that leverage both existing and new techniques. While our methods were developed in the context of electrical power systems, they should generalize to other large-scale scientific and engineering applications.

  4. PCA Fault Feature Extraction in Complex Electric Power Systems

    Directory of Open Access Journals (Sweden)

    ZHANG, J.

    2010-08-01

    Full Text Available Electric power system is one of the most complex artificial systems in the world. The complexity is determined by its characteristics about constitution, configuration, operation, organization, etc. The fault in electric power system cannot be completely avoided. When electric power system operates from normal state to failure or abnormal, its electric quantities (current, voltage and angles, etc. may change significantly. Our researches indicate that the variable with the biggest coefficient in principal component usually corresponds to the fault. Therefore, utilizing real-time measurements of phasor measurement unit, based on principal components analysis technology, we have extracted successfully the distinct features of fault component. Of course, because of the complexity of different types of faults in electric power system, there still exists enormous problems need a close and intensive study.

  5. Transition Manifolds of Complex Metastable Systems

    Science.gov (United States)

    Bittracher, Andreas; Koltai, Péter; Klus, Stefan; Banisch, Ralf; Dellnitz, Michael; Schütte, Christof

    2018-04-01

    We consider complex dynamical systems showing metastable behavior, but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics.

  6. Automated System for Teaching Computational Complexity of Algorithms Course

    Directory of Open Access Journals (Sweden)

    Vadim S. Roublev

    2017-01-01

    Full Text Available This article describes problems of designing automated teaching system for “Computational complexity of algorithms” course. This system should provide students with means to familiarize themselves with complex mathematical apparatus and improve their mathematical thinking in the respective area. The article introduces the technique of algorithms symbol scroll table that allows estimating lower and upper bounds of computational complexity. Further, we introduce a set of theorems that facilitate the analysis in cases when the integer rounding of algorithm parameters is involved and when analyzing the complexity of a sum. At the end, the article introduces a normal system of symbol transformations that allows one both to perform any symbol transformations and simplifies the automated validation of such transformations. The article is published in the authors’ wording.

  7. Enduring the shipboard stressor complex: a systems approach.

    Science.gov (United States)

    Comperatore, Carlos A; Rivera, Pik Kwan; Kingsley, Leonard

    2005-06-01

    A high incidence of physiological and psychological stressors characterizes the maritime work environment in many segments of the commercial maritime industry and in the military. Traditionally, crewmembers work embedded in a complex of stressors. Stressors rarely act independently because most occur concurrently, simultaneously taxing physical and mental resources. Stressors such as extreme environmental temperatures, long work hours, heavy mental and physical workload, authoritative leadership, isolation from family and loved ones, lack of exercise, and unhealthy diets often combine to degrade crewmember health and performance, particularly on long voyages. This complex system of interacting stressors affects the ability of maritime crewmembers to maintain adequate levels of alertness and performance. An analytical systems approach methodology is described here as a viable method to identify workplace stressors and track their systemic interactions. A systems-based program for managing the stressor complex is then offered, together with the empirical research supporting its efficacy. Included is an example implementation of a stressor-control program aboard a U.S. Coast Guard cutter.

  8. A Statistical Physics Characterization of the Complex Systems Dynamics: Quantifying Complexity from Spatio-Temporal Interactions

    Science.gov (United States)

    Koorehdavoudi, Hana; Bogdan, Paul

    2016-06-01

    Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity.

  9. From globally coupled maps to complex-systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp [Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2015-09-15

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  10. Understanding sustainability from an exergetic frame in complex adaptive systems

    International Nuclear Information System (INIS)

    Aguilar Hernandez, Glem Alonso

    2017-01-01

    The concept of sustainability was developed from thermodynamic properties applied to complex adaptive systems. The origins of the perception about sustainable development and limitation in its application to analyze the interaction between a system and its surroundings were described. The properties of a complex adaptive system were taken as basis to determine how a system can to be affected by the resources restriction and irreversibility of the processes. The complex adaptive system was understood using the first and second law of thermodynamics, generating a conceptual framework to define the sustainability of a system. The contributions developed by exergy were shown to analyze the sustainability of systems in an economic, social and environmental context [es

  11. Complex and adaptive dynamical systems a primer

    CERN Document Server

    Gros, Claudius

    2015-01-01

    This primer offers readers an introduction to the central concepts that form our modern understanding of complex and emergent behavior, together with detailed coverage of accompanying mathematical methods. All calculations are presented step by step and are easy to follow. This new fourth edition has been fully reorganized and includes new chapters, figures and exercises. The core aspects of modern complex system sciences are presented in the first chapters, covering network theory, dynamical systems, bifurcation and catastrophe theory, chaos and adaptive processes, together with the principle of self-organization in reaction-diffusion systems and social animals. Modern information theoretical principles are treated in further chapters, together with the concept of self-organized criticality, gene regulation networks, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase transitions and the cognitive system approach to the brain. Technical course prerequisites are the standard ...

  12. A Multifaceted Mathematical Approach for Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, F.; Anitescu, M.; Bell, J.; Brown, D.; Ferris, M.; Luskin, M.; Mehrotra, S.; Moser, B.; Pinar, A.; Tartakovsky, A.; Willcox, K.; Wright, S.; Zavala, V.

    2012-03-07

    Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significant impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.

  13. Quantum Cybernetics and Complex Quantum Systems Science - A Quantum Connectionist Exploration

    OpenAIRE

    Gonçalves, Carlos Pedro

    2014-01-01

    Quantum cybernetics and its connections to complex quantum systems science is addressed from the perspective of complex quantum computing systems. In this way, the notion of an autonomous quantum computing system is introduced in regards to quantum artificial intelligence, and applied to quantum artificial neural networks, considered as autonomous quantum computing systems, which leads to a quantum connectionist framework within quantum cybernetics for complex quantum computing systems. Sever...

  14. An Alternative Front End Analysis Strategy for Complex Systems

    Science.gov (United States)

    2014-12-01

    missile ( ABM ) system . Patriot is employed in the field through a battalion echelon organizational structure. The line battery is the basic building...Research Report 1981 An Alternative Front End Analysis Strategy for Complex Systems M. Glenn Cobb U.S. Army Research Institute...NUMBER W5J9CQ11D0003 An Alternative Front End Analysis Strategy for Complex Systems 5b. PROGRAM ELEMENT NUMBER 633007 6

  15. Structured analysis and modeling of complex systems

    Science.gov (United States)

    Strome, David R.; Dalrymple, Mathieu A.

    1992-01-01

    The Aircrew Evaluation Sustained Operations Performance (AESOP) facility at Brooks AFB, Texas, combines the realism of an operational environment with the control of a research laboratory. In recent studies we collected extensive data from the Airborne Warning and Control Systems (AWACS) Weapons Directors subjected to high and low workload Defensive Counter Air Scenarios. A critical and complex task in this environment involves committing a friendly fighter against a hostile fighter. Structured Analysis and Design techniques and computer modeling systems were applied to this task as tools for analyzing subject performance and workload. This technology is being transferred to the Man-Systems Division of NASA Johnson Space Center for application to complex mission related tasks, such as manipulating the Shuttle grappler arm.

  16. State analysis requirements database for engineering complex embedded systems

    Science.gov (United States)

    Bennett, Matthew B.; Rasmussen, Robert D.; Ingham, Michel D.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer's intent, potentially leading to software errors. This problem is addressed by a systems engineering tool called the State Analysis Database, which provides a tool for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using the State Analysis Database.

  17. Modelling, Estimation and Control of Networked Complex Systems

    CERN Document Server

    Chiuso, Alessandro; Frasca, Mattia; Rizzo, Alessandro; Schenato, Luca; Zampieri, Sandro

    2009-01-01

    The paradigm of complexity is pervading both science and engineering, leading to the emergence of novel approaches oriented at the development of a systemic view of the phenomena under study; the definition of powerful tools for modelling, estimation, and control; and the cross-fertilization of different disciplines and approaches. This book is devoted to networked systems which are one of the most promising paradigms of complexity. It is demonstrated that complex, dynamical networks are powerful tools to model, estimate, and control many interesting phenomena, like agent coordination, synchronization, social and economics events, networks of critical infrastructures, resources allocation, information processing, or control over communication networks. Moreover, it is shown how the recent technological advances in wireless communication and decreasing in cost and size of electronic devices are promoting the appearance of large inexpensive interconnected systems, each with computational, sensing and mobile cap...

  18. Controlling Complex Systems and Developing Dynamic Technology

    Science.gov (United States)

    Avizienis, Audrius Victor

    In complex systems, control and understanding become intertwined. Following Ilya Prigogine, we define complex systems as having control parameters which mediate transitions between distinct modes of dynamical behavior. From this perspective, determining the nature of control parameters and demonstrating the associated dynamical phase transitions are practically equivalent and fundamental to engaging with complexity. In the first part of this work, a control parameter is determined for a non-equilibrium electrochemical system by studying a transition in the morphology of structures produced by an electroless deposition reaction. Specifically, changing the size of copper posts used as the substrate for growing metallic silver structures by the reduction of Ag+ from solution under diffusion-limited reaction conditions causes a dynamical phase transition in the crystal growth process. For Cu posts with edge lengths on the order of one micron, local forces promoting anisotropic growth predominate, and the reaction produces interconnected networks of Ag nanowires. As the post size is increased above 10 microns, the local interfacial growth reaction dynamics couple with the macroscopic diffusion field, leading to spatially propagating instabilities in the electrochemical potential which induce periodic branching during crystal growth, producing dendritic deposits. This result is interesting both as an example of control and understanding in a complex system, and as a useful combination of top-down lithography with bottom-up electrochemical self-assembly. The second part of this work focuses on the technological development of devices fabricated using this non-equilibrium electrochemical process, towards a goal of integrating a complex network as a dynamic functional component in a neuromorphic computing device. Self-assembled networks of silver nanowires were reacted with sulfur to produce interfacial "atomic switches": silver-silver sulfide junctions, which exhibit

  19. Reflecting on complexity of biological systems: Kant and beyond?

    Science.gov (United States)

    Van de Vijver, Gertrudis; Van Speybroeck, Linda; Vandevyvere, Windy

    2003-01-01

    Living organisms are currently most often seen as complex dynamical systems that develop and evolve in relation to complex environments. Reflections on the meaning of the complex dynamical nature of living systems show an overwhelming multiplicity in approaches, descriptions, definitions and methodologies. Instead of sustaining an epistemic pluralism, which often functions as a philosophical armistice in which tolerance and so-called neutrality discharge proponents of the burden to clarify the sources and conditions of agreement and disagreement, this paper aims at analysing: (i) what has been Kant's original conceptualisation of living organisms as natural purposes; (ii) how the current perspectives are to be related to Kant's viewpoint; (iii) what are the main trends in current complexity thinking. One of the basic ideas is that the attention for structure and its epistemological consequences witness to a great extent of Kant's viewpoint, and that the idea of organisational stratification today constitutes a different breeding ground within which complexity issues are raised. The various approaches of complexity in biological systems are captured in terms of two different styles, universalism and (weak and strong) constructivism, between which hybrid forms exist.

  20. An Agent Based Software Approach towards Building Complex Systems

    Directory of Open Access Journals (Sweden)

    Latika Kharb

    2015-08-01

    Full Text Available Agent-oriented techniques represent an exciting new means of analyzing, designing and building complex software systems. They have the potential to significantly improve current practice in software engineering and to extend the range of applications that can feasibly be tackled. Yet, to date, there have been few serious attempts to cast agent systems as a software engineering paradigm. This paper seeks to rectify this omission. Specifically, points to be argued include:firstly, the conceptual apparatus of agent-oriented systems is well-suited to building software solutions for complex systems and secondly, agent-oriented approaches represent a genuine advance over the current state of the art for engineering complex systems. Following on from this view, the major issues raised by adopting an agentoriented approach to software engineering are highlighted and discussed in this paper.

  1. Advertising, product quality, and complex evolving marketing systems

    OpenAIRE

    Verbeke, Willem

    1992-01-01

    textabstractThe paper analyses the advertising as power vs. advertising as information controversy as well as its recent empirical testing. It is stressed that this distinction focuses too much on the interaction between consumer and manufacturer while ignoring the retailer as an important stake-holder. To compensate for this lack, a complex marketing system perspective is introduced in which consumer, retailer, and manufacturer interact. However, these complex marketing systems might drift t...

  2. Coordination Approaches for Complex Software Systems

    NARCIS (Netherlands)

    Bosse, T.; Hoogendoorn, M.; Treur, J.

    2006-01-01

    This document presents the results of a collaboration between the Vrije Universiteit Amsterdam, Department of Artificial Intelligence and Force Vision to investigate coordination approaches for complex software systems. The project was funded by Force Vision.

  3. The self as a complex dynamic system

    Directory of Open Access Journals (Sweden)

    Sarah Mercer

    2011-04-01

    Full Text Available This article explores the potential offered by complexity theories for understanding language learners’ sense of self and attempts to show how the self might usefully be conceived of as a complex dynamic system. Rather than presenting empirical findings, the article discusses existent research on the self and aims at outlining a conceptual perspective that may inform future studies into the self and possibly other individual learner differences. The article concludes by critically considering the merits of a complexity perspective but also reflecting on the challenges it poses for research.

  4. Mathematical Models to Determine Stable Behavior of Complex Systems

    Science.gov (United States)

    Sumin, V. I.; Dushkin, A. V.; Smolentseva, T. E.

    2018-05-01

    The paper analyzes a possibility to predict functioning of a complex dynamic system with a significant amount of circulating information and a large number of random factors impacting its functioning. Functioning of the complex dynamic system is described as a chaotic state, self-organized criticality and bifurcation. This problem may be resolved by modeling such systems as dynamic ones, without applying stochastic models and taking into account strange attractors.

  5. Engineering education as a complex system

    Science.gov (United States)

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-12-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating problem-solving orientations that emerge within students' thinking as they progress through an engineering curriculum. It is proposed that the traditional engineering education model, while analytically rigorous, is characterised by properties that, although necessary, are insufficient for preparing students to address complex issues of the twenty-first century. A Synthesis and Design Studio model for engineering education is proposed, which maintains the necessary rigor of analysis within a uniquely complex yet sufficiently structured learning environment.

  6. 1st Complex Systems Digital Campus World E-Conference 2015

    CERN Document Server

    Bourgine, Paul; Collet, Pierre

    2017-01-01

    This book contains the proceedings as well as invited papers for the first annual conference of the UNESCO Unitwin Complex System Digital Campus (CSDC), which is an international initiative gathering 120 Universities on four continents, and structured in ten E-Departments. First Complex Systems Digital Campus World E-Conference 2015 features chapters from the latest research results on theoretical questions of complex systems and their experimental domains. The content contained bridges the gap between the individual and the collective within complex systems science and new integrative sciences on topics such as: genes to organisms to ecosystems, atoms to materials to products, and digital media to the Internet. The conference breaks new ground through a dedicated video-conferencing system – a concept at the heart of the international UNESCO UniTwin, embracing scientists from low-income and distant countries. This book promotes an integrated system of research, education, and training. It also aims at contr...

  7. Extraction of quantifiable information from complex systems

    CERN Document Server

    Dahmen, Wolfgang; Griebel, Michael; Hackbusch, Wolfgang; Ritter, Klaus; Schneider, Reinhold; Schwab, Christoph; Yserentant, Harry

    2014-01-01

    In April 2007, the  Deutsche Forschungsgemeinschaft (DFG) approved the  Priority Program 1324 “Mathematical Methods for Extracting Quantifiable Information from Complex Systems.” This volume presents a comprehensive overview of the most important results obtained over the course of the program.   Mathematical models of complex systems provide the foundation for further technological developments in science, engineering and computational finance.  Motivated by the trend toward steadily increasing computer power, ever more realistic models have been developed in recent years. These models have also become increasingly complex, and their numerical treatment poses serious challenges.   Recent developments in mathematics suggest that, in the long run, much more powerful numerical solution strategies could be derived if the interconnections between the different fields of research were systematically exploited at a conceptual level. Accordingly, a deeper understanding of the mathematical foundations as w...

  8. Establishing a methodology to develop complex sociotechnical systems

    CSIR Research Space (South Africa)

    Oosthuizen, R

    2013-02-01

    Full Text Available Many modern management systems, such as military command and control, tend to be large and highly interconnected sociotechnical systems operating in a complex environment. Successful development, assessment and implementation of these systems...

  9. 6th International Conference on Complex Systems Design & Management

    CERN Document Server

    Bocquet, Jean-Claude; Bonjour, Eric; Krob, Daniel

    2016-01-01

    This book contains all refereed papers that were accepted to the sixth edition of the « Complex Systems Design & Management Paris » (CSD&M Paris 2015) international conference which took place in Paris (France) on November 23-25, 2015. These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (aeronautics & aerospace, defense & security, electronics & robotics, energy & environment, health & welfare, software & e-services, transportation), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, systems modeling tools) and systems types (artificial ecosystems, embedded systems, software & information systems, systems of systems, transportation systems). The CSD&M Paris 2015 conference is organized under the guidance of the CESAMES non-profit organization, address...

  10. Combinations of complex dynamical systems

    CERN Document Server

    Pilgrim, Kevin M

    2003-01-01

    This work is a research-level monograph whose goal is to develop a general combination, decomposition, and structure theory for branched coverings of the two-sphere to itself, regarded as the combinatorial and topological objects which arise in the classification of certain holomorphic dynamical systems on the Riemann sphere. It is intended for researchers interested in the classification of those complex one-dimensional dynamical systems which are in some loose sense tame. The program is motivated by the dictionary between the theories of iterated rational maps and Kleinian groups.

  11. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  12. Understanding global health governance as a complex adaptive system.

    Science.gov (United States)

    Hill, Peter S

    2011-01-01

    The transition from international to global health reflects the rapid growth in the numbers and nature of stakeholders in health, as well as the constant change embodied in the process of globalisation itself. This paper argues that global health governance shares the characteristics of complex adaptive systems, with its multiple and diverse players, and their polyvalent and constantly evolving relationships, and rich and dynamic interactions. The sheer quantum of initiatives, the multiple networks through which stakeholders (re)configure their influence, the range of contexts in which development for health is played out - all compound the complexity of this system. This paper maps out the characteristics of complex adaptive systems as they apply to global health governance, linking them to developments in the past two decades, and the multiple responses to these changes. Examining global health governance through the frame of complexity theory offers insight into the current dynamics of governance, and while providing a framework for making meaning of the whole, opens up ways of accessing this complexity through local points of engagement.

  13. Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices

    Science.gov (United States)

    Freund, Roland

    1989-01-01

    We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  14. Complexity, flow, and antifragile healthcare systems: implications for nurse executives.

    Science.gov (United States)

    Clancy, Thomas R

    2015-04-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on the application of management strategies in health systems. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. In this article, I further discuss the concept of fragility, its impact on system behavior, and ways to reduce it.

  15. 5th International Conference on Complex Systems Design & Management

    CERN Document Server

    Krob, Daniel; Morel, Gérard; Roussel, Jean-Claude

    2015-01-01

    This book contains all refereed papers that were accepted to the fifth edition of the « Complex Systems Design & Management » (CSD&M 2014) international conference which took place in Paris (France) on the November 12-14, 2014. These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (aeronautic & aerospace, transportation & systems, defense & security, electronics & robotics, energy & environment, health & welfare services, software & e-services), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, systemic tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2014 conference is organized under the guidance of the CESAMES non-profit organization, addres...

  16. Mathematical approaches for complexity/predictivity trade-offs in complex system models : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Goldsby, Michael E.; Mayo, Jackson R.; Bhattacharyya, Arnab (Massachusetts Institute of Technology, Cambridge, MA); Armstrong, Robert C.; Vanderveen, Keith

    2008-09-01

    The goal of this research was to examine foundational methods, both computational and theoretical, that can improve the veracity of entity-based complex system models and increase confidence in their predictions for emergent behavior. The strategy was to seek insight and guidance from simplified yet realistic models, such as cellular automata and Boolean networks, whose properties can be generalized to production entity-based simulations. We have explored the usefulness of renormalization-group methods for finding reduced models of such idealized complex systems. We have prototyped representative models that are both tractable and relevant to Sandia mission applications, and quantified the effect of computational renormalization on the predictive accuracy of these models, finding good predictivity from renormalized versions of cellular automata and Boolean networks. Furthermore, we have theoretically analyzed the robustness properties of certain Boolean networks, relevant for characterizing organic behavior, and obtained precise mathematical constraints on systems that are robust to failures. In combination, our results provide important guidance for more rigorous construction of entity-based models, which currently are often devised in an ad-hoc manner. Our results can also help in designing complex systems with the goal of predictable behavior, e.g., for cybersecurity.

  17. Tailoring Enterprise Systems Engineering Policy for Project Scale and Complexity

    Science.gov (United States)

    Cox, Renee I.; Thomas, L. Dale

    2014-01-01

    Space systems are characterized by varying degrees of scale and complexity. Accordingly, cost-effective implementation of systems engineering also varies depending on scale and complexity. Recognizing that systems engineering and integration happen everywhere and at all levels of a given system and that the life cycle is an integrated process necessary to mature a design, the National Aeronautic and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) has developed a suite of customized implementation approaches based on project scale and complexity. While it may be argued that a top-level system engineering process is common to and indeed desirable across an enterprise for all space systems, implementation of that top-level process and the associated products developed as a result differ from system to system. The implementation approaches used for developing a scientific instrument necessarily differ from those used for a space station. .

  18. A Complex Systems Approach to More Resilient Multi-Layered Security Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nathanael J. K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bandlow, Alisa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nozick, Linda Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Waddell, Lucas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Levin, Drew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whetzel, Jonathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    In July 2012, protestors cut through security fences and gained access to the Y-12 National Security Complex. This was believed to be a highly reliable, multi-layered security system. This report documents the results of a Laboratory Directed Research and Development (LDRD) project that created a consistent, robust mathematical framework using complex systems analysis algorithms and techniques to better understand the emergent behavior, vulnerabilities and resiliency of multi-layered security systems subject to budget constraints and competing security priorities. Because there are several dimensions to security system performance and a range of attacks that might occur, the framework is multi-objective for a performance frontier to be estimated. This research explicitly uses probability of intruder interruption given detection (PI) as the primary resilience metric. We demonstrate the utility of this framework with both notional as well as real-world examples of Physical Protection Systems (PPSs) and validate using a well-established force-on-force simulation tool, Umbra.

  19. 7th International Conference on Complex Systems Design & Management

    CERN Document Server

    Goubault, Eric; Krob, Daniel; Stephan, François

    2017-01-01

    This book contains all refereed papers that were accepted to the seventh edition of the international conference « Complex Systems Design & Management Paris» (CSD&M Paris 2016) which took place in Paris (France) on the December 13-14, 2016 These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (aeronautic & aerospace, defense & security, electronics & robotics, energy & environment, healthcare & welfare services, software & e-services, transportation), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, system is modeling tools) and system types (artificial ecosystems, embedded systems, software & information systems, systems of systems, transportation systems). The CSD&M Paris 2016 conference is organized under the guidance of the CESAMES non-profit orga...

  20. Synchronizing and controlling hyperchaos in complex Lorentz-Haken systems

    International Nuclear Information System (INIS)

    Fang Jinqing

    1995-03-01

    Synchronizing hyperchaos is realized by the drive-response relationship in the complex Lorentz-Haken system and its higher-order cascading systems for the first time. Controlling hyperchaos is achieved by the intermittent proportional feedback to all of the drive (master) system variables. The complex Lorentz-Haken system describes the detuned single-mode laser and is taken as a typical example of hyperchaotic synchronization to clarify our ideas and results. The ideas and concepts could be extended to some nonlinear dynamical systems and have prospects for potential applications, for example. to laser, electronics, plasma, cryptography, communication, chemical and biological systems and so on. (8 figs., 2 tabs.)

  1. Synchronizing and controlling hyperchaos in complex Lorentz-Haken systems

    Energy Technology Data Exchange (ETDEWEB)

    Jinqing, Fang [Academia Sinica, Beijing, BJ (China). Inst. of Atomic Energy

    1995-03-01

    Synchronizing hyperchaos is realized by the drive-response relationship in the complex Lorentz-Haken system and its higher-order cascading systems for the first time. Controlling hyperchaos is achieved by the intermittent proportional feedback to all of the drive (master) system variables. The complex Lorentz-Haken system describes the detuned single-mode laser and is taken as a typical example of hyperchaotic synchronization to clarify our ideas and results. The ideas and concepts could be extended to some nonlinear dynamical systems and have prospects for potential applications, for example. to laser, electronics, plasma, cryptography, communication, chemical and biological systems and so on. (8 figs., 2 tabs.).

  2. Diagnosis for Control and Decision Support in Complex Systems

    DEFF Research Database (Denmark)

    Blanke, Mogens; Hansen, Søren; Blas, Morten Rufus

    2011-01-01

    with complex and nonlinear systems have matured and even though there are many un-solved problems, methodology and associated tools have become available in the form of theory and software for design. Genuine industrial cases have also become available. Analysis of system topology, referred to as structural...... for on-line prognosis and diagnosis. For complex systems, results from non-Gaussian detection theory have been employed with convincing results. The paper presents the theoretical foundation for design methodologies that now appear as enabling technology for a new area of design of systems...

  3. Dependability problems of complex information systems

    CERN Document Server

    Zamojski, Wojciech

    2014-01-01

    This monograph presents original research results on selected problems of dependability in contemporary Complex Information Systems (CIS). The ten chapters are concentrated around the following three aspects: methods for modelling of the system and its components, tasks ? or in more generic and more adequate interpretation, functionalities ? accomplished by the system and conditions for their correct realization in the dynamic operational environment. While the main focus is on theoretical advances and roadmaps for implementations of new technologies, a?much needed forum for sharing of the bes

  4. Information and self-organization a macroscopic approach to complex systems

    CERN Document Server

    Haken, Hermann

    1988-01-01

    Complex systems are ubiquitous, and practically all branches of science ranging from physics through chemistry and biology to economics and sociology have to deal with them. In this book we wish to present concepts and methods for dealing with complex systems from a unifying point of view. Therefore it may be of inter­ est to graduate students, professors and research workers who are concerned with theoretical work in the above-mentioned fields. The basic idea for our unified ap­ proach sterns from that of synergetics. In order to find unifying principles we shall focus our attention on those situations where a complex system changes its macroscopic behavior qualitatively, or in other words, where it changes its macroscopic spatial, temporal or functional structure. Until now, the theory of synergetics has usually begun with a microscopic or mesoscopic description of a complex system. In this book we present an approach which starts out from macroscopic data. In particular we shall treat systems that acquir...

  5. Complexity VIII. Ontology of closure in complex systems: The C* hypothesis and the O° notation

    Science.gov (United States)

    Chandler, Jerry LR

    1999-03-01

    Closure is a common characteristic of mathematical, natural and socio-cultural systems. Whether one is describing a graph, a molecule, a cell, a human, or a nation state, closure is implicitly understood. An objective of this paper is to continue a construction of a systematic framework for closure which is sufficient for future quantitative transdisciplinary investigations. A further objective is to extend the Birkhoff-von Neumann criterion for quantum systems to complex natural objects. The C* hypothesis is being constructed to be consistent with algebraic category theory (Ehresmann and Vanbremeersch, 1987, 1997, Chandler, 1990, 1991, Chandler, Ehresmann and Vanbremeersch, 1996). Five aspects of closure will be used to construct a framework for categories of complex systems: 1. Truth functions in mathematics and the natural sciences 2. Systematic descriptions in the mks and O° notations 3. Organizational structures in hierarchical scientific languages 4. Transitive organizational pathways in the causal structures of complex behaviors 5. Composing additive, multiplicative and exponential operations in complex systems Truth functions can be formal or objective or subjective, depending on the complexity of the system and on our capability to represent the fine structure of the system symbolically, observationally or descriptively. "Complete" material representations of the fine structure of a system may allow truth functions to be created over sets of one to one correspondences. Less complete descriptions can support less stringent truth functions based on coherence or subjective judgments. The role of human values in creating and perpetuating truth functions can be placed in context of the degree of fine structure in the system's description. The organization of complex systems are hypothesized to be categorizable into degrees relative to one another, thereby creating an ordering relationship. This ordering relationship is denoted by the symbols: O°1, O°2,O°3

  6. Classical and quantum mechanics of complex Hamiltonian systems

    Indian Academy of Sciences (India)

    Certain aspects of classical and quantum mechanics of complex Hamiltonian systems in one dimension investigated within the framework of an extended complex phase space approach, characterized by the transformation = 1 + 2, = 1 + 2, are revisited. It is argued that Carl Bender inducted P T symmetry in ...

  7. A New Fractional-Order Chaotic Complex System and Its Antisynchronization

    Directory of Open Access Journals (Sweden)

    Cuimei Jiang

    2014-01-01

    with phase portraits, bifurcation diagrams, the histories, and the largest Lyapunov exponents. And we find that chaos exists in this system with orders less than 5 by numerical simulation. Additionally, antisynchronization of different fractional-order chaotic complex systems is considered based on the stability theory of fractional-order systems. This new system and the fractional-order complex Lorenz system can achieve antisynchronization. Corresponding numerical simulations show the effectiveness and feasibility of the scheme.

  8. 11th International Conference on Dependability and Complex Systems

    CERN Document Server

    Mazurkiewicz, Jacek; Sugier, Jarosław; Walkowiak, Tomasz; Kacprzyk, Janusz

    2016-01-01

    These proceedings present the results of the Eleventh International Conference on Dependability and Complex Systems DepCoS-RELCOMEX which took place in a picturesque Brunów Palace in Poland from 27th June to 1st July, 2016. DepCoS-RELCOMEX is a series of international conferences organized annually by Department of Computer Engineering of Wrocław University of Science and Technology since 2006. The roots of the series go as far back as to the seventies of the previous century – the first RELCOMEX conference took place in 1977 – and now its main aim is to promote a multi-disciplinary approach to dependability problems in theory and engineering practice of complex systems. Complex systems, nowadays most often computer-based and distributed, are built upon a variety of technical, information, software and human resources. The challenges in their design, analysis and maintenance not only originate from the involved technical and organizational structures but also from the complexity of the information proce...

  9. Modeling complex work systems - method meets reality

    NARCIS (Netherlands)

    van der Veer, Gerrit C.; Hoeve, Machteld; Lenting, Bert

    1996-01-01

    Modeling an existing task situation is often a first phase in the (re)design of information systems. For complex systems design, this model should consider both the people and the organization involved, the work, and situational aspects. Groupware Task Analysis (GTA) as part of a method for the

  10. Software complex for developing dynamically packed program system for experiment automation

    International Nuclear Information System (INIS)

    Baluka, G.; Salamatin, I.M.

    1985-01-01

    Software complex for developing dynamically packed program system for experiment automation is considered. The complex includes general-purpose programming systems represented as the RT-11 standard operating system and specially developed problem-oriented moduli providing execution of certain jobs. The described complex is realized in the PASKAL' and MAKRO-2 languages and it is rather flexible to variations of the technique of the experiment

  11. A case for Sandia investment in complex adaptive systems science and technology.

    Energy Technology Data Exchange (ETDEWEB)

    Colbaugh, Richard; Tsao, Jeffrey Yeenien; Johnson, Curtis Martin; Backus, George A.; Brown, Theresa Jean; Jones, Katherine A.

    2012-05-01

    This white paper makes a case for Sandia National Laboratories investments in complex adaptive systems science and technology (S&T) -- investments that could enable higher-value-added and more-robustly-engineered solutions to challenges of importance to Sandia's national security mission and to the nation. Complex adaptive systems are ubiquitous in Sandia's national security mission areas. We often ignore the adaptive complexity of these systems by narrowing our 'aperture of concern' to systems or subsystems with a limited range of function exposed to a limited range of environments over limited periods of time. But by widening our aperture of concern we could increase our impact considerably. To do so, the science and technology of complex adaptive systems must mature considerably. Despite an explosion of interest outside of Sandia, however, that science and technology is still in its youth. What has been missing is contact with real (rather than model) systems and real domain-area detail. With its center-of-gravity as an engineering laboratory, Sandia's has made considerable progress applying existing science and technology to real complex adaptive systems. It has focused much less, however, on advancing the science and technology itself. But its close contact with real systems and real domain-area detail represents a powerful strength with which to help complex adaptive systems science and technology mature. Sandia is thus both a prime beneficiary of, as well as potentially a prime contributor to, complex adaptive systems science and technology. Building a productive program in complex adaptive systems science and technology at Sandia will not be trivial, but a credible path can be envisioned: in the short run, continue to apply existing science and technology to real domain-area complex adaptive systems; in the medium run, jump-start the creation of new science and technology capability through Sandia's Laboratory Directed Research

  12. Verification and Examination Management of Complex Systems

    Directory of Open Access Journals (Sweden)

    Stian Ruud

    2014-10-01

    Full Text Available As ship systems become more complex, with an increasing number of safety-critical functions, many interconnected subsystems, tight integration to other systems, and a large amount of potential failure modes, several industry parties have identified the need for improved methods for managing the verification and examination efforts of such complex systems. Such needs are even more prominent now that the marine and offshore industries are targeting more activities and operations in the Arctic environment. In this paper, a set of requirements and a method for verification and examination management are proposed for allocating examination efforts to selected subsystems. The method is based on a definition of a verification risk function for a given system topology and given requirements. The marginal verification risks for the subsystems may then be evaluated, so that examination efforts for the subsystem can be allocated. Two cases of requirements and systems are used to demonstrate the proposed method. The method establishes a systematic relationship between the verification loss, the logic system topology, verification method performance, examination stop criterion, the required examination effort, and a proposed sequence of examinations to reach the examination stop criterion.

  13. Stability of Rotor Systems: A Complex Modelling Approach

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob

    1996-01-01

    A large class of rotor systems can be modelled by a complex matrix differential equation of secondorder. The angular velocity of the rotor plays the role of a parameter. We apply the Lyapunov matrix equation in a complex setting and prove two new stability results which are compared...

  14. Relaxation and Diffusion in Complex Systems

    CERN Document Server

    Ngai, K L

    2011-01-01

    Relaxation and Diffusion in Complex Systems comprehensively presents a variety of experimental evidences of universal relaxation and diffusion properties in complex materials and systems. The materials discussed include liquids, glasses, colloids, polymers, rubbers, plastic crystals and aqueous mixtures, as well as carbohydrates, biomolecules, bioprotectants and pharmaceuticals. Due to the abundance of experimental data, emphasis is placed on glass-formers and the glass transition problem, a still unsolved problem in condensed matter physics and chemistry. The evidence for universal properties of relaxation and diffusion dynamics suggests that a fundamental physical law is at work. The origin of the universal properties is traced to the many-body effects of the interaction, rigorous theory of which does not exist at the present time. However, using solutions of simplified models as guides, key quantities have been identified and predictions of the universal properties generated. These predictions from Ngai’...

  15. Traditional Knowledge of Western Herbal Medicine and Complex Systems Science.

    Science.gov (United States)

    Niemeyer, Kathryn; Bell, Iris R; Koithan, Mary

    2013-09-01

    Traditional knowledge of Western herbal medicine (WHM) supports experiential approaches to healing that have evolved over time. This is evident in the use of polyherb formulations comprised of crude plant parts, individually tailored to treat the cause of dysfunction and imbalance by addressing the whole person holistically. The challenge for WHM is to integrate science with traditional knowledge that is a foundation of the practice of WHM. The purpose of this paper is to provide a plausible theoretical hypothesis by applying complex systems science to WHM, illustrating how medicinal plants are complex, adaptive, environmentally interactive systems exhibiting synergy and nonlinear healing causality. This paper explores the conceptual congruence between medicinal plants and humans as complex systems coherently coupled through recurrent interaction. Complex systems science provides the theoretical tenets that explain traditional knowledge of medicinal plants while supporting clinical practice and expanding research and documentation of WHM.

  16. Complex adaptive systems ecology

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2003-01-01

    In the following, I will analyze two articles called Complex Adaptive Systems EcologyI & II (Molin & Molin, 1997 & 2000). The CASE-articles are some of the more quirkyarticles that have come out of the Molecular Microbial Ecology Group - a groupwhere I am currently making observational studies....... They are the result of acooperation between Søren Molin, professor in the group, and his brother, JanMolin, professor at Department of Organization and Industrial Sociology atCopenhagen Business School. The cooperation arises from the recognition that bothmicrobial ecology and sociology/organization theory works...

  17. Reliability Standards of Complex Engineering Systems

    Science.gov (United States)

    Galperin, E. M.; Zayko, V. A.; Gorshkalev, P. A.

    2017-11-01

    Production and manufacture play an important role in today’s modern society. Industrial production is nowadays characterized by increased and complex communications between its parts. The problem of preventing accidents in a large industrial enterprise becomes especially relevant. In these circumstances, the reliability of enterprise functioning is of particular importance. Potential damage caused by an accident at such enterprise may lead to substantial material losses and, in some cases, can even cause a loss of human lives. That is why industrial enterprise functioning reliability is immensely important. In terms of their reliability, industrial facilities (objects) are divided into simple and complex. Simple objects are characterized by only two conditions: operable and non-operable. A complex object exists in more than two conditions. The main characteristic here is the stability of its operation. This paper develops the reliability indicator combining the set theory methodology and a state space method. Both are widely used to analyze dynamically developing probability processes. The research also introduces a set of reliability indicators for complex technical systems.

  18. Unified Computational Intelligence for Complex Systems

    CERN Document Server

    Seiffertt, John

    2010-01-01

    Computational intelligence encompasses a wide variety of techniques that allow computation to learn, to adapt, and to seek. That is, they may be designed to learn information without explicit programming regarding the nature of the content to be retained, they may be imbued with the functionality to adapt to maintain their course within a complex and unpredictably changing environment, and they may help us seek out truths about our own dynamics and lives through their inclusion in complex system modeling. These capabilities place our ability to compute in a category apart from our ability to e

  19. Ensemble annealing of complex physical systems

    OpenAIRE

    Habeck, Michael

    2015-01-01

    Algorithms for simulating complex physical systems or solving difficult optimization problems often resort to an annealing process. Rather than simulating the system at the temperature of interest, an annealing algorithm starts at a temperature that is high enough to ensure ergodicity and gradually decreases it until the destination temperature is reached. This idea is used in popular algorithms such as parallel tempering and simulated annealing. A general problem with annealing methods is th...

  20. Risk-return relationship in a complex adaptive system.

    Directory of Open Access Journals (Sweden)

    Kunyu Song

    Full Text Available For survival and development, autonomous agents in complex adaptive systems involving the human society must compete against or collaborate with others for sharing limited resources or wealth, by using different methods. One method is to invest, in order to obtain payoffs with risk. It is a common belief that investments with a positive risk-return relationship (namely, high risk high return and vice versa are dominant over those with a negative risk-return relationship (i.e., high risk low return and vice versa in the human society; the belief has a notable impact on daily investing activities of investors. Here we investigate the risk-return relationship in a model complex adaptive system, in order to study the effect of both market efficiency and closeness that exist in the human society and play an important role in helping to establish traditional finance/economics theories. We conduct a series of computer-aided human experiments, and also perform agent-based simulations and theoretical analysis to confirm the experimental observations and reveal the underlying mechanism. We report that investments with a negative risk-return relationship have dominance over those with a positive risk-return relationship instead in such a complex adaptive systems. We formulate the dynamical process for the system's evolution, which helps to discover the different role of identical and heterogeneous preferences. This work might be valuable not only to complexity science, but also to finance and economics, to management and social science, and to physics.

  1. Risk-return relationship in a complex adaptive system.

    Science.gov (United States)

    Song, Kunyu; An, Kenan; Yang, Guang; Huang, Jiping

    2012-01-01

    For survival and development, autonomous agents in complex adaptive systems involving the human society must compete against or collaborate with others for sharing limited resources or wealth, by using different methods. One method is to invest, in order to obtain payoffs with risk. It is a common belief that investments with a positive risk-return relationship (namely, high risk high return and vice versa) are dominant over those with a negative risk-return relationship (i.e., high risk low return and vice versa) in the human society; the belief has a notable impact on daily investing activities of investors. Here we investigate the risk-return relationship in a model complex adaptive system, in order to study the effect of both market efficiency and closeness that exist in the human society and play an important role in helping to establish traditional finance/economics theories. We conduct a series of computer-aided human experiments, and also perform agent-based simulations and theoretical analysis to confirm the experimental observations and reveal the underlying mechanism. We report that investments with a negative risk-return relationship have dominance over those with a positive risk-return relationship instead in such a complex adaptive systems. We formulate the dynamical process for the system's evolution, which helps to discover the different role of identical and heterogeneous preferences. This work might be valuable not only to complexity science, but also to finance and economics, to management and social science, and to physics.

  2. Emergent nested systems a theory of understanding and influencing complex systems as well as case studies in urban systems

    CERN Document Server

    Walloth, Christian

    2016-01-01

    This book presents a theory as well as methods to understand and to purposively influence complex systems. It suggests a theory of complex systems as nested systems, i. e. systems that enclose other systems and that are simultaneously enclosed by even other systems. According to the theory presented, each enclosing system emerges through time from the generative activities of the systems they enclose. Systems are nested and often emerge unplanned, and every system of high dynamics is enclosed by a system of slower dynamics. An understanding of systems with faster dynamics, which are always guided by systems of slower dynamics, opens up not only new ways to understanding systems, but also to effectively influence them. The aim and subject of this book is to lay out these thoughts and explain their relevance to the purposive development of complex systems, which are exemplified in case studies from an urban system. The interested reader, who is not required to be familiar with system-theoretical concepts or wit...

  3. Complex systems modeling by cellular automata

    NARCIS (Netherlands)

    Kroc, J.; Sloot, P.M.A.; Rabuñal Dopico, J.R.; Dorado de la Calle, J.; Pazos Sierra, A.

    2009-01-01

    In recent years, the notion of complex systems proved to be a very useful concept to define, describe, and study various natural phenomena observed in a vast number of scientific disciplines. Examples of scientific disciplines that highly benefit from this concept range from physics, mathematics,

  4. Use of neural networks in the analysis of complex systems

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms) to some of the problems of complex engineering systems has the potential to enhance the safety reliability and operability of these systems. The work described here deals with complex systems or parts of such systems that can be isolated from the total system. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network. The neural networks are usually simulated on modern high-speed computers that carry out the calculations serially. However, it is possible to implement neural networks using specially designed microchips where the network calculations are truly carried out in parallel, thereby providing virtually instantaneous outputs for each set of inputs. Specific applications described include: Diagnostics: State of the Plant; Hybrid System for Transient Identification; Detection of Change of Mode in Complex Systems; Sensor Validation; Plant-Wide Monitoring; Monitoring of Performance and Efficiency; and Analysis of Vibrations. Although the specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems

  5. Summer School Mathematical Foundations of Complex Networked Information Systems

    CERN Document Server

    Fosson, Sophie; Ravazzi, Chiara

    2015-01-01

    Introducing the reader to the mathematics beyond complex networked systems, these lecture notes investigate graph theory, graphical models, and methods from statistical physics. Complex networked systems play a fundamental role in our society, both in everyday life and in scientific research, with applications ranging from physics and biology to economics and finance. The book is self-contained, and requires only an undergraduate mathematical background.

  6. Data based identification and prediction of nonlinear and complex dynamical systems

    Science.gov (United States)

    Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-07-01

    The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The "inverse" problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear dynamical

  7. Data based identification and prediction of nonlinear and complex dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wen-Xu [School of Systems Science, Beijing Normal University, Beijing, 100875 (China); Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China); Lai, Ying-Cheng, E-mail: Ying-Cheng.Lai@asu.edu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Grebogi, Celso [Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2016-07-12

    The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The “inverse” problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear

  8. Data based identification and prediction of nonlinear and complex dynamical systems

    International Nuclear Information System (INIS)

    Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-01-01

    The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The “inverse” problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear

  9. Radwaste treatment complex. DRAWMACS planned maintenance system

    International Nuclear Information System (INIS)

    Keel, A.J.

    1992-07-01

    This document describes the operation of the Planned Maintenance System for the Radwaste Treatment Complex. The Planned Maintenance System forms part of the Decommissioning and Radwaste Management Computer System (DRAWMACS). Further detailed information about the data structure of the system is contained in Database Design for the DRAWMACS Planned Maintenance System (AEA-D and R-0285, 2nd issue, 25th February 1992). Information for other components of DRAWMACS is contained in Basic User Guide for the Radwaste Treatment Plant Computer System (AEA-D and R-0019, July 1990). (author)

  10. Complexity Analysis of Industrial Organizations Based on a Perspective of Systems Engineering Analysts

    Directory of Open Access Journals (Sweden)

    I. H. Garbie

    2011-12-01

    Full Text Available Complexity in industrial organizations became more difficult and complex to be solved and it needs more attention from academicians and technicians. For these reasons, complexity in industrial organizations represents a new challenge in the next decades. Until now, analysis of industrial organizations complexity is still remaining a research topic of immense international interest and they require reduction in their complexity. In this paper, analysis of complexity in industrial organizations is shown based on the perspective of systems engineering analyst. In this perspective, analysis of complexity was divided into different levels and these levels were defined as complexity levels. A framework of analyzing these levels was proposed and suggested based on the complexity in industrial organizations. This analysis was divided into four main issues: industrial system vision, industrial system structure, industrial system operating, and industrial system evaluating. This analysis shows that the complexity of industrial organizations is still an ill-structured and a multi-dimensional problem.

  11. EPR spectroscopy of complex biological iron-sulfur systems.

    Science.gov (United States)

    Hagen, Wilfred R

    2018-02-21

    From the very first discovery of biological iron-sulfur clusters with EPR, the spectroscopy has been used to study not only purified proteins but also complex systems such as respiratory complexes, membrane particles and, later, whole cells. In recent times, the emphasis of iron-sulfur biochemistry has moved from characterization of individual proteins to the systems biology of iron-sulfur biosynthesis, regulation, degradation, and implications for human health. Although this move would suggest a blossoming of System-EPR as a specific, non-invasive monitor of Fe/S (dys)homeostasis in whole cells, a review of the literature reveals limited success possibly due to technical difficulties in adherence to EPR spectroscopic and biochemical standards. In an attempt to boost application of System-EPR the required boundary conditions and their practical applications are explicitly and comprehensively formulated.

  12. Introduction to Focus Issue: Complex network perspectives on flow systems.

    Science.gov (United States)

    Donner, Reik V; Hernández-García, Emilio; Ser-Giacomi, Enrico

    2017-03-01

    During the last few years, complex network approaches have demonstrated their great potentials as versatile tools for exploring the structural as well as dynamical properties of dynamical systems from a variety of different fields. Among others, recent successful examples include (i) functional (correlation) network approaches to infer hidden statistical interrelationships between macroscopic regions of the human brain or the Earth's climate system, (ii) Lagrangian flow networks allowing to trace dynamically relevant fluid-flow structures in atmosphere, ocean or, more general, the phase space of complex systems, and (iii) time series networks unveiling fundamental organization principles of dynamical systems. In this spirit, complex network approaches have proven useful for data-driven learning of dynamical processes (like those acting within and between sub-components of the Earth's climate system) that are hidden to other analysis techniques. This Focus Issue presents a collection of contributions addressing the description of flows and associated transport processes from the network point of view and its relationship to other approaches which deal with fluid transport and mixing and/or use complex network techniques.

  13. Complex, Dynamic Systems: A New Transdisciplinary Theme for Applied Linguistics?

    Science.gov (United States)

    Larsen-Freeman, Diane

    2012-01-01

    In this plenary address, I suggest that Complexity Theory has the potential to contribute a transdisciplinary theme to applied linguistics. Transdisciplinary themes supersede disciplines and spur new kinds of creative activity (Halliday 2001 [1990]). Investigating complex systems requires researchers to pay attention to system dynamics. Since…

  14. Moving alcohol prevention research forward-Part I: introducing a complex systems paradigm.

    Science.gov (United States)

    Apostolopoulos, Yorghos; Lemke, Michael K; Barry, Adam E; Lich, Kristen Hassmiller

    2018-02-01

    The drinking environment is a complex system consisting of a number of heterogeneous, evolving and interacting components, which exhibit circular causality and emergent properties. These characteristics reduce the efficacy of commonly used research approaches, which typically do not account for the underlying dynamic complexity of alcohol consumption and the interdependent nature of diverse factors influencing misuse over time. We use alcohol misuse among college students in the United States as an example for framing our argument for a complex systems paradigm. A complex systems paradigm, grounded in socio-ecological and complex systems theories and computational modeling and simulation, is introduced. Theoretical, conceptual, methodological and analytical underpinnings of this paradigm are described in the context of college drinking prevention research. The proposed complex systems paradigm can transcend limitations of traditional approaches, thereby fostering new directions in alcohol prevention research. By conceptualizing student alcohol misuse as a complex adaptive system, computational modeling and simulation methodologies and analytical techniques can be used. Moreover, use of participatory model-building approaches to generate simulation models can further increase stakeholder buy-in, understanding and policymaking. A complex systems paradigm for research into alcohol misuse can provide a holistic understanding of the underlying drinking environment and its long-term trajectory, which can elucidate high-leverage preventive interventions. © 2017 Society for the Study of Addiction.

  15. Note on transmitted complexity for quantum dynamical systems

    Science.gov (United States)

    Watanabe, Noboru; Muto, Masahiro

    2017-10-01

    Transmitted complexity (mutual entropy) is one of the important measures for quantum information theory developed recently in several ways. We will review the fundamental concepts of the Kossakowski, Ohya and Watanabe entropy and define a transmitted complexity for quantum dynamical systems. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  16. Predictive modelling of complex agronomic and biological systems.

    Science.gov (United States)

    Keurentjes, Joost J B; Molenaar, Jaap; Zwaan, Bas J

    2013-09-01

    Biological systems are tremendously complex in their functioning and regulation. Studying the multifaceted behaviour and describing the performance of such complexity has challenged the scientific community for years. The reduction of real-world intricacy into simple descriptive models has therefore convinced many researchers of the usefulness of introducing mathematics into biological sciences. Predictive modelling takes such an approach another step further in that it takes advantage of existing knowledge to project the performance of a system in alternating scenarios. The ever growing amounts of available data generated by assessing biological systems at increasingly higher detail provide unique opportunities for future modelling and experiment design. Here we aim to provide an overview of the progress made in modelling over time and the currently prevalent approaches for iterative modelling cycles in modern biology. We will further argue for the importance of versatility in modelling approaches, including parameter estimation, model reduction and network reconstruction. Finally, we will discuss the difficulties in overcoming the mathematical interpretation of in vivo complexity and address some of the future challenges lying ahead. © 2013 John Wiley & Sons Ltd.

  17. Computer Simulations and Theoretical Studies of Complex Systems: from complex fluids to frustrated magnets

    Science.gov (United States)

    Choi, Eunsong

    Computer simulations are an integral part of research in modern condensed matter physics; they serve as a direct bridge between theory and experiment by systemactically applying a microscopic model to a collection of particles that effectively imitate a macroscopic system. In this thesis, we study two very differnt condensed systems, namely complex fluids and frustrated magnets, primarily by simulating classical dynamics of each system. In the first part of the thesis, we focus on ionic liquids (ILs) and polymers--the two complementary classes of materials that can be combined to provide various unique properties. The properties of polymers/ILs systems, such as conductivity, viscosity, and miscibility, can be fine tuned by choosing an appropriate combination of cations, anions, and polymers. However, designing a system that meets a specific need requires a concrete understanding of physics and chemistry that dictates a complex interplay between polymers and ionic liquids. In this regard, molecular dynamics (MD) simulation is an efficient tool that provides a molecular level picture of such complex systems. We study the behavior of Poly (ethylene oxide) (PEO) and the imidazolium based ionic liquids, using MD simulations and statistical mechanics. We also discuss our efforts to develop reliable and efficient classical force-fields for PEO and the ionic liquids. The second part is devoted to studies on geometrically frustrated magnets. In particular, a microscopic model, which gives rise to an incommensurate spiral magnetic ordering observed in a pyrochlore antiferromagnet is investigated. The validation of the model is made via a comparison of the spin-wave spectra with the neutron scattering data. Since the standard Holstein-Primakoff method is difficult to employ in such a complex ground state structure with a large unit cell, we carry out classical spin dynamics simulations to compute spin-wave spectra directly from the Fourier transform of spin trajectories. We

  18. EPISTEMOLOGY AND INVESTIGATION WITHIN THE CURRENT ORGANIZATIONAL COMPLEX SYSTEMS

    Directory of Open Access Journals (Sweden)

    Karla Torres

    2015-11-01

    Full Text Available The way of approaching reality and generate knowledge is now different from those applied in the past ; It is why the aim of this paper was to analyze the changing elements in organizational structures framed in complex systems , addressing the study from the interpretive perspective with the use of hermeneutical method in theory , documentary context. It is concluding that the research methods require adaptation to this new reality for knowledge production. The complexity plays an important role in organizational systems and the environment in general, raising the need for revision in the way of thinking and actually faces this new complex, full of uncertainty and organizational chaos.

  19. Designing complex systems - a structured activity

    NARCIS (Netherlands)

    van der Veer, Gerrit C.; van Vliet, Johannes C.; Lenting, Bert; Olson, Gary M.; Schuon, Sue

    1995-01-01

    This paper concerns the development of complex systems from the point of view of design as a structure of activities, related both to the clients and the users. Several modeling approaches will be adopted for different aspects of design, and several views on design will be integrated. The proposed

  20. Farmaceutische industrie

    NARCIS (Netherlands)

    Ros JPM; van der Poel P; Etman EJ; Montfoort JA; LAE

    1995-01-01

    Dit rapport over de farmaceutische industrie is gepubliceerd binnen het Samenwerkingsproject Procesbeschrijvingen Industrie Nederland (SPIN). In het kader van dit project is informatie verzameld over industriele bedrijven of industriele processen ter ondersteuning van het overheidsbeleid op het

  1. Complexity Analysis and DSP Implementation of the Fractional-Order Lorenz Hyperchaotic System

    Directory of Open Access Journals (Sweden)

    Shaobo He

    2015-12-01

    Full Text Available The fractional-order hyperchaotic Lorenz system is solved as a discrete map by applying the Adomian decomposition method (ADM. Lyapunov Characteristic Exponents (LCEs of this system are calculated according to this deduced discrete map. Complexity of this system versus parameters are analyzed by LCEs, bifurcation diagrams, phase portraits, complexity algorithms. Results show that this system has rich dynamical behaviors. Chaos and hyperchaos can be generated by decreasing fractional order q in this system. It also shows that the system is more complex when q takes smaller values. SE and C 0 complexity algorithms provide a parameter choice criteria for practice applications of fractional-order chaotic systems. The fractional-order system is implemented by digital signal processor (DSP, and a pseudo-random bit generator is designed based on the implemented system, which passes the NIST test successfully.

  2. Morphodynamics: Ergodic theory of complex systems

    International Nuclear Information System (INIS)

    Fivaz, R.

    1993-01-01

    Morphodynamics is a general theory of stationary complex systems, such as living systems, or mental and social systems; it is based on the thermodynamics of physical systems and built on the same lines. By means of the ergodic hypothesis, thermodynamics is known to connect the particle dynamics to the emergence of order parameters in the equations of state. In the same way, morphodynamics connects order parameters to the emergence of higher level variables; through recurrent applications of the ergodic hypothesis, a hierarchy of equations of state is established which describes a series of successive levels of organization. The equations support a cognitivist interpretation that leads to general principles of evolution; the principles determine the spontaneous and irreversible complexification of systems living in their natural environment. 19 refs

  3. Understanding Learner Agency as a Complex Dynamic System

    Science.gov (United States)

    Mercer, Sarah

    2011-01-01

    This paper attempts to contribute to a fuller understanding of the nature of language learner agency by considering it as a complex dynamic system. The purpose of the study was to explore detailed situated data to examine to what extent it is feasible to view learner agency through the lens of complexity theory. Data were generated through a…

  4. Narrowing the gap between network models and real complex systems

    OpenAIRE

    Viamontes Esquivel, Alcides

    2014-01-01

    Simple network models that focus only on graph topology or, at best, basic interactions are often insufficient to capture all the aspects of a dynamic complex system. In this thesis, I explore those limitations, and some concrete methods of resolving them. I argue that, in order to succeed at interpreting and influencing complex systems, we need to take into account  slightly more complex parts, interactions and information flows in our models.This thesis supports that affirmation with five a...

  5. 10th International Conference on Dependability and Complex Systems

    CERN Document Server

    Mazurkiewicz, Jacek; Sugier, Jarosław; Walkowiak, Tomasz; Kacprzyk, Janusz

    2015-01-01

    Building upon a long tradition of scientifi c conferences dealing with problems of reliability in technical systems, in 2006 Department of Computer Engineering at Wrocław University of Technology established DepCoS-RELCOMEX series of events in order to promote a comprehensive approach to evaluation of system performability which is now commonly called dependability. Contemporary complex systems integrate variety of technical, information, soft ware and human (users, administrators and management) resources. Their complexity comes not only from involved technical and organizational structures but mainly from complexity of information processes that must be implemented in specific operational environment (data processing, monitoring, management, etc.). In such a case traditional methods of reliability evaluation focused mainly on technical levels are insufficient and more innovative, multidisciplinary methods of dependability analysis must be applied. Selection of submissions for these proceedings exemplify di...

  6. Systemic Resilience of Complex Urban Systems

    Directory of Open Access Journals (Sweden)

    Serge Salat

    2012-07-01

    Full Text Available Two key paradigms emerge out of the variety of urban forms: certain cities resemble trees, others leaves. The structural difference between a tree and a leaf is huge: one is open, the other closed. Trees are entirely disconnected on a given scale: even if two twigs are spatially close, if they do not belong to the same branch, to go from one to the other implies moving down and then up all the hierarchy of branches.  Leaves on the contrary are entirely connected on intermediary scales. The veins of a leaf are disconnected on the two larger scales but entirely connected on the two or three following intermediary scales before presenting tiny tree-like structures on the finest capillary scales. Deltas are leaves not trees. Neither galaxies nor whirlpools are trees. We will see in this paper that historical cities, like leaves, deltas, galaxies, lungs, brains and vein systems are all fractal structures, multiply connected and complex on all scales. These structures display the same degree of complexity and connectivity, regardless of the magnification scale on which we observe them. We say that these structures are scale free. Mathematical fractal forms are often generated recursively by applying again and again the same generator to an initiator. The iteration creates an arborescence. But scale free structure is not synonymous with a recursive tree-like structure. The fractal structure of the leaf is much more complex than that of the tree by its multiconnectivity on three or more intermediary levels. In contrast, trees in the virgin forest, even when they seem to be entangled, horizontal, and rhizomic, have branches that are not interconnected to form a lattice. As we will see, the history of urban planning has evolved from leaf-like to tree-like patterns, with a consequent loss of efficiency and resilience. Indeed, in a closed foliar path structure, the formation of cycles enables internal complexification and flow fluctuations due to the

  7. Produktie van pigmenten

    NARCIS (Netherlands)

    Etman EJ; Duesmann HB; Eijssen PHM; LAE

    1994-01-01

    Dit rapport over de produktie van pigmenten is gepubliceerd binnen het Samenwerkingsproject Procesbeschrijvingen Industrie Nederland (SPIN). In het kader van dit project is informatie verzameld over industriele bedrijven of industriele processen ter ondersteuning van het overheidsbeleid op het

  8. Adaptive control for a class of nonlinear complex dynamical systems with uncertain complex parameters and perturbations.

    Directory of Open Access Journals (Sweden)

    Jian Liu

    Full Text Available In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic systems (CVCSs in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results.

  9. Adaptive control for a class of nonlinear complex dynamical systems with uncertain complex parameters and perturbations.

    Science.gov (United States)

    Liu, Jian; Liu, Kexin; Liu, Shutang

    2017-01-01

    In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic) systems (CVCSs) in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results.

  10. Obesity, Complexity, and the Role of the Health System

    OpenAIRE

    Frood, Sarah; Johnston, Lee M.; Matteson, Carrie L.; Finegood, Diane T.

    2013-01-01

    As obesity continues to increase throughout the world, there is still no well-defined solution to the issue. Reducing obesity poses a significant challenge for the health care system because it is a complex problem with numerous interconnections and elements. The complexity of obesity challenges traditional primary care practices that have been structured to address simple or less complicated conditions. Systems thinking provides a way forward for clinicians that are discouraged or overwhelme...

  11. Systems and complexity thinking in general practice: part 1 - clinical application.

    Science.gov (United States)

    Sturmberg, Joachim P

    2007-03-01

    Many problems encountered in general practice cannot be sufficiently explained within the Newtonian reductionist paradigm. Systems and complexity thinking - already widely adopted in most nonmedical disciplines - describes and explores the contextual nature of questions posed in medicine, and in general practice in particular. This article briefly describes the framework underpinning systems and complexity sciences. A case study illustrates how systems and complexity thinking can help to better understand the contextual nature of patient presentations, and how different approaches will lead to different outcomes.

  12. Engineering Education as a Complex System

    Science.gov (United States)

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-01-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating…

  13. On complex adaptive systems and terrorism

    International Nuclear Information System (INIS)

    Ahmed, E.; Elgazzar, A.S.; Hegazi, A.S.

    2005-01-01

    Complex adaptive systems (CAS) are ubiquitous in nature. They are basic in social sciences. An overview of CAS is given with emphasize on the occurrence of bad side effects to seemingly 'wise' decisions. Hence application to terrorism is given. Some conclusions on how to deal with this phenomena are proposed

  14. The effect of multiple external representations (MERs) worksheets toward complex system reasoning achievement

    Science.gov (United States)

    Sumarno; Ibrahim, M.; Supardi, Z. A. I.

    2018-03-01

    The application of a systems approach to assessing biological systems provides hope for a coherent understanding of cell dynamics patterns and their relationship to plant life. This action required the reasoning about complex systems. In other sides, there were a lot of researchers who provided the proof about the instructional successions. They involved the multiple external representations which improved the biological learning. The researcher conducted an investigation using one shoot case study design which involved 30 students in proving that the MERs worksheets could affect the student's achievement of reasoning about complex system. The data had been collected based on test of reasoning about complex system and student's identification result who worked through MERs. The result showed that only partially students could achieve reasoning about system complex, but their MERs skill could support their reasoning ability of complex system. This study could bring a new hope to develop the MERs worksheet as a tool to facilitate the reasoning about complex system.

  15. Axiomatic design in large systems complex products, buildings and manufacturing systems

    CERN Document Server

    Suh, Nam

    2016-01-01

    This book provides a synthesis of recent developments in Axiomatic Design theory and its application in large complex systems. Introductory chapters provide concise tutorial materials for graduate students and new practitioners, presenting the fundamentals of Axiomatic Design and relating its key concepts to those of model-based systems engineering. A mathematical exposition of design axioms is also provided. The main body of the book, which represents a concentrated treatment of several applications, is divided into three parts covering work on: complex products; buildings; and manufacturing systems. The book shows how design work in these areas can benefit from the scientific and systematic underpinning provided by Axiomatic Design, and in so doing effectively combines the state of the art in design research with practice. All contributions were written by an international group of leading proponents of Axiomatic Design. The book concludes with a call to action motivating further research into the engineeri...

  16. Effective control of complex turbulent dynamical systems through statistical functionals.

    Science.gov (United States)

    Majda, Andrew J; Qi, Di

    2017-05-30

    Turbulent dynamical systems characterized by both a high-dimensional phase space and a large number of instabilities are ubiquitous among complex systems in science and engineering, including climate, material, and neural science. Control of these complex systems is a grand challenge, for example, in mitigating the effects of climate change or safe design of technology with fully developed shear turbulence. Control of flows in the transition to turbulence, where there is a small dimension of instabilities about a basic mean state, is an important and successful discipline. In complex turbulent dynamical systems, it is impossible to track and control the large dimension of instabilities, which strongly interact and exchange energy, and new control strategies are needed. The goal of this paper is to propose an effective statistical control strategy for complex turbulent dynamical systems based on a recent statistical energy principle and statistical linear response theory. We illustrate the potential practical efficiency and verify this effective statistical control strategy on the 40D Lorenz 1996 model in forcing regimes with various types of fully turbulent dynamics with nearly one-half of the phase space unstable.

  17. Planning and complexity : Engaging with temporal dynamics, uncertainty and complex adaptive systems

    NARCIS (Netherlands)

    Sengupta, Ulysses; Rauws, Ward S.; de Roo, Gert

    2016-01-01

    The nature of complex systems as a transdisciplinary collection of concepts from physics and economics to sociology and ecology provides an evolving field of inquiry (Laszlo and Krippner, 1998) for urban planning and urban design. As a result, planning theory has assimilated multiple concepts from

  18. Planning and complexity : Engaging with temporal dynamics, uncertainty and complex adaptive systems

    NARCIS (Netherlands)

    Sengupta, Ulysses; Rauws, Ward S.; de Roo, Gert

    The nature of complex systems as a transdisciplinary collection of concepts from physics and economics to sociology and ecology provides an evolving field of inquiry (Laszlo and Krippner, 1998) for urban planning and urban design. As a result, planning theory has assimilated multiple concepts from

  19. Du Pont de Nemours

    NARCIS (Netherlands)

    Ros JPM; LAE

    1994-01-01

    Dit rapport over Du Pont de Nemours (produktie van o.a. chemische stoffen) is gepubliceerd binnen het Samenwerkingsproject Procesbeschrijvingen Industrie Nederland (SPIN). In het kader van dit project is informatie verzameld over industriele bedrijven of industriele processen ter ondersteuning

  20. Thinking about complexity in health: A systematic review of the key systems thinking and complexity ideas in health.

    Science.gov (United States)

    Rusoja, Evan; Haynie, Deson; Sievers, Jessica; Mustafee, Navonil; Nelson, Fred; Reynolds, Martin; Sarriot, Eric; Swanson, Robert Chad; Williams, Bob

    2018-01-30

    As the Sustainable Development Goals are rolled out worldwide, development leaders will be looking to the experiences of the past to improve implementation in the future. Systems thinking and complexity science (ST/CS) propose that health and the health system are composed of dynamic actors constantly evolving in response to each other and their context. While offering practical guidance for steering the next development agenda, there is no consensus as to how these important ideas are discussed in relation to health. This systematic review sought to identify and describe some of the key terms, concepts, and methods in recent ST/CS literature. Using the search terms "systems thinkin * AND health OR complexity theor* AND health OR complex adaptive system* AND health," we identified 516 relevant full texts out of 3982 titles across the search period (2002-2015). The peak number of articles were published in 2014 (83) with journals specifically focused on medicine/healthcare (265) and particularly the Journal of Evaluation in Clinical Practice (37) representing the largest number by volume. Dynamic/dynamical systems (n = 332), emergence (n = 294), complex adaptive system(s) (n = 270), and interdependent/interconnected (n = 263) were the most common terms with systems dynamic modelling (58) and agent-based modelling (43) as the most common methods. The review offered several important conclusions. First, while there was no core ST/CS "canon," certain terms appeared frequently across the reviewed texts. Second, even as these ideas are gaining traction in academic and practitioner communities, most are concentrated in a few journals. Finally, articles on ST/CS remain largely theoretical illustrating the need for further study and practical application. Given the challenge posed by the next phase of development, gaining a better understanding of ST/CS ideas and their use may lead to improvements in the implementation and practice of the Sustainable Development

  1. Complex multidisciplinary system composition for aerospace vehicle conceptual design

    Science.gov (United States)

    Gonzalez, Lex

    Although, there exists a vast amount of work concerning the analysis, design, integration of aerospace vehicle systems, there is no standard for how this data and knowledge should be combined in order to create a synthesis system. Each institution creating a synthesis system has in house vehicle and hardware components they are attempting to model and proprietary methods with which to model them. This leads to the fact that synthesis systems begin as one-off creations meant to answer a specific problem. As the scope of the synthesis system grows to encompass more and more problems, so does its size and complexity; in order for a single synthesis system to answer multiple questions the number of methods and method interface must increase. As a means to curtail the requirement that the increase of an aircraft synthesis systems capability leads to an increase in its size and complexity, this research effort focuses on the idea that each problem in aerospace requires its own analysis framework. By focusing on the creation of a methodology which centers on the matching of an analysis framework towards the problem being solved, the complexity of the analysis framework is decoupled from the complexity of the system that creates it. The derived methodology allows for the composition of complex multi-disciplinary systems (CMDS) through the automatic creation and implementation of system and disciplinary method interfaces. The CMDS Composition process follows a four step methodology meant to take a problem definition and progress towards the creation of an analysis framework meant to answer said problem. The unique implementation of the CMDS Composition process take user selected disciplinary analysis methods and automatically integrates them, together in order to create a syntactically composable analysis framework. As a means of assessing the validity of the CMDS Composition process a prototype system (AVDDBMS) has been developed. AVD DBMS has been used to model the

  2. Quality plan and configuration management in complex systems

    International Nuclear Information System (INIS)

    Gonzalez Junto, J.; Merchan Teyssiere

    1993-01-01

    Since the Second World War, the philosophy behind the quality systems of industries and service companies has evolved to embrace the whole life cycle of the product, system or service. In this evolution process, quality has become a strategic factor in the survival of entreprises. The first steps in trying to establish quality systems were taken for the armed forces, followed by space, aeronautical and nuclear projects, whose products were more and more complex and sophisticated. These systems were established by means of quality plans or programmes, and their basic objective was to guarantee a high safety level for the user and/or the general population. In later years, the main concern was to reach a determined quality level not only in one phase of the product life, but in the complete life cycle of the final product. Today a new goal is established and pursued: better quality of the product, service or system life cycle at a lower cost. Methods of improving the quality of systems and processes are the subject of numerous initiatives and studies, to better availability and maintainability of complex equipment or installations, with an extended useful life and greater requirements. Experience in the performance of complex projects shows that a higher quality may be obtained through designing a comprehensive quality plan which pays special attention to information management and modifications of the original design. Obtaining a high reliability level for an installation (equipment, systems, etc), increasing its availability and rationalizing its maintenance may be little less than fanciful without a deep knowledge of the installation, of its activities and its current status in day-to-day operation, which shows the importance of truthful information available to operators and corresponding exactly to their needs. In this frame of mind, a quality plan comprising a configuration management system of information and documents constitutes the basic support tool for

  3. Design and Developmental Research on the VV&A of Complex Simulation System

    Directory of Open Access Journals (Sweden)

    Liu Li

    2016-01-01

    Full Text Available The Verification, Validation and Accreditation (VV&A of a complex simulation system is a complex systems engineering. Based on the brief introduction to the concept of VV&A, this paper puts forward its design principles, approaches and basic contents, expounds the typical developing process and predicts its up-to-date technology developing trend of complex simulation system.

  4. On sampling and modeling complex systems

    International Nuclear Information System (INIS)

    Marsili, Matteo; Mastromatteo, Iacopo; Roudi, Yasser

    2013-01-01

    The study of complex systems is limited by the fact that only a few variables are accessible for modeling and sampling, which are not necessarily the most relevant ones to explain the system behavior. In addition, empirical data typically undersample the space of possible states. We study a generic framework where a complex system is seen as a system of many interacting degrees of freedom, which are known only in part, that optimize a given function. We show that the underlying distribution with respect to the known variables has the Boltzmann form, with a temperature that depends on the number of unknown variables. In particular, when the influence of the unknown degrees of freedom on the known variables is not too irregular, the temperature decreases as the number of variables increases. This suggests that models can be predictable only when the number of relevant variables is less than a critical threshold. Concerning sampling, we argue that the information that a sample contains on the behavior of the system is quantified by the entropy of the frequency with which different states occur. This allows us to characterize the properties of maximally informative samples: within a simple approximation, the most informative frequency size distributions have power law behavior and Zipf’s law emerges at the crossover between the under sampled regime and the regime where the sample contains enough statistics to make inferences on the behavior of the system. These ideas are illustrated in some applications, showing that they can be used to identify relevant variables or to select the most informative representations of data, e.g. in data clustering. (paper)

  5. Semiotic aspects of control and modeling relations in complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, C.

    1996-08-01

    A conceptual analysis of the semiotic nature of control is provided with the goal of elucidating its nature in complex systems. Control is identified as a canonical form of semiotic relation of a system to its environment. As a form of constraint between a system and its environment, its necessary and sufficient conditions are established, and the stabilities resulting from control are distinguished from other forms of stability. These result from the presence of semantic coding relations, and thus the class of control systems is hypothesized to be equivalent to that of semiotic systems. Control systems are contrasted with models, which, while they have the same measurement functions as control systems, do not necessarily require semantic relations because of the lack of the requirement of an interpreter. A hybrid construction of models in control systems is detailed. Towards the goal of considering the nature of control in complex systems, the possible relations among collections of control systems are considered. Powers arguments on conflict among control systems and the possible nature of control in social systems are reviewed, and reconsidered based on our observations about hierarchical control. Finally, we discuss the necessary semantic functions which must be present in complex systems for control in this sense to be present at all.

  6. ARC-VM: An architecture real options complexity-based valuation methodology for military systems-of-systems acquisitions

    Science.gov (United States)

    Domercant, Jean Charles

    The combination of today's national security environment and mandated acquisition policies makes it necessary for military systems to interoperate with each other to greater degrees. This growing interdependency results in complex Systems-of-Systems (SoS) that only continue to grow in complexity to meet evolving capability needs. Thus, timely and affordable acquisition becomes more difficult, especially in the face of mounting budgetary pressures. To counter this, architecting principles must be applied to SoS design. The research objective is to develop an Architecture Real Options Complexity-Based Valuation Methodology (ARC-VM) suitable for acquisition-level decision making, where there is a stated desire for more informed tradeoffs between cost, schedule, and performance during the early phases of design. First, a framework is introduced to measure architecture complexity as it directly relates to military SoS. Development of the framework draws upon a diverse set of disciplines, including Complexity Science, software architecting, measurement theory, and utility theory. Next, a Real Options based valuation strategy is developed using techniques established for financial stock options that have recently been adapted for use in business and engineering decisions. The derived complexity measure provides architects with an objective measure of complexity that focuses on relevant complex system attributes. These attributes are related to the organization and distribution of SoS functionality and the sharing and processing of resources. The use of Real Options provides the necessary conceptual and visual framework to quantifiably and traceably combine measured architecture complexity, time-valued performance levels, as well as programmatic risks and uncertainties. An example suppression of enemy air defenses (SEAD) capability demonstrates the development and usefulness of the resulting architecture complexity & Real Options based valuation methodology. Different

  7. Teleconnections in complex human-Earth system models

    Science.gov (United States)

    Calvin, K. V.; Edmonds, J.

    2017-12-01

    Human systems and physical Earth systems are closely coupled and interact in complex ways that are sometimes surprising. This presentation discusses a few examples of system interactions. We consider the coupled energy-water-land-economy systems. We show how reductions in fossil fuel emissions are inversely coupled to land rents, food prices and deforestation. We discuss how water shortages in one part of the world is propagated to other distant parts of the world. We discuss the sensitivity of international trade patterns to energy and land systems technology and markets, and the potentially unanticipated results that can emerge.

  8. Computational models of complex systems

    CERN Document Server

    Dabbaghian, Vahid

    2014-01-01

    Computational and mathematical models provide us with the opportunities to investigate the complexities of real world problems. They allow us to apply our best analytical methods to define problems in a clearly mathematical manner and exhaustively test our solutions before committing expensive resources. This is made possible by assuming parameter(s) in a bounded environment, allowing for controllable experimentation, not always possible in live scenarios. For example, simulation of computational models allows the testing of theories in a manner that is both fundamentally deductive and experimental in nature. The main ingredients for such research ideas come from multiple disciplines and the importance of interdisciplinary research is well recognized by the scientific community. This book provides a window to the novel endeavours of the research communities to present their works by highlighting the value of computational modelling as a research tool when investigating complex systems. We hope that the reader...

  9. Statistical physics of networks, information and complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    In this project we explore the mathematical methods and concepts of statistical physics that are fmding abundant applications across the scientific and technological spectrum from soft condensed matter systems and bio-infonnatics to economic and social systems. Our approach exploits the considerable similarity of concepts between statistical physics and computer science, allowing for a powerful multi-disciplinary approach that draws its strength from cross-fertilization and mUltiple interactions of researchers with different backgrounds. The work on this project takes advantage of the newly appreciated connection between computer science and statistics and addresses important problems in data storage, decoding, optimization, the infonnation processing properties of the brain, the interface between quantum and classical infonnation science, the verification of large software programs, modeling of complex systems including disease epidemiology, resource distribution issues, and the nature of highly fluctuating complex systems. Common themes that the project has been emphasizing are (i) neural computation, (ii) network theory and its applications, and (iii) a statistical physics approach to infonnation theory. The project's efforts focus on the general problem of optimization and variational techniques, algorithm development and infonnation theoretic approaches to quantum systems. These efforts are responsible for fruitful collaborations and the nucleation of science efforts that span multiple divisions such as EES, CCS, 0 , T, ISR and P. This project supports the DOE mission in Energy Security and Nuclear Non-Proliferation by developing novel infonnation science tools for communication, sensing, and interacting complex networks such as the internet or energy distribution system. The work also supports programs in Threat Reduction and Homeland Security.

  10. Intensity approximation of random fluctuation in complex systems

    Science.gov (United States)

    Yulmetyev, R. M.; Gafarov, F. M.; Yulmetyeva, D. G.; Emeljanova, N. A.

    2002-01-01

    The Markov and non-Markov processes in complex systems are examined with the help of dynamical information Shannon entropy method. Here we consider the essential role of two mutually independent channels of entropy involving creation of correlation and annihilation of correlation. The developed method has been used to analyze the intensity fluctuation of the complex systems of various nature: in psychology (to analyze numerical and pattern short-time human memory, to study the effect of stress on the parameters of the dynamical taping-test) and in cardiology (to analyze the random dynamics of RR-intervals in human ECG's and to diagnose various diseases of human cardiovascular systems). The received results show that the application of intensity approximation allows to improve essentially the diagnostics of parameters in the evolution of human dynamic states.

  11. Forecasting in Complex Systems

    Science.gov (United States)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2014-12-01

    Complex nonlinear systems are typically characterized by many degrees of freedom, as well as interactions between the elements. Interesting examples can be found in the areas of earthquakes and finance. In these two systems, fat tails play an important role in the statistical dynamics. For earthquake systems, the Gutenberg-Richter magnitude-frequency is applicable, whereas for daily returns for the securities in the financial markets are known to be characterized by leptokurtotic statistics in which the tails are power law. Very large fluctuations are present in both systems. In earthquake systems, one has the example of great earthquakes such as the M9.1, March 11, 2011 Tohoku event. In financial systems, one has the example of the market crash of October 19, 1987. Both were largely unexpected events that severely impacted the earth and financial systems systemically. Other examples include the M9.3 Andaman earthquake of December 26, 2004, and the Great Recession which began with the fall of Lehman Brothers investment bank on September 12, 2013. Forecasting the occurrence of these damaging events has great societal importance. In recent years, national funding agencies in a variety of countries have emphasized the importance of societal relevance in research, and in particular, the goal of improved forecasting technology. Previous work has shown that both earthquakes and financial crashes can be described by a common Landau-Ginzburg-type free energy model. These metastable systems are characterized by fat tail statistics near the classical spinodal. Correlations in these systems can grow and recede, but do not imply causation, a common source of misunderstanding. In both systems, a common set of techniques can be used to compute the probabilities of future earthquakes or crashes. In this talk, we describe the basic phenomenology of these systems and emphasize their similarities and differences. We also consider the problem of forecast validation and verification

  12. Model-based safety architecture framework for complex systems

    NARCIS (Netherlands)

    Schuitemaker, Katja; Rajabali Nejad, Mohammadreza; Braakhuis, J.G.; Podofillini, Luca; Sudret, Bruno; Stojadinovic, Bozidar; Zio, Enrico; Kröger, Wolfgang

    2015-01-01

    The shift to transparency and rising need of the general public for safety, together with the increasing complexity and interdisciplinarity of modern safety-critical Systems of Systems (SoS) have resulted in a Model-Based Safety Architecture Framework (MBSAF) for capturing and sharing architectural

  13. A Comment on Language Is a Complex Adaptive System:Position Paper

    Institute of Scientific and Technical Information of China (English)

    单妍

    2014-01-01

    Language not only functions as a communication tool, it has fundamental functions. People ’s social interaction and their past experience can affect people’s choice of language, as language is a complex, adaptive system. The paper tries to com-ment on“A comment on Language Is a Complex Adaptive System: Position Paper”from several aspects to conclude that Lan-guage Is a Complex Adaptive System:Position Paper is a comprehensive, creative and influential academic paper which is charac-teristic of high originality, well-compact organization, detailed literature review.

  14. Recording information on protein complexes in an information management system.

    Science.gov (United States)

    Savitsky, Marc; Diprose, Jonathan M; Morris, Chris; Griffiths, Susanne L; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S; Blake, Richard; Stuart, David I; Esnouf, Robert M

    2011-08-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein-protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Lighting characteristics of complex fenestration systems

    Energy Technology Data Exchange (ETDEWEB)

    Laouadi, A. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Research in Construction; Parekh, A. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre, Sustainable Buildings and Community Group

    2006-07-01

    Innovations in window technologies have been motivated by the need for energy conservation in buildings. Shading devices and windows with complex glazings such as smart glazings, translucent and transparent insulation, and patterned glass are among the newly developed products. Although complex fenestration systems (CFS) have superior energy performance, a potential glare problem can have a significant effect on the indoor environment as experienced by occupants. A good view and glare-free environment are important for the commercialization of fenestration products. This study addressed the development of new lighting quality indices for the outdoor view, indoor view and window luminance. It was noted that the outdoor view gives a feeling of connection to the outside, an indoor view affects the feelings of privacy, while window luminance indicates the potential risk of discomfort glare. The study applied the new lighting quality indices on a typical complex fenestration system consisting of a double clear window combined with different types of an interior perforated shading screen with opaque and translucent materials. According to simulation results, the light-coloured screen has a significant impact on the outdoor view and window's luminance, and depends largely on the sky conditions. Under clear sky conditions, the luminance of a window with a translucent screen can increase by up to 80 per cent compared to overcast sky conditions. This study aspires to have these indices be part of a fenestration product ratings for indoor environment quality. 19 refs., 1 tab., 3 figs.

  16. Complex adaptative systems and computational simulation in Archaeology

    Directory of Open Access Journals (Sweden)

    Salvador Pardo-Gordó

    2017-07-01

    Full Text Available Traditionally the concept of ‘complexity’ is used as a synonym for ‘complex society’, i.e., human groups with characteristics such as urbanism, inequalities, and hierarchy. The introduction of Nonlinear Systems and Complex Adaptive Systems to the discipline of archaeology has nuanced this concept. This theoretical turn has led to the rise of modelling as a method of analysis of historical processes. This work has a twofold objective: to present the theoretical current characterized by generative thinking in archaeology and to present a concrete application of agent-based modelling to an archaeological problem: the dispersal of the first ceramic production in the western Mediterranean.

  17. The Intelligent Safety System: could it introduce complex computing into CANDU shutdown systems

    International Nuclear Information System (INIS)

    Hall, J.A.; Hinds, H.W.; Pensom, C.F.; Barker, C.J.; Jobse, A.H.

    1984-07-01

    The Intelligent Safety System is a computerized shutdown system being developed at the Chalk River Nuclear Laboratories (CRNL) for future CANDU nuclear reactors. It differs from current CANDU shutdown systems in both the algorithm used and the size and complexity of computers required to implement the concept. This paper provides an overview of the project, with emphasis on the computing aspects. Early in the project several needs leading to an introduction of computing complexity were identified, and a computing system that met these needs was conceived. The current work at CRNL centers on building a laboratory demonstration of the Intelligent Safety System, and evaluating the reliability and testability of the concept. Some fundamental problems must still be addressed for the Intelligent Safety System to be acceptable to a CANDU owner and to the regulatory authorities. These are also discussed along with a description of how the Intelligent Safety System might solve these problems

  18. An introduction to complex systems society, ecology, and nonlinear dynamics

    CERN Document Server

    Fieguth, Paul

    2017-01-01

    This undergraduate text explores a variety of large-scale phenomena - global warming, ice ages, water, poverty - and uses these case studies as a motivation to explore nonlinear dynamics, power-law statistics, and complex systems. Although the detailed mathematical descriptions of these topics can be challenging, the consequences of a system being nonlinear, power-law, or complex are in fact quite accessible. This book blends a tutorial approach to the mathematical aspects of complex systems together with a complementary narrative on the global/ecological/societal implications of such systems. Nearly all engineering undergraduate courses focus on mathematics and systems which are small scale, linear, and Gaussian. Unfortunately there is not a single large-scale ecological or social phenomenon that is scalar, linear, and Gaussian. This book offers students insights to better understand the large-scale problems facing the world and to realize that these cannot be solved by a single, narrow academic field or per...

  19. Controller Design of Complex System Based on Nonlinear Strength

    Directory of Open Access Journals (Sweden)

    Rongjun Mu

    2015-01-01

    Full Text Available This paper presents a new idea of controller design for complex systems. The nonlinearity index method was first developed for error propagation of nonlinear system. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of the system model. The algorithm of nonlinearity index according to engineering application is first proposed in this paper. Applying this method on nonlinear systems is an effective way to measure the nonlinear strength of dynamics model over the full flight envelope. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of system model. According to the different nonlinear strength of dynamical model, the control system is designed. The simulation time of dynamical complex system is selected by the maximum value of dynamic nonlinearity indices. Take a missile as example; dynamical system and control characteristic of missile are simulated. The simulation results show that the method is correct and appropriate.

  20. Materials flow management in the metal industry. Design and techno-economical analysis of industriyl recycling concepts; Stoffstrommanagement in der Metallindustrie. Zur Gestaltung und techno-oekonomischen Bewertung industrieller Recyclingkonzepte

    Energy Technology Data Exchange (ETDEWEB)

    Haehre, S.

    2000-07-01

    Materials flow management is an attempt to cope with excessive consumption of resources and with the large-scale release of pollutants, both of which are hazards of our industrialised society. It is necessary to analyse materials and energy flow along interconnected product and process chains to develop suitable concepts, e.g. for innovative environmental protection and recycling measures. A planning instrument is designed for this purpose which is based on a combination of flowsheeting models common in chemical process engineering and material flow networks based on Petri nets. Its application enables computer-assisted design and techno-economic evaluation of industrial recycling concepts, so that decision makers in enterprises and administrations will be given a tool for in-house and external material flow management. In the implementation stage, the flowsheeting system 'Aspen Plus' and the eco-banancing tool 'Umberto' were used, and exemplary problems of material flow management in the steel and zinc industry were investigated. [German] Zur Ueberwindung negativer Umwelteinfluesse der Industriegesellschaft, die inbesondere aus dem Ressourcenverbrauch und der Freisetzung grosser Schadstoffmengen resultieren, werden Massnahmen im Sinne des Stoffstrommanagements gefordert. Die Entwicklung geeigneter Konzepte, etwa zum Einsatz innovativer Umweltschutz- und Recyclingmassnahmen, macht die Analyse von Stoff- und Energiestroemen entlang vernetzter Produkt- und Prozessketten erforderlich. Hierfuer wird ein Planungsinstrument konzipiert, das auf einer Kombination verfahrenstechnischer Flowsheeting-Modelle und Petri-Netz-basierter Stoffstromnetze beruht. Sein Einsatz ermoeglicht computergestuetzt die Gestaltung und techno-oekonomische Bewertung industrieller Recyclingkonzepte, so dass Entscheidungstraeger in Unternehmen und Behoerden ein Hilfsmittel zum betrieblichen und betriebsuebergreifenden Stoffstrommanagement erhalten. Bei der Implementierung

  1. Strategies and Rubrics for Teaching Chaos and Complex Systems Theories as Elaborating, Self-Organizing, and Fractionating Evolutionary Systems

    Science.gov (United States)

    Fichter, Lynn S.; Pyle, E. J.; Whitmeyer, S. J.

    2010-01-01

    To say Earth systems are complex, is not the same as saying they are a complex system. A complex system, in the technical sense, is a group of -agents (individual interacting units, like birds in a flock, sand grains in a ripple, or individual units of friction along a fault zone), existing far from equilibrium, interacting through positive and…

  2. Integration and test plans for complex manufacturing systems

    NARCIS (Netherlands)

    Boumen, R.

    2007-01-01

    The integration and test phases that are part of the development and manufacturing of complex manufacturing systems are costly and time consuming. As time-to-market is becoming increasingly important, it is crucial to keep these phases as short as possible, whilemaintaining system quality. This is

  3. VBOT: Motivating computational and complex systems fluencies with constructionist virtual/physical robotics

    Science.gov (United States)

    Berland, Matthew W.

    As scientists use the tools of computational and complex systems theory to broaden science perspectives (e.g., Bar-Yam, 1997; Holland, 1995; Wolfram, 2002), so can middle-school students broaden their perspectives using appropriate tools. The goals of this dissertation project are to build, study, evaluate, and compare activities designed to foster both computational and complex systems fluencies through collaborative constructionist virtual and physical robotics. In these activities, each student builds an agent (e.g., a robot-bird) that must interact with fellow students' agents to generate a complex aggregate (e.g., a flock of robot-birds) in a participatory simulation environment (Wilensky & Stroup, 1999a). In a participatory simulation, students collaborate by acting in a common space, teaching each other, and discussing content with one another. As a result, the students improve both their computational fluency and their complex systems fluency, where fluency is defined as the ability to both consume and produce relevant content (DiSessa, 2000). To date, several systems have been designed to foster computational and complex systems fluencies through computer programming and collaborative play (e.g., Hancock, 2003; Wilensky & Stroup, 1999b); this study suggests that, by supporting the relevant fluencies through collaborative play, they become mutually reinforcing. In this work, I will present both the design of the VBOT virtual/physical constructionist robotics learning environment and a comparative study of student interaction with the virtual and physical environments across four middle-school classrooms, focusing on the contrast in systems perspectives differently afforded by the two environments. In particular, I found that while performance gains were similar overall, the physical environment supported agent perspectives on aggregate behavior, and the virtual environment supported aggregate perspectives on agent behavior. The primary research questions

  4. Nonlinear Dynamics, Chaotic and Complex Systems

    Science.gov (United States)

    Infeld, E.; Zelazny, R.; Galkowski, A.

    2011-04-01

    Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet

  5. Complex Adaptive System of Systems (CASoS) Engineering Applications. Version 1.0.

    Energy Technology Data Exchange (ETDEWEB)

    Linebarger, John Michael; Maffitt, S. Louise (New Mexico Institute of Mining and Technology, Albuquerque, NM); Glass, Robert John, Jr.; Beyeler, Walter Eugene; Brown, Theresa Jean; Ames, Arlo Leroy

    2011-10-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex eco-socio-economic-technical systems which we must understand to design a secure future for the nation and the world. Perturbations/disruptions in CASoS have the potential for far-reaching effects due to highly-saturated interdependencies and allied vulnerabilities to cascades in associated systems. The Phoenix initiative approaches this high-impact problem space as engineers, devising interventions (problem solutions) that influence CASoS to achieve specific aspirations. CASoS embody the world's biggest problems and greatest opportunities: applications to real world problems are the driving force of our effort. We are developing engineering theory and practice together to create a discipline that is grounded in reality, extends our understanding of how CASoS behave, and allows us to better control those behaviors. Through application to real-world problems, Phoenix is evolving CASoS Engineering principles while growing a community of practice and the CASoS engineers to populate it.

  6. Phoenix : Complex Adaptive System of Systems (CASoS) engineering version 1.0.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Thomas W.; Quach, Tu-Thach; Detry, Richard Joseph; Conrad, Stephen Hamilton; Kelic, Andjelka; Starks, Shirley J.; Beyeler, Walter Eugene; Brodsky, Nancy S.; Verzi, Stephen J.; Brown, Theresa Jean; Glass, Robert John, Jr.; Sunderland, Daniel J.; Mitchell, Michael David; Ames, Arlo Leroy; Maffitt, S. Louise; Finley, Patrick D.; Russell, Eric Dean; Zagonel, Aldo A.; Reedy, Geoffrey E.; Mitchell, Roger A.; Corbet, Thomas Frank, Jr.; Linebarger, John Michael

    2011-08-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which we must understand to design a secure future for the nation and the world. Perturbations/disruptions in CASoS have the potential for far-reaching effects due to pervasive interdependencies and attendant vulnerabilities to cascades in associated systems. Phoenix was initiated to address this high-impact problem space as engineers. Our overarching goals are maximizing security, maximizing health, and minimizing risk. We design interventions, or problem solutions, that influence CASoS to achieve specific aspirations. Through application to real-world problems, Phoenix is evolving the principles and discipline of CASoS Engineering while growing a community of practice and the CASoS engineers to populate it. Both grounded in reality and working to extend our understanding and control of that reality, Phoenix is at the same time a solution within a CASoS and a CASoS itself.

  7. The Similar Structures and Control Problems of Complex Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper, the naturally evolving complex systems, such as biotic and social ones, are considered. Focusing on their structures, a feature is noteworthy, i.e., the similarity in structures. The relations between the functions and behaviors of these systems and their similar structures will be studied. Owing to the management of social systems and the course of evolution of biotic systems may be regarded as control processes, the researches will be within the scope of control problems. Moreover, since it is difficult to model for biotic and social systems, it will start with the control problems of complex systems, possessing similar structures, in engineering.The obtained results show that for either linear or nonlinear systems and for a lot of control problemssimilar structures lead to a series of simplifications. In general, the original system may be decomposed into reduced amount of subsystems with lower dimensions and simpler structures. By virtue of such subsystems, the control problems of original system can be solved more simply.At last, it turns round to observe the biotic and social systems and some analyses are given.

  8. Economic Decision Making: Application of the Theory of Complex Systems

    Science.gov (United States)

    Kitt, Robert

    In this chapter the complex systems are discussed in the context of economic and business policy and decision making. It will be showed and motivated that social systems are typically chaotic, non-linear and/or non-equilibrium and therefore complex systems. It is discussed that the rapid change in global consumer behaviour is underway, that further increases the complexity in business and management. For policy making under complexity, following principles are offered: openness and international competition, tolerance and variety of ideas, self-reliability and low dependence on external help. The chapter contains four applications that build on the theoretical motivation of complexity in social systems. The first application demonstrates that small economies have good prospects to gain from the global processes underway, if they can demonstrate production flexibility, reliable business ethics and good risk management. The second application elaborates on and discusses the opportunities and challenges in decision making under complexity from macro and micro economic perspective. In this environment, the challenges for corporate management are being also permanently changed: the balance between short term noise and long term chaos whose attractor includes customers, shareholders and employees must be found. The emergence of chaos in economic relationships is demonstrated by a simple system of differential equations that relate the stakeholders described above. The chapter concludes with two financial applications: about debt and risk management. The non-equilibrium economic establishment leads to additional problems by using excessive borrowing; unexpected downturns in economy can more easily kill companies. Finally, the demand for quantitative improvements in risk management is postulated. Development of the financial markets has triggered non-linearity to spike in prices of various production articles such as agricultural and other commodities that has added market

  9. Accurate Complex Systems Design: Integrating Serious Games with Petri Nets

    Directory of Open Access Journals (Sweden)

    Kirsten Sinclair

    2016-03-01

    Full Text Available Difficulty understanding the large number of interactions involved in complex systems makes their successful engineering a problem. Petri Nets are one graphical modelling technique used to describe and check proposed designs of complex systems thoroughly. While automatic analysis capabilities of Petri Nets are useful, their visual form is less so, particularly for communicating the design they represent. In engineering projects, this can lead to a gap in communications between people with different areas of expertise, negatively impacting achieving accurate designs.In contrast, although capable of representing a variety of real and imaginary objects effectively, behaviour of serious games can only be analysed manually through interactive simulation. This paper examines combining the complementary strengths of Petri Nets and serious games. The novel contribution of this work is a serious game prototype of a complex system design that has been checked thoroughly. Underpinned by Petri Net analysis, the serious game can be used as a high-level interface to communicate and refine the design.Improvement of a complex system design is demonstrated by applying the integration to a proof-of-concept case study.   

  10. Variable structure control of complex systems analysis and design

    CERN Document Server

    Yan, Xing-Gang; Edwards, Christopher

    2017-01-01

    This book systematizes recent research work on variable-structure control. It is self-contained, presenting necessary mathematical preliminaries so that the theoretical developments can be easily understood by a broad readership. The text begins with an introduction to the fundamental ideas of variable-structure control pertinent to their application in complex nonlinear systems. In the core of the book, the authors lay out an approach, suitable for a large class of systems, that deals with system uncertainties with nonlinear bounds. Its treatment of complex systems in which limited measurement information is available makes the results developed convenient to implement. Various case-study applications are described, from aerospace, through power systems to river pollution control with supporting simulations to aid the transition from mathematical theory to engineering practicalities. The book addresses systems with nonlinearities, time delays and interconnections and considers issues such as stabilization, o...

  11. Saving Human Lives: What Complexity Science and Information Systems can Contribute

    Science.gov (United States)

    Helbing, Dirk; Brockmann, Dirk; Chadefaux, Thomas; Donnay, Karsten; Blanke, Ulf; Woolley-Meza, Olivia; Moussaid, Mehdi; Johansson, Anders; Krause, Jens; Schutte, Sebastian; Perc, Matjaž

    2015-02-01

    We discuss models and data of crowd disasters, crime, terrorism, war and disease spreading to show that conventional recipes, such as deterrence strategies, are often not effective and sufficient to contain them. Many common approaches do not provide a good picture of the actual system behavior, because they neglect feedback loops, instabilities and cascade effects. The complex and often counter-intuitive behavior of social systems and their macro-level collective dynamics can be better understood by means of complexity science. We highlight that a suitable system design and management can help to stop undesirable cascade effects and to enable favorable kinds of self-organization in the system. In such a way, complexity science can help to save human lives.

  12. Mobile Complex For Rapid Diagnosis of the Technological System Elements

    Directory of Open Access Journals (Sweden)

    Gavrilin Alexey

    2016-01-01

    Full Text Available The article shows the up-to-dateness of the new informing and measuring tools and technologies development. It is reviewed the mobile complex for runtime diagnostics of technological system “machine-toolinstrument- detail”. It was found that the use of the complex allows to identify the frequency area in which the appearance of resonance of the technological system elements is possible, and thus to draw a conclusion on the technical state of the diagnosed object. It is concluded that there is the prospects for the use of the above mentioned mobile complex for vibration diagnostics.

  13. A Modeling Framework for the Concurrent Design of Complex Space Systems

    NARCIS (Netherlands)

    Ridolfi, G.; Mooij, E.; Chiesa, S.

    2010-01-01

    The design of complex systems has become more and more articulated during the last decade, thus forcing radical modifications on the overall methodological approach. The authors developed a design methodology, which allows the user to design a particular category of complex systems usually called

  14. Validating cognitive support for operators of complex human-machine systems

    International Nuclear Information System (INIS)

    O'Hara, J.; Wachtel, J.

    1995-01-01

    Modem nuclear power plants (NPPs) are complex systems whose performance is the result of an intricate interaction of human and system control. A complex system may be defined as one which supports a dynamic process involving a large number of elements that interact in many different ways. Safety is addressed through defense-in-depth design and preplanning; i.e., designers consider the types of failures that are most likely to occur and those of high consequence, and design their solutions in advance. However, complex interactions and their failure modes cannot always be anticipated by the designer and may be unfamiliar to plant personnel. These situations may pose cognitive demands on plant personnel, both individually and as a crew. Other factors may contribute to the cognitive challenges of NPP operation as well, including hierarchal processes, dynamic pace, system redundancy and reliability, and conflicting objectives. These factors are discussed in this paper

  15. Correlations in quantum systems and branch points in the complex plane

    OpenAIRE

    Rotter, I.

    2001-01-01

    Branch points in the complex plane are responsible for avoided level crossings in closed and open quantum systems. They create not only an exchange of the wave functions but also a mixing of the states of a quantum system at high level density. The influence of branch points in the complex plane on the low-lying states of the system is small.

  16. Symmetry analysis in parametrisation of complex systems

    International Nuclear Information System (INIS)

    Sikora, W; Malinowski, J

    2010-01-01

    The symmetry analysis method based on the theory of group representations is used for description of complex systems and their behavior in this work. The first trial of using the symmetry analysis in modeling of behavior of complex social system is presented. The evacuation of large building scenarios are discussed as transition from chaotic to ordered states, described as movements of individuals according to fields of displacements, calculated correspondingly to given scenario. The symmetry of the evacuation space is taken into account in calculation of displacements field - the displacements related to every point of this space are presented in the coordinate frame in the best way adapted to given symmetry space group, which is the set of basic vectors of irreducible representation of given symmetry group. The results got with using the symmetry consideration are compared with corresponding results calculated under assumption of shortest way to exits (Voronoi assumption).

  17. Symmetry analysis in parametrisation of complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Malinowski, J, E-mail: sikora@novell.ftj.agh.edu.p [Faculty of Physics and Applied Computer Science, AGH - University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland)

    2010-03-01

    The symmetry analysis method based on the theory of group representations is used for description of complex systems and their behavior in this work. The first trial of using the symmetry analysis in modeling of behavior of complex social system is presented. The evacuation of large building scenarios are discussed as transition from chaotic to ordered states, described as movements of individuals according to fields of displacements, calculated correspondingly to given scenario. The symmetry of the evacuation space is taken into account in calculation of displacements field - the displacements related to every point of this space are presented in the coordinate frame in the best way adapted to given symmetry space group, which is the set of basic vectors of irreducible representation of given symmetry group. The results got with using the symmetry consideration are compared with corresponding results calculated under assumption of shortest way to exits (Voronoi assumption).

  18. How do precision medicine and system biology response to human body's complex adaptability?

    Science.gov (United States)

    Yuan, Bing

    2016-12-01

    In the field of life sciences, although system biology and "precision medicine" introduce some complex scientifific methods and techniques, it is still based on the "analysis-reconstruction" of reductionist theory as a whole. Adaptability of complex system increase system behaviour uncertainty as well as the difficulties of precise identifification and control. It also put systems biology research into trouble. To grasp the behaviour and characteristics of organism fundamentally, systems biology has to abandon the "analysis-reconstruction" concept. In accordance with the guidelines of complexity science, systems biology should build organism model from holistic level, just like the Chinese medicine did in dealing with human body and disease. When we study the living body from the holistic level, we will fifind the adaptability of complex system is not the obstacle that increases the diffificulty of problem solving. It is the "exceptional", "right-hand man" that helping us to deal with the complexity of life more effectively.

  19. Parasites, ecosystems and sustainability: an ecological and complex systems perspective.

    Science.gov (United States)

    Horwitz, Pierre; Wilcox, Bruce A

    2005-06-01

    Host-parasite relationships can be conceptualised either narrowly, where the parasite is metabolically dependent on the host, or more broadly, as suggested by an ecological-evolutionary and complex systems perspective. In this view Host-parasite relationships are part of a larger set of ecological and co-evolutionary interdependencies and a complex adaptive system. These interdependencies affect not just the hosts, vectors, parasites, the immediate agents, but also those indirectly or consequentially affected by the relationship. Host-parasite relationships also can be viewed as systems embedded within larger systems represented by ecological communities and ecosystems. So defined, it can be argued that Host-parasite relationships may often benefit their hosts and contribute significantly to the structuring of ecological communities. The broader, complex adaptive system view also contributes to understanding the phenomenon of disease emergence, the ecological and evolutionary mechanisms involved, and the role of parasitology in research and management of ecosystems in light of the apparently growing problem of emerging infectious diseases in wildlife and humans. An expanded set of principles for integrated parasite management is suggested by this perspective.

  20. A Concise Introduction to the Statistical Physics of Complex Systems

    CERN Document Server

    Bertin, Eric

    2012-01-01

    This concise primer (based on lectures given at summer schools on complex systems and on a masters degree course in complex systems modeling) will provide graduate students and newcomers to the field with the basic knowledge of the concepts and methods of statistical physics and its potential for application to interdisciplinary topics.  Indeed, in recent years, statistical physics has begun to attract the interest of a broad community of researchers in the field of complex system sciences, ranging from biology to the social sciences, economics and computer science. More generally, a growing number of graduate students and researchers feel the need to learn some basic concepts and questions originating in other disciplines without necessarily having to master all of the corresponding technicalities and jargon. Generally speaking, the goals of statistical physics may be summarized as follows: on the one hand to study systems composed of a large number of interacting ‘entities’, and on the other to predict...

  1. Modeling Stochastic Complexity in Complex Adaptive Systems: Non-Kolmogorov Probability and the Process Algebra Approach.

    Science.gov (United States)

    Sulis, William H

    2017-10-01

    Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.

  2. Complex systems in financial economics: Applications to interbank and stock markets

    NARCIS (Netherlands)

    in 't Veld, D.L.

    2014-01-01

    Complex systems are characterised by strong interaction at the micro level that can induce large changes at the macro level. This thesis applies the theory of complex systems to the interbank market (Part I) and the stock market (Part II). Evidence found in data from the Netherlands and the US makes

  3. The relationship between cost system complexity, purposes of use, and cost system effectiveness

    NARCIS (Netherlands)

    Schoute, M.

    2009-01-01

    This paper uses survey data from 133 Dutch, medium-sized manufacturing firms to examine the associations between cost system complexity (in terms of the applied overhead absorption procedures), purposes of use, and cost system effectiveness. First, factor analysis identifies two underlying

  4. System crash as dynamics of complex networks.

    Science.gov (United States)

    Yu, Yi; Xiao, Gaoxi; Zhou, Jie; Wang, Yubo; Wang, Zhen; Kurths, Jürgen; Schellnhuber, Hans Joachim

    2016-10-18

    Complex systems, from animal herds to human nations, sometimes crash drastically. Although the growth and evolution of systems have been extensively studied, our understanding of how systems crash is still limited. It remains rather puzzling why some systems, appearing to be doomed to fail, manage to survive for a long time whereas some other systems, which seem to be too big or too strong to fail, crash rapidly. In this contribution, we propose a network-based system dynamics model, where individual actions based on the local information accessible in their respective system structures may lead to the "peculiar" dynamics of system crash mentioned above. Extensive simulations are carried out on synthetic and real-life networks, which further reveal the interesting system evolution leading to the final crash. Applications and possible extensions of the proposed model are discussed.

  5. Statistical analysis of complex systems with nonclassical invariant measures

    KAUST Repository

    Fratalocchi, Andrea

    2011-01-01

    I investigate the problem of finding a statistical description of a complex many-body system whose invariant measure cannot be constructed stemming from classical thermodynamics ensembles. By taking solitons as a reference system and by employing a

  6. MATHEMATICAL MODELS OF PROCESSES AND SYSTEMS OF TECHNICAL OPERATION FOR ONBOARD COMPLEXES AND FUNCTIONAL SYSTEMS OF AVIONICS

    Directory of Open Access Journals (Sweden)

    Sergey Viktorovich Kuznetsov

    2017-01-01

    Full Text Available Modern aircraft are equipped with complicated systems and complexes of avionics. Aircraft and its avionics tech- nical operation process is observed as a process with changing of operation states. Mathematical models of avionics pro- cesses and systems of technical operation are represented as Markov chains, Markov and semi-Markov processes. The pur- pose is to develop the graph-models of avionics technical operation processes, describing their work in flight, as well as during maintenance on the ground in the various systems of technical operation. The graph-models of processes and sys- tems of on-board complexes and functional avionics systems in flight are proposed. They are based on the state tables. The models are specified for the various technical operation systems: the system with control of the reliability level, the system with parameters control and the system with resource control. The events, which cause the avionics complexes and func- tional systems change their technical state, are failures and faults of built-in test equipment. Avionics system of technical operation with reliability level control is applicable for objects with constant or slowly varying in time failure rate. Avion- ics system of technical operation with resource control is mainly used for objects with increasing over time failure rate. Avionics system of technical operation with parameters control is used for objects with increasing over time failure rate and with generalized parameters, which can provide forecasting and assign the borders of before-fail technical states. The pro- posed formal graphical approach avionics complexes and systems models designing is the basis for models and complex systems and facilities construction, both for a single aircraft and for an airline aircraft fleet, or even for the entire aircraft fleet of some specific type. The ultimate graph-models for avionics in various systems of technical operation permit the beginning of

  7. Community characterization of heterogeneous complex systems

    International Nuclear Information System (INIS)

    Tumminello, Michele; Miccichè, Salvatore; Lillo, Fabrizio; Mantegna, Rosario N; Varho, Jan; Piilo, Jyrki

    2011-01-01

    We introduce an analytical statistical method for characterizing the communities detected in heterogeneous complex systems. By proposing a suitable null hypothesis, our method makes use of the hypergeometric distribution to assess the probability that a given property is over-expressed in the elements of a community with respect to all the elements of the investigated set. We apply our method to two specific complex networks, namely a network of world movies and a network of physics preprints. The characterization of the elements and of the communities is done in terms of languages and countries for the movie network and of journals and subject categories for papers. We find that our method is able to characterize clearly the communities identified. Moreover our method works well both for large and for small communities

  8. Solution of generalized shifted linear systems with complex symmetric matrices

    International Nuclear Information System (INIS)

    Sogabe, Tomohiro; Hoshi, Takeo; Zhang, Shao-Liang; Fujiwara, Takeo

    2012-01-01

    We develop the shifted COCG method [R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara, Linear algebraic calculation of Green’s function for large-scale electronic structure theory, Phys. Rev. B 73 (165108) (2006) 1–9] and the shifted WQMR method [T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, On a weighted quasi-residual minimization strategy of the QMR method for solving complex symmetric shifted linear systems, Electron. Trans. Numer. Anal. 31 (2008) 126–140] for solving generalized shifted linear systems with complex symmetric matrices that arise from the electronic structure theory. The complex symmetric Lanczos process with a suitable bilinear form plays an important role in the development of the methods. The numerical examples indicate that the methods are highly attractive when the inner linear systems can efficiently be solved.

  9. Unravelling the magmatic system beneath a monogenetic volcanic complex (Jagged Rocks Complex, Hopi Buttes, AZ, USA)

    Science.gov (United States)

    Re, G.; Palin, J. M.; White, J. D. L.; Parolari, M.

    2017-12-01

    The Jagged Rocks complex is the eroded remnant of the plumbing systems of closely spaced monogenetic alkaline volcanic centres in the southern Hopi Buttes Volcanic Field (AZ, USA). It contains different clinopyroxene populations with distinctive textures and geochemical patterns. In the Northwestern part of the complex, which exposes the best developed system of conduits, most of the clinopyroxenes consist of large- to medium-sized resorbed cores overgrown by euhedral rims (type 1), small moderately resorbed greenish cores with the same overgrown rims (type 2), and phlogopite as an accessory phase. By contrast, in the Southern part of the complex the majority of clinopyroxenes are euhedral with oscillatory zonation (type 3) and are accompanied by minor euhedral olivine. The differences between these mineral assemblages indicate a composite history of crystallization and magmatic evolution for the two parts of the complex, governed by different mechanisms and ascent patterns from a single source at 50 km depth (16 kbar). The Northwest system preserves a high-pressure assemblage that cooled rapidly from near-liquidus conditions, suggesting direct ascent from the source to the surface at high-to-moderate transport rates (average 1.25 m/s). By contrast, the Southern system represents magma that advanced upward at much lower overall ascent rates, stalling at times to form small-volume mid-crustal storage zones (e.g., sills or a network of sheeted intrusions); this allowed the re-equilibration of the magma at lower pressure ( 30 km; 8 kbar), and led to nucleation and growth of euhedral clinopyroxene and olivine phenocrysts.

  10. Plant Phenotyping through the Eyes of Complex Systems: Theoretical Considerations

    Science.gov (United States)

    Kim, J.

    2017-12-01

    Plant phenotyping is an emerging transdisciplinary research which necessitates not only the communication and collaboration of scientists from different disciplines but also the paradigm shift to a holistic approach. Complex system is defined as a system having a large number of interacting parts (or particles, agents), whose interactions give rise to non-trivial properties like self-organization and emergence. Plant ecosystems are complex systems which are continually morphing dynamical systems, i.e. self-organizing hierarchical open systems. Such systems are composed of many subunits/subsystems with nonlinear interactions and feedback. The throughput such as the flow of energy, matter and information is the key control parameter in complex systems. Information theoretic approaches can be used to understand and identify such interactions, structures and dynamics through reductions in uncertainty (i.e. entropy). The theoretical considerations based on network and thermodynamic thinking and exemplary analyses (e.g. dynamic process network, spectral entropy) of the throughput time series will be presented. These can be used as a framework to develop more discipline-specific fundamental approaches to provide tools for the transferability of traits between measurement scales in plant phenotyping. Acknowledgment: This work was funded by the Weather Information Service Engine Program of the Korea Meteorological Administration under Grant KMIPA-2012-0001.

  11. Low-complexity controllers for time-delay systems

    CERN Document Server

    Özbay, Hitay; Bonnet, Catherine; Mounier, Hugues

    2014-01-01

    This volume in the newly established series Advances in Delays and Dynamics (ADD@S) provides a collection of recent results on the design and analysis of Low Complexity Controllers for Time Delay Systems. A widely used indirect method to obtain low order controllers for time delay systems is to design a controller for the reduced order model of the plant. In the dual indirect approach, an infinite dimensional controller is designed first for the original plant model; then, the controller is approximated by keeping track of the degradation in performance and stability robustness measures. The present volume includes new techniques used at different stages of the indirect approach. It also includes new direct design methods for fixed structure and low order controllers. On the other hand, what is meant by low complexity controller is not necessarily low order controller. For example, Smith predictor or similar type of controllers include a copy of the plant internally in the controller, so they are technically ...

  12. Theories and simulations of complex social systems

    CERN Document Server

    Mago, Vijay

    2014-01-01

    Research into social systems is challenging due to their complex nature. Traditional methods of analysis are often difficult to apply effectively as theories evolve over time. This can be due to a lack of appropriate data, or too much uncertainty. It can also be the result of problems which are not yet understood well enough in the general sense so that they can be classified, and an appropriate solution quickly identified. Simulation is one tool that deals well with these challenges, fits in well with the deductive process, and is useful for testing theory. This field is still relatively new, and much of the work is necessarily innovative, although it builds upon a rich and varied foundation. There are a number of existing modelling paradigms being applied to complex social systems research. Additionally, new methods and measures are being devised through the process of conducting research. We expect that readers will enjoy the collection of high quality research works from new and accomplished researchers. ...

  13. Parametric Linear Hybrid Automata for Complex Environmental Systems Modeling

    Directory of Open Access Journals (Sweden)

    Samar Hayat Khan Tareen

    2015-07-01

    Full Text Available Environmental systems, whether they be weather patterns or predator-prey relationships, are dependent on a number of different variables, each directly or indirectly affecting the system at large. Since not all of these factors are known, these systems take on non-linear dynamics, making it difficult to accurately predict meaningful behavioral trends far into the future. However, such dynamics do not warrant complete ignorance of different efforts to understand and model close approximations of these systems. Towards this end, we have applied a logical modeling approach to model and analyze the behavioral trends and systematic trajectories that these systems exhibit without delving into their quantification. This approach, formalized by René Thomas for discrete logical modeling of Biological Regulatory Networks (BRNs and further extended in our previous studies as parametric biological linear hybrid automata (Bio-LHA, has been previously employed for the analyses of different molecular regulatory interactions occurring across various cells and microbial species. As relationships between different interacting components of a system can be simplified as positive or negative influences, we can employ the Bio-LHA framework to represent different components of the environmental system as positive or negative feedbacks. In the present study, we highlight the benefits of hybrid (discrete/continuous modeling which lead to refinements among the fore-casted behaviors in order to find out which ones are actually possible. We have taken two case studies: an interaction of three microbial species in a freshwater pond, and a more complex atmospheric system, to show the applications of the Bio-LHA methodology for the timed hybrid modeling of environmental systems. Results show that the approach using the Bio-LHA is a viable method for behavioral modeling of complex environmental systems by finding timing constraints while keeping the complexity of the model

  14. Statistical analysis of complex systems with nonclassical invariant measures

    KAUST Repository

    Fratalocchi, Andrea

    2011-02-28

    I investigate the problem of finding a statistical description of a complex many-body system whose invariant measure cannot be constructed stemming from classical thermodynamics ensembles. By taking solitons as a reference system and by employing a general formalism based on the Ablowitz-Kaup-Newell-Segur scheme, I demonstrate how to build an invariant measure and, within a one-dimensional phase space, how to develop a suitable thermodynamics. A detailed example is provided with a universal model of wave propagation, with reference to a transparent potential sustaining gray solitons. The system shows a rich thermodynamic scenario, with a free-energy landscape supporting phase transitions and controllable emergent properties. I finally discuss the origin of such behavior, trying to identify common denominators in the area of complex dynamics.

  15. Reduced Complexity Volterra Models for Nonlinear System Identification

    Directory of Open Access Journals (Sweden)

    Hacıoğlu Rıfat

    2001-01-01

    Full Text Available A broad class of nonlinear systems and filters can be modeled by the Volterra series representation. However, its practical use in nonlinear system identification is sometimes limited due to the large number of parameters associated with the Volterra filter′s structure. The parametric complexity also complicates design procedures based upon such a model. This limitation for system identification is addressed in this paper using a Fixed Pole Expansion Technique (FPET within the Volterra model structure. The FPET approach employs orthonormal basis functions derived from fixed (real or complex pole locations to expand the Volterra kernels and reduce the number of estimated parameters. That the performance of FPET can considerably reduce the number of estimated parameters is demonstrated by a digital satellite channel example in which we use the proposed method to identify the channel dynamics. Furthermore, a gradient-descent procedure that adaptively selects the pole locations in the FPET structure is developed in the paper.

  16. Nonlinear Phenomena in Complex Systems: From Nano to Macro Scale

    CERN Document Server

    Stanley, H

    2014-01-01

    Topics of complex system physics and their interdisciplinary applications to different problems in seismology, biology, economy, sociology,  energy and nanotechnology are covered in this new work from renowned experts in their fields.  In  particular, contributed papers contain original results on network science, earthquake dynamics, econophysics, sociophysics, nanoscience and biological physics. Most of the papers use interdisciplinary approaches based on statistical physics, quantum physics and other topics of complex system physics.  Papers on econophysics and sociophysics are focussed on societal aspects of physics such as, opinion dynamics, public debates and financial and economic stability. This work will be of interest to statistical physicists, economists, biologists, seismologists and all scientists working in interdisciplinary topics of complexity.

  17. Describing joint air defence within operations other than war context as a complex system

    CSIR Research Space (South Africa)

    Oosthuizen, R

    2009-10-01

    Full Text Available . This paper will firstly investigate the theory of complexity and identify the main characteristics. This will be applied to Systems Engineering and modelling techniques, to propose a method of implementation in the real world. The application... of complexity in warfare is discussed to form a foundation for the discussion of JAD. Finally, the sources of complexity in JAD are identified and an approach to address these proposed. 2 Complex Systems 2.1 Definition of Complex Systems The theory...

  18. Return-to-Work Within a Complex and Dynamic Organizational Work Disability System

    OpenAIRE

    Jetha, Arif; Pransky, Glenn; Fish, Jon; Hettinger, Lawrence J.

    2015-01-01

    Background Return-to-work (RTW) within a complex organizational system can be associated with suboptimal outcomes. Purpose To apply a sociotechnical systems perspective to investigate complexity in RTW; to utilize system dynamics modeling (SDM) to examine how feedback relationships between individual, psychosocial, and organizational factors make up the work disability system and influence RTW. Methods SDMs were developed within two companies. Thirty stakeholders including senior managers, an...

  19. Complexity analysis of the Next Gen Air Traffic Management System: trajectory based operations.

    Science.gov (United States)

    Lyons, Rhonda

    2012-01-01

    According to Federal Aviation Administration traffic predictions currently our Air Traffic Management (ATM) system is operating at 150 percent capacity; forecasting that within the next two decades, the traffic with increase to a staggering 250 percent [17]. This will require a major redesign of our system. Today's ATM system is complex. It is designed to safely, economically, and efficiently provide air traffic services through the cost-effective provision of facilities and seamless services in collaboration with multiple agents however, contrary the vision, the system is loosely integrated and is suffering tremendously from antiquated equipment and saturated airways. The new Next Generation (Next Gen) ATM system is designed to transform the current system into an agile, robust and responsive set of operations that are designed to safely manage the growing needs of the projected increasingly complex, diverse set of air transportation system users and massive projected worldwide traffic rates. This new revolutionary technology-centric system is dynamically complex and is much more sophisticated than it's soon to be predecessor. ATM system failures could yield large scale catastrophic consequences as it is a safety critical system. This work will attempt to describe complexity and the complex nature of the NextGen ATM system and Trajectory Based Operational. Complex human factors interactions within Next Gen will be analyzed using a proposed dual experimental approach designed to identify hazards, gaps and elicit emergent hazards that would not be visible if conducted in isolation. Suggestions will be made along with a proposal for future human factors research in the TBO safety critical Next Gen environment.

  20. Systemic Planning: Dealing with Complexity by a Wider Approach to Planning

    DEFF Research Database (Denmark)

    Leleur, Steen

    2005-01-01

    and methodology that can be helpful for planning under circumstances characterised by complexity and uncertainty. It is argued that compared to conventional, planning – referred to as systematic planning - there is a need for a wider, more systemic approach to planning that is better suited to current real......On the basis of a new book Systemic Planning this paper addresses systems thinking and complexity in a context of planning. Specifically, renewal of planning thinking on this background is set out as so-called systemic planning (SP). The principal concern of SP is to provide principles...

  1. Defining Execution Viewpoints for a Large and Complex Software-Intensive System

    OpenAIRE

    Callo Arias, Trosky B.; America, Pierre; Avgeriou, Paris

    2009-01-01

    An execution view is an important asset for developing large and complex systems. An execution view helps practitioners to describe, analyze, and communicate what a software system does at runtime and how it does it. In this paper, we present an approach to define execution viewpoints for an existing large and complex software-intensive system. This definition approach enables the customization and extension of a set of predefined viewpoints to address the requirements of a specific developme...

  2. [Partitioning of taxifolin-iron ions complexes in octanol-water system].

    Science.gov (United States)

    Shatalin, Iu V; Shubina, V S

    2014-01-01

    The composition of taxifolin-iron ions complexes in an octanol-water biphasic system was studied using the method of absorption spectrophotometry. It was found that at pH 5.0 in an aqueous biphasic system the complex of [Tf2 x Fe x (OH)k(H2O)8-k] is present, but at pH 7.0 and 9.0 the complexes of [Tf2 x Fe x (OH)k(H2O)2-k] and [Tf x Fe x OH)k(H2O)4-k] are predominantly observed. The formation of a stable [Tf3 x Fe] complex occurred in octanol phase. The charged iron ion of this complex is surrounded by taxifolin molecules, which shield the iron ion from lipophilic solvent. During transition from water to octanol phase the changes of the composition of complexes are accompanied by reciprocal changes in portion of taxifolin and iron ions in these phases. It was shown that the portion of taxifolin in aqueous solution in the presence of iron ions is increased at high pH values, and the portion of iron ions is minimal at pH 7.0. In addition, the parameters of solubility limits of taxifolin-iron ions complexes in an aqueous solution were determined. The data obtained gain a better understanding of the role of complexation of polyphenol with metal of variable valency in passive transport of flavonoids and metal ions across lipid membranes.

  3. Complex Adaptive Systems of Systems (CASoS) engineering and foundations for global design.

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Nancy S.; Finley, Patrick D.; Beyeler, Walter Eugene; Brown, Theresa Jean; Linebarger, John Michael; Moore, Thomas W.; Glass, Robert John, Jr.; Maffitt, S. Louise; Mitchell, Michael David; Ames, Arlo Leroy

    2012-01-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which must be recognized and reckoned with to design a secure future for the nation and the world. Design within CASoS requires the fostering of a new discipline, CASoS Engineering, and the building of capability to support it. Towards this primary objective, we created the Phoenix Pilot as a crucible from which systemization of the new discipline could emerge. Using a wide range of applications, Phoenix has begun building both theoretical foundations and capability for: the integration of Applications to continuously build common understanding and capability; a Framework for defining problems, designing and testing solutions, and actualizing these solutions within the CASoS of interest; and an engineering Environment required for 'the doing' of CASoS Engineering. In a secondary objective, we applied CASoS Engineering principles to begin to build a foundation for design in context of Global CASoS

  4. Stochastic transport in complex systems from molecules to vehicles

    CERN Document Server

    Schadschneider, Andreas; Nishinari, Katsuhiro

    2011-01-01

    What is common between a motor protein, an ant and a vehicle? Each can be modelled as a"self-propelled particle"whose forward movement can be hindered by another in front of it. Traffic flow of such interacting driven"particles"has become an active area of interdisciplinary research involving physics, civil engineering and computer science. We present a unified pedagogical introduction to the analytical and computational methods which are currently used for studying such complex systems far from equilibrium. We also review a number of applications ranging from intra-cellular molecular motor transport in living systems to ant trails and vehicular traffic. Researchers working on complex systems, in general, and on classical stochastic transport, in particular, will find the pedagogical style, scholarly critical overview and extensive list of references extremely useful.

  5. Computer modeling of properties of complex molecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Kulkova, E.Yu. [Moscow State University of Technology “STANKIN”, Vadkovsky per., 1, Moscow 101472 (Russian Federation); Khrenova, M.G.; Polyakov, I.V. [Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991 (Russian Federation); Nemukhin, A.V. [Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991 (Russian Federation); N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow 119334 (Russian Federation)

    2015-03-10

    Large molecular aggregates present important examples of strongly nonhomogeneous systems. We apply combined quantum mechanics / molecular mechanics approaches that assume treatment of a part of the system by quantum-based methods and the rest of the system with conventional force fields. Herein we illustrate these computational approaches by two different examples: (1) large-scale molecular systems mimicking natural photosynthetic centers, and (2) components of prospective solar cells containing titan dioxide and organic dye molecules. We demonstrate that modern computational tools are capable to predict structures and spectra of such complex molecular aggregates.

  6. Recommended Research Directions for Improving the Validation of Complex Systems Models.

    Energy Technology Data Exchange (ETDEWEB)

    Vugrin, Eric D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trucano, Timothy G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Finley, Patrick D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flanagan, Tatiana Paz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Naugle, Asmeret Bier [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tsao, Jeffrey Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Verzi, Stephen Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Improved validation for models of complex systems has been a primary focus over the past year for the Resilience in Complex Systems Research Challenge. This document describes a set of research directions that are the result of distilling those ideas into three categories of research -- epistemic uncertainty, strong tests, and value of information. The content of this document can be used to transmit valuable information to future research activities, update the Resilience in Complex Systems Research Challenge's roadmap, inform the upcoming FY18 Laboratory Directed Research and Development (LDRD) call and research proposals, and facilitate collaborations between Sandia and external organizations. The recommended research directions can provide topics for collaborative research, development of proposals, workshops, and other opportunities.

  7. A computational approach to achieve situational awareness from limited observations of a complex system

    Science.gov (United States)

    Sherwin, Jason

    At the start of the 21st century, the topic of complexity remains a formidable challenge in engineering, science and other aspects of our world. It seems that when disaster strikes it is because some complex and unforeseen interaction causes the unfortunate outcome. Why did the financial system of the world meltdown in 2008--2009? Why are global temperatures on the rise? These questions and other ones like them are difficult to answer because they pertain to contexts that require lengthy descriptions. In other words, these contexts are complex. But we as human beings are able to observe and recognize this thing we call 'complexity'. Furthermore, we recognize that there are certain elements of a context that form a system of complex interactions---i.e., a complex system. Many researchers have even noted similarities between seemingly disparate complex systems. Do sub-atomic systems bear resemblance to weather patterns? Or do human-based economic systems bear resemblance to macroscopic flows? Where do we draw the line in their resemblance? These are the kinds of questions that are asked in complex systems research. And the ability to recognize complexity is not only limited to analytic research. Rather, there are many known examples of humans who, not only observe and recognize but also, operate complex systems. How do they do it? Is there something superhuman about these people or is there something common to human anatomy that makes it possible to fly a plane? Or to drive a bus? Or to operate a nuclear power plant? Or to play Chopin's etudes on the piano? In each of these examples, a human being operates a complex system of machinery, whether it is a plane, a bus, a nuclear power plant or a piano. What is the common thread running through these abilities? The study of situational awareness (SA) examines how people do these types of remarkable feats. It is not a bottom-up science though because it relies on finding general principles running through a host of varied

  8. Modular interdependency in complex dynamical systems.

    Science.gov (United States)

    Watson, Richard A; Pollack, Jordan B

    2005-01-01

    Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability.

  9. Intelligibility in microbial complex systems: Wittgenstein and the score of life.

    Science.gov (United States)

    Baquero, Fernando; Moya, Andrés

    2012-01-01

    Knowledge in microbiology is reaching an extreme level of diversification and complexity, which paradoxically results in a strong reduction in the intelligibility of microbial life. In our days, the "score of life" metaphor is more accurate to express the complexity of living systems than the classic "book of life." Music and life can be represented at lower hierarchical levels by music scores and genomic sequences, and such representations have a generational influence in the reproduction of music and life. If music can be considered as a representation of life, such representation remains as unthinkable as life itself. The analysis of scores and genomic sequences might provide mechanistic, phylogenetic, and evolutionary insights into music and life, but not about their real dynamics and nature, which is still maintained unthinkable, as was proposed by Wittgenstein. As complex systems, life or music is composed by thinkable and only showable parts, and a strategy of half-thinking, half-seeing is needed to expand knowledge. Complex models for complex systems, based on experiences on trans-hierarchical integrations, should be developed in order to provide a mixture of legibility and imageability of biological processes, which should lead to higher levels of intelligibility of microbial life.

  10. FRAM Modelling Complex Socio-technical Systems

    CERN Document Server

    Hollnagel, Erik

    2012-01-01

    There has not yet been a comprehensive method that goes behind 'human error' and beyond the failure concept, and various complicated accidents have accentuated the need for it. The Functional Resonance Analysis Method (FRAM) fulfils that need. This book presents a detailed and tested method that can be used to model how complex and dynamic socio-technical systems work, and understand both why things sometimes go wrong but also why they normally succeed.

  11. Complex Systems and Self-organization Modelling

    CERN Document Server

    Bertelle, Cyrille; Kadri-Dahmani, Hakima

    2009-01-01

    The concern of this book is the use of emergent computing and self-organization modelling within various applications of complex systems. The authors focus their attention both on the innovative concepts and implementations in order to model self-organizations, but also on the relevant applicative domains in which they can be used efficiently. This book is the outcome of a workshop meeting within ESM 2006 (Eurosis), held in Toulouse, France in October 2006.

  12. Understanding complex urban systems integrating multidisciplinary data in urban models

    CERN Document Server

    Gebetsroither-Geringer, Ernst; Atun, Funda; Werner, Liss

    2016-01-01

    This book is devoted to the modeling and understanding of complex urban systems. This second volume of Understanding Complex Urban Systems focuses on the challenges of the modeling tools, concerning, e.g., the quality and quantity of data and the selection of an appropriate modeling approach. It is meant to support urban decision-makers—including municipal politicians, spatial planners, and citizen groups—in choosing an appropriate modeling approach for their particular modeling requirements. The contributors to this volume are from different disciplines, but all share the same goal: optimizing the representation of complex urban systems. They present and discuss a variety of approaches for dealing with data-availability problems and finding appropriate modeling approaches—and not only in terms of computer modeling. The selection of articles featured in this volume reflect a broad variety of new and established modeling approaches such as: - An argument for using Big Data methods in conjunction with Age...

  13. A foundational methodology for determining system static complexity using notional lunar oxygen production processes

    Science.gov (United States)

    Long, Nicholas James

    This thesis serves to develop a preliminary foundational methodology for evaluating the static complexity of future lunar oxygen production systems when extensive information is not yet available about the various systems under consideration. Evaluating static complexity, as part of a overall system complexity analysis, is an important consideration in ultimately selecting a process to be used in a lunar base. When system complexity is higher, there is generally an overall increase in risk which could impact the safety of astronauts and the economic performance of the mission. To evaluate static complexity in lunar oxygen production, static complexity is simplified and defined into its essential components. First, three essential dimensions of static complexity are investigated, including interconnective complexity, strength of connections, and complexity in variety. Then a set of methods is developed upon which to separately evaluate each dimension. Q-connectivity analysis is proposed as a means to evaluate interconnective complexity and strength of connections. The law of requisite variety originating from cybernetic theory is suggested to interpret complexity in variety. Secondly, a means to aggregate the results of each analysis is proposed to create holistic measurement for static complexity using the Single Multi-Attribute Ranking Technique (SMART). Each method of static complexity analysis and the aggregation technique is demonstrated using notional data for four lunar oxygen production processes.

  14. Intrinsic Uncertainties in Modeling Complex Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Curtis S; Bramson, Aaron L.; Ames, Arlo L.

    2014-09-01

    Models are built to understand and predict the behaviors of both natural and artificial systems. Because it is always necessary to abstract away aspects of any non-trivial system being modeled, we know models can potentially leave out important, even critical elements. This reality of the modeling enterprise forces us to consider the prospective impacts of those effects completely left out of a model - either intentionally or unconsidered. Insensitivity to new structure is an indication of diminishing returns. In this work, we represent a hypothetical unknown effect on a validated model as a finite perturba- tion whose amplitude is constrained within a control region. We find robustly that without further constraints, no meaningful bounds can be placed on the amplitude of a perturbation outside of the control region. Thus, forecasting into unsampled regions is a very risky proposition. We also present inherent difficulties with proper time discretization of models and representing in- herently discrete quantities. We point out potentially worrisome uncertainties, arising from math- ematical formulation alone, which modelers can inadvertently introduce into models of complex systems. Acknowledgements This work has been funded under early-career LDRD project #170979, entitled "Quantify- ing Confidence in Complex Systems Models Having Structural Uncertainties", which ran from 04/2013 to 09/2014. We wish to express our gratitude to the many researchers at Sandia who con- tributed ideas to this work, as well as feedback on the manuscript. In particular, we would like to mention George Barr, Alexander Outkin, Walt Beyeler, Eric Vugrin, and Laura Swiler for provid- ing invaluable advice and guidance through the course of the project. We would also like to thank Steven Kleban, Amanda Gonzales, Trevor Manzanares, and Sarah Burwell for their assistance in managing project tasks and resources.

  15. Tools and techniques for developing policies for complex and uncertain systems.

    Science.gov (United States)

    Bankes, Steven C

    2002-05-14

    Agent-based models (ABM) are examples of complex adaptive systems, which can be characterized as those systems for which no model less complex than the system itself can accurately predict in detail how the system will behave at future times. Consequently, the standard tools of policy analysis, based as they are on devising policies that perform well on some best estimate model of the system, cannot be reliably used for ABM. This paper argues that policy analysis by using ABM requires an alternative approach to decision theory. The general characteristics of such an approach are described, and examples are provided of its application to policy analysis.

  16. Nostradamus 2014 prediction, modeling and analysis of complex systems

    CERN Document Server

    Suganthan, Ponnuthurai; Chen, Guanrong; Snasel, Vaclav; Abraham, Ajith; Rössler, Otto

    2014-01-01

    The prediction of behavior of complex systems, analysis and modeling of its structure is a vitally important problem in engineering, economy and generally in science today. Examples of such systems can be seen in the world around us (including our bodies) and of course in almost every scientific discipline including such “exotic” domains as the earth’s atmosphere, turbulent fluids, economics (exchange rate and stock markets), population growth, physics (control of plasma), information flow in social networks and its dynamics, chemistry and complex networks. To understand such complex dynamics, which often exhibit strange behavior, and to use it in research or industrial applications, it is paramount to create its models. For this purpose there exists a rich spectrum of methods, from classical such as ARMA models or Box Jenkins method to modern ones like evolutionary computation, neural networks, fuzzy logic, geometry, deterministic chaos amongst others. This proceedings book is a collection of accepted ...

  17. Stochastic equations for complex systems theoretical and computational topics

    CERN Document Server

    Bessaih, Hakima

    2015-01-01

    Mathematical analyses and computational predictions of the behavior of complex systems are needed to effectively deal with weather and climate predictions, for example, and the optimal design of technical processes. Given the random nature of such systems and the recognized relevance of randomness, the equations used to describe such systems usually need to involve stochastics.  The basic goal of this book is to introduce the mathematics and application of stochastic equations used for the modeling of complex systems. A first focus is on the introduction to different topics in mathematical analysis. A second focus is on the application of mathematical tools to the analysis of stochastic equations. A third focus is on the development and application of stochastic methods to simulate turbulent flows as seen in reality.  This book is primarily oriented towards mathematics and engineering PhD students, young and experienced researchers, and professionals working in the area of stochastic differential equations ...

  18. A novel hybrid color image encryption algorithm using two complex chaotic systems

    Science.gov (United States)

    Wang, Leyuan; Song, Hongjun; Liu, Ping

    2016-02-01

    Based on complex Chen and complex Lorenz systems, a novel color image encryption algorithm is proposed. The larger chaotic ranges and more complex behaviors of complex chaotic systems, which compared with real chaotic systems could additionally enhance the security and enlarge key space of color image encryption. The encryption algorithm is comprised of three step processes. In the permutation process, the pixels of plain image are scrambled via two-dimensional and one-dimensional permutation processes among RGB channels individually. In the diffusion process, the exclusive-or (XOR for short) operation is employed to conceal pixels information. Finally, the mixing RGB channels are used to achieve a multilevel encryption. The security analysis and experimental simulations demonstrate that the proposed algorithm is large enough to resist the brute-force attack and has excellent encryption performance.

  19. The deconvolution of complex spectra by artificial immune system

    Science.gov (United States)

    Galiakhmetova, D. I.; Sibgatullin, M. E.; Galimullin, D. Z.; Kamalova, D. I.

    2017-11-01

    An application of the artificial immune system method for decomposition of complex spectra is presented. The results of decomposition of the model contour consisting of three components, Gaussian contours, are demonstrated. The method of artificial immune system is an optimization method, which is based on the behaviour of the immune system and refers to modern methods of search for the engine optimization.

  20. Integration of industrial risk in regional policy management. Possibilities of evaluation; L'integration du risque industriel dans les politiques de gestion territoriales. Possibilites d'evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Philippe; Pages, Pierre

    1990-02-01

    Since the responsibility for risk management depends more and more on regional factors, evaluation methods and management regulations are not developed enough. This study start from the fact that an important methods exist for evaluation transport of dangerous materials in cities, risk analysis and emergency plans related to classified installations, management of quality of water, 'chronic' industrial risks at local and regional level, probabilistic estimation for industrial plants. The objective is in fact to show what risk analysis could bring to the municipality, the city or the region. [French] Alors que la responsabilite de la maitrise du risque repose de plus en plus sur les collectivites territoriales, soit dans la mouvance naturelle de la decentralisation, soit par des textes specifiques, les moyens d'evaluation et les regles de gestion sont encore tres peu developpes. Cette etude part du fait qu'un materiel important existe cependant: evaluations sur le transport des matieres dangereuses dans les villes, etudes de danger et plans d'intervention associes a la legislation sur les installations classees, gestion de la qualite de l'eau par les agences de bassin, bilans des risques industriels 'chroniques' a l'echelle locale ou regionale, evaluations probabilistes sur des objets industriels. L'objet est donc de montrer ce que peuvent apporter ces analyses dans l'evaluation du risque accidentel dans la collectivite, la ville ou, a cause des implications des strategies de prevention, le departement ou la region. L'heterogeneite de la qualite et de la quantite des resultats que l'on peut attendre en fonction des divers types de risques et de consequences est d'abord mise en valeur. Malgre leurs incertitudes, des modeles existent qui permettent de calculer les victimes d'accidents industriels 'types'. Pour les installations classees et les transports de matieres dangereuses, le calcul du risque est loin d'etre systematique, mais il est pratique. Un second domaine

  1. Complex biological and bio-inspired systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to

  2. Inclusive Education as Complex Process and Challenge for School System

    Directory of Open Access Journals (Sweden)

    Al-Khamisy Danuta

    2015-08-01

    Full Text Available Education may be considered as a number of processes, actions and effects affecting human being, as the state or level of the results of these processes or as the modification of the functions, institutions and social practices roles, which in the result of inclusion become new, integrated system. Thus this is very complex process. Nowadays the complexity appears to be one of very significant terms both in science and in philosophy. It appears that despite searching for simple rules, strategies, solutions everything is still more complex. The environment is complex, the organism living in it and exploring it, and just the exploration itself is a complex phenomenon, much more than this could initially seem to be.

  3. Fostering Complexity Thinking in Action Research for Change in Social-Ecological Systems

    Directory of Open Access Journals (Sweden)

    Kevin H. Rogers

    2013-06-01

    Full Text Available Complexity thinking is increasingly being embraced by a wide range of academics and professionals as imperative for dealing with today's pressing social-ecological challenges. In this context, action researchers partner directly with stakeholders (communities, governance institutions, and work resource managers, etc. to embed a complexity frame of reference for decision making. In doing so, both researchers and stakeholders must strive to internalize not only "intellectual complexity" (knowing but also "lived complexity" (being and practicing. Four common conceptualizations of learning (explicit/tacit knowledge framework; unlearning selective exposure; conscious/competence learning matrix; and model of learning loops are integrated to provide a new framework that describes how learning takes place in complex systems. Deep reflection leading to transformational learning is required to foster the changes in mindset and behaviors needed to adopt a complexity frame of reference. We then present three broad frames of mind (openness, situational awareness, and a healthy respect for the restraint/action paradox, which each encompass a set of habits of mind, to create a useful framework that allows one to unlearn reductionist habits while adopting and embedding those more conducive to working in complex systems. Habits of mind provide useful heuristic tools to guide researchers and stakeholders through processes of participative planning and adaptive decision making in complex social-ecological systems.

  4. Quantum-information processing in disordered and complex quantum systems

    International Nuclear Information System (INIS)

    Sen, Aditi; Sen, Ujjwal; Ahufinger, Veronica; Briegel, Hans J.; Sanpera, Anna; Lewenstein, Maciej

    2006-01-01

    We study quantum information processing in complex disordered many body systems that can be implemented by using lattices of ultracold atomic gases and trapped ions. We demonstrate, first in the short range case, the generation of entanglement and the local realization of quantum gates in a disordered magnetic model describing a quantum spin glass. We show that in this case it is possible to achieve fidelities of quantum gates higher than in the classical case. Complex systems with long range interactions, such as ions chains or dipolar atomic gases, can be used to model neural network Hamiltonians. For such systems, where both long range interactions and disorder appear, it is possible to generate long range bipartite entanglement. We provide an efficient analytical method to calculate the time evolution of a given initial state, which in turn allows us to calculate its quantum correlations

  5. Chaos from simple models to complex systems

    CERN Document Server

    Cencini, Massimo; Vulpiani, Angelo

    2010-01-01

    Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theor

  6. Dealing with Tight Couplings and Multiple Interactions in Complex Technological Systems

    DEFF Research Database (Denmark)

    Aanestad, M.; Jensen, Tina Blegind; Grisot, M.

    In this paper we discuss the challenges of dealing with interdependencies in complex assemblages of heterogeneous and interconnected information systems (IS), which we conceptualize as organizationwide information infrastructures. We draw on Perrow's studies of complex technological systems, where...... couplings between information systems, actors, and work practices in the hospital environment. The paper's main focus is on describing what it entails in practice to deal with these interdependencies during and after implementation. We emphasize the work of sorting out and dealing with various types...... interactions, mechanisms, and couplings are emphasized. We base our paper on an empirical case study from a Norwegian hospital, where a seemingly trivial project aimed at the introduction of scanners turned out to be more complex than expected. This we claim is partly due to the interdependencies and tight...

  7. Non-Destructive Inspection Methods for Propulsion Systems and Components

    Science.gov (United States)

    1979-04-01

    tandis qu’une piice samne restera, silencieuse. 11 est alora possible de concevoir des proc4- dures industrielles d’acceptation ou rejet . Le C.E.T.I.H. a...rdalisation do coon turbomachine. ou noteurs thermiques do hauto. perfomance. ndce..ite l& miss on oeuvre do matdriaux at techniques de plus en plus...Instruments lea plum avances actuoliomont pour traitor lea problimes industriels d’~mimmion aconstique. IIAt/ Localimation La localimation eat mimple

  8. [The dimension of the paradigm of complexity in health systems].

    Science.gov (United States)

    Fajardo-Ortiz, Guillermo; Fernández-Ortega, Miguel Ángel; Ortiz-Montalvo, Armando; Olivares-Santos, Roberto Antonio

    2015-01-01

    This article presents elements to better understand health systems from the complety paradigm, innovative perspective that offers other ways in the conception of the scientific knowledge prevalent away from linear, characterized by the arise of emerging dissociative and behaviors, based on the intra and trans-disciplinarity concepts such knowledges explain and understand in a different way what happens in the health systems with a view to efficiency and effectiveness. The complexity paradigm means another way of conceptualizing the knowledge, is different from the prevalent epistemology, is still under construction does not separate, not isolated, is not reductionist, or fixed, does not solve the problems, but gives other bases to know them and study them, is a different strategy, a perspective that has basis in the systems theory, informatics and cybernetics beyond traditional knowledge, the positive logics, the newtonian physics and symmetric mathematics, in which everything is centered and balanced, joint the "soft sciences and hard sciences", it has present the Social Determinants of Health and organizational culture. Under the complexity paradigm the health systems are identified with the following concepts: entropy, neguentropy, the thermodynamic second law, attractors, chaos theory, fractals, selfmanagement and self-organization, emerging behaviors, percolation, uncertainty, networks and robusteness; such expressions open new possibilities to improve the management and better understanding of the health systems, giving rise to consider health systems as complex adaptive systems. Copyright © 2015. Published by Masson Doyma México S.A.

  9. Multidimensional approach to complex system resilience analysis

    International Nuclear Information System (INIS)

    Gama Dessavre, Dante; Ramirez-Marquez, Jose E.; Barker, Kash

    2016-01-01

    Recent works have attempted to formally define a general metric for quantifying resilience for complex systems as a relationship of performance of the systems against time. The technical content in the proposed work introduces a new model that allows, for the first time, to compare the system resilience among systems (or different modifications to a system), by introducing a new dimension to system resilience models, called stress, to mimic the definition of resilience in material science. The applicability and usefulness of the model is shown with a new heat map visualization proposed in this work, and it is applied to a simulated network resilience case to exemplify its potential benefits. - Highlights: • We analyzed two of the main current metrics of resilience. • We create a new model that relates events with the effects they have. • We develop a novel heat map visualization to compare system resilience. • We showed the model and visualization usefulness in a simulated case.

  10. Multi-Level Formation of Complex Software Systems

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-05-01

    Full Text Available We present a multi-level formation model for complex software systems. The previous works extract the software systems to software networks for further studies, but usually investigate the software networks at the class level. In contrast to these works, our treatment of software systems as multi-level networks is more realistic. In particular, the software networks are organized by three levels of granularity, which represents the modularity and hierarchy in the formation process of real-world software systems. More importantly, simulations based on this model have generated more realistic structural properties of software networks, such as power-law, clustering and modularization. On the basis of this model, how the structure of software systems effects software design principles is then explored, and it could be helpful for understanding software evolution and software engineering practices.

  11. Decision Making in Complex Systems The DeciMaS Agent-based Interdisciplinary Framework Approach

    CERN Document Server

    Sokolova, Marina V

    2012-01-01

    The study of complex systems attracts the attention of many researchers in diverse fields. Complex systems are characterized by a high number of entities and a high degree of interactions. One of the most important features is that they do not involve a central organizing authority, but the various elements that make up the systems are self-organized. Moreover, some complex systems possess an emergency priority: climate change and sustainable development research, studies of public health, ecosystem habitats, epidemiology, and medicine, among others. Unfortunately, a great number of today’s overlapping approaches fail to meet the needs of decision makers when managing complex domains. Indeed, the design of complex systems often requires the integration of a number of artificial intelligence tools and techniques. The problem can be viewed in terms of goals, states, and actions, choosing the best action to move the system toward its desired state or behavior. This is why agent-based approaches are used to mod...

  12. A Reliability Test of a Complex System Based on Empirical Likelihood

    OpenAIRE

    Zhou, Yan; Fu, Liya; Zhang, Jun; Hui, Yongchang

    2016-01-01

    To analyze the reliability of a complex system described by minimal paths, an empirical likelihood method is proposed to solve the reliability test problem when the subsystem distributions are unknown. Furthermore, we provide a reliability test statistic of the complex system and extract the limit distribution of the test statistic. Therefore, we can obtain the confidence interval for reliability and make statistical inferences. The simulation studies also demonstrate the theorem results.

  13. Improved detection of Mycobacterium avium complex with the Bactec radiometric system

    International Nuclear Information System (INIS)

    Hoffner, S.E.

    1988-01-01

    A reconsideration of the laboratory methods used for primary isolation of mycobacteria other than Mycobacterium tuberculosis is needed due to the increasingly recognized importance of such mycobacterial infections in immunocompromised patients. One example of this is the severe opportunistic infections caused by Mycobacterium avium complex among AIDS patients. In this study, the Bactec radiometric system was compared to conventional culture on solid medium for the detection of M. avium complex in 3,612 selected clinical specimens, mainly of extrapulmonary origin. Of a total number of 63 M. avium complex isolates, the Bactec system detected 58 (92%), compared to 37 (59%) for conventional culture. A much more rapid detection was attained with radiometric technique than with conventional culture. The mean detection time for the cultures positive with both methods was 7.1 and 28.3 days, respectively. The Bactec radiometric system achieves a rapid and significantly more sensitive detection and seems to be an excellent complement to conventional culture in the laboratory diagnosis of infections with the M. avium complex

  14. Control of complex dynamics and chaos in distributed parameter systems

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarti, S.; Marek, M.; Ray, W.H. [Univ. of Wisconsin, Madison, WI (United States)

    1995-12-31

    This paper discusses a methodology for controlling complex dynamics and chaos in distributed parameter systems. The reaction-diffusion system with Brusselator kinetics, where the torus-doubling or quasi-periodic (two characteristic incommensurate frequencies) route to chaos exists in a defined range of parameter values, is used as an example. Poincare maps are used for characterization of quasi-periodic and chaotic attractors. The dominant modes or topos, which are inherent properties of the system, are identified by means of the Singular Value Decomposition. Tested modal feedback control schemas based on identified dominant spatial modes confirm the possibility of stabilization of simple quasi-periodic trajectories in the complex quasi-periodic or chaotic spatiotemporal patterns.

  15. Creating a Framework for Improving the Learnability of a Complex System

    Directory of Open Access Journals (Sweden)

    Minttu Linja-aho

    2006-01-01

    Full Text Available When designing complex systems, it is crucial but challenging to make them easy to learn. In this paper, a framework for improving the learnability of a complex system is presented. A classification of factors affecting the learnability of a building modeling system as well as guidelines that refine the factors into practical ways of action are introduced. The factors and guidelines include issues related to the user interface, conformity of the system to user’s expectations, and training. The classification is based on empirical research during which learnability was assessed with several methods. The methodology and the classification of learnability factors can be used as references when analyzing and improving the learnability of other systems. System developers and training providers can utilize these guidelines when striving to make systems easier to learn.

  16. Automated Derivation of Complex System Constraints from User Requirements

    Science.gov (United States)

    Foshee, Mark; Murey, Kim; Marsh, Angela

    2010-01-01

    The Payload Operations Integration Center (POIC) located at the Marshall Space Flight Center has the responsibility of integrating US payload science requirements for the International Space Station (ISS). All payload operations must request ISS system resources so that the resource usage will be included in the ISS on-board execution timelines. The scheduling of resources and building of the timeline is performed using the Consolidated Planning System (CPS). The ISS resources are quite complex due to the large number of components that must be accounted for. The planners at the POIC simplify the process for Payload Developers (PD) by providing the PDs with a application that has the basic functionality PDs need as well as list of simplified resources in the User Requirements Collection (URC) application. The planners maintained a mapping of the URC resources to the CPS resources. The process of manually converting PD's science requirements from a simplified representation to a more complex CPS representation is a time-consuming and tedious process. The goal is to provide a software solution to allow the planners to build a mapping of the complex CPS constraints to the basic URC constraints and automatically convert the PD's requirements into systems requirements during export to CPS.

  17. Informational analysis involving application of complex information system

    Science.gov (United States)

    Ciupak, Clébia; Vanti, Adolfo Alberto; Balloni, Antonio José; Espin, Rafael

    The aim of the present research is performing an informal analysis for internal audit involving the application of complex information system based on fuzzy logic. The same has been applied in internal audit involving the integration of the accounting field into the information systems field. The technological advancements can provide improvements to the work performed by the internal audit. Thus we aim to find, in the complex information systems, priorities for the work of internal audit of a high importance Private Institution of Higher Education. The applied method is quali-quantitative, as from the definition of strategic linguistic variables it was possible to transform them into quantitative with the matrix intersection. By means of a case study, where data were collected via interview with the Administrative Pro-Rector, who takes part at the elaboration of the strategic planning of the institution, it was possible to infer analysis concerning points which must be prioritized at the internal audit work. We emphasize that the priorities were identified when processed in a system (of academic use). From the study we can conclude that, starting from these information systems, audit can identify priorities on its work program. Along with plans and strategic objectives of the enterprise, the internal auditor can define operational procedures to work in favor of the attainment of the objectives of the organization.

  18. Integrating complex business processes for knowledge-driven clinical decision support systems.

    Science.gov (United States)

    Kamaleswaran, Rishikesan; McGregor, Carolyn

    2012-01-01

    This paper presents in detail the component of the Complex Business Process for Stream Processing framework that is responsible for integrating complex business processes to enable knowledge-driven Clinical Decision Support System (CDSS) recommendations. CDSSs aid the clinician in supporting the care of patients by providing accurate data analysis and evidence-based recommendations. However, the incorporation of a dynamic knowledge-management system that supports the definition and enactment of complex business processes and real-time data streams has not been researched. In this paper we discuss the process web service as an innovative method of providing contextual information to a real-time data stream processing CDSS.

  19. Simulating Complex Window Systems using BSDF Data

    Energy Technology Data Exchange (ETDEWEB)

    Konstantoglou, Maria; Jonsson, Jacob; Lee, Eleanor

    2009-06-22

    Nowadays, virtual models are commonly used to evaluate the performance of conventional window systems. Complex fenestration systems can be difficult to simulate accurately not only because of their geometry but also because of their optical properties that scatter light in an unpredictable manner. Bi-directional Scattering Distribution Functions (BSDF) have recently been developed based on a mixture of measurements and modelling to characterize the optics of such systems. This paper describes the workflow needed to create then use these BSDF datasets in the Radiance lighting simulation software. Limited comparisons are made between visualizations produced using the standard ray-tracing method, the BSDF method, and that taken in a full-scale outdoor mockup.

  20. Multilevel Complex Networks and Systems

    Science.gov (United States)

    Caldarelli, Guido

    2014-03-01

    Network theory has been a powerful tool to model isolated complex systems. However, the classical approach does not take into account the interactions often present among different systems. Hence, the scientific community is nowadays concentrating the efforts on the foundations of new mathematical tools for understanding what happens when multiple networks interact. The case of economic and financial networks represents a paramount example of multilevel networks. In the case of trade, trade among countries the different levels can be described by the different granularity of the trading relations. Indeed, we have now data from the scale of consumers to that of the country level. In the case of financial institutions, we have a variety of levels at the same scale. For example one bank can appear in the interbank networks, ownership network and cds networks in which the same institution can take place. In both cases the systemically important vertices need to be determined by different procedures of centrality definition and community detection. In this talk I will present some specific cases of study related to these topics and present the regularities found. Acknowledged support from EU FET Project ``Multiplex'' 317532.

  1. From precision polymers to complex materials and systems

    NARCIS (Netherlands)

    Lutz, J.F.; Lehn, J.M.; Meijer, E.W.; Matyjaszewski, K.

    2016-01-01

    Complex chemical systems, such as living biological matter, are highly organized structures based on discrete molecules in constant dynamic interactions. These natural materials can evolve and adapt to their environment. By contrast, man-made materials exhibit simpler properties. In this Review, we

  2. Propagating wave correlations in complex systems

    International Nuclear Information System (INIS)

    Creagh, Stephen C; Gradoni, Gabriele; Hartmann, Timo; Tanner, Gregor

    2017-01-01

    We describe a novel approach for computing wave correlation functions inside finite spatial domains driven by complex and statistical sources. By exploiting semiclassical approximations, we provide explicit algorithms to calculate the local mean of these correlation functions in terms of the underlying classical dynamics. By defining appropriate ensemble averages, we show that fluctuations about the mean can be characterised in terms of classical correlations. We give in particular an explicit expression relating fluctuations of diagonal contributions to those of the full wave correlation function. The methods have a wide range of applications both in quantum mechanics and for classical wave problems such as in vibro-acoustics and electromagnetism. We apply the methods here to simple quantum systems, so-called quantum maps, which model the behaviour of generic problems on Poincaré sections. Although low-dimensional, these models exhibit a chaotic classical limit and share common characteristics with wave propagation in complex structures. (paper)

  3. Simulating Complex Systems by Cellular Automata

    CERN Document Server

    Kroc, Jiri; Hoekstra, Alfons G

    2010-01-01

    Deeply rooted in fundamental research in Mathematics and Computer Science, Cellular Automata (CA) are recognized as an intuitive modeling paradigm for Complex Systems. Already very basic CA, with extremely simple micro dynamics such as the Game of Life, show an almost endless display of complex emergent behavior. Conversely, CA can also be designed to produce a desired emergent behavior, using either theoretical methodologies or evolutionary techniques. Meanwhile, beyond the original realm of applications - Physics, Computer Science, and Mathematics – CA have also become work horses in very different disciplines such as epidemiology, immunology, sociology, and finance. In this context of fast and impressive progress, spurred further by the enormous attraction these topics have on students, this book emerges as a welcome overview of the field for its practitioners, as well as a good starting point for detailed study on the graduate and post-graduate level. The book contains three parts, two major parts on th...

  4. Method for analysis the complex grounding cables system

    International Nuclear Information System (INIS)

    Ackovski, R.; Acevski, N.

    2002-01-01

    A new iterative method for the analysis of the performances of the complex grounding systems (GS) in underground cable power networks with coated and/or uncoated metal sheathed cables is proposed in this paper. The analyzed grounding system consists of the grounding grid of a high voltage (HV) supplying transformer station (TS), middle voltage/low voltage (MV/LV) consumer TSs and arbitrary number of power cables, connecting them. The derived method takes into consideration the drops of voltage in the cable sheets and the mutual influence among all earthing electrodes, due to the resistive coupling through the soil. By means of the presented method it is possible to calculate the main grounding system performances, such as earth electrode potentials under short circuit fault to ground conditions, earth fault current distribution in the whole complex grounding system, step and touch voltages in the nearness of the earthing electrodes dissipating the fault current in the earth, impedances (resistances) to ground of all possible fault locations, apparent shield impedances to ground of all power cables, e.t.c. The proposed method is based on the admittance summation method [1] and is appropriately extended, so that it takes into account resistive coupling between the elements that the GS. (Author)

  5. Human practice in the life cycle of complex systems. Challenges and methods

    Energy Technology Data Exchange (ETDEWEB)

    Nuutinen, M. (ed.) [VTT Building and Transport, Espoo (Finland); Luoma, J. (ed.) [VTT Industrial Systems, Espoo (Finland)

    2005-12-15

    This book describes the current and near future challenges in work and traffic environments in light of the rapid technology development. It focuses on the following domains: road and vessel traffic, nuclear power production, automatic mining, steel factory and the pulp and paper industry. Each example concerns complex technical systems where human practice and behaviour has an important role for the safety, efficiency and productivity of the system. The articles illustrate the enormous field of humanrelated research when considering the design, validation, implementation, operation and maintenance of complex sociotechnical systems. Nevertheless, these 14 chapters are only examples of the range of questions related to the issue. The authors of the book are VTT experts in work or traffic psychology and research, system usability, risk and safety analysis, virtual environments and they have experience in studying different domains. This book is an attempt to open up the complex world of human-technology interaction for readers facing practical problems with complex systems. It is aimed to help a technical or organisational designer, a policy- maker, an expert or a user, the one who works or lives within the technology. (orig.)

  6. Human practice in the life cycle of complex systems. Challenges and methods

    International Nuclear Information System (INIS)

    Nuutinen, M.; Luoma, J.

    2005-12-01

    This book describes the current and near future challenges in work and traffic environments in light of the rapid technology development. It focuses on the following domains: road and vessel traffic, nuclear power production, automatic mining, steel factory and the pulp and paper industry. Each example concerns complex technical systems where human practice and behaviour has an important role for the safety, efficiency and productivity of the system. The articles illustrate the enormous field of human-related research when considering the design, validation, implementation, operation and maintenance of complex sociotechnical systems. Nevertheless, these 14 chapters are only examples of the range of questions related to the issue. The authors of the book are VTT experts in work or traffic psychology and research, system usability, risk and safety analysis, virtual environments and they have experience in studying different domains. This book is an attempt to open up the complex world of human-technology interaction for readers facing practical problems with complex systems. It is aimed to help a technical or organisational designer, a policy-maker, an expert or 'a user', the one who works or lives within the technology. (orig.)

  7. Aspects of transport system management within mining complex using information and telecommunication systems

    Science.gov (United States)

    Semykina, A. S.; Zagorodniy, N. A.; Konev, A. A.; Duganova, E. V.

    2018-05-01

    The paper considers aspects of transport system management within the mining complex. It indicates information and telecommunication systems that are used to increase transportation efficiency. It also describes key advantages and disadvantages. It is found that software products of the Modular Company used in pits allow increasing transport performance, minimizing losses and ensuring efficient transportation of minerals.

  8. Complex Intelligent Systems: Juxtaposition of Foundational Notions and a Research Agenda

    Directory of Open Access Journals (Sweden)

    Petros A.M. Gelepithis

    2001-12-01

    Full Text Available Abstract: The cardinality of the class, C , of complex intelligent systems, i.e., systems of intelligent systems and their resources, is steadily increasing. Such an increase, whether designed, sometimes changes significantly and fundamentally, the structure of C . Recently,the study of members of C and its structure comes under a variety of multidisciplinary headings the most prominent of which include General Systems Theory, Complexity Science, Artificial Life, and Cybernetics. Their common characteristic is the quest for a unified theory of a certain class of systems like a living system or an organisation. So far, the only candidate for a general theory of intelligent systems is Newell's Soar. To my knowledge there is presently no candidate theory of C except Newell's claimed extensibility of Soar. This paper juxtaposes the elements of Newell's conceptual basis with those of an alternative conceptual framework based on the thesis that communication and understanding are the primary processes shaping the structure of C and its members. It is patently obvious that a research agenda for the study of C can be extremely varied and long. The third section of this paper presents a highly selective research agenda that aims to provoke discussion among complexity theory scientists.

  9. From precision polymers to complex materials and systems

    Science.gov (United States)

    Lutz, Jean-François; Lehn, Jean-Marie; Meijer, E. W.; Matyjaszewski, Krzysztof

    2016-05-01

    Complex chemical systems, such as living biological matter, are highly organized structures based on discrete molecules in constant dynamic interactions. These natural materials can evolve and adapt to their environment. By contrast, man-made materials exhibit simpler properties. In this Review, we highlight that most of the necessary elements for the development of more complex synthetic matter are available today. Using modern strategies, such as controlled radical polymerizations, supramolecular polymerizations or stepwise synthesis, polymers with precisely controlled molecular structures can be synthesized. Moreover, such tailored polymers can be folded or self-assembled into defined nanoscale morphologies. These self-organized macromolecular objects can be at thermal equilibrium or can be driven out of equilibrium. Recently, in the latter case, interesting dynamic materials have been developed. However, this is just a start, and more complex adaptive materials are anticipated.

  10. A universal indicator of critical state transitions in noisy complex networked systems.

    Science.gov (United States)

    Liang, Junhao; Hu, Yanqing; Chen, Guanrong; Zhou, Tianshou

    2017-02-23

    Critical transition, a phenomenon that a system shifts suddenly from one state to another, occurs in many real-world complex networks. We propose an analytical framework for exactly predicting the critical transition in a complex networked system subjected to noise effects. Our prediction is based on the characteristic return time of a simple one-dimensional system derived from the original higher-dimensional system. This characteristic time, which can be easily calculated using network data, allows us to systematically separate the respective roles of dynamics, noise and topology of the underlying networked system. We find that the noise can either prevent or enhance critical transitions, playing a key role in compensating the network structural defect which suffers from either internal failures or environmental changes, or both. Our analysis of realistic or artificial examples reveals that the characteristic return time is an effective indicator for forecasting the sudden deterioration of complex networks.

  11. Systems thinking, complexity and managerial decision-making: an analytical review.

    Science.gov (United States)

    Cramp, D G; Carson, E R

    2009-05-01

    One feature that characterizes the organization and delivery of health care is its inherent complexity. All too often, with so much information and so many activities involved, it is difficult for decision-makers to determine in an objective fashion an appropriate course of action. It would appear that a holistic rather than a reductionist approach would be advantageous. The aim of this paper is to review how formal systems thinking can aid decision-making in complex situations. Consideration is given as to how the use of a number of systems modelling methodologies can help in gaining an understanding of a complex decision situation. This in turn can enhance the possibility of a decision being made in a more rational, explicit and transparent fashion. The arguments and approaches are illustrated using examples taken from the public health arena.

  12. Optimized design of embedded DSP system hardware supporting complex algorithms

    Science.gov (United States)

    Li, Yanhua; Wang, Xiangjun; Zhou, Xinling

    2003-09-01

    The paper presents an optimized design method for a flexible and economical embedded DSP system that can implement complex processing algorithms as biometric recognition, real-time image processing, etc. It consists of a floating-point DSP, 512 Kbytes data RAM, 1 Mbytes FLASH program memory, a CPLD for achieving flexible logic control of input channel and a RS-485 transceiver for local network communication. Because of employing a high performance-price ratio DSP TMS320C6712 and a large FLASH in the design, this system permits loading and performing complex algorithms with little algorithm optimization and code reduction. The CPLD provides flexible logic control for the whole DSP board, especially in input channel, and allows convenient interface between different sensors and DSP system. The transceiver circuit can transfer data between DSP and host computer. In the paper, some key technologies are also introduced which make the whole system work efficiently. Because of the characters referred above, the hardware is a perfect flat for multi-channel data collection, image processing, and other signal processing with high performance and adaptability. The application section of this paper presents how this hardware is adapted for the biometric identification system with high identification precision. The result reveals that this hardware is easy to interface with a CMOS imager and is capable of carrying out complex biometric identification algorithms, which require real-time process.

  13. Application of functional derivatives to analysis of complex systems

    Czech Academy of Sciences Publication Activity Database

    Beran, Zdeněk; Čelikovský, Sergej

    2013-01-01

    Roč. 350, č. 10 (2013), s. 2982-2993 ISSN 0016-0032 R&D Projects: GA ČR GA13-20433S Institutional support: RVO:67985556 Keywords : complex systems * linear equation * modeling Subject RIV: BC - Control Systems Theory Impact factor: 2.260, year: 2013 http://library.utia.cas.cz/separaty/2013/TR/beran-0398123.pdf

  14. Predictive hypotheses are ineffectual in resolving complex biochemical systems.

    Science.gov (United States)

    Fry, Michael

    2018-03-20

    Scientific hypotheses may either predict particular unknown facts or accommodate previously-known data. Although affirmed predictions are intuitively more rewarding than accommodations of established facts, opinions divide whether predictive hypotheses are also epistemically superior to accommodation hypotheses. This paper examines the contribution of predictive hypotheses to discoveries of several bio-molecular systems. Having all the necessary elements of the system known beforehand, an abstract predictive hypothesis of semiconservative mode of DNA replication was successfully affirmed. However, in defining the genetic code whose biochemical basis was unclear, hypotheses were only partially effective and supplementary experimentation was required for its conclusive definition. Markedly, hypotheses were entirely inept in predicting workings of complex systems that included unknown elements. Thus, hypotheses did not predict the existence and function of mRNA, the multiple unidentified components of the protein biosynthesis machinery, or the manifold unknown constituents of the ubiquitin-proteasome system of protein breakdown. Consequently, because of their inability to envision unknown entities, predictive hypotheses did not contribute to the elucidation of cation theories remained the sole instrument to explain complex bio-molecular systems, the philosophical question of alleged advantage of predictive over accommodative hypotheses became inconsequential.

  15. Life: An Introduction to Complex Systems Biology

    CERN Document Server

    Kaneko, Kunihiko

    2006-01-01

    What is life? Has molecular biology given us a satisfactory answer to this question? And if not, why, and how to carry on from there? This book examines life not from the reductionist point of view, but rather asks the question: what are the universal properties of living systems and how can one construct from there a phenomenological theory of life that leads naturally to complex processes such as reproductive cellular systems, evolution and differentiation? The presentation has been deliberately kept fairly non-technical so as to address a broad spectrum of students and researchers from the natural sciences and informatics.

  16. Bridging complexity theory and resilience to develop surge capacity in health systems.

    Science.gov (United States)

    Therrien, Marie-Christine; Normandin, Julie-Maude; Denis, Jean-Louis

    2017-03-20

    Purpose Health systems are periodically confronted by crises - think of Severe Acute Respiratory Syndrome, H1N1, and Ebola - during which they are called upon to manage exceptional situations without interrupting essential services to the population. The ability to accomplish this dual mandate is at the heart of resilience strategies, which in healthcare systems involve developing surge capacity to manage a sudden influx of patients. The paper aims to discuss these issues. Design/methodology/approach This paper relates insights from resilience research to the four "S" of surge capacity (staff, stuff, structures and systems) and proposes a framework based on complexity theory to better understand and assess resilience factors that enable the development of surge capacity in complex health systems. Findings Detailed and dynamic complexities manifest in different challenges during a crisis. Resilience factors are classified according to these types of complexity and along their temporal dimensions: proactive factors that improve preparedness to confront both usual and exceptional requirements, and passive factors that enable response to unexpected demands as they arise during a crisis. The framework is completed by further categorizing resilience factors according to their stabilizing or destabilizing impact, drawing on feedback processes described in complexity theory. Favorable order resilience factors create consistency and act as stabilizing forces in systems, while favorable disorder factors such as diversity and complementarity act as destabilizing forces. Originality/value The framework suggests a balanced and innovative process to integrate these factors in a pragmatic approach built around the fours "S" of surge capacity to increase health system resilience.

  17. CRISPR-based immune systems of the Sulfolobales: complexity and diversity

    DEFF Research Database (Denmark)

    Garrett, Roger Antony; Shah, Shiraz Ali; Vestergaard, Gisle Alberg

    2011-01-01

    CRISPR (cluster of regularly interspaced palindromic repeats)/Cas and CRISPR/Cmr systems of Sulfolobus, targeting DNA and RNA respectively of invading viruses or plasmids are complex and diverse. We address their classification and functional diversity, and the wide sequence diversity of RAMP...... (repeat-associated mysterious protein)-motif containing proteins encoded in Cmr modules. Factors influencing maintenance of partially impaired CRISPR-based systems are discussed. The capacity for whole CRISPR transcripts to be generated despite the uptake of transcription signals within spacer sequences...... is considered. Targeting of protospacer regions of invading elements by Cas protein-crRNA (CRISPR RNA) complexes exhibit relatively low sequence stringency, but the integrity of protospacer-associated motifs appears to be important. Different mechanisms for circumventing or inactivating the immune systems...

  18. Analysis and Perspective from the Complex Aerospace Systems Exchange (CASE) 2013

    Science.gov (United States)

    Jones, Kennie H.; Parker, Peter A.; Detweiler, Kurt N.; McGowan, Anna-Maria R.; Dress, David A.; Kimmel, William M.

    2014-01-01

    NASA Langley Research Center embedded four rapporteurs at the Complex Aerospace Systems Exchange (CASE) held in August 2013 with the objective to capture the essence of the conference presentations and discussions. CASE was established to provide a discussion forum among chief engineers, program managers, and systems engineers on challenges in the engineering of complex aerospace systems. The meeting consists of invited presentations and panels from industry, academia, and government followed by discussions among attendees. This report presents the major and reoccurring themes captured throughout the meeting and provides analysis and insights to further the CASE mission.

  19. Impact of delayed information in sub-second complex systems

    Science.gov (United States)

    Manrique, Pedro D.; Zheng, Minzhang; Johnson Restrepo, D. Dylan; Hui, Pak Ming; Johnson, Neil F.

    What happens when you slow down the delivery of information in large-scale complex systems that operate faster than the blink of an eye? This question just adopted immediate commercial, legal and political importance following U.S. regulators' decision to allow an intentional 350 microsecond delay to be added in the ultrafast network of financial exchanges. However there is still no scientific understanding available to policymakers of the potential system-wide impact of such delays. Here we take a first step in addressing this question using a minimal model of a population of competing, heterogeneous, adaptive agents which has previously been shown to produce similar statistical features to real markets. We find that while certain extreme system-level behaviors can be prevented by such delays, the duration of others is increased. This leads to a highly non-trivial relationship between delays and system-wide instabilities which warrants deeper empirical investigation. The generic nature of our model suggests there should be a fairly wide class of complex systems where such delay-driven extreme behaviors can arise, e.g. sub-second delays in brain function possibly impacting individuals' behavior, and sub-second delays in navigational systems potentially impacting the safety of driverless vehicles.

  20. Impact of delayed information in sub-second complex systems

    Directory of Open Access Journals (Sweden)

    Pedro D. Manrique

    Full Text Available What happens when you slow down the delivery of information in large-scale complex systems that operate faster than the blink of an eye? This question just adopted immediate commercial, legal and political importance following U.S. regulators’ decision to allow an intentional 350 microsecond delay to be added in the ultrafast network of financial exchanges. However there is still no scientific understanding available to policymakers of the potential system-wide impact of such delays. Here we take a first step in addressing this question using a minimal model of a population of competing, heterogeneous, adaptive agents which has previously been shown to produce similar statistical features to real markets. We find that while certain extreme system-level behaviors can be prevented by such delays, the duration of others is increased. This leads to a highly non-trivial relationship between delays and system-wide instabilities which warrants deeper empirical investigation. The generic nature of our model suggests there should be a fairly wide class of complex systems where such delay-driven extreme behaviors can arise, e.g. sub-second delays in brain function possibly impacting individuals’ behavior, and sub-second delays in navigational systems potentially impacting the safety of driverless vehicles. Keywords: Ultra-fast networks, Temporal perturbation, Competition, Modeling

  1. Systems and complexity thinking in the general practice literature: an integrative, historical narrative review.

    Science.gov (United States)

    Sturmberg, Joachim P; Martin, Carmel M; Katerndahl, David A

    2014-01-01

    Over the past 7 decades, theories in the systems and complexity sciences have had a major influence on academic thinking and research. We assessed the impact of complexity science on general practice/family medicine. We performed a historical integrative review using the following systematic search strategy: medical subject heading [humans] combined in turn with the terms complex adaptive systems, nonlinear dynamics, systems biology, and systems theory, limited to general practice/family medicine and published before December 2010. A total of 16,242 articles were retrieved, of which 49 were published in general practice/family medicine journals. Hand searches and snowballing retrieved another 35. After a full-text review, we included 56 articles dealing specifically with systems sciences and general/family practice. General practice/family medicine engaged with the emerging systems and complexity theories in 4 stages. Before 1995, articles tended to explore common phenomenologic general practice/family medicine experiences. Between 1995 and 2000, articles described the complex adaptive nature of this discipline. Those published between 2000 and 2005 focused on describing the system dynamics of medical practice. After 2005, articles increasingly applied the breadth of complex science theories to health care, health care reform, and the future of medicine. This historical review describes the development of general practice/family medicine in relation to complex adaptive systems theories, and shows how systems sciences more accurately reflect the discipline's philosophy and identity. Analysis suggests that general practice/family medicine first embraced systems theories through conscious reorganization of its boundaries and scope, before applying empirical tools. Future research should concentrate on applying nonlinear dynamics and empirical modeling to patient care, and to organizing and developing local practices, engaging in community development, and influencing

  2. A low complexity VBLAST OFDM detection algorithm for wireless LAN systems

    NARCIS (Netherlands)

    Wu, Y.; Lei, Zhongding; Sun, Sumei

    2004-01-01

    A low complexity detection algorithm for VBLAST OFDM system is presented. Using the fact that the correlation among neighboring subcarriers is high for wireless LAN channels, this algorithm significantly reduces the complexity of VBLAST OFDM detection. The performance degradation of the proposed

  3. Green IT engineering concepts, models, complex systems architectures

    CERN Document Server

    Kondratenko, Yuriy; Kacprzyk, Janusz

    2017-01-01

    This volume provides a comprehensive state of the art overview of a series of advanced trends and concepts that have recently been proposed in the area of green information technologies engineering as well as of design and development methodologies for models and complex systems architectures and their intelligent components. The contributions included in the volume have their roots in the authors’ presentations, and vivid discussions that have followed the presentations, at a series of workshop and seminars held within the international TEMPUS-project GreenCo project in United Kingdom, Italy, Portugal, Sweden and the Ukraine, during 2013-2015 and at the 1st - 5th Workshops on Green and Safe Computing (GreenSCom) held in Russia, Slovakia and the Ukraine. The book presents a systematic exposition of research on principles, models, components and complex systems and a description of industry- and society-oriented aspects of the green IT engineering. A chapter-oriented structure has been adopted for this book ...

  4. Systems Engineering Metrics: Organizational Complexity and Product Quality Modeling

    Science.gov (United States)

    Mog, Robert A.

    1997-01-01

    Innovative organizational complexity and product quality models applicable to performance metrics for NASA-MSFC's Systems Analysis and Integration Laboratory (SAIL) missions and objectives are presented. An intensive research effort focuses on the synergistic combination of stochastic process modeling, nodal and spatial decomposition techniques, organizational and computational complexity, systems science and metrics, chaos, and proprietary statistical tools for accelerated risk assessment. This is followed by the development of a preliminary model, which is uniquely applicable and robust for quantitative purposes. Exercise of the preliminary model using a generic system hierarchy and the AXAF-I architectural hierarchy is provided. The Kendall test for positive dependence provides an initial verification and validation of the model. Finally, the research and development of the innovation is revisited, prior to peer review. This research and development effort results in near-term, measurable SAIL organizational and product quality methodologies, enhanced organizational risk assessment and evolutionary modeling results, and 91 improved statistical quantification of SAIL productivity interests.

  5. Complex harmonic modal analysis of rotor systems

    International Nuclear Information System (INIS)

    Han, Dong Ju

    2015-01-01

    Complex harmonic analysis for rotor systems has been proposed from the strict complex modal analysis based upon Floquet theory. In this process the harmonic balance method is adopted, effectively associated with conventional eigenvalue analysis. Also, the harmonic coefficients equivalent to dFRFs in harmonic mode has been derived in practice. The modes are classified from identifying the modal characteristics, and the adaptation of harmonic balance method has been proven by comparing the results of the stability analyses from Floque theory and the eigen analysis. The modal features of each critical speed are depicted in quantitatively and qualitatively by showing that the strengths of each component of the harmonic coefficients are estimated from the order of magnitude analysis according to their harmonic patterns. This effectiveness has been verified by comparing with the numerical solutions

  6. Foundations of Complex Systems Nonlinear Dynamics, Statistical Physics, and Prediction

    CERN Document Server

    Nicolis, Gregoire

    2007-01-01

    Complexity is emerging as a post-Newtonian paradigm for approaching a large body of phenomena of concern at the crossroads of physical, engineering, environmental, life and human sciences from a unifying point of view. This book outlines the foundations of modern complexity research as it arose from the cross-fertilization of ideas and tools from nonlinear science, statistical physics and numerical simulation. It is shown how these developments lead to an understanding, both qualitative and quantitative, of the complex systems encountered in nature and in everyday experience and, conversely, h

  7. Atomic switch networks-nanoarchitectonic design of a complex system for natural computing.

    Science.gov (United States)

    Demis, E C; Aguilera, R; Sillin, H O; Scharnhorst, K; Sandouk, E J; Aono, M; Stieg, A Z; Gimzewski, J K

    2015-05-22

    Self-organized complex systems are ubiquitous in nature, and the structural complexity of these natural systems can be used as a model to design new classes of functional nanotechnology based on highly interconnected networks of interacting units. Conventional fabrication methods for electronic computing devices are subject to known scaling limits, confining the diversity of possible architectures. This work explores methods of fabricating a self-organized complex device known as an atomic switch network and discusses its potential utility in computing. Through a merger of top-down and bottom-up techniques guided by mathematical and nanoarchitectonic design principles, we have produced functional devices comprising nanoscale elements whose intrinsic nonlinear dynamics and memorization capabilities produce robust patterns of distributed activity and a capacity for nonlinear transformation of input signals when configured in the appropriate network architecture. Their operational characteristics represent a unique potential for hardware implementation of natural computation, specifically in the area of reservoir computing-a burgeoning field that investigates the computational aptitude of complex biologically inspired systems.

  8. Reframing the challenges to integrated care: a complex-adaptive systems perspective

    Directory of Open Access Journals (Sweden)

    Peter Tsasis

    2012-09-01

    Full Text Available Introduction: Despite over two decades of international experience and research on health systems integration, integrated care has not developed widely. We hypothesized that part of the problem may lie in how we conceptualize the integration process and the complex systems within which integrated care is enacted. This study aims to contribute to discourse regarding the relevance and utility of a complex-adaptive systems (CAS perspective on integrated care.Methods: In the Canadian province of Ontario, government mandated the development of fourteen Local Health Integration Networks in 2006. Against the backdrop of these efforts to integrate care, we collected focus group data from a diverse sample of healthcare professionals in the Greater Toronto Area using convenience and snowball sampling. A semi-structured interview guide was used to elicit participant views and experiences of health systems integration. We use a CAS framework to describe and analyze the data, and to assess the theoretical fit of a CAS perspective with the dominant themes in participant responses.Results: Our findings indicate that integration is challenged by system complexity, weak ties and poor alignment among professionals and organizations, a lack of funding incentives to support collaborative work, and a bureaucratic environment based on a command and control approach to management. Using a CAS framework, we identified several characteristics of CAS in our data, including diverse, interdependent and semi-autonomous actors; embedded co-evolutionary systems; emergent behaviours and non-linearity; and self-organizing capacity. Discussion and Conclusion: One possible explanation for the lack of systems change towards integration is that we have failed to treat the healthcare system as complex-adaptive. The data suggest that future integration initiatives must be anchored in a CAS perspective, and focus on building the system's capacity to self-organize. We conclude that

  9. Reframing the challenges to integrated care: a complex-adaptive systems perspective

    Directory of Open Access Journals (Sweden)

    Peter Tsasis

    2012-09-01

    Full Text Available Introduction: Despite over two decades of international experience and research on health systems integration, integrated care has not developed widely. We hypothesized that part of the problem may lie in how we conceptualize the integration process and the complex systems within which integrated care is enacted. This study aims to contribute to discourse regarding the relevance and utility of a complex-adaptive systems (CAS perspective on integrated care. Methods: In the Canadian province of Ontario, government mandated the development of fourteen Local Health Integration Networks in 2006. Against the backdrop of these efforts to integrate care, we collected focus group data from a diverse sample of healthcare professionals in the Greater Toronto Area using convenience and snowball sampling. A semi-structured interview guide was used to elicit participant views and experiences of health systems integration. We use a CAS framework to describe and analyze the data, and to assess the theoretical fit of a CAS perspective with the dominant themes in participant responses. Results: Our findings indicate that integration is challenged by system complexity, weak ties and poor alignment among professionals and organizations, a lack of funding incentives to support collaborative work, and a bureaucratic environment based on a command and control approach to management. Using a CAS framework, we identified several characteristics of CAS in our data, including diverse, interdependent and semi-autonomous actors; embedded co-evolutionary systems; emergent behaviours and non-linearity; and self-organizing capacity.  Discussion and Conclusion: One possible explanation for the lack of systems change towards integration is that we have failed to treat the healthcare system as complex-adaptive. The data suggest that future integration initiatives must be anchored in a CAS perspective, and focus on building the system's capacity to self-organize. We conclude that

  10. Losing the boxes: fragmentation as a source of system complexity

    CSIR Research Space (South Africa)

    Baumbach, J

    2015-09-01

    Full Text Available . This paper, which looks at systems containing people, argues that the use of transdisciplinary approaches will aid in the insight and comprehension of complex problems. It will also be shown that the inclusion of subjective and inter-subjective system aspects...

  11. Complex Teacher Evaluation Systems Can Produce Negative Perceptions

    Science.gov (United States)

    Schumacher, Gary

    2010-01-01

    The purpose of this study was to determine teacher perceptions of the impact on instructional practice when using a complex, standards-based performance evaluation system. The study used expectancy theory to investigate teacher expectancy (did they believe they could enhance their practice to the identified program standards?), instrumentality…

  12. Software quality assurance: in large scale and complex software-intensive systems

    NARCIS (Netherlands)

    Mistrik, I.; Soley, R.; Ali, N.; Grundy, J.; Tekinerdogan, B.

    2015-01-01

    Software Quality Assurance in Large Scale and Complex Software-intensive Systems presents novel and high-quality research related approaches that relate the quality of software architecture to system requirements, system architecture and enterprise-architecture, or software testing. Modern software

  13. MODELS AND METHODS OF SAFETY-ORIENTED PROJECT MANAGEMENT OF DEVELOPMENT OF COMPLEX SYSTEMS: METHODOLOGICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Олег Богданович ЗАЧКО

    2016-03-01

    Full Text Available The methods and models of safety-oriented project management of the development of complex systems are proposed resulting from the convergence of existing approaches in project management in contrast to the mechanism of value-oriented management. A cognitive model of safety oriented project management of the development of complex systems is developed, which provides a synergistic effect that is to move the system from the original (pre condition in an optimal one from the viewpoint of life safety - post-project state. The approach of assessment the project complexity is proposed, which consists in taking into account the seasonal component of a time characteristic of life cycles of complex organizational and technical systems with occupancy. This enabled to take into account the seasonal component in simulation models of life cycle of the product operation in complex organizational and technical system, modeling the critical points of operation of systems with occupancy, which forms a new methodology for safety-oriented management of projects, programs and portfolios of projects with the formalization of the elements of complexity.

  14. Metaheuristics progress in complex systems optimization

    CERN Document Server

    Doerner, Karl F; Greistorfer, Peter; Gutjahr, Walter; Hartl, Richard F; Reimann, Marc

    2007-01-01

    The aim of ""Metaheuristics: Progress in Complex Systems Optimization"" is to provide several different kinds of information: a delineation of general metaheuristics methods, a number of state-of-the-art articles from a variety of well-known classical application areas as well as an outlook to modern computational methods in promising new areas. Therefore, this book may equally serve as a textbook in graduate courses for students, as a reference book for people interested in engineering or social sciences, and as a collection of new and promising avenues for researchers working in this field.

  15. Time Factor in the Theory of Anthropogenic Risk Prediction in Complex Dynamic Systems

    Science.gov (United States)

    Ostreikovsky, V. A.; Shevchenko, Ye N.; Yurkov, N. K.; Kochegarov, I. I.; Grishko, A. K.

    2018-01-01

    The article overviews the anthropogenic risk models that take into consideration the development of different factors in time that influence the complex system. Three classes of mathematical models have been analyzed for the use in assessing the anthropogenic risk of complex dynamic systems. These models take into consideration time factor in determining the prospect of safety change of critical systems. The originality of the study is in the analysis of five time postulates in the theory of anthropogenic risk and the safety of highly important objects. It has to be stressed that the given postulates are still rarely used in practical assessment of equipment service life of critically important systems. That is why, the results of study presented in the article can be used in safety engineering and analysis of critically important complex technical systems.

  16. Utilisation des antibiotiques et profil de résistance des souches de ...

    African Journals Online (AJOL)

    sanitaire des élevages avicoles (OMS/FAO,. 2002 ; Chahed, 2007). Considérées le plus souvent comme des .... base du type d'exploitation : la première de type semi-industriel et la seconde de type traditionnel. Les ... industriel sur les antibiotiques enregistrés était de 100% et largement supérieure à celui observé chez les ...

  17. AS_599_A4 OK

    African Journals Online (AJOL)

    AKA BOKO

    Résumé. L'Algérie a mis en place un réseau industriel dense, concentrant des secteurs polluants et gros ... Mots-clés : métaux lourds, rejet liquide, déchets industriels, pollution, environnement, oued Meboudja, ... Pour évaluer les concentrations en éléments traces métalliques (ETM) dans les eaux de l'oued Meboudja.

  18. Capturing complexity in work disability research: application of system dynamics modeling methodology.

    Science.gov (United States)

    Jetha, Arif; Pransky, Glenn; Hettinger, Lawrence J

    2016-01-01

    Work disability (WD) is characterized by variable and occasionally undesirable outcomes. The underlying determinants of WD outcomes include patterns of dynamic relationships among health, personal, organizational and regulatory factors that have been challenging to characterize, and inadequately represented by contemporary WD models. System dynamics modeling (SDM) methodology applies a sociotechnical systems thinking lens to view WD systems as comprising a range of influential factors linked by feedback relationships. SDM can potentially overcome limitations in contemporary WD models by uncovering causal feedback relationships, and conceptualizing dynamic system behaviors. It employs a collaborative and stakeholder-based model building methodology to create a visual depiction of the system as a whole. SDM can also enable researchers to run dynamic simulations to provide evidence of anticipated or unanticipated outcomes that could result from policy and programmatic intervention. SDM may advance rehabilitation research by providing greater insights into the structure and dynamics of WD systems while helping to understand inherent complexity. Challenges related to data availability, determining validity, and the extensive time and technical skill requirements for model building may limit SDM's use in the field and should be considered. Contemporary work disability (WD) models provide limited insight into complexity associated with WD processes. System dynamics modeling (SDM) has the potential to capture complexity through a stakeholder-based approach that generates a simulation model consisting of multiple feedback loops. SDM may enable WD researchers and practitioners to understand the structure and behavior of the WD system as a whole, and inform development of improved strategies to manage straightforward and complex WD cases.

  19. System Testability Analysis for Complex Electronic Devices Based on Multisignal Model

    International Nuclear Information System (INIS)

    Long, B; Tian, S L; Huang, J G

    2006-01-01

    It is necessary to consider the system testability problems for electronic devices during their early design phase because modern electronic devices become smaller and more compositive while their function and structure are more complex. Multisignal model, combining advantage of structure model and dependency model, is used to describe the fault dependency relationship for the complex electronic devices, and the main testability indexes (including optimal test program, fault detection rate, fault isolation rate, etc.) to evaluate testability and corresponding algorithms are given. The system testability analysis process is illustrated for USB-GPIB interface circuit with TEAMS toolbox. The experiment results show that the modelling method is simple, the computation speed is rapid and this method has important significance to improve diagnostic capability for complex electronic devices

  20. Mathematical modeling of complexing in the scandium-salicylic acid-isoamyl alcohol system

    International Nuclear Information System (INIS)

    Evseev, A.M.; Smirnova, N.S.; Fadeeva, V.I.; Tikhomirova, T.I.; Kir'yanov, Yu.A.

    1984-01-01

    Mathematical modeling of an equilibrium multicomponent physicochemical system for extraction of Sc salicylate complexes by isoamyl alcohol was conducted. To calculate the equilibrium concentrations of Sc complexes different with respect to the content and composition, the system of nonlinear algebraic mass balance equations was solved. Experimental data on the extraction of Sc salicylates by isoamyl alcohol versus the pH of the solution at a constant Sc concentration and different concentration of salicylate-ions were used for construction of the mathematical model. The stability constants of ScHSal 2+ , Sc(HSal) 3 , ScOH(HSal) 2 , ScoH(HSal) 2 complexes were calculated

  1. Complex socio-technical systems: Characterization and management guidelines.

    Science.gov (United States)

    Righi, Angela Weber; Saurin, Tarcisio Abreu

    2015-09-01

    Although ergonomics has paid increasing attention to the perspective of complexity, methods for its operationalization are scarce. This study introduces a framework for the operationalization of the "attribute view" of complexity, which involves: (i) the delimitation of the socio-technical system (STS); (ii) the description of four complexity attributes, namely a large number of elements in dynamic interactions, a wide diversity of elements, unexpected variability, and resilience; (iii) the assessment of six management guidelines, namely design slack, give visibility to processes and outcomes, anticipate and monitor the impacts of small changes, monitor the gap between prescription and practice, encourage diversity of perspectives when making decisions, and create an environment that supports resilience; and (iv) the identification of leverage points for improving the STS design, based on both the analysis of relationships among the attributes and their classification as irreducible/manageable complexity, and liability/asset. The use of the framework is illustrated by the study of an emergency department of a University hospital. Data collection involved analysis of documents, observations of work at the front-line, interviews with employees, and the application of questionnaires. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  2. Socio-Environmental Resilience and Complex Urban Systems Modeling

    Science.gov (United States)

    Deal, Brian; Petri, Aaron; Pan, Haozhi; Goldenberg, Romain; Kalantari, Zahra; Cvetkovic, Vladimir

    2017-04-01

    The increasing pressure of climate change has inspired two normative agendas; socio-technical transitions and socio-ecological resilience, both sharing a complex-systems epistemology (Gillard et al. 2016). Socio-technical solutions include a continuous, massive data gathering exercise now underway in urban places under the guise of developing a 'smart'(er) city. This has led to the creation of data-rich environments where large data sets have become central to monitoring and forming a response to anomalies. Some have argued that these kinds of data sets can help in planning for resilient cities (Norberg and Cumming 2008; Batty 2013). In this paper, we focus on a more nuanced, ecologically based, socio-environmental perspective of resilience planning that is often given less consideration. Here, we broadly discuss (and model) the tightly linked, mutually influenced, social and biophysical subsystems that are critical for understanding urban resilience. We argue for the need to incorporate these sub system linkages into the resilience planning lexicon through the integration of systems models and planning support systems. We make our case by first providing a context for urban resilience from a socio-ecological and planning perspective. We highlight the data needs for this type of resilient planning and compare it to currently collected data streams in various smart city efforts. This helps to define an approach for operationalizing socio-environmental resilience planning using robust systems models and planning support systems. For this, we draw from our experiences in coupling a spatio-temporal land use model (the Landuse Evolution and impact Assessment Model (LEAM)) with water quality and quantity models in Stockholm Sweden. We describe the coupling of these systems models using a robust Planning Support System (PSS) structural framework. We use the coupled model simulations and PSS to analyze the connection between urban land use transformation (social) and water

  3. On complex adaptive systems and terrorism [rapid communication

    Science.gov (United States)

    Ahmed, E.; Elgazzar, A. S.; Hegazi, A. S.

    2005-03-01

    Complex adaptive systems (CAS) are ubiquitous in nature. They are basic in social sciences. An overview of CAS is given with emphasize on the occurrence of bad side effects to seemingly “wise” decisions. Hence application to terrorism is given. Some conclusions on how to deal with this phenomena are proposed.

  4. Can We Advance Macroscopic Quantum Systems Outside the Framework of Complex Decoherence Theory?

    Science.gov (United States)

    Brezinski, Mark E; Rupnick, Maria

    2016-01-01

    Macroscopic quantum systems (MQS) are macroscopic systems driven by quantum rather than classical mechanics, a long studied area with minimal success till recently. Harnessing the benefits of quantum mechanics on a macroscopic level would revolutionize fields ranging from telecommunication to biology, the latter focused on here for reasons discussed. Contrary to misconceptions, there are no known physical laws that prevent the development of MQS. Instead, they are generally believed universally lost in complex systems from environmental entanglements (decoherence). But we argue success is achievable MQS with decoherence compensation developed, naturally or artificially, from top-down rather current reductionist approaches. This paper advances the MQS field by a complex systems approach to decoherence. First, why complex system decoherence approaches (top-down) are needed is discussed. Specifically, complex adaptive systems (CAS) are not amenable to reductionist models (and their master equations) because of emergent behaviour, approximation failures, not accounting for quantum compensatory mechanisms, ignoring path integrals, and the subentity problem. In addition, since MQS must exist within the context of the classical world, where rapid decoherence and prolonged coherence are both needed. Nature has already demonstrated this for quantum subsystems such as photosynthesis and magnetoreception. Second, we perform a preliminary study that illustrates a top-down approach to potential MQS. In summary, reductionist arguments against MQS are not justifiable. It is more likely they are not easily detectable in large intact classical systems or have been destroyed by reductionist experimental set-ups. This complex systems decoherence approach, using top down investigations, is critical to paradigm shifts in MQS research both in biological and non-biological systems. PMID:29200743

  5. Student Learning of Complex Earth Systems: Conceptual Frameworks of Earth Systems and Instructional Design

    Science.gov (United States)

    Scherer, Hannah H.; Holder, Lauren; Herbert, Bruce

    2017-01-01

    Engaging students in authentic problem solving concerning environmental issues in near-surface complex Earth systems involves both developing student conceptualization of Earth as a system and applying that scientific knowledge using techniques that model those used by professionals. In this first paper of a two-part series, we review the state of…

  6. Complex systems of biological interest stability under ionising radiations

    International Nuclear Information System (INIS)

    Maclot, Sylvain

    2014-01-01

    This PhD work presents the study of stability of molecular systems of biological interest in the gas phase after interaction with ionising radiations. The use of ionising radiation can probe the physical chemistry of complex systems at the molecular scale and thus consider their intrinsic properties. Beyond the fundamental aspect, this work is part of the overall understanding of radiation effects on living organisms and in particular the use of ionizing radiation in radiotherapy. Specifically, this study focused on the use of low-energy multiply charged ions (tens of keV) provided by the GANIL (Caen), which includes most of the experiments presented. In addition, experiments using VUV photons were also conducted at synchrotron ELETTRA (Trieste, Italy). The bio-molecular systems studied are amino acids and nucleic acid constituents. Using an experimental crossed beams device allows interaction between biomolecules and ionising radiation leads mainly to the ionization and fragmentation of the system. The study of its relaxation dynamics is by time-of-flight mass spectrometry coupled to a coincidences measurements method. It is shown that an approach combining experiment and theory allows a detailed study of the fragmentation dynamics of complex systems. The results indicate that fragmentation is generally governed by the Coulomb repulsion but the intramolecular rearrangements involve specific relaxation mechanisms. (author) [fr

  7. Supervisory control for a complex robotic system

    International Nuclear Information System (INIS)

    Miller, D.J.

    1988-01-01

    The Robotic Radiation Survey and Analysis System investigates the use of advanced robotic technology for performing remote radiation surveys on nuclear waste shipping casks. Robotic systems have the potential for reducing personnel exposure to radiation and providing fast reliable throughput at future repository sites. A primary technology issue is the integrated control of distributed specialized hardware through a modular supervisory software system. Automated programming of robot trajectories based upon mathematical models of the cask and robot coupled with sensory feedback enables flexible operation of a commercial gantry robot with the reliability needed to perform autonomous operations in a hazardous environment. Complexity is managed using structured software engineering techniques resulting in the generation of reusable command primitives which contribute to a software parts catalog for a generalized robot programming language

  8. Advances in dynamic network modeling in complex transportation systems

    CERN Document Server

    Ukkusuri, Satish V

    2013-01-01

    This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.

  9. A Framework for Modeling and Analyzing Complex Distributed Systems

    National Research Council Canada - National Science Library

    Lynch, Nancy A; Shvartsman, Alex Allister

    2005-01-01

    Report developed under STTR contract for topic AF04-T023. This Phase I project developed a modeling language and laid a foundation for computational support tools for specifying, analyzing, and verifying complex distributed system designs...

  10. Comparing Virtual and Physical Robotics Environments for Supporting Complex Systems and Computational Thinking

    Science.gov (United States)

    Berland, Matthew; Wilensky, Uri

    2015-01-01

    Both complex systems methods (such as agent-based modeling) and computational methods (such as programming) provide powerful ways for students to understand new phenomena. To understand how to effectively teach complex systems and computational content to younger students, we conducted a study in four urban middle school classrooms comparing…

  11. Statistical Physics of Complex Substitutive Systems

    Science.gov (United States)

    Jin, Qing

    Diffusion processes are central to human interactions. Despite extensive studies that span multiple disciplines, our knowledge is limited to spreading processes in non-substitutive systems. Yet, a considerable number of ideas, products, and behaviors spread by substitution; to adopt a new one, agents must give up an existing one. This captures the spread of scientific constructs--forcing scientists to choose, for example, a deterministic or probabilistic worldview, as well as the adoption of durable items, such as mobile phones, cars, or homes. In this dissertation, I develop a statistical physics framework to describe, quantify, and understand substitutive systems. By empirically exploring three collected high-resolution datasets pertaining to such systems, I build a mechanistic model describing substitutions, which not only analytically predicts the universal macroscopic phenomenon discovered in the collected datasets, but also accurately captures the trajectories of individual items in a complex substitutive system, demonstrating a high degree of regularity and universality in substitutive systems. I also discuss the origins and insights of the parameters in the substitution model and possible generalization form of the mathematical framework. The systematical study of substitutive systems presented in this dissertation could potentially guide the understanding and prediction of all spreading phenomena driven by substitutions, from electric cars to scientific paradigms, and from renewable energy to new healthy habits.

  12. The impulsive control synchronization of the drive-response complex system

    International Nuclear Information System (INIS)

    Zhao Yanhong; Yang Yongqing

    2008-01-01

    This Letter investigates projective synchronization between the drive system and response complex dynamical system. An impulsive control scheme is adapted to synchronize the drive-response dynamical system to a desired scalar factor. By using the stability theory of the impulsive differential equation, the criteria for the projective synchronization are derived. The feasibility of the impulsive control of the projective synchronization is demonstrated in the drive-response dynamical system

  13. The need for simulation in complex industrial systems

    Directory of Open Access Journals (Sweden)

    Aboura Khalid

    2012-10-01

    Full Text Available We discuss the concept of simulation and its application in the resolution of problems in complex industrial systems. Most problems of serious scale, be it an inventory problem, a production and distribution problem, a management of resources or process improvement, all real world problems require a mix of generic, data algorithmic and Ad-hoc solutions making the best of available information. We describe two projects in which analytical solutions were applied or contemplated. The first case study uses linear programming in the optimal allocation of advertising resources by a major internet service provider. The second study, in a series of projects, analyses options for the expansion of the production and distribution network of mining products, as part of a sensitive strategic business review. Using the examples, we make the case for the need of simulation in complex industrial problems where analytical solutions may be attempted but where the size and complexity of the problem forces a Monte Carlo approach.

  14. Norm estimates of complex symmetric operators applied to quantum systems

    International Nuclear Information System (INIS)

    Prodan, Emil; Garcia, Stephan R; Putinar, Mihai

    2006-01-01

    This paper communicates recent results in the theory of complex symmetric operators and shows, through two non-trivial examples, their potential usefulness in the study of Schroedinger operators. In particular, we propose a formula for computing the norm of a compact complex symmetric operator. This observation is applied to two concrete problems related to quantum mechanical systems. First, we give sharp estimates on the exponential decay of the resolvent and the single-particle density matrix for Schroedinger operators with spectral gaps. Second, we provide new ways of evaluating the resolvent norm for Schroedinger operators appearing in the complex scaling theory of resonances

  15. Logic-based hierarchies for modeling behavior of complex dynamic systems with applications

    International Nuclear Information System (INIS)

    Hu, Y.S.; Modarres, M.

    2000-01-01

    Most complex systems are best represented in the form of a hierarchy. The Goal Tree Success Tree and Master Logic Diagram (GTST-MLD) are proven powerful hierarchic methods to represent complex snap-shot of plant knowledge. To represent dynamic behaviors of complex systems, fuzzy logic is applied to replace binary logic to extend the power of GTST-MLD. Such a fuzzy-logic-based hierarchy is called Dynamic Master Logic Diagram (DMLD). This chapter discusses comparison of the use of GTST-DMLD when applied as a modeling tool for systems whose relationships are modeled by either physical, binary logical or fuzzy logical relationships. This is shown by applying GTST-DMLD to the Direct Containment Heating (DCH) phenomenon at pressurized water reactors which is an important safety issue being addressed by the nuclear industry. (orig.)

  16. A review of human factors challenges of complex adaptive systems: discovering and understanding chaos in human performance.

    Science.gov (United States)

    Karwowski, Waldemar

    2012-12-01

    In this paper, the author explores a need for a greater understanding of the true nature of human-system interactions from the perspective of the theory of complex adaptive systems, including the essence of complexity, emergent properties of system behavior, nonlinear systems dynamics, and deterministic chaos. Human performance, more often than not, constitutes complex adaptive phenomena with emergent properties that exhibit nonlinear dynamical (chaotic) behaviors. The complexity challenges in the design and management of contemporary work systems, including service systems, are explored. Examples of selected applications of the concepts of nonlinear dynamics to the study of human physical performance are provided. Understanding and applications of the concepts of theory of complex adaptive and dynamical systems should significantly improve the effectiveness of human-centered design efforts of a large system of systems. Performance of many contemporary work systems and environments may be sensitive to the initial conditions and may exhibit dynamic nonlinear properties and chaotic system behaviors. Human-centered design of emergent human-system interactions requires application of the theories of nonlinear dynamics and complex adaptive system. The success of future human-systems integration efforts requires the fusion of paradigms, knowledge, design principles, and methodologies of human factors and ergonomics with those of the science of complex adaptive systems as well as modern systems engineering.

  17. Distributed Cooperation Solution Method of Complex System Based on MAS

    Science.gov (United States)

    Weijin, Jiang; Yuhui, Xu

    To adapt the model in reconfiguring fault diagnosing to dynamic environment and the needs of solving the tasks of complex system fully, the paper introduced multi-Agent and related technology to the complicated fault diagnosis, an integrated intelligent control system is studied in this paper. Based on the thought of the structure of diagnostic decision and hierarchy in modeling, based on multi-layer decomposition strategy of diagnosis task, a multi-agent synchronous diagnosis federation integrated different knowledge expression modes and inference mechanisms are presented, the functions of management agent, diagnosis agent and decision agent are analyzed, the organization and evolution of agents in the system are proposed, and the corresponding conflict resolution algorithm in given, Layered structure of abstract agent with public attributes is build. System architecture is realized based on MAS distributed layered blackboard. The real world application shows that the proposed control structure successfully solves the fault diagnose problem of the complex plant, and the special advantage in the distributed domain.

  18. System for decision analysis support on complex waste management issues

    International Nuclear Information System (INIS)

    Shropshire, D.E.

    1997-01-01

    A software system called the Waste Flow Analysis has been developed and applied to complex environmental management processes for the United States Department of Energy (US DOE). The system can evaluate proposed methods of waste retrieval, treatment, storage, transportation, and disposal. Analysts can evaluate various scenarios to see the impacts to waste slows and schedules, costs, and health and safety risks. Decision analysis capabilities have been integrated into the system to help identify preferred alternatives based on a specific objectives may be to maximize the waste moved to final disposition during a given time period, minimize health risks, minimize costs, or combinations of objectives. The decision analysis capabilities can support evaluation of large and complex problems rapidly, and under conditions of variable uncertainty. The system is being used to evaluate environmental management strategies to safely disposition wastes in the next ten years and reduce the environmental legacy resulting from nuclear material production over the past forty years

  19. THE DYNAMICS OF A DISTRIBUTION SYSTEM SIMULATED ON A SPREADSHEET

    Directory of Open Access Journals (Sweden)

    R. Reinecke

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The dynamics of a typical production-distribution system, namely from manufacturer to distributors to retailers has been simulated with the aid of Lotus 123 on a personal computer. The original simulation program DYNAr10 was run on an IBM 1620 mainframe computer but we successfully converted it to run on a personal computer using LOTUS 123.
    This paper deals with problems encountered in using the present MS-DOS limited PC machines to run application programmes written for earlier mainframe machines. It is also shown that results very comparable with those obtained on mainframe machines can be generated on a simple PC.

    AFRIKAANSE OPSOMMING: Hierdie referaat beskryf die ervaring van magisterstudente met die omskakeling van die simulasieprogram DYNAMO vir die ondersoek van die dinamika van industriele stelsels van hoofraamrekenaar na 'n persoonlike rekenaar.

  20. Synthesis of complex compounds in the system [ReOG5]2--thiosemicarbazone acetone-Hg-acetone

    International Nuclear Information System (INIS)

    Amindzhanov, A.A.; Kurbanov, N.M.

    1993-01-01

    Present article is devoted to synthesis of complex compounds in the system [ReOG 5 ] 2- -thiosemicarbazone acetone-Hg-acetone. The literature data on complex compounds of various metals with thiosemicarbazone was summarized. The synthesis of complex compounds in the system [ReOG 5 ] 2- -thiosemicarbazone acetone-Hg-acetone was conducted. The complex compounds of rhenium with methyl ident thiosemicarbazone were synthesized.

  1. Linearizability conditions for Lotka-Volterra planar complex cubic systems

    International Nuclear Information System (INIS)

    Gine, Jaume; Romanovski, Valery G

    2009-01-01

    In this paper, we investigate the linearizability problem for the two-dimensional planar complex system x-dot=x(1-a 10 x-a 01 y-a 20 x 2 -a 11 xy-a 02 y 2 ), y-dot=(1-b 10 x-b 01 y-b 20 x 2 -b 11 xy-b 02 y 2 ). The necessary and sufficient conditions for the linearizability of this system are found. From them the conditions for isochronicity of the corresponding real system can be derived

  2. A stereotactic system for guiding complex craniofacial reconstruction.

    Science.gov (United States)

    Fialkov, J A; Phillips, J H; Gruss, J S; Kassel, E E; Zuker, R M

    1992-02-01

    A stereotactic system has been designed to address the problem of achieving symmetry in complex and extensive craniofacial defects. Preliminary testing suggests that such a system, which allows for the intraoperative application of preoperative CT planning, will be useful in guiding the reconstruction of congenital or acquired bony time, is being used to investigate the correlation of intraoperative globe position following enophthalmos correction with long-term outcome, particularly as it relates to the size and location of the orbital defect, and the timing of the procedure.

  3. Ninth International Conference on Dependability and Complex Systems

    CERN Document Server

    Mazurkiewicz, Jacek; Sugier, Jarosław; Walkowiak, Tomasz; Kacprzyk, Janusz

    2014-01-01

    DepCoS – RELCOMEX is an annual series of conferences organized by Wrocław University of Technology to promote a comprehensive approach to evaluation of system performability which is now commonly called dependability. In contrast to classic analyses which were concentrated on reliability of technical resources and structures built from them, dependability is based on multi-disciplinary approach to theory, technology, and maintenance of a system considered to be a multifaceted amalgamation of technical, information, organization, software and human (users, administrators, supervisors, etc.) resources. Diversity of processes being realized (data processing, system management, system monitoring, etc.), their concurrency and their reliance on in-system intelligence often severely impedes construction of strict mathematical models and calls for application of intelligent and soft computing methods. This book presents the proceedings of the Ninth International Conference on Dependability and Complex Systems DepC...

  4. Bois-Noirs ore. Recovery of uranium of solutions from acid treatment. Results of industrial tests at the Gueugnon plant; Minerai des Bois-Noirs. Recuperation de l'uranium des solutions d'attaques acides. Resultats des essais industriels effectues a l'usine de Gueugnon

    Energy Technology Data Exchange (ETDEWEB)

    Le Bris, J

    1959-04-01

    Industrial-scale tests are reported of the efficiency of two recovery processes for the separation of uranium from sulfuric acid pickling solutions used on ore from Bois-Noirs, at the Gueugnon works. The final stage of each process is sodium uranate. The earlier part of the report deals with tests of the separation of uranium from foreign metals by fractional precipitation. The second part deals with the separation of uranium from these metals by carbonation of the solutions. (author) [French] Le present rapport concerne les essais industriels de deux procedes de recuperation de l'uranium de solutions d'attaque sulfurique du minerai des Bois-Noirs a l'usine de Gueugnon. Le stade final pour ces deux procedes etant l'uranate de sodium, une premiere partie est consacree aux essais de separation de l'uranium des metaux etrangers par precipitation fractionnee; une deuxieme partie est consacree aux essais de separation de l'uranium des metaux etrangers par carbonatation des solutions d'attaque du minerai. (auteur)

  5. Parameter and State Estimation of Large-Scale Complex Systems Using Python Tools

    Directory of Open Access Journals (Sweden)

    M. Anushka S. Perera

    2015-07-01

    Full Text Available This paper discusses the topics related to automating parameter, disturbance and state estimation analysis of large-scale complex nonlinear dynamic systems using free programming tools. For large-scale complex systems, before implementing any state estimator, the system should be analyzed for structural observability and the structural observability analysis can be automated using Modelica and Python. As a result of structural observability analysis, the system may be decomposed into subsystems where some of them may be observable --- with respect to parameter, disturbances, and states --- while some may not. The state estimation process is carried out for those observable subsystems and the optimum number of additional measurements are prescribed for unobservable subsystems to make them observable. In this paper, an industrial case study is considered: the copper production process at Glencore Nikkelverk, Kristiansand, Norway. The copper production process is a large-scale complex system. It is shown how to implement various state estimators, in Python, to estimate parameters and disturbances, in addition to states, based on available measurements.

  6. Pseudo-Hermitian description of PT-symmetric systems defined on a complex contour

    International Nuclear Information System (INIS)

    Mostafazadeh, Ali

    2005-01-01

    We describe a method that allows for a practical application of the theory of pseudo-Hermitian operators to PT-symmetric systems defined on a complex contour. We apply this method to study the Hamiltonians H = p 2 + x 2 (ix) ν with ν ε (-2, ∞) that are defined along the corresponding anti-Stokes lines. In particular, we reveal the intrinsic non-Hermiticity of H for the cases that ν is an even integer, so that H p 2 ± x 2+ν , and give a proof of the discreteness of the spectrum of H for all ν ε (-2, ∞). Furthermore, we study the consequences of defining a square-well Hamiltonian on a wedge-shaped complex contour. This yields a PT-symmetric system with a finite number of real eigenvalues. We present a comprehensive analysis of this system within the framework of pseudo-Hermitian quantum mechanics. We also outline a direct pseudo-Hermitian treatment of PT-symmetric systems defined on a complex contour which clarifies the underlying mathematical structure of the formulation of PT-symmetric quantum mechanics based on the charge-conjugation operator. Our results provide conclusive evidence that pseudo-Hermitian quantum mechanics provides a complete description of general PT-symmetric systems regardless of whether they are defined along the real line or a complex contour

  7. The Complex Economic System of Supply Chain Financing

    Science.gov (United States)

    Zhang, Lili; Yan, Guangle

    Supply Chain Financing (SCF) refers to a series of innovative and complicated financial services based on supply chain. The SCF set-up is a complex system, where the supply chain management and Small and Medium Enterprises (SMEs) financing services interpenetrate systematically. This paper establishes the organization structure of SCF System, and presents two financing models respectively, with or without the participation of the third-party logistic provider (3PL). Using Information Economics and Game Theory, the interrelationship among diverse economic sectors is analyzed, and the economic mechanism of development and existent for SCF system is demonstrated. New thoughts and approaches to solve SMEs financing problem are given.

  8. On system behaviour using complex networks of a compression algorithm

    Science.gov (United States)

    Walker, David M.; Correa, Debora C.; Small, Michael

    2018-01-01

    We construct complex networks of scalar time series using a data compression algorithm. The structure and statistics of the resulting networks can be used to help characterize complex systems, and one property, in particular, appears to be a useful discriminating statistic in surrogate data hypothesis tests. We demonstrate these ideas on systems with known dynamical behaviour and also show that our approach is capable of identifying behavioural transitions within electroencephalogram recordings as well as changes due to a bifurcation parameter of a chaotic system. The technique we propose is dependent on a coarse grained quantization of the original time series and therefore provides potential for a spatial scale-dependent characterization of the data. Finally the method is as computationally efficient as the underlying compression algorithm and provides a compression of the salient features of long time series.

  9. Modelling small-angle scattering data from complex protein-lipid systems

    DEFF Research Database (Denmark)

    Kynde, Søren Andreas Røssell

    This thesis consists of two parts. The rst part is divided into five chapters. Chapter 1 gives a general introduction to the bio-molecular systems that have been studied. These are membrane proteins and their lipid environments in the form of phospholipid nanodiscs. Membrane proteins...... the techniques very well suited for the study of the nanodisc system. Chapter 3 explains two different modelling approaches that can be used in the analysis of small-angle scattering data from lipid-protein complexes. These are the continuous approach where the system of interest is modelled as a few regular...... combine the bene ts of each of the methods and give unique structural information about relevant bio-molecular complexes in solution. Chapter 4 describes the work behind a proposal of a small-angle neutron scattering instrument for the European Spallation Source under construction in Lund. The instrument...

  10. Enabling Requirements-Based Programming for Highly-Dependable Complex Parallel and Distributed Systems

    Science.gov (United States)

    Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.

    2005-01-01

    The manual application of formal methods in system specification has produced successes, but in the end, despite any claims and assertions by practitioners, there is no provable relationship between a manually derived system specification or formal model and the customer's original requirements. Complex parallel and distributed system present the worst case implications for today s dearth of viable approaches for achieving system dependability. No avenue other than formal methods constitutes a serious contender for resolving the problem, and so recognition of requirements-based programming has come at a critical juncture. We describe a new, NASA-developed automated requirement-based programming method that can be applied to certain classes of systems, including complex parallel and distributed systems, to achieve a high degree of dependability.

  11. Atomic switch networks—nanoarchitectonic design of a complex system for natural computing

    International Nuclear Information System (INIS)

    Demis, E C; Aguilera, R; Sillin, H O; Scharnhorst, K; Sandouk, E J; Gimzewski, J K; Aono, M; Stieg, A Z

    2015-01-01

    Self-organized complex systems are ubiquitous in nature, and the structural complexity of these natural systems can be used as a model to design new classes of functional nanotechnology based on highly interconnected networks of interacting units. Conventional fabrication methods for electronic computing devices are subject to known scaling limits, confining the diversity of possible architectures. This work explores methods of fabricating a self-organized complex device known as an atomic switch network and discusses its potential utility in computing. Through a merger of top-down and bottom-up techniques guided by mathematical and nanoarchitectonic design principles, we have produced functional devices comprising nanoscale elements whose intrinsic nonlinear dynamics and memorization capabilities produce robust patterns of distributed activity and a capacity for nonlinear transformation of input signals when configured in the appropriate network architecture. Their operational characteristics represent a unique potential for hardware implementation of natural computation, specifically in the area of reservoir computing—a burgeoning field that investigates the computational aptitude of complex biologically inspired systems. (paper)

  12. Low complexity symbol-wise beamforming for MIMO-OFDM systems

    KAUST Repository

    Lee, Hyun Ho

    2011-12-01

    In this paper, we consider a low complexity symbol-wise beamforming for MIMO-OFDM systems. We propose a non-iterative algorithm for the symbol-wise beamforming, which can provide the performance approaching that of the conventional symbol-wise beamforming based on the iterative algorithm. We demonstrate that our proposed scheme can reduce the computational complexity significantly. From our simulation results, it is evident that our proposed scheme leads to a negligible performance loss compared to the conventional symbol-wise beamforming regardless of spatial correlation or presence of co-channel interference. © 2011 IEEE.

  13. Complex adaptive systems and game theory: An unlikely union

    Science.gov (United States)

    Hadzikadic, M.; Carmichael, T.; Curtin, C.

    2010-01-01

    A Complex Adaptive System is a collection of autonomous, heterogeneous agents, whose behavior is defined with a limited number of rules. A Game Theory is a mathematical construct that assumes a small number of rational players who have a limited number of actions or strategies available to them. The CAS method has the potential to alleviate some of the shortcomings of GT. On the other hand, CAS researchers are always looking for a realistic way to define interactions among agents. GT offers an attractive option for defining the rules of such interactions in a way that is both potentially consistent with observed real-world behavior and subject to mathematical interpretation. This article reports on the results of an effort to build a CAS system that utilizes GT for determining the actions of individual agents. ?? 2009 Wiley Periodicals, Inc. Complexity, 16,24-42, 2010.

  14. Complex-tone pitch representations in the human auditory system

    DEFF Research Database (Denmark)

    Bianchi, Federica

    in listeners with SNHL, it is likely that HI listeners rely on the enhanced envelope cues to retrieve the pitch of unresolved harmonics. Hence, the relative importance of pitch cues may be altered in HI listeners, whereby envelope cues may be used instead of TFS cues to obtain a similar performance in pitch......Understanding how the human auditory system processes the physical properties of an acoustical stimulus to give rise to a pitch percept is a fascinating aspect of hearing research. Since most natural sounds are harmonic complex tones, this work focused on the nature of pitch-relevant cues...... that are necessary for the auditory system to retrieve the pitch of complex sounds. The existence of different pitch-coding mechanisms for low-numbered (spectrally resolved) and high-numbered (unresolved) harmonics was investigated by comparing pitch-discrimination performance across different cohorts of listeners...

  15. Structural and functional networks in complex systems with delay.

    Science.gov (United States)

    Eguíluz, Víctor M; Pérez, Toni; Borge-Holthoefer, Javier; Arenas, Alex

    2011-05-01

    Functional networks of complex systems are obtained from the analysis of the temporal activity of their components, and are often used to infer their unknown underlying connectivity. We obtain the equations relating topology and function in a system of diffusively delay-coupled elements in complex networks. We solve exactly the resulting equations in motifs (directed structures of three nodes) and in directed networks. The mean-field solution for directed uncorrelated networks shows that the clusterization of the activity is dominated by the in-degree of the nodes, and that the locking frequency decreases with increasing average degree. We find that the exponent of a power law degree distribution of the structural topology γ is related to the exponent of the associated functional network as α=(2-γ)(-1) for γ<2. © 2011 American Physical Society

  16. A complex, nonlinear dynamic systems perspective on Ayurveda and Ayurvedic research.

    Science.gov (United States)

    Rioux, Jennifer

    2012-07-01

    The fields of complexity theory and nonlinear dynamic systems (NDS) are relevant for analyzing the theory and practice of Ayurvedic medicine from a Western scientific perspective. Ayurvedic definitions of health map clearly onto the tenets of both systems and complexity theory and focus primarily on the preservation of organismic equanimity. Health care research informed by NDS and complexity theory would prioritize (1) ascertaining patterns reflected in whole systems as opposed to isolating components; (2) relationships and dynamic interaction rather than static end-points; (3) transitions, change and cumulative effects, consistent with delivery of therapeutic packages in the reality of the clinical setting; and (4) simultaneously exploring both local and global levels of healing phenomena. NDS and complexity theory are useful in examining nonlinear transitions between states of health and illness; the qualitative nature of shifts in health status; and looking at emergent properties and behaviors stemming from interactions between organismic and environmental systems. Complexity and NDS theory also demonstrate promise for enhancing the suitability of research strategies applied to Ayurvedic medicine through utilizing core concepts such as initial conditions, emergent properties, fractal patterns, and critical fluctuations. In the Ayurvedic paradigm, multiple scales and their interactions are addressed simultaneously, necessitating data collection on change patterns that occur on continuums of both time and space, and are viewed as complementary rather than isolated and discrete. Serious consideration of Ayurvedic clinical understandings will necessitate new measurement options that can account for the relevance of both context and environmental factors, in terms of local biology and the processual features of the clinical encounter. Relevant research design issues will need to address clinical tailoring strategies and provide mechanisms for mapping patterns of

  17. Controlling collective dynamics in complex minority-game resource-allocation systems

    Science.gov (United States)

    Zhang, Ji-Qiang; Huang, Zi-Gang; Dong, Jia-Qi; Huang, Liang; Lai, Ying-Cheng

    2013-05-01

    Resource allocation takes place in various kinds of real-world complex systems, such as traffic systems, social services institutions or organizations, or even ecosystems. The fundamental principle underlying complex resource-allocation dynamics is Boolean interactions associated with minority games, as resources are generally limited and agents tend to choose the least used resource based on available information. A common but harmful dynamical behavior in resource-allocation systems is herding, where there are time intervals during which a large majority of the agents compete for a few resources, leaving many other resources unused. Accompanying the herd behavior is thus strong fluctuations with time in the number of resources being used. In this paper, we articulate and establish that an intuitive control strategy, namely pinning control, is effective at harnessing the herding dynamics. In particular, by fixing the choices of resources for a few agents while leaving the majority of the agents free, herding can be eliminated completely. Our investigation is systematic in that we consider random and targeted pinning and a variety of network topologies, and we carry out a comprehensive analysis in the framework of mean-field theory to understand the working of control. The basic philosophy is then that, when a few agents waive their freedom to choose resources by receiving sufficient incentives, the majority of the agents benefit in that they will make fair, efficient, and effective use of the available resources. Our work represents a basic and general framework to address the fundamental issue of fluctuations in complex dynamical systems with significant applications to social, economical, and political systems.

  18. Can Models Capture the Complexity of the Systems Engineering Process?

    Science.gov (United States)

    Boppana, Krishna; Chow, Sam; de Weck, Olivier L.; Lafon, Christian; Lekkakos, Spyridon D.; Lyneis, James; Rinaldi, Matthew; Wang, Zhiyong; Wheeler, Paul; Zborovskiy, Marat; Wojcik, Leonard A.

    Many large-scale, complex systems engineering (SE) programs have been problematic; a few examples are listed below (Bar-Yam, 2003 and Cullen, 2004), and many others have been late, well over budget, or have failed: Hilton/Marriott/American Airlines system for hotel reservations and flights; 1988-1992; 125 million; "scrapped"

  19. A computational framework for modeling targets as complex adaptive systems

    Science.gov (United States)

    Santos, Eugene; Santos, Eunice E.; Korah, John; Murugappan, Vairavan; Subramanian, Suresh

    2017-05-01

    Modeling large military targets is a challenge as they can be complex systems encompassing myriad combinations of human, technological, and social elements that interact, leading to complex behaviors. Moreover, such targets have multiple components and structures, extending across multiple spatial and temporal scales, and are in a state of change, either in response to events in the environment or changes within the system. Complex adaptive system (CAS) theory can help in capturing the dynamism, interactions, and more importantly various emergent behaviors, displayed by the targets. However, a key stumbling block is incorporating information from various intelligence, surveillance and reconnaissance (ISR) sources, while dealing with the inherent uncertainty, incompleteness and time criticality of real world information. To overcome these challenges, we present a probabilistic reasoning network based framework called complex adaptive Bayesian Knowledge Base (caBKB). caBKB is a rigorous, overarching and axiomatic framework that models two key processes, namely information aggregation and information composition. While information aggregation deals with the union, merger and concatenation of information and takes into account issues such as source reliability and information inconsistencies, information composition focuses on combining information components where such components may have well defined operations. Since caBKBs can explicitly model the relationships between information pieces at various scales, it provides unique capabilities such as the ability to de-aggregate and de-compose information for detailed analysis. Using a scenario from the Network Centric Operations (NCO) domain, we will describe how our framework can be used for modeling targets with a focus on methodologies for quantifying NCO performance metrics.

  20. Research teams as complex systems: implications for knowledge management

    NARCIS (Netherlands)

    Vasileiadou, E.

    2012-01-01

    The recent increase in research collaboration creates the need to better understand the interaction between individual researchers and the collaborative team. The paper elaborates the conceptualisation of research teams as complex systems which emerge out of the local interactions of individual

  1. An ensemble approach to the evolution of complex systems

    Indian Academy of Sciences (India)

    2014-03-15

    Mar 15, 2014 ... [Arpağ G and Erzan A 2014 An ensemble approach to the evolution of complex systems. J. Biosci. ... almost nothing about all the different ways in which your ...... energy cost to the organism of the maintenance, replication,.

  2. Light propagation in one-dimensional porous silicon complex systems

    NARCIS (Netherlands)

    Oton, C.J.; Dal Negro, L.; Gaburro, Z.; Pavesi, L.; Johnson, P.J.; Lagendijk, Aart; Wiersma, D.S.

    2003-01-01

    We discuss the optical properties of one-dimensional complex dielectric systems, in particular the time-resolved transmission through thick porous silicon quasiperiodic multi-layers. Both in numerical calculations and experiments we find dramatic distortion effects, i.e. pulse stretching and

  3. Characterizing complexity in socio-technical systems: a case study of a SAMU Medical Regulation Center.

    Science.gov (United States)

    Righi, Angela Weber; Wachs, Priscila; Saurin, Tarcísio Abreu

    2012-01-01

    Complexity theory has been adopted by a number of studies as a benchmark to investigate the performance of socio-technical systems, especially those that are characterized by relevant cognitive work. However, there is little guidance on how to assess, systematically, the extent to which a system is complex. The main objective of this study is to carry out a systematic analysis of a SAMU (Mobile Emergency Medical Service) Medical Regulation Center in Brazil, based on the core characteristics of complex systems presented by previous studies. The assessment was based on direct observations and nine interviews: three of them with regulator of emergencies medical doctor, three with radio operators and three with telephone attendants. The results indicated that, to a great extent, the core characteristics of complexity are magnified) due to basic shortcomings in the design of the work system. Thus, some recommendations are put forward with a view to reducing unnecessary complexity that hinders the performance of the socio-technical system.

  4. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  5. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Science.gov (United States)

    Ley, Morten B.; Meggouh, Mariem; Moury, Romain; Peinecke, Kateryna; Felderhoff, Michael

    2015-01-01

    This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM) fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability. PMID:28793541

  6. Synchronization in human musical rhythms and mutually interacting complex systems.

    Science.gov (United States)

    Hennig, Holger

    2014-09-09

    Though the music produced by an ensemble is influenced by multiple factors, including musical genre, musician skill, and individual interpretation, rhythmic synchronization is at the foundation of musical interaction. Here, we study the statistical nature of the mutual interaction between two humans synchronizing rhythms. We find that the interbeat intervals of both laypeople and professional musicians exhibit scale-free (power law) cross-correlations. Surprisingly, the next beat to be played by one person is dependent on the entire history of the other person's interbeat intervals on timescales up to several minutes. To understand this finding, we propose a general stochastic model for mutually interacting complex systems, which suggests a physiologically motivated explanation for the occurrence of scale-free cross-correlations. We show that the observed long-term memory phenomenon in rhythmic synchronization can be imitated by fractal coupling of separately recorded or synthesized audio tracks and thus applied in electronic music. Though this study provides an understanding of fundamental characteristics of timing and synchronization at the interbrain level, the mutually interacting complex systems model may also be applied to study the dynamics of other complex systems where scale-free cross-correlations have been observed, including econophysics, physiological time series, and collective behavior of animal flocks.

  7. Interaction of Air Flow in Complex Ventilation Systems

    Directory of Open Access Journals (Sweden)

    Zhorzh G. Levitskiy

    2013-01-01

    Full Text Available The article presents the results of study of interaction of air flow in complex ventilation systems. The study used Taylor and Maclaurin’s series and Lagrange formula to create the functional connections on estimation of the impact of changing aerodynamic parameters of one or several simultaneously working regulators on the air flow distribution in mines

  8. Bridging Mechanistic and Phenomenological Models of Complex Biological Systems.

    Science.gov (United States)

    Transtrum, Mark K; Qiu, Peng

    2016-05-01

    The inherent complexity of biological systems gives rise to complicated mechanistic models with a large number of parameters. On the other hand, the collective behavior of these systems can often be characterized by a relatively small number of phenomenological parameters. We use the Manifold Boundary Approximation Method (MBAM) as a tool for deriving simple phenomenological models from complicated mechanistic models. The resulting models are not black boxes, but remain expressed in terms of the microscopic parameters. In this way, we explicitly connect the macroscopic and microscopic descriptions, characterize the equivalence class of distinct systems exhibiting the same range of collective behavior, and identify the combinations of components that function as tunable control knobs for the behavior. We demonstrate the procedure for adaptation behavior exhibited by the EGFR pathway. From a 48 parameter mechanistic model, the system can be effectively described by a single adaptation parameter τ characterizing the ratio of time scales for the initial response and recovery time of the system which can in turn be expressed as a combination of microscopic reaction rates, Michaelis-Menten constants, and biochemical concentrations. The situation is not unlike modeling in physics in which microscopically complex processes can often be renormalized into simple phenomenological models with only a few effective parameters. The proposed method additionally provides a mechanistic explanation for non-universal features of the behavior.

  9. Embedding research in health systems: lessons from complexity theory.

    Science.gov (United States)

    Caffrey, Louise; Wolfe, Charles; McKevitt, Christopher

    2016-07-22

    Internationally, there has been increasing focus on creating health research systems. This article aims to investigate the challenges of implementing apparently simple strategies to support the development of a health research system. We focus on a case study of an English National Health Service Hospital Trust that sought to implement the national recommendation that health organisations should introduce a statement about research on all patient admission letters. We apply core concepts from complexity theory to the case study and undertake a documentary analysis of the email dialogue between staff involved in implementing this initiative. The process of implementing a research statement in patient admission letters in one clinical service took 1 year and 21 days. The length of time needed was influenced firstly by adaptive self-organisation, underpinned by competing interests. Secondly, it was influenced by the relationship between systems, rather than simply being a product of issues within those systems. The relationship between the health system and the research system was weaker than might have been expected. Responsibilities were unclear, leading to confusion and delayed action. Conventional ways of thinking about organisations suggest that change happens when leaders and managers change the strategic vision, structure or procedures in an organisation and then persuade others to rationally implement the strategy. However, health research systems are complex adaptive systems characterised by high levels of unpredictability due to self-organisation and systemic interactions, which give rise to 'emergent' properties. We argue for the need to study how micro-processes of organisational dynamics may give rise to macro patterns of behaviour and strategic organisational direction and for the use of systems approaches to investigate the emergent properties of health research systems.

  10. Complex modal properties of coupled moderately light equipment-structure systems

    International Nuclear Information System (INIS)

    Gupta, A.K.; Jaw Jingwen

    1986-01-01

    A new improved perturbation method for evaluating complex modal properties of coupled equipment-structure systems is presented. The method is applicable even when the equipment is not very light, and when the secondary system (equipment) introduces static constraint on the primary system (structure). The new method is applied to nine 8DOF coupled multiply connected equipment-structure systems. It is shown that the new method yields results which are in excellent agreement with the corresponding exact results. (orig.)

  11. 2nd Asia-Pacific Conference on Complex Systems Design & Management

    CERN Document Server

    Fong, Saik; Krob, Daniel; Lui, Pao; Tan, Yang

    2016-01-01

    This book contains all refereed papers that were accepted to the second edition of the Asia-Pacific conference on « Complex Systems Design & Management Asia» (CSD&M Asia 2016) that took place in Singapore from February 24 to February 26, 2016 (Website: http://www.2016.csdm-asia.net/). These proceedings cover the most recent trends in the emerging field of Complex Systems, both from an academic and a professional perspective. A special focus is put on Smart Nations: Designing and Sustaining. The CSD&M Asia 2016 conference is organized under the guidance of the Singapore division of the Center of Excellence on Systems Architecture, Management, Economy and Strategy (CESAMES) – Legal address: C.E.S.A.M.E.S. Singapore – 16 Raffles Quay – #38-03 Hong Leong Building – Singapore 048581 (website : http://www.cesames.net/en – email: contact@cesames.net).

  12. 'Living' Architecture Overviews - Supporting the Design of Evolutionary Complex Systems (CD ROM)

    NARCIS (Netherlands)

    Borches Juzgado, P.D.; Bonnema, Gerrit Maarten; van Houten, F.J.A.M.; Miedema, J.; Lutters, D.

    2008-01-01

    When dealing with complex systems, it is essential that designers and system architects have a clear understanding of the system as a whole. The main ‘tool’ for this is the so-called ‘system architecture description’ or ‘reference architecture’. Although the concept of system architecture

  13. On the general procedure for modelling complex ecological systems

    International Nuclear Information System (INIS)

    He Shanyu.

    1987-12-01

    In this paper, the principle of a general procedure for modelling complex ecological systems, i.e. the Adaptive Superposition Procedure (ASP) is shortly stated. The result of application of ASP in a national project for ecological regionalization is also described. (author). 3 refs

  14. Mergers and acquisitions in professional organizations: a complex adaptive systems approach.

    Science.gov (United States)

    Walls, M E; McDaniel, R R

    1999-09-01

    Nurse managers face unique challenges as they cope with mergers and acquisitions among health care organizations. These challenges can be better understood if it is recognized that health care institutions are professional organizations and that the transformations required are extremely difficult. These difficulties are caused, in part, by the institutionalized nature of professional organizations, and this nature is explicated. Professional organizations are stubborn. They are repositories of expertise and values that are societal in origin and difficult to change. When professional organizations are understood as complex adaptive systems, complexity theory offers insight that provide strategies for managing mergers and acquisitions that may not be apparent when more traditional conceptualizations of professional organizations are used. Specific managerial techniques consistent with both the institutionalized characteristics and the complex adaptive systems characteristics of professional organizations are offered to nurse managers.

  15. Using value-based analysis to influence outcomes in complex surgical systems.

    Science.gov (United States)

    Kirkpatrick, John R; Marks, Stanley; Slane, Michele; Kim, Donald; Cohen, Lance; Cortelli, Michael; Plate, Juan; Perryman, Richard; Zapas, John

    2015-04-01

    Value-based analysis (VBA) is a management strategy used to determine changes in value (quality/cost) when a usual practice (UP) is replaced by a best practice (BP). Previously validated in clinical initiatives, its usefulness in complex systems is unknown. To answer this question, we used VBA to correct deficiencies in cardiac surgery at Memorial Healthcare System. Cardiac surgery is a complex surgical system that lends itself to VBA because outcomes metrics provided by the Society of Thoracic Surgeons provide an estimate of quality; cost is available from Centers for Medicare and Medicaid Services and other contemporary sources; the UP can be determined; and the best practice can be established. Analysis of the UP at Memorial Healthcare System revealed considerable deficiencies in selection of patients for surgery; the surgery itself, including choice of procedure and outcomes; after care; follow-up; and control of expenditures. To correct these deficiencies, each UP was replaced with a BP. Changes included replacement of most of the cardiac surgeons; conversion to an employed physician model; restructuring of a heart surgery unit; recruitment of cardiac anesthesiologists; introduction of an interactive educational program; eliminating unsafe practices; and reducing cost. There was a significant (p value (quality/cost) in a complex surgical system. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Reversible photochromic system based on rhodamine B salicylaldehyde hydrazone metal complex.

    Science.gov (United States)

    Li, Kai; Xiang, Yu; Wang, Xiaoyan; Li, Ji; Hu, Rongrong; Tong, Aijun; Tang, Ben Zhong

    2014-01-29

    Photochromic molecules are widely applied in chemistry, physics, biology, and materials science. Although a few photochromic systems have been developed before, their applications are still limited by complicated synthesis, low fatigue resistance, or incomplete light conversion. Rhodamine is a class of dyes with excellent optical properties including long-wavelength absorption, large absorption coefficient, and high photostability in its ring-open form. It is an ideal chromophore for the development of new photochromic systems. However, known photochromic rhodamine derivatives, such as amides, exhibit only millisecond lifetimes in their colored ring-open forms, making their application very limited and difficult. In this work, rhodamine B salicylaldehyde hydrazone metal complex was found to undergo intramolecular ring-open reactions upon UV irradiation, which led to a distinct color and fluorescence change both in solution and in solid matrix. The complex showed good fatigue resistance for the reversible photochromism and long lifetime for the ring-open state. Interestingly, the thermal bleaching rate was tunable by using different metal ions, temperatures, solvents, and chemical substitutions. It was proposed that UV light promoted isomerization of the rhodamine B derivative from enol-form to keto-form, which induced ring-opening of the rhodamine spirolactam in the complex to generate color. The photochromic system was successfully applied for photoprinting and UV strength measurement in the solid state. As compared to other reported photochromic molecules, the system in this study has its advantages of facile synthesis and tunable thermal bleaching rate, and also provides new insights into the development of photochromic materials based on metal complex and spirolactam-containing dyes.

  17. A complex network-based importance measure for mechatronics systems

    Science.gov (United States)

    Wang, Yanhui; Bi, Lifeng; Lin, Shuai; Li, Man; Shi, Hao

    2017-01-01

    In view of the negative impact of functional dependency, this paper attempts to provide an alternative importance measure called Improved-PageRank (IPR) for measuring the importance of components in mechatronics systems. IPR is a meaningful extension of the centrality measures in complex network, which considers usage reliability of components and functional dependency between components to increase importance measures usefulness. Our work makes two important contributions. First, this paper integrates the literature of mechatronic architecture and complex networks theory to define component network. Second, based on the notion of component network, a meaningful IPR is brought into the identifying of important components. In addition, the IPR component importance measures, and an algorithm to perform stochastic ordering of components due to the time-varying nature of usage reliability of components and functional dependency between components, are illustrated with a component network of bogie system that consists of 27 components.

  18. A primer on complex systems with applications to astrophysical and laboratory plasmas

    CERN Document Server

    Sánchez, Raúl

    2018-01-01

    The purpose of this book is to illustrate the fundamental concepts of complexity and complex behavior and the best methods to characterize this behavior by means of their applications to some current research topics from within the fields of fusion, earth and solar plasmas. In this sense, it is a departure from the many books already available that discuss general features of complexity. The book is divided in two parts. In the first part the most important properties and features of complex systems are introduced, discussed and illustrated. The second part discusses several instances of possible complex phenomena in magnetized plasmas and some of the analysis tools that were introduced in the first part are used to characterize the dynamics in these systems. A list of problems is proposed at the end of each chapter. This book is intended for graduate and post-graduate students with a solid college background in mathematics and classical physics, who intend to work in the field of plasma physics and, in parti...

  19. Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems

    Science.gov (United States)

    Koch, Patrick Nathan

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.

  20. Distributed Diagnosis, Prognosis and Recovery for Complex Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Complex space systems such as lunar habitats generate huge amounts of data. For example, the International Space Station (ISS) has over 250,000 individually...

  1. Electromagnetic driving units for complex microrobotic systems

    Science.gov (United States)

    Michel, Frank; Ehrfeld, Wolfgang; Berg, Udo; Degen, Reinhard; Schmitz, Felix

    1998-10-01

    Electromagnetic actuators play an important role in macroscopic robotic systems. In combination with motion transformers, like reducing gear units, angular gears or spindle-screw drives, electromagnetic motors in large product lines ensure the rotational or linear motion of robot driving units and grippers while electromagnets drive valves or part conveyors. In this paper micro actuators and miniaturized motion transformers are introduced which allow a similar development in microrobotics. An electromagnetic motor and a planetary gear box, both with a diameter of 1.9 mm, are already commercially available from the cooperation partner of IMM, the company Dr. Fritz Faulhaber GmbH in Schonaich, Germany. In addition, a motor with a diameter of 2.4 mm is in development. The motors successfully drive an angular gear and a belt drive. A linear stage with a motion range of 7 mm and an overall size as small as 5 X 3.5 X 24 mm3 has been realized involving the motor, a stationary spur gear with zero backlash and a spindle-screw drive. By the use of these commercially available elements complex microrobots can be built up cost-efficiently and rapidly. Furthermore, a batch process has been developed to produce the coils of micro actuator arrays using lithographic techniques with SU-8 resin. In applying these components, the modular construction of complex microrobotic systems becomes feasible.

  2. Automated Diagnosis and Control of Complex Systems

    Science.gov (United States)

    Kurien, James; Plaunt, Christian; Cannon, Howard; Shirley, Mark; Taylor, Will; Nayak, P.; Hudson, Benoit; Bachmann, Andrew; Brownston, Lee; Hayden, Sandra; hide

    2007-01-01

    Livingstone2 is a reusable, artificial intelligence (AI) software system designed to assist spacecraft, life support systems, chemical plants, or other complex systems by operating with minimal human supervision, even in the face of hardware failures or unexpected events. The software diagnoses the current state of the spacecraft or other system, and recommends commands or repair actions that will allow the system to continue operation. Livingstone2 is an enhancement of the Livingstone diagnosis system that was flight-tested onboard the Deep Space One spacecraft in 1999. This version tracks multiple diagnostic hypotheses, rather than just a single hypothesis as in the previous version. It is also able to revise diagnostic decisions made in the past when additional observations become available. In such cases, Livingstone might arrive at an incorrect hypothesis. Re-architecting and re-implementing the system in C++ has increased performance. Usability has been improved by creating a set of development tools that is closely integrated with the Livingstone2 engine. In addition to the core diagnosis engine, Livingstone2 includes a compiler that translates diagnostic models written in a Java-like language into Livingstone2's language, and a broad set of graphical tools for model development.

  3. Real-time monitoring of clinical processes using complex event processing and transition systems.

    Science.gov (United States)

    Meinecke, Sebastian

    2014-01-01

    Dependencies between tasks in clinical processes are often complex and error-prone. Our aim is to describe a new approach for the automatic derivation of clinical events identified via the behaviour of IT systems using Complex Event Processing. Furthermore we map these events on transition systems to monitor crucial clinical processes in real-time for preventing and detecting erroneous situations.

  4. Management of complex long bone nonunions using limb reconstruction system

    Directory of Open Access Journals (Sweden)

    Hiranya Kumar Seenappa

    2013-01-01

    Full Text Available Background: Management of complex nonunions is difficult due to the presence of infection, deformities, shortening and multiple surgeries in the past. Complex nonunions are traditionally managed by Ilizarov fixation. The disadvantages of Ilizarov are poor patient compliance, inconvenience of the frame and difficult frame construction. We conducted a study on 30 long bone complex nonunions treated by the limb reconstruction system (LRS. Materials and Methods: Between April 2009 and September 2012, we treated 30 cases of complex nonunion of long bone with the LRS. 28 were male and 2 females. Average shortening was 5.06 cm and 14 cases presented with infected implants. Initially we managed with implant removal, radical debridement followed by fixation with the LRS. In 16 cases, corticotomy and lengthening was done. The average duration of treatment was 9.68 months. We compressed the fracture site at the rate of 0.25 mm per day for 1-2 weeks and distracted the corticotomy at the rate of 1 mm/day till lengthening was achieved. Result: The union occurred in 89.28% cases and eradication of infection in 91.66% cases. Average lengthening done was 4.57 cm. We had 79% excellent, 11% good and 10% poor bony result and fnctional result was excellent in 40% cases, good in 50% and failure in 10% cases using ASAMI scoring system. Conclusion: LRS is an alternative to the Ilizarov fixation in their management of complex nonunion of long bones. It is less cumbersome to the patient and more surgeon and patient friendly.

  5. Evaluating the response of complex systems to environmental threats: the Σ II method

    International Nuclear Information System (INIS)

    Corynen, G.C.

    1983-05-01

    The Σ II method was developed to model and compute the probabilistic performance of systems that operate in a threatening environment. Although we emphasize the vulnerability of complex systems to earthquakes and to electromagnetic threats such as EMP (electromagnetic pulse), the method applies in general to most large-scale systems or networks that are embedded in a potentially harmful environment. Other methods exist for obtaining system vulnerability, but their complexity increases exponentially as the size of systems is increased. The complexity of the Σ II method is polynomial, and accurate solutions are now possible for problems for which current methods require the use of rough statistical bounds, confidence statements, and other approximations. For super-large problems, where the costs of precise answers may be prohibitive, a desired accuracy can be specified, and the Σ II algorithms will halt when that accuracy has been reached. We summarize the results of a theoretical complexity analysis - which is reported elsewhere - and validate the theory with computer experiments conducted both on worst-case academic problems and on more reasonable problems occurring in practice. Finally, we compare our method with the exact methods of Abraham and Nakazawa, and with current bounding methods, and we demonstrate the computational efficiency and accuracy of Σ II

  6. The Power of Collaboration for Improving Safety in Complex Systems

    International Nuclear Information System (INIS)

    Hart, C. A.

    2016-01-01

    Many potentially hazardous industries involve systems that consist of a complex array of subsystems that must work together effectively in order for the entire system to perform. Often the subsystems are coupled, such that changes in any one subsystem can affect other subsystems. “System Think” refers to an awareness of the impacts throughout a system of changes in any subsystem. The U.S. commercial aviation industry, in its continuing endeavor to improve safety, uses a collaborative approach to accomplish System Think— bringing all of the key parts of the industry together to work in a collaborative manner to identify and address potential safety concerns. The collaborative approach resulted in an 83% reduction in the fatal accident rate in only 10 years. It also demonstrated that, contrary to conventional wisdom that safety improvements usually hurt productivity, safety improvements that result from a collaborative approach can simultaneously improve productivity. Last but not least, it minimised one of the continuing challenges of making changes in complex systems, which is unintended consequences. The purpose of this presentation is to describe the collaborative approach and to discuss its transferability to other potentially hazardous industries that are seeking to manage their risks more efficiently and effectively. (author)

  7. Minmax defense strategy for complex multi-state systems

    International Nuclear Information System (INIS)

    Hausken, Kjell; Levitin, Gregory

    2009-01-01

    This paper presents a general optimization methodology that merges game theory and multi-state system survivability theory. The defender has multiple alternatives of defense strategy that presumes separation and protection of system elements. The attacker also has multiple alternatives of its attack strategy based on a combination of different possible attack actions against different groups of system elements. The defender minimizes, and the attacker maximizes, the expected damage caused by the attack (taking into account the unreliability of system elements and the multi-state nature of complex series-parallel systems). The problem is defined as a two-period minmax non-cooperative game between the defender who moves first and the attacker who moves second. An exhaustive minmax optimization algorithm is presented based on a double-loop genetic algorithm for determining the solution. A universal generating function technique is applied for evaluating the losses caused by system performance reduction. Illustrative examples with solutions are presented

  8. Power, autonomy, utopia new approaches toward complex systems

    CERN Document Server

    1986-01-01

    The "world" is becoming more and more intractable. We have learned to discern "systems" in it, we have developed a highly sophisticated math­ ematical apparatus to "model'" them, large computer simulation programs handle thousands of equations with zillions of parameters. But how ade­ quate are these efforts? Part One of this volume is a discussion containing some proposals for eliminating the constraints we encounter when approaching complex systems with our models: Is it possible, at all, to design a political or econom­ ic system without considering killing, torture, and oppression? Can we adequately model the present state of affairs while ignoring their often symbolic and paradoxical nature? Is it possible to explain teleological concepts such as "means" and "ends" in terms of basically 17th century Newtonian mechanics? Can we really make appropriate use of the vast a­ mount of systems concepts without exploring their relations, without de­ veloping a "system of systems concepts"? And why do more th...

  9. NHL and RCGA Based Multi-Relational Fuzzy Cognitive Map Modeling for Complex Systems

    Directory of Open Access Journals (Sweden)

    Zhen Peng

    2015-11-01

    Full Text Available In order to model multi-dimensions and multi-granularities oriented complex systems, this paper firstly proposes a kind of multi-relational Fuzzy Cognitive Map (FCM to simulate the multi-relational system and its auto construct algorithm integrating Nonlinear Hebbian Learning (NHL and Real Code Genetic Algorithm (RCGA. The multi-relational FCM fits to model the complex system with multi-dimensions and multi-granularities. The auto construct algorithm can learn the multi-relational FCM from multi-relational data resources to eliminate human intervention. The Multi-Relational Data Mining (MRDM algorithm integrates multi-instance oriented NHL and RCGA of FCM. NHL is extended to mine the causal relationships between coarse-granularity concept and its fined-granularity concepts driven by multi-instances in the multi-relational system. RCGA is used to establish high-quality high-level FCM driven by data. The multi-relational FCM and the integrating algorithm have been applied in complex system of Mutagenesis. The experiment demonstrates not only that they get better classification accuracy, but it also shows the causal relationships among the concepts of the system.

  10. Abstraction in artificial intelligence and complex systems

    CERN Document Server

    Saitta, Lorenza

    2013-01-01

    Abstraction is a fundamental mechanism underlying both human and artificial perception, representation of knowledge, reasoning and learning. This mechanism plays a crucial role in many disciplines, notably Computer Programming, Natural and Artificial Vision, Complex Systems, Artificial Intelligence and Machine Learning, Art, and Cognitive Sciences. This book first provides the reader with an overview of the notions of abstraction proposed in various disciplines by comparing both commonalities and differences.  After discussing the characterizing properties of abstraction, a formal model, the K

  11. Complex Fluids in Energy Dissipating Systems

    Directory of Open Access Journals (Sweden)

    Francisco J. Galindo-Rosales

    2016-07-01

    Full Text Available The development of engineered systems for energy dissipation (or absorption during impacts or vibrations is an increasing need in our society, mainly for human protection applications, but also for ensuring the right performance of different sort of devices, facilities or installations. In the last decade, new energy dissipating composites based on the use of certain complex fluids have flourished, due to their non-linear relationship between stress and strain rate depending on the flow/field configuration. This manuscript intends to review the different approaches reported in the literature, analyses the fundamental physics behind them and assess their pros and cons from the perspective of their practical applications.

  12. Joined up Thinking? Evaluating the Use of Concept-Mapping to Develop Complex System Learning

    Science.gov (United States)

    Stewart, Martyn

    2012-01-01

    In the physical and natural sciences, the complexity of natural systems and their interactions is becoming better understood. With increased emphasis on learning about complex systems, students will be encountering concepts that are dynamic, ill-structured and interconnected. Concept-mapping is a method considered particularly valuable for…

  13. International trade, market risk, and multinational corporations

    OpenAIRE

    Su, Qi

    2003-01-01

    In dieser Arbeit werden in vier Kapiteln vier Themen der Weltwirtschaft behandelt: (1) Weshalb konzentrieren sich intra-industrieller Handel und intra-industrielle Investitionen auf Industrieländer? (2) Wieso ist es für ein multinationales Unternehmen wichtig, dauerhaft Technologieführer zu sein? (3) Weshalb sind multinationale Unternehmen in Bezug auf risikoaverses Verhalten erfolgreicher? (4) Weshalb ist freie Faktormobilität nicht ausreichend, um eine Produktionskonvergenz zwischen Industr...

  14. A View of Man's Role and Function in a Complex System.

    Science.gov (United States)

    Thomas, Francis H.

    In this paper the roles and functions of man in the evolution and development of two complex specific systems within the Army operational environment are discussed. It is pointed out that throughout the course of historical development, the basic system functions and objectives have remained unchanged even though the system equipments have varied.…

  15. A Model-Based Approach to Engineering Behavior of Complex Aerospace Systems

    Science.gov (United States)

    Ingham, Michel; Day, John; Donahue, Kenneth; Kadesch, Alex; Kennedy, Andrew; Khan, Mohammed Omair; Post, Ethan; Standley, Shaun

    2012-01-01

    One of the most challenging yet poorly defined aspects of engineering a complex aerospace system is behavior engineering, including definition, specification, design, implementation, and verification and validation of the system's behaviors. This is especially true for behaviors of highly autonomous and intelligent systems. Behavior engineering is more of an art than a science. As a process it is generally ad-hoc, poorly specified, and inconsistently applied from one project to the next. It uses largely informal representations, and results in system behavior being documented in a wide variety of disparate documents. To address this problem, JPL has undertaken a pilot project to apply its institutional capabilities in Model-Based Systems Engineering to the challenge of specifying complex spacecraft system behavior. This paper describes the results of the work in progress on this project. In particular, we discuss our approach to modeling spacecraft behavior including 1) requirements and design flowdown from system-level to subsystem-level, 2) patterns for behavior decomposition, 3) allocation of behaviors to physical elements in the system, and 4) patterns for capturing V&V activities associated with behavioral requirements. We provide examples of interesting behavior specification patterns, and discuss findings from the pilot project.

  16. An analysis methodology for impact of new technology in complex sociotechnical systems

    CSIR Research Space (South Africa)

    Oosthuizen, R

    2013-11-01

    Full Text Available in support of Systems Engineering efforts, which is difficult with complex Sociotechnical Systems. Cognitive Work Analysis and System Dynamics are two complementary approaches that can be applied within this context. The products of these methods assist...

  17. Salud: un sistema complejo adaptativo Health: an adaptive complex system

    Directory of Open Access Journals (Sweden)

    Luis Fernando Toro-Palacio

    2012-02-01

    Full Text Available Este artículo destaca la enorme distancia existente entre el pensamiento complejo de índole intelectual, difundido en nuestro medio, y el pensamiento complejo de índole experimental, que ha permitido lograr los desarrollos científico-tecnológicos que han cambiado radicalmente el mundo. Invita a considerar como sistemas complejos adaptativos entidades tales como la vida, el ser humano, la sociedad global y todo aquello que se llama salud, para lo cual resulta prioritario adoptar un enfoque diferente que amplíe su conocimiento. Al reconocer esta racionalidad, se sustentan las principales características y propiedades emergentes de la salud como sistema complejo adaptativo, siguiendo un modelo de prestación de cuidados y servicios. Finalmente, se plantean algunas preguntas de investigación pertinentes desde esta perspectiva, y se expresan una serie de apreciaciones que se espera sirvan para comprender todo lo que como individuos y como especie hemos llegado a ser. Se propone en este trabajo que la salud y la prestación de servicios de asistencia sanitaria se consideren como sistemas complejos adaptativos.This article points out the enormous gap that exists between complex thinking of an intellectual nature currently present in our environment, and complex experimental thinking that has facilitated the scientific and technological advances that have radically changed the world. The article suggests that life, human beings, global society, and all that constitutes health be considered as adaptive complex systems. This idea, in turn, prioritizes the adoption of a different approach that seeks to expand understanding. When this rationale is recognized, the principal characteristics and emerging properties of health as an adaptive complex system are sustained, following a care and services delivery model. Finally, some pertinent questions from this perspective are put forward in terms of research, and a series of appraisals are expressed that

  18. Information and Self-Organization A Macroscopic Approach to Complex Systems

    CERN Document Server

    Haken, Hermann

    2006-01-01

    This book presents the concepts needed to deal with self-organizing complex systems from a unifying point of view that uses macroscopic data. The various meanings of the concept "information" are discussed and a general formulation of the maximum information (entropy) principle is used. With the aid of results from synergetics, adequate objective constraints for a large class of self-organizing systems are formulated and examples are given from physics, life and computer science. The relationship to chaos theory is examined and it is further shown that, based on possibly scarce and noisy data, unbiased guesses about processes of complex systems can be made and the underlying deterministic and random forces determined. This allows for probabilistic predictions of processes, with applications to numerous fields in science, technology, medicine and economics. The extensions of the third edition are essentially devoted to an introduction to the meaning of information in the quantum context. Indeed, quantum inform...

  19. Complexities in building innovation systems : the case of radical medical technologies

    NARCIS (Netherlands)

    Kukk, P.

    2016-01-01

    The main goal of this thesis is to facilitate a further understanding of how firms behind innovative technologies deal with different complexities in system-building strategies and the co-dependencies among different technologies, actors and system-building activities, while contributing to the

  20. Construction and clinical application of complex utility programs in the SEGAMS-80 system

    International Nuclear Information System (INIS)

    Mate, E.; Csirik, J.; Csernay, L.; Makay, A.

    1981-01-01

    SEGAMS-80 is a system for processing isotope-diagnostic pictures easily and safely for physicians. The functions built into the system form a tree-structure. In certain stages of processing, tables completed according to the medical point of view show identification and a short description of the actual performable functions. The functions available allow an interactive performance of diagnostic processes for different purposes. Interactivity is undesirable while processing routine examinations, since the functions to be performed, their sequence and parameters could be identical in all cases. SEGAMS-80 makes it possible to construct complex programs, to put them into the system and execute them. During the complex program the desired functions are automatically executed. The operator's interference is needed only where the author of the complex program has stated that it is necessary from the medical aspects. Experience gained with several SEGAMS-80 systems has shown that they can be successfully used in isotope diagnostics, without requiring any training in computing techniques from the physicians. A schematic description is given of the structure of SEGAMS-80 together with a detailed account of how to construct complex utility programs. (author)