WorldWideScience

Sample records for systematic reconstruction uncertainties

  1. Experimental systematic uncertainties (and object reconstruction) on top physics, their correlations, comparison ATLAS vs CMS (vs Tevatron) and common agreements

    CERN Document Server

    Costa, M J

    2014-01-01

    The experimental systematic uncertainties associated to the reconstruction and calibration of the objects appearing in top quark final states at the LHC and Tevatron are discussed. The strategies followed in the ATLAS and CMS experiments are compared in detail for the cases of the jet energy scale and $b$-tagging calibrations, where a categorisation of the associated uncertainty sources as well as the corresponding correlations across experiments has been proposed. The estimate of the non-prompt and fake lepton background to the top quark leptonic channels is also discussed.

  2. Planck 2015 results: III. LFI systematic uncertainties

    DEFF Research Database (Denmark)

    Ade, P. A R; Aumont, J.; Baccigalupi, C.

    2016-01-01

    complementary approaches: (i) simulations based on measured data and physical models of the known systematic effects; and (ii) analysis of difference maps containing the same sky signal ("null-maps"). The LFI temperature data are limited by instrumental noise. At large angular scales the systematic effects...... are below the cosmic microwave background (CMB) temperature power spectrum by several orders of magnitude. In polarization the systematic uncertainties are dominated by calibration uncertainties and compete with the CMB E-modes in the multipole range 10-20. Based on our model of all known systematic effects...

  3. Planck 2013 results. III. LFI systematic uncertainties

    DEFF Research Database (Denmark)

    Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.

    2013-01-01

    power spectra.We also present an overall budget of known systematic effect uncertainties, which are dominated by sidelobe straylight pick-upand imperfect calibration. However, even these two effects are at least two orders of magnitude weaker than the cosmic microwave backgroundfluctuations as measured......We present the current estimate of instrumental and systematic effect uncertainties for the Planck-Low Frequency Instrument relevant to the firstrelease of the Planck cosmological results.We give an overview of the main effects and of the tools and methods applied to assess residuals in mapsand...... and to improve the systematic effects modelling, in particular with respect to straylight and calibrationuncertainties....

  4. Planck 2013 results. III. LFI systematic uncertainties

    CERN Document Server

    Aghanim, N; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Bridges, M; Bucher, M; Burigana, C; Butler, R C; Cardoso, J -F; Catalano, A; Chamballu, A; Chiang, L -Y; Christensen, P R; Church, S; Colombi, S; Colombo, L P L; Crill, B P; Cruz, M; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dick, J; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Gaier, T C; Galeotta, S; Ganga, K; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Jaffe, T R; Jaffe, A H; Jewell, J; Jones, W C; Juvela, M; Kangaslahti, P; Keihänen, E; Keskitalo, R; Kiiveri, K; Kisner, T S; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leahy, J P; Leonardi, R; Lesgourgues, J; Liguori, M; Lilje, P B; Lindholm, V; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Naselsky, P; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Novikov, D; Novikov, I; O'Dwyer, I J; Osborne, S; Paci, F; Pagano, L; Paladini, R; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Pearson, D; Peel, M; Perdereau, O; Perotto, L; Perrotta, F; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Platania, P; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Rebolo, R; Reinecke, M; Remazeilles, M; Ricciardi, S; Riller, T; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Türler, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Varis, J; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Watson, R; Wilkinson, A; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    We present the current estimate of instrumental and systematic effect uncertainties for the Planck-Low Frequency Instrument relevant to the first release of the Planck cosmological results. We give an overview of the main effects and of the tools and methods applied to assess residuals in maps and power spectra. We also present an overall budget of known systematic effect uncertainties, which are dominated sidelobe straylight pick-up and imperfect calibration. However, even these two effects are at least two orders of magnitude weaker than the cosmic microwave background (CMB) fluctuations as measured in terms of the angular temperature power spectrum. A residual signal above the noise level is present in the multipole range $\\ell<20$, most notably at 30 GHz, and is likely caused by residual Galactic straylight contamination. Current analysis aims to further reduce the level of spurious signals in the data and to improve the systematic effects modelling, in particular with respect to straylight and calibra...

  5. Robustness of ancestral sequence reconstruction to phylogenetic uncertainty.

    Science.gov (United States)

    Hanson-Smith, Victor; Kolaczkowski, Bryan; Thornton, Joseph W

    2010-09-01

    Ancestral sequence reconstruction (ASR) is widely used to formulate and test hypotheses about the sequences, functions, and structures of ancient genes. Ancestral sequences are usually inferred from an alignment of extant sequences using a maximum likelihood (ML) phylogenetic algorithm, which calculates the most likely ancestral sequence assuming a probabilistic model of sequence evolution and a specific phylogeny--typically the tree with the ML. The true phylogeny is seldom known with certainty, however. ML methods ignore this uncertainty, whereas Bayesian methods incorporate it by integrating the likelihood of each ancestral state over a distribution of possible trees. It is not known whether Bayesian approaches to phylogenetic uncertainty improve the accuracy of inferred ancestral sequences. Here, we use simulation-based experiments under both simplified and empirically derived conditions to compare the accuracy of ASR carried out using ML and Bayesian approaches. We show that incorporating phylogenetic uncertainty by integrating over topologies very rarely changes the inferred ancestral state and does not improve the accuracy of the reconstructed ancestral sequence. Ancestral state reconstructions are robust to uncertainty about the underlying tree because the conditions that produce phylogenetic uncertainty also make the ancestral state identical across plausible trees; conversely, the conditions under which different phylogenies yield different inferred ancestral states produce little or no ambiguity about the true phylogeny. Our results suggest that ML can produce accurate ASRs, even in the face of phylogenetic uncertainty. Using Bayesian integration to incorporate this uncertainty is neither necessary nor beneficial.

  6. Interval-based reconstruction for uncertainty quantification in PET

    Science.gov (United States)

    Kucharczak, Florentin; Loquin, Kevin; Buvat, Irène; Strauss, Olivier; Mariano-Goulart, Denis

    2018-02-01

    A new directed interval-based tomographic reconstruction algorithm, called non-additive interval based expectation maximization (NIBEM) is presented. It uses non-additive modeling of the forward operator that provides intervals instead of single-valued projections. The detailed approach is an extension of the maximum likelihood—expectation maximization algorithm based on intervals. The main motivation for this extension is that the resulting intervals have appealing properties for estimating the statistical uncertainty associated with the reconstructed activity values. After reviewing previously published theoretical concepts related to interval-based projectors, this paper describes the NIBEM algorithm and gives examples that highlight the properties and advantages of this interval valued reconstruction.

  7. Complex Empiricism and the Quantification of Uncertainty in Paleoclimate Reconstructions

    Science.gov (United States)

    Brumble, K. C.

    2014-12-01

    Because the global climate cannot be observed directly, and because of vast and noisy data sets, climate science is a rich field to study how computational statistics informs what it means to do empirical science. Traditionally held virtues of empirical science and empirical methods like reproducibility, independence, and straightforward observation are complicated by representational choices involved in statistical modeling and data handling. Examining how climate reconstructions instantiate complicated empirical relationships between model, data, and predictions reveals that the path from data to prediction does not match traditional conceptions of empirical inference either. Rather, the empirical inferences involved are "complex" in that they require articulation of a good deal of statistical processing wherein assumptions are adopted and representational decisions made, often in the face of substantial uncertainties. Proxy reconstructions are both statistical and paleoclimate science activities aimed at using a variety of proxies to reconstruct past climate behavior. Paleoclimate proxy reconstructions also involve complex data handling and statistical refinement, leading to the current emphasis in the field on the quantification of uncertainty in reconstructions. In this presentation I explore how the processing needed for the correlation of diverse, large, and messy data sets necessitate the explicit quantification of the uncertainties stemming from wrangling proxies into manageable suites. I also address how semi-empirical pseudo-proxy methods allow for the exploration of signal detection in data sets, and as intermediary steps for statistical experimentation.

  8. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  9. ON THE ESTIMATION OF SYSTEMATIC UNCERTAINTIES OF STAR FORMATION HISTORIES

    International Nuclear Information System (INIS)

    Dolphin, Andrew E.

    2012-01-01

    In most star formation history (SFH) measurements, the reported uncertainties are those due to effects whose sizes can be readily measured: Poisson noise, adopted distance and extinction, and binning choices in the solution itself. However, the largest source of error, systematics in the adopted isochrones, is usually ignored and very rarely explicitly incorporated into the uncertainties. I propose a process by which estimates of the uncertainties due to evolutionary models can be incorporated into the SFH uncertainties. This process relies on application of shifts in temperature and luminosity, the sizes of which must be calibrated for the data being analyzed. While there are inherent limitations, the ability to estimate the effect of systematic errors and include them in the overall uncertainty is significant. The effects of this are most notable in the case of shallow photometry, with which SFH measurements rely on evolved stars.

  10. Systematic Evaluation of Uncertainty in Material Flow Analysis

    DEFF Research Database (Denmark)

    Laner, David; Rechberger, Helmut; Astrup, Thomas Fruergaard

    2014-01-01

    Material flow analysis (MFA) is a tool to investigate material flows and stocks in defined systems as a basis for resource management or environmental pollution control. Because of the diverse nature of sources and the varying quality and availability of data, MFA results are inherently uncertain....... Uncertainty analyses have received increasing attention in recent MFA studies, but systematic approaches for selection of appropriate uncertainty tools are missing. This article reviews existing literature related to handling of uncertainty in MFA studies and evaluates current practice of uncertainty analysis......) and exploratory MFA (identification of critical parameters and system behavior). Whereas mathematically simpler concepts focusing on data uncertainty characterization are appropriate for descriptive MFAs, statistical approaches enabling more-rigorous evaluation of uncertainty and model sensitivity are needed...

  11. Uncertainty in Historical Land-Use Reconstructions with Topographic Maps

    Directory of Open Access Journals (Sweden)

    Kaim Dominik

    2014-09-01

    Full Text Available The paper presents the outcomes of the uncertainty investigation of a long-term forest cover change analysis in the Polish Carpathians (nearly 20,000 km2 and Swiss Alps (nearly 10,000 km2 based on topographic maps. Following Leyk et al. (2005 all possible uncertainties are grouped into three domains - production-oriented, transformation- oriented and application-oriented. We show typical examples for each uncertainty domain, encountered during the forest cover change analysis and discuss consequences for change detection. Finally, a proposal for reliability assessment is presented.

  12. Robust framework for PET image reconstruction incorporating system and measurement uncertainties.

    Directory of Open Access Journals (Sweden)

    Huafeng Liu

    Full Text Available In Positron Emission Tomography (PET, an optimal estimate of the radioactivity concentration is obtained from the measured emission data under certain criteria. So far, all the well-known statistical reconstruction algorithms require exactly known system probability matrix a priori, and the quality of such system model largely determines the quality of the reconstructed images. In this paper, we propose an algorithm for PET image reconstruction for the real world case where the PET system model is subject to uncertainties. The method counts PET reconstruction as a regularization problem and the image estimation is achieved by means of an uncertainty weighted least squares framework. The performance of our work is evaluated with the Shepp-Logan simulated and real phantom data, which demonstrates significant improvements in image quality over the least squares reconstruction efforts.

  13. The role of uncertainty analysis in dose reconstruction and risk assessment

    International Nuclear Information System (INIS)

    Hoffman, F.O.; Simon, S.L.; Thiessen. K.M.

    1996-01-01

    Dose reconstruction and risk assessment rely heavily on the use of mathematical models to extrapolate information beyond the realm of direct observation. Because models are merely approximations of real systems, their predictions are inherently uncertain. As a result, full disclosure of uncertainty in dose and risk estimates is essential to achieve scientific credibility and to build public trust. The need for formal analysis of uncertainty in model predictions was presented during the nineteenth annual meeting of the NCRP. At that time, quantitative uncertainty analysis was considered a relatively new and difficult subject practiced by only a few investigators. Today, uncertainty analysis has become synonymous with the assessment process itself. When an uncertainty analysis is used iteratively within the assessment process, it can guide experimental research to refine dose and risk estimates, deferring potentially high cost or high consequence decisions until uncertainty is either acceptable or irreducible. Uncertainty analysis is now mandated for all ongoing dose reconstruction projects within the United States, a fact that distinguishes dose reconstruction from other types of exposure and risk assessments. 64 refs., 6 figs., 1 tab

  14. Cosmological constraints on the neutrino mass including systematic uncertainties

    Science.gov (United States)

    Couchot, F.; Henrot-Versillé, S.; Perdereau, O.; Plaszczynski, S.; Rouillé d'Orfeuil, B.; Spinelli, M.; Tristram, M.

    2017-10-01

    When combining cosmological and oscillations results to constrain the neutrino sector, the question of the propagation of systematic uncertainties is often raised. We address this issue in the context of the derivation of an upper bound on the sum of the neutrino masses (Σmν) with recent cosmological data. This work is performed within the ΛCDM model extended to Σmν, for which we advocate the use of three mass-degenerate neutrinos. We focus on the study of systematic uncertainties linked to the foregrounds modelling in cosmological microwave background (CMB) data analysis, and on the impact of the present knowledge of the reionisation optical depth. This is done through the use of different likelihoods built from Planck data. Limits on Σmν are derived with various combinations of data, including the latest baryon acoustic oscillations (BAO) and Type Ia supernovae (SNIa) results. We also discuss the impact of the preference for current CMB data for amplitudes of the gravitational lensing distortions higher than expected within the ΛCDM model, and add the Planck CMB lensing. We then derive a robust upper limit: Σmνcosmological parameters is also reported, for different assumptions on the neutrino mass repartition, and different high and low multipole CMB likelihoods.

  15. Systematic Uncertainties in High-Rate Germanium Data

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Andrew J.; Fast, James E.; Fulsom, Bryan G.; Pitts, William K.; VanDevender, Brent A.; Wood, Lynn S.

    2016-10-06

    For many nuclear material safeguards inspections, spectroscopic gamma detectors are required which can achieve high event rates (in excess of 10^6 s^-1) while maintaining very good energy resolution for discrimination of neighboring gamma signatures in complex backgrounds. Such spectra can be useful for non-destructive assay (NDA) of spent nuclear fuel with long cooling times, which contains many potentially useful low-rate gamma lines, e.g., Cs-134, in the presence of a few dominating gamma lines, such as Cs-137. Detectors in use typically sacrifice energy resolution for count rate, e.g., LaBr3, or visa versa, e.g., CdZnTe. In contrast, we anticipate that beginning with a detector with high energy resolution, e.g., high-purity germanium (HPGe), and adapting the data acquisition for high throughput will be able to achieve the goals of the ideal detector. In this work, we present quantification of Cs-134 and Cs-137 activities, useful for fuel burn-up quantification, in fuel that has been cooling for 22.3 years. A segmented, planar HPGe detector is used for this inspection, which has been adapted for a high-rate throughput in excess of 500k counts/s. Using a very-high-statistic spectrum of 2.4*10^11 counts, isotope activities can be determined with very low statistical uncertainty. However, it is determined that systematic uncertainties dominate in such a data set, e.g., the uncertainty in the pulse line shape. This spectrum offers a unique opportunity to quantify this uncertainty and subsequently determine required counting times for given precision on values of interest.

  16. Reconstruction of Defects After Fournier Gangrene: A Systematic Review.

    Science.gov (United States)

    Karian, Laurel S; Chung, Stella Y; Lee, Edward S

    2015-01-01

    Reconstruction of scrotal defects after Fournier gangrene is often achieved with skin grafts or flaps, but there is no general consensus on the best method of reconstruction or how to approach the exposed testicle. We systematically reviewed the literature addressing methods of reconstruction of Fournier defects after debridement. PubMed and Cochrane databases were searched from 1950 to 2013. Inclusion criteria were reconstruction for Fournier defects, patients 18 to 90 years old, and reconstructive complication rates reported as whole numbers or percentages. Exclusion criteria were studies focused on methods of debridement or other phases of care rather than reconstruction, studies with fewer than 5 male patients with Fournier defects, literature reviews, and articles not in English. The initial search yielded 982 studies, which was refined to 16 studies with a total pool of 425 patients. There were 25 (5.9%) patients with defects that healed by secondary intention, 44 (10.4%) with delayed primary closure, 36 (8.5%) with implantation of the testicle in a medial thigh pocket, 6 (1.4%) with loose wound approximation, 96 (22.6%) with skin grafts, 68 (16.0%) with scrotal advancement flaps, 128 (30.1%) with flaps, and 22 (5.2%) with flaps or skin grafts in combination with tissue adhesives. Four outcomes were evaluated: number of patients, defect size, method of reconstruction, and wound-healing complications. Most reconstructive techniques provide reliable coverage and protection of testicular function with an acceptable cosmetic result. There is no conclusive evidence to support flap coverage of exposed testes rather than skin graft. A reconstructive algorithm is proposed. Skin grafting or flap reconstruction is recommended for defects larger than 50% of the scrotum or extending beyond the scrotum, whereas scrotal advancement flap reconstruction or healing by secondary intention is best for defects confined to less than 50% of the scrotum that cannot be closed

  17. Capturing total chronological and spatial uncertainties in palaeo-ice sheet reconstructions: the DATED example

    Science.gov (United States)

    Hughes, Anna; Gyllencreutz, Richard; Mangerud, Jan; Svendsen, John Inge

    2017-04-01

    Glacial geologists generate empirical reconstructions of former ice-sheet dynamics by combining evidence from the preserved record of glacial landforms (e.g. end moraines, lineations) and sediments with chronological evidence (mainly numerical dates derived predominantly from radiocarbon, exposure and luminescence techniques). However the geomorphological and sedimentological footprints and chronological data are both incomplete records in both space and time, and all have multiple types of uncertainty associated with them. To understand ice sheets' response to climate we need numerical models of ice-sheet dynamics based on physical principles. To test and/or constrain such models, empirical reconstructions of past ice sheets that capture and acknowledge all uncertainties are required. In 2005 we started a project (Database of the Eurasian Deglaciation, DATED) to produce an empirical reconstruction of the evolution of the last Eurasian ice sheets, (including the British-Irish, Scandinavian and Svalbard-Barents-Kara Seas ice sheets) that is fully documented, specified in time, and includes uncertainty estimates. Over 5000 dates relevant to constraining ice build-up and retreat were assessed for reliability and used together with published ice-sheet margin positions based on glacial geomorphology to reconstruct time-slice maps of the ice sheets' extent. The DATED maps show synchronous ice margins with maximum-minimum uncertainty bounds for every 1000 years between 25-10 kyr ago. In the first version of results (DATED-1; Hughes et al. 2016) all uncertainties (both quantitative and qualitative, e.g. precision and accuracy of numerical dates, correlation of moraines, stratigraphic interpretations) were combined based on our best glaciological-geological assessment and expressed in terms of distance as a 'fuzzy' margin. Large uncertainties (>100 km) exist; predominantly across marine sectors and other locations where there are spatial gaps in the dating record (e.g. the

  18. Uncertainty and variability in the exposure reconstruction of chemical incidents--the case of acrylonitrile.

    Science.gov (United States)

    Huizer, Daan; Ragas, Ad M J; Oldenkamp, Rik; van Rooij, Joost G M; Huijbregts, Mark A J

    2014-12-15

    The application of human physiologically based pharmacokinetic (PBPK) modeling combined with measured biomonitoring data, has a great potential to backtrack external exposure to chemicals during chemical incidents. So far, an important shortcoming of 'reversed dosimetry' is that uncertainty and variability in the model predictions are often neglected. The aim of this paper is to characterize the variation in predicted environmental air concentrations by means of reversed dosimetry as a result of uncertainty in chemical-specific input data and variability in physiological parameters. Human biomonitoring data (N-2-cyanoethylvaline in blood) from a chemical incident with acrylonitrile (ACN) combined with the BioNormtox PBPK model are used as a case to reconstruct the air concentration and uncertainty thereof at the time of the incident. The influence of uncertainty in chemical-specific properties and exposure duration, and interindividual variability in physiological parameters on the reconstructed air exposure concentrations were quantified via nested Monte Carlo simulation. The range in the reconstructed air concentrations of ACN during the incident was within a factor of 3. Uncertainty in the exact exposure duration directly after the chemical accident was found to have a dominant influence on the model outcomes. It was also shown that uncertainty can be further reduced by collecting human biomonitoring data as soon as possible after the incident. Finally, the collection of specific information about individual physiological parameters from the victims, such as body weight, may further reduce the variation by 5 to 20% in our case study. Future research should include the comparison of reversed dosimetry model outcomes with measured air and biological concentrations to further increase the confidence in the model approach and its implementation in practice. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. A new OH5 reconstruction with an assessment of its uncertainty.

    Science.gov (United States)

    Benazzi, Stefano; Bookstein, Fred L; Strait, David S; Weber, Gerhard W

    2011-07-01

    The OH5 cranium, holotype of Paranthropus boisei consists of two main portions that do not fit together: the extensively reconstructed face and a portion of the neurocranium. A physical reconstruction of the cranium was carried out by Tobias in 1967, who did not discuss problems related to deformation, although he noted a slight functional asymmetry. Nevertheless, the reconstructed cranium shows some anomalies, mainly due to the right skewed position of the upper calvariofacial fragment and uncertainty of the relative position of the neurocranium to the face, which hamper further quantitative analysis of OH5's cranial geometry. Here, we present a complete virtual reconstruction of OH5, using three-dimensional (3D) digital data, geometric morphometric (GM) methods and computer-aided design (CAD) techniques. Starting from a CT scan of Tobias's reconstruction, a semi-automatic segmentation method was used to remove Tobias's plaster. The upper calvariofacial fragment was separated from the lower facial fragment and re-aligned using superposition of their independent midsagittal planes in a range of feasible positions. The missing parts of the right hemiface were reconstructed using non-uniform rational basis-spline (NURBS) surface and subsequently mirrored using the midsagittal plane to arrive at a symmetrical facial reconstruction. A symmetric neurocranium was obtained as the average of the original shape and its mirrored version. The alignment between the two symmetric shapes (face and neurocranium) used their independent midsagittal plane and a reference shape (KNM-ER 406) to highly reduce their degrees of freedom. From the series of alternative reconstructions, we selected the middle of this rather small feasible range. When reconstructed as a range in this way, the whole cranial form of this unique specimen can be further quantified by comparative coordinate-based methods such as GM or can be used for finite element modeling (FEM) explorations of hypotheses about

  20. Reconstruction of regional mean temperature for East Asia since 1900s and its uncertainties

    Science.gov (United States)

    Hua, W.

    2017-12-01

    Regional average surface air temperature (SAT) is one of the key variables often used to investigate climate change. Unfortunately, because of the limited observations over East Asia, there were also some gaps in the observation data sampling for regional mean SAT analysis, which was important to estimate past climate change. In this study, the regional average temperature of East Asia since 1900s is calculated by the Empirical Orthogonal Function (EOF)-based optimal interpolation (OA) method with considering the data errors. The results show that our estimate is more precise and robust than the results from simple average, which provides a better way for past climate reconstruction. In addition to the reconstructed regional average SAT anomaly time series, we also estimated uncertainties of reconstruction. The root mean square error (RMSE) results show that the the error decreases with respect to time, and are not sufficiently large to alter the conclusions on the persist warming in East Asia during twenty-first century. Moreover, the test of influence of data error on reconstruction clearly shows the sensitivity of reconstruction to the size of the data error.

  1. On the impact of systematical uncertainties for the CP violation measurement in superbeam experiments

    CERN Document Server

    Huber, Patrick; Schwetz, Thomas

    2008-01-01

    Superbeam experiments can, in principle, achieve impressive sensitivities for CP violation in neutrino oscillations for large $\\theta_{13}$. We study how those sensitivities depend on assumptions about systematical uncertainties. We focus on the second phase of T2K, the so-called T2HK experiment, and we explicitly include a near detector in the analysis. Our main result is that even an idealised near detector cannot remove the dependence on systematical uncertainties completely. Thus additional information is required. We identify certain combinations of uncertainties, which are the key to improve the sensitivity to CP violation, for example the ratio of electron to muon neutrino cross sections and efficiencies. For uncertainties on this ratio larger than 2%, T2HK is systematics dominated. We briefly discuss how our results apply to a possible two far detector configuration, called T2KK. We do not find a significant advantage with respect to the reduction of systematical errors for the measurement of CP viola...

  2. Calculation of the detection limit in radiation measurements with systematic uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, J.M., E-mail: john.kirkpatrick@canberra.com; Russ, W.; Venkataraman, R.; Young, B.M.

    2015-06-01

    The detection limit (L{sub D}) or Minimum Detectable Activity (MDA) is an a priori evaluation of assay sensitivity intended to quantify the suitability of an instrument or measurement arrangement for the needs of a given application. Traditional approaches as pioneered by Currie rely on Gaussian approximations to yield simple, closed-form solutions, and neglect the effects of systematic uncertainties in the instrument calibration. These approximations are applicable over a wide range of applications, but are of limited use in low-count applications, when high confidence values are required, or when systematic uncertainties are significant. One proposed modification to the Currie formulation attempts account for systematic uncertainties within a Gaussian framework. We have previously shown that this approach results in an approximation formula that works best only for small values of the relative systematic uncertainty, for which the modification of Currie's method is the least necessary, and that it significantly overestimates the detection limit or gives infinite or otherwise non-physical results for larger systematic uncertainties where such a correction would be the most useful. We have developed an alternative approach for calculating detection limits based on realistic statistical modeling of the counting distributions which accurately represents statistical and systematic uncertainties. Instead of a closed form solution, numerical and iterative methods are used to evaluate the result. Accurate detection limits can be obtained by this method for the general case.

  3. Mapping Soil Transmitted Helminths and Schistosomiasis under Uncertainty: A Systematic Review and Critical Appraisal of Evidence.

    Science.gov (United States)

    Araujo Navas, Andrea L; Hamm, Nicholas A S; Soares Magalhães, Ricardo J; Stein, Alfred

    2016-12-01

    Spatial modelling of STH and schistosomiasis epidemiology is now commonplace. Spatial epidemiological studies help inform decisions regarding the number of people at risk as well as the geographic areas that need to be targeted with mass drug administration; however, limited attention has been given to propagated uncertainties, their interpretation, and consequences for the mapped values. Using currently published literature on the spatial epidemiology of helminth infections we identified: (1) the main uncertainty sources, their definition and quantification and (2) how uncertainty is informative for STH programme managers and scientists working in this domain. We performed a systematic literature search using the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) protocol. We searched Web of Knowledge and PubMed using a combination of uncertainty, geographic and disease terms. A total of 73 papers fulfilled the inclusion criteria for the systematic review. Only 9% of the studies did not address any element of uncertainty, while 91% of studies quantified uncertainty in the predicted morbidity indicators and 23% of studies mapped it. In addition, 57% of the studies quantified uncertainty in the regression coefficients but only 7% incorporated it in the regression response variable (morbidity indicator). Fifty percent of the studies discussed uncertainty in the covariates but did not quantify it. Uncertainty was mostly defined as precision, and quantified using credible intervals by means of Bayesian approaches. None of the studies considered adequately all sources of uncertainties. We highlighted the need for uncertainty in the morbidity indicator and predictor variable to be incorporated into the modelling framework. Study design and spatial support require further attention and uncertainty associated with Earth observation data should be quantified. Finally, more attention should be given to mapping and interpreting uncertainty, since they

  4. Mapping Soil Transmitted Helminths and Schistosomiasis under Uncertainty: A Systematic Review and Critical Appraisal of Evidence.

    Directory of Open Access Journals (Sweden)

    Andrea L Araujo Navas

    2016-12-01

    Full Text Available Spatial modelling of STH and schistosomiasis epidemiology is now commonplace. Spatial epidemiological studies help inform decisions regarding the number of people at risk as well as the geographic areas that need to be targeted with mass drug administration; however, limited attention has been given to propagated uncertainties, their interpretation, and consequences for the mapped values. Using currently published literature on the spatial epidemiology of helminth infections we identified: (1 the main uncertainty sources, their definition and quantification and (2 how uncertainty is informative for STH programme managers and scientists working in this domain.We performed a systematic literature search using the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA protocol. We searched Web of Knowledge and PubMed using a combination of uncertainty, geographic and disease terms. A total of 73 papers fulfilled the inclusion criteria for the systematic review. Only 9% of the studies did not address any element of uncertainty, while 91% of studies quantified uncertainty in the predicted morbidity indicators and 23% of studies mapped it. In addition, 57% of the studies quantified uncertainty in the regression coefficients but only 7% incorporated it in the regression response variable (morbidity indicator. Fifty percent of the studies discussed uncertainty in the covariates but did not quantify it. Uncertainty was mostly defined as precision, and quantified using credible intervals by means of Bayesian approaches.None of the studies considered adequately all sources of uncertainties. We highlighted the need for uncertainty in the morbidity indicator and predictor variable to be incorporated into the modelling framework. Study design and spatial support require further attention and uncertainty associated with Earth observation data should be quantified. Finally, more attention should be given to mapping and interpreting

  5. Systematic Quantification of Uncertainties for Evaluated Prompt Fission Neutron Spectra and Multiplicities

    Directory of Open Access Journals (Sweden)

    Prinja Anil

    2012-05-01

    Full Text Available Uncertainties associated with evaluated average prompt fission neutron spectra and multiplicities are obtained for a suite of actinides in the Los Alamos model formalism. Systematics for the model input parameters are taken from the literature and used as prior values in a Bayesian updating procedure. Posterior systematics as well as associated posterior uncertainties are inferred. In addition, cross-isotope correlations are evaluated for the first time. The quantification of uncertainties associated with advanced Monte Carlo Hauser-Feshbach calculations of prompt fission neutron spectra is also discussed.

  6. Integration of Component Knowledge in Penalized-Likelihood Reconstruction with Morphological and Spectral Uncertainties.

    Science.gov (United States)

    Stayman, J Webster; Tilley, Steven; Siewerdsen, Jeffrey H

    2014-01-01

    Previous investigations [1-3] have demonstrated that integrating specific knowledge of the structure and composition of components like surgical implants, devices, and tools into a model-based reconstruction framework can improve image quality and allow for potential exposure reductions in CT. Using device knowledge in practice is complicated by uncertainties in the exact shape of components and their particular material composition. Such unknowns in the morphology and attenuation properties lead to errors in the forward model that limit the utility of component integration. In this work, a methodology is presented to accommodate both uncertainties in shape as well as unknown energy-dependent attenuation properties of the surgical devices. This work leverages the so-called known-component reconstruction (KCR) framework [1] with a generalized deformable registration operator and modifications to accommodate a spectral transfer function in the component model. Moreover, since this framework decomposes the object into separate background anatomy and "known" component factors, a mixed fidelity forward model can be adopted so that measurements associated with projections through the surgical devices can be modeled with much greater accuracy. A deformable KCR (dKCR) approach using the mixed fidelity model is introduced and applied to a flexible wire component with unknown structure and composition. Image quality advantages of dKCR over traditional reconstruction methods are illustrated in cone-beam CT (CBCT) data acquired on a testbench emulating a 3D-guided needle biopsy procedure - i.e., a deformable component (needle) with strong energy-dependent attenuation characteristics (steel) within a complex soft-tissue background.

  7. Model uncertainty and systematic risk in US banking

    NARCIS (Netherlands)

    Baele, L.T.M.; De Bruyckere, Valerie; De Jonghe, O.G.; Vander Vennet, Rudi

    This paper uses Bayesian Model Averaging to examine the driving factors of equity returns of US Bank Holding Companies. BMA has as an advantage over OLS that it accounts for the considerable uncertainty about the correct set (model) of bank risk factors. We find that out of a broad set of 12 risk

  8. A systematic framework for effective uncertainty assessment of severe accident calculations; Hybrid qualitative and quantitative methodology

    International Nuclear Information System (INIS)

    Hoseyni, Seyed Mohsen; Pourgol-Mohammad, Mohammad; Tehranifard, Ali Abbaspour; Yousefpour, Faramarz

    2014-01-01

    This paper describes a systematic framework for characterizing important phenomena and quantifying the degree of contribution of each parameter to the output in severe accident uncertainty assessment. The proposed methodology comprises qualitative as well as quantitative phases. The qualitative part so called Modified PIRT, being a robust process of PIRT for more precise quantification of uncertainties, is a two step process for identifying and ranking based on uncertainty importance in severe accident phenomena. In this process identified severe accident phenomena are ranked according to their effect on the figure of merit and their level of knowledge. Analytical Hierarchical Process (AHP) serves here as a systematic approach for severe accident phenomena ranking. Formal uncertainty importance technique is used to estimate the degree of credibility of the severe accident model(s) used to represent the important phenomena. The methodology uses subjective justification by evaluating available information and data from experiments, and code predictions for this step. The quantitative part utilizes uncertainty importance measures for the quantification of the effect of each input parameter to the output uncertainty. A response surface fitting approach is proposed for estimating associated uncertainties with less calculation cost. The quantitative results are used to plan in reducing epistemic uncertainty in the output variable(s). The application of the proposed methodology is demonstrated for the ACRR MP-2 severe accident test facility. - Highlights: • A two stage framework for severe accident uncertainty analysis is proposed. • Modified PIRT qualitatively identifies and ranks uncertainty sources more precisely. • Uncertainty importance measure quantitatively calculates effect of each uncertainty source. • Methodology is applied successfully on ACRR MP-2 severe accident test facility

  9. Assessment of water quality management with a systematic qualitative uncertainty analysis.

    Science.gov (United States)

    Chen, Chi-Feng; Ma, Hwong-wen; Reckhow, Kenneth H

    2007-03-01

    Uncertainty is an inevitable source of noise in water quality management and will weaken the adequacy of decisions. Uncertainty is derived from imperfect information, natural variability, and knowledge-based inconsistency. To make better decisions, it is necessary to reduce uncertainty. Conventional uncertainty analyses have focused on quantifying the uncertainty of parameters and variables in a probabilistic framework. However, the foundational properties and basic constraints might influence the entire system more than the quantifiable elements and have to be considered in initial analysis steps. According to binary classification, uncertainty includes quantitative uncertainty and non-quantitative uncertainty, which is also called qualitative uncertainty. Qualitative uncertainty originates from human subjective and biased beliefs. This study provides an understanding of qualitative uncertainty in terms of its conceptual definitions and practical applications. A systematic process of qualitative uncertainty analysis is developed for assisting complete uncertainty analysis, in which a qualitative network could then be built with qualitative relationship and quantifiable functions. In the proposed framework, a knowledge elicitation procedure is required to identify influential factors and their interrelationship. To limit biased information, a checklist is helpful to construct the qualitative network. The checklist helps one to ponder arbitrary assumptions that have often been taken for granted and may yield an incomplete or inappropriate decision analysis. The total maximum daily loads (TMDL) program is used as a surrogate for water quality management in this study. 15 uncertainty causes of TMDL programs are elicited by reviewing an influence diagram, and a checklist is formed with tabular interrogations corresponding to each uncertainty cause. The checklist enables decision makers to gain insight on the uncertainty level of the system at early steps as a

  10. Phylogenetic uncertainty can bias the number of evolutionary transitions estimated from ancestral state reconstruction methods.

    Science.gov (United States)

    Duchêne, Sebastian; Lanfear, Robert

    2015-09-01

    Ancestral state reconstruction (ASR) is a popular method for exploring the evolutionary history of traits that leave little or no trace in the fossil record. For example, it has been used to test hypotheses about the number of evolutionary origins of key life-history traits such as oviparity, or key morphological structures such as wings. Many studies that use ASR have suggested that the number of evolutionary origins of such traits is higher than was previously thought. The scope of such inferences is increasing rapidly, facilitated by the construction of very large phylogenies and life-history databases. In this paper, we use simulations to show that the number of evolutionary origins of a trait tends to be overestimated when the phylogeny is not perfect. In some cases, the estimated number of transitions can be several fold higher than the true value. Furthermore, we show that the bias is not always corrected by standard approaches to account for phylogenetic uncertainty, such as repeating the analysis on a large collection of possible trees. These findings have important implications for studies that seek to estimate the number of origins of a trait, particularly those that use large phylogenies that are associated with considerable uncertainty. We discuss the implications of this bias, and methods to ameliorate it. © 2015 Wiley Periodicals, Inc.

  11. Uncertainties

    Indian Academy of Sciences (India)

    The imperfect understanding of some of the processes and physics in the carbon cycle and chemistry models generate uncertainties in the conversion of emissions to concentration. To reflect this uncertainty in the climate scenarios, the use of AOGCMs that explicitly simulate the carbon cycle and chemistry of all the ...

  12. Uncertainty evaluation for three-dimensional scanning electron microscope reconstructions based on the stereo-pair technique

    DEFF Research Database (Denmark)

    Carli, Lorenzo; Genta, G; Cantatore, Angela

    2011-01-01

    3D-SEM is a method, based on the stereophotogrammetry technique, which obtains three-dimensional topographic reconstructions starting typically from two SEM images, called the stereo-pair. In this work, a theoretical uncertainty evaluation of the stereo-pair technique, according to GUM (Guide to ...

  13. Systematic uncertainties in long-baseline neutrino oscillations for large θ₁₃

    Energy Technology Data Exchange (ETDEWEB)

    Coloma, Pilar; Huber, Patrick; Kopp, Joachim; Winter, Walter

    2013-02-01

    We study the physics potential of future long-baseline neutrino oscillation experiments at large θ₁₃, focusing especially on systematic uncertainties. We discuss superbeams, \\bbeams, and neutrino factories, and for the first time compare these experiments on an equal footing with respect to systematic errors. We explicitly simulate near detectors for all experiments, we use the same implementation of systematic uncertainties for all experiments, and we fully correlate the uncertainties among detectors, oscillation channels, and beam polarizations as appropriate. As our primary performance indicator, we use the achievable precision in the measurement of the CP violating phase $\\deltacp$. We find that a neutrino factory is the only instrument that can measure $\\deltacp$ with a precision similar to that of its quark sector counterpart. All neutrino beams operating at peak energies ≳2 GeV are quite robust with respect to systematic uncertainties, whereas especially \\bbeams and \\thk suffer from large cross section uncertainties in the quasi-elastic regime, combined with their inability to measure the appearance signal cross sections at the near detector. A noteworthy exception is the combination of a γ =100 \\bbeam with an \\spl-based superbeam, in which all relevant cross sections can be measured in a self-consistent way. This provides a performance, second only to the neutrino factory. For other superbeam experiments such as \\lbno and the setups studied in the context of the \\lbne reconfiguration effort, statistics turns out to be the bottleneck. In almost all cases, the near detector is not critical to control systematics since the combined fit of appearance and disappearance data already constrains the impact of systematics to be small provided that the three active flavor oscillation framework is valid.

  14. Upper limit for Poisson variable incorporating systematic uncertainties by Bayesian approach

    International Nuclear Information System (INIS)

    Zhu, Yongsheng

    2007-01-01

    To calculate the upper limit for the Poisson observable at given confidence level with inclusion of systematic uncertainties in background expectation and signal efficiency, formulations have been established along the line of Bayesian approach. A FORTRAN program, BPULE, has been developed to implement the upper limit calculation

  15. Intolerance of Uncertainty in Eating Disorders: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Brown, Melanie; Robinson, Lauren; Campione, Giovanna Cristina; Wuensch, Kelsey; Hildebrandt, Tom; Micali, Nadia

    2017-09-01

    Intolerance of uncertainty is an empirically supported transdiagnostic construct that may have relevance in understanding eating disorders. We conducted a meta-analysis and systematic review of intolerance of uncertainty in eating disorders using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We calculated random-effects standardised mean differences (SMD) for studies utilising the Intolerance of Uncertainty Scale (IUS) and summarised additional studies descriptively. Women with eating disorders have significantly higher IUS scores compared with healthy controls (SMD = 1.90; 95% C.I. 1.24 to 2.56; p eating disorders and potential target of cognitive, behavioural, interoceptive and affective symptoms. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.

  16. Estimating angle-dependent systematic error and measurement uncertainty for a conoscopic holography measurement system

    Science.gov (United States)

    Paviotti, Anna; Carmignato, Simone; Voltan, Alessandro; Laurenti, Nicola; Cortelazzo, Guido M.

    2009-01-01

    The aim of this study is to assess angle-dependent systematic errors and measurement uncertainties for a conoscopic holography laser sensor mounted on a Coordinate Measuring Machine (CMM). The main contribution of our work is the definition of a methodology for the derivation of point-sensitive systematic and random errors, which must be determined in order to evaluate the accuracy of the measuring system. An ad hoc three dimensional artefact has been built for the task. The experimental test has been designed so as to isolate the effects of angular variations from those of other influence quantities that might affect the measurement result. We have found the best measurand to assess angle-dependent errors, and found some preliminary results on the expression of the systematic error and measurement uncertainty as a function of the zenith angle for the chosen measurement system and sample material.

  17. Uncertainties in estimation of intakes of actinides for dose reconstruction cases.

    Science.gov (United States)

    Wilson, G; Bull, R K

    2007-01-01

    Intakes and doses arising from exposure to actinides must be reconstructed from historical bioassay data for the purposes of worker compensation and for epidemiology studies. The usual default assumption is that a series of urine activities is the result of a constant chronic intake. In reality, the urine activities will most likely arise from a random sequence of discrete intakes. In order to investigate the accuracy of the constant chronic assumption, we have created virtual urine datasets using Monte Carlo modelling and these were used as input to the code IMBA(1). Comparisons of estimated intakes with those used as input allow the uncertainties in the procedure to be estimated. The effects of incorrect assumptions about the scattering factors, activity median aerodynamic diameter (AMAD) and solubility can also be examined. The results show that the constant chronic assumptions leads to remarkably reliable estimates of intake, even for datasets generated by just a few intakes per year. The estimate of intake is fairly robust against mis-assignment of scattering factor and AMAD. However, as is well-known, the correct assignment of solubility is crucial in obtaining reliable estimates of intake and dose.

  18. Uncertainties

    Indian Academy of Sciences (India)

    To reflect this uncertainty in the climate scenarios, the use of AOGCMs that explicitly simulate the carbon cycle and chemistry of all the substances are needed. The Hadley Centre has developed a version of the climate model that allows the effect of climate change on the carbon cycle and its feedback into climate, to be ...

  19. An Approach for the Uncertainty Evaluation of the Overall Result from Replications of Measurement: Separately Combining Individual Uncertainty Components According to their 'systematic' and 'random' Effects

    International Nuclear Information System (INIS)

    Kim, In Jung; Kim, Byungjoo; Hwang, Euijin

    2014-01-01

    In our previous articles, an approach has been proposed for the evaluation of the uncertainty of overall result from multiple measurements. In the approach, uncertainty sources were classified into two groups: the first including those giving same 'systematic' effect on each individual measurement and the second including the others giving 'random' effect on each individual measurement and causing a variation among individual measurement results. The arithmetic mean of the replicated measurements is usually assigned as the value for the overall result. Uncertainty of the overall result is determined by separately evaluating and combining an overall uncertainty from sources of the 'systematic' effect and another overall uncertainty from sources of the 'random' effect. This conceptual approach has been widely adopted in chemical metrology society. In this study, further logical proof with more detailed mathematical expressions is provided on the approach

  20. Improving the control of systematic uncertainties in precision measurements of radionuclide half-life

    International Nuclear Information System (INIS)

    Towers, S.

    2013-01-01

    Many experiments designed to precisely determine the half-life of a radionuclide employ a long lived reference source to help determine the impact on the data of any systematic variation in the detector and associated electronics. The half-life of the radionuclide of interest is determined from the ratio of its decay rate data to the decay rate data from the reference source. This correction procedure assumes that any underlying systematic affects the data and reference measurements in exactly the same way. In this paper we show that when some systematic effects affect the two differently, the ratio procedure can leave artifacts in the corrected data that can compromise an unbiased and precise assessment of the radionuclide half-life. We describe two methods that can help overcome this problem. We also describe several statistical tests that help determine which effects may underlie systematic variations in the data. We discuss an illustrative example based on previously published 32 Si and 36 Cl data recorded by an experiment at Brookhaven National Laboratory. We correct the data for systematic variation related to climate variation and estimate the 32 Si half-life to be T 1/2 =171.8±1.8. The reduction in uncertainty in the 32 Si half-life, relative to the previous estimate based upon this data, is equivalent to that which would be achieved through increasing the size of the data set by almost 3.5 times. - Author-Highlights: • Isotope decay data and reference source data can have differing systematics. • Differing systematics can inflate uncertainty of isotope half-life estimate. • We describe two methods to overcome this problem. • We describe statistical tests to determine which variables cause systematics. • We analyze Brookhaven 32Si/36Cl decay data as an illustrative example

  1. Do systematic reviews address community healthcare professionals' wound care uncertainties? Results from evidence mapping in wound care.

    Science.gov (United States)

    Christie, Janice; Gray, Trish A; Dumville, Jo C; Cullum, Nicky A

    2018-01-01

    Complex wounds such as leg and foot ulcers are common, resource intensive and have negative impacts on patients' wellbeing. Evidence-based decision-making, substantiated by high quality evidence such as from systematic reviews, is widely advocated for improving patient care and healthcare efficiency. Consequently, we set out to classify and map the extent to which up-to-date systematic reviews containing robust evidence exist for wound care uncertainties prioritised by community-based healthcare professionals. We asked healthcare professionals to prioritise uncertainties based on complex wound care decisions, and then classified 28 uncertainties according to the type and level of decision. For each uncertainty, we searched for relevant systematic reviews. Two independent reviewers screened abstracts and full texts of reviews against the following criteria: meeting an a priori definition of a systematic review, sufficiently addressing the uncertainty, published during or after 2012, and identifying high quality research evidence. The most common uncertainty type was 'interventions' 24/28 (85%); the majority concerned wound level decisions 15/28 (53%) however, service delivery level decisions (10/28) were given highest priority. Overall, we found 162 potentially relevant reviews of which 57 (35%) were not systematic reviews. Of 106 systematic reviews, only 28 were relevant to an uncertainty and 18 of these were published within the preceding five years; none identified high quality research evidence. Despite the growing volume of published primary research, healthcare professionals delivering wound care have important clinical uncertainties which are not addressed by up-to-date systematic reviews containing high certainty evidence. These are high priority topics requiring new research and systematic reviews which are regularly updated. To reduce clinical and research waste, we recommend systematic reviewers and researchers make greater efforts to ensure that research

  2. Pollutant concentration profile reconstruction using digital soft sensors for biodegradation and exposure assessment in the presence of model uncertainty.

    Science.gov (United States)

    Kazantzis, Nikolaos; Kazantzi, Vasiliki; Christodoulou, Emmanuel G

    2014-01-01

    A new approach to the problem of environmental hazard assessment and monitoring for pollutant biodegradation reaction systems in the presence of uncertainty is proposed using soft sensor-based pollutant concentration dynamic profile reconstruction techniques. In particular, a robust reduced-order soft sensor is proposed that can be digitally implemented in the presence of inherent complexity and the inevitable model uncertainty. The proposed method explicitly incorporates all the available information associated with a process model characterized by varying degrees of uncertainty, as well as available sensor measurements of certain physicochemical quantities. Based on the above information, a reduced-order soft sensor is designed enabling the reliable reconstruction of pollutant concentration profiles in complex biodegradation systems that can not be always achieved due to physical and/or technical limitations associated with current sensor technology. The option of using the aforementioned approach to compute toxic load and persistence indexes on the basis of the reconstructed concentration profiles is also pursued. Finally, the performance of the proposed method is evaluated in two illustrative environmental hazard assessment case studies.

  3. Jet energy measurement and its systematic uncertainty in proton-proton collisions at $\\sqrt{s}$=7 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Aefsky, Scott; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmad, Ashfaq; Ahmadov, Faig; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Astbury, Alan; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Bittner, Bernhard; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Gareth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Caso, Carlo; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coelli, Simone; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Colas, Jacques; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Courneyea, Lorraine; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Crispin Ortuzar, Mireia; Cristinziani, Markus; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliot, Frederic; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Demirkoz, Bilge; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Dwuznik, Michal; Ebke, Johannes; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Matthew; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giunta, Michele; Gjelsten, Børge Kile; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Grybel, Kai; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haefner, Petra; Hageboeck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jeng, Geng-yuan; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Keller, John; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koenig, Sebastian; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Laisne, Emmanuel; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Dörthe; Ludwig, Inga; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lundberg, Johan; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madar, Romain; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marques, Carlos; Marroquim, Fernando; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattmann, Johannes; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mazzanti, Marcello; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meehan, Samuel; Meera-Lebbai, Razzak; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Michal, Sebastien; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Molfetas, Angelos; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen, Duong Hai; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petteni, Michele; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quilty, Donnchadha; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinsch, Andreas; Reisin, Hernan; Reisinger, Ingo; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarkisyan-Grinbaum, Edward; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schroer, Nicolai; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snow, Joel; Snyder, Scott; Sobie, Randall; Socher, Felix; Sodomka, Jaromir; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sood, Alexander; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Wolfgang; Wagner, Peter; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Whittington, Denver; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Chao; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zitoun, Robert; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2015-01-15

    The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton-proton collision data with a centre-of-mass energy of $\\sqrt{s}=7$ TeV corresponding to an integrated luminosity of 4.7 fb$^{-1}$. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-k$_t$ algorithm with distance parameters $R=0.4$ or $R=0.6$, and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a Z boson, for $20 1$ TeV. The calibration of forward jets is derived from dijet $p_t$ balance measurements. The resulting uncertainty reaches its largest value of $6%$ for low-$p_t$ jets at $|\\eta|=4.5$. Additional JES uncertainties due to specific eve...

  4. Improving the control of systematic uncertainties in precision measurements of radionuclide half-life.

    Science.gov (United States)

    Towers, S

    2013-07-01

    Many experiments designed to precisely determine the half-life of a radionuclide employ a long lived reference source to help determine the impact on the data of any systematic variation in the detector and associated electronics. The half-life of the radionuclide of interest is determined from the ratio of its decay rate data to the decay rate data from the reference source. This correction procedure assumes that any underlying systematic affects the data and reference measurements in exactly the same way. In this paper we show that when some systematic effects affect the two differently, the ratio procedure can leave artifacts in the corrected data that can compromise an unbiased and precise assessment of the radionuclide half-life. We describe two methods that can help overcome this problem. We also describe several statistical tests that help determine which effects may underlie systematic variations in the data. We discuss an illustrative example based on previously published (32)Si and (36)Cl data recorded by an experiment at Brookhaven National Laboratory. We correct the data for systematic variation related to climate variation and estimate the (32)Si half-life to be T1/2=171.8±1.8. The reduction in uncertainty in the (32)Si half-life, relative to the previous estimate based upon this data, is equivalent to that which would be achieved through increasing the size of the data set by almost 3.5 times. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The Impact of Reconstruction Methods, Phylogenetic Uncertainty and Branch Lengths on Inference of Chromosome Number Evolution in American Daisies (Melampodium, Asteraceae)

    OpenAIRE

    McCann, Jamie; Schneeweiss, Gerald M.; Stuessy, Tod F.; Villase?or, Jose L.; Weiss-Schneeweiss, Hanna

    2016-01-01

    Chromosome number change (polyploidy and dysploidy) plays an important role in plant diversification and speciation. Investigating chromosome number evolution commonly entails ancestral state reconstruction performed within a phylogenetic framework, which is, however, prone to uncertainty, whose effects on evolutionary inferences are insufficiently understood. Using the chromosomally diverse plant genus Melampodium (Asteraceae) as model group, we assess the impact of reconstruction method (ma...

  6. Controversies in orbital reconstruction--II. Timing of post-traumatic orbital reconstruction: a systematic review

    NARCIS (Netherlands)

    Dubois, L.; Steenen, S. A.; Gooris, P. J. J.; Mourits, M. P.; Becking, A. G.

    2015-01-01

    The timing of orbital reconstruction is a determinative factor with respect to the incidence of potential postoperative orbital complications. In orbital trauma surgery, a general distinction is made between immediate (within hours), early (within 2 weeks), and late surgical intervention. There is a

  7. Return of normal gait as an outcome measurement in acl reconstructed patients : a systematic review

    NARCIS (Netherlands)

    A. Gokeler; K.E. Webster; Anne Benjaminse; L. Schot; C.F. van Eck; E. Otten

    2013-01-01

    Abstract BACKGROUND: Current clinical outcome measurements may overestimate the long term success of anterior cruciate ligament reconstruction (ACLR). There is a need to understand biomechanics of the knee joint during daily activities. This systematic review provides a comprehensive overview of the

  8. Update on the jet energy scale systematic uncertainty for jets produced in proton-proton collisions at $\\sqrt{s}=7$~TeV measured with the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2011-01-01

    An update to the jet energy scale systematic uncertainty for inclusive jets measured in the ATLAS detector and produced in proton-proton collisions at a centre-of-mass energy of $\\sqrt{s}=7$~TeV is described. The jet energy scale systematic uncertainty for jets reconstructed with the \\antikt~algorithm with distance parameters of $R=0.4$ and $R=0.6$ is evaluated starting from a transverse momentum of $20$~GeV and for a calorimeter coverage up to pseudo-rapidities of $|\\eta| = 4.5$. In the central detector region the jet energy scale uncertainty is obtained from the single isolated hadron response measured in-situ in proton proton collisions and in the ATLAS combined test-beam for pion momenta up to $350$~GeV. Further uncertainties are evaluated with systematic variations of Monte Carlo simulations. The uncertainty is extended to the endcap and forward detector regions exploiting the transverse momentum balance between a central and a forward jet in events where only two jets are produced. The JES uncertainty a...

  9. Recurrent Instability After Arthroscopic Bankart Reconstruction: A Systematic Review of Surgical Technical Factors.

    Science.gov (United States)

    Brown, Landon; Rothermel, Shane; Joshi, Rajat; Dhawan, Aman

    2017-11-01

    Recurrent instability remains of concern after arthroscopic Bankart reconstruction. We evaluated various technical factors including anchor design, anchor material, number of anchors used, and interval closure on risk of recurrent instability after arthroscopic Bankart reconstruction. A systematic review of MEDLINE and Cochrane databases was conducted, following PRISMA guidelines. Extracted data were recorded on a standardized form. Methodological index for non-randomized studies (MINORS) and Newcastle-Ottawa Scale (NOS) were used to assess study quality and risk bias. Because of study heterogeneity and low levels of evidence, meta-analysis was not possible. Pooled weighted means were calculated and individual study evaluation and comparisons (qualitative analysis) were performed for systematic review. Of 2097 studies identified, 26 met criteria for systematic review. Pooled weighted means revealed 11.4% versus 15% recurrent instability with 3 or more suture anchors versus fewer than 3 anchors, 10.1% versus 7.8% with absorbable versus nonabsorbable suture anchors, respectively, and 8.0% versus 9.4% with knotless versus standard anchors, respectively. Interval closure did not qualitatively decrease recurrent instability or decrease range of motion. Our systematic review reveals that despite individual study, and previous systematic reviews pointing to the contrary, the composite contemporary published literature would support no difference in the risk of recurrent instability after arthroscopic Bankart reconstruction with rotator interval closure, differing numbers of anchors used for the repair, use of knotless versus standard anchors, or use of bioabsorbable versus nonabsorbable anchors. We recommend surgeons focus on factors that have been shown to modify the risk factors after arthroscopic Bankart reconstruction, such as patient selection. Level IV, systematic review of Level III and IV studies. Copyright © 2017 Arthroscopy Association of North America

  10. Systematic reconstruction of autism biology from massive genetic mutation profiles.

    Science.gov (United States)

    Luo, Weijun; Zhang, Chaolin; Jiang, Yong-Hui; Brouwer, Cory R

    2018-04-01

    Autism spectrum disorder (ASD) affects 1% of world population and has become a pressing medical and social problem worldwide. As a paradigmatic complex genetic disease, ASD has been intensively studied and thousands of gene mutations have been reported. Because these mutations rarely recur, it is difficult to (i) pinpoint the fewer disease-causing versus majority random events and (ii) replicate or verify independent studies. A coherent and systematic understanding of autism biology has not been achieved. We analyzed 3392 and 4792 autism-related mutations from two large-scale whole-exome studies across multiple resolution levels, that is, variants (single-nucleotide), genes (protein-coding unit), and pathways (molecular module). These mutations do not recur or replicate at the variant level, but significantly and increasingly do so at gene and pathway levels. Genetic association reveals a novel gene + pathway dual-hit model, where the mutation burden becomes less relevant. In multiple independent analyses, hundreds of variants or genes repeatedly converge to several canonical pathways, either novel or literature-supported. These pathways define recurrent and systematic ASD biology, distinct from previously reported gene groups or networks. They also present a catalog of novel ASD risk factors including 118 variants and 72 genes. At a subpathway level, most variants disrupt the pathway-related gene functions, and in the same gene, they tend to hit residues extremely close to each other and in the same domain. Multiple interacting variants spotlight key modules, including the cAMP (adenosine 3',5'-monophosphate) second-messenger system and mGluR (metabotropic glutamate receptor) signaling regulation by GRKs (G protein-coupled receptor kinases). At a superpathway level, distinct pathways further interconnect and converge to three biology themes: synaptic function, morphology, and plasticity.

  11. Assessing value in breast reconstruction: A systematic review of cost-effectiveness studies.

    Science.gov (United States)

    Sheckter, Clifford C; Matros, Evan; Momeni, Arash

    2018-03-01

    Breast reconstruction is one of the most common procedures performed by plastic surgeons and is achieved through various choices in both technology and method. Cost-effectiveness analyses are increasingly important in assessing differences in value between treatment options, which is relevant in a world of confined resources. A thorough evaluation of the cost-effectiveness literature can assist surgeons and health systems evaluate high-value care models. A systematic review of PubMed, Web of Science, and the Cost-Effectiveness Analysis Registry was conducted. Two reviewers independently evaluated all publications up until August 17, 2017. After removal of duplicates, 1996 records were screened, from which 53 studies underwent full text review. All the 13 studies included for final analysis mention an incremental cost-effectiveness ratio. Five studies evaluated the cost-effectiveness of technologies including acellular dermal matrix (ADM) in staged prosthetic reconstruction, ADM in direct-to-implant (DTI) reconstruction, preoperative computed tomography angiography in autologous reconstruction, indocyanine green dye angiography in evaluating anastomotic patency, and abdominal mesh reinforcement in abdominal tissue transfer. The remaining eight studies evaluated the cost-effectiveness of different reconstruction methods. Cost-effective strategies included free vs. pedicled abdominal tissue transfer, DTI vs. staged prosthetic reconstruction, and fascia-sparing variants of free abdominal tissue transfer. Current evidence demonstrates multiple cost-effective technologies and methods in accomplishing successful breast reconstruction. Plastic surgeons should be well informed of such economic models when engaging payers and policymakers in discussions regarding high-value breast reconstruction. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  12. Community health nursing practices in contexts of poverty, uncertainty and unpredictability: a systematization of personal experiences.

    Science.gov (United States)

    Laperrière, Hélène

    2007-01-01

    Several years of professional nursing practices, while living in the poorest neighbourhoods in the outlying areas of Brazil's Amazon region, have led the author to develop a better understanding of marginalized populations. Providing care to people with leprosy and sex workers in riverside communities has taken place in conditions of uncertainty, insecurity, unpredictability and institutional violence. The question raised is how we can develop community health nursing practices in this context. A systematization of personal experiences based on popular education is used and analyzed as a way of learning by obtaining scientific knowledge through critical analysis of field practices. Ties of solidarity and belonging developed in informal, mutual-help action groups are promising avenues for research and the development of knowledge in health promotion, prevention and community care and a necessary contribution to national public health programmers.

  13. A review of sources of systematic errors and uncertainties in observations and simulations at 183 GHz

    Science.gov (United States)

    Brogniez, Helene; English, Stephen; Mahfouf, Jean-Francois; Behrendt, Andreas; Berg, Wesley; Boukabara, Sid; Buehler, Stefan Alexander; Chambon, Philippe; Gambacorta, Antonia; Geer, Alan; Ingram, William; Kursinski, E. Robert; Matricardi, Marco; Odintsova, Tatyana A.; Payne, Vivienne H.; Thorne, Peter W.; Tretyakov, Mikhail Yu.; Wang, Junhong

    2016-05-01

    Several recent studies have observed systematic differences between measurements in the 183.31 GHz water vapor line by space-borne sounders and calculations using radiative transfer models, with inputs from either radiosondes (radiosonde observations, RAOBs) or short-range forecasts by numerical weather prediction (NWP) models. This paper discusses all the relevant categories of observation-based or model-based data, quantifies their uncertainties and separates biases that could be common to all causes from those attributable to a particular cause. Reference observations from radiosondes, Global Navigation Satellite System (GNSS) receivers, differential absorption lidar (DIAL) and Raman lidar are thus overviewed. Biases arising from their calibration procedures, NWP models and data assimilation, instrument biases and radiative transfer models (both the models themselves and the underlying spectroscopy) are presented and discussed. Although presently no single process in the comparisons seems capable of explaining the observed structure of bias, recommendations are made in order to better understand the causes.

  14. Assessment of the uncertainty associated with systematic errors in digital instruments: an experimental study on offset errors

    International Nuclear Information System (INIS)

    Attivissimo, F; Giaquinto, N; Savino, M; Cataldo, A

    2012-01-01

    This paper deals with the assessment of the uncertainty due to systematic errors, particularly in A/D conversion-based instruments. The problem of defining and assessing systematic errors is briefly discussed, and the conceptual scheme of gauge repeatability and reproducibility is adopted. A practical example regarding the evaluation of the uncertainty caused by the systematic offset error is presented. The experimental results, obtained under various ambient conditions, show that modelling the variability of systematic errors is more problematic than suggested by the ISO 5725 norm. Additionally, the paper demonstrates the substantial difference between the type B uncertainty evaluation, obtained via the maximum entropy principle applied to manufacturer's specifications, and the type A (experimental) uncertainty evaluation, which reflects actually observable reality. Although it is reasonable to assume a uniform distribution of the offset error, experiments demonstrate that the distribution is not centred and that a correction must be applied. In such a context, this work motivates a more pragmatic and experimental approach to uncertainty, with respect to the directions of supplement 1 of GUM. (paper)

  15. Anterior cruciate ligament reconstruction in skeletally immature patients : a systematic review.

    Science.gov (United States)

    Longo, U G; Ciuffreda, M; Casciaro, C; Mannering, N; Candela, V; Salvatore, G; Denaro, V

    2017-08-01

    Different methods of anterior cruciate ligament (ACL) reconstruction have been described for skeletally immature patients before closure of the growth plates. However, the outcome and complications following this treatment remain unclear. The aim of this systematic review was to analyse the outcome and complications of different techniques which may be used for reconstruction of the ACL in these patients. We performed a systematic review of the literature according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. This involved a comprehensive search of PubMed, Medline, CINAHL, Cochrane, Embase and Google Scholar databases using the following combinations of keywords, "knee", "anterior cruciate ligament", "reconstruction", "injury", "children", "adolescent", "skeletally immature", "open physis" and "surgery". A total of 53 studies met the inclusion criteria and were included for analysis. The overall rate of disturbance of growth after ACL reconstruction was 2.6%, with no statistical difference between transphyseal and physeal-sparing techniques. Physeal-sparing techniques had a lower rate of post-operative complications compared with transphyseal techniques (p = 0.0045). Outcomes assessed were Lysholm score, International Knee Documentation Committee (IKDC) score, the IKDC grade, the Tegner score and the KT-1000. Both techniques had similar clinical outcomes. This review reveals low rates of disturbance of growth after ACL reconstruction in skeletally immature patients. Although limited, the available evidence did not support any particular surgical technique when considering disturbance of growth or clinical outcome. Further randomised controlled trials are needed to investigate the efficacy of differing surgical techniques on outcomes in skeletally immature patients. Cite this article: Bone Joint J 2017;99-B:1053-60. ©2017 The British Editorial Society of Bone & Joint Surgery.

  16. An integrative systematic framework helps to reconstruct skeletal evolution of glass sponges (Porifera, Hexactinellida)

    OpenAIRE

    Dohrmann, Martin; Kelley, Christopher; Kelly, Michelle; Pisera, Andrzej; Hooper, John N. A.; Reiswig, Henry M.

    2017-01-01

    Background Glass sponges (Class Hexactinellida) are important components of deep-sea ecosystems and are of interest from geological and materials science perspectives. The reconstruction of their phylogeny with molecular data has only recently begun and shows a better agreement with morphology-based systematics than is typical for other sponge groups, likely because of a greater number of informative morphological characters. However, inconsistencies remain that have far-reaching implications...

  17. Photoneutron cross sections for {sup 59}Co. Systematic uncertainties of data from various experiments

    Energy Technology Data Exchange (ETDEWEB)

    Varlamov, V.V. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Davydov, A.I. [Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation); Ishkhanov, B.S. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation)

    2017-09-15

    Data on partial photoneutron reaction cross sections (γ, 1n), (γ, 2n), and (γ, 3n) for {sup 59}Co obtained in two experiments carried out at Livermore (USA) were analyzed. The sources of radiation in both experiments were the monoenergetic photon beams from the annihilation in flight of relativistic positrons. The total yield was sorted by the neutron multiplicity, taking into account the difference in the neutron energy spectra for different multiplicity. The two quoted studies differ in the method of determining the neutron. Significant systematic disagreements between the results of the two experiments exist. They are considered to be caused by large systematic uncertainties in partial cross sections, since they do not satisfy physical criteria for reliability of the data. To obtain reliable cross sections of partial and total photoneutron reactions a new method combining experimental data and theoretical evaluation was used. It is based on the experimental neutron yield cross section which is rather independent of neutron multiplicity and the transitional neutron multiplicity functions of the combined photonucleon reaction model (CPNRM). The model transitional multiplicity functions were used for the decomposition of the neutron yield cross section into the contributions of partial reactions. The results of the new evaluation noticeably differ from the partial cross sections obtained in the two experimental studies are under discussion. (orig.)

  18. A systematic review of the evidence on clitoral reconstruction after female genital mutilation/cutting.

    Science.gov (United States)

    Abdulcadir, Jasmine; Rodriguez, Maria I; Say, Lale

    2015-05-01

    Clitoral reconstruction is a new surgical technique for women who have undergone female genital mutilation/cutting (FGM/C). To review evidence on the safety and efficacy of clitoral reconstruction. PubMed and Cochrane databases were searched for articles published in any language from database inception until May 2014. Search terms related to FGM/C and clitoral reconstruction were used in various combinations. Studies of any design that reported on safety or clinical outcomes (e.g. appearance, pain, sexual response, or patient satisfaction) associated with clitoral reconstruction after FGM/C were included. Evidence was summarized and systematically assessed via a standard data abstraction form. Four of 269 identified articles were included. They were fair to poor in quality. Summary measures could not be computed owing to heterogeneity. The studies reported on immediate surgical complications, clitoral appearance, dyspareunia or chronic pain, and clitoral function postoperatively via non-standardized scales. Women who request clitoral reconstruction should be informed about the scarcity of evidence available. Additional research is needed on the safety and efficacy of the procedure to identify both long-term outcomes and which women might benefit. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Mandibular reconstructions using computer-aided design/computer-aided manufacturing: A systematic review of a defect-based reconstructive algorithm.

    Science.gov (United States)

    Tarsitano, Achille; Del Corso, Giacomo; Ciocca, Leonardo; Scotti, Roberto; Marchetti, Claudio

    2015-11-01

    Modern planning techniques, including computer-aided design/computer-aided manufacturing (CAD-CAM) can be used to plan reconstructive surgery, optimising aesthetic outcomes and functional rehabilitation. However, although many such applications are available, no systematic protocol yet describes the entire reconstructive procedure, which must include virtual planning, custom manufacture, and a reconstructive algorithm. We reviewed current practices in this novel field, analysed case series described in the literature, and developed a new, defect-based reconstructive algorithm. We also evaluated methods of mandibular reconstruction featuring virtual planning, the use of surgical guides, and laser printing of custom titanium bony plates to support composite free flaps, and evaluated their utility. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Climateprediction.com: Public Involvement, Multi-Million Member Ensembles and Systematic Uncertainty Analysis

    Science.gov (United States)

    Stainforth, D. A.; Allen, M.; Kettleborough, J.; Collins, M.; Heaps, A.; Stott, P.; Wehner, M.

    2001-12-01

    The climateprediction.com project is preparing to carry out the first systematic uncertainty analysis of climate forecasts using large ensembles of GCM climate simulations. This will be done by involving schools, businesses and members of the public, and utilizing the novel technology of distributed computing. Each participant will be asked to run one member of the ensemble on their PC. The model used will initially be the UK Met Office's Unified Model (UM). It will be run under Windows and software will be provided to enable those involved to view their model output as it develops. The project will use this method to carry out large perturbed physics GCM ensembles and thereby analyse the uncertainty in the forecasts from such models. Each participant/ensemble member will therefore have a version of the UM in which certain aspects of the model physics have been perturbed from their default values. Of course the non-linear nature of the system means that it will be necessary to look not just at perturbations to individual parameters in specific schemes, such as the cloud parameterization, but also to the many combinations of perturbations. This rapidly leads to the need for very large, perhaps multi-million member ensembles, which could only be undertaken using the distributed computing methodology. The status of the project will be presented and the Windows client will be demonstrated. In addition, initial results will be presented from beta test runs using a demo release for Linux PCs and Alpha workstations. Although small by comparison to the whole project, these pilot results constitute a 20-50 member perturbed physics climate ensemble with results indicating how climate sensitivity can be substantially affected by individual parameter values in the cloud scheme.

  1. Minimizing manual image segmentation turn-around time for neuronal reconstruction by embracing uncertainty.

    Directory of Open Access Journals (Sweden)

    Stephen M Plaza

    Full Text Available The ability to automatically segment an image into distinct regions is a critical aspect in many visual processing applications. Because inaccuracies often exist in automatic segmentation, manual segmentation is necessary in some application domains to correct mistakes, such as required in the reconstruction of neuronal processes from microscopic images. The goal of the automated segmentation tool is traditionally to produce the highest-quality segmentation, where quality is measured by the similarity to actual ground truth, so as to minimize the volume of manual correction necessary. Manual correction is generally orders-of-magnitude more time consuming than automated segmentation, often making handling large images intractable. Therefore, we propose a more relevant goal: minimizing the turn-around time of automated/manual segmentation while attaining a level of similarity with ground truth. It is not always necessary to inspect every aspect of an image to generate a useful segmentation. As such, we propose a strategy to guide manual segmentation to the most uncertain parts of segmentation. Our contributions include 1 a probabilistic measure that evaluates segmentation without ground truth and 2 a methodology that leverages these probabilistic measures to significantly reduce manual correction while maintaining segmentation quality.

  2. Strontium isotopes and the reconstruction of the Chaco regional system: evaluating uncertainty with Bayesian mixing models.

    Science.gov (United States)

    Drake, Brandon Lee; Wills, Wirt H; Hamilton, Marian I; Dorshow, Wetherbee

    2014-01-01

    Strontium isotope sourcing has become a common and useful method for assigning sources to archaeological artifacts.In Chaco Canyon, an Ancestral Pueblo regional center in New Mexico, previous studiesusing these methods have suggested that significant portion of maize and wood originate in the Chuska Mountains region, 75 km to the West [corrected]. In the present manuscript, these results were tested using both frequentist methods (to determine if geochemical sources can truly be differentiated) and Bayesian methods (to address uncertainty in geochemical source attribution). It was found that Chaco Canyon and the Chuska Mountain region are not easily distinguishable based on radiogenic strontium isotope values. The strontium profiles of many geochemical sources in the region overlap, making it difficult to definitively identify any one particular geochemical source for the canyon's pre-historic maize. Bayesian mixing models support the argument that some spruce and fir wood originated in the San Mateo Mountains, but that this cannot explain all 87Sr/86Sr values in Chaco timber. Overall radiogenic strontium isotope data do not clearly identify a single major geochemical source for maize, ponderosa, and most spruce/fir timber. As such, the degree to which Chaco Canyon relied upon outside support for both food and construction material is still ambiguous.

  3. Strontium isotopes and the reconstruction of the Chaco regional system: evaluating uncertainty with Bayesian mixing models.

    Directory of Open Access Journals (Sweden)

    Brandon Lee Drake

    Full Text Available Strontium isotope sourcing has become a common and useful method for assigning sources to archaeological artifacts.In Chaco Canyon, an Ancestral Pueblo regional center in New Mexico, previous studiesusing these methods have suggested that significant portion of maize and wood originate in the Chuska Mountains region, 75 km to the West [corrected]. In the present manuscript, these results were tested using both frequentist methods (to determine if geochemical sources can truly be differentiated and Bayesian methods (to address uncertainty in geochemical source attribution. It was found that Chaco Canyon and the Chuska Mountain region are not easily distinguishable based on radiogenic strontium isotope values. The strontium profiles of many geochemical sources in the region overlap, making it difficult to definitively identify any one particular geochemical source for the canyon's pre-historic maize. Bayesian mixing models support the argument that some spruce and fir wood originated in the San Mateo Mountains, but that this cannot explain all 87Sr/86Sr values in Chaco timber. Overall radiogenic strontium isotope data do not clearly identify a single major geochemical source for maize, ponderosa, and most spruce/fir timber. As such, the degree to which Chaco Canyon relied upon outside support for both food and construction material is still ambiguous.

  4. The Impact of Reconstruction Methods, Phylogenetic Uncertainty and Branch Lengths on Inference of Chromosome Number Evolution in American Daisies (Melampodium, Asteraceae).

    Science.gov (United States)

    McCann, Jamie; Schneeweiss, Gerald M; Stuessy, Tod F; Villaseñor, Jose L; Weiss-Schneeweiss, Hanna

    2016-01-01

    Chromosome number change (polyploidy and dysploidy) plays an important role in plant diversification and speciation. Investigating chromosome number evolution commonly entails ancestral state reconstruction performed within a phylogenetic framework, which is, however, prone to uncertainty, whose effects on evolutionary inferences are insufficiently understood. Using the chromosomally diverse plant genus Melampodium (Asteraceae) as model group, we assess the impact of reconstruction method (maximum parsimony, maximum likelihood, Bayesian methods), branch length model (phylograms versus chronograms) and phylogenetic uncertainty (topological and branch length uncertainty) on the inference of chromosome number evolution. We also address the suitability of the maximum clade credibility (MCC) tree as single representative topology for chromosome number reconstruction. Each of the listed factors causes considerable incongruence among chromosome number reconstructions. Discrepancies between inferences on the MCC tree from those made by integrating over a set of trees are moderate for ancestral chromosome numbers, but severe for the difference of chromosome gains and losses, a measure of the directionality of dysploidy. Therefore, reliance on single trees, such as the MCC tree, is strongly discouraged and model averaging, taking both phylogenetic and model uncertainty into account, is recommended. For studying chromosome number evolution, dedicated models implemented in the program ChromEvol and ordered maximum parsimony may be most appropriate. Chromosome number evolution in Melampodium follows a pattern of bidirectional dysploidy (starting from x = 11 to x = 9 and x = 14, respectively) with no prevailing direction.

  5. The Impact of Reconstruction Methods, Phylogenetic Uncertainty and Branch Lengths on Inference of Chromosome Number Evolution in American Daisies (Melampodium, Asteraceae.

    Directory of Open Access Journals (Sweden)

    Jamie McCann

    Full Text Available Chromosome number change (polyploidy and dysploidy plays an important role in plant diversification and speciation. Investigating chromosome number evolution commonly entails ancestral state reconstruction performed within a phylogenetic framework, which is, however, prone to uncertainty, whose effects on evolutionary inferences are insufficiently understood. Using the chromosomally diverse plant genus Melampodium (Asteraceae as model group, we assess the impact of reconstruction method (maximum parsimony, maximum likelihood, Bayesian methods, branch length model (phylograms versus chronograms and phylogenetic uncertainty (topological and branch length uncertainty on the inference of chromosome number evolution. We also address the suitability of the maximum clade credibility (MCC tree as single representative topology for chromosome number reconstruction. Each of the listed factors causes considerable incongruence among chromosome number reconstructions. Discrepancies between inferences on the MCC tree from those made by integrating over a set of trees are moderate for ancestral chromosome numbers, but severe for the difference of chromosome gains and losses, a measure of the directionality of dysploidy. Therefore, reliance on single trees, such as the MCC tree, is strongly discouraged and model averaging, taking both phylogenetic and model uncertainty into account, is recommended. For studying chromosome number evolution, dedicated models implemented in the program ChromEvol and ordered maximum parsimony may be most appropriate. Chromosome number evolution in Melampodium follows a pattern of bidirectional dysploidy (starting from x = 11 to x = 9 and x = 14, respectively with no prevailing direction.

  6. Use of autologous fat grafting for reconstruction postmastectomy and breast conserving surgery: a systematic review protocol.

    Science.gov (United States)

    Agha, Riaz A; Goodacre, Tim; Orgill, Dennis P

    2013-10-22

    There is growing interest in the potential use of autologous fat grafting (AFG) for the purposes of breast reconstruction. However, concerns have been raised regarding the technique's clinical effectiveness, safety and interference with screening mammography. The objective of this systematic review was to determine the oncological, clinical, aesthetic and functional, patient reported, process and radiological outcomes for AFG. All original studies, including randomised controlled trials, cohorts studies, case-control studies, case series and case reports involving women undergoing breast reconstruction. All AFG techniques performed for the purposes of reconstruction in the postmastectomy or breast conserving surgery setting will be considered. Outcomes are defined within this protocol along; oncological, clinical, aesthetic and functional, patient reported, process and radiological domains. The search strategy has been devised to find papers about 'fat grafting and breast reconstruction' and is outlined within the body of this protocol. The full search strategy is outlined within the body of the protocol. The following electronic databases will be searched from 1 January 1986 to 6 June 2013: PubMed, MEDLINE, EMBASE, SCOPUS, CINAHL, PsycINFO, SciELO, The Cochrane Library, including the Cochrane Database of Systematic Reviews (CDSR), Cochrane Central Register of Controlled Trials (CENTRAL), Database of Abstracts of Reviews of Effect (DARE), the Cochrane Methodology Register, Health Technology Assessment Database, the NHS Economic Evaluation Databases and Cochrane Groups, ClinicalTrials.gov, Current Controlled Trials Database, the World Health Organisation (WHO) International Clinical Trials Registry Platform, UpToDate.com, NHS Evidence and the York Centre for Reviews and Dissemination. Grey literature searches will also be conducted as detailed in our review protocol. Eligibility assessment occurred in two stages, title and abstract screening and then full text

  7. Intrinsic factors associated with return to sport after anterior cruciate ligament reconstruction: A systematic review

    Directory of Open Access Journals (Sweden)

    Cheryl A. Ross

    2015-04-01

    Full Text Available Objectives: The anterior cruciate ligament is the most commonly injured ligament in the knee, with an average of only 64% of affected athletes returning to their pre-injury level of sport. Intrinsic factors associated with an increased likelihood of return to sport may be addressed during rehabilitation to improve the outcome of the reconstruction. The objectives of this review were to systematically appraise publications from six electronic databases describing intrinsic factors that may be associated with return to sport after anterior cruciate ligament reconstruction.Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA guidelines were followed. Methodological quality appraisal was performed according to the Critical Appraisal Skills Programme for cohort studies. We performed a descriptive synthesis of the findings that associated intrinsic factors with return to sport.Results: Ten studies were included in the review. The findings show that fear of re-injury is a common reason for not returning to participation in sport. Younger patients may be more likely to return to sport, but findings regarding gender were equivocal, with male competitive athletes appearing to be more likely to return to sport than their female counterparts. Good knee function is not always associated with a higher likelihood to return to sport.Conclusion: Fear of re-injury and age should be considered in the management of sports participants after anterior cruciate ligament reconstruction.

  8. Biologic mesh reconstruction of the pelvic floor after extralevator abdominoperineal excision; a systematic review

    Directory of Open Access Journals (Sweden)

    Nasra N Alam

    2016-02-01

    Full Text Available IntroductionThe aim of this review is to provide an overview of the evidence for the use of biologic mesh in the reconstruction of the pelvic floor after extralevator abdominoperineal excision of the rectum (ELAPE.MethodsA systematic search of PubMed was conducted using the search terms ‘ELAPE’, ‘extralevator abdominoperineal excision of rectum’ or ‘extralevator abdominoperineal resection’. The search yielded 17 studies.ResultsBiologic mesh was used in perineal reconstruction in 463 cases. There were 41 perineal hernias reported but rates were not consistently reported in all studies. The most common complications were perineal wound infection (n = 93, perineal sinus and fistulae (n = 26 and perineal haematoma or seroma (n = 11. There were very few comparative studies, with only one RCT identified that compared patients undergoing ELAPE with perineal reconstruction using a biological mesh, with patients undergoing a conventional abdominoperineal excision of the rectum with no mesh. There was no significant difference in perineal hernia rates or perineal wound infections between the groups. Other comparative studies comparing the use of biologic mesh with techniques such as the use of myocutaneous flaps were of low quality.ConclusionsBiologic mesh-assisted perineal reconstruction is a promising technique to improve wound healing and has comparable complications rates to other techniques. However, there is not enough evidence to support its use in all patients who have undergone ELAPE. Results from high-quality prospective RCTs and national/international collaborative audits are required.

  9. Social Pedagogy in Spain: From academic and professional reconstruction to scientific and social uncertainty

    Directory of Open Access Journals (Sweden)

    Martí Xavier March Cerdà

    2015-12-01

    Full Text Available Introduction and aims: A reflection on the reality of Social Pedagogy in Spain during the second decade of the 21st century from an analytical perspective, with the aim of finding out and recognising its weak points, its strong points, its challenges and its opportunities. The analysis centres on reviewing Social Pedagogy as a key discipline  in the reconstruction of Educational Sci- ences and a socio-educational response to the demands and needs of society and the Welfare State. Analysis of the current situation is completed with research into Social Education studies. The sphere of reference is made up of the group of universities offering social education courses in Spain. The variables structuring the data capture were: 1 the structure of the offer, 2 the fea- tures of the courses offered, and 3 course results. Methodology: The sample taken was structural in nature, selecting 11 universities holding the courses in three areas of Spain - the North, Central and Southern Spain and the Mediterranean region. Information was gathered using two comple- mentary methodologies, a questionnaire, falling within the context of the Ibero-American Social Education Society (SIPS, and a review of the web sites of the universities offering courses in so- cial education. Data processing and analysis: The analysis was carried out in two complementary stages. First of all, the closed questions were processed using SPSS and then the digital records of the open questions were processed using the NVIVO program. Results: The large majority of the courses on offer are classroom-based, with some distance learning courses being available. The average size of the courses was around 87 places. It should be pointed out that the double degree in Social Education and Social Work on offer is merely symbolic. There is multi-departmental in- volvement in teaching the Degree, although a larger role is played by the Pedagogy departments and all socio-educational fields are

  10. Pediatric Anterior Cruciate Ligament Reconstruction: A Systematic Review of Transphyseal Versus Physeal-Sparing Techniques.

    Science.gov (United States)

    Pierce, Todd P; Issa, Kimona; Festa, Anthony; Scillia, Anthony J; McInerney, Vincent K

    2017-02-01

    Anterior cruciate ligament reconstruction is becoming more common in skeletally immature individuals, and it may be performed with transphyseal or physeal-sparing techniques. A number of studies have assessed the outcomes of these techniques, but there is a need to systematically evaluate the pooled data from these studies. To compare the differences in demographics and outcomes of transphyseal and physeal-sparing techniques by assessing (1) demographics, (2) incidence of growth disturbances, and (3) graft survivorship in the pediatric population. Systematic review. A thorough review of 3 databases was performed to identify all studies that evaluated outcomes after pediatric reconstruction based on transphyseal or physeal-sparing techniques. After completing our search and cross-referencing for additional sources, 43 reports were identified for this review. Reports were analyzed for differences in demographics as well as incidence of leg-length discrepancies, angular deformities, and graft survivorship. After review of manuscripts, 27 studies were included for review (21 transphyseal and 6 physeal-sparing studies). Those who had transphyseal reconstruction were more likely to be female (39% vs 20%; P = .0001), while those with the physeal-sparing surgery were younger (12 vs 13.5 years of age; P = .0001). The transphyseal and physeal-sparing cohorts demonstrated similar incidence rates of leg-length discrepancies (0.81% vs 1.2%, respectively; P = .64) and angular deformities (0.61% vs 0%, respectively; P = .36). The transphyseal and physeal-sparing cohorts also showed similar rates of rerupture (6.2% vs 3.1%, respectively; P = .11). Although the study groups were not well matched with regard to age and sex, our results show that these surgical techniques have no differences in incidence of growth disturbances or graft survivorship. Younger males tend to undergo physeal-sparing reconstruction. Future research should focus on long-term outcome metrics with the physeal

  11. The Value of Postconditioning in Plastic and Reconstructive Surgery: A Systematic Review.

    Science.gov (United States)

    Weng, Weidong; Zhang, Feng; Lineaweaver, William C; Gao, Weiyang; Yan, Hede

    2016-05-01

    Background Ischemia-reperfusion (I/R) injury by abrupt restoration of circulation after prolonged ischemia has still been an unsolved problem in plastic and reconstructive surgery. The concept of postconditioning (post-con), which has been well described in cardiovascular surgery, has been recently introduced in plastic and reconstructive surgery. As an "after-injury strategy," post-con may be a promising approach to reduce I/R injury and improve flap survival after ischemia. Methods A systematic review was performed by searching electronic databases of PubMed and web of science to identify all the studies regarding the application of the post-con technique in plastic and reconstructive surgery between 1950 and 2015. Inclusion criteria were English articles with clear reporting the post-con techniques and detailed outcomes. Results In total, 476 articles were identified and 18 studies reporting post-con in plastic and reconstructive surgery met the inclusion criteria in this review, including 11 studies of mechanical post-con, 3 studies of pharmacological post-con, 1 study of both mechanical and pharmacological post-con, and 3 studies of remote post-con. All these studies reported protective effects of any kind of post-con techniques in I/R injuries and could improve flap survivals. Conclusion In general, the strategy of post-con may effectively reduce I/R injury and improve the survival of flaps after ischemia in animal studies, yet no consensus regarding the exact technical details (intervention timing, cycles, intermittent duration, etc.) has been reached. Further studies aiming to explore its mechanisms as well as specific methodology are required before clinical application in plastic and reconstructive surgery. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Posterior musculofascial reconstruction after radical prostatectomy: a systematic review of the literature.

    Science.gov (United States)

    Rocco, Bernardo; Cozzi, Gabriele; Spinelli, Matteo G; Coelho, Rafael F; Patel, Vipul R; Tewari, Ashutosh; Wiklund, Peter; Graefen, Markus; Mottrie, Alex; Gaboardi, Franco; Gill, Inderbir S; Montorsi, Francesco; Artibani, Walter; Rocco, Francesco

    2012-11-01

    In 2001, Rocco et al. described a surgical technique whose aim was the reconstruction of the posterior musculofascial plate after radical prostatectomy (RP) to improve early return to urinary continence. Since then, many surgeons have applied this technique-either as it was described or with some modification-to open, laparoscopic, and robot-assisted RP. To review the outcomes reported in comparative studies analysing the influence of reconstruction of the posterior aspect of the rhabdosphincter after RP. The main outcome evaluated was urinary continence at 3-7 d, 30-45 d, 90 d, 180 d, and 1 yr after catheter removal. A systematic review of the literature was performed in November 2011, searching the Medline, Embase, Scopus, and Web of Science databases. A "free-text" protocol using the terms posterior reconstruction of the rhabdosphincter, posterior rhabdosphincter, and early continence was applied. Studies published only as abstracts and reports from meetings were not included in this review. One thousand seven records were retrieved from the Medline database, 1541 from the Embase database, 1357 from the Scopus database, and 1041 from the Web of Science database. The authors reviewed the records to identify studies comparing cohorts of patients who underwent RP with or without restoration of the posterior aspect of the rhabdosphincter. Only papers evaluating use of this technique as the only technical modification among the groups were included. A cumulative analysis was conducted using Review Manager v.5.1 software (Cochrane Collaboration, Oxford, UK). Eleven studies were identified in the literature search, including two randomised controlled trials (RCTs), which were negative studies. The cumulative analysis of comparative studies showed that reconstruction of the posterior musculofascial plate improves early return of continence within the first 30 d after RP (p=0.004), while continence rates 90 d after surgery are not affected by use of the reconstruction

  13. Control of systematic uncertainties in the storage ring search for an electric dipole moment by measuring the electric quadrupole moment

    Science.gov (United States)

    Magiera, Andrzej

    2017-09-01

    Measurements of electric dipole moment (EDM) for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle's magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles' interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.

  14. Investigation of systematic uncertainties on the measurement of the top-quark mass using lepton transverse momenta

    CERN Document Server

    The ATLAS collaboration

    2018-01-01

    This study investigates the impact of systematic uncertainties on a top-quark mass ($m_\\text{top}$) measurement in the lepton+jets channel with the ATLAS experiment at the LHC. For the study, simulated $t\\bar{t}$ events with lepton+jets final states at a centre of mass energy of 8 TeV are used. In contrast to other analyses, this study is designed to exploit the dependence of the lepton kinematics on the top-quark mass, by parameterising the lepton's transverse momentum distribution with MC simulations. Due to its different systematic uncertainty, this method can potentially contribute to a more accurate measurement of $m_\\text{top}$. The overall uncertainty in this study is 2.3 GeV, dominated by the current uncertainty on initial and final state radiation. Since the result depends on the modelling of the top-quark transverse momentum, it is sensitive to higher order QCD corrections. The influence of such corrections is estimated by reweighting the next-to-leading-order MC prediction by next-to-next-to-leadin...

  15. A program for confidence interval calculations for a Poisson process with background including systematic uncertainties: POLE 1.0

    Science.gov (United States)

    Conrad, Jan

    2004-04-01

    A Fortran 77 routine has been developed to calculate confidence intervals with and without systematic uncertainties using a frequentist confidence interval construction with a Bayesian treatment of the systematic uncertainties. The routine can account for systematic uncertainties in the background prediction and signal/background efficiencies. The uncertainties may be separately parametrized by a Gauss, log-normal or flat probability density function (PDF), though since a Monte Carlo approach is chosen to perform the necessary integrals a generalization to other parameterizations is particularly simple. Full correlation between signal and background efficiency is optional. The ordering schemes for frequentist construction currently supported are the likelihood ratio ordering (also known as Feldman-Cousins) and Neyman ordering. Optionally, both schemes can be used with conditioning, meaning the probability density function is conditioned on the fact that the actual outcome of the background process can not have been larger than the number of observed events. Program summaryTitle of program: POLE version 1.0 Catalogue identifier: ADTA Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTA Program available from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Computer for which the program is designed: DELL PC 1 GB 2.0 Ghz Pentium IV Operating system under which the program has been tested: RH Linux 7.2 Kernel 2.4.7-10 Programming language used: Fortran 77 Memory required to execute with typical data: ˜1.6 Mbytes No. of bytes in distributed program, including test data, etc.: 373745 No. of lines in distributed program, including test data, etc.: 2700 Distribution format: tar gzip file Keywords: Confidence interval calculation, Systematic uncertainties Nature of the physical problem: The problem is to calculate a frequentist confidence interval on the parameter of a Poisson process with known background in presence of

  16. Psychological predictors of anterior cruciate ligament reconstruction outcomes: a systematic review.

    Science.gov (United States)

    Everhart, Joshua S; Best, Thomas M; Flanigan, David C

    2015-03-01

    Lack of return to sport following anterior cruciate ligament (ACL) reconstruction often occurs despite adequate restoration of knee function, and there is growing evidence that psychological difference among patients may play an important role in this discrepancy. The purpose of this review is to identify baseline psychological factors that are predictive of clinically relevant ACL reconstruction outcomes, including return to sport, rehab compliance, knee pain, and knee function. A systematic search was performed in PubMed, Google Scholar, CINAHL, UptoDate, Cochrane Reviews, and SportDiscus, which identified 1,633 studies for potential inclusion. Inclusion criteria included (1) prospective design, (2) participants underwent ACL reconstruction, (3) psychological traits assessed at baseline, and (4) outcome measures such as return to sport, rehabilitation compliance, and knee symptoms assessed. Methodological quality was evaluated with a modified Coleman score with several item-specific revisions to improve relevance to injury risk assessment studies in sports medicine. Eight prospective studies were included (modified Coleman score 63 ± 4.9/90, range 55-72). Average study size was 83 ± 42 patients with median 9-month follow-up (range 3-60 months). Measures of self-efficacy, self-motivation, and optimism were predictive of rehabilitation compliance, return to sport, and self-rated knee symptoms. Pre-operative stress was negatively predictive, and measures of social support were positively predictive of knee symptoms and rehabilitation compliance. Kinesiophobia and pain catastrophizing at the first rehabilitation appointment did not predict knee symptoms throughout the early rehabilitation phase (n.s.). Patient psychological factors are predictive of ACL reconstruction outcomes. Self-confidence, optimism, and self-motivation are predictive of outcomes, which is consistent with the theory of self-efficacy. Stress, social support, and athletic self-identity are

  17. Uncertainty analysis of an interfacial area reconstruction algorithm and its application to two group interfacial area transport equation validation

    Energy Technology Data Exchange (ETDEWEB)

    Dave, A.J., E-mail: akshayjd@umich.edu [Department of Nuclear Engineering and Rad. Sciences, University of Michigan, Ann Arbor, MI 48105 (United States); Manera, A. [Department of Nuclear Engineering and Rad. Sciences, University of Michigan, Ann Arbor, MI 48105 (United States); Beyer, M.; Lucas, D. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, 01314 Dresden (Germany); Prasser, H.-M. [Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich (Switzerland)

    2016-12-15

    Wire mesh sensors (WMS) are state of the art devices that allow high resolution (in space and time) measurement of 2D void fraction distribution over a wide range of two-phase flow regimes, from bubbly to annular. Data using WMS have been recorded at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Lucas et al., 2010; Beyer et al., 2008; Prasser et al., 2003) for a wide combination of superficial gas and liquid velocities, providing an excellent database for advances in two-phase flow modeling. In two-phase flow, the interfacial area plays an integral role in coupling the mass, momentum and energy transport equations of the liquid and gas phase. While current models used in best-estimate thermal-hydraulic codes (e.g. RELAP5, TRACE, TRACG, etc.) are still based on algebraic correlations for the estimation of the interfacial area in different flow regimes, interfacial area transport equations (IATE) have been proposed to predict the dynamic propagation in space and time of interfacial area (Ishii and Hibiki, 2010). IATE models are still under development and the HZDR WMS experimental data provide an excellent basis for the validation and further advance of these models. The current paper is focused on the uncertainty analysis of algorithms used to reconstruct interfacial area densities from the void-fraction voxel data measured using WMS and their application towards validation efforts of two-group IATE models. In previous research efforts, a surface triangularization algorithm has been developed in order to estimate the surface area of individual bubbles recorded with the WMS, and estimate the interfacial area in the given flow condition. In the present paper, synthetically generated bubbles are used to assess the algorithm’s accuracy. As the interfacial area of the synthetic bubbles are defined by user inputs, the error introduced by the algorithm can be quantitatively obtained. The accuracy of interfacial area measurements is characterized for different bubbles

  18. Uncertainty analysis of an interfacial area reconstruction algorithm and its application to two group interfacial area transport equation validation

    International Nuclear Information System (INIS)

    Dave, A.J.; Manera, A.; Beyer, M.; Lucas, D.; Prasser, H.-M.

    2016-01-01

    Wire mesh sensors (WMS) are state of the art devices that allow high resolution (in space and time) measurement of 2D void fraction distribution over a wide range of two-phase flow regimes, from bubbly to annular. Data using WMS have been recorded at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Lucas et al., 2010; Beyer et al., 2008; Prasser et al., 2003) for a wide combination of superficial gas and liquid velocities, providing an excellent database for advances in two-phase flow modeling. In two-phase flow, the interfacial area plays an integral role in coupling the mass, momentum and energy transport equations of the liquid and gas phase. While current models used in best-estimate thermal-hydraulic codes (e.g. RELAP5, TRACE, TRACG, etc.) are still based on algebraic correlations for the estimation of the interfacial area in different flow regimes, interfacial area transport equations (IATE) have been proposed to predict the dynamic propagation in space and time of interfacial area (Ishii and Hibiki, 2010). IATE models are still under development and the HZDR WMS experimental data provide an excellent basis for the validation and further advance of these models. The current paper is focused on the uncertainty analysis of algorithms used to reconstruct interfacial area densities from the void-fraction voxel data measured using WMS and their application towards validation efforts of two-group IATE models. In previous research efforts, a surface triangularization algorithm has been developed in order to estimate the surface area of individual bubbles recorded with the WMS, and estimate the interfacial area in the given flow condition. In the present paper, synthetically generated bubbles are used to assess the algorithm’s accuracy. As the interfacial area of the synthetic bubbles are defined by user inputs, the error introduced by the algorithm can be quantitatively obtained. The accuracy of interfacial area measurements is characterized for different bubbles

  19. Synthetic devices for reconstructive surgery of the cruciate ligaments: a systematic review.

    Science.gov (United States)

    Batty, Lachlan M; Norsworthy, Cameron J; Lash, Nicholas J; Wasiak, Jason; Richmond, Anneka K; Feller, Julian A

    2015-05-01

    The role of synthetic devices in the management of the cruciate ligament-injured knee remains controversial. The aim of this systematic review was to assess the safety and efficacy of synthetic devices in cruciate ligament surgery. A systematic review of the electronic databases Medline, Embase, and The Cochrane Library (issue 1, 2014) on January 13, 2014, was performed to identify controlled and uncontrolled trials. Trials that assessed the safety and efficacy of synthetic devices for cruciate ligament surgery were included. The main variables assessed included rates of failure, revision, and noninfective effusion and synovitis. Patient-reported outcome assessments and complications were also assessed where reported. From 511 records screened, we included 85 articles published between 1985 and 2013 reporting on 6 synthetic devices (ligament augmentation and reconstruction system [Ligament Augmentation and Reconstruction System (LARS; Surgical Implants and Devices, Arc-sur-Tille, France)]; Leeds-Keio [Xiros (formerly Neoligaments), Leeds, England]; Kennedy ligament augmentation device [3M, St Paul, MN]; Dacron [Stryker, Kalamazoo, MI]; Gore-Tex [W.L. Gore and Associates, Flagstaff, AZ]; and Trevira [Telos (limited liability company), Marburg, Germany]). The heterogeneity of the included studies precluded meta-analysis. The results were analyzed by device and then type of reconstruction (anterior cruciate ligament [ACL]/posterior cruciate ligament [PCL]/combined ACL and PCL). The lowest cumulative rates of failure were seen with the LARS device (2.6% for ACL and 1% for PCL surgery). The highest failure rate was seen in the Dacron ACL group (cumulative rate, 33.6%). Rates of noninfective synovitis and effusion ranged from 0.2% in the LARS ACL group to 27.6% in the Gore-Tex ACL group. Revision rates ranged from 2.6% (LARS) to 11.8% (Trevira-Hochfest; Telos). Recent designs, specifically the LARS, showed good improvement in the outcome scores. The mean preoperative and

  20. Systematic Analysis of Resolution and Uncertainties in Gravity Interpretation of Bathymetry Beneath Floating Ice

    Science.gov (United States)

    Cochran, J. R.; Tinto, K. J.; Elieff, S. H.; Bell, R. E.

    2011-12-01

    Airborne geophysical surveys in West Antarctica and Greenland carried out during Operation IceBridge (OIB) utilized the Sander Geophysics AIRGrav gravimeter, which collects high quality data during low-altitude, draped flights. This data has been used to determine bathymetry beneath ice shelves and floating ice tongues (e.g., Tinto et al, 2010, Cochran et al, 2010). This paper systematically investigates uncertainties arising from survey, instrumental and geologic constraints in this type of study and the resulting resolution of the bathymetry model. Gravity line data is low-pass filtered with time-based filters to remove high frequency noise. The spatial filter length is dependent on aircraft speed. For parameters used in OIB (70-140 s filters and 270-290 knots), spatial filter half-wavelengths are ~5-10 km. The half-wavelength does not define a lower limit to the width of feature that can be detected, but shorter wavelength features may appear wider with a lower amplitude. Resolution can be improved either by using a shorter filter or by flying slower. Both involve tradeoffs; a shorter filter allows more noise and slower speeds result in less coverage. These filters are applied along tracks, rather than in a region surrounding a measurement. In areas of large gravity relief, tracks in different directions can sample a very different range of gravity values within the length of the filter. We show that this can lead to crossover mismatches of >5 mGal, complicating interpretation. For dense surveys, gridding the data and then sampling the grid at the measurement points can minimize this effect. Resolution is also affected by the elevation of survey flights. For a distributed mass, the gravity amplitude decreases with distance and short-wavelength components attenuate faster. This is not a serious issue for OIB, which flew draped flights radar, gravity data can be used to study the nature of the bed including the presence of sedimentary basins and intrusions. Our

  1. Systematic assembly homogenization and local flux reconstruction for nodal method calculations of fast reactor power distributions

    International Nuclear Information System (INIS)

    Dorning, J.J.

    1991-01-01

    A simultaneous pin lattice cell and fuel bundle homogenization theory has been developed for use with nodal diffusion calculations of practical reactors. The theoretical development of the homogenization theory, which is based on multiple-scales asymptotic expansion methods carried out through fourth order in a small parameter, starts from the transport equation and systematically yields: a cell-homogenized bundled diffusion equation with self-consistent expressions for the cell-homogenized cross sections and diffusion tensor elements; and a bundle-homogenized global reactor diffusion equation with self-consistent expressions for the bundle-homogenized cross sections and diffusion tensor elements. The continuity of the angular flux at cell and bundle interfaces also systematically yields jump conditions for the scaler flux or so-called flux discontinuity factors on the cell and bundle interfaces in terms of the two adjacent cell or bundle eigenfunctions. The expressions required for the reconstruction of the angular flux or the 'de-homogenization' theory were obtained as an integral part of the development; hence the leading order transport theory angular flux is easily reconstructed throughout the reactor including the regions in the interior of the fuel bundles or computational nodes and in the interiors of the pin lattice cells. The theoretical development shows that the exact transport theory angular flux is obtained to first order from the whole-reactor nodal diffusion calculations, done using the homogenized nuclear data and discontinuity factors, is a product of three computed quantities: a ''cell shape function''; a ''bundle shape function''; and a ''global shape function''. 10 refs

  2. Alloplastic mandibular reconstruction: a systematic review and meta-analysis of the current century case series.

    Science.gov (United States)

    Sadr-Eshkevari, Pooyan; Rashad, Ashkan; Vahdati, Seyed Aliakbar; Garajei, Ata; Bohluli, Behnam; Maurer, Peter

    2013-09-01

    Alloplastic mandibular reconstruction remains insufficiently predictable, with no systematic reviews to assess its scope and limitations. The PubMed, CINAHL, EMBASE, and Web of Science databases were searched for English study reports, published in the current century, of mere alloplastic surgical reconstruction of mandibular ablative defects. In 14 articles, there were 944 patients, with a median age of 58.7 years (interquartile range, 53.2 to 62 years); 58.7 percent (interquartile range, 66.7 to 78.6 percent) were male. Cases of squamous cell carcinoma per study constituted 93.5 percent (interquartile range, 81.5 to 100 percent). Defects were mostly lateral (Boyd classification) (60.5 percent; interquartile range, 56.2 to 62 percent) and received mostly conventional bridging plates (in 64.3 percent of the studies) and pedicled flaps (45.3 percent; interquartile range, 37.1 to 58.3 percent); 60.7 percent (interquartile range, 53.5 to 58.8 percent) received adjuvant therapy. At 32-month follow-up, the complication and failure rates were 40.1 percent (interquartile range, 26.7 to 58.6 percent) and 30.8 percent (interquartile range, 11.7 to 48.1 percent), respectively. The overall survival rate was 55 percent (interquartile range, 27.8 to 74 percent). Radiotherapy seemed to be a relative risk factor for complications (1.387; p = 0.014) and plate loss (1.585; p = 0.006). Crossing the midline seemed to be a relative risk factor for plate exposure (1.533; p = 0.000) and overall complications (1.385; p = 0.002). The results should be generalized cautiously. Alloplastic reconstructive surgery faces a remarkable lack of evidence. Relatively high complication and failure rates are areas of further concern.

  3. What is the optimal number of implants for removable reconstructions? A systematic review on implant-supported overdentures

    NARCIS (Netherlands)

    Roccuzzo, Mario; Bonino, Francesca; Gaudioso, Luigi; Zwahlen, Marcel; Meijer, Henny J. A.

    2012-01-01

    Objectives The aim of this systematic review was to assess the optimal number of implants for removable reconstructions. Material and methods Medline and The Cochrane Central Register of Controlled Trials were searched and complemented by hand searching. All trials published in English to October

  4. Pain Management After Outpatient Anterior Cruciate Ligament Reconstruction: A Systematic Review of Randomized Controlled Trials.

    Science.gov (United States)

    Secrist, Eric S; Freedman, Kevin B; Ciccotti, Michael G; Mazur, Donald W; Hammoud, Sommer

    2016-09-01

    Effective pain management after anterior cruciate ligament (ACL) reconstruction improves patient satisfaction and function. To collect and evaluate the available evidence from randomized controlled trials (RCTs) on pain control after ACL reconstruction. Systematic review. A systematic literature review was performed using PubMed, Medline, Google Scholar, UpToDate, Cochrane Reviews, CINAHL, and Scopus following PRISMA guidelines (July 2014). Only RCTs comparing a method of postoperative pain control to another method or placebo were included. A total of 77 RCTs met inclusion criteria: 14 on regional nerve blocks, 21 on intra-articular injections, 4 on intramuscular/intravenous injections, 12 on multimodal regimens, 6 on oral medications, 10 on cryotherapy/compression, 6 on mobilization, and 5 on intraoperative techniques. Single-injection femoral nerve blocks provided superior analgesia to placebo for up to 24 hours postoperatively; however, this also resulted in a quadriceps motor deficit. Indwelling femoral catheters utilized for 2 days postoperatively provided superior analgesia to a single-injection femoral nerve block. Local anesthetic injections at the surgical wound site or intra-articularly provided equivalent analgesia to regional nerve blocks. Continuous-infusion catheters of a local anesthetic provided adequate pain relief but have been shown to cause chondrolysis. Cryotherapy improved analgesia compared to no cryotherapy in 4 trials, while in 4 trials, ice water and water at room temperature provided equivalent analgesic effects. Early weightbearing decreased pain compared to delayed weightbearing. Oral gabapentin given preoperatively and oral zolpidem given for the first week postoperatively each decreased opioid consumption as compared to placebo. Ibuprofen reduced pain compared to acetaminophen. Oral ketorolac reduced pain compared to hydrocodone-acetaminophen. Regional nerve blocks and intra-articular injections are both effective forms of analgesia

  5. Systematic Uncertainties in Black Hole Masses Determined from Single Epoch Spectra

    DEFF Research Database (Denmark)

    Denney, Kelly D.; Peterson, Bradley M.; Dietrich, Matthias

    2008-01-01

    We explore the nature of systematic errors that can arise in measurement of black hole masses from single-epoch spectra of active galactic nuclei (AGNs) by utilizing the many epochs available for NGC 5548 and PG1229+204 from reverberation mapping databases. In particular, we examine systematics due...

  6. An integrative systematic framework helps to reconstruct skeletal evolution of glass sponges (Porifera, Hexactinellida).

    Science.gov (United States)

    Dohrmann, Martin; Kelley, Christopher; Kelly, Michelle; Pisera, Andrzej; Hooper, John N A; Reiswig, Henry M

    2017-01-01

    Glass sponges (Class Hexactinellida) are important components of deep-sea ecosystems and are of interest from geological and materials science perspectives. The reconstruction of their phylogeny with molecular data has only recently begun and shows a better agreement with morphology-based systematics than is typical for other sponge groups, likely because of a greater number of informative morphological characters. However, inconsistencies remain that have far-reaching implications for hypotheses about the evolution of their major skeletal construction types (body plans). Furthermore, less than half of all described extant genera have been sampled for molecular systematics, and several taxa important for understanding skeletal evolution are still missing. Increased taxon sampling for molecular phylogenetics of this group is therefore urgently needed. However, due to their remote habitat and often poorly preserved museum material, sequencing all 126 currently recognized extant genera will be difficult to achieve. Utilizing morphological data to incorporate unsequenced taxa into an integrative systematics framework therefore holds great promise, but it is unclear which methodological approach best suits this task. Here, we increase the taxon sampling of four previously established molecular markers (18S, 28S, and 16S ribosomal DNA, as well as cytochrome oxidase subunit I) by 12 genera, for the first time including representatives of the order Aulocalycoida and the type genus of Dactylocalycidae, taxa that are key to understanding hexactinellid body plan evolution. Phylogenetic analyses suggest that Aulocalycoida is diphyletic and provide further support for the paraphyly of order Hexactinosida; hence these orders are abolished from the Linnean classification. We further assembled morphological character matrices to integrate so far unsequenced genera into phylogenetic analyses in maximum parsimony (MP), maximum likelihood (ML), Bayesian, and morphology-based binning

  7. Surgical Techniques for the Reconstruction of Medial Collateral Ligament and Posteromedial Corner Injuries of the Knee: A Systematic Review.

    Science.gov (United States)

    DeLong, Jeffrey M; Waterman, Brian R

    2015-11-01

    To systematically review reconstruction techniques of the medial collateral ligament (MCL) and associated medial structures of the knee (e.g., posterior oblique ligament). A systematic review of Medline/PubMed Database (1966 to November 2013), reference list scanning and citation searches of included articles, and manual searches of high-impact journals (2000 to July 2013) and conference proceedings (2009 to July 2013) were performed to identify publications describing MCL reconstruction techniques of the knee. Exclusion criteria included (1) MCL primary repair techniques or advancement procedures, (2) lack of clear description of MCL reconstruction technique, (3) animal models, (4) nonrelevant study design, (5) and foreign language articles without available translation. After review of 4,600 references, 25 publications with 359 of 388 patients (92.5%) were isolated for analysis, including 18 single-bundle MCL and 10 double-bundle reconstruction techniques. Only 2 techniques were classified as anatomic reconstructions, and clinical and objective outcomes (n = 28; 100% techniques (n = 114; 52.6% techniques have been used in the treatment of isolated and combined medial knee injuries in the existent literature. Many variations exist among reconstruction techniques and may differ by graft choices, method of fixation, number of bundles, tensioning protocol, and degree of anatomic restoration of medial and posteromedial corner knee restraints. Further studies are required to better ascertain the comparative clinical outcomes with anatomic, non-anatomic, and tendon transfer techniques for medial knee reconstruction. Level IV, systematic review of level IV studies and surgical techniques. Published by Elsevier Inc.

  8. A multicenter study to quantify systematic variations and associated uncertainties in source positioning with commonly used HDR afterloaders and ring applicators for the treatment of cervical carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Awunor, O., E-mail: onuora.awunor@stees.nhs.uk [The Medical Physics Department, The James Cook University Hospital, Marton Road, Middlesbrough TS4 3BW, England (United Kingdom); Berger, D. [Department of Radiotherapy, General Hospital of Vienna, Vienna A-1090 (Austria); Kirisits, C. [Department of Radiotherapy, Comprehensive Cancer Center, Medical University of Vienna, Vienna A-1090 (Austria)

    2015-08-15

    Purpose: The reconstruction of radiation source position in the treatment planning system is a key part of the applicator reconstruction process in high dose rate (HDR) brachytherapy treatment of cervical carcinomas. The steep dose gradients, of as much as 12%/mm, associated with typical cervix treatments emphasize the importance of accurate and precise determination of source positions. However, a variety of methodologies with a range in associated measurement uncertainties, of up to ±2.5 mm, are currently employed by various centers to do this. In addition, a recent pilot study by Awunor et al. [“Direct reconstruction and associated uncertainties of {sup 192}Ir source dwell positions in ring applicators using gafchromic film in the treatment planning of HDR brachytherapy cervix patients,” Phys. Med. Biol. 58, 3207–3225 (2013)] reported source positional differences of up to 2.6 mm between ring sets of the same type and geometry. This suggests a need for a comprehensive study to assess and quantify systematic source position variations between commonly used ring applicators and HDR afterloaders across multiple centers. Methods: Eighty-six rings from 20 European brachytherapy centers were audited in the form of a postal audit with each center collecting the data independently. The data were collected by setting up the rings using a bespoke jig and irradiating gafchromic films at predetermined dwell positions using four afterloader types, MicroSelectron, Flexitron, GammaMed, and MultiSource, from three manufacturers, Nucletron, Varian, and Eckert & Ziegler BEBIG. Five different ring types in six sizes (Ø25–Ø35 mm) and two angles (45° and 60°) were used. Coordinates of irradiated positions relative to the ring center were determined and collated, and source position differences quantified by ring type, size, and angle. Results: The mean expanded measurement uncertainty (k = 2) along the direction of source travel was ±1.4 mm. The standard deviation

  9. A systematic approach to the modelling of measurements for uncertainty evaluation

    International Nuclear Information System (INIS)

    Sommer, K D; Weckenmann, A; Siebert, B R L

    2005-01-01

    The evaluation of measurement uncertainty is based on both, the knowledge about the measuring process and the quantities which influence the measurement result. The knowledge about the measuring process is represented by the model equation which expresses the interrelation between the measurand and the input quantities. Therefore, the modelling of the measurement is a key element of modern uncertainty evaluation. A modelling concept has been developed that is based on the idea of the measuring chain. It gets on with only a few generic model structures. From this concept, a practical stepwise procedure has been derived

  10. Measure of the uncertainty associated with the reconstruction of applicators in adaptive guided brachytherapy by resonance; Medida de la incertidumbre asociada a la reconstruccion de aplicadores en braquiterapia adaptativa guiada por resonancia

    Energy Technology Data Exchange (ETDEWEB)

    Torres Pozas, S.; Federico, M.; Perez Molina, J. L.; Marti Asenjo, J.; Sanchez Carrascal, M.; Macias verde, D.; Ruiz Egea, E.; Lara Jimenez, P.; Martin Oliva, R.

    2013-07-01

    The objective of this study is to assess the uncertainty introduced in the process to rebuild the catheters using three methods, manual reconstruction from a template elaborate service, auto-rebuild with the software included in the TPS and reconstruction from radiopaque mannequins in CT and subsequent merger. (Author)

  11. Variables Associated With Return to Sport Following Anterior Cruciate Ligament Reconstruction: A Systematic Review

    Science.gov (United States)

    Czuppon, Sylvia; Racette, Brad A.; Klein, Sandra E.; Harris-Hayes, Marcie

    2014-01-01

    Background As one of the purposes of anterior cruciate ligament reconstruction (ACLR) is to return athletes to their pre-injury activity level, it is critical to understand variables influencing return to sport. Associations between return to sport and variables representing knee impairment, function and psychological status have not been well studied in athletes following ACLR. Purpose The purpose of this review is to summarize the literature reporting on variables proposed to be associated with return to sport following anterior cruciate ligament reconstruction. Study Design Systematic Review Methods Medline, Embase, CINAHL and Cochrane databases were searched for articles published before November 2012. Articles included in this review met these criteria: 1) included patients with primary ACLR, 2) reported at least one knee impairment, function or psychological measure, 3) reported a return to sport measure and 4) analyzed the relationship between the measure and return to sport. Results Weak evidence existed in sixteen articles suggesting variables associated with return to sport included higher quadriceps strength, less effusion, less pain, greater tibial rotation, higher Marx Activity score, higher athletic confidence, higher pre-operative knee self-efficacy, lower kinesiophobia and higher pre-operative self-motivation. Conclusion Weak evidence supports an association between knee impairment, functional, and psychological variables and return to sport. Current return to sport guidelines should be updated to reflect all variables associated with return to sport. Utilizing evidence-based return to sport guidelines following ACLR may ensure athletes are physically and psychologically capable of sports participation, which may reduce re-injury rates and the need for subsequent surgery. PMID:24124040

  12. Vascularized proximal fibula epiphyseal transfer for distal radius reconstruction in children: A systematic review.

    Science.gov (United States)

    Aldekhayel, Salah; Govshievich, Alexander; Neel, Omar Fouda; Luc, Mario

    2016-11-01

    Reconstruction of the distal radius in children is cumbersome, requiring simultaneous restoration of joint function and axial growth. Vascularized proximal fibular epiphyseal transfers (VFET) have been popularized over non-vascularized transfers and prosthesis. This systematic review aims to evaluate the effectiveness of VFET and its associated complications. Electronic database of PubMed MEDLINE was searched between 1970 and 2014. Studies reporting VFET for distal radius reconstruction in children (<15 years old) with clear reporting of technique (vascular pedicle) and objective outcome measures were included. Outcomes of interest were rate of graft growth, bone union and complications. A one-way Analysis of Variance (ANOVA) test was used to compare growth rates between pedicle types. Fourteen studies met the inclusion criteria, representing 25 patients. Pedicles used were anterior tibial (44%), peroneal (16%), or bi-pedicled (40%) anastomosed in antegrade (64%) or reverse flow (36%) fashion. Among all pedicle types, best results were achieved using anterior tibial artery with reversed flow, yielding average growth rate of 0.83 cm/year (P = 0.01). Recipient complications included four premature epiphyseal plate closures, a flap loss, and six wrist radial deviations. Donor complications included six common peroneal nerve palsies (five temporary, a permanent), and a talocalcaneal instability. Overall complication rates between pedicle types were comparable (P = 0.062). VFET may be a surgical option capable of restoring joint function and axial growth potential in select patients. The reverse flow technique based on the anterior tibial artery may result in superior outcomes. However, the overall complication rate is high and permanent peroneal nerve palsy may result. IV © 2015 Wiley Periodicals, Inc. Microsurgery 36:705-711, 2016. © 2015 Wiley Periodicals, Inc.

  13. Improving LiDAR Biomass Model Uncertainty through Non-Destructive Allometry and Plot-level 3D Reconstruction with Terrestrial Laser Scanning

    Science.gov (United States)

    Stovall, A. E.; Shugart, H. H., Jr.

    2017-12-01

    Future NASA and ESA satellite missions plan to better quantify global carbon through detailed observations of forest structure, but ultimately rely on uncertain ground measurement approaches for calibration and validation. A significant amount of the uncertainty in estimating plot-level biomass can be attributed to inadequate and unrepresentative allometric relationships used to convert plot-level tree measurements to estimates of aboveground biomass. These allometric equations are known to have high errors and biases, particularly in carbon rich forests because they were calibrated with small and often biased samples of destructively harvested trees. To overcome this issue, a non-destructive methodology for estimating tree and plot-level biomass has been proposed through the use of Terrestrial Laser Scanning (TLS). We investigated the potential for using TLS as a ground validation approach in LiDAR-based biomass mapping though virtual plot-level tree volume reconstruction and biomass estimation. Plot-level biomass estimates were compared on the Virginia-based Smithsonian Conservation Biology Institute's SIGEO forest with full 3D reconstruction, TLS allometry, and Jenkins et al. (2003) allometry. On average, full 3D reconstruction ultimately provided the lowest uncertainty estimate of plot-level biomass (9.6%), followed by TLS allometry (16.9%) and the national equations (20.2%). TLS offered modest improvements to the airborne LiDAR empirical models, reducing RMSE from 16.2% to 14%. Our findings suggest TLS plot acquisitions and non-destructive allometry can play a vital role for reducing uncertainty in calibration and validation data for biomass mapping in the upcoming NASA and ESA missions.

  14. Community health nursing practices in contexts of poverty, uncertainty and unpredictability: a systematization of personal experiences

    OpenAIRE

    Laperrière,Hélène

    2007-01-01

    Several years of professional nursing practices, while living in the poorest neighbourhoods in the outlying areas of Brazil's Amazon region, have led the author to develop a better understanding of marginalized populations. Providing care to people with leprosy and sex workers in riverside communities has taken place in conditions of uncertainty, insecurity, unpredictability and institutional violence. The question raised is how we can develop community health nursing practices in this contex...

  15. ERESYE - a expert system for the evaluation of uncertainties related to systematic experimental errors

    International Nuclear Information System (INIS)

    Martinelli, T.; Panini, G.C.; Amoroso, A.

    1989-11-01

    Information about systematic errors are not given In EXFOR, the data base of nuclear experimental measurements: their assessment is committed to the ability of the evaluator. A tool Is needed which performs this task in a fully automatic way or, at least, gives a valuable aid. The expert system ERESYE has been implemented for investigating the feasibility of an automatic evaluation of the systematic errors in the experiments. The features of the project which led to the implementation of the system are presented. (author)

  16. Free-Tissue Transfer for the Reconstruction of War-Related Extremity Injuries: A Systematic Review of Current Practice.

    Science.gov (United States)

    Theodorakopoulou, Evgenia; Mason, Katrina A; Pafitanis, Georgios; Ghanem, Ali M; Myers, Simon; Iwuagwu, Fortune C

    2016-01-01

    Extremity injuries in combat zones have devastating sequelae. The increasing survival of war-zone casualties, combined with rapid advances in microsurgery, means that there is a growing role for free-tissue reconstruction. We systematically reviewed the current practices in microsurgical reconstruction of combat-related extremity injuries, focusing on free-flap types, timing of surgery, and outcomes. We conducted a PubMed search of the terms "War" and "Reconstruction," identifying 21st century studies on subacute/delayed free-flap repair, to reflect the idiosyncrasies of modern warfare. Case reports and studies exclusively describing craniofacial and thoracoabdominal injuries were excluded. A total of 11 studies fulfilled our inclusion criteria. In 9 studies, patients were repatriated/transferred to specialist facilities for treatment; in 2 studies, reconstruction was performed within combat/austere environments. The number of free-flaps described per study ranged from 6 to 233 (Total = 501). Latissimus dorsi flaps were most commonly used (43.7%). The average time to definitive reconstruction ranged from 9.6 days to 3 years, being delayed to address life-threatening injuries. The average free-flap success rate was 95.5% (range = 88.9%-100%). Combat-associated extremity injuries are characterized by extensive tissue loss and gross contamination. Despite this, microsurgical reconstruction results in minimal morbidity and successful outcomes. Large, multicenter studies are necessary to corroborate these findings and establish definitive management guidelines. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  17. Bony reconstruction of hip in cerebral palsy children Gross Motor Function Classification System levels III to V: a systematic review.

    Science.gov (United States)

    El-Sobky, Tamer A; Fayyad, Tamer A; Kotb, Ahmed M; Kaldas, Beshoy

    2018-05-01

    Hip dislocation is a common source of disability in cerebral palsy children. It has been remedied by various reconstructive procedures. This review aims at providing the best evidence for bony reconstructive procedures in cerebral palsy hip migration. The literature extraction process yielded 36 articles for inclusion in this review. There is fair evidence to indicate that the comparative effectiveness of femoral versus combined pelvifemoral reconstruction favours pelvifemoral reconstruction. All except one were retrospective articles with a significant degree of selection and performance bias and confounding variables that limited the validity and generalizability of the conclusions. The findings of this systematic review provide fair evidence for the use of adequate soft tissue and combined pelvifemoral reconstruction in the management of hip migration in none and minimally ambulatory cerebral palsy children in the short and long term. This has been shown in studies with a summed sizable patient population. There is limited evidence available that would support the use of soft-tissue and isolated femoral reconstruction. In the context of these retrospective and biased studies, it is extremely difficult to identify, with great precision, predictors of surgical success. Future studies should consider prospective designs that allow for bias control, strict patient selection criteria and incorporation of validated quality-of-life scales.

  18. Women's expectations of breast reconstruction following mastectomy for breast cancer: a systematic review.

    Science.gov (United States)

    Flitcroft, Kathy; Brennan, Meagan; Spillane, Andrew

    2017-08-01

    Breast reconstruction (BR) makes an important positive contribution to the quality of life of many women who have undergone mastectomy for breast cancer. The purpose of this article is to evaluate the evidence for possible relationships between women's expectations of BR and their satisfaction with outcomes to inform and facilitate improved communication about BR options prior to initial surgery. A systematic review of the literature reporting expectations of BR published between 1 January 1994 and 6 March 2017 identified 2107 initial search results. Twenty-one publications, reporting 20 studies (2288 participants), satisfied the selection criteria. Information on study aim and time frame, participation rate, design/methods, limitations/bias, results and conclusions, as well as participant clinical and demographic information, was reported. An overall quality score was generated for each study. Four of five studies that quantified expectations and satisfaction found a positive relationship between the two. This may indicate a possible trend, but as 16 of the 21 included publications did not provide quantifiable data, no firm conclusions are possible. Our findings have important implications for policy and practice which are applicable to medical decision-making more broadly. There is a clear need to utilise accurate and consistent measures of patient-reported expectations and to educate both patients and health practitioners about the importance of informed discussion about treatment options. This is particularly salient for women facing a choice about BR, a major breast cancer survivorship decision. Routine use of an expectations checklist in pre-operative consultations may be useful.

  19. A systematic framework for enterprise-wide optimization: Synthesis and design of processing network under uncertainty

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Sarup, Bent; Sin, Gürkan

    2013-01-01

    In this paper, a systematic framework for synthesis and design of processing networks under uncertaintyis presented. Through the framework, an enterprise-wide optimization problem is formulated and solvedunder uncertain conditions, to identify the network (composed of raw materials, process techn...

  20. Return to Sport-Specific Performance After Primary Anterior Cruciate Ligament Reconstruction: A Systematic Review.

    Science.gov (United States)

    Mohtadi, Nicholas G; Chan, Denise S

    2017-10-01

    Physicians counseling athletes on the prognosis of sport-specific performance outcomes after anterior cruciate ligament reconstruction (ACLR) depend on the published literature. However, critical appraisal of the validity and biases in these studies is required to understand how ACLR affects an athlete's ability to return to sport, the athlete's sport-specific performance, and his or her ability to achieve preinjury levels of performance. This review identifies the published prognostic studies evaluating sport-specific performance outcomes after ACLR. A risk of bias assessment and summaries of return to sport and career longevity results are provided for each included study. Systematic review. Electronic databases (Ovid MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, and PUBMED) were searched via a defined search strategy with no limits, to identify relevant studies for inclusion in the review. A priori defined eligibility criteria included studies measuring sport-specific performance within an athlete's sport, before and after primary ACLR. Reference lists of eligible studies were hand-searched for additional relevant studies. Data extraction was performed by use of a standardized spreadsheet. Each included study was assessed by use of 6 bias domains of the Quality in Prognosis Studies tool to critically appraise study participation, study attrition, prognostic factors, outcome measurement, confounders, and statistical analysis and reporting. Two authors independently performed each stage of the review and reached consensus through discussion. Fifteen pertinent prognostic studies evaluated sport-specific performance outcomes and/or return to play after ACLR for athletes participating in competitive soccer, football, ice hockey, basketball, Alpine ski, X-Games ski and snowboarding, and baseball. Twelve of these studies were considered to have a high level of bias. This review demonstrated that most high

  1. Systematic comparison between ecological momentary assessment and day reconstruction method for fatigue and mood states in healthy adults.

    Science.gov (United States)

    Kim, Jinhyuk; Kikuchi, Hiroe; Yamamoto, Yoshiharu

    2013-02-01

    While both ecological momentary assessment (EMA) and the day reconstruction method (DRM) have been used to overcome recall bias, a full systematic comparison of these methods has not been conducted. This study was aimed to investigate the differences and correlations between momentary fatigue and mood states recorded by EMA and reconstructed ones recorded by simultaneous DRM in healthy adults. Each of two different designs (time-based and episode-based) of EMA and DRM were simultaneously conducted. Twenty-five healthy adults recorded momentary fatigue and mood states with EMA, and then, reconstructed them with DRM. Differences between the mean and the variability of momentary and reconstructed recordings, and the correlations between them, are analysed for different EMA designs. No significant differences are found between the mean or the variability of EMA and DRM estimated over the monitoring period. However, correlations between EMA and DRM are low, albeit statistically significant. Although the overall mean and variability of EMA recordings may be accessible with DRM, detailed changes over time of momentary fatigue and mood states are not retrieved by DRM. Statement of contribution What is already known on this subject? Day reconstruction method (DRM) may be a reliable substitute strategy for the measurement of subjective symptoms instead of ecological momentary assessment (EMA). Remembering the context of daily activities with DRM is assumed to be helpful in reconstructing subjective symptoms without recall bias. What does this study add? We are not able to reconstruct our diurnal time course (i.e. detailed changes over time) of subjective symptoms (e.g. fatigue and mood states in this study) with DRM, while their approximate mean and overall variability during the study period may be accessible with DRM. Reconstructed depression by DRM could be biased when the subjects remembered whether their behaviour was active or inactive. © 2012 The British

  2. Use of autologous fat grafting in reconstruction following mastectomy and breast conserving surgery: An updated systematic review protocol

    Directory of Open Access Journals (Sweden)

    Riaz A. Agha

    2017-01-01

    Ethics and dissemination: The systematic review will be published in a peer-reviewed journal and presented at national and international meetings within fields of plastic, reconstructive and aesthetic surgery, and surgical oncology. The work will be disseminated electronically and in print. Brief reports of the review and findings will be disseminated to interested parties through email and direct communication. The review aims to guide healthcare practice and policy.

  3. A systematic review on the sensory reinnervation of free flaps for tongue reconstruction: Does improved sensibility imply functional benefits?

    Science.gov (United States)

    Baas, Martijn; Duraku, Liron S; Corten, Eveline M L; Mureau, Marc A M

    2015-08-01

    Tongue reconstruction after (hemi)glossectomy including sensory recovery is challenging. Although sensory recovery could improve functional outcome, no consensus on the need for reinnervation of the neo-tongue exists. Therefore, a systematic review was performed to determine if sensory reinnervation of free flaps in tongue reconstruction is better than no sensory reinnervation. The secondary study aim was to assess the effect of sensory reinnervation on overall functional outcome, such as speech and deglutition. Seven databases (Embase, Medline, Web of Science, Scopus, PubMed publisher, Cochrane, and Google Scholar) were searched. Studies that reported the effect of sensory reinnervation on overall functional outcome were identified. Fourteen articles were included in the systematic review, concerning a total of 271 tongue reconstructions. Free flaps that were used were the radial forearm (RF) flap (n = 137), the anterolateral thigh (ALT) flap (n = 65), the rectus abdominis (RA) flap (n = 20), and the tensor fascia latae (TFL) flap (n = 5). Seven out of seven articles directly comparing sensory reinnervation with no sensory reinnervation revealed superior sensibility in the reinnervated group. Moreover, the innervated RF and ALT flaps showed superior recovery of sensibility compared to other flaps used for the reconstruction of hemiglossectomy as well as total glossectomy defects. There are indications that sensory reinnervation may have a beneficial effect on overall tongue function. Age, smoking, and sex did not affect sensory recovery. Four out of five articles showed that postoperative radiotherapy does not have a long-term adverse effect on sensory recovery. Sensory reinnervation of free flaps in the reconstruction of (hemi)glossectomy defects improves sensory recovery; however, evidence for beneficial effects on function is poor. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights

  4. Seeding cell approach for tissue-engineered urethral reconstruction in animal study: A systematic review and meta-analysis.

    Science.gov (United States)

    Xue, Jing-Dong; Gao, Jing; Fu, Qiang; Feng, Chao; Xie, Hong

    2016-07-01

    We systematically reviewed published preclinical studies to evaluate the effectiveness of cell-seeded tissue engineering approach for urethral reconstruction in an animal model. The outcomes were summarized by success factors in the animal experiments, which evaluate the possibility and feasibility of a clinical application in the future. Preclinical studies of tissue engineering approaches for urethral reconstruction were identified through a systematic search in PubMed, Embase, and Biosis Previews (web of science SP) databases for studies published from 1 January 1980 to 23 November 2014. Primary studies were included if urethral reconstruction was performed using a tissue-engineered biomaterial in any animal species (with the experiment group being a cell-seeded scaffold and the control group being a cell-free scaffold) with histology and urethrography as the outcome measure. A total of 15 preclinical studies were included in our meta-analysis. The histology and urethrography outcome between the experimental and control groups were considered to be the most clinically relevant. Through this systematic approach, our outcomes suggested that applying the cell-seeded biomaterial in creating a neo-urethra was stable and effective. And multi-type cells including epithelial cells as well as smooth muscle cells or fibroblasts seemed to be a better strategy. Stem cells, especially after epithelial differentiation, could be a promising choice for future researches. © 2016 by the Society for Experimental Biology and Medicine.

  5. Clinical uncertainties, health service challenges, and ethical complexities of HIV "test-and-treat": a systematic review.

    Science.gov (United States)

    Kulkarni, Sonali P; Shah, Kavita R; Sarma, Karthik V; Mahajan, Anish P

    2013-06-01

    Despite the HIV "test-and-treat" strategy's promise, questions about its clinical rationale, operational feasibility, and ethical appropriateness have led to vigorous debate in the global HIV community. We performed a systematic review of the literature published between January 2009 and May 2012 using PubMed, SCOPUS, Global Health, Web of Science, BIOSIS, Cochrane CENTRAL, EBSCO Africa-Wide Information, and EBSCO CINAHL Plus databases to summarize clinical uncertainties, health service challenges, and ethical complexities that may affect the test-and-treat strategy's success. A thoughtful approach to research and implementation to address clinical and health service questions and meaningful community engagement regarding ethical complexities may bring us closer to safe, feasible, and effective test-and-treat implementation.

  6. Clinical Uncertainties, Health Service Challenges, and Ethical Complexities of HIV “Test-and-Treat”: A Systematic Review

    Science.gov (United States)

    Shah, Kavita R.; Sarma, Karthik V.; Mahajan, Anish P.

    2013-01-01

    Despite the HIV “test-and-treat” strategy’s promise, questions about its clinical rationale, operational feasibility, and ethical appropriateness have led to vigorous debate in the global HIV community. We performed a systematic review of the literature published between January 2009 and May 2012 using PubMed, SCOPUS, Global Health, Web of Science, BIOSIS, Cochrane CENTRAL, EBSCO Africa-Wide Information, and EBSCO CINAHL Plus databases to summarize clinical uncertainties, health service challenges, and ethical complexities that may affect the test-and-treat strategy’s success. A thoughtful approach to research and implementation to address clinical and health service questions and meaningful community engagement regarding ethical complexities may bring us closer to safe, feasible, and effective test-and-treat implementation. PMID:23597344

  7. Uncertainties in global-scale reconstructions of historical land use: An illustration using the HYDE data set.

    NARCIS (Netherlands)

    Klein Goldewijk, K.; Verburg, P.H.

    2013-01-01

    Land use and land-use change play an important role in global integrated assessments. However, there are still many uncertainties in the role of current and historical land use in the global carbon cycle as well as in other dimensions of global environmental change. Although databases of historical

  8. Effect of Market Price Uncertainties on the Design of Optimal Biorefinery Systems—A Systematic Approach

    DEFF Research Database (Denmark)

    Cheali, Peam; Quaglia, Alberto; Gernaey, Krist V.

    2014-01-01

    This paper presents the development of a computer-aided decision support tool for identifying optimal biorefinery concepts for production of biofuels at an early design stage. To this end, a framework that uses a superstructure-based process synthesis approach integrated with uncertainty analysis...... is used. We demonstrate the application of the tool for generating optimal biorefinery concepts for a lignocellulosic biorefinery. In particular, we highlight the management of various sources of data, the superstructure (integrated thermochemical and biochemical conversion routes) needed to represent...... the design space, generic but simple models describing the processing tasks, and the formulation and solution of an MINLP problem under deterministic and stochastic conditions to identify the optimal processing route for multiple raw materials and products. Furthermore, we evaluate the impact of market price...

  9. Short branches lead to systematic artifacts when BLAST searches are used as surrogate for phylogenetic reconstruction.

    Science.gov (United States)

    Dick, Amanda A; Harlow, Timothy J; Gogarten, J Peter

    2017-02-01

    Long Branch Attraction (LBA) is a well-known artifact in phylogenetic reconstruction when dealing with branch length heterogeneity. Here we show another phenomenon, Short Branch Attraction (SBA), which occurs when BLAST searches, a phenetic analysis, are used as a surrogate method for phylogenetic analysis. This error also results from branch length heterogeneity, but this time it is the short branches that are attracting. The SBA artifact is reciprocal and can be returned 100% of the time when multiple branches differ in length by a factor of more than two. SBA is an intended feature of BLAST searches, but becomes an issue, when top scoring BLAST hit analyses are used to infer Horizontal Gene Transfers (HGTs), assign taxonomic category with environmental sequence data in phylotyping, or gather homologous sequences for building gene families. SBA can lead researchers to believe that there has been a HGT event when only vertical descent has occurred, cause slowly evolving taxa to be over-represented and quickly evolving taxa to be under-represented in phylotyping, or systematically exclude quickly evolving taxa from analyses. SBA also contributes to the changing results of top scoring BLAST hit analyses as the database grows, because more slowly evolving taxa, or short branches, are added over time, introducing more potential for SBA. SBA can be detected by examining reciprocal best BLAST hits among a larger group of taxa, including the known closest phylogenetic neighbors. Therefore, one should look for this phenomenon when conducting best BLAST hit analyses as a surrogate method to identify HGTs, in phylotyping, or when using BLAST to gather homologous sequences. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Nerve Transfer versus Interpositional Nerve Graft Reconstruction for Posttraumatic, Isolated Axillary Nerve Injuries: A Systematic Review.

    Science.gov (United States)

    Koshy, John C; Agrawal, Nikhil A; Seruya, Mitchel

    2017-11-01

    The purpose of this study was to compare functional outcomes between nerve grafting and nerve transfer procedures in the setting of isolated, posttraumatic axillary nerve injuries. A systematic review was performed using the PubMed, Scopus, and Cochrane databases to identify all cases of isolated, posttraumatic axillary nerve injuries in patients aged 18 years or older. Patients who underwent axillary nerve reconstruction were included and categorized by technique: graft or transfer. Demographics were recorded, including age, time to operation, and presence of concomitant injuries. Functional outcomes were evaluated, including British Medical Research Council strength and range of motion for shoulder abduction. Ten retrospective studies met criteria, for a total of 66 patients (20 nerve grafts and 46 nerve transfers). Median time from injury to operation was equivalent across the nerve graft and nerve transfer groups (8.0 months versus 7.0 months; p = 0.41). Postoperative follow-up was 24.0 months for nerve grafting versus 18.5 months for nerve transfer (p = 0.13). Clinically useful shoulder abduction, defined as British Medical Research Council grade M3 or greater, was obtained in 100 percent of nerve graft patients versus 87 percent of nerve transfer patients (p = 0.09). Grade M4 or better strength was obtained in 85 percent of nerve graft patients and 73.9 percent of nerve transfer patients (p = 0.32). Significant differences in functional outcomes between nerve graft and transfer procedures for posttraumatic axillary nerve injuries are not apparent at this time. Prospective outcomes studies are needed to better elucidate whether functional differences do exist. Therapeutic, IV.

  11. Knee flexor strength recovery following hamstring tendon harvest for anterior cruciate ligament reconstruction: a systematic review

    Directory of Open Access Journals (Sweden)

    Clare Ardern

    2009-07-01

    Full Text Available The hamstring tendons are an increasingly popular graft choice for anterior cruciate ligament reconstruction due to preservation of quadriceps function and the absence of anterior knee pain post-operatively. Two commonly used hamstring grafts are a quadruple strand semitendinosus graft (4ST and a double strand semitendinosus-double strand gracilis graft (2ST-2G. It has been suggested that concurrent harvest of the semitendinsous and gracilis tendons may result in sub-optimal hamstring strength recovery as the gracilis may play a role in reinforcing the semitendinosus particularly in deep knee flexion angles. The objective of this systematic review was to synthesize the findings of available literature and determine whether semitendinosus and gracilis harvest lead to post-operative hamstring strength deficits when compared to semitendinosus harvest alone. Seven studies were identified which compared hamstring strength outcomes between the common hamstring graft types. The methodological quality of each paper was assessed, and where possible effect sizes were calculated to allow comparison of results across studies. No differences were reported between the groups in isokinetic hamstring strength. Deficits in hamstring strength were reported in the 2ST-2G groups when compared to the 4ST groups in isometric strength testing at knee flexion angles ≥70°, and in the standing knee flexion angle. Preliminary evidence exists to support the hypothesis that harvesting the semitendinosus tendon alone is preferable to harvesting in combination with the gracilis tendon for minimizing post-operative hamstring strength deficits at knee flexion angles greater than 70°. However, due to the paucity of research comparing strength outcomes between the common hamstring graft types, further investigation is warranted to fully elucidate the implications for graft harvest.

  12. Factors related to the need for surgical reconstruction after anterior cruciate ligament rupture: a systematic review of the literature.

    Science.gov (United States)

    Eggerding, Vincent; Meuffels, Duncan E; Bierma-Zeinstra, Sita M A; Verhaar, Jan A; Reijman, Max

    2015-01-01

    Systematic literature review. To summarize and evaluate research on factors predictive of progression to surgery after nonoperative treatment for an anterior cruciate ligament (ACL) rupture. Anterior cruciate ligament rupture is a common injury among young, active individuals. Surgical reconstruction is often required for patients who do not regain satisfactory knee function following nonsurgical rehabilitation. Knowledge of factors that predict the need for surgical reconstruction of the ACL would be helpful to guide the decision-making process in this population. A search was performed for studies predicting the need for surgery after nonoperative treatment for ACL rupture in the Embase, MEDLINE (OvidSP), Web of Science, CINAHL, Cochrane Central Register of Controlled Trials, PubMed, and Google Scholar digital databases from inception to October 2013. Two reviewers independently selected the studies and performed a quality assessment. Best-evidence synthesis was used to summarize the evidence of factors predicting the need for surgical reconstruction after nonoperative treatment for an ACL rupture. Seven studies were included, 3 of which were of high quality. Based on these studies, neither sex (strong evidence) nor the severity of knee joint laxity (moderate evidence) can predict whether, soon after ACL injury, a patient will need ACL reconstruction following nonoperative treatment. All other factors identified in this review either had conflicting or only minimal evidence as to their level of association with the need for surgical reconstruction. Noteworthy is that 1 high-quality study reported that the spherical shape of the femoral condyle was predictive of the need for ACL reconstruction. Sex and knee joint laxity tests do not predict the need for ACL reconstruction soon after an ACL rupture. Independent validation in future research will be necessary to establish whether knee shape is a predictive factor. Prognosis, level 1a-.

  13. Determination of electron beam polarization using electron detector in Compton polarimeter with less than 1% statistical and systematic uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Amrendra [Mississippi State Univ., Mississippi State, MS (United States)

    2015-05-01

    The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry-Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scattered photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy (?1 GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a

  14. Field reconstruction and estimation of the antenna support structure effect on the measurement uncertainty of the BTS1940 antenna

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Pivnenko, Sergey

    2014-01-01

    The 3D reconstruction algorithm of DIATOOL is applied to the BTS1940 antenna, recently measured at the DTUESA Spherical Near-Field Antenna Test Facility in Denmark. The antenna was measured mounted on the antenna tower through a custom support structure. The purpose of this paper is to investigat...... by traditional microwave holography and by the inverse Fourier transform of the plane wave spectrum with knowledge of the invisible region....

  15. What Makes Hydrologic Models Differ? Using SUMMA to Systematically Explore Model Uncertainty and Error

    Science.gov (United States)

    Bennett, A.; Nijssen, B.; Chegwidden, O.; Wood, A.; Clark, M. P.

    2017-12-01

    Model intercomparison experiments have been conducted to quantify the variability introduced during the model development process, but have had limited success in identifying the sources of this model variability. The Structure for Unifying Multiple Modeling Alternatives (SUMMA) has been developed as a framework which defines a general set of conservation equations for mass and energy as well as a common core of numerical solvers along with the ability to set options for choosing between different spatial discretizations and flux parameterizations. SUMMA can be thought of as a framework for implementing meta-models which allows for the investigation of the impacts of decisions made during the model development process. Through this flexibility we develop a hierarchy of definitions which allows for models to be compared to one another. This vocabulary allows us to define the notion of weak equivalence between model instantiations. Through this weak equivalence we develop the concept of model mimicry, which can be used to investigate the introduction of uncertainty and error during the modeling process as well as provide a framework for identifying modeling decisions which may complement or negate one another. We instantiate SUMMA instances that mimic the behaviors of the Variable Infiltration Capacity (VIC) model and the Precipitation Runoff Modeling System (PRMS) by choosing modeling decisions which are implemented in each model. We compare runs from these models and their corresponding mimics across the Columbia River Basin located in the Pacific Northwest of the United States and Canada. From these comparisons, we are able to determine the extent to which model implementation has an effect on the results, as well as determine the changes in sensitivity of parameters due to these implementation differences. By examining these changes in results and sensitivities we can attempt to postulate changes in the modeling decisions which may provide better estimation of

  16. M dwarf metallicities and giant planet occurrence: Ironing out uncertainties and systematics

    International Nuclear Information System (INIS)

    Gaidos, Eric; Mann, Andrew W.

    2014-01-01

    Comparisons between the planet populations around solar-type stars and those orbiting M dwarfs shed light on the possible dependence of planet formation and evolution on stellar mass. However, such analyses must control for other factors, i.e., metallicity, a stellar parameter that strongly influences the occurrence of gas giant planets. We obtained infrared spectra of 121 M dwarfs stars monitored by the California Planet Search and determined metallicities with an accuracy of 0.08 dex. The mean and standard deviation of the sample are –0.05 and 0.20 dex, respectively. We parameterized the metallicity dependence of the occurrence of giant planets on orbits with a period less than two years around solar-type stars and applied this to our M dwarf sample to estimate the expected number of giant planets. The number of detected planets (3) is lower than the predicted number (6.4), but the difference is not very significant (12% probability of finding as many or fewer planets). The three M dwarf planet hosts are not especially metal rich and the most likely value of the power-law index relating planet occurrence to metallicity is 1.06 dex per dex for M dwarfs compared to 1.80 for solar-type stars; this difference, however, is comparable to uncertainties. Giant planet occurrence around both types of stars allows, but does not necessarily require, a mass dependence of ∼1 dex per dex. The actual planet-mass-metallicity relation may be complex, and elucidating it will require larger surveys like those to be conducted by ground-based infrared spectrographs and the Gaia space astrometry mission.

  17. Quantifying uncertainty in coral Sr/Ca-based SST estimates from Orbicella faveolata: A basis for multi-colony SST reconstructions

    Science.gov (United States)

    Richey, J. N.; Flannery, J. A.; Toth, L. T.; Kuffner, I. B.; Poore, R. Z.

    2017-12-01

    The Sr/Ca in massive corals can be used as a proxy for sea surface temperature (SST) in shallow tropical to sub-tropical regions; however, the relationship between Sr/Ca and SST varies throughout the ocean, between different species of coral, and often between different colonies of the same species. We aimed to quantify the uncertainty associated with the Sr/Ca-SST proxy due to sample handling (e.g., micro-drilling or analytical error), vital effects (e.g., among-colony differences in coral growth), and local-scale variability in microhabitat. We examine the intra- and inter-colony reproducibility of Sr/Ca records extracted from five modern Orbicella faveolata colonies growing in the Dry Tortugas, Florida, USA. The average intra-colony absolute difference (AD) in Sr/Ca of the five colonies during an overlapping interval (1997-2008) was 0.055 ± 0.044 mmol mol-1 (0.96 ºC) and the average inter-colony Sr/Ca AD was 0.039 ± 0.01 mmol mol-1 (0.51 ºC). All available Sr/Ca-SST data pairs from 1997-2008 were combined and regressed against the HadISST1 gridded SST data set (24 ºN and 82 ºW) to produce a calibration equation that could be applied to O. faveolata specimens from throughout the Gulf of Mexico/Caribbean/Atlantic region after accounting for the potential uncertainties in Sr/Ca-derived SSTs. We quantified a combined error term for O. faveolata using the root-sum-square (RMS) of the analytical, intra-, and inter-colony uncertainties and suggest that an overall uncertainty of 0.046 mmol mol-1 (0.81 ºC, 1σ), should be used to interpret Sr/Ca records from O. faveolata specimens of unknown age or origin to reconstruct SST. We also explored how uncertainty is affected by the number of corals used in a reconstruction by iteratively calculating the RMS error for composite coral time-series using two, three, four, and five overlapping coral colonies. Our results indicate that maximum RMS error at the 95% confidence interval on mean annual SST estimates is 1.4 º

  18. Betting with single forams: Uncertainty constraints on El Niño Southern Oscillation reconstructions using individual foraminiferal analyses

    Science.gov (United States)

    Quinn, T. M.; Thirumalai, K.; Partin, J. W.; Jackson, C. S.

    2012-12-01

    Recent scientific investigations of sub-millennial paleoceanographic variability have attempted to use the population statistics of individual planktic foraminiferal δ18O to resolve high-frequency climate signals such as the El Niño Southern Oscillation (ENSO). However, this approach is complicated by the relatively short lifespan of individual foraminifera (~2-4 weeks) compared to the time represented by a typical marine sediment sample (decades to millennia). The resolving ability of individual foraminiferal analyses (IFA) is investigated through simulations on idealized virtual sediment samples constructed from the instrumental record. We focus on ENSO-related sea surface temperatures (SST) anomalies in the Niño3.4 region of the tropical Pacific Ocean. We constrain uncertainties on the range and standard deviation associated with the IFA technique using a bootstrap Monte Carlo approach. Sensitivity to changes in ENSO amplitude and frequency and the influence of the seasonal cycle on IFA are tested by constructing synthetic time series containing different characteristics of variability. We find that the standard deviation and range may be used to detect ENSO amplitude changes at particular thresholds (though the uncertainty in range is much larger than in standard deviation); however, it is improbable that IFA can resolve changes in ENSO frequency. We also determine that ENSO amplitude is the main driver of the IFA signal at Niño3.4 where the SST response to ENSO is large, and the seasonal cycle is relatively small. Our results suggest that rigorous uncertainty analysis should become a standard for IFA studies as it is crucial for accurate interpretation.

  19. Does Preputial Reconstruction Increase Complication Rate Of Hypospadias Repair? 20-Year Systematic Review And Meta-analysis

    Directory of Open Access Journals (Sweden)

    Marco eCastagnetti

    2016-04-01

    Full Text Available Introduction: We performed a systematic review of the literature on preputial reconstruction (PR during hypospadias repair to determine the cumulative risk of preputial skin complications and the influence of PR on urethroplasty complications, namely fistula formation and overall reoperation rate of the repair.Material and Methods: A systematic search of the literature published after 06/1995 was performed in 06/2015 using the keyword hypospadias. Only studies on the outcome of PR in children, defined as dehiscence of the reconstructed prepuce or secondary phimosis needing circumcision, were selected. A meta-analysis of studies comparing PR vs. circumcision was performed for the outcomes hypospadias fistula formation and reoperation rate.Results: Twenty studies were identified. Nineteen reported the outcome of PR in 2115 patients. Overall, 95% (2016/2115 of patients undergoing PR had distal hypospadias. The cumulative rate of PR complications was 7.7% (163/2115 patients, including 5.7% (121/2115 patients preputial dehiscences and 1.5% (35/2117 reported patients secondary phimoses needing circumcision. A meta-analysis of 7 studies comparing patients undergoing PR vs. circumcision, showed no increased risk of urethral fistula formation associated with PR, Odds Ratio (Mantel-Haenszel, Fixed effect, 95% CI, 1.25 (0.80-1.97. Likewise, two studies comparing the overall reoperation rate did not show an increased risk of reoperation associated with PR, Odds Ratio (Mantel-Haenszel, Random effect, 95% CI, 1.27 (0.45-3.58. Conclusions: Preputial reconstruction carries an 8% risk of specific complications (dehiscence of reconstructed prepuce or secondary phimosis needing circumcision, but does not seem to increase the risk of urethroplasty complications, and the overall reoperation rate of hypospadias repair.

  20. The Effect of Femoral Nerve Block on Quadriceps Strength in Anterior Cruciate Ligament Reconstruction: A Systematic Review.

    Science.gov (United States)

    Swank, Katherine R; DiBartola, Alex C; Everhart, Joshua S; Kaeding, Christopher C; Magnussen, Robert A; Flanigan, David C

    2017-05-01

    To assess the isokinetic, functional, and patient-reported outcomes of femoral nerve block (FNB) compared with traditional multimodal anesthesia for FNB in anterior cruciate ligament (ACL) reconstruction. A systematic search of PubMed, Scopus, Cumulative Index to Nursing and Allied Health Literature, Cochrane Reviews, and Google Scholar was conducted according to the 2009 Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Effects of FNB on quadriceps function were evaluated by isokinetic testing, functional scoring systems, range of motion, and patient self-report questionnaires. Heterogeneous reporting of outcomes precluded a formal meta-analysis. The methodologic merit of all studies included was evaluated by the Coleman Methodology Score. Six studies were identified with outcome measures reported between 7 days and 6 months postoperatively. At 6 months, 2 of 4 studies that reported isokinetic testing found significantly greater deficits among patients who received a nerve block; one of the remaining studies showed a deficit at 6 weeks but not 6 months. Limited data showed no significant differences in functional or patient-reported outcomes at 6 months after reconstruction, and data regarding the impact of FNB on return to sport were inconclusive. The mean Coleman Methodology Score for the included studies was 53, indicating poor overall methodologic quality of the available literature. The limited data available suggest that FNB causes a measurable deficit in quadriceps isokinetic strength during the early postoperative period but has no effect on functional outcomes or return to sport at 6 months after ACL reconstruction. However, current clinical evidence is not sufficient to draw any valid or definitive conclusions regarding the effect of FNB on postoperative outcomes after ACL reconstruction. Level IV, systemic review of Level I through IV studies. Copyright © 2017 Arthroscopy Association of North America. Published by

  1. Complications associated with the techniques for anterior cruciate ligament reconstruction in patients under 18 years old: a systematic review.

    Science.gov (United States)

    Tovar-Cuellar, W; Galván-Villamarín, F; Ortiz-Morales, J

    Determine the complications related to the different techniques for anterior cruciate ligament reconstruction in patients under 18 years old. Systematic review using the databases Medline, Cochrane Database of Systematic Reviews and Embase (until July 2016), additional studies were included conducting a search of the references of previous studies. The terms included in the search were: «cruciate», «ligament», «anterior», «immature», «complications», «outcome», «acl reconstruction»,« cruciate ligament anterior reconstruction», «children», «child», «infants», «adolescent», «open physis», «growth plate» and «skeletally immature». A number of 73 studies were included; 1300 patients in total, average age 13 years, 70% were male, medial and lateral meniscal lesions in 26% and 30% respectively. Eleven cases of length discrepancy (0,8%): 4 cases were presented with physeal-sparing techniques (1,4%), 3 cases with partial physeal-sparing techniques (2.2%) and 4 cases were presented with transphyseal techniques (0.4%). There were 22 cases of axis deviation: 6 cases with physeal-sparing techniques (2%), 3 cases with partial physeal-sparing techniques and 13 cases with transphyseal techniques (1.4%). The use of allograft achilles tendon allograft and fascia lata was associated with increased length discrepancy and axis deviation (25%). There was no difference according to Tanner. The different anterior cruciate ligament reconstruction techniques in patients under 18 years old had low complications related to lower limb growth, arthrofibrosis and review. There was a higher percentage of cases of length discrepancy and axis deviation with physeal-sparing techniques than with the other surgical techniques. The evidence level studies cannot determine causality. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Tissue Engineering for Human Urethral Reconstruction : Systematic Review of Recent Literature

    NARCIS (Netherlands)

    de Kemp, Vincent; de Graaf, Petra; Fledderus, Joost O.; Bosch, JLHR; de Kort, Laetitia

    2015-01-01

    Background Techniques to treat urethral stricture and hypospadias are restricted, as substitution of the unhealthy urethra with tissue from other origins (skin, bladder or buccal mucosa) has some limitations. Therefore, alternative sources of tissue for use in urethral reconstructions are

  3. The use of robotics in plastic and reconstructive surgery: A systematic review

    Directory of Open Access Journals (Sweden)

    Jean Nehme

    2017-09-01

    Conclusions: Robot-assisted plastic and reconstructive surgery provides clinical outcomes comparable to conventional techniques. Advantages include reported improved cosmesis, functional outcomes and greater surgeon comfort. Disadvantages included longer operating and set-up times, a learning curve, breaking of microneedles, high monetary costs and authors consistently recommended improved end-effectors. All authors were optimistic about the use of robotics in plastic and reconstructive surgery.

  4. Uncertainty and sensitivity analysis of historical vegetation iodine-131 for measurements in 1945--1947; Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, R.O.; Mart, E.I.; Strenge, D.L.; Miley, T.B.

    1994-03-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is developing environmental transport and dose models to estimate the doses to individuals and populations from exposure to radionuclides released from Hanford nuclear facilities since 1944. The validity of these models will be assessed in part by comparing model predictions with environmental measurements of radionuclides. One potentially important set of environmental radionuclide measurements is those made on vegetation samples that, beginning in 1945, were collected on and around the Hanford Site. However, from October 1945 through mid-1948, the available technology permitted the vegetation samples to be measured only for total radioactivity rather than for specific radionuclides. At that time, the factors needed to convert total radioactivities to concentrations ({mu}Ci/kg) of iodine-131, the predominant radionuclide that was released into the air from Hanford stacks in the mid-1940s, were not well known or accurately quantified. A search of historical Hanford records by HEDR Project staff uncovered the original background-corrected radiation measurements, made using a Geiger-Mueller (GM) detector system, for vegetation samples that were collected from October 1945 through early August 1946. HEDR Project staff have developed a model that can be used to convert these radiation measurements to iodine-131 concentrations ({mu}Ci/kg). It is anticipated that this equation will be used to obtain more accurate concentrations of iodine-131 for vegetation for the purpose of validating vegetation iodine-131 concentrations that will be estimated by HEDR Project air-pathway transport models.

  5. A Systematic Review of Outcomes and Complications of Primary Fingertip Reconstruction Using Reverse-Flow Homodigital Island Flaps.

    Science.gov (United States)

    Regmi, Subhash; Gu, Jia-xiang; Zhang, Nai-chen; Liu, Hong-jun

    2016-04-01

    Fingertip reconstruction using reverse-flow homodigital island flaps has been very popular over the years. However, the outcomes of reconstruction have not been clearly understood. In these circumstances, a systematic review of available literature is warranted. To assess the outcomes and complications of fingertip reconstruction using reverse-flow homodigital island flaps. To justify the usage of reverse-flow homodigital island flaps for fingertip reconstruction. A PubMed [MEDLINE] electronic database was searched (1985 to 15 April 2015). Retrospective case series that met the following criteria were included: (1) Study reported primary data; (2) Study included at least five cases of fingertip defects treated using reverse-flow homodigital island flaps; (3) Study reported outcomes and complications of fingertip reconstruction, either primary or delayed, using reverse-flow homodigital island flaps; (4) The study presented at least one of the following functional outcomes: Static two-point discrimination, return-to-work time, range of motion of distal interphalangeal joints; (5) The study presented at least one complication. Two review authors independently assessed search results, and two other review authors analyzed the data and resolved disagreements. The following endpoints were analyzed: survival rate of the flap, sensibility, and functional outcomes and complications. Eight studies were included in this review. The included studies were published between 1995 and 2014, and a total of 207 patients with 230 fingertip defects were reported. The overall survival rate of the flap was 98 % (including partial survival). The mean static two-point discrimination (2PD) was 7.2 mm. The average range of motion of the DIP joint was 63°. The average return-to-work time was 7 weeks after injury. On average, 2 % of the patient had complete flap necrosis, 5 % had partial flap necrosis, 4 % developed venous congestion, 4 % developed flexion contracture, and 12 % experienced

  6. Integrated Sachs-Wolfe map reconstruction in the presence of systematic errors

    Science.gov (United States)

    Weaverdyck, Noah; Muir, Jessica; Huterer, Dragan

    2018-02-01

    The decay of gravitational potentials in the presence of dark energy leads to an additional, late-time contribution to anisotropies in the cosmic microwave background (CMB) at large angular scales. The imprint of this so-called integrated Sachs-Wolfe (ISW) effect to the CMB angular power spectrum has been detected and studied in detail, but reconstructing its spatial contributions to the CMB map, which would offer the tantalizing possibility of separating the early- from the late-time contributions to CMB temperature fluctuations, is more challenging. Here, we study the technique for reconstructing the ISW map based on information from galaxy surveys and focus in particular on how its accuracy is impacted by the presence of photometric calibration errors in input galaxy maps, which were previously found to be a dominant contaminant for ISW signal estimation. We find that both including tomographic information from a single survey and using data from multiple, complementary galaxy surveys improve the reconstruction by mitigating the impact of spurious power contributions from calibration errors. A high-fidelity reconstruction further requires one to account for the contribution of calibration errors to the observed galaxy power spectrum in the model used to construct the ISW estimator. We find that if the photometric calibration errors in galaxy surveys can be independently controlled at the level required to obtain unbiased dark energy constraints, then it is possible to reconstruct ISW maps with excellent accuracy using a combination of maps from two galaxy surveys with properties similar to Euclid and SPHEREx.

  7. Effectiveness and safety of cryotherapy after arthroscopic anterior cruciate ligament reconstruction. A systematic review of the literature.

    Science.gov (United States)

    Martimbianco, Ana Luiza Cabrera; Gomes da Silva, Brenda Nazaré; de Carvalho, Alan Pedrosa Viegas; Silva, Valter; Torloni, Maria Regina; Peccin, Maria Stella

    2014-11-01

    Cryotherapy is widely used in rehabilitation; however, its effectiveness after anterior cruciate ligament (ACL) reconstruction remains uncertain. To investigate the effectiveness and safety of cryotherapy following ACL reconstruction through a systematic review, randomized and quasi-randomized clinical trials were searched in the databases: MEDLINE, EMBASE, CENTRAL, PEDro, SportDiscus, CINAHL, LILACS (June 2013). The primary outcomes measures were pain, edema and adverse events; the secondary outcomes were knee function, analgesic medication use, range of motion, blood loss, hospital stay, quality of life and patient satisfaction. The methodological quality of studies was evaluated using the Cochrane Collaboration risk-of-bias tool. Ten trials (a total of 573 patients) were included. Results of meta-analysis showed that the use of cold compression devices produced a significant reduction in pain scores 48 h after surgery (p cryotherapy. The risk for adverse events did not differ between patients receiving cryotherapy versus no treatment (p = 1.00). The limited evidence currently available is insufficient to draw definitive conclusions on the effectiveness of cryotherapy for other outcomes. There is a need for well designed, good quality randomized trials to answer other questions related to this intervention and increase the precision of future systematic reviews. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Tissue engineering for human urethral reconstruction: systematic review of recent literature.

    Science.gov (United States)

    de Kemp, Vincent; de Graaf, Petra; Fledderus, Joost O; Ruud Bosch, J L H; de Kort, Laetitia M O

    2015-01-01

    Techniques to treat urethral stricture and hypospadias are restricted, as substitution of the unhealthy urethra with tissue from other origins (skin, bladder or buccal mucosa) has some limitations. Therefore, alternative sources of tissue for use in urethral reconstructions are considered, such as ex vivo engineered constructs. To review recent literature on tissue engineering for human urethral reconstruction. A search was made in the PubMed and Embase databases restricted to the last 25 years and the English language. A total of 45 articles were selected describing the use of tissue engineering in urethral reconstruction. The results are discussed in four groups: autologous cell cultures, matrices/scaffolds, cell-seeded scaffolds, and clinical results of urethral reconstructions using these materials. Different progenitor cells were used, isolated from either urine or adipose tissue, but slightly better results were obtained with in vitro expansion of urothelial cells from bladder washings, tissue biopsies from the bladder (urothelium) or the oral cavity (buccal mucosa). Compared with a synthetic scaffold, a biological scaffold has the advantage of bioactive extracellular matrix proteins on its surface. When applied clinically, a non-seeded matrix only seems suited for use as an onlay graft. When a tubularized substitution is the aim, a cell-seeded construct seems more beneficial. Considerable experience is available with tissue engineering of urethral tissue in vitro, produced with cells of different origin. Clinical and in vivo experiments show promising results.

  9. Systematic review of the use of bone cement in ossicular chain reconstruction and revision stapes surgery

    NARCIS (Netherlands)

    Wegner, Inge; van den Berg, Jelle W G; Smit, Adriana L; Grolman, Wilko

    OBJECTIVES/HYPOTHESIS: To evaluate the effectiveness of bone cement on mean postoperative air-bone gap (ABG) and the proportion of ABG closure to within 20 dB in patients undergoing ossicular chain reconstruction or revision stapes surgery. DATA SOURCES: PubMed, Embase, and Central. METHODS: A

  10. Acellular dermis-assisted prosthetic breast reconstruction: a systematic and critical review of efficacy and associated morbidity.

    Science.gov (United States)

    Sbitany, Hani; Serletti, Joseph M

    2011-12-01

    The use of acellular dermal matrix to assist in two-stage expander/implant breast reconstruction has increased over recent years. However, there are questions regarding the potential for increased morbidity when using these techniques relative to standard submuscular coverage techniques. This systematic review combines published data comparing the techniques, to compare morbidity and advantages of acellular dermal matrix relative to standard submuscular coverage techniques. An English language literature search was performed to find articles reporting outcomes of two-stage expander/implant reconstruction using acellular dermal matrix. The outcome categories analyzed were patient/treatment demographics, tissue expander characteristics, and complications. Nine articles met inclusion criteria for this analysis. Six of these were matched cohort studies comparing outcomes of acellular dermal matrix techniques to standard submuscular techniques. The remaining three were case series of acellular dermal matrix techniques. The only difference found in complications was a higher rate of seroma for the acellular dermal matrix group (4.3 percent versus 8.4 percent, p = 0.03). Despite this, both groups illustrated similar rates of infection leading to explantation (3.2 percent for submuscular and 3.4 percent for acellular dermal matrix, p = 0.18). In addition, acellular dermal matrix techniques illustrated greater intraoperative fill volumes and consistently fewer fills required to reach expander capacity. The use of acellular dermal matrix in two-stage expander/implant reconstruction offers a safety profile similar to that of standard submuscular techniques. Both techniques have shown similar rates of infection ultimately requiring explantation. In addition, acellular dermal matrix offers the advantage of a more rapid reconstruction with less need for manipulation of the prosthetic through filling. Therapeutic, III.

  11. Direct reconstruction and associated uncertainties of 192Ir source dwell positions in ring applicators using gafchromic film in the treatment planning of HDR brachytherapy cervix patients

    Science.gov (United States)

    Awunor, O. A.; Dixon, B.; Walker, C.

    2013-05-01

    This paper details a practical method for the direct reconstruction of high dose rate 192Ir source dwell positions in ring applicators using gafchromic film in the treatment planning of brachytherapy cervix patients. It also details the uncertainties associated with such a process. Eight Nucletron interstitial ring applicators—Ø26 mm (×4), Ø30 mm (×3) and Ø34 mm (×1), and one 60 mm intrauterine tube were used in this study. RTQA2 and XRQA2 gafchromic films were irradiated at pre-programmed dwell positions with three successive 192Ir sources and used to derive the coordinates of the source dwell positions. The source was observed to deviate significantly from its expected position by up to 6.1 mm in all ring sizes. Significant inter applicator differences of up to 2.6 mm were observed between a subset of ring applicators. Also, the measured data were observed to differ significantly from commercially available source path models provided by Nucletron with differences of up to 3.7 mm across all ring applicator sizes. The total expanded uncertainty (k = 2) averaged over all measured dwell positions in the rings was observed to be 1.1 ± 0.1 mm (Ø26 mm and Ø30 mm rings) and 1.0 ± 0.3 mm (Ø34 mm ring) respectively, and when transferred to the treatment planning system, equated to maximum %dose changes of 1.9%, 13.2% and 1.5% at regions representative of the parametrium, lateral fornix and organs at risk respectively.

  12. Direct reconstruction and associated uncertainties of 192Ir source dwell positions in ring applicators using gafchromic film in the treatment planning of HDR brachytherapy cervix patients

    International Nuclear Information System (INIS)

    Awunor, O A; Dixon, B; Walker, C

    2013-01-01

    This paper details a practical method for the direct reconstruction of high dose rate 192 Ir source dwell positions in ring applicators using gafchromic film in the treatment planning of brachytherapy cervix patients. It also details the uncertainties associated with such a process. Eight Nucletron interstitial ring applicators—Ø26 mm (×4), Ø30 mm (×3) and Ø34 mm (×1), and one 60 mm intrauterine tube were used in this study. RTQA2 and XRQA2 gafchromic films were irradiated at pre-programmed dwell positions with three successive 192 Ir sources and used to derive the coordinates of the source dwell positions. The source was observed to deviate significantly from its expected position by up to 6.1 mm in all ring sizes. Significant inter applicator differences of up to 2.6 mm were observed between a subset of ring applicators. Also, the measured data were observed to differ significantly from commercially available source path models provided by Nucletron with differences of up to 3.7 mm across all ring applicator sizes. The total expanded uncertainty (k = 2) averaged over all measured dwell positions in the rings was observed to be 1.1 ± 0.1 mm (Ø26 mm and Ø30 mm rings) and 1.0 ± 0.3 mm (Ø34 mm ring) respectively, and when transferred to the treatment planning system, equated to maximum %dose changes of 1.9%, 13.2% and 1.5% at regions representative of the parametrium, lateral fornix and organs at risk respectively. (paper)

  13. A Systematic Review of Failed Anterior Cruciate Ligament Reconstruction With Autograft Compared With Allograft in Young Patients

    Science.gov (United States)

    Wasserstein, David; Sheth, Ujash; Cabrera, Alison; Spindler, Kurt P.

    2015-01-01

    Context: The advantages of allograft anterior cruciate ligament reconstruction (ACLR), which include shorter surgical time, less postoperative pain, and no donor site morbidity, may be offset by a higher risk of failure. Previous systematic reviews have inconsistently shown a difference in failure prevalence by graft type; however, such reviews have never been stratified for younger or more active patients. Objective: To determine whether there is a different ACLR failure prevalence of autograft compared with allograft in young, active patients. Data Sources: EMBASE, MEDLINE, Cochrane trials registry. Study Selection: Comparative studies of allograft versus autograft primary ACL reconstruction in patients 12 points, collegiate or semiprofessional athletes). Study Design: Systematic review with meta-analysis. Level of Evidence: Level 3. Data Extraction: Manual extraction of available data from eligible studies. Quantitative synthesis of failure prevalence and Lysholm score (outcomes in ≥3 studies) and I2 test for heterogeneity. Assessment of study quality using CLEAR NPT and Newcastle-Ottawa Scale (NOS). Results: Seven studies met inclusion criteria (1 level 1; 2 level 2, 4 level 3), including 788 patients treated with autograft tissue and 228 with various allografts. The mean age across studies was 21.7 years (64% male), and follow-up ranged between 24 and 51 months. The pooled failure prevalence was 9.6% (76/788) for autografts and 25.0% (57/228) for allografts (relative risk, 0.36; 95% CI, 0.24-0.53; P < 0.00001; I2 = 16%). The number needed to benefit to prevent 1 failure by using autograft was 7 patients (95% CI, 5-10). No difference between hamstrings autograft and patella tendon autograft was noted. Lysholm score was reported in 3 studies and did not differ between autograft and allograft. Conclusion: While systematic reviews comparing allograft and autograft ACLR have been equivocal, this is the first review to examine young and active patients in whom

  14. DO WE REALLY KNOW THE DUST? SYSTEMATICS AND UNCERTAINTIES OF THE MID-INFRARED SPECTRAL ANALYSIS METHODS

    International Nuclear Information System (INIS)

    Juhasz, A.; Henning, Th.; Bouwman, J.; Dullemond, C. P.; Pascucci, I.; Apai, D.

    2009-01-01

    The spectral region around 10 μm, showing prominent emission bands from various dust species is commonly used for the evaluation of the chemical composition of protoplanetary dust. Different methods of analysis have been proposed for this purpose, but so far, no comparative test has been performed to test the validity of their assumptions. In this paper, we evaluate how good the various methods are in deriving the chemical composition of dust grains from infrared spectroscopy. Synthetic spectra of disk models with different geometries and central sources were calculated, using a two-dimensional radiative transfer code. These spectra were then fitted in a blind test by four spectral decomposition methods. We studied the effect of disk structure (flared versus flat), inclination angle, size of an inner disk hole, and stellar luminosity on the fitted chemical composition. Our results show that the dust parameters obtained by all methods deviate systematically from the input data of the synthetic spectra. The dust composition fitted by the new two-layer temperature distribution method, described in this paper, differs the least from the input dust composition and the results show the weakest systematic effects. The reason for the deviations of the results given by the previously used methods lies in their simplifying assumptions. Due to the radial extent of the 10 μm emitting region there is dust at different temperatures contributing to the flux in the silicate feature. Therefore, the assumption of a single averaged grain temperature can be a strong limitation of the previously used methods. The continuum below the feature can consist of multiple components (e.g., star, inner rim, and disk midplane), which cannot simply be described by a Planck function at a single temperature. In addition, the optically thin emission of 'featureless' grains (e.g., carbon in the considered wavelength range) produces a degeneracy in the models with the optically thick emission of the

  15. Cemented and screw-retained implant reconstructions: a systematic review of the survival and complication rates.

    Science.gov (United States)

    Sailer, Irena; Mühlemann, Sven; Zwahlen, Marcel; Hämmerle, Christoph H F; Schneider, David

    2012-10-01

    To assess the 5-year survival rates and incidences of complications of cemented and screw-retained implant reconstructions. An electronic Medline search complemented by manual searching was conducted to identify randomized controlled clinical trials (RCTs), and prospective and retrospective studies giving information on cemented and screw-retained single-unit and multiple-unit implant reconstructions with a mean follow-up time of at least 1 year. Assessment of the identified studies and data abstraction were performed independently by three reviewers. Failure rates were analyzed using Poisson regression models to obtain summary estimates and 95% confidence intervals of failure rates and 5-year survival proportions. Fifty-nine clinical studies were selected from an initial yield of 4511 titles and the data were extracted. For cemented single crowns the estimated 5-year reconstruction survival was 96.5% (95% confidence interval (CI): 94.8-97.7%), for screw-retained single crowns it was 89.3% (95% CI: 64.9-97.1%) (P = 0.091 for difference). The 5-year survival for cemented partial fixed dental prostheses (FDPs) was 96.9% (95% CI: 90.8-99%), similar to the one for screw-retained partial FDPs with 98% (95% CI: 96.2-99%) (P = 0.47). For cemented full-arch FDPs the 5-year survival was 100% (95% CI: 88.9-100%), which was somewhat higher than that for screw-retained FDPs with 95.8% (95% CI: 91.9-97.9%) (P = 0.54). The estimated 5-year cumulative incidence of technical complications at cemented single crowns was 11.9% and 24.4% at screw-retained crowns. At the partial and full-arch FDPs, in contrast, a trend to less complication at the screw-retained was found than at the cemented ones (partial FDPs cemented 24.5%, screw-retained 22.1%; full-arch FDPs cemented 62.9%, screw-retained 54.1%). Biological complications like marginal bone loss >2 mm occurred more frequently at cemented crowns (5-year incidence: 2.8%) than at screw-retained ones (5-year incidence: 0%). Both types

  16. Risk factors for mesh erosion after female pelvic floor reconstructive surgery: a systematic review and meta-analysis.

    Science.gov (United States)

    Deng, Tuo; Liao, Banghua; Luo, Deyi; Shen, Hong; Wang, Kunjie

    2016-02-01

    To explore the risk factors for mesh erosion after female pelvic floor reconstructive surgery based on published literature. A systematic literature search of the PubMed, Embase, Cochrane Library, Chinese Biomedical Literature (CBM), China National Knowledge Infrastructure (CNKI) and Chinese Science and Technology Periodical (VIP) databases was performed to identify studies related to the risk factors for mesh erosion after female pelvic floor reconstruction published before December 2014. Summary unadjusted odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the strength of associations between the factors and mesh erosion. In all, 25 studies containing 7,084 patients were included in our systematic review and meta-analysis. Statistically significant differences in mesh erosion after female pelvic floor reconstruction were found in older vs younger patients (OR 0.96, 95% CI 0.94-0.98), more parities vs less parities (OR 1.27, 95% CI 1.07-1.51), the presence of premenopausal/oestrogen replacement therapy (ERT) (OR 1.36, 95% CI 1.03-1.79), diabetes mellitus (OR 1.87, 95% CI 1.35-2.57), smoking (OR 2.35, 95% CI 1.80-3.08), concomitant pelvic organ prolapse (POP) surgery (OR 0.37, 95% CI 0.16-0.84), concomitant hysterectomy (OR 1.46, 95% CI 1.03-2.07), preservation of the uterus at surgery (OR 0.22, 95% CI 0.08-0.63), and surgery performed by senior vs junior surgeons (OR 0.42, 95% CI 0.30-0.58). Our study indicates that younger age, more parities, premenopausal/ERT, diabetes mellitus, smoking, concomitant hysterectomy, and surgery performed by a junior surgeon were significant risk factors for mesh erosion after female pelvic floor reconstructive surgery. Moreover, concomitant POP surgery and preservation of the uterus may be the potential protective factors for mesh erosion. © 2015 The Authors BJU International © 2015 BJU International Published by John Wiley & Sons Ltd.

  17. SEMI-EMPIRICAL WHITE DWARF INITIAL-FINAL MASS RELATIONSHIPS: A THOROUGH ANALYSIS OF SYSTEMATIC UNCERTAINTIES DUE TO STELLAR EVOLUTION MODELS

    International Nuclear Information System (INIS)

    Salaris, Maurizio; Serenelli, Aldo; Weiss, Achim; Miller Bertolami, Marcelo

    2009-01-01

    Using the most recent results about white dwarfs (WDs) in ten open clusters, we revisit semiempirical estimates of the initial-final mass relation (IFMR) in star clusters, with emphasis on the use of stellar evolution models. We discuss the influence of these models on each step of the derivation. One intention of our work is to use consistent sets of calculations both for the isochrones and the WD cooling tracks. The second one is to derive the range of systematic errors arising from stellar evolution theory. This is achieved by using different sources for the stellar models and by varying physical assumptions and input data. We find that systematic errors, including the determination of the cluster age, are dominating the initial mass values, while observational uncertainties influence the final mass primarily. After having determined the systematic errors, the initial-final mass relation allows us finally to draw conclusions about the physics of the stellar models, in particular about convective overshooting.

  18. Pathway-Consensus Approach to Metabolic Network Reconstruction for Pseudomonas putida KT2440 by Systematic Comparison of Published Models.

    Science.gov (United States)

    Yuan, Qianqian; Huang, Teng; Li, Peishun; Hao, Tong; Li, Feiran; Ma, Hongwu; Wang, Zhiwen; Zhao, Xueming; Chen, Tao; Goryanin, Igor

    2017-01-01

    Over 100 genome-scale metabolic networks (GSMNs) have been published in recent years and widely used for phenotype prediction and pathway design. However, GSMNs for a specific organism reconstructed by different research groups usually produce inconsistent simulation results, which makes it difficult to use the GSMNs for precise optimal pathway design. Therefore, it is necessary to compare and identify the discrepancies among networks and build a consensus metabolic network for an organism. Here we proposed a process for systematic comparison of metabolic networks at pathway level. We compared four published GSMNs of Pseudomonas putida KT2440 and identified the discrepancies leading to inconsistent pathway calculation results. The mistakes in the models were corrected based on information from literature so that all the calculated synthesis and uptake pathways were the same. Subsequently we built a pathway-consensus model and then further updated it with the latest genome annotation information to obtain modelPpuQY1140 for P. putida KT2440, which includes 1140 genes, 1171 reactions and 1104 metabolites. We found that even small errors in a GSMN could have great impacts on the calculated optimal pathways and thus may lead to incorrect pathway design strategies. Careful investigation of the calculated pathways during the metabolic network reconstruction process is essential for building proper GSMNs for pathway design.

  19. Pathway-Consensus Approach to Metabolic Network Reconstruction for Pseudomonas putida KT2440 by Systematic Comparison of Published Models.

    Directory of Open Access Journals (Sweden)

    Qianqian Yuan

    Full Text Available Over 100 genome-scale metabolic networks (GSMNs have been published in recent years and widely used for phenotype prediction and pathway design. However, GSMNs for a specific organism reconstructed by different research groups usually produce inconsistent simulation results, which makes it difficult to use the GSMNs for precise optimal pathway design. Therefore, it is necessary to compare and identify the discrepancies among networks and build a consensus metabolic network for an organism. Here we proposed a process for systematic comparison of metabolic networks at pathway level. We compared four published GSMNs of Pseudomonas putida KT2440 and identified the discrepancies leading to inconsistent pathway calculation results. The mistakes in the models were corrected based on information from literature so that all the calculated synthesis and uptake pathways were the same. Subsequently we built a pathway-consensus model and then further updated it with the latest genome annotation information to obtain modelPpuQY1140 for P. putida KT2440, which includes 1140 genes, 1171 reactions and 1104 metabolites. We found that even small errors in a GSMN could have great impacts on the calculated optimal pathways and thus may lead to incorrect pathway design strategies. Careful investigation of the calculated pathways during the metabolic network reconstruction process is essential for building proper GSMNs for pathway design.

  20. Risk of Secondary Injury in Younger Athletes After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Wiggins, Amelia J; Grandhi, Ravi K; Schneider, Daniel K; Stanfield, Denver; Webster, Kate E; Myer, Gregory D

    2016-07-01

    Injury to the ipsilateral graft used for reconstruction of the anterior cruciate ligament (ACL) or a new injury to the contralateral ACL are disastrous outcomes after successful ACL reconstruction (ACLR), rehabilitation, and return to activity. Studies reporting ACL reinjury rates in younger active populations are emerging in the literature, but these data have not yet been comprehensively synthesized. To provide a current review of the literature to evaluate age and activity level as the primary risk factors in reinjury after ACLR. Systematic review and meta-analysis. A systematic review of the literature was conducted via searches in PubMed (1966 to July 2015) and EBSCO host (CINAHL, Medline, SPORTDiscus [1987 to July 2015]). After the search and consultation with experts and rating of study quality, 19 articles met inclusion for review and aggregation. Population demographic data and total reinjury (ipsilateral and contralateral) rate data were recorded from each individual study and combined using random-effects meta-analyses. Separate meta-analyses were conducted for the total population data as well as the following subsets: young age, return to sport, and young age + return to sport. Overall, the total second ACL reinjury rate was 15%, with an ipsilateral reinjury rate of 7% and contralateral injury rate of 8%. The secondary ACL injury rate (ipsilateral + contralateral) for patients younger than 25 years was 21%. The secondary ACL injury rate for athletes who return to a sport was also 20%. Combining these risk factors, athletes younger than 25 years who return to sport have a secondary ACL injury rate of 23%. This systematic review and meta-analysis demonstrates that younger age and a return to high level of activity are salient factors associated with secondary ACL injury. These combined data indicate that nearly 1 in 4 young athletic patients who sustain an ACL injury and return to high-risk sport will go on to sustain another ACL injury at some point in

  1. Surgical reconstruction of aortic root in Marfan syndrome patients: a systematic review.

    Science.gov (United States)

    Hu, Rui; Wang, Zhiwei; Hu, Xiaoping; Wu, Hongbing; Wu, Zhiyong; Zhou, Zhen

    2014-07-01

    Several recent studies have compared the clinical results of valve-sparing (VS) surgery and composite valve graft (CVG) surgery in the aortic root reconstruction of Marfan syndrome (MS) patients. The study aim was to investigate whether it is appropriate to preserve the native aortic valve in root surgery of MFS patients when taking the short-term and long-term prognoses into consideration. A thorough literature search of PubMed, Embase and Cochrane library was conducted to identify studies comparing the outcomes of VS and CVG surgery in MFS patients. The Newcastle-Ottawa Scale evaluation scheme was used to assess the methodological quality of the included articles. Data were extracted from reports and analyzed using Revman 5.0, supplied by Cochrane collaboration. Six clinical trials incorporating 539 patients were included. Compared to CVG, VS surgery was associated with a lower risk for re-exploration (RR 0.48, 95% CI 0.24-0.97; p = 0.04), thromboembolic events (RR 0.17, 95% CI 0.05-0.57; p = 0.004) and endocarditis (RR 0.31, 95% CI 0.11-0.94; p = 0.04). Despite an inherent incidence of aortic regurgitation, VS surgery resulted in an elevation of long-term survival rate; however, no statistical differences were found between groups with regards to reoperation (RR 1.07, 95% CI 0.35-3.27; p = 0.91). Root reconstruction with VS surgery can effectively improve the prognosis of MFS patients and provide a promising alternative for surgical treatment. However, the results must be interpreted with caution due to the retrospective nature of the included studies; large-scale prospective control trials are needed to confirm these findings.

  2. SYSTEMATIC UNCERTAINTIES IN THE SPECTROSCOPIC MEASUREMENTS OF NEUTRON STAR MASSES AND RADII FROM THERMONUCLEAR X-RAY BURSTS. III. ABSOLUTE FLUX CALIBRATION

    Energy Technology Data Exchange (ETDEWEB)

    Güver, Tolga [Istanbul University, Science Faculty, Department of Astronomy and Space Sciences, Beyazıt, 34119, Istanbul (Turkey); Özel, Feryal; Psaltis, Dimitrios [Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Marshall, Herman [Center for Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Guainazzi, Matteo [European Space Astronomy Centre of ESA, P.O. Box 78, Villanueva de la Cañada, E-28691 Madrid (Spain); Díaz-Trigo, Maria [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany)

    2016-09-20

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826–238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE /PCA as well as by XMM-Newton EPIC-pn and RXTE /PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE /PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0 ± 0.3% less flux than the RXTE /PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared with EPIC MOS1, MOS2, and ACIS-S detectors. We also show that any intrinsic time-dependent systematic uncertainty that may exist in the calibration of the satellites has already been implicity taken into account in the neutron star radius measurements.

  3. Protocol for a systematic review and meta-analysis on the clinical outcomes and cost of deep inferior epigastric perforator (DIEP flap versus implants for breast reconstruction

    Directory of Open Access Journals (Sweden)

    Ankur Khajuria

    2017-11-01

    Full Text Available Abstract Background Mastectomy in the context of breast malignancy can have a profoundly negative impact on a woman’s self-image, impairing personal, sexual and social relationships. The deep inferior epigastric perforator (DIEP flap and implants are the two commonest reconstructive modalities that can potentially overcome this psychological trauma. The comparative data on clinical outcomes and costs of the two modalities is limited. We aim to synthesise the current evidence on DIEP versus implants to establish which is the superior technique for breast reconstruction, in terms of clinical outcomes and cost-effectiveness. Methods A comprehensive search will be undertaken of EMBASE, MEDLINE, Google Scholar, CENTRAL and Science citation index databases (1994 up to August 2017 to identify studies relevant for the review. Primary human studies evaluating clinical outcomes and cost of DIEP and implant-based reconstruction in context of breast malignancy will be included. Primary outcomes will be patient satisfaction and cosmetic outcome from patient-reported outcome measures (scores from validated tools, e.g. BREAST-Q tool, complications and cost-analysis. The secondary outcomes will be duration of surgery, number of surgical revisions, length of stay, availability of procedures and total number of clinic visits. Discussion This will be the first systematic review and meta-analysis in available literature comparing the clinical outcomes and cost-effectiveness of DIEP and implants for breast reconstruction. This review is expected to guide worldwide clinical practice for breast reconstruction. Systematic review registration PROSPERO CRD42017072557 .

  4. Functional Outcome and Graft Retention in Patients With Septic Arthritis After Anterior Cruciate Ligament Reconstruction: A Systematic Review.

    Science.gov (United States)

    Makhni, Eric C; Steinhaus, Michael E; Mehran, Nima; Schulz, Brian S; Ahmad, Christopher S

    2015-07-01

    To provide a comprehensive review of clinical and functional outcomes after treatment for septic arthritis after anterior cruciate ligament reconstruction. A systematic review of the literature was performed. Two reviewers assessed and confirmed the methodologic quality of each study. Studies that met the inclusion criteria were assessed for pertinent data, and when available, similar outcomes were combined to generate frequency-weighted means. Nineteen studies met the inclusion and exclusion criteria for this review, reporting on a total of 203 infected knees. The mean age was 27.5 years and the mean length of follow-up was 44.2 months, with male patients comprising 88% of the population. Hamstring and bone-patellar tendon-bone autografts were used in 63% and 33% of patients, respectively, with 78% of patients retaining their grafts. The studies reported mean flexion and extension deficits of 5.8° and 1.0°, respectively, and laxity testing showed a mean difference of 1.9 mm. The studies reported mean Lysholm, International Knee Documentation Committee, and Tegner scores of 82.1, 68.2, and 5.6, respectively. Of the patients, 83% reported an ability to return to activities of daily living whereas 67% reported a return to their preinjury level of athletics. Evidence of new degenerative changes was seen in 22% of patients. Septic arthritis after anterior cruciate ligament reconstruction remains a very infrequent event, affecting 0.5% of patients. On average, outcomes in these patients are comparable with those in patients in whom infection does not develop, including postoperative range of motion, residual instability, Lysholm scores, and return to preinjury level of activity. These patients do exhibit decreased International Knee Documentation Committee scores compared with patients without septic arthritis, however. The impact of this differential is not clear, but this scoring difference suggests that septic arthritis may be associated with more severe symptoms

  5. Emerging regenerative approaches for periodontal reconstruction: a systematic review from the AAP Regeneration Workshop.

    Science.gov (United States)

    Lin, Zhao; Rios, Hector F; Cochran, David L

    2015-02-01

    More than 30 years have passed since the first successful application of regenerative therapy for treatment of periodontal diseases. Despite being feasible, periodontal regeneration still faces numerous challenges, and complete restoration of structure and function of the diseased periodontium is often considered an unpredictable task. This review highlights developing basic science and technologies for potential application to achieve reconstruction of the periodontium. A comprehensive search of the electronic bibliographic database PubMed was conducted to identify different emerging therapeutic approaches reported to influence either biologic pathways and/or tissues involved in periodontal regeneration. Each citation was assessed based on its abstract, and the full text of potentially eligible reports was retrieved. Based on the review of the full papers, their suitability for inclusion in this report was determined. In principle, only reports from scientifically well-designed studies that presented preclinical in vivo (animal studies) or clinical (human studies) evidence for successful periodontal regeneration were included. Hence, in vitro studies, namely those conducted in laboratories without any live animals, were excluded. In case of especially recent and relevant reviews with a narrow focus on specific regenerative approaches, they were identified as such, and thereby the option of referring to them to summarize the status of a specific approach, in addition to or instead of listing each separately, was preserved. Admittedly, the presence of subjectivity in the selection of studies to include in this overview cannot be excluded. However, it is believed that the contemporary approaches described in this review collectively represent the current efforts that have reported preclinical or clinical methods to successfully enhance regeneration of the periodontium. Today's challenges facing periodontal regenerative therapy continue to stimulate important research

  6. Depression Induced by Total Mastectomy, Breast Conserving Surgery and Breast Reconstruction: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Zhang, Chengjiao; Hu, Guangfu; Biskup, Ewelina; Qiu, Xiaochun; Zhang, Hongwei; Zhang, Haiyin

    2018-02-09

    To carry out a systematic review and meta-analysis of the literature to determine whether different type of surgery induces different depression occurrence in female breast cancer at mean time more than 1-year term postoperatively. A systematic literature search of PubMed, Web of Science, EMBASE, OvidSP, EBSCO and PsycARTICLES was conducted. Observational clinical studies that compared the depression incidence in different surgery groups and presented empirical findings were selected. Sixteen studies met the inclusion criteria, including 5, 4, 2 and 5 studies compared depression between total mastectomy (TM) and breast conserving therapy (BCS), TM and breast reconstruction (BR), BCS and BR, or among all three groups (TM, BCS and BR), respectively. Only 1 of 5 studies, which subjected to multivariate analysis of depression in female breast cancer, reported a statistically significant effect of type of surgery on depression occurrence. Our meta-analysis showed no significant differences among the three types of surgery, with BCS patients versus TM patients (relative risk [RR] = 0.89, 95% confidence interval [CI] 0.78-1.01; P = 0.06), BR patients versus TM patients (RR = 0.87, 95% CI 0.71-1.06; P = 0.16) and BCS patients versus BR patients (RR = 1.10; 95% CI 0.89-1.35; P = 0.37), respectively. Our study showed that there were no statistically significant differences concerning the occurrence of depressive symptoms in breast cancer patients as a consequence of TM, BCS or BR at mean time more than 1-year term postoperatively.

  7. redGEM: Systematic reduction and analysis of genome-scale metabolic reconstructions for development of consistent core metabolic models.

    Directory of Open Access Journals (Sweden)

    Meric Ataman

    2017-07-01

    Full Text Available Genome-scale metabolic reconstructions have proven to be valuable resources in enhancing our understanding of metabolic networks as they encapsulate all known metabolic capabilities of the organisms from genes to proteins to their functions. However the complexity of these large metabolic networks often hinders their utility in various practical applications. Although reduced models are commonly used for modeling and in integrating experimental data, they are often inconsistent across different studies and laboratories due to different criteria and detail, which can compromise transferability of the findings and also integration of experimental data from different groups. In this study, we have developed a systematic semi-automatic approach to reduce genome-scale models into core models in a consistent and logical manner focusing on the central metabolism or subsystems of interest. The method minimizes the loss of information using an approach that combines graph-based search and optimization methods. The resulting core models are shown to be able to capture key properties of the genome-scale models and preserve consistency in terms of biomass and by-product yields, flux and concentration variability and gene essentiality. The development of these "consistently-reduced" models will help to clarify and facilitate integration of different experimental data to draw new understanding that can be directly extendable to genome-scale models.

  8. Systematic comparison and reconstruction of sea urchin (Echinoidea) internal anatomy: a novel approach using magnetic resonance imaging.

    Science.gov (United States)

    Ziegler, Alexander; Faber, Cornelius; Mueller, Susanne; Bartolomaeus, Thomas

    2008-07-23

    Traditional comparative morphological analyses and subsequent three-dimensional reconstructions suffer from a number of drawbacks. This is particularly evident in the case of soft tissue studies that are technically demanding, time-consuming, and often prone to produce artefacts. These problems can partly be overcome by employing non-invasive, destruction-free imaging techniques, in particular micro-computed tomography or magnetic resonance imaging. Here, we employed high-field magnetic resonance imaging techniques to gather numerous data from members of a major marine invertebrate taxon, the sea urchins (Echinoidea). For this model study, 13 of the 14 currently recognized high-ranking subtaxa (orders) of this group of animals were analyzed. Based on the acquired datasets, interactive three-dimensional models were assembled. Our analyses reveal that selected soft tissue characters can even be used for phylogenetic inferences in sea urchins, as exemplified by differences in the size and shape of the gastric caecum found in the Irregularia. The main focus of our investigation was to explore the possibility to systematically visualize the internal anatomy of echinoids obtained from various museum collections. We show that, in contrast to classical preparative procedures, magnetic resonance imaging can give rapid, destruction-free access to morphological data from numerous specimens, thus extending the range of techniques available for comparative studies of invertebrate morphology.

  9. Systematic comparison and reconstruction of sea urchin (Echinoidea internal anatomy: a novel approach using magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Mueller Susanne

    2008-07-01

    Full Text Available Abstract Background Traditional comparative morphological analyses and subsequent three-dimensional reconstructions suffer from a number of drawbacks. This is particularly evident in the case of soft tissue studies that are technically demanding, time-consuming, and often prone to produce artefacts. These problems can partly be overcome by employing non-invasive, destruction-free imaging techniques, in particular micro-computed tomography or magnetic resonance imaging. Results Here, we employed high-field magnetic resonance imaging techniques to gather numerous data from members of a major marine invertebrate taxon, the sea urchins (Echinoidea. For this model study, 13 of the 14 currently recognized high-ranking subtaxa (orders of this group of animals were analyzed. Based on the acquired datasets, interactive three-dimensional models were assembled. Our analyses reveal that selected soft tissue characters can even be used for phylogenetic inferences in sea urchins, as exemplified by differences in the size and shape of the gastric caecum found in the Irregularia. Conclusion The main focus of our investigation was to explore the possibility to systematically visualize the internal anatomy of echinoids obtained from various museum collections. We show that, in contrast to classical preparative procedures, magnetic resonance imaging can give rapid, destruction-free access to morphological data from numerous specimens, thus extending the range of techniques available for comparative studies of invertebrate morphology.

  10. Substrate induced reconstruction and activation of platinum clusters: A systematic DFT study

    Science.gov (United States)

    Nigam, Sandeep; Majumder, Chiranjib

    2017-11-01

    The fundamental understanding of the electronic and geometric structures of small platinum clusters on metal oxide support is important to design the futuristic Pt-based novel materials for heterogeneous catalysis. Here we report a systematic theoretical study on the trend in the structural and electronic properties of alumina supported Ptn (n = 1-7 and 10) clusters with a focus to highlight the effect on the substrate. All calculations were carried out using the plane wave based pseudo-potential approach. The model for the support has been designed by using Al-terminated α-Al2O3 (0001) surface which is the most stable surface termination under ultrahigh vacuum conditions. The results show that the binding of Pt atom with the Al2O3 surface releases 1.84 eV energy which is significantly higher than atomic adsorption energy of other noble metal atoms (Ag, Au, and Pd). As a consequence, the equilibrium geometries of free Ptn clusters (n = 3-7) are significantly altered on the alumina surface. Whilst Pt10 cluster favors tetracapped prism structure in the gas phase, on alumina support it prefers a layered structure. The geometrical changes of Pt clusters on the alumina surface have been attributed to the energy balance between the Pt-Pt and Pt-substrate interactions. The nature of interaction between the Ptn clusters and surface has been verified using the electronic density of states analysis. Surface induced electronic charge on the deposited cluster results in red shift in its energy levels, indicating electron rich activation of platinum clusters. The inclusion of spin-orbit coupling(SOC) significantly changes the electronic structure of gas phase platinum cluster; however, the extent of SOC influence reduces due to interfacial bonding with alumina support.

  11. Uncertainty analysis guide

    International Nuclear Information System (INIS)

    Andres, T.H.

    2002-05-01

    This guide applies to the estimation of uncertainty in quantities calculated by scientific, analysis and design computer programs that fall within the scope of AECL's software quality assurance (SQA) manual. The guide weaves together rational approaches from the SQA manual and three other diverse sources: (a) the CSAU (Code Scaling, Applicability, and Uncertainty) evaluation methodology; (b) the ISO Guide,for the Expression of Uncertainty in Measurement; and (c) the SVA (Systems Variability Analysis) method of risk analysis. This report describes the manner by which random and systematic uncertainties in calculated quantities can be estimated and expressed. Random uncertainty in model output can be attributed to uncertainties of inputs. The propagation of these uncertainties through a computer model can be represented in a variety of ways, including exact calculations, series approximations and Monte Carlo methods. Systematic uncertainties emerge from the development of the computer model itself, through simplifications and conservatisms, for example. These must be estimated and combined with random uncertainties to determine the combined uncertainty in a model output. This report also addresses the method by which uncertainties should be employed in code validation, in order to determine whether experiments and simulations agree, and whether or not a code satisfies the required tolerance for its application. (author)

  12. An Assessment of the Systematic Uncertainty in Present and Future Tests of the Lense-Thirring Effect with Satellite Laser Ranging

    Science.gov (United States)

    Iorio, Lorenzo

    2009-12-01

    We deal with the attempts to measure the Lense-Thirring effect with the Satellite Laser Ranging (SLR) technique applied to the existing LAGEOS and LAGEOS II terrestrial satellites and to the recently approved LARES spacecraft. According to general relativity, a central spinning body of mass M and angular momentum S like the Earth generates a gravitomagnetic field which induces small secular precessions of the orbit of a test particle geodesically moving around it. Extracting this signature from the data is a demanding task because of many classical orbital perturbations having the same pattern as the gravitomagnetic one, like those due to the centrifugal oblateness of the Earth which represents a major source of systematic bias. The first issue addressed here is: are the so far published evaluations of the systematic uncertainty induced by the bad knowledge of the even zonal harmonic coefficients J ℓ of the multipolar expansion of the Earth’s geopotential reliable and realistic? Our answer is negative. Indeed, if the differences Δ J ℓ among the even zonals estimated in different Earth’s gravity field global solutions from the dedicated GRACE mission are assumed for the uncertainties δ J ℓ instead of using their covariance sigmas σ_{J_{ell}} , it turns out that the systematic uncertainty δ μ in the Lense-Thirring test with the nodes Ω of LAGEOS and LAGEOS II may be up to 3 to 4 times larger than in the evaluations so far published (5-10%) based on the use of the sigmas of one model at a time separately. The second issue consists of the possibility of using a different approach in extracting the relativistic signature of interest from the LAGEOS-type data. The third issue is the possibility of reaching a realistic total accuracy of 1% with LAGEOS, LAGEOS II and LARES, which should be launched in November 2009 with a VEGA rocket. While LAGEOS and LAGEOS II fly at altitudes of about 6000 km, LARES will be likely placed at an altitude of 1450 km. Thus

  13. A Software Toolkit to Study Systematic Uncertainties of the Physics Models of the Geant4 Simulation Package

    Science.gov (United States)

    Genser, Krzysztof; Hatcher, Robert; Kelsey, Michael; Perdue, Gabriel; Wenzel, Hans; Wright, Dennis H.; Yarba, Julia

    2017-10-01

    The Geant4 simulation toolkit is used to model interactions between particles and matter. Geant4 employs a set of validated physics models that span a wide range of interaction energies. These models rely on measured cross-sections and phenomenological models with the physically motivated parameters that are tuned to cover many application domains. To study what uncertainties are associated with the Geant4 physics models we have designed and implemented a comprehensive, modular, user-friendly software toolkit that allows the variation of one or more parameters of one or more Geant4 physics models involved in simulation studies. It also enables analysis of multiple variants of the resulting physics observables of interest in order to estimate the uncertainties associated with the simulation model choices. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. flexible run-time configurable workflow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented in this paper and illustrated with selected results.

  14. Characterization factors for terrestrial acidification at the global scale: a systematic analysis of spatial variability and uncertainty.

    Science.gov (United States)

    Roy, Pierre-Olivier; Azevedo, Ligia B; Margni, Manuele; van Zelm, Rosalie; Deschênes, Louise; Huijbregts, Mark A J

    2014-12-01

    Characterization factors (CFs) are used in life cycle assessment (LCA) to quantify the potential impact per unit of emission. CFs are obtained from a characterization model which assess the environmental mechanisms along the cause-effect chain linking an emission to its potential damage on a given area of protection, such as loss in ecosystem quality. Up to now, CFs for acidifying emissions did not cover the global scale and were only representative of their characterization model geographical scope. Consequently, current LCA practices implicitly assume that all emissions from a global supply chain occur within the continent referring to the characterization method geographical scope. This paper provides worldwide 2°×2.5° spatially-explicit CFs, representing the change in relative loss of terrestrial vascular plant species due to an emission change of nitrogen oxides (NOx), ammonia (NH3) and sulfur dioxide (SO2). We found that spatial variability in the CFs is much larger compared to statistical uncertainty (six orders of magnitude vs. two orders of magnitude). Spatial variability is mainly caused by the atmospheric fate factor and soil sensitivity factor, while the ecological effect factor is the dominant contributor to the statistical uncertainty. The CFs provided in our study allow the worldwide spatially explicit evaluation of life cycle impacts related to acidifying emissions. This opens the door to evaluate regional life cycle emissions of different products in a global economy. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A Software Toolkit to Study Systematic Uncertainties of the Physics Models of the Geant4 Simulation Package

    Energy Technology Data Exchange (ETDEWEB)

    Genser, Krzysztof [Fermilab; Hatcher, Robert [Fermilab; Kelsey, Michael [SLAC; Perdue, Gabriel [Fermilab; Wenzel, Hans [Fermilab; Wright, Dennis H. [SLAC; Yarba, Julia [Fermilab

    2017-02-17

    The Geant4 simulation toolkit is used to model interactions between particles and matter. Geant4 employs a set of validated physics models that span a wide range of interaction energies. These models rely on measured cross-sections and phenomenological models with the physically motivated parameters that are tuned to cover many application domains. To study what uncertainties are associated with the Geant4 physics models we have designed and implemented a comprehensive, modular, user-friendly software toolkit that allows the variation of one or more parameters of one or more Geant4 physics models involved in simulation studies. It also enables analysis of multiple variants of the resulting physics observables of interest in order to estimate the uncertainties associated with the simulation model choices. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. exible run-time con gurable work ow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented in this paper and illustrated with selected results.

  16. A Software Toolkit to Study Systematic Uncertainties of the Physics Models of the Geant4 Simulation Package

    CERN Document Server

    Genser, Krzysztof; Perdue, Gabriel; Wenzel, Hans; Yarba, Julia; Kelsey, Michael; Wright, Dennis H

    2016-01-01

    The Geant4 toolkit is used to model interactions between particles and matter. Geant4 employs a set of validated physics models that span a wide range of interaction energies. These models are tuned to cover a large variety of possible applications. This raises the critical question of what uncertainties are associated with the Geant4 physics model, or group of models, involved in a simulation project. To address the challenge, we have designed and implemented a comprehen- sive, modular, user-friendly software toolkit that allows the variation of one or more parameters of one or more Geant4 physics models involved in simulation studies. It also enables analysis of multiple variants of the resulting physics observables of interest in order to estimate the uncertain- ties associated with the simulation model choices. Key functionalities of the toolkit are presented in this paper and are illustrated with selected results.

  17. A systematic approach to assessing measurement uncertainty for CO2 emissions from coal-fired power plants

    DEFF Research Database (Denmark)

    Wagner, Claas; Esbensen, Kim

    2011-01-01

    and assessed by the Theory of Sampling (TOS), which also shows how these can be eliminated and/or minimised. Since coal-related CO2 emission calculations not only require analytical results of the carbon content of coal itself but also of the by-products fly ash and bottom ash, sampling procedures......, from which a general matrix scheme is developed that includes all factors and stages needed for total CO2 determination, which is applied to the monitoring plan of a representative medium-sized coal-fired power plant. In particular sampling involved significant potential errors, as identified...... considered to a minor extent, have now also been fully quantified and included in the overall uncertainty. Elimination of all identified sampling errors lead to modified CO2 determination procedures, which indicate that the actual CO2 emission is approximately 20,000 t higher than the present estimate. Based...

  18. DS02 uncertainty analysis

    International Nuclear Information System (INIS)

    Kaul, Dean C.; Egbert, Stephen D.; Woolson, William A.

    2005-01-01

    In order to avoid the pitfalls that so discredited DS86 and its uncertainty estimates, and to provide DS02 uncertainties that are both defensible and credible, this report not only presents the ensemble uncertainties assembled from uncertainties in individual computational elements and radiation dose components but also describes how these relate to comparisons between observed and computed quantities at critical intervals in the computational process. These comparisons include those between observed and calculated radiation free-field components, where observations include thermal- and fast-neutron activation and gamma-ray thermoluminescence, which are relevant to the estimated systematic uncertainty for DS02. The comparisons also include those between calculated and observed survivor shielding, where the observations consist of biodosimetric measurements for individual survivors, which are relevant to the estimated random uncertainty for DS02. (J.P.N.)

  19. Luminosity Spectrum Reconstruction at Linear Colliders

    CERN Document Server

    Poss, Stéphane

    2014-04-11

    A good knowledge of the luminosity spectrum is mandatory for many measurements at future e+e- colliders. As the beam-parameters determining the luminosity spectrum cannot be measured precisely, the luminosity spectrum has to be measured through a gauge process with the detector. The measured distributions, used to reconstruct the spectrum, depend on Initial State Radiation, cross-section, and Final State Radiation. To extract the basic luminosity spectrum, a parametric model of the luminosity spectrum is created, in this case the spectrum at the 3 TeV Compact Linear Collider (CLIC). The model is used within a reweighting technique to extract the luminosity spectrum from measured Bhabha event observables, taking all relevant effects into account. The centre-of-mass energy spectrum is reconstructed within 5% over the full validity range of the model. The reconstructed spectrum does not result in a significant bias or systematic uncertainty in the exemplary physics benchmark process of smuon pair production.

  20. Outcome predictors in elderly head and neck free flap reconstruction: A retrospective study and systematic review of the current evidence.

    Science.gov (United States)

    Goh, Cindy Siaw-Lin; Kok, Yee-Onn; Yong, Cheryl Pei-Chyi; Tan, Esther Wan-Xian; Goh, Lee-Gan; Chew, Khong-Yik; Teo, Constance Ee-Hoon; Goh, Terence Lin-Hon

    2017-12-12

    Free flap tissue transfer has become the gold standard for reconstruction of composite head and neck defects. We sought to investigate the efficacy and morbidity of these procedures in the elderly. We retrospectively reviewed 245 head and neck free flap procedures (234 patients). Patients were stratified by age group (≥ or free flap survival, postoperative medical and surgical complications and 30-day mortality. We found that free flap success and surgical complication rates were similar between the two age groups. Overall flap success and perioperative mortality rates were 94.3% and 2.1% respectively. Medical complications were significantly more common in the elderly group (p free flap success in head and neck reconstruction. Rather, the presence of comorbidity appears to predict the development of medical complications postoperatively. Elderly patients with low comorbidity scores may be offered free flap reconstruction with less reservation. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. A systematic review of the effect of proprioceptive and balance exercises on people with an injured or reconstructed anterior cruciate ligament.

    Science.gov (United States)

    Cooper, R L; Taylor, N F; Feller, J A

    2005-01-01

    This systematic review investigated the effect of proprioceptive and balance exercise on outcomes following injury and surgical reconstruction of the anterior cruciate ligament (ACL). Five studies of high quality that offered empirical evidence by comparing one rehabilitation program to another were included in this review. There is some evidence that proprioceptive and balance exercise improves outcomes in individuals with ACL-deficient knees. Improvements in joint position sense, muscle strength, perceived knee joint function, and hop testing were reported following proprioceptive and balance exercise. Only one included study investigated proprioceptive exercise following ACL reconstruction. Benefits were noted in the proprioceptive group for measures of strength and proprioception; however, no benefits were noted for any measures of activity. No detrimental effects--such as increased passive joint laxity or decrease in strength--were noted when compared with standard rehabilitation programs for both ACL-deficient and ACL-reconstructed individuals. Further research is required to determine if proprioceptive and balance exercise improves long-term outcomes such as return to sport.

  2. Osteoarthritis prevalence following anterior cruciate ligament reconstruction: a systematic review and numbers-needed-to-treat analysis.

    Science.gov (United States)

    Luc, Brittney; Gribble, Phillip A; Pietrosimone, Brian G

    2014-01-01

    To determine the prophylactic capability of anterior cruciate ligament (ACL) reconstruction in decreasing the risk of knee osteoarthritis (OA) when compared with ACL-deficient patients, as well as the effect of a concomitant meniscectomy. We also sought to examine the influence of study design, publication date, and graft type as well as the magnitude of change in physical activity from preinjury Tegner scores in both cohorts. We searched Web of Science and PubMed databases from 1960 through 2012 with the search terms osteoarthritis, meniscectomy, anterior cruciate ligament, anterior cruciate ligament reconstruction, and anterior cruciate ligament deficient. Articles that reported the prevalence of tibiofemoral or patellofemoral OA based on radiographic assessment were included. We calculated numbers needed to treat and relative risk reduction with associated 95% confidence intervals for 3 groups (1) patients with meniscal and ACL injury, (2) patients with isolated ACL injury, and (3) total patients (groups 1 and 2). A total of 38 studies met the criteria. Of these, 27 assessed the presence of tibiofemoral osteoarthritis in patients treated with anterior cruciate ligament reconstruction. Overall, ACL reconstruction (ACL-R) yielded a numbers needed to treat to harm of 16 with a relative risk increase of 16%. Anterior cruciate ligament reconstruction along with meniscectomy yielded a numbers needed to treat to benefit of 15 and relative risk reduction of 11%. Isolated ACL-R showed a numbers needed to treat to harm of 8 and relative risk increase of 43%. Activity levels were decreased in both ACL-R (d = -0.90; 95% confidence interval = 0.77, 1.13) and ACL-deficient (d = -1.13; 95% confidence interval = 0.96, 1.29) patients after injury. The current literature does not provide substantial evidence to suggest that ACL-R is an adequate intervention to prevent knee osteoarthritis. With regard to osteoarthritis prevalence, the only patients benefiting from ACL-R were those

  3. Benefits and risks with acellular dermal matrix (ADM) and mesh support in immediate breast reconstruction: a systematic review and meta-analysis.

    Science.gov (United States)

    Hallberg, Håkan; Rafnsdottir, Svanheidur; Selvaggi, Gennaro; Strandell, Annika; Samuelsson, Ola; Stadig, Ida; Svanberg, Therese; Hansson, Emma; Lewin, Richard

    2018-06-01

    In modern implant-based immediate breast reconstruction, it has become common to use biological acellular dermal and synthetic matrices in combination with a tissue expander or an implant. The aim of this systematic review was to examine differences in recurrence of cancer, impact on oncological treatment, health related quality of life, complications and aesthetic outcome between matrix and no matrix in immediate breast reconstruction. Systematic searches, data extraction and assessment of methodological quality were performed according to predetermined criteria. Fifty-one studies were eligible and included in the review. The certainty of evidence for overall complication rate and implant loss is low (GRADE ⊕⊕□ □). The certainty of evidence for delay of adjuvant treatment, implant loss, infection, capsular contraction and aesthetic outcome is very low (GRADE ⊕□ □ □). No study reported data on recurrence of cancer or health related quality of life. In conclusion, there is a lack of high quality studies that compare the use of matrix with no matrix in immediate breast reconstruction. Specifically, there are no data on risk of recurrence of cancer, delay of adjuvant treatment and Health related quality of life (HRQoL). In addition, there is a risk of bias in many studies. It is often unclear what complications have been included and how they have been diagnosed, and how and when capsular contracture and aesthetic outcome have been evaluated. Controlled trials that further analyse the impact of radiotherapy, type of matrix and type of procedure (one or two stages) are necessary.

  4. Over 90 % of children and adolescents return to sport after anterior cruciate ligament reconstruction: a systematic review and meta-analysis.

    Science.gov (United States)

    Kay, Jeffrey; Memon, Muzammil; Marx, Robert G; Peterson, Devin; Simunovic, Nicole; Ayeni, Olufemi R

    2018-01-13

    To evaluate the rate at which children and adolescent athletes return to sporting activities after anterior cruciate ligament (ACL) reconstruction. Three databases, PubMed, MEDLINE, and EMBASE, were searched from database inception until September 9, 2017 by two reviewers independently and in duplicate. The inclusion criteria were English language studies that reported return to sport outcomes. Book chapters, conference papers, review articles, and technical reports were excluded. The rate of return to sports was combined in a meta-analysis of proportions using a random-effects model. Overall, 20 studies with a combined total of 1156 ACL reconstructions met the inclusion criteria, with a mean age of 14.3 years (range 6-19) and a mean follow-up time of 6.5 years (range 1-22). All studies were level IV evidence (14 retrospective case series and 6 prospective case series). The pooled rate of return to any sport participation was 92.0% [95% confidence interval (CI), 86-96%]. The pooled rate of return to pre-injury level of sport was 78.6% (95% CI 71-86%) and that to competitive level of sport was 81.0% (95% CI 62-94%). A total of 93 of the 717 assessed athletes (13%) sustained re-injuries with graft ruptures, and in 91 of 652 patients (14%), contralateral ACL injuries were reported on final follow-up. Pooled results suggest a high rate of return to sport following ACL reconstruction in children and adolescent athletes; however, this is associated with a relatively high rate of graft rupture and a similar rate of contralateral ACL injury. This study provides clinicians with evidence-based data on the ability of children and adolescent athletes to return to sport after ACL reconstruction, an important consideration for athletes of this population with ACL injuries. IV, systematic review of level IV studies.

  5. Objective criteria for return to athletics after anterior cruciate ligament reconstruction and subsequent reinjury rates: a systematic review.

    Science.gov (United States)

    Barber-Westin, Sue D; Noyes, Frank R

    2011-09-01

    To review anterior cruciate ligament (ACL) clinical studies to assess the objective functional criteria used to determine when patients can return to athletics postoperatively, and to determine the rates of reinjury to either knee when these criteria are applied. A literature search was conducted using the Medline database. The inclusionary criteria were the English language, publication between April 2001 and April 2011, original clinical trials, all levels of evidence, primary ACL reconstruction, skeletal maturity, minimum 2 years of follow-up, and ≥1 objective test used to allow release to sports activities. The exclusionary criteria were revision ACL reconstructions or dislocated knees; studies that specifically excluded patients with ACL graft failure or reinjuries; major concomitant procedures such as high tibial osteotomy, meniscus allograft, other knee ligament reconstructions; and case reports, abstracts, review articles, and technical notes. Three objective criteria were used to allow release to sports activities. The most common were lower extremity muscle strength, followed by lower limb symmetry, and knee examination parameters of range of knee motion and effusion. Twelve studies listed 1 criterion for release to sports, 8 studies listed 2 criteria, and 1 study recommended 3 criteria. Failure rates of the ACL reconstructions ranged from 0% to 3% in 7 studies, from 4% to 6% in 6 studies, from 7% to 10% in 4 studies, and from 14% to 24% in 4 studies. There were no injuries in the contralateral ACL in 14 studies (67%); in the other 7 studies, contralateral injury was reported in 2% to 15% of patients. Few objective functional criteria are used to determine when patients return to unrestricted sports activities. Clinically feasible recommendations are made for measurement of muscle strength, lower limb symmetry, lower limb neuromuscular control, and ligament function in patients who desire to return to athletics after ACL reconstruction. Future studies

  6. Osteoarthritis Prevalence Following Anterior Cruciate Ligament Reconstruction: A Systematic Review and Numbers-Needed-to-Treat Analysis

    Science.gov (United States)

    Luc, Brittney; Gribble, Phillip A.; Pietrosimone, Brian G.

    2014-01-01

    Objective: To determine the prophylactic capability of anterior cruciate ligament (ACL) reconstruction in decreasing the risk of knee osteoarthritis (OA) when compared with ACL-deficient patients, as well as the effect of a concomitant meniscectomy. We also sought to examine the influence of study design, publication date, and graft type as well as the magnitude of change in physical activity from preinjury Tegner scores in both cohorts. Data Sources: We searched Web of Science and PubMed databases from 1960 through 2012 with the search terms osteoarthritis, meniscectomy, anterior cruciate ligament, anterior cruciate ligament reconstruction, and anterior cruciate ligament deficient. Study Selection: Articles that reported the prevalence of tibiofemoral or patellofemoral OA based on radiographic assessment were included. We calculated numbers needed to treat and relative risk reduction with associated 95% confidence intervals for 3 groups (1) patients with meniscal and ACL injury, (2) patients with isolated ACL injury, and (3) total patients (groups 1 and 2). Data Extraction: A total of 38 studies met the criteria. Of these, 27 assessed the presence of tibiofemoral osteoarthritis in patients treated with anterior cruciate ligament reconstruction. Data Synthesis: Overall, ACL reconstruction (ACL-R) yielded a numbers needed to treat to harm of 16 with a relative risk increase of 16%. Anterior cruciate ligament reconstruction along with meniscectomy yielded a numbers needed to treat to benefit of 15 and relative risk reduction of 11%. Isolated ACL-R showed a numbers needed to treat to harm of 8 and relative risk increase of 43%. Activity levels were decreased in both ACL-R (d = −0.90; 95% confidence interval = 0.77, 1.13) and ACL-deficient (d = −1.13; 95% confidence interval = 0.96, 1.29) patients after injury. Conclusions: The current literature does not provide substantial evidence to suggest that ACL-R is an adequate intervention to prevent knee osteoarthritis

  7. Reconstruction and rehabilitation of short-range gunshot injury to lower part of face: A systematic approach of three cases

    Directory of Open Access Journals (Sweden)

    Ashutosh Vatsyayan

    2016-08-01

    Full Text Available Gunshot injuries are always known to cause severe morbidity and mortality when head and neck are involved. They vary in morbidity, which can occur in civilian surroundings. The wound largely depends on the type of weapon, mass and velocity of the bullet, and the distance from where it has been shot. Close-range gunshot wounds in the head and neck region can result in devastating aesthetic and functional impairment. The complexity in facial skeletal anatomy cause multiple medical and surgical challenges to an operating surgeon, demanding elaborate soft and hard tissue reconstruction. Here we presented the successful management of three patients shot by short-range pistol with basic life support measures, wound management, reconstruction and rehabilitation.

  8. Understanding uncertainty

    CERN Document Server

    Lindley, Dennis V

    2013-01-01

    Praise for the First Edition ""...a reference for everyone who is interested in knowing and handling uncertainty.""-Journal of Applied Statistics The critically acclaimed First Edition of Understanding Uncertainty provided a study of uncertainty addressed to scholars in all fields, showing that uncertainty could be measured by probability, and that probability obeyed three basic rules that enabled uncertainty to be handled sensibly in everyday life. These ideas were extended to embrace the scientific method and to show how decisions, containing an uncertain element, could be rationally made.

  9. Chimney Technique in Supra-Aortic Branch Reconstruction in China: A Systematic and Critical Review of Chinese Published Experience.

    Science.gov (United States)

    Zhao, Yang; Shi, Yawei; Wang, Mian; Cui, Jin; Chen, Yitian; Zheng, Liang; Yin, Henghui; Chang, Guangqi

    2017-08-01

    The chimney graft (CG) technique has been proposed as a complete endovascular supra-aortic branch reconstruction for aortic pathologies. Due to the rapid growth of thoracic endovascular aortic repair (TEVAR) in China, we aimed to investigate the current data of the CG technique in this most populous country. Studies of supra-aortic branch reconstruction using the CG technique from Chinese centers were collected and analyzed. A total of 294 patients from Chinese centers who underwent TEVAR with CGs were included. There were 301 CGs performed, with a technical successful rate of 97.7%. The rate of early type I endoleaks was 7.1%, and the patency rate of the CGs was desirable. Balloon-expandable bare CGs were significantly associated with good early outcomes and a low rate of endoleaks. Current data from China revealed positive outcomes using CGs for supra-aortic branch reconstruction. Balloon-expandable bare CGs may be the first choice according to the data available but should be considered with caution.

  10. Uncertainty Analysis Principles and Methods

    Science.gov (United States)

    2007-09-01

    total systematic uncertainties be combined in RSS. In many instances, the student’s t-statistic, t95, is set equal to 2 and URSS is replaced by U95...GUM, the total uncertainty UADD, URSS or U95, was offered as type of confi- dence limit. 9595 UxvaluetrueUx +≤≤− In some respects, these limits

  11. Analysis of pixel systematics and space point reconstruction with DEPFET PXD5 matrices using high energy beam test data

    International Nuclear Information System (INIS)

    Reuen, Lars

    2011-02-01

    To answer the current questions in particle physics vertex-detectors, the innermost sub-detector system of a multipurpose particle detector, with brilliant spatial resolution and at the same time with as little sensor material as possible are mandatory. These requirements are the driving force behind the newest generation of silicon pixel sensors like the DEPFET pixel, which incorporates the first amplification stage in form of a transistor in the fully depleted sensor bulk, allowing for a high spatial resolution even with thinned down sensors. A DEPFET pixel prototype system, build for the future TeV-scale liner collider ILC, was characterized in a high energy beam test at CERN with a spatial resolution and statistics that allowed for the first time in-pixel homogeneity measurements of DEPFET pixels. Yet, in the quest for higher precision the sensor development must be accompanied by progress in position reconstruction algorithms. A study with three novel approaches in position reconstruction was undertaken. The results of the in-pixel beam test and the performance of the new methods with an emphasis on δ-electrons will be presented here. (orig.)

  12. Analysis of pixel systematics and space point reconstruction with DEPFET PXD5 matrices using high energy beam test data

    Energy Technology Data Exchange (ETDEWEB)

    Reuen, Lars

    2011-02-15

    To answer the current questions in particle physics vertex-detectors, the innermost sub-detector system of a multipurpose particle detector, with brilliant spatial resolution and at the same time with as little sensor material as possible are mandatory. These requirements are the driving force behind the newest generation of silicon pixel sensors like the DEPFET pixel, which incorporates the first amplification stage in form of a transistor in the fully depleted sensor bulk, allowing for a high spatial resolution even with thinned down sensors. A DEPFET pixel prototype system, build for the future TeV-scale liner collider ILC, was characterized in a high energy beam test at CERN with a spatial resolution and statistics that allowed for the first time in-pixel homogeneity measurements of DEPFET pixels. Yet, in the quest for higher precision the sensor development must be accompanied by progress in position reconstruction algorithms. A study with three novel approaches in position reconstruction was undertaken. The results of the in-pixel beam test and the performance of the new methods with an emphasis on {delta}-electrons will be presented here. (orig.)

  13. Jet Reconstruction with Particle Flow in Heavy-Ion Collisions with CMS

    CERN Document Server

    INSPIRE-00242647

    2011-01-01

    In the particle-flow approach information from all available sub-detector systems is combined to reconstruct all stable particles. The global event reconstruction has been shown to improve, in particular, the resolution of jets and missing transverse energy in pp collisions compared to purely calorimetric measurements. This improvement is achieved primarily by combining the precise momentum determination of charged hadrons in the silicon tracker with the associated energy depositions in the calorimeters. By resolving individual particles inside jets, particle flow reduces the sensitivity of the jet energy scale to the jet fragmentation pattern, which is known to be one of the largest sources of systematic uncertainty in jet reconstruction. Particle flow reconstruction is thus potentially well-suited for the study of potential modifications to jet fragmentation in heavy-ion collisions. The particle flow algorithm has been adapted to the heavy-ion environment. The performance of jet reconstruction from particle...

  14. Jet Reconstruction with Particle Flow in Heavy-Ion Collisions with CMS

    CERN Document Server

    Nguyen, Matthew

    2011-01-01

    In the particle-flow approach information from all available sub-detector systems is combined to reconstruct all stable particles. The global event reconstruction has been shown to improve, in particular, the resolution of jets and missing transverse energy in $pp$ collisions compared to purely calorimetric measurements. This improvement is achieved primarily by combining the precise momentum determination of charged hadrons in the silicon tracker with the associated energy depositions in the calorimeters. By resolving individual particles inside jets, particle flow reduces the sensitivity of the jet energy scale to the jet fragmentation pattern, which is known to be one of the largest sources of systematic uncertainty in jet reconstruction. Particle flow reconstruction is thus potentially well-suited for the study of potential modifications to jet fragmentation in heavy-ion collisions. The particle flow algorithm has been adapted to the heavy-ion environment. The performance of jet reconstruction from parti...

  15. Estimation of the systematic uncertainties of the measurement of the neutrino mixing angle θ{sub 13} related to the trigger system of the Double Chooz experiment

    Energy Technology Data Exchange (ETDEWEB)

    Stueken, David Anselm

    2013-10-14

    The Double Chooz experiment, located in the Ardennes region next to the CHOOZ-B nuclear power plant, is a reactor antineutrino experiment to measure neutrino oscillations. It has been designed as precision experiment to measure the neutrino mixing angel θ{sub 13} with highest possible accuracy due to its small value close to zero. The electron antineutrino flux emitted by the reactor cores is measured by two identical neutrino detectors located at different distances from the reactor cores. Each detector consist of a 10.3 m{sup 3} target volume filled with liquid scintillator and surrounded by 390 photomultiplier tubes. The far detector is located 1.05 km away from the reactor cores to be most sensitive to oscillation effects. The unoscillated neutrino flux is measured by the near detector located 400 m away from the reactor cores. In order to reduce background events and other sources resulting in systematic uncertainties, special requirements have been demanded for all detector components and electronic systems. In this context, a most efficiently operating data acquisition system is essential. The subsystem responsible to start data storage for events of interest is the so called ''trigger system''. The design concept of the Double Chooz trigger system introduces two redundancy concepts in order to trigger the data acquisition in the most robust and efficient way: The trigger decision is based on a combination of an energy threshold and the number of active photomultiplier tubes (multiplicity condition). Secondly, the system is divided into two identical but independently operating subsystems for most robust operations of the full system. Additionally, the two subsystem provide the possibility to measure the efficiency of the system. Apart from generating the trigger signal for the data acquisition, the system provides an online event classification in order to adjust the amount of stored data for each event type. After one and a half year

  16. Uncertainty quantification in volumetric Particle Image Velocimetry

    Science.gov (United States)

    Bhattacharya, Sayantan; Charonko, John; Vlachos, Pavlos

    2016-11-01

    Particle Image Velocimetry (PIV) uncertainty quantification is challenging due to coupled sources of elemental uncertainty and complex data reduction procedures in the measurement chain. Recent developments in this field have led to uncertainty estimation methods for planar PIV. However, no framework exists for three-dimensional volumetric PIV. In volumetric PIV the measurement uncertainty is a function of reconstructed three-dimensional particle location that in turn is very sensitive to the accuracy of the calibration mapping function. Furthermore, the iterative correction to the camera mapping function using triangulated particle locations in space (volumetric self-calibration) has its own associated uncertainty due to image noise and ghost particle reconstructions. Here we first quantify the uncertainty in the triangulated particle position which is a function of particle detection and mapping function uncertainty. The location uncertainty is then combined with the three-dimensional cross-correlation uncertainty that is estimated as an extension of the 2D PIV uncertainty framework. Finally the overall measurement uncertainty is quantified using an uncertainty propagation equation. The framework is tested with both simulated and experimental cases. For the simulated cases the variation of estimated uncertainty with the elemental volumetric PIV error sources are also evaluated. The results show reasonable prediction of standard uncertainty with good coverage.

  17. Fast emulation of track reconstruction in the CMS simulation

    Science.gov (United States)

    Komm, Matthias; CMS Collaboration

    2017-10-01

    Simulated samples of various physics processes are a key ingredient within analyses to unlock the physics behind LHC collision data. Samples with more and more statistics are required to keep up with the increasing amounts of recorded data. During sample generation, significant computing time is spent on the reconstruction of charged particle tracks from energy deposits which additionally scales with the pileup conditions. In CMS, the FastSimulation package is developed for providing a fast alternative to the standard simulation and reconstruction workflow. It employs various techniques to emulate track reconstruction effects in particle collision events. Several analysis groups in CMS are utilizing the package, in particular those requiring many samples to scan the parameter space of physics models (e.g. SUSY) or for the purpose of estimating systematic uncertainties. The strategies for and recent developments in this emulation are presented, including a novel, flexible implementation of tracking emulation while retaining a sufficient, tuneable accuracy.

  18. Fast emulation of track reconstruction in the CMS simulation

    CERN Document Server

    Komm, Matthias

    2017-01-01

    Simulated samples of various physics processes are a key ingredient within analyses to unlock the physics behind LHC collision data. Samples with more and more statistics are required to keep up with the increasing amounts of recorded data. During sample generation, significant computing time is spent on the reconstruction of charged particle tracks from energy deposits which additionally scales with the pileup conditions. In CMS, the FastSimulation package is developed for providing a fast alternative to the standard simulation and reconstruction workflow. It employs various techniques to emulate track reconstruction effects in particle collision events. Several analysis groups in CMS are utilizing the package, in particular those requiring many samples to scan the parameter space of physics models (e.g. SUSY) or for the purpose of estimating systematic uncertainties. The strategies for and recent developments in this emulation are presented, including a novel, flexible implementation of tracking emulation w...

  19. Anterior cruciate ligament reconstruction autograft choice: bone-tendon-bone versus hamstring: does it really matter? A systematic review.

    Science.gov (United States)

    Spindler, Kurt P; Kuhn, John E; Freedman, Kevin Blake; Matthews, Charles E; Dittus, Robert S; Harrell, Frank E

    2004-12-01

    Anterior cruciate ligament graft choice is controversial, with no evidence-based consensus available to guide decision making. The study design was evidence-based medicine systematic review of randomized controlled trials evaluating patellar tendon versus hamstring tendon autografts. A literature review identified 9 randomized controlled trials comparing patellar tendon and hamstring tendon autografts. An evidence-based systematic review was performed. Objective and subjective outcomes of interest included surgical technique, rehabilitation, instrumented laxity, isokinetic strength, patellofemoral pain, return to preinjury activity, and Tegner, Lysholm, Cincinnati, and International Knee Documentation Committee-1991 scores. Additional surgery, graft failure, and complications were reviewed. Slight increased laxity on arthrometer testing was seen in the hamstring population in 3 of 7 studies. Pain with kneeling was greater for the patellar tendon population in 4 of 4 studies. Only 1 of 9 studies showed increased anterior knee pain in the patellar tendon group. Frequency of additional surgery seemed to be related to the fixation method and not graft type. No study reported a significant difference in graft failure between patellar tendon and hamstring tendon autografts. Objective differences (range of motion, isokinetic strength, arthrometer testing) were not detected between groups in the majority of studies, suggesting that their sensitivity to detect clinical outcomes may be limited. Increased kneeling pain in the patellar tendon group was seen consistently in the studies evaluated. Subjective differences in anterior knee pain or return-to-activity level were not consistently observed in these studies. With numbers available, failure rates were not significantly different between groups. These findings suggest that graft type may not be the primary determinant for successful outcomes after anterior cruciate ligament surgery.

  20. Uncertainty theory

    CERN Document Server

    Liu, Baoding

    2015-01-01

    When no samples are available to estimate a probability distribution, we have to invite some domain experts to evaluate the belief degree that each event will happen. Perhaps some people think that the belief degree should be modeled by subjective probability or fuzzy set theory. However, it is usually inappropriate because both of them may lead to counterintuitive results in this case. In order to rationally deal with belief degrees, uncertainty theory was founded in 2007 and subsequently studied by many researchers. Nowadays, uncertainty theory has become a branch of axiomatic mathematics for modeling belief degrees. This is an introductory textbook on uncertainty theory, uncertain programming, uncertain statistics, uncertain risk analysis, uncertain reliability analysis, uncertain set, uncertain logic, uncertain inference, uncertain process, uncertain calculus, and uncertain differential equation. This textbook also shows applications of uncertainty theory to scheduling, logistics, networks, data mining, c...

  1. Comparison of Graft Failure Rate Between Autografts Placed via an Anatomic Anterior Cruciate Ligament Reconstruction Technique: A Systematic Review, Meta-analysis, and Meta-regression.

    Science.gov (United States)

    Gabler, Conrad M; Jacobs, Cale A; Howard, Jennifer Sebert; Mattacola, Carl G; Johnson, Darren L

    2016-04-01

    Recent data from the Danish anterior cruciate ligament (ACL) registry demonstrated increased reoperation rates for hamstring tendon autografts when an anatomic ACL reconstruction is performed. This is consistent with reports of greater time needed for hamstring tendon autografts to mature compared with other autografts. To review the literature comparing graft failure rate between patellar and hamstring tendon autografts placed anatomically and to determine if there are differences in return to preinjury activity levels between autografts. Systematic review with meta-analysis and meta-regression. The PubMed, MEDLINE, SPORTDiscus, and CINAHL databases were used to identify studies published from January 1, 2000, through March 7, 2014. To compare postoperative outcomes between patellar tendon and hamstring tendon autografts, summary event rates for graft failure and return to preinjury activity level were calculated. A meta-analysis was performed to calculate a summary odds ratio (OR) for graft failure between autografts using the studies that directly compared the 2 autografts. Meta-regression analyses were performed to assess the influence of postoperative follow-up time on graft failure rate. A total of 28 studies reported graft failures for patellar tendon (6 studies) and hamstring tendon (26 studies) autografts used with anatomic ACL reconstruction; 4 of the 28 were comparison studies. Graft failure rate was not significantly different between patellar tendon (7.0% [95% CI, 4.6%-10.5%]) and hamstring tendon autografts (3.9% [95% CI, 2.7%-5.6%]). The odds of graft failure were slightly higher for hamstring tendon autografts (OR, 1.21 [95% CI, 0.63-2.33]), but this difference was not significant (P = .57). The rate of patients returning to preinjury activity levels was not significantly different between patellar (n = 1 study; 58.1% [95% CI, 40.4%-73.9%]) and hamstring tendon autografts (n = 5 studies; 75.6% [95% CI, 43.7%-92.5%]). Overall graft failure rate was

  2. The Role of Lateral Extra-articular Tenodesis in Primary Anterior Cruciate Ligament Reconstruction: A Systematic Review With Meta-analysis and Best-Evidence Synthesis

    Science.gov (United States)

    Devitt, Brian M.; Bell, Stuart W.; Ardern, Clare L.; Hartwig, Taylor; Porter, Tabitha J.; Feller, Julian A.; Webster, Kate E.

    2017-01-01

    Background: The role of lateral extra-articular tenodesis (LEAT) to augment primary anterior cruciate ligament reconstruction (ACLR) remains controversial. Purpose: To determine whether the addition of LEAT to primary ACLR provides greater control of rotational laxity and improves clinical outcomes compared with ACLR alone and to assess the impact of early versus delayed ACLR. Study Design: Systematic review; Level of evidence, 3. Methods: Two reviewers independently searched 7 databases for randomized and nonrandomized clinical studies comparing ACLR plus LEAT versus ACLR alone. Animal, cadaveric, and biomechanical studies; revision or repair procedures; and studies using synthetic ligaments and multiligamentous-injured knees were excluded. Risk of bias was assessed with a modified Downs and Black checklist. The primary outcome was postoperative pivot shift. These data were pooled by use of a fixed-effects meta-analysis model. The studies were divided into delayed (>12 months) and early (≤12 months) reconstruction groups for meta-analysis. A best-evidence synthesis was performed on the remaining outcome measures. Results: Of 387 titles identified, 11 articles were included (5 of high quality). Meta-analysis of postoperative pivot shift in 3 studies of delayed primary ACLR showed a statistically significant difference for the pivot-shift test in favor of ACLR with LEAT (odds ratio [OR], 0.44; 95% confidence interval [CI], 0.24-0.81; P = .008; I 2 = 0). Meta-analysis of 5 studies of early primary ACLR found no statistically significant difference with the addition of LEAT (OR, 0.60; 95% CI, 0.33-1.09; P = .10; I 2 = 33%). Insufficient evidence was available to determine whether the addition of LEAT had any effect on clinical, objective, subjective, and functional outcomes. Conclusion: In primary ACLR, no evidence is available showing additional benefit of LEAT in reducing the postoperative pivot shift in early reconstructions (≤12 months); however, LEAT may have

  3. Uncertainty and Sensitivity Analyses Plan

    International Nuclear Information System (INIS)

    Simpson, J.C.; Ramsdell, J.V. Jr.

    1993-04-01

    Hanford Environmental Dose Reconstruction (HEDR) Project staff are developing mathematical models to be used to estimate the radiation dose that individuals may have received as a result of emissions since 1944 from the US Department of Energy's (DOE) Hanford Site near Richland, Washington. An uncertainty and sensitivity analyses plan is essential to understand and interpret the predictions from these mathematical models. This is especially true in the case of the HEDR models where the values of many parameters are unknown. This plan gives a thorough documentation of the uncertainty and hierarchical sensitivity analysis methods recommended for use on all HEDR mathematical models. The documentation includes both technical definitions and examples. In addition, an extensive demonstration of the uncertainty and sensitivity analysis process is provided using actual results from the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC). This demonstration shows how the approaches used in the recommended plan can be adapted for all dose predictions in the HEDR Project

  4. Reconstruction and Calibration of Small Radius Jets in the ATLAS Experiment for LHC Run 2

    CERN Document Server

    Loch, Peter; The ATLAS collaboration

    2017-01-01

    Small radius jets with R = 0.4 are standard tools in ATLAS for physics analysis. They are calibrated using a sequence of Monte Carlo simulation-derived calibrations and corrections followed by in-situ calibrations based on the transverse momentum balance between the probed jets and well-measured reference signals. In this talk the inputs to jet reconstruction in LHC Run 2 comprising calorimeter cell clusters, reconstructed charge particle tracks, and particle flow objects, are discussed together with the jet energy calibration scheme. Selected results from the performance of the procedure and the associated systematic uncertainties are presented.

  5. Performance of Missing Transverse Momentum (MET) reconstruction with the ATLAS detector - LHCC poster 2017

    CERN Document Server

    Valente, Marco; The ATLAS collaboration

    2017-01-01

    Accurate and precise measurement of missing transverse momentum (MET) in an event is critical for many of the searches for new physics carried out by the ATLAS experiment. In the last year, several improvements have been introduced to the reconstruction of this quantity, such as distinguishing between jets and electrons, as well as mitigating the impact of jets from multiple proton-proton collisions, especially in the forward region of the detector. This poster aims to illustrate the MET reconstruction performance of the ATLAS experiment, with a particular emphasis on forward pileup jet suppression and systematic uncertainties derivation.

  6. Performance of the muon identification and reconstruction with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Leontsinis Stefanos

    2015-01-01

    Full Text Available We present the muon reconstruction algorithms used in ATLAS during the LHC run-1 and their performances in terms of efficiency, muon momentum scale and resolution. These performances have been measured using large calibration samples of J/ψ, ϒ and Z decays, which allow to control the systematic uncertainties on efficiency and on momentum scale at the per-mille level. Corrections to be applied to simulation have been derived from the performances measurements and used in physics analyses. The impact of these correction on physics measurements, and the associated uncertainties, is also presented.

  7. Uncertainty quantification and validation of 3D lattice scaffolds for computer-aided biomedical applications.

    Science.gov (United States)

    Gorguluarslan, Recep M; Choi, Seung-Kyum; Saldana, Christopher J

    2017-07-01

    A methodology is proposed for uncertainty quantification and validation to accurately predict the mechanical response of lattice structures used in the design of scaffolds. Effective structural properties of the scaffolds are characterized using a developed multi-level stochastic upscaling process that propagates the quantified uncertainties at strut level to the lattice structure level. To obtain realistic simulation models for the stochastic upscaling process and minimize the experimental cost, high-resolution finite element models of individual struts were reconstructed from the micro-CT scan images of lattice structures which are fabricated by selective laser melting. The upscaling method facilitates the process of determining homogenized strut properties to reduce the computational cost of the detailed simulation model for the scaffold. Bayesian Information Criterion is utilized to quantify the uncertainties with parametric distributions based on the statistical data obtained from the reconstructed strut models. A systematic validation approach that can minimize the experimental cost is also developed to assess the predictive capability of the stochastic upscaling method used at the strut level and lattice structure level. In comparison with physical compression test results, the proposed methodology of linking the uncertainty quantification with the multi-level stochastic upscaling method enabled an accurate prediction of the elastic behavior of the lattice structure with minimal experimental cost by accounting for the uncertainties induced by the additive manufacturing process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Advances in dose reconstruction at Oak Ridge

    International Nuclear Information System (INIS)

    Hoffman, F.O.; Widner, T.E.

    1996-01-01

    The Oak Ridge Dose Reconstruction has seven tasks: (1) releases of radionuclides from X-10 radiolanthanum processing, (2) atmospheric and aquatic discharges of mercury from Y-12, (3) releases of PCB's from all facilities, (4) aquatic releases of radionuclides from X-10 into the Clinch River, (5) a systematic search for classified and unclassified records of past releases (6) releases of uranium from all facilities, and (7) screening of contaminants and release events not previously evaluated in the study. The contaminants, exposure pathways, and release events requiring the most intensive analysis are identified first through screening level calculations and then through an iterative assessment approach based on a preliminary uncertainty analysis of more realistic sets of models and assumptions. Subjective probability distributions are developed for uncertain model components, reflecting the present state of knowledge about true but unknown values, and these uncertainties are propagated through to estimates of dose and health risk using Monte Carlo simulation. This procedure is effective in identifying the components of the dose reconstruction model of dominant importance. Efforts are focused on the review and improvement of the set of preliminary assumptions that may significantly impact the overall uncertainty in the final result. The results of the screening calculations and the preliminary uncertainty analysis are compared against established decision criteria to identify the need for resource re-allocation among tasks. To date, a 10 -4 life-time incidence of cancer incidence and a hazard index of one have been proposed as a decision criterion. Decisions about reallocation of resources among Tasks will be made by the Oak Ridge Health Agreement Steering Panel and the Tennessee Department of Health, which actively seek public involvement and participation

  9. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...

  10. Study of correlation of PDF uncertainty in single top and top pair production at the LHC

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    The incomplete knowledge of parton distribution functions is an important source of systematic uncertainty for top-quark measurements, including top-quark pair and single top-quark production cross sections, as well as for analyses that have a large background from these processes. The correlation of the parton-distribution-function uncertainty is studied for top-quark pair production and single top-quark production in association with a W boson, in final states with two reconstructed leptons. Four types of correlation are studied: between total production cross-sections, between cross-section and acceptance correction, between the two processes for common selection requirements, and between different jet multiplicity requirements. The uncertainty correlation is evaluated for several sets of parton distribution functions using simulated samples of top-quark pair and single top-quark events.

  11. Simplified propagation of standard uncertainties

    International Nuclear Information System (INIS)

    Shull, A.H.

    1997-01-01

    An essential part of any measurement control program is adequate knowledge of the uncertainties of the measurement system standards. Only with an estimate of the standards'' uncertainties can one determine if the standard is adequate for its intended use or can one calculate the total uncertainty of the measurement process. Purchased standards usually have estimates of uncertainty on their certificates. However, when standards are prepared and characterized by a laboratory, variance propagation is required to estimate the uncertainty of the standard. Traditional variance propagation typically involves tedious use of partial derivatives, unfriendly software and the availability of statistical expertise. As a result, the uncertainty of prepared standards is often not determined or determined incorrectly. For situations meeting stated assumptions, easier shortcut methods of estimation are now available which eliminate the need for partial derivatives and require only a spreadsheet or calculator. A system of simplifying the calculations by dividing into subgroups of absolute and relative uncertainties is utilized. These methods also incorporate the International Standards Organization (ISO) concepts for combining systematic and random uncertainties as published in their Guide to the Expression of Measurement Uncertainty. Details of the simplified methods and examples of their use are included in the paper

  12. Systematic approaches for targeting an atom-probe tomography sample fabricated in a thin TEM specimen: Correlative structural, chemical and 3-D reconstruction analyses.

    Science.gov (United States)

    Baik, Sung-Il; Isheim, Dieter; Seidman, David N

    2018-01-01

    Atom-probe tomography (APT) is a unique analysis tool that enables true three-dimensional (3-D) analyses with sub-nano scale spatial resolution. Recent implementations of the local-electrode atom-probe (LEAP) tomograph with ultraviolet laser pulsing have significantly expanded the research applications of APT. The small field-of-view of a needle-shaped specimen with a less than 100 nm diam. is, however, a major limitation for analyzing materials. The systematic approaches for site-specific targeting of an APT nanotip in a transmission electron microscope (TEM) of a thin sample are introduced to solve the geometrical limitations of a sharpened APT nanotip. In addition to "coupling APT to TEM", the technique presented here allows for targeting the preparation of an APT tip based on TEM observation of a much larger area than what is captured in the APT tip. The correlative methods have synergies for not only high-resolution structural analyses but also for obtaining chemical information. Chemical analyses in a TEM, both energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS), are performed and compared with the APT chemical analyses of a carbide phase (M 7 C 3 ) precipitate at a grain boundary in a Ni-based alloy. Additionally, a TEM image of a sharpened APT nanotip is utilized for calculation of the detection area ratio of an APT nanotip by comparison with a TEM image for precise tomographic reconstructions. A grain-boundary/carbide precipitate triple junction is used to attain precise positioning of an APT nanotip in an analyzed TEM specimen. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Demand Uncertainty

    DEFF Research Database (Denmark)

    Nguyen, Daniel Xuyen

    . This retooling addresses several shortcomings. First, the imperfect correlation of demands reconciles the sales variation observed in and across destinations. Second, since demands for the firm's output are correlated across destinations, a firm can use previously realized demands to forecast unknown demands...... in untested destinations. The option to forecast demands causes firms to delay exporting in order to gather more information about foreign demand. Third, since uncertainty is resolved after entry, many firms enter a destination and then exit after learning that they cannot profit. This prediction reconciles......This paper presents a model of trade that explains why firms wait to export and why many exporters fail. Firms face uncertain demands that are only realized after the firm enters the destination. The model retools the timing of uncertainty resolution found in productivity heterogeneity models...

  14. Network planning under uncertainties

    Science.gov (United States)

    Ho, Kwok Shing; Cheung, Kwok Wai

    2008-11-01

    One of the main focuses for network planning is on the optimization of network resources required to build a network under certain traffic demand projection. Traditionally, the inputs to this type of network planning problems are treated as deterministic. In reality, the varying traffic requirements and fluctuations in network resources can cause uncertainties in the decision models. The failure to include the uncertainties in the network design process can severely affect the feasibility and economics of the network. Therefore, it is essential to find a solution that can be insensitive to the uncertain conditions during the network planning process. As early as in the 1960's, a network planning problem with varying traffic requirements over time had been studied. Up to now, this kind of network planning problems is still being active researched, especially for the VPN network design. Another kind of network planning problems under uncertainties that has been studied actively in the past decade addresses the fluctuations in network resources. One such hotly pursued research topic is survivable network planning. It considers the design of a network under uncertainties brought by the fluctuations in topology to meet the requirement that the network remains intact up to a certain number of faults occurring anywhere in the network. Recently, the authors proposed a new planning methodology called Generalized Survivable Network that tackles the network design problem under both varying traffic requirements and fluctuations of topology. Although all the above network planning problems handle various kinds of uncertainties, it is hard to find a generic framework under more general uncertainty conditions that allows a more systematic way to solve the problems. With a unified framework, the seemingly diverse models and algorithms can be intimately related and possibly more insights and improvements can be brought out for solving the problem. This motivates us to seek a

  15. Propagation of dynamic measurement uncertainty

    Science.gov (United States)

    Hessling, J. P.

    2011-10-01

    The time-dependent measurement uncertainty has been evaluated in a number of recent publications, starting from a known uncertain dynamic model. This could be defined as the 'downward' propagation of uncertainty from the model to the targeted measurement. The propagation of uncertainty 'upward' from the calibration experiment to a dynamic model traditionally belongs to system identification. The use of different representations (time, frequency, etc) is ubiquitous in dynamic measurement analyses. An expression of uncertainty in dynamic measurements is formulated for the first time in this paper independent of representation, joining upward as well as downward propagation. For applications in metrology, the high quality of the characterization may be prohibitive for any reasonably large and robust model to pass the whiteness test. This test is therefore relaxed by not directly requiring small systematic model errors in comparison to the randomness of the characterization. Instead, the systematic error of the dynamic model is propagated to the uncertainty of the measurand, analogously but differently to how stochastic contributions are propagated. The pass criterion of the model is thereby transferred from the identification to acceptance of the total accumulated uncertainty of the measurand. This increases the relevance of the test of the model as it relates to its final use rather than the quality of the calibration. The propagation of uncertainty hence includes the propagation of systematic model errors. For illustration, the 'upward' propagation of uncertainty is applied to determine if an appliance box is damaged in an earthquake experiment. In this case, relaxation of the whiteness test was required to reach a conclusive result.

  16. Propagation of dynamic measurement uncertainty

    International Nuclear Information System (INIS)

    Hessling, J P

    2011-01-01

    The time-dependent measurement uncertainty has been evaluated in a number of recent publications, starting from a known uncertain dynamic model. This could be defined as the 'downward' propagation of uncertainty from the model to the targeted measurement. The propagation of uncertainty 'upward' from the calibration experiment to a dynamic model traditionally belongs to system identification. The use of different representations (time, frequency, etc) is ubiquitous in dynamic measurement analyses. An expression of uncertainty in dynamic measurements is formulated for the first time in this paper independent of representation, joining upward as well as downward propagation. For applications in metrology, the high quality of the characterization may be prohibitive for any reasonably large and robust model to pass the whiteness test. This test is therefore relaxed by not directly requiring small systematic model errors in comparison to the randomness of the characterization. Instead, the systematic error of the dynamic model is propagated to the uncertainty of the measurand, analogously but differently to how stochastic contributions are propagated. The pass criterion of the model is thereby transferred from the identification to acceptance of the total accumulated uncertainty of the measurand. This increases the relevance of the test of the model as it relates to its final use rather than the quality of the calibration. The propagation of uncertainty hence includes the propagation of systematic model errors. For illustration, the 'upward' propagation of uncertainty is applied to determine if an appliance box is damaged in an earthquake experiment. In this case, relaxation of the whiteness test was required to reach a conclusive result

  17. Strategy under uncertainty.

    Science.gov (United States)

    Courtney, H; Kirkland, J; Viguerie, P

    1997-01-01

    At the heart of the traditional approach to strategy lies the assumption that by applying a set of powerful analytic tools, executives can predict the future of any business accurately enough to allow them to choose a clear strategic direction. But what happens when the environment is so uncertain that no amount of analysis will allow us to predict the future? What makes for a good strategy in highly uncertain business environments? The authors, consultants at McKinsey & Company, argue that uncertainty requires a new way of thinking about strategy. All too often, they say, executives take a binary view: either they underestimate uncertainty to come up with the forecasts required by their companies' planning or capital-budging processes, or they overestimate it, abandon all analysis, and go with their gut instinct. The authors outline a new approach that begins by making a crucial distinction among four discrete levels of uncertainty that any company might face. They then explain how a set of generic strategies--shaping the market, adapting to it, or reserving the right to play at a later time--can be used in each of the four levels. And they illustrate how these strategies can be implemented through a combination of three basic types of actions: big bets, options, and no-regrets moves. The framework can help managers determine which analytic tools can inform decision making under uncertainty--and which cannot. At a broader level, it offers executives a discipline for thinking rigorously and systematically about uncertainty and its implications for strategy.

  18. Uncertainty quantification and error analysis

    Energy Technology Data Exchange (ETDEWEB)

    Higdon, Dave M [Los Alamos National Laboratory; Anderson, Mark C [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Klein, Richard [Los Alamos National Laboratory; Berliner, Mark [OHIO STATE UNIV.; Covey, Curt [LLNL; Ghattas, Omar [UNIV OF TEXAS; Graziani, Carlo [UNIV OF CHICAGO; Seager, Mark [LLNL; Sefcik, Joseph [LLNL; Stark, Philip [UC/BERKELEY; Stewart, James [SNL

    2010-01-01

    UQ studies all sources of error and uncertainty, including: systematic and stochastic measurement error; ignorance; limitations of theoretical models; limitations of numerical representations of those models; limitations on the accuracy and reliability of computations, approximations, and algorithms; and human error. A more precise definition for UQ is suggested below.

  19. Photometric Uncertainties

    Science.gov (United States)

    Zou, Xiao-Duan; Li, Jian-Yang; Clark, Beth Ellen; Golish, Dathon

    2018-01-01

    The OSIRIS-REx spacecraft, launched in September, 2016, will study the asteroid Bennu and return a sample from its surface to Earth in 2023. Bennu is a near-Earth carbonaceous asteroid which will provide insight into the formation and evolution of the solar system. OSIRIS-REx will first approach Bennu in August 2018 and will study the asteroid for approximately two years before sampling. OSIRIS-REx will develop its photometric model (including Lommel-Seelinger, ROLO, McEwen, Minnaert and Akimov) of Bennu with OCAM and OVIRS during the Detailed Survey mission phase. The model developed during this phase will be used to photometrically correct the OCAM and OVIRS data.Here we present the analysis of the error for the photometric corrections. Based on our testing data sets, we find:1. The model uncertainties is only correct when we use the covariance matrix to calculate, because the parameters are highly correlated.2. No evidence of domination of any parameter in each model.3. And both model error and the data error contribute to the final correction error comparably.4. We tested the uncertainty module on fake and real data sets, and find that model performance depends on the data coverage and data quality. These tests gave us a better understanding of how different model behave in different case.5. L-S model is more reliable than others. Maybe because the simulated data are based on L-S model. However, the test on real data (SPDIF) does show slight advantage of L-S, too. ROLO is not reliable to use when calculating bond albedo. The uncertainty of McEwen model is big in most cases. Akimov performs unphysical on SOPIE 1 data.6. Better use L-S as our default choice, this conclusion is based mainly on our test on SOPIE data and IPDIF.

  20. Uncertainty analysis

    International Nuclear Information System (INIS)

    Thomas, R.E.

    1982-03-01

    An evaluation is made of the suitability of analytical and statistical sampling methods for making uncertainty analyses. The adjoint method is found to be well-suited for obtaining sensitivity coefficients for computer programs involving large numbers of equations and input parameters. For this purpose the Latin Hypercube Sampling method is found to be inferior to conventional experimental designs. The Latin hypercube method can be used to estimate output probability density functions, but requires supplementary rank transformations followed by stepwise regression to obtain uncertainty information on individual input parameters. A simple Cork and Bottle problem is used to illustrate the efficiency of the adjoint method relative to certain statistical sampling methods. For linear models of the form Ax=b it is shown that a complete adjoint sensitivity analysis can be made without formulating and solving the adjoint problem. This can be done either by using a special type of statistical sampling or by reformulating the primal problem and using suitable linear programming software

  1. Uncertainty analysis

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.E.

    1982-03-01

    An evaluation is made of the suitability of analytical and statistical sampling methods for making uncertainty analyses. The adjoint method is found to be well-suited for obtaining sensitivity coefficients for computer programs involving large numbers of equations and input parameters. For this purpose the Latin Hypercube Sampling method is found to be inferior to conventional experimental designs. The Latin hypercube method can be used to estimate output probability density functions, but requires supplementary rank transformations followed by stepwise regression to obtain uncertainty information on individual input parameters. A simple Cork and Bottle problem is used to illustrate the efficiency of the adjoint method relative to certain statistical sampling methods. For linear models of the form Ax=b it is shown that a complete adjoint sensitivity analysis can be made without formulating and solving the adjoint problem. This can be done either by using a special type of statistical sampling or by reformulating the primal problem and using suitable linear programming software.

  2. Model uncertainties in top-quark physics

    CERN Document Server

    Seidel, Markus

    2014-01-01

    The ATLAS and CMS collaborations at the Large Hadron Collider (LHC) are studying the top quark in pp collisions at 7 and 8 TeV. Due to the large integrated luminosity, precision measurements of production cross-sections and properties are often limited by systematic uncertainties. An overview of the modeling uncertainties for simulated events is given in this report.

  3. Advice under uncertainty in the marine system

    NARCIS (Netherlands)

    Dankel, D.J.; Aps, R.; Padda, G.; Rockmann, C.; Sluijs, van der J.P.; Wilson, D.C.; Degnbol, P.

    2012-01-01

    There is some uncertainty in the fisheries science–policy interface. Although progress has been made towards more transparency and participation in fisheries science in ICES Areas, routine use of state-of-the-art quantitative and qualitative tools to address uncertainty systematically is still

  4. Helioseismic and Neutrino Data Driven Reconstruction of Solar Properties

    Science.gov (United States)

    Song, Ningqiang; Gonzalez-Garcia, M. C.; Villante, Francesco L.; Vinyoles, Nuria; Serenelli, Aldo

    2018-03-01

    In this work we use Bayesian inference to quantitatively reconstruct the solar properties most relevant to the solar composition problem using as inputs the information provided by helioseismic and solar neutrino data. In particular, we use a Gaussian process to model the functional shape of the opacity uncertainty to gain flexibility and become as free as possible from prejudice in this regard. With these tools we first readdress the statistical significance of the solar composition problem. Furthermore, starting from a composition unbiased set of standard solar models we are able to statistically select those with solar chemical composition and other solar inputs which better describe the helioseismic and neutrino observations. In particular, we are able to reconstruct the solar opacity profile in a data driven fashion, independently of any reference opacity tables, obtaining a 4% uncertainty at the base of the convective envelope and 0.8% at the solar core. When systematic uncertainties are included, results are 7.5% and 2% respectively. In addition we find that the values of most of the other inputs of the standard solar models required to better describe the helioseismic and neutrino data are in good agreement with those adopted as the standard priors, with the exception of the astrophysical factor S11 and the microscopic diffusion rates, for which data suggests a 1% and 30% reduction respectively. As an output of the study we derive the corresponding data driven predictions for the solar neutrino fluxes.

  5. Reconstruction of Mandibular Defects Using Bone Morphogenic Protein: Can Growth Factors Replace the Need for Autologous Bone Grafts? A Systematic Review of the Literature

    Directory of Open Access Journals (Sweden)

    Alan S. Herford

    2011-01-01

    Full Text Available Autogenous bone is still considered the “gold standard” of regenerative and reconstructive procedures involving mandibular defects. However, harvesting of this material can lead to many complications like increasing morbidity, expanding of the surgical time, and incomplete healing of the donor site. In the last few years many authors looked for the development of effective reconstruction procedures using osteoinductive factors without the need for conventional bone grafting. The first-in-human study involving the use of Bone Morphongenic Proteins (rhBMP for mandibular reconstruction was performed in 2001 by Moghadam. Only few articles have been reported in the literature since then. The purpose of this study was to search and analyze the literature involving the use of rhBMP for reconstruction of mandibular defects. In all the studies reported, authors agree that the use of grown factors may represent the future of regenerative procedures with more research necessary for confirmation.

  6. Hydrologic Scenario Uncertainty in a Comprehensive Assessment of Hydrogeologic Uncertainty

    Science.gov (United States)

    Nicholson, T. J.; Meyer, P. D.; Ye, M.; Neuman, S. P.

    2005-12-01

    A method to jointly assess hydrogeologic conceptual model and parameter uncertainties has recently been developed based on a Maximum Likelihood implementation of Bayesian Model Averaging (MLBMA). Evidence from groundwater model post-audits suggests that errors in the projected future hydrologic conditions of a site (hydrologic scenarios) are a significant source of model predictive errors. MLBMA can be extended to include hydrologic scenario uncertainty, along with conceptual model and parameter uncertainties, in a systematic and quantitative assessment of predictive uncertainty. Like conceptual model uncertainty, scenario uncertainty is represented by a discrete set of alternative scenarios. The effect of scenario uncertainty on model predictions is quantitatively assessed by conducting an MLBMA analysis under each scenario. We demonstrate that posterior model probability is a function of the scenario only through the possible dependence of prior model probabilities on the scenario. As a result, the model likelihoods (computed from calibration results), are not a function of the scenario and do not need to be recomputed under each scenario. MLBMA results for each scenario are weighted by the scenario probability and combined to render a joint assessment of scenario, conceptual model, and parameter uncertainty. Like model probability, scenario probability represents a subjective evaluation, in this case of the plausibility of the occurrence of the specific scenario. Because the scenarios describe future conditions, the scenario probabilities represent prior estimates and cannot be updated using the (past) system state data as is used to compute posterior model probabilities. Assessment of hydrologic scenario uncertainty is illustrated using a site-specific application considering future changes in land use, dam operations, and climate. Estimation of scenario probabilities and consideration of scenario characteristics (e.g., timing, magnitude) are discussed.

  7. Position reconstruction in LUX

    Science.gov (United States)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.

    2018-02-01

    The (x, y) position reconstruction method used in the analysis of the complete exposure of the Large Underground Xenon (LUX) experiment is presented. The algorithm is based on a statistical test that makes use of an iterative method to recover the photomultiplier tube (PMT) light response directly from the calibration data. The light response functions make use of a two dimensional functional form to account for the photons reflected on the inner walls of the detector. To increase the resolution for small pulses, a photon counting technique was employed to describe the response of the PMTs. The reconstruction was assessed with calibration data including 83mKr (releasing a total energy of 41.5 keV) and 3H (β- with Q = 18.6 keV) decays, and a deuterium-deuterium (D-D) neutron beam (2.45 MeV) . Within the detector's fiducial volume, the reconstruction has achieved an (x, y) position uncertainty of σ = 0.82 cm and σ = 0.17 cm for events of only 200 and 4,000 detected electroluminescence photons respectively. Such signals are associated with electron recoils of energies ~0.25 keV and ~10 keV, respectively. The reconstructed position of the smallest events with a single electron emitted from the liquid surface (22 detected photons) has a horizontal (x, y) uncertainty of 2.13 cm.

  8. Systematics and morphological evolution within the moss family Bryaceae: a comparison between parsimony and Bayesian methods for reconstruction of ancestral character states.

    Science.gov (United States)

    Pedersen, Niklas; Holyoak, David T; Newton, Angela E

    2007-06-01

    The Bryaceae are a large cosmopolitan moss family including genera of significant morphological and taxonomic complexity. Phylogenetic relationships within the Bryaceae were reconstructed based on DNA sequence data from all three genomic compartments. In addition, maximum parsimony and Bayesian inference were employed to reconstruct ancestral character states of 38 morphological plus four habitat characters and eight insertion/deletion events. The recovered phylogenetic patterns are generally in accord with previous phylogenies based on chloroplast DNA sequence data and three major clades are identified. The first clade comprises Bryum bornholmense, B. rubens, B. caespiticium, and Plagiobryum. This corroborates the hypothesis suggested by previous studies that several Bryum species are more closely related to Plagiobryum than to the core Bryum species. The second clade includes Acidodontium, Anomobryum, and Haplodontium, while the third clade contains the core Bryum species plus Imbribryum. Within the latter clade, B. subapiculatum and B. tenuisetum form the sister clade to Imbribryum. Reconstructions of ancestral character states under maximum parsimony and Bayesian inference suggest fourteen morphological synapomorphies for the ingroup and synapomorphies are detected for most clades within the ingroup. Maximum parsimony and Bayesian reconstructions of ancestral character states are mostly congruent although Bayesian inference shows that the posterior probability of ancestral character states may decrease dramatically when node support is taken into account. Bayesian inference also indicates that reconstructions may be ambiguous at internal nodes for highly polymorphic characters.

  9. Health in times of uncertainty in the eastern Mediterranean region, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013.

    Science.gov (United States)

    Mokdad, Ali H; Forouzanfar, Mohammad Hossein; Daoud, Farah; El Bcheraoui, Charbel; Moradi-Lakeh, Maziar; Khalil, Ibrahim; Afshin, Ashkan; Tuffaha, Marwa; Charara, Raghid; Barber, Ryan M; Wagner, Joseph; Cercy, Kelly; Kravitz, Hannah; Coates, Matthew M; Robinson, Margaret; Estep, Kara; Steiner, Caitlyn; Jaber, Sara; Mokdad, Ali A; O'Rourke, Kevin F; Chew, Adrienne; Kim, Pauline; El Razek, Mohamed Magdy Abd; Abdalla, Safa; Abd-Allah, Foad; Abraham, Jerry P; Abu-Raddad, Laith J; Abu-Rmeileh, Niveen M E; Al-Nehmi, Abdulwahab A; Akanda, Ali S; Al Ahmadi, Hanan; Al Khabouri, Mazin J; Al Lami, Faris H; Al Rayess, Zulfa A; Alasfoor, Deena; AlBuhairan, Fadia S; Aldhahri, Saleh F; Alghnam, Suliman; Alhabib, Samia; Al-Hamad, Nawal; Ali, Raghib; Ali, Syed Danish; Alkhateeb, Mohammad; AlMazroa, Mohammad A; Alomari, Mahmoud A; Al-Raddadi, Rajaa; Alsharif, Ubai; Al-Sheyab, Nihaya; Alsowaidi, Shirina; Al-Thani, Mohamed; Altirkawi, Khalid A; Amare, Azmeraw T; Amini, Heresh; Ammar, Walid; Anwari, Palwasha; Asayesh, Hamid; Asghar, Rana; Assabri, Ali M; Assadi, Reza; Bacha, Umar; Badawi, Alaa; Bakfalouni, Talal; Basulaiman, Mohammed O; Bazargan-Hejazi, Shahrzad; Bedi, Neeraj; Bhakta, Amit R; Bhutta, Zulfiqar A; Bin Abdulhak, Aref A; Boufous, Soufiane; Bourne, Rupert R A; Danawi, Hadi; Das, Jai; Deribew, Amare; Ding, Eric L; Durrani, Adnan M; Elshrek, Yousef; Ibrahim, Mohamed E; Eshrati, Babak; Esteghamati, Alireza; Faghmous, Imad A D; Farzadfar, Farshad; Feigl, Andrea B; Fereshtehnejad, Seyed-Mohammad; Filip, Irina; Fischer, Florian; Gankpé, Fortuné G; Ginawi, Ibrahim; Gishu, Melkamu Dedefo; Gupta, Rahul; Habash, Rami M; Hafezi-Nejad, Nima; Hamadeh, Randah R; Hamdouni, Hayet; Hamidi, Samer; Harb, Hilda L; Hassanvand, Mohammad Sadegh; Hedayati, Mohammad T; Heydarpour, Pouria; Hsairi, Mohamed; Husseini, Abdullatif; Jahanmehr, Nader; Jha, Vivekanand; Jonas, Jost B; Karam, Nadim E; Kasaeian, Amir; Kassa, Nega Assefa; Kaul, Anil; Khader, Yousef; Khalifa, Shams Eldin A; Khan, Ejaz A; Khan, Gulfaraz; Khoja, Tawfik; Khosravi, Ardeshir; Kinfu, Yohannes; Defo, Barthelemy Kuate; Balaji, Arjun Lakshmana; Lunevicius, Raimundas; Obermeyer, Carla Makhlouf; Malekzadeh, Reza; Mansourian, Morteza; Marcenes, Wagner; Farid, Habibolah Masoudi; Mehari, Alem; Mehio-Sibai, Abla; Memish, Ziad A; Mensah, George A; Mohammad, Karzan A; Nahas, Ziad; Nasher, Jamal T; Nawaz, Haseeb; Nejjari, Chakib; Nisar, Muhammad Imran; Omer, Saad B; Parsaeian, Mahboubeh; Peprah, Emmanuel K; Pervaiz, Aslam; Pourmalek, Farshad; Qato, Dima M; Qorbani, Mostafa; Radfar, Amir; Rafay, Anwar; Rahimi, Kazem; Rahimi-Movaghar, Vafa; Rahman, Sajjad Ur; Rai, Rajesh K; Rana, Saleem M; Rao, Sowmya R; Refaat, Amany H; Resnikoff, Serge; Roshandel, Gholamreza; Saade, Georges; Saeedi, Mohammad Y; Sahraian, Mohammad Ali; Saleh, Shadi; Sanchez-Riera, Lidia; Satpathy, Maheswar; Sepanlou, Sadaf G; Setegn, Tesfaye; Shaheen, Amira; Shahraz, Saeid; Sheikhbahaei, Sara; Shishani, Kawkab; Sliwa, Karen; Tavakkoli, Mohammad; Terkawi, Abdullah S; Uthman, Olalekan A; Westerman, Ronny; Younis, Mustafa Z; El Sayed Zaki, Maysaa; Zannad, Faiez; Roth, Gregory A; Wang, Haidong; Naghavi, Mohsen; Vos, Theo; Al Rabeeah, Abdullah A; Lopez, Alan D; Murray, Christopher J L

    2016-10-01

    The eastern Mediterranean region is comprised of 22 countries: Afghanistan, Bahrain, Djibouti, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Pakistan, Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syria, Tunisia, the United Arab Emirates, and Yemen. Since our Global Burden of Disease Study 2010 (GBD 2010), the region has faced unrest as a result of revolutions, wars, and the so-called Arab uprisings. The objective of this study was to present the burden of diseases, injuries, and risk factors in the eastern Mediterranean region as of 2013. GBD 2013 includes an annual assessment covering 188 countries from 1990 to 2013. The study covers 306 diseases and injuries, 1233 sequelae, and 79 risk factors. Our GBD 2013 analyses included the addition of new data through updated systematic reviews and through the contribution of unpublished data sources from collaborators, an updated version of modelling software, and several improvements in our methods. In this systematic analysis, we use data from GBD 2013 to analyse the burden of disease and injuries in the eastern Mediterranean region specifically. The leading cause of death in the region in 2013 was ischaemic heart disease (90·3 deaths per 100 000 people), which increased by 17·2% since 1990. However, diarrhoeal diseases were the leading cause of death in Somalia (186·7 deaths per 100 000 people) in 2013, which decreased by 26·9% since 1990. The leading cause of disability-adjusted life-years (DALYs) was ischaemic heart disease for males and lower respiratory infection for females. High blood pressure was the leading risk factor for DALYs in 2013, with an increase of 83·3% since 1990. Risk factors for DALYs varied by country. In low-income countries, childhood wasting was the leading cause of DALYs in Afghanistan, Somalia, and Yemen, whereas unsafe sex was the leading cause in Djibouti. Non-communicable risk factors were the leading cause of DALYs in high-income and middle-income countries

  10. Results of medial patellofemoral ligament reconstruction compared with trochleoplasty plus individual extensor apparatus balancing in patellar instability caused by severe trochlear dysplasia: a systematic review and meta-analysis.

    Science.gov (United States)

    Balcarek, Peter; Rehn, Stephan; Howells, Nick R; Eldridge, Jonathan D; Kita, Keisuke; Dejour, David; Nelitz, Manfred; Banke, Ingo J; Lambrecht, Delphine; Harden, Markus; Friede, Tim

    2017-12-01

    Many studies have reported satisfactory clinical outcomes and low redislocation rates after reconstruction of the medial patellofemoral ligament (MPFL) for the treatment of lateral patellar instability. Despite uncorrected severe trochlear dysplasia (Dejour type B to D) being acknowledged as a major reason for less favourable clinical outcomes and a higher incidence of patellar redislocations after an isolated MPFL reconstruction, the evidence for a deepening trochleoplasty procedure remains scarce in the current literature. The hypothesis of this systematic review and meta-analysis was that a deepening trochleoplasty in combination with an a la carte extensor apparatus balancing procedure provides lower redislocation rates and superior clinical outcomes than isolated MPFL reconstruction in patients with lateral patellar instability caused by severe trochlear dysplasia. A systematic review of the literature was conducted using specific inclusion and exclusion criteria for clinical studies reporting index operations (trochleoplasty and MPFL reconstruction) for the treatment of patellar instability caused by severe trochlear dysplasia. The Kujala score was analysed as the primary clinical outcome parameter in a random effects meta-analysis. Ten uncontrolled studies with a total of 407 knees (374 patients) were included in this analysis. The MPFL group comprised 4 studies with a total of 221 knees (210 patients), and the trochleoplasty group comprised 6 studies with a total of 186 knees (164 patients). The mean preoperative Kujala score ranged between 50.4 and 70.5 in the MPFL group and between 44.8 and 75.1 in the trochleoplasty group. The pooled Kujala score increased significantly by 26.4 (95% CI 21.4, 31.3; P subluxation rate was 7% in the MPFL group and 2.1% in the trochleoplasty group. This analysis found significant post-operative improvements in patient-reported outcomes for patients undergoing both an MPFL reconstruction and in those undergoing a

  11. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: Considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy

    International Nuclear Information System (INIS)

    Paulsen Hellebust, Taran; Kirisits, Christian; Berger, Daniel; Perez-Calatayud, Jose; De Brabandere, Marisol; De Leeuw, Astrid; Dumas, Isabelle; Hudej, Robert; Lowe, Gerry; Wills, Rachel; Tanderup, Kari

    2010-01-01

    Image-guided brachytherapy in cervical cancer is increasingly replacing X-ray based dose planning. In image-guided brachytherapy the geometry of the applicator is extracted from the patient 3D images and introduced into the treatment planning system; a process referred to as applicator reconstruction. Due to the steep brachytherapy dose gradients, reconstruction errors can lead to major dose deviations in target and organs at risk. Appropriate applicator commissioning and reconstruction methods must be implemented in order to minimise uncertainties and to avoid accidental errors. Applicator commissioning verifies the location of source positions in relation to the applicator by using auto-radiography and imaging. Sectional imaging can be utilised in the process, with CT imaging being the optimal modality. The results from the commissioning process can be stored as library applicators. The importance of proper commissioning is underlined by the fact that errors in library files result in systematic errors for clinical treatment plans. While the source channel is well visualised in CT images, applicator reconstruction is more challenging when using MR images. Availability of commercial dummy sources for MRI is limited, and image artifacts may occur with titanium applicators. The choice of MR sequence is essential for optimal visualisation of the applicator. Para-transverse imaging (oriented according to the applicator) with small slice thickness (≤5 mm) is recommended or alternatively 3D MR sequences with isotropic voxel sizes. Preferably, contouring and reconstruction should be performed in the same image series in order to avoid fusion uncertainties. Clear and correct strategies for the applicator reconstruction will ensure that reconstruction uncertainties have limited impact on the delivered dose. Under well-controlled circumstances the reconstruction uncertainties are in general smaller than other brachytherapy uncertainties such as contouring and organ

  12. Uncertainty and measurement

    International Nuclear Information System (INIS)

    Landsberg, P.T.

    1990-01-01

    This paper explores how the quantum mechanics uncertainty relation can be considered to result from measurements. A distinction is drawn between the uncertainties obtained by scrutinising experiments and the standard deviation type of uncertainty definition used in quantum formalism. (UK)

  13. Uncertainty Quantification with Applications to Engineering Problems

    DEFF Research Database (Denmark)

    Bigoni, Daniele

    The systematic quantification of the uncertainties affecting dynamical systems and the characterization of the uncertainty of their outcomes is critical for engineering design and analysis, where risks must be reduced as much as possible. Uncertainties stem naturally from our limitations in measu......The systematic quantification of the uncertainties affecting dynamical systems and the characterization of the uncertainty of their outcomes is critical for engineering design and analysis, where risks must be reduced as much as possible. Uncertainties stem naturally from our limitations...... in measurements, predictions and manufacturing, and we can say that any dynamical system used in engineering is subject to some of these uncertainties. The first part of this work presents an overview of the mathematical framework used in Uncertainty Quantification (UQ) analysis and introduces the spectral tensor...... functions and on an elliptic problem with random inputs. This work will also present three active research directions aimed at improving the efficiency of the STT-decomposition. In this context, we propose three new strategies for solving the ordering problem suffered by the tensor-train decomposition...

  14. Evidence-Based ACL Reconstruction

    Directory of Open Access Journals (Sweden)

    E. Carlos RODRIGUEZ-MERCHAN

    2015-01-01

    Full Text Available There is controversy in the literature regarding a number of topics related to anterior cruciate ligament (ACLreconstruction. The purpose of this article is to answer the following questions: 1 Bone patellar tendon bone (BPTB reconstruction or hamstring reconstruction (HR; 2 Double bundle or single bundle; 3 Allograft or authograft; 4 Early or late reconstruction; 5 Rate of return to sports after ACL reconstruction; 6 Rate of osteoarthritis after ACL reconstruction. A Cochrane Library and PubMed (MEDLINE search of systematic reviews and meta-analysis related to ACL reconstruction was performed. The key words were: ACL reconstruction, systematic reviews and meta-analysis. The main criteria for selection were that the articles were systematic reviews and meta-analysesfocused on the aforementioned questions. Sixty-nine articles were found, but only 26 were selected and reviewed because they had a high grade (I-II of evidence. BPTB-R was associated with better postoperative knee stability but with a higher rate of morbidity. However, the results of both procedures in terms of functional outcome in the long-term were similar. The double-bundle ACL reconstruction technique showed better outcomes in rotational laxity, although functional recovery was similar between single-bundle and double-bundle. Autograft yielded better results than allograft. There was no difference between early and delayed reconstruction. 82% of patients were able to return to some kind of sport participation. 28% of patients presented radiological signs of osteoarthritis with a follow-up of minimum 10 years.

  15. Uncertainties in the estimation of specific absorption rate during radiofrequency alternating magnetic field induced non-adiabatic heating of ferrofluids

    International Nuclear Information System (INIS)

    Lahiri, B B; Ranoo, Surojit; Philip, John

    2017-01-01

    Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ∼25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and

  16. Uncertainties in the estimation of specific absorption rate during radiofrequency alternating magnetic field induced non-adiabatic heating of ferrofluids

    Science.gov (United States)

    Lahiri, B. B.; Ranoo, Surojit; Philip, John

    2017-11-01

    Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ~25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and the

  17. Impact of model defect and experimental uncertainties on evaluated output

    International Nuclear Information System (INIS)

    Neudecker, D.; Capote, R.; Leeb, H.

    2013-01-01

    One of the current major problems in nuclear data evaluation is the unreasonably small evaluated uncertainties often obtained. These small uncertainties are partly attributed to missing correlations of experimental uncertainties as well as to deficiencies of the model employed for the prior information. In this article, both uncertainty sources are included in an evaluation of 55 Mn cross-sections for incident neutrons. Their impact on the evaluated output is studied using a prior obtained by the Full Bayesian Evaluation Technique and a prior obtained by the nuclear model program EMPIRE. It is shown analytically and by means of an evaluation that unreasonably small evaluated uncertainties can be obtained not only if correlated systematic uncertainties of the experiment are neglected but also if prior uncertainties are smaller or about the same magnitude as the experimental ones. Furthermore, it is shown that including model defect uncertainties in the evaluation of 55 Mn leads to larger evaluated uncertainties for channels where the model is deficient. It is concluded that including correlated experimental uncertainties is equally important as model defect uncertainties, if the model calculations deviate significantly from the measurements. -- Highlights: • We study possible causes of unreasonably small evaluated nuclear data uncertainties. • Two different formulations of model defect uncertainties are presented and compared. • Smaller prior than experimental uncertainties cause too small evaluated ones. • Neglected correlations of experimental uncertainties cause too small evaluated ones. • Including model defect uncertainties in the prior improves the evaluated output

  18. Climate Reconstructions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Paleoclimatology Program archives reconstructions of past climatic conditions derived from paleoclimate proxies, in addition to the Program's large holdings...

  19. Uncertainty of the calibration factor

    International Nuclear Information System (INIS)

    1995-01-01

    According to present definitions, an error is the difference between a measured value and the ''true'' value. Thus an error has both a numerical value and a sign. In contrast, the uncertainly associated with a measurement is a parameter that characterizes the dispersion of the values ''that could reasonably be attributed to the measurand''. This parameter is normally an estimated standard deviation. An uncertainty, therefore, has no known sign and is usually assumed to be symmetrical. It is a measure of our lack of exact knowledge, after all recognized ''systematic'' effects have been eliminated by applying appropriate corrections. If errors were known exactly, the true value could be determined and there would be no problem left. In reality, errors are estimated in the best possible way and corrections made for them. Therefore, after application of all known corrections, errors need no further consideration (their expectation value being zero) and the only quantities of interest are uncertainties. 3 refs, 2 figs

  20. Diagnosing and prioritizing uncertainties according to their relevance for policy: The case of transgene silencing

    NARCIS (Netherlands)

    Krayer von Krauss, M.P.; Kaiser, M.; Almaas, V.; van der Sluijs, J.P.; Kloprogge, P.

    2008-01-01

    Uncertainty often becomes problematic when science is used to support decision making in the policy process. Scientists can contribute to a more constructive approach to uncertainty by making their uncertainties transparent. In this article, an approach to systematic uncertainty diagnosis is

  1. Robustness to strategic uncertainty

    NARCIS (Netherlands)

    Andersson, O.; Argenton, C.; Weibull, J.W.

    We introduce a criterion for robustness to strategic uncertainty in games with continuum strategy sets. We model a player's uncertainty about another player's strategy as an atomless probability distribution over that player's strategy set. We call a strategy profile robust to strategic uncertainty

  2. Fission Spectrum Related Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    G. Aliberti; I. Kodeli; G. Palmiotti; M. Salvatores

    2007-10-01

    The paper presents a preliminary uncertainty analysis related to potential uncertainties on the fission spectrum data. Consistent results are shown for a reference fast reactor design configuration and for experimental thermal configurations. However the results obtained indicate the need for further analysis, in particular in terms of fission spectrum uncertainty data assessment.

  3. Quantifying uncertainty in LCA-modelling of waste management systems

    DEFF Research Database (Denmark)

    Clavreul, Julie; Guyonnet, D.; Christensen, Thomas Højlund

    2012-01-01

    Uncertainty analysis in LCA studies has been subject to major progress over the last years. In the context of waste management, various methods have been implemented but a systematic method for uncertainty analysis of waste-LCA studies is lacking. The objective of this paper is (1) to present...... the sources of uncertainty specifically inherent to waste-LCA studies, (2) to select and apply several methods for uncertainty analysis and (3) to develop a general framework for quantitative uncertainty assessment of LCA of waste management systems. The suggested method is a sequence of four steps combining...

  4. Uncertainty modelling of atmospheric dispersion by stochastic ...

    Indian Academy of Sciences (India)

    discharges and related regulated pollution criteria for the marine environment. An Integrated. Simulation-Assessment Approach (ISAA) (Yang et al 2010) is developed to systematically tackle multiple uncertainties associated with hydrocarbon contaminant transport in subsurface and assessment of carcinogenic health risk ...

  5. The meaning of the bias uncertainty measure.

    Science.gov (United States)

    Bartley, David L

    2008-08-01

    Characterization of measurement uncertainty in terms of root sums of squares of both unknown systematic as well as random error components is given meaning in the sense of prediction intervals. Both types of errors are commonly encountered with industrial hygiene air monitoring of hazardous substances. Two extreme types of measurement methods are presented for illustrating how confidence levels may be ascribed to prediction intervals defined by such uncertainty values. In the case of method calibration at each measurement, systematic error or bias may enter from a biased calibrant. At another extreme, a single initial method evaluation may leave residual bias owing to random error in the evaluation itself or to the use of a biased reference method. Analysis is simplified through new simple approximations to probabilistic limits (quantiles) on the magnitude of a non-central Student t-distributed random variable. Connection is established between traditional confidence limits, accuracy measures in the case of bias minimization and an uncertainty measure.

  6. Systematics of a Clumped Isotope-Based Reconstruction of Temperature and Precipitation Water δ18O from Late Pleistocene and Holocene Archives of the Chinese Loess Plateau

    Science.gov (United States)

    Bricker, H. L.; Mitsunaga, B.; Mering, J. A.; Eagle, R.; Li, G.; Tripati, A. K.

    2016-12-01

    The Chinese Loess Plateau lies at the terminus of the East Asian Monsoon, a massive meteorological phenomenon that provides water to up to a quarter of the world's population. This event has been hypothesized to exhibit shifts in intensity and location over geologic time in response to changes in glaciation and climate forcing, including associated abrupt events, during glacial-interglacial cycles, and over longer (>106) year timescales. We propose to reconstruct and evaluate processes that affect carbonate δ18O and carbonate "clumped" isotope thermometry signatures of archives from the Loess Plateau. We will examine modern and Holocene (5,000-10,000 year old) snail specimens (Sp. Cathaica) from four locations within the Plateau: Yichuan, Xifeng, Mangshan, and Lingtai. We will additionally employ the evaporative flux balance model of Balakrishnan (2005) to analyze snail aragonite crystallization in oxygen isotope equilibrium as a proxy measurement for δ18O evaporation. We will then compare these measurements with empirical, modern-day meteoric δ18O and temperature data from local weather stations and the Global Network of Isotopes in Precipitation (GNIP), as well as data from in situ carbonate nodular loess concretions. These comparisons will allow us to assess the seasonality of growth and determine if non-climatological parameters (e.g., kinetic effects) dominate isotopic signatures, in order to assess if these proxies represent. If the clumped isotope data conforms to these independently-derived measurements, clumped isotope thermometry may be a valid and robust method for characterizing past environmental changes, and we can extend this procedure to proxy materials.

  7. Oak Ridge Dose Reconstruction Project Summary Report; Reports of the Oak Ridge Dose Reconstruction, Vol. 7

    International Nuclear Information System (INIS)

    Widner, Thomas E.; email = twidner@jajoneses.com

    1999-01-01

    In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel of individuals appointed by Tennessee's Commissioner of Health. The panel requested that the principal investigator for the project prepare the following report, ''Oak Ridge Dose Reconstruction Project Summary Report,'' to serve the following purposes: (1) summarize in a single, less technical report, the methods and results of the various investigations that comprised the Phase II of the dose reconstruction; (2) describe the systematic searching of classified and unclassified historical records that was a vital component of the project; and (3) summarize the less detailed, screening-level assessments that were performed to evaluate the potential health significance of a number of materials, such a uranium, whose priority did not require a complete dose reconstruction effort. This report describes each major step of the dose reconstruction study: (1) the review of thousands of historical records to obtain information relating to past operations at each facility; (2) estimation of the quantity and timing of releases of radioiodines from X-10, of mercury from Y-12, of PCB's from all facilities, and of cesium-137 and other radionuclides from White Oak Creek; (3) evaluation of the routes taken by these contaminants through the environment to nearby populations; and (4) estimation of doses and health risks to exposed groups. Calculations found the highest excess cancer risks for a female born in 1952 who drank goat milk; the highest non-cancer health risk was for children in a farm family exposed to PCBs in and near East Fork Poplar Creek. More detailed

  8. Uncertainty and Cognitive Control

    Directory of Open Access Journals (Sweden)

    Faisal eMushtaq

    2011-10-01

    Full Text Available A growing trend of neuroimaging, behavioural and computational research has investigated the topic of outcome uncertainty in decision-making. Although evidence to date indicates that humans are very effective in learning to adapt to uncertain situations, the nature of the specific cognitive processes involved in the adaptation to uncertainty are still a matter of debate. In this article, we reviewed evidence suggesting that cognitive control processes are at the heart of uncertainty in decision-making contexts. Available evidence suggests that: (1 There is a strong conceptual overlap between the constructs of uncertainty and cognitive control; (2 There is a remarkable overlap between the neural networks associated with uncertainty and the brain networks subserving cognitive control; (3 The perception and estimation of uncertainty might play a key role in monitoring processes and the evaluation of the need for control; (4 Potential interactions between uncertainty and cognitive control might play a significant role in several affective disorders.

  9. Regulating fisheries under uncertainty

    DEFF Research Database (Denmark)

    Hansen, Lars Gårn; Jensen, Frank

    2017-01-01

    the effects of these uncertainties into a single welfare measure for comparing tax and quota regulation. It is shown that quotas are always preferred to fees when structural economic uncertainty dominates. Since most regulators are subject to this kind of uncertainty, this result is a potentially important......Regulator uncertainty is decisive for whether price or quantity regulation maximizes welfare in fisheries. In this paper, we develop a model of fisheries regulation that includes ecological uncertainly, variable economic uncertainty as well as structural economic uncertainty. We aggregate...... qualification of the pro-price regulation message dominating the fisheries economics literature. We also believe that the model of a fishery developed in this paper could be applied to the regulation of other renewable resources where regulators are subject to uncertainty either directly or with some...

  10. ACL Reconstruction

    Science.gov (United States)

    ... in moderate exercise and recreational activities, or play sports that put less stress on the knees. ACL reconstruction is generally recommended if: You're an athlete and want to continue in your sport, especially if the sport involves jumping, cutting or ...

  11. Project Reconstruct.

    Science.gov (United States)

    Helisek, Harriet; Pratt, Donald

    1994-01-01

    Presents a project in which students monitor their use of trash, input and analyze information via a database and computerized graphs, and "reconstruct" extinct or endangered animals from recyclable materials. The activity was done with second-grade students over a period of three to four weeks. (PR)

  12. Analyzing Trajectories Using Uncertainty and Background Information

    OpenAIRE

    KUIJPERS, Bart; MOELANS, Bart; OTHMAN, Walied; VAISMAN, Alejandro

    2009-01-01

    A key issue in clustering data, regardless the algorithm used, is the definition of a distance function. In the case of tra jectory data, different distance functions have been proposed, with different degrees of complexity. All these measures assume that tra jectories are error-free, which is essentially not true. Uncertainty is present in tra jectory data, which is usually obtained through a series of GPS of GSM observations. Trajectories are then reconstructed, typically using linear inter...

  13. Experimental Reconstructions of Surface Temperature using the PAGES 2k Network

    Science.gov (United States)

    Wang, Jianghao; Emile-Geay, Julien; Vaccaro, Adam; Guillot, Dominique; Rajaratnam, Bala

    2014-05-01

    Climate field reconstructions (CFRs) of the Common Era provide uniquely detailed characterizations of natural, low-frequency climate variability beyond the instrumental era. However, the accuracy and robustness of global-scale CFRs remains an open question. For instance, Wang et al. (2013) showed that CFRs are greatly method-dependent, highlighting the danger of forming dynamical interpretations based on a single reconstruction (e.g. Mann et al., 2009). This study will present a set of new reconstructions of global surface temperature and compare them with existing reconstructions from the IPCC AR5. The reconstructions are derived using the PAGES 2k network, which is composed of 501 high-resolution temperature-sensitive proxies from eight continental-scale regions (PAGES2K Consortium, 2013). Four CFR techniques are used to produce reconstructions, including RegEM-TTLS, the Mann et al. (2009) implementation of RegEM-TTLS (hereinafter M09-TTLS), CCA (Smerdon et al., 2010) and GraphEM (Guillot et al., submitted). First, we show that CFRs derived from the PAGES 2k network exhibit greater inter-method similarities than the same methods applied to the proxy network of Mann et al. (2009) (hereinafter M09 network). For instance, reconstructed NH mean temperature series using the PAGES 2k network are in better agreement over the last millennium than the M09-based reconstructions. Remarkably, for the reconstructed temperature difference between the Medieval Climate Anomaly and the Little Ice Age, the spatial patterns of the M09-based reconstructions are greatly divergent amongst methods. On the other hand, not a single PAGES 2k-based CFR displays the La Niña-like pattern found in Mann et al. (2009); rather, no systematic pattern emerges between the two epochs. Next, we quantify uncertainties associated with the PAGES 2k-based CFRs via ensemble methods, and show that GraphEM and CCA are less sensitive to random noise than RegEM-TTLS and M09-TTLS, consistent with pseudoproxy

  14. Uncertainty in simulating wheat yields under climate change : Letter

    NARCIS (Netherlands)

    Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Supit, I.

    2013-01-01

    Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic

  15. Performance of Missing Transverse Momentum Reconstruction in Proton-Proton Collisions at $\\sqrt{s}$ = 7 TeV with ATLAS

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Akesson, Torsten Paul; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amoros, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Asman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Galtieri, Angela Barbaro; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimaraes da Costa, Joao; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jurg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Boser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, Andre; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Buscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, Francois; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byatt, Tom; Cabrera Urban, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Garrido, Maria Del Mar Capeans; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Montoya, German D.Carrillo; Carter, Antony; Carter, Janet; Carvalho, Joao; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Ciubancan, Mihai; Clark, Allan G.; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H.; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muino, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, Maria Jose; Costanzo, Davide; Costin, Tudor; Cote, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crepe-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristobal; Donszelmann, Tulay Cuhadar; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; De Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; de la Taille, Christophe; de la Torre, Hector; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Oliveira Branco, Miguel; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; de Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; del Papa, Carlo; del Peso, Jose; del Prete, Tarcisio; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Yagci, Kamile Dindar; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, Andre; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jurgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jorg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Duhrssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Dzahini, Daniel; Duren, Michael; Ebenstein, William; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipcic, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, K.K.; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; Garcia, Carmen; Garcia Navarro, Jose Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Dani\\|{e}l Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Helene; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilchriese, Murdock; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Borge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Gopfert, Thomas; Goeringer, Christian; Gossling, Claus; Gottfert, Tobias; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Goncalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; Gonzalez de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorisek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grabski, Varlen; Grafstrom, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grognuz, Joel; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jorgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Mathieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frederic; Hensel, Carsten; Henss, Tobias; Medina Hernandez, Carlos; Hernandez Jimenez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higon-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Idzik, Marek; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imbault, Didier; Imhaeuser, Martin; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ionescu, Gelu; Irles Quiles, Adrian; Ishii, Koji; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Goran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jez, Pavel; Jezequel, Stephane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovin, Tatjana; Ju, Xiangyang; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kersevan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Keung, Justin; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kiyamura, Hironori; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Koneke, Karsten; Konig, Adriaan; Koenig, Sebastian; Kopke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamaki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Kruger, Hans; Kruker, Tobias; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuykendall, William; Kuze, Masahiro; Kuzhir, Polina; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramon; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavorato, Antonia; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Celine; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Leveque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Sterzo, Francesco Lo; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dorthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Bjorn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Macek, Bostjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mattig, Peter; Mattig, Stefan; Magalhaes Martins, Paulo Jorge; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amelia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandic, Igor; Mandrysch, Rocco; Maneira, Jose; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin Dit Latour, Bertrand; Martin--Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meuser, Stefan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W.Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Mijovic, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuz, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A.; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjornmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Monig, Klaus; Moser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Mock, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morita, Youhei; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Muller, Thomas; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Hong, Van Nguyen Thi; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozicka, Miroslav; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohska, Tokio Kenneth; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, Antonio; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pasztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Cavalcanti, Tiago Perez; Perez Codina, Estel; Perez Garcia-Estan, Maria Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Peshekhonov, Vladimir; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piec, Sebastian Marcin; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, Joao Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Plano, Will; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommes, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Bueso, Xavier Portell; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Rohne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Ruhr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, Jose; Salvachua Ferrando, Belen; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Bjorn Hallvard; Sanchez, Arturo; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, Joao; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schafer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schoning, Andre; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, Jose; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silva, Jose; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjolin, Jorgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloan, Terrence; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spano, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St. Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockmanns, Tobias; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Strohmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sanchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothee; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tic, Tom\\'{a}\\v{s}; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Viegas, Florbela De Jes Tique Aires; Tisserant, Sylvain; Tobias, Jurgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokar, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torro Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocme, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Ferrer, Juan Antonio Valls; Van der Graaf, Harry; van der Kraaij, Erik; van der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; Van Eijk, Bob; van Eldik, Niels; Van Gemmeren, Peter; van Kesteren, Zdenko; Van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Anh, Tuan Vu; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C.; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Zenis, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi Della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Zivkovic, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-03

    The measurement of missing transverse momentum in the ATLAS detector, described in this paper, makes use of the full event reconstruction and a calibration based on reconstructed physics objects. The performance of the missing transverse momentum reconstruction is evaluated using data collected in pp collisions at a centre-of-mass energy of 7 TeV in 2010. Minimum bias events and events with jets of hadrons are used from data samples corresponding to an integrated luminosity of about 0.3 inverse nb and 600 inverse nb, together with events containing a Z boson decaying to two leptons (electrons or muons) or a W boson decaying to a lepton (electron or muon) and a neutrino, from a data sample corresponding to an integrated luminosity of about 36 inverse pb. An estimate of the systematic uncertainty on the missing transverse momentum scale is presented.

  16. Uncertainties in historical pollution data from sedimentary records from an Australian urban floodplain lake

    Science.gov (United States)

    Lintern, A.; Leahy, P.; Deletic, A.; Heijnis, H.; Zawadzki, A.; Gadd, P.; McCarthy, D.

    2018-05-01

    Sediment cores from aquatic environments can provide valuable information about historical pollution levels and sources. However, there is little understanding of the uncertainties associated with these findings. The aim of this study is to fill this knowledge gap by proposing a framework for quantifying the uncertainties in historical heavy metal pollution records reconstructed from sediment cores. This uncertainty framework consists of six sources of uncertainty: uncertainties in (1) metals analysis methods, (2) spatial variability of sediment core heavy metal profiles, (3) sub-sampling intervals, (4) the sediment chronology, (5) the assumption that metal levels in bed sediments reflect the magnitude of metal inputs into the aquatic system, and (6) post-depositional transformation of metals. We apply this uncertainty framework to an urban floodplain lake in South-East Australia (Willsmere Billabong). We find that for this site, uncertainties in historical dated heavy metal profiles can be up to 176%, largely due to uncertainties in the sediment chronology, and in the assumption that the settled heavy metal mass is equivalent to the heavy metal mass entering the aquatic system. As such, we recommend that future studies reconstructing historical pollution records using sediment cores from aquatic systems undertake an investigation of the uncertainties in the reconstructed pollution record, using the uncertainty framework provided in this study. We envisage that quantifying and understanding the uncertainties associated with the reconstructed pollution records will facilitate the practical application of sediment core heavy metal profiles in environmental management projects.

  17. Resolving uncertainty in chemical speciation determinations

    Science.gov (United States)

    Smith, D. Scott; Adams, Nicholas W. H.; Kramer, James R.

    1999-10-01

    Speciation determinations involve uncertainty in system definition and experimentation. Identification of appropriate metals and ligands from basic chemical principles, analytical window considerations, types of species and checking for consistency in equilibrium calculations are considered in system definition uncertainty. A systematic approach to system definition limits uncertainty in speciation investigations. Experimental uncertainty is discussed with an example of proton interactions with Suwannee River fulvic acid (SRFA). A Monte Carlo approach was used to estimate uncertainty in experimental data, resulting from the propagation of uncertainties in electrode calibration parameters and experimental data points. Monte Carlo simulations revealed large uncertainties present at high (>9-10) and low (monoprotic ligands. Least-squares fit the data with 21 sites, whereas linear programming fit the data equally well with 9 sites. Multiresponse fitting, involving simultaneous fluorescence and pH measurements, improved model discrimination. Deconvolution of the excitation versus emission fluorescence surface for SRFA establishes a minimum of five sites. Diprotic sites are also required for the five fluorescent sites, and one non-fluorescent monoprotic site was added to accommodate the pH data. Consistent with greater complexity, the multiresponse method had broader confidence limits than the uniresponse methods, but corresponded better with the accepted total carboxylic content for SRFA. Overall there was a 40% standard deviation in total carboxylic content for the multiresponse fitting, versus 10% and 1% for least-squares and linear programming, respectively.

  18. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: theoretical systematics and Baryon Acoustic Oscillations in the galaxy correlation function

    Science.gov (United States)

    Vargas-Magaña, Mariana; Ho, Shirley; Cuesta, Antonio J.; O'Connell, Ross; Ross, Ashley J.; Eisenstein, Daniel J.; Percival, Will J.; Grieb, Jan Niklas; Sánchez, Ariel G.; Tinker, Jeremy L.; Tojeiro, Rita; Beutler, Florian; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Prada, Francisco; Rodríguez-Torres, Sergio A.; Rossi, Graziano; Seo, Hee-Jong; Brownstein, Joel R.; Olmstead, Matthew; Thomas, Daniel

    2018-03-01

    We investigate the potential sources of theoretical systematics in the anisotropic Baryon Acoustic Oscillation (BAO) distance scale measurements from the clustering of galaxies in configuration space using the final Data Release (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS). We perform a detailed study of the impact on BAO measurements from choices in the methodology such as fiducial cosmology, clustering estimators, random catalogues, fitting templates, and covariance matrices. The theoretical systematic uncertainties in BAO parameters are found to be 0.002 in the isotropic dilation α and 0.003 in the quadrupolar dilation ɛ. The leading source of systematic uncertainty is related to the reconstruction techniques. Theoretical uncertainties are sub-dominant compared with the statistical uncertainties for BOSS survey, accounting 0.2σstat for α and 0.25σstat for ɛ (σα, stat ˜0.010 and σɛ, stat ˜ 0.012 respectively). We also present BAO-only distance scale constraints from the anisotropic analysis of the correlation function. Our constraints on the angular diameter distance DA(z) and the Hubble parameter H(z), including both statistical and theoretical systematic uncertainties, are 1.5% and 2.8% at zeff = 0.38, 1.4% and 2.4% at zeff = 0.51, and 1.7% and 2.6% at zeff = 0.61. This paper is part of a set that analyzes the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are cross-checked with other BAO analysis in Alam et al. (2016). The systematic error budget concerning the methodology on post-reconstruction BAO analysis presented here is used in Alam et al. (2016). to produce the final cosmological constraints from BOSS.

  19. Nonlinear reconstruction

    Science.gov (United States)

    Zhu, Hong-Ming; Yu, Yu; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran

    2017-12-01

    We present a direct approach to nonparametrically reconstruct the linear density field from an observed nonlinear map. We solve for the unique displacement potential consistent with the nonlinear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to the nonlinear scale (rδrδL>0.5 for k ≲1 h /Mpc ) with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully nonlinear fields, potentially substantially expanding the baryon acoustic oscillations and redshift space distortions information content of dense large scale structure surveys, including for example SDSS main sample and 21 cm intensity mapping initiatives.

  20. Verification of uncertainty budgets

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Madsen, B.S.

    2005-01-01

    The quality of analytical results is expressed by their uncertainty, as it is estimated on the basis of an uncertainty budget; little effort is, however, often spent on ascertaining the quality of the uncertainty budget. The uncertainty budget is based on circumstantial or historical data...... observed and expected variability is tested by means of the T-test, which follows a chi-square distribution with a number of degrees of freedom determined by the number of replicates. Significant deviations between predicted and observed variability may be caused by a variety of effects, and examples...... will be presented; both underestimation and overestimation may occur, each leading to correcting the influence of uncertainty components according to their influence on the variability of experimental results. Some uncertainty components can be verified only with a very small number of degrees of freedom, because...

  1. Model uncertainty and probability

    International Nuclear Information System (INIS)

    Parry, G.W.

    1994-01-01

    This paper discusses the issue of model uncertainty. The use of probability as a measure of an analyst's uncertainty as well as a means of describing random processes has caused some confusion, even though the two uses are representing different types of uncertainty with respect to modeling a system. The importance of maintaining the distinction between the two types is illustrated with a simple example

  2. Uncertainty in artificial intelligence

    CERN Document Server

    Kanal, LN

    1986-01-01

    How to deal with uncertainty is a subject of much controversy in Artificial Intelligence. This volume brings together a wide range of perspectives on uncertainty, many of the contributors being the principal proponents in the controversy.Some of the notable issues which emerge from these papers revolve around an interval-based calculus of uncertainty, the Dempster-Shafer Theory, and probability as the best numeric model for uncertainty. There remain strong dissenting opinions not only about probability but even about the utility of any numeric method in this context.

  3. Uncertainties in hydrogen combustion

    International Nuclear Information System (INIS)

    Stamps, D.W.; Wong, C.C.; Nelson, L.S.

    1988-01-01

    Three important areas of hydrogen combustion with uncertainties are identified: high-temperature combustion, flame acceleration and deflagration-to-detonation transition, and aerosol resuspension during hydrogen combustion. The uncertainties associated with high-temperature combustion may affect at least three different accident scenarios: the in-cavity oxidation of combustible gases produced by core-concrete interactions, the direct containment heating hydrogen problem, and the possibility of local detonations. How these uncertainties may affect the sequence of various accident scenarios is discussed and recommendations are made to reduce these uncertainties. 40 references

  4. Development of a Dynamic Lidar Uncertainty Framework

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clifton, Andrew [WindForS; Bonin, Timothy [CIRES/NOAA ESRL; Choukulkar, Aditya [CIRES/NOAA ESRL; Brewer, W. Alan [NOAA ESRL; Delgado, Ruben [University of Maryland Baltimore County

    2017-08-07

    As wind turbine sizes increase and wind energy expands to more complex and remote sites, remote-sensing devices such as lidars are expected to play a key role in wind resource assessment and power performance testing. The switch to remote-sensing devices represents a paradigm shift in the way the wind industry typically obtains and interprets measurement data for wind energy. For example, the measurement techniques and sources of uncertainty for a remote-sensing device are vastly different from those associated with a cup anemometer on a meteorological tower. Current IEC standards for quantifying remote sensing device uncertainty for power performance testing consider uncertainty due to mounting, calibration, and classification of the remote sensing device, among other parameters. Values of the uncertainty are typically given as a function of the mean wind speed measured by a reference device and are generally fixed, leading to climatic uncertainty values that apply to the entire measurement campaign. However, real-world experience and a consideration of the fundamentals of the measurement process have shown that lidar performance is highly dependent on atmospheric conditions, such as wind shear, turbulence, and aerosol content. At present, these conditions are not directly incorporated into the estimated uncertainty of a lidar device. In this presentation, we describe the development of a new dynamic lidar uncertainty framework that adapts to current flow conditions and more accurately represents the actual uncertainty inherent in lidar measurements under different conditions. In this new framework, sources of uncertainty are identified for estimation of the line-of-sight wind speed and reconstruction of the three-dimensional wind field. These sources are then related to physical processes caused by the atmosphere and lidar operating conditions. The framework is applied to lidar data from a field measurement site to assess the ability of the framework to predict

  5. PIV uncertainty propagation

    NARCIS (Netherlands)

    Sciacchitano, A.; Wieneke, Bernhard

    2016-01-01

    This paper discusses the propagation of the instantaneous uncertainty of PIV measurements to statistical and instantaneous quantities of interest derived from the velocity field. The expression of the uncertainty of vorticity, velocity divergence, mean value and Reynolds stresses is derived. It

  6. Feedback versus uncertainty

    NARCIS (Netherlands)

    Van Nooyen, R.R.P.; Hrachowitz, M.; Kolechkina, A.G.

    2014-01-01

    Even without uncertainty about the model structure or parameters, the output of a hydrological model run still contains several sources of uncertainty. These are: measurement errors affecting the input, the transition from continuous time and space to discrete time and space, which causes loss of

  7. Schrodinger's Uncertainty Principle?

    Indian Academy of Sciences (India)

    correlation between x and p. The virtue of Schrodinger's version (5) is that it accounts for this correlation. In spe- cial cases like the free particle and the harmonic oscillator, the 'Schrodinger uncertainty product' even remains constant with time, whereas Heisenberg's does not. The glory of giving the uncertainty principle to ...

  8. Uncertainty and simulation

    International Nuclear Information System (INIS)

    Depres, B.; Dossantos-Uzarralde, P.

    2009-01-01

    More than 150 researchers and engineers from universities and the industrial world met to discuss on the new methodologies developed around assessing uncertainty. About 20 papers were presented and the main topics were: methods to study the propagation of uncertainties, sensitivity analysis, nuclear data covariances or multi-parameter optimisation. This report gathers the contributions of CEA researchers and engineers

  9. Physical Uncertainty Bounds (PUB)

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  10. Measurement uncertainty and probability

    CERN Document Server

    Willink, Robin

    2013-01-01

    A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science.

  11. Not Normal: the uncertainties of scientific measurements

    Science.gov (United States)

    Bailey, David C.

    2017-01-01

    Judging the significance and reproducibility of quantitative research requires a good understanding of relevant uncertainties, but it is often unclear how well these have been evaluated and what they imply. Reported scientific uncertainties were studied by analysing 41 000 measurements of 3200 quantities from medicine, nuclear and particle physics, and interlaboratory comparisons ranging from chemistry to toxicology. Outliers are common, with 5σ disagreements up to five orders of magnitude more frequent than naively expected. Uncertainty-normalized differences between multiple measurements of the same quantity are consistent with heavy-tailed Student's t-distributions that are often almost Cauchy, far from a Gaussian Normal bell curve. Medical research uncertainties are generally as well evaluated as those in physics, but physics uncertainty improves more rapidly, making feasible simple significance criteria such as the 5σ discovery convention in particle physics. Contributions to measurement uncertainty from mistakes and unknown problems are not completely unpredictable. Such errors appear to have power-law distributions consistent with how designed complex systems fail, and how unknown systematic errors are constrained by researchers. This better understanding may help improve analysis and meta-analysis of data, and help scientists and the public have more realistic expectations of what scientific results imply.

  12. A New Framework for Quantifying Lidar Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer, F.; Clifton, Andrew; Bonin, Timothy A.; Churchfield, Matthew J.

    2017-03-24

    As wind turbine sizes increase and wind energy expands to more complex and remote sites, remote sensing devices such as lidars are expected to play a key role in wind resource assessment and power performance testing. The switch to remote sensing devices represents a paradigm shift in the way the wind industry typically obtains and interprets measurement data for wind energy. For example, the measurement techniques and sources of uncertainty for a remote sensing device are vastly different from those associated with a cup anemometer on a meteorological tower. Current IEC standards discuss uncertainty due to mounting, calibration, and classification of the remote sensing device, among other parameters. Values of the uncertainty are typically given as a function of the mean wind speed measured by a reference device. However, real-world experience has shown that lidar performance is highly dependent on atmospheric conditions, such as wind shear, turbulence, and aerosol content. At present, these conditions are not directly incorporated into the estimated uncertainty of a lidar device. In this presentation, we propose the development of a new lidar uncertainty framework that adapts to current flow conditions and more accurately represents the actual uncertainty inherent in lidar measurements under different conditions. In this new framework, sources of uncertainty are identified for estimation of the line-of-sight wind speed and reconstruction of the three-dimensional wind field. These sources are then related to physical processes caused by the atmosphere and lidar operating conditions. The framework is applied to lidar data from an operational wind farm to assess the ability of the framework to predict errors in lidar-measured wind speed.

  13. Characterizing spatial uncertainty when integrating social data in conservation planning.

    Science.gov (United States)

    Lechner, A M; Raymond, C M; Adams, V M; Polyakov, M; Gordon, A; Rhodes, J R; Mills, M; Stein, A; Ives, C D; Lefroy, E C

    2014-12-01

    Recent conservation planning studies have presented approaches for integrating spatially referenced social (SRS) data with a view to improving the feasibility of conservation action. We reviewed the growing conservation literature on SRS data, focusing on elicited or stated preferences derived through social survey methods such as choice experiments and public participation geographic information systems. Elicited SRS data includes the spatial distribution of willingness to sell, willingness to pay, willingness to act, and assessments of social and cultural values. We developed a typology for assessing elicited SRS data uncertainty which describes how social survey uncertainty propagates when projected spatially and the importance of accounting for spatial uncertainty such as scale effects and data quality. These uncertainties will propagate when elicited SRS data is integrated with biophysical data for conservation planning and may have important consequences for assessing the feasibility of conservation actions. To explore this issue further, we conducted a systematic review of the elicited SRS data literature. We found that social survey uncertainty was commonly tested for, but that these uncertainties were ignored when projected spatially. Based on these results we developed a framework which will help researchers and practitioners estimate social survey uncertainty and use these quantitative estimates to systematically address uncertainty within an analysis. This is important when using SRS data in conservation applications because decisions need to be made irrespective of data quality and well characterized uncertainty can be incorporated into decision theoretic approaches. © 2014 Society for Conservation Biology.

  14. Assignment of uncertainties to scientific data

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1994-01-01

    Long-standing problems of uncertainty assignment to scientific data came into a sharp focus in recent years when uncertainty information ('covariance files') had to be added to application-oriented large libraries of evaluated nuclear data such as ENDF and JEF. Question arouse about the best way to express uncertainties, the meaning of statistical and systematic errors, the origin of correlation and construction of covariance matrices, the combination of uncertain data from different sources, the general usefulness of results that are strictly valid only for Gaussian or only for linear statistical models, etc. Conventional statistical theory is often unable to give unambiguous answers, and tends to fail when statistics is bad so that prior information becomes crucial. Modern probability theory, on the other hand, incorporating decision information becomes group-theoretic results, is shown to provide straight and unique answers to such questions, and to deal easily with prior information and small samples. (author). 10 refs

  15. Essays on Decision Making under Uncertainty

    OpenAIRE

    Sautua, Santiago Ignacio

    2015-01-01

    This dissertation consists of three chapters about decision making under uncertainty.Chapter 1: “Testing between Models of Smoking Risk Perceptions”Research in social and health psychology reports that smokers systematically underestimate the personal smoking risk. I build a model that captures potential determinants of smoking risk perceptions to investigate how smoking may cause an underestimation of the risk. The model is based on the premise that smokers have an incentive to be optimistic...

  16. Uncertainty in oil projects

    International Nuclear Information System (INIS)

    Limperopoulos, G.J.

    1995-01-01

    This report presents an oil project valuation under uncertainty by means of two well-known financial techniques: The Capital Asset Pricing Model (CAPM) and The Black-Scholes Option Pricing Formula. CAPM gives a linear positive relationship between expected rate of return and risk but does not take into consideration the aspect of flexibility which is crucial for an irreversible investment as an oil price is. Introduction of investment decision flexibility by using real options can increase the oil project value substantially. Some simple tests for the importance of uncertainty in stock market for oil investments are performed. Uncertainty in stock returns is correlated with aggregate product market uncertainty according to Pindyck (1991). The results of the tests are not satisfactory due to the short data series but introducing two other explanatory variables the interest rate and Gross Domestic Product make the situation better. 36 refs., 18 figs., 6 tabs

  17. Evaluating prediction uncertainty

    International Nuclear Information System (INIS)

    McKay, M.D.

    1995-03-01

    The probability distribution of a model prediction is presented as a proper basis for evaluating the uncertainty in a model prediction that arises from uncertainty in input values. Determination of important model inputs and subsets of inputs is made through comparison of the prediction distribution with conditional prediction probability distributions. Replicated Latin hypercube sampling and variance ratios are used in estimation of the distributions and in construction of importance indicators. The assumption of a linear relation between model output and inputs is not necessary for the indicators to be effective. A sequential methodology which includes an independent validation step is applied in two analysis applications to select subsets of input variables which are the dominant causes of uncertainty in the model predictions. Comparison with results from methods which assume linearity shows how those methods may fail. Finally, suggestions for treating structural uncertainty for submodels are presented

  18. Introduction to uncertainty quantification

    CERN Document Server

    Sullivan, T J

    2015-01-01

    Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation, and numerous application areas in science and engineering. This text provides a framework in which the main objectives of the field of uncertainty quantification are defined, and an overview of the range of mathematical methods by which they can be achieved. Complete with exercises throughout, the book will equip readers with both theoretical understanding and practical experience of the key mathematical and algorithmic tools underlying the treatment of uncertainty in modern applied mathematics. Students and readers alike are encouraged to apply the mathematical methods discussed in this book to their own favourite problems to understand their strengths and weaknesses, also making the text suitable as a self-study. This text is designed as an introduction to uncertainty quantification for senior undergraduate and graduate students with a mathematical or statistical back...

  19. Uncertainty calculations made easier

    International Nuclear Information System (INIS)

    Hogenbirk, A.

    1994-07-01

    The results are presented of a neutron cross section sensitivity/uncertainty analysis performed in a complicated 2D model of the NET shielding blanket design inside the ITER torus design, surrounded by the cryostat/biological shield as planned for ITER. The calculations were performed with a code system developed at ECN Petten, with which sensitivity/uncertainty calculations become relatively simple. In order to check the deterministic neutron transport calculations (performed with DORT), calculations were also performed with the Monte Carlo code MCNP. Care was taken to model the 2.0 cm wide gaps between two blanket segments, as the neutron flux behind the vacuum vessel is largely determined by neutrons streaming through these gaps. The resulting neutron flux spectra are in excellent agreement up to the end of the cryostat. It is noted, that at this position the attenuation of the neutron flux is about 1 l orders of magnitude. The uncertainty in the energy integrated flux at the beginning of the vacuum vessel and at the beginning of the cryostat was determined in the calculations. The uncertainty appears to be strongly dependent on the exact geometry: if the gaps are filled with stainless steel, the neutron spectrum changes strongly, which results in an uncertainty of 70% in the energy integrated flux at the beginning of the cryostat in the no-gap-geometry, compared to an uncertainty of only 5% in the gap-geometry. Therefore, it is essential to take into account the exact geometry in sensitivity/uncertainty calculations. Furthermore, this study shows that an improvement of the covariance data is urgently needed in order to obtain reliable estimates of the uncertainties in response parameters in neutron transport calculations. (orig./GL)

  20. Uncertainty: lotteries and risk

    OpenAIRE

    Ávalos, Eloy

    2011-01-01

    In this paper we develop the theory of uncertainty in a context where the risks assumed by the individual are measurable and manageable. We primarily use the definition of lottery to formulate the axioms of the individual's preferences, and its representation through the utility function von Neumann - Morgenstern. We study the expected utility theorem and its properties, the paradoxes of choice under uncertainty and finally the measures of risk aversion with monetary lotteries.

  1. Sources of Judgmental Uncertainty

    Science.gov (United States)

    1977-09-01

    sometimes at the end. To avoid primacy or recency effects , which were not part of this first study, for half of the subjects the orders of information items...summarize, 72 subjects were randomly assigned to two conditions of control and exposed to three conditions of orderliness. Order effects and primacy / recency ...WORDS (Continue on reverie atids If necessary and Identity by block number) ~ Judgmental Uncertainty Primacy / Recency Environmental UncertaintyN1

  2. Decision making under uncertainty

    International Nuclear Information System (INIS)

    Wu, J.S.; Apostolakis, G.E.; Okrent, D.

    1989-01-01

    The theory of evidence and the theory of possibility are considered by some analysts as potential models for uncertainty. This paper discusses two issues: how formal probability theory has been relaxed to develop these uncertainty models; and the degree to which these models can be applied to risk assessment. The scope of the second issue is limited to an investigation of their compatibility for combining various pieces of evidence, which is an important problem in PRA

  3. Relational uncertainty in service dyads

    DEFF Research Database (Denmark)

    Kreye, Melanie

    2017-01-01

    Purpose: Relational uncertainty determines how relationships develop because it enables the building of trust and commitment. However, relational uncertainty has not been explored in an inter-organisational setting. This paper investigates how organisations experience relational uncertainty in se...

  4. Breast reconstruction - implants

    Science.gov (United States)

    Breast implants surgery; Mastectomy - breast reconstruction with implants; Breast cancer - breast reconstruction with implants ... to close the skin flaps. Breast reconstruction with implants is usually done in two stages, or surgeries. ...

  5. Breast Reconstruction with Implants

    Science.gov (United States)

    ... What you can expect Breast reconstruction begins with placement of a breast implant or tissue expander, either at the time of your mastectomy surgery (immediate reconstruction) or during a later procedure (delayed reconstruction). ...

  6. Awakening the BALROG: BAyesian Location Reconstruction Of GRBs

    Science.gov (United States)

    Burgess, J. Michael; Yu, Hoi-Fung; Greiner, Jochen; Mortlock, Daniel J.

    2018-05-01

    The accurate spatial location of gamma-ray bursts (GRBs) is crucial for both accurately characterizing their spectra and follow-up observations by other instruments. The Fermi Gamma-ray Burst Monitor (GBM) has the largest field of view for detecting GRBs as it views the entire unocculted sky, but as a non-imaging instrument it relies on the relative count rates observed in each of its 14 detectors to localize transients. Improving its ability to accurately locate GRBs and other transients is vital to the paradigm of multimessenger astronomy, including the electromagnetic follow-up of gravitational wave signals. Here we present the BAyesian Location Reconstruction Of GRBs (BALROG) method for localizing and characterizing GBM transients. Our approach eliminates the systematics of previous approaches by simultaneously fitting for the location and spectrum of a source. It also correctly incorporates the uncertainties in the location of a transient into the spectral parameters and produces reliable positional uncertainties for both well-localized sources and those for which the GBM data cannot effectively constrain the position. While computationally expensive, BALROG can be implemented to enable quick follow-up of all GBM transient signals. Also, we identify possible response problems that require attention and caution when using standard, public GBM detector response matrices. Finally, we examine the effects of including the uncertainty in location on the spectral parameters of GRB 080916C. We find that spectral parameters change and no extra components are required when these effects are included in contrast to when we use a fixed location. This finding has the potential to alter both the GRB spectral catalogues and the reported spectral composition of some well-known GRBs.

  7. Reconstructive Urology

    Directory of Open Access Journals (Sweden)

    Fikret Fatih Önol

    2014-11-01

    Full Text Available In the treatment of urethral stricture, Buccal Mucosa Graft (BMG and reconstruction is applied with different patch techniques. Recently often prefered, this approach is, in bulber urethra strictures of BMG’s; by “ventral onley”, in pendulous urethra because of thinner spingiosis body, which provides support and nutrition of graft; by means of “dorsal inley” being anastomosis. In the research that Cordon et al. did, they compared conventional BMJ “onley” urethroplast and “pseudo-spongioplasty” which base on periurethral vascular tissues to be nourished by closing onto graft. In repairment of front urethras that spongiosis supportive tissue is insufficient, this method is defined as peripheral dartos [çevre dartos?] and buck’s fascia being mobilized and being combined on BMG patch. Between the years 2007 and 2012, assessment of 56 patients with conventional “ventral onley” BMG urethroplast and 46 patients with “pseudo-spongioplasty” were reported to have similar success rates (80% to 84% in 3.5 year follow-up on average. While 74% of the patients that were applied pseudo-spongioplasty had disease present at distal urethra (pendulous, bulbopendulous, 82% of the patients which were applied conventional onley urethroplast had stricture at proximal (bulber urethra yet. Also lenght of the stricture at the pseudo-spongioplasty group was longer in a statistically significant way (5.8 cm to 4.7 cm on average, p=0.028. This study which Cordon et al. did, shows that conditions in which conventional sponjiyoplasti is not possible, periurethral vascular tissues are adequate to nourish BMG. Even it is an important technique in terms of bringing a new point of view to today’s practice, data especially about complications that may show up after pseudo-spongioplasty usage on long distal strictures (e.g. appearance of urethral diverticulum is not reported. Along with this we think that, providing an oppurtinity to patch directly

  8. Uncertainty Analysis of the NASA Glenn 8x6 Supersonic Wind Tunnel

    Science.gov (United States)

    Stephens, Julia; Hubbard, Erin; Walter, Joel; McElroy, Tyler

    2016-01-01

    This paper presents methods and results of a detailed measurement uncertainty analysis that was performed for the 8- by 6-foot Supersonic Wind Tunnel located at the NASA Glenn Research Center. The statistical methods and engineering judgments used to estimate elemental uncertainties are described. The Monte Carlo method of propagating uncertainty was selected to determine the uncertainty of calculated variables of interest. A detailed description of the Monte Carlo method as applied for this analysis is provided. Detailed uncertainty results for the uncertainty in average free stream Mach number as well as other variables of interest are provided. All results are presented as random (variation in observed values about a true value), systematic (potential offset between observed and true value), and total (random and systematic combined) uncertainty. The largest sources contributing to uncertainty are determined and potential improvement opportunities for the facility are investigated.

  9. Visualization of Uncertainty

    Science.gov (United States)

    Jones, P. W.; Strelitz, R. A.

    2012-12-01

    The output of a simulation is best comprehended through the agency and methods of visualization, but a vital component of good science is knowledge of uncertainty. While great strides have been made in the quantification of uncertainty, especially in simulation, there is still a notable gap: there is no widely accepted means of simultaneously viewing the data and the associated uncertainty in one pane. Visualization saturates the screen, using the full range of color, shadow, opacity and tricks of perspective to display even a single variable. There is no room in the visualization expert's repertoire left for uncertainty. We present a method of visualizing uncertainty without sacrificing the clarity and power of the underlying visualization that works as well in 3-D and time-varying visualizations as it does in 2-D. At its heart, it relies on a principal tenet of continuum mechanics, replacing the notion of value at a point with a more diffuse notion of density as a measure of content in a region. First, the uncertainties calculated or tabulated at each point are transformed into a piecewise continuous field of uncertainty density . We next compute a weighted Voronoi tessellation of a user specified N convex polygonal/polyhedral cells such that each cell contains the same amount of uncertainty as defined by . The problem thus devolves into minimizing . Computation of such a spatial decomposition is O(N*N ), and can be computed iteratively making it possible to update easily over time as well as faster. The polygonal mesh does not interfere with the visualization of the data and can be easily toggled on or off. In this representation, a small cell implies a great concentration of uncertainty, and conversely. The content weighted polygons are identical to the cartogram familiar to the information visualization community in the depiction of things voting results per stat. Furthermore, one can dispense with the mesh or edges entirely to be replaced by symbols or glyphs

  10. A path reconstruction method integrating dead-reckoning and position fixes applied to humpback whales.

    Science.gov (United States)

    Wensveen, Paul J; Thomas, Len; Miller, Patrick J O

    2015-01-01

    Detailed information about animal location and movement is often crucial in studies of natural behaviour and how animals respond to anthropogenic activities. Dead-reckoning can be used to infer such detailed information, but without additional positional data this method results in uncertainty that grows with time. Combining dead-reckoning with new Fastloc-GPS technology should provide good opportunities for reconstructing georeferenced fine-scale tracks, and should be particularly useful for marine animals that spend most of their time under water. We developed a computationally efficient, Bayesian state-space modelling technique to estimate humpback whale locations through time, integrating dead-reckoning using on-animal sensors with measurements of whale locations using on-animal Fastloc-GPS and visual observations. Positional observation models were based upon error measurements made during calibrations. High-resolution 3-dimensional movement tracks were produced for 13 whales using a simple process model in which errors caused by water current movements, non-location sensor errors, and other dead-reckoning errors were accumulated into a combined error term. Positional uncertainty quantified by the track reconstruction model was much greater for tracks with visual positions and few or no GPS positions, indicating a strong benefit to using Fastloc-GPS for track reconstruction. Compared to tracks derived only from position fixes, the inclusion of dead-reckoning data greatly improved the level of detail in the reconstructed tracks of humpback whales. Using cross-validation, a clear improvement in the predictability of out-of-set Fastloc-GPS data was observed compared to more conventional track reconstruction methods. Fastloc-GPS observation errors during calibrations were found to vary by number of GPS satellites received and by orthogonal dimension analysed; visual observation errors varied most by distance to the whale. By systematically accounting for the

  11. Dealing with exploration uncertainties

    International Nuclear Information System (INIS)

    Capen, E.

    1992-01-01

    Exploration for oil and gas should fulfill the most adventurous in their quest for excitement and surprise. This paper tries to cover that tall order. The authors will touch on the magnitude of the uncertainty (which is far greater than in most other businesses), the effects of not knowing target sizes very well, how to build uncertainty into analyses naturally, how to tie reserves and chance estimates to economics, and how to look at the portfolio effect of an exploration program. With no apologies, the authors will be using a different language for some readers - the language of uncertainty, which means probability and statistics. These tools allow one to combine largely subjective exploration information with the more analytical data from the engineering and economic side

  12. Commonplaces and social uncertainty

    DEFF Research Database (Denmark)

    Lassen, Inger

    2008-01-01

    This article explores the concept of uncertainty in four focus group discussions about genetically modified food. In the discussions, members of the general public interact with food biotechnology scientists while negotiating their attitudes towards genetic engineering. Their discussions offer...... an example of risk discourse in which the use of commonplaces seems to be a central feature (Myers 2004: 81). My analyses support earlier findings that commonplaces serve important interactional purposes (Barton 1999) and that they are used for mitigating disagreement, for closing topics and for facilitating...... risk discourse (Myers 2005; 2007). In additional, however, I argue that commonplaces are used to mitigate feelings of insecurity caused by uncertainty and to negotiate new codes of moral conduct. Keywords: uncertainty, commonplaces, risk discourse, focus groups, appraisal...

  13. Estimating uncertainty of inference for validation

    Energy Technology Data Exchange (ETDEWEB)

    Booker, Jane M [Los Alamos National Laboratory; Langenbrunner, James R [Los Alamos National Laboratory; Hemez, Francois M [Los Alamos National Laboratory; Ross, Timothy J [UNM

    2010-09-30

    We present a validation process based upon the concept that validation is an inference-making activity. This has always been true, but the association has not been as important before as it is now. Previously, theory had been confirmed by more data, and predictions were possible based on data. The process today is to infer from theory to code and from code to prediction, making the role of prediction somewhat automatic, and a machine function. Validation is defined as determining the degree to which a model and code is an accurate representation of experimental test data. Imbedded in validation is the intention to use the computer code to predict. To predict is to accept the conclusion that an observable final state will manifest; therefore, prediction is an inference whose goodness relies on the validity of the code. Quantifying the uncertainty of a prediction amounts to quantifying the uncertainty of validation, and this involves the characterization of uncertainties inherent in theory/models/codes and the corresponding data. An introduction to inference making and its associated uncertainty is provided as a foundation for the validation problem. A mathematical construction for estimating the uncertainty in the validation inference is then presented, including a possibility distribution constructed to represent the inference uncertainty for validation under uncertainty. The estimation of inference uncertainty for validation is illustrated using data and calculations from Inertial Confinement Fusion (ICF). The ICF measurements of neutron yield and ion temperature were obtained for direct-drive inertial fusion capsules at the Omega laser facility. The glass capsules, containing the fusion gas, were systematically selected with the intent of establishing a reproducible baseline of high-yield 10{sup 13}-10{sup 14} neutron output. The deuterium-tritium ratio in these experiments was varied to study its influence upon yield. This paper on validation inference is the

  14. Uncertainty Analysis of Seebeck Coefficient and Electrical Resistivity Characterization

    Science.gov (United States)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    In order to provide a complete description of a materials thermoelectric power factor, in addition to the measured nominal value, an uncertainty interval is required. The uncertainty may contain sources of measurement error including systematic bias error and precision error of a statistical nature. The work focuses specifically on the popular ZEM-3 (Ulvac Technologies) measurement system, but the methods apply to any measurement system. The analysis accounts for sources of systematic error including sample preparation tolerance, measurement probe placement, thermocouple cold-finger effect, and measurement parameters; in addition to including uncertainty of a statistical nature. Complete uncertainty analysis of a measurement system allows for more reliable comparison of measurement data between laboratories.

  15. Modelling Framework for the Identification of Critical Variables and Parameters under Uncertainty in the Bioethanol Production from Lignocellulose

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Meyer, Anne S.; Gernaey, Krist

    2011-01-01

    This study presents the development of a systematic modelling framework for identification of the most critical variables and parameters under uncertainty, evaluated on a lignocellulosic ethanol production case study. The systematic framework starts with: (1) definition of the objectives; (2...

  16. Sensitivity and uncertainty analysis

    CERN Document Server

    Cacuci, Dan G; Navon, Ionel Michael

    2005-01-01

    As computer-assisted modeling and analysis of physical processes have continued to grow and diversify, sensitivity and uncertainty analyses have become indispensable scientific tools. Sensitivity and Uncertainty Analysis. Volume I: Theory focused on the mathematical underpinnings of two important methods for such analyses: the Adjoint Sensitivity Analysis Procedure and the Global Adjoint Sensitivity Analysis Procedure. This volume concentrates on the practical aspects of performing these analyses for large-scale systems. The applications addressed include two-phase flow problems, a radiative c

  17. Uncertainty in artificial intelligence

    CERN Document Server

    Levitt, TS; Lemmer, JF; Shachter, RD

    1990-01-01

    Clearly illustrated in this volume is the current relationship between Uncertainty and AI.It has been said that research in AI revolves around five basic questions asked relative to some particular domain: What knowledge is required? How can this knowledge be acquired? How can it be represented in a system? How should this knowledge be manipulated in order to provide intelligent behavior? How can the behavior be explained? In this volume, all of these questions are addressed. From the perspective of the relationship of uncertainty to the basic questions of AI, the book divides naturally i

  18. Bayesian tsunami fragility modeling considering input data uncertainty

    OpenAIRE

    De Risi, Raffaele; Goda, Katsu; Mori, Nobuhito; Yasuda, Tomohiro

    2017-01-01

    Empirical tsunami fragility curves are developed based on a Bayesian framework by accounting for uncertainty of input tsunami hazard data in a systematic and comprehensive manner. Three fragility modeling approaches, i.e. lognormal method, binomial logistic method, and multinomial logistic method, are considered, and are applied to extensive tsunami damage data for the 2011 Tohoku earthquake. A unique aspect of this study is that uncertainty of tsunami inundation data (i.e. input hazard data ...

  19. Uncertainty Analyses and Strategy

    International Nuclear Information System (INIS)

    Kevin Coppersmith

    2001-01-01

    The DOE identified a variety of uncertainties, arising from different sources, during its assessment of the performance of a potential geologic repository at the Yucca Mountain site. In general, the number and detail of process models developed for the Yucca Mountain site, and the complex coupling among those models, make the direct incorporation of all uncertainties difficult. The DOE has addressed these issues in a number of ways using an approach to uncertainties that is focused on producing a defensible evaluation of the performance of a potential repository. The treatment of uncertainties oriented toward defensible assessments has led to analyses and models with so-called ''conservative'' assumptions and parameter bounds, where conservative implies lower performance than might be demonstrated with a more realistic representation. The varying maturity of the analyses and models, and uneven level of data availability, result in total system level analyses with a mix of realistic and conservative estimates (for both probabilistic representations and single values). That is, some inputs have realistically represented uncertainties, and others are conservatively estimated or bounded. However, this approach is consistent with the ''reasonable assurance'' approach to compliance demonstration, which was called for in the U.S. Nuclear Regulatory Commission's (NRC) proposed 10 CFR Part 63 regulation (64 FR 8640 [DIRS 101680]). A risk analysis that includes conservatism in the inputs will result in conservative risk estimates. Therefore, the approach taken for the Total System Performance Assessment for the Site Recommendation (TSPA-SR) provides a reasonable representation of processes and conservatism for purposes of site recommendation. However, mixing unknown degrees of conservatism in models and parameter representations reduces the transparency of the analysis and makes the development of coherent and consistent probability statements about projected repository

  20. Uncertainties in repository modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.R.

    1996-12-31

    The distant future is ver difficult to predict. Unfortunately, our regulators are being enchouraged to extend ther regulatory period form the standard 10,000 years to 1 million years. Such overconfidence is not justified due to uncertainties in dating, calibration, and modeling.

  1. Uncertainties in repository modeling

    International Nuclear Information System (INIS)

    Wilson, J.R.

    1996-01-01

    The distant future is ver difficult to predict. Unfortunately, our regulators are being enchouraged to extend ther regulatory period form the standard 10,000 years to 1 million years. Such overconfidence is not justified due to uncertainties in dating, calibration, and modeling

  2. Risk, Uncertainty, and Entrepreneurship

    DEFF Research Database (Denmark)

    Koudstaal, Martin; Sloof, Randolph; Van Praag, Mirjam

    2016-01-01

    Theory predicts that entrepreneurs have distinct attitudes toward risk and uncertainty, but empirical evidence is mixed. To better understand these mixed results, we perform a large “lab-in-the-field” experiment comparing entrepreneurs to managers (a suitable comparison group) and employees (n D ...

  3. Schrodinger's Uncertainty Principle?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 2. Schrödinger's Uncertainty Principle? - Lilies can be Painted. Rajaram Nityananda. General Article Volume 4 Issue 2 February 1999 pp 24-26. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Risks, uncertainty, vagueness

    International Nuclear Information System (INIS)

    Haefele, W.; Renn, O.; Erdmann, G.

    1990-01-01

    The notion of 'risk' is discussed in its social and technological contexts, leading to an investigation of the terms factuality, hypotheticality, uncertainty, and vagueness, and to the problems of acceptance and acceptability especially in the context of political decision finding. (DG) [de

  5. Uncertainty quantification in lattice QCD calculations for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Beane, Silas R. [Univ. of Washington, Seattle, WA (United States); Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Savage, Martin J. [Institute for Nuclear Theory, Seattle, WA (United States)

    2015-02-05

    The numerical technique of Lattice QCD holds the promise of connecting the nuclear forces, nuclei, the spectrum and structure of hadrons, and the properties of matter under extreme conditions with the underlying theory of the strong interactions, quantum chromodynamics. A distinguishing, and thus far unique, feature of this formulation is that all of the associated uncertainties, both statistical and systematic can, in principle, be systematically reduced to any desired precision with sufficient computational and human resources. As a result, we review the sources of uncertainty inherent in Lattice QCD calculations for nuclear physics, and discuss how each is quantified in current efforts.

  6. The best estimate plus uncertainty approach in licensing of pressurized water reactors using trace

    Energy Technology Data Exchange (ETDEWEB)

    Sporn, Michael [Westinghouse Electric Germany GmbH, Mannheim (Germany); Technische Univ. Dresden (Germany); Tietsch, Wolfgang; Freis, Daniel [Westinghouse Electric Germany GmbH, Mannheim (Germany); Hurtado, Antonio M. [Technische Univ. Dresden (Germany)

    2013-07-01

    In this paper, a concept for a new BEPU method (Best estimate plus uncertainty) was presented, which may be used for future licensing process of Nuclear Power Plants. Additionally to the established uncertainty methods for the variation of the input parameters the new BEPU approach could be used in order to treat the correlation uncertainties in TRACE. Generally we want to use the uncertainty methods based upon propagation of input uncertainties to handle the correlation uncertainties. Furthermore, to perform the uncertainty analysis statistical methods are used, similar to the treatment of input uncertainties. The outlook for this work is to combine input and correlation uncertainties, but only to consider these parameters, which have a significant effect on the calculation result, in a systematic way. Finally, the calculated results are based on 95 % percentile (probability) and 95 % confidence level. (orig.)

  7. Uncertainty Quantification for Safety Verification Applications in Nuclear Power Plants

    Science.gov (United States)

    Boafo, Emmanuel

    There is an increasing interest in computational reactor safety analysis to systematically replace the conservative calculations by best estimate calculations augmented by quantitative uncertainty analysis methods. This has been necessitated by recent regulatory requirements that have permitted the use of such methods in reactor safety analysis. Stochastic uncertainty quantification methods have shown great promise, as they are better suited to capture the complexities in real engineering problems. This study proposes a framework for performing uncertainty quantification based on the stochastic approach, which can be applied to enhance safety analysis. (Abstract shortened by ProQuest.).

  8. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for internal dosimetry. Volume 1: Main report

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Harrison, J.D. [National Radiological Protection Board (United Kingdom); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

    1998-04-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA internal dosimetry models.

  9. Probabilistic accident consequence uncertainty analysis -- Early health effects uncertainty assessment. Volume 1: Main report

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [Univ. of New Mexico, Albuquerque, NM (United States); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Goossens, L.H.J.; Kraan, B.C.P. [Delft Univ. of Technology (Netherlands); Grupa, J.B. [Netherlands Energy Research Foundation (Netherlands)

    1997-12-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA early health effects models.

  10. Uncertainty and validation. Effect of user interpretation on uncertainty estimates

    Energy Technology Data Exchange (ETDEWEB)

    Kirchner, G. [Univ. of Bremen (Germany); Peterson, R. [AECL, Chalk River, ON (Canada)] [and others

    1996-11-01

    Uncertainty in predictions of environmental transfer models arises from, among other sources, the adequacy of the conceptual model, the approximations made in coding the conceptual model, the quality of the input data, the uncertainty in parameter values, and the assumptions made by the user. In recent years efforts to quantify the confidence that can be placed in predictions have been increasing, but have concentrated on a statistical propagation of the influence of parameter uncertainties on the calculational results. The primary objective of this Working Group of BIOMOVS II was to test user's influence on model predictions on a more systematic basis than has been done before. The main goals were as follows: To compare differences between predictions from different people all using the same model and the same scenario description with the statistical uncertainties calculated by the model. To investigate the main reasons for different interpretations by users. To create a better awareness of the potential influence of the user on the modeling results. Terrestrial food chain models driven by deposition of radionuclides from the atmosphere were used. Three codes were obtained and run with three scenarios by a maximum of 10 users. A number of conclusions can be drawn some of which are general and independent of the type of models and processes studied, while others are restricted to the few processes that were addressed directly: For any set of predictions, the variation in best estimates was greater than one order of magnitude. Often the range increased from deposition to pasture to milk probably due to additional transfer processes. The 95% confidence intervals about the predictions calculated from the parameter distributions prepared by the participants did not always overlap the observations; similarly, sometimes the confidence intervals on the predictions did not overlap. Often the 95% confidence intervals of individual predictions were smaller than the

  11. Uncertainty and validation. Effect of user interpretation on uncertainty estimates

    International Nuclear Information System (INIS)

    Kirchner, G.; Peterson, R.

    1996-11-01

    Uncertainty in predictions of environmental transfer models arises from, among other sources, the adequacy of the conceptual model, the approximations made in coding the conceptual model, the quality of the input data, the uncertainty in parameter values, and the assumptions made by the user. In recent years efforts to quantify the confidence that can be placed in predictions have been increasing, but have concentrated on a statistical propagation of the influence of parameter uncertainties on the calculational results. The primary objective of this Working Group of BIOMOVS II was to test user's influence on model predictions on a more systematic basis than has been done before. The main goals were as follows: To compare differences between predictions from different people all using the same model and the same scenario description with the statistical uncertainties calculated by the model. To investigate the main reasons for different interpretations by users. To create a better awareness of the potential influence of the user on the modeling results. Terrestrial food chain models driven by deposition of radionuclides from the atmosphere were used. Three codes were obtained and run with three scenarios by a maximum of 10 users. A number of conclusions can be drawn some of which are general and independent of the type of models and processes studied, while others are restricted to the few processes that were addressed directly: For any set of predictions, the variation in best estimates was greater than one order of magnitude. Often the range increased from deposition to pasture to milk probably due to additional transfer processes. The 95% confidence intervals about the predictions calculated from the parameter distributions prepared by the participants did not always overlap the observations; similarly, sometimes the confidence intervals on the predictions did not overlap. Often the 95% confidence intervals of individual predictions were smaller than the

  12. Visualizing Java uncertainty

    Science.gov (United States)

    Knight, Claire; Munro, Malcolm

    2001-07-01

    Distributed component based systems seem to be the immediate future for software development. The use of such techniques, object oriented languages, and the combination with ever more powerful higher-level frameworks has led to the rapid creation and deployment of such systems to cater for the demand of internet and service driven business systems. This diversity of solution through both components utilised and the physical/virtual locations of those components can provide powerful resolutions to the new demand. The problem lies in the comprehension and maintenance of such systems because they then have inherent uncertainty. The components combined at any given time for a solution may differ, the messages generated, sent, and/or received may differ, and the physical/virtual locations cannot be guaranteed. Trying to account for this uncertainty and to build in into analysis and comprehension tools is important for both development and maintenance activities.

  13. Risk, uncertainty and regulation.

    Science.gov (United States)

    Krebs, John R

    2011-12-13

    This paper reviews the relationship between scientific evidence, uncertainty, risk and regulation. Risk has many different meanings. Furthermore, if risk is defined as the likelihood of an event happening multiplied by its impact, subjective perceptions of risk often diverge from the objective assessment. Scientific evidence may be ambiguous. Scientific experts are called upon to assess risks, but there is often uncertainty in their assessment, or disagreement about the magnitude of the risk. The translation of risk assessments into policy is a political judgement that includes consideration of the acceptability of the risk and the costs and benefits of legislation to reduce the risk. These general points are illustrated with reference to three examples: regulation of risk from pesticides, control of bovine tuberculosis and pricing of alcohol as a means to discourage excessive drinking.

  14. How Uncertain is Uncertainty?

    Science.gov (United States)

    Vámos, Tibor

    The gist of the paper is the fundamental uncertain nature of all kinds of uncertainties and consequently a critical epistemic review of historical and recent approaches, computational methods, algorithms. The review follows the development of the notion from the beginnings of thinking, via the Aristotelian and Skeptic view, the medieval nominalism and the influential pioneering metaphors of ancient India and Persia to the birth of modern mathematical disciplinary reasoning. Discussing the models of uncertainty, e.g. the statistical, other physical and psychological background we reach a pragmatic model related estimation perspective, a balanced application orientation for different problem areas. Data mining, game theories and recent advances in approximation algorithms are discussed in this spirit of modest reasoning.

  15. DOD ELAP Lab Uncertainties

    Science.gov (United States)

    2012-03-01

    certify to :  ISO   9001  (QMS),  ISO  14001 (EMS),   TS 16949 (US Automotive)  etc. 2 3 DoD QSM 4.2 standard   ISO /IEC 17025:2005  Each has uncertainty...Analytical Measurement  Uncertainty Estimation” Defense Technical Information  Center # ADA 396946 William S. Ingersoll,  2001 12  Follows the  ISO  GUM...SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY

  16. Uncertainties about climate

    International Nuclear Information System (INIS)

    Laval, Katia; Laval, Guy

    2013-01-01

    Like meteorology, climatology is not an exact science: climate change forecasts necessarily include a share of uncertainty. It is precisely this uncertainty which is brandished and exploited by the opponents to the global warming theory to put into question the estimations of its future consequences. Is it legitimate to predict the future using the past climate data (well documented up to 100000 years BP) or the climates of other planets, taking into account the impreciseness of the measurements and the intrinsic complexity of the Earth's machinery? How is it possible to model a so huge and interwoven system for which any exact description has become impossible? Why water and precipitations play such an important role in local and global forecasts, and how should they be treated? This book written by two physicists answers with simpleness these delicate questions in order to give anyone the possibility to build his own opinion about global warming and the need to act rapidly

  17. Uncertainty and Decision Making

    Science.gov (United States)

    1979-09-01

    included as independent variables orderli- ness, the status of the source of information, the primacy versus recency of positive information items, and...low uncertainty and high satisfac- tion. The primacy / recency and sequential/final variables produced no significant differences. In summary, we have...to which the different independent variables (credibility, probability, and content) had an effect on the favorability judgments. The results were

  18. Growth uncertainty and risksharing

    OpenAIRE

    Stefano Athanasoulis; Eric Van Wincoop

    1997-01-01

    How large are potential benefits from global risksharing? In order to answer this question we propose a new methodology that is closely connected with the empirical growth literature. We obtain estimates of residual risk (growth uncertainty) at various horizons from regressions of country-specific growth in deviation from world growth on a wide set of variables in the information set. Since this residual risk can be entirely hedged through risksharing, we use it to obtain a measure of the pot...

  19. Citizen Candidates Under Uncertainty

    OpenAIRE

    Eguia, Jon X.

    2005-01-01

    In this paper we make two contributions to the growing literature on "citizen-candidate" models of representative democracy. First, we add uncertainty about the total vote count. We show that in a society with a large electorate, where the outcome of the election is uncertain and where winning candidates receive a large reward from holding office, there will be a two-candidate equilibrium and no equilibria with a single candidate. Second, we introduce a new concept of equilibrium, which we te...

  20. Uncertainty in artificial intelligence

    CERN Document Server

    Shachter, RD; Henrion, M; Lemmer, JF

    1990-01-01

    This volume, like its predecessors, reflects the cutting edge of research on the automation of reasoning under uncertainty.A more pragmatic emphasis is evident, for although some papers address fundamental issues, the majority address practical issues. Topics include the relations between alternative formalisms (including possibilistic reasoning), Dempster-Shafer belief functions, non-monotonic reasoning, Bayesian and decision theoretic schemes, and new inference techniques for belief nets. New techniques are applied to important problems in medicine, vision, robotics, and natural language und

  1. Calibration Under Uncertainty.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Trucano, Timothy Guy

    2005-03-01

    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  2. Participation under Uncertainty

    International Nuclear Information System (INIS)

    Boudourides, Moses A.

    2003-01-01

    This essay reviews a number of theoretical perspectives about uncertainty and participation in the present-day knowledge-based society. After discussing the on-going reconfigurations of science, technology and society, we examine how appropriate for policy studies are various theories of social complexity. Post-normal science is such an example of a complexity-motivated approach, which justifies civic participation as a policy response to an increasing uncertainty. But there are different categories and models of uncertainties implying a variety of configurations of policy processes. A particular role in all of them is played by expertise whose democratization is an often-claimed imperative nowadays. Moreover, we discuss how different participatory arrangements are shaped into instruments of policy-making and framing regulatory processes. As participation necessitates and triggers deliberation, we proceed to examine the role and the barriers of deliberativeness. Finally, we conclude by referring to some critical views about the ultimate assumptions of recent European policy frameworks and the conceptions of civic participation and politicization that they invoke

  3. Measurement of the track reconstruction efficiency at LHCb

    International Nuclear Information System (INIS)

    Collaboration, The LHCb

    2015-01-01

    The determination of track reconstruction efficiencies at LHCb using J/ψ→μ + μ - decays is presented. Efficiencies above 95% are found for the data taking periods in 2010, 2011, and 2012. The ratio of the track reconstruction efficiency of muons in data and simulation is compatible with unity and measured with an uncertainty of 0.8 % for data taking in 2010, and at a precision of 0.4 % for data taking in 2011 and 2012. For hadrons an additional 1.4 % uncertainty due to material interactions is assumed. This result is crucial for accurate cross section and branching fraction measurements in LHCb

  4. Measurement of the track reconstruction efficiency at LHCb

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gavrilov, Gennadii; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Giani', Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2015-02-12

    The determination of track reconstruction efficiencies at LHCb using $J/\\psi\\rightarrow\\mu^{+}\\mu^{-}$ decays is presented. Efficiencies above $95\\%$ are found for the data taking periods in 2010, 2011, and 2012. The ratio of the track reconstruction efficiency of muons in data and simulation is compatible with unity and measured with an uncertainty of $0.8\\,\\%$ for data taking in 2010, and at a precision of $0.4\\,\\%$ for data taking in 2011 and 2012. For hadrons an additional $1.4\\,\\%$ uncertainty due to material interactions is assumed. This result is crucial for accurate cross section and branching fraction measurements in LHCb.

  5. Introducing uncertainty analysis of nucleation and crystal growth models in Process Analytical Technology (PAT) system design of crystallization processes

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli Bin; Sin, Gürkan; Gernaey, Krist

    2013-01-01

    This paper presents the application of uncertainty and sensitivity analysis as part of a systematic modelbased process monitoring and control (PAT) system design framework for crystallization processes. For the uncertainty analysis, the Monte Carlo procedure is used to propagate input uncertainty...

  6. Collision entropy and optimal uncertainty

    OpenAIRE

    Bosyk, G. M.; Portesi, M.; Plastino, A.

    2011-01-01

    We propose an alternative measure of quantum uncertainty for pairs of arbitrary observables in the 2-dimensional case, in terms of collision entropies. We derive the optimal lower bound for this entropic uncertainty relation, which results in an analytic function of the overlap of the corresponding eigenbases. Besides, we obtain the minimum uncertainty states. We compare our relation with other formulations of the uncertainty principle.

  7. Aggregate Measures of Watershed Health from Reconstructed ...

    Science.gov (United States)

    Risk-based indices such as reliability, resilience, and vulnerability (R-R-V), have the potential to serve as watershed health assessment tools. Recent research has demonstrated the applicability of such indices for water quality (WQ) constituents such as total suspended solids and nutrients on an individual basis. However, the calculations can become tedious when time-series data for several WQ constituents have to be evaluated individually. Also, comparisons between locations with different sets of constituent data can prove difficult. In this study, data reconstruction using relevance vector machine algorithm was combined with dimensionality reduction via variational Bayesian noisy principal component analysis to reconstruct and condense sparse multidimensional WQ data sets into a single time series. The methodology allows incorporation of uncertainty in both the reconstruction and dimensionality-reduction steps. The R-R-V values were calculated using the aggregate time series at multiple locations within two Indiana watersheds. Results showed that uncertainty present in the reconstructed WQ data set propagates to the aggregate time series and subsequently to the aggregate R-R-V values as well. serving as motivating examples. Locations with different WQ constituents and different standards for impairment were successfully combined to provide aggregate measures of R-R-V values. Comparisons with individual constituent R-R-V values showed that v

  8. Breast reconstruction after mastectomy

    Directory of Open Access Journals (Sweden)

    Daniel eSchmauss

    2016-01-01

    Full Text Available Breast cancer is the leading cause of cancer death in women worldwide. Its surgical approach has become less and less mutilating in the last decades. However, the overall number of breast reconstructions has significantly increased lately. Nowadays breast reconstruction should be individualized at its best, first of all taking into consideration oncological aspects of the tumor, neo-/adjuvant treatment and genetic predisposition, but also its timing (immediate versus delayed breast reconstruction, as well as the patient’s condition and wish. This article gives an overview over the various possibilities of breast reconstruction, including implant- and expander-based reconstruction, flap-based reconstruction (vascularized autologous tissue, the combination of implant and flap, reconstruction using non-vascularized autologous fat, as well as refinement surgery after breast reconstruction.

  9. Head and face reconstruction

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002980.htm Head and face reconstruction To use the sharing features on this page, please enable JavaScript. Head and face reconstruction is surgery to repair or ...

  10. Breast reconstruction - natural tissue

    Science.gov (United States)

    ... After a mastectomy , some women choose to have cosmetic surgery to remake their breast. This type of surgery ... cancer - breast reconstruction with natural tissue Patient Instructions Cosmetic breast surgery - discharge Mastectomy and breast reconstruction - what to ask ...

  11. Do Orthopaedic Surgeons Acknowledge Uncertainty?

    NARCIS (Netherlands)

    Teunis, Teun; Janssen, Stein; Guitton, Thierry G.; Ring, David; Parisien, Robert

    2016-01-01

    Much of the decision-making in orthopaedics rests on uncertain evidence. Uncertainty is therefore part of our normal daily practice, and yet physician uncertainty regarding treatment could diminish patients' health. It is not known if physician uncertainty is a function of the evidence alone or if

  12. Image reconstruction using neutrongraphy

    International Nuclear Information System (INIS)

    Crispim, V.R.; Lopes, R.T.; Borges, J.C.

    1986-01-01

    Many factors influence the projections determination in the process of image reconstruction utilizing neutrongraphy technique. In this work it was used the Wiener filter in the projections obtained from one object, in order to minimize the effect of the factors in the quality of the imagem reconstructed. The MART (Multiplicative - Algebraic Reconstruction Technique) algorithim was used. Qualitative and quantitative comparison were done with the original images and the one reconstructed using MART algotithim with and without filter. (Author) [pt

  13. Principles of Uncertainty

    CERN Document Server

    Kadane, Joseph B

    2011-01-01

    An intuitive and mathematical introduction to subjective probability and Bayesian statistics. An accessible, comprehensive guide to the theory of Bayesian statistics, Principles of Uncertainty presents the subjective Bayesian approach, which has played a pivotal role in game theory, economics, and the recent boom in Markov Chain Monte Carlo methods. Both rigorous and friendly, the book contains: Introductory chapters examining each new concept or assumption Just-in-time mathematics -- the presentation of ideas just before they are applied Summary and exercises at the end of each chapter Discus

  14. Optimizing production under uncertainty

    DEFF Research Database (Denmark)

    Rasmussen, Svend

    This Working Paper derives criteria for optimal production under uncertainty based on the state-contingent approach (Chambers and Quiggin, 2000), and discusses po-tential problems involved in applying the state-contingent approach in a normative context. The analytical approach uses the concept...... of state-contingent production functions and a definition of inputs including both sort of input, activity and alloca-tion technology. It also analyses production decisions where production is combined with trading in state-contingent claims such as insurance contracts. The final part discusses...

  15. Optimization under Uncertainty

    KAUST Repository

    Lopez, Rafael H.

    2016-01-06

    The goal of this poster is to present the main approaches to optimization of engineering systems in the presence of uncertainties. We begin by giving an insight about robust optimization. Next, we detail how to deal with probabilistic constraints in optimization, the so called the reliability based design. Subsequently, we present the risk optimization approach, which includes the expected costs of failure in the objective function. After that the basic description of each approach is given, the projects developed by CORE are presented. Finally, the main current topic of research of CORE is described.

  16. Comparison between two modern uncertainty expression and propagation approaches

    International Nuclear Information System (INIS)

    Pertile, M; Debei, S

    2010-01-01

    Two different uncertainty expression and propagation approaches are presented and compared. In particular, an implementation of the known probabilistic approach and a new Random-Fuzzy Variable (RFV) method based on the theory of Evidence. Both approaches use an explicit time correlation of input quantities to take into account systematic contributions. Numerical results show that both the type of uncertainty contribution (random or systematic) and the owned level of knowledge (Probability density Function PDF or simply a limited interval) must be carefully evaluated in uncertainty analysis. The new RFV approach allows to seamlessly deal with PDFs and limited intervals. This advantage is not present in the probabilistic approach, which yields questionable results in complete ignorance situations.

  17. Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2O emissions

    Science.gov (United States)

    Simulation models are extensively used to predict agricultural productivity and greenhouse gas (GHG) emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multisp...

  18. Transition to reconstructibility in weakly coupled networks.

    Directory of Open Access Journals (Sweden)

    Benedict J Lünsmann

    Full Text Available Across scientific disciplines, thresholded pairwise measures of statistical dependence between time series are taken as proxies for the interactions between the dynamical units of a network. Yet such correlation measures often fail to reflect the underlying physical interactions accurately. Here we systematically study the problem of reconstructing direct physical interaction networks from thresholding correlations. We explicate how local common cause and relay structures, heterogeneous in-degrees and non-local structural properties of the network generally hinder reconstructibility. However, in the limit of weak coupling strengths we prove that stationary systems with dynamics close to a given operating point transition to universal reconstructiblity across all network topologies.

  19. Probabilistic Mass Growth Uncertainties

    Science.gov (United States)

    Plumer, Eric; Elliott, Darren

    2013-01-01

    Mass has been widely used as a variable input parameter for Cost Estimating Relationships (CER) for space systems. As these space systems progress from early concept studies and drawing boards to the launch pad, their masses tend to grow substantially, hence adversely affecting a primary input to most modeling CERs. Modeling and predicting mass uncertainty, based on historical and analogous data, is therefore critical and is an integral part of modeling cost risk. This paper presents the results of a NASA on-going effort to publish mass growth datasheet for adjusting single-point Technical Baseline Estimates (TBE) of masses of space instruments as well as spacecraft, for both earth orbiting and deep space missions at various stages of a project's lifecycle. This paper will also discusses the long term strategy of NASA Headquarters in publishing similar results, using a variety of cost driving metrics, on an annual basis. This paper provides quantitative results that show decreasing mass growth uncertainties as mass estimate maturity increases. This paper's analysis is based on historical data obtained from the NASA Cost Analysis Data Requirements (CADRe) database.

  20. Investment, regulation, and uncertainty

    Science.gov (United States)

    Smyth, Stuart J; McDonald, Jillian; Falck-Zepeda, Jose

    2014-01-01

    As with any technological innovation, time refines the technology, improving upon the original version of the innovative product. The initial GM crops had single traits for either herbicide tolerance or insect resistance. Current varieties have both of these traits stacked together and in many cases other abiotic and biotic traits have also been stacked. This innovation requires investment. While this is relatively straight forward, certain conditions need to exist such that investments can be facilitated. The principle requirement for investment is that regulatory frameworks render consistent and timely decisions. If the certainty of regulatory outcomes weakens, the potential for changes in investment patterns increases.   This article provides a summary background to the leading plant breeding technologies that are either currently being used to develop new crop varieties or are in the pipeline to be applied to plant breeding within the next few years. Challenges for existing regulatory systems are highlighted. Utilizing an option value approach from investment literature, an assessment of uncertainty regarding the regulatory approval for these varying techniques is undertaken. This research highlights which technology development options have the greatest degree of uncertainty and hence, which ones might be expected to see an investment decline. PMID:24499745

  1. Oil price uncertainty in Canada

    International Nuclear Information System (INIS)

    Elder, John; Serletis, Apostolos

    2009-01-01

    Bernanke [Bernanke, Ben S. Irreversibility, uncertainty, and cyclical investment. Quarterly Journal of Economics 98 (1983), 85-106.] shows how uncertainty about energy prices may induce optimizing firms to postpone investment decisions, thereby leading to a decline in aggregate output. Elder and Serletis [Elder, John and Serletis, Apostolos. Oil price uncertainty.] find empirical evidence that uncertainty about oil prices has tended to depress investment in the United States. In this paper we assess the robustness of these results by investigating the effects of oil price uncertainty in Canada. Our results are remarkably similar to existing results for the United States, providing additional evidence that uncertainty about oil prices may provide another explanation for why the sharp oil price declines of 1985 failed to produce rapid output growth. Impulse-response analysis suggests that uncertainty about oil prices may tend to reinforce the negative response of output to positive oil shocks. (author)

  2. Measurement uncertainty and probability

    National Research Council Canada - National Science Library

    Willink, Robin

    2013-01-01

    ... and probability models 3.4 Inference and confidence 3.5 Two central limit theorems 3.6 The Monte Carlo method and process simulation 4 The randomization of systematic errors page xi xii 3 3 5 7 10 12 16 19 21 21 23 28 30 32 33 39 43 45 52 53 56 viiviii 4.1 4.2 4.3 4.4 4.5 Contents The Working Group of 1980 From classical repetition to practica...

  3. Uncertainties, confidence ellipsoids and security polytopes in LSA

    Science.gov (United States)

    Grabe, Michael

    1992-05-01

    For a given error model, the uncertainties of and the couplings between parameters estimated by a least-squares adjustment (LSA) are formalized. The error model is restricted to normally distributed random errors and to systematic errors that remain constant during measurement, but whose magnitudes and signs are unknown. An outline of the associated, new formalism for estimating measurement uncertainties is sketched as regards its function as a measure of the consistency between theory and experiment. The couplings due to random errors lead to ellipsoids stemming from singular linear mappings of Hotelling's ellipsoids. Those introduced by systematic errors create convex polytopes, so-called security polytopes, which are singular linear mappings of hyperblocks caused by a ldworst-case treatment” of systematic errors.

  4. Analysis of automated highway system risks and uncertainties. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Sicherman, A.

    1994-10-01

    This volume describes a risk analysis performed to help identify important Automated Highway System (AHS) deployment uncertainties and quantify their effect on costs and benefits for a range of AHS deployment scenarios. The analysis identified a suite of key factors affecting vehicle and roadway costs, capacities and market penetrations for alternative AHS deployment scenarios. A systematic protocol was utilized for obtaining expert judgments of key factor uncertainties in the form of subjective probability percentile assessments. Based on these assessments, probability distributions on vehicle and roadway costs, capacity and market penetration were developed for the different scenarios. The cost/benefit risk methodology and analysis provide insights by showing how uncertainties in key factors translate into uncertainties in summary cost/benefit indices.

  5. Physics-related epistemic uncertainties in proton depth dose simulation

    CERN Document Server

    Pia, Maria Grazia; Lechner, Anton; Quintieri, Lina; Saracco, Paolo

    2010-01-01

    A set of physics models and parameters pertaining to the simulation of proton energy deposition in matter are evaluated in the energy range up to approximately 65 MeV, based on their implementations in the Geant4 toolkit. The analysis assesses several features of the models and the impact of their associated epistemic uncertainties, i.e. uncertainties due to lack of knowledge, on the simulation results. Possible systematic effects deriving from uncertainties of this kind are highlighted; their relevance in relation to the application environment and different experimental requirements are discussed, with emphasis on the simulation of radiotherapy set-ups. By documenting quantitatively the features of a wide set of simulation models and the related intrinsic uncertainties affecting the simulation results, this analysis provides guidance regarding the use of the concerned simulation tools in experimental applications; it also provides indications for further experimental measurements addressing the sources of s...

  6. Bayesian analysis for uncertainty estimation of a canopy transpiration model

    Science.gov (United States)

    Samanta, S.; Mackay, D. S.; Clayton, M. K.; Kruger, E. L.; Ewers, B. E.

    2007-04-01

    A Bayesian approach was used to fit a conceptual transpiration model to half-hourly transpiration rates for a sugar maple (Acer saccharum) stand collected over a 5-month period and probabilistically estimate its parameter and prediction uncertainties. The model used the Penman-Monteith equation with the Jarvis model for canopy conductance. This deterministic model was extended by adding a normally distributed error term. This extension enabled using Markov chain Monte Carlo simulations to sample the posterior parameter distributions. The residuals revealed approximate conformance to the assumption of normally distributed errors. However, minor systematic structures in the residuals at fine timescales suggested model changes that would potentially improve the modeling of transpiration. Results also indicated considerable uncertainties in the parameter and transpiration estimates. This simple methodology of uncertainty analysis would facilitate the deductive step during the development cycle of deterministic conceptual models by accounting for these uncertainties while drawing inferences from data.

  7. Earthquake Loss Estimation Uncertainties

    Science.gov (United States)

    Frolova, Nina; Bonnin, Jean; Larionov, Valery; Ugarov, Aleksander

    2013-04-01

    The paper addresses the reliability issues of strong earthquakes loss assessment following strong earthquakes with worldwide Systems' application in emergency mode. Timely and correct action just after an event can result in significant benefits in saving lives. In this case the information about possible damage and expected number of casualties is very critical for taking decision about search, rescue operations and offering humanitarian assistance. Such rough information may be provided by, first of all, global systems, in emergency mode. The experience of earthquakes disasters in different earthquake-prone countries shows that the officials who are in charge of emergency response at national and international levels are often lacking prompt and reliable information on the disaster scope. Uncertainties on the parameters used in the estimation process are numerous and large: knowledge about physical phenomena and uncertainties on the parameters used to describe them; global adequacy of modeling techniques to the actual physical phenomena; actual distribution of population at risk at the very time of the shaking (with respect to immediate threat: buildings or the like); knowledge about the source of shaking, etc. Needless to be a sharp specialist to understand, for example, that the way a given building responds to a given shaking obeys mechanical laws which are poorly known (if not out of the reach of engineers for a large portion of the building stock); if a carefully engineered modern building is approximately predictable, this is far not the case for older buildings which make up the bulk of inhabited buildings. The way population, inside the buildings at the time of shaking, is affected by the physical damage caused to the buildings is not precisely known, by far. The paper analyzes the influence of uncertainties in strong event parameters determination by Alert Seismological Surveys, of simulation models used at all stages from, estimating shaking intensity

  8. Synthesis of Optimal Processing Pathway for Microalgae-based Biorefinery under Uncertainty

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2015-01-01

    MINLP) problem is formulated for determining the optimal biorefinery structure under given parameter uncertainties modelled as sampled scenarios. The solution to the sMINLP problem determines the optimal decisions with respect to processing technologies, material flows, and product portfolio in the presence...... decision making, we propose a systematic framework for the synthesis and optimal design of microalgae-based processing network under uncertainty. By incorporating major uncertainties into the biorefinery superstructure model we developed previously, a stochastic mixed integer nonlinear programming (s...

  9. Instrumentation-related uncertainty of reflectance and transmittance measurements with a two-channel spectrophotometer

    OpenAIRE

    Peest, Christian; Schinke, Carsten; Brendel, Rolf; Schmidt, Jan; Bothe, Karsten

    2017-01-01

    Spectrophotometers are operated in numerous fields of science and industry for a variety of applications. In order to provide confidence for the measured data, analyzing the associated uncertainty is valuable. However, the uncertainty of the measurement results is often unknown or reduced to sample-related contributions. In this paper, we describe our approach for the systematic determination of the measurement uncertainty of the commercially available two-channel spectrophotometer Agilent Ca...

  10. Leaf area index uncertainty estimates for model-data fusion applications

    Science.gov (United States)

    Andrew D. Richardson; D. Bryan Dail; D.Y. Hollinger

    2011-01-01

    Estimates of data uncertainties are required to integrate different observational data streams as model constraints using model-data fusion. We describe an approach with which random and systematic uncertainties in optical measurements of leaf area index [LAI] can be quantified. We use data from a measurement campaign at the spruce-dominated Howland Forest AmeriFlux...

  11. Heisenberg's principle of uncertainty and the uncertainty relations

    International Nuclear Information System (INIS)

    Redei, Miklos

    1987-01-01

    The usual verbal form of the Heisenberg uncertainty principle and the usual mathematical formulation (the so-called uncertainty theorem) are not equivalent. The meaning of the concept 'uncertainty' is not unambiguous and different interpretations are used in the literature. Recently a renewed interest has appeared to reinterpret and reformulate the precise meaning of Heisenberg's principle and to find adequate mathematical form. The suggested new theorems are surveyed and critically analyzed. (D.Gy.) 20 refs

  12. Impact of dose-distribution uncertainties on rectal ntcp modeling I: Uncertainty estimates

    International Nuclear Information System (INIS)

    Fenwick, John D.; Nahum, Alan E.

    2001-01-01

    A trial of nonescalated conformal versus conventional radiotherapy treatment of prostate cancer has been carried out at the Royal Marsden NHS Trust (RMH) and Institute of Cancer Research (ICR), demonstrating a significant reduction in the rate of rectal bleeding reported for patients treated using the conformal technique. The relationship between planned rectal dose-distributions and incidences of bleeding has been analyzed, showing that the rate of bleeding falls significantly as the extent of the rectal wall receiving a planned dose-level of more than 57 Gy is reduced. Dose-distributions delivered to the rectal wall over the course of radiotherapy treatment inevitably differ from planned distributions, due to sources of uncertainty such as patient setup error, rectal wall movement and variation in the absolute rectal wall surface area. In this paper estimates of the differences between planned and treated rectal dose-distribution parameters are obtained for the RMH/ICR nonescalated conformal technique, working from a distribution of setup errors observed during the RMH/ICR trial, movement data supplied by Lebesque and colleagues derived from repeat CT scans, and estimates of rectal circumference variations extracted from the literature. Setup errors and wall movement are found to cause only limited systematic differences between mean treated and planned rectal dose-distribution parameter values, but introduce considerable uncertainties into the treated values of some dose-distribution parameters: setup errors lead to 22% and 9% relative uncertainties in the highly dosed fraction of the rectal wall and the wall average dose, respectively, with wall movement leading to 21% and 9% relative uncertainties. Estimates obtained from the literature of the uncertainty in the absolute surface area of the distensible rectal wall are of the order of 13%-18%. In a subsequent paper the impact of these uncertainties on analyses of the relationship between incidences of bleeding

  13. The factualization of uncertainty:

    DEFF Research Database (Denmark)

    Meyer, G.; Folker, A.P.; Jørgensen, R.B.

    2005-01-01

    on risk assessment does nothing of the sort and is not likely to present an escape from the international deadlock on the use of genetic modification in agriculture and food production. The new legislation is likely to stimulate the kind of emotive reactions it was intended to prevent. In risk assessment...... exercises, scientific uncertainty is turned into risk, expressed in facts and figures. Paradoxically, this conveys an impression of certainty, while value-disagreement and conflicts of interest remain hidden below the surface of factuality. Public dialogue and negotiation along these lines are rendered...... would be to take care of itself – rethinking the role and the limitations of science in a social context, and, thereby gaining the strength to fulfill this role and to enter into dialogue with the rest of society. Scientific communities appear to be obvious candidates for prompting reflection...

  14. Uncertainty as Certaint

    Science.gov (United States)

    Petzinger, Tom

    I am trying to make money in the biotech industry from complexity science. And I am doing it with inspiration that I picked up on the edge of Appalachia spending time with June Holley and ACEnet when I was a Wall Street Journal reporter. I took some of those ideas to Pittsburgh, in biotechnology, in a completely private setting with an economic development focus, but also with a mission t o return profit to private capital. And we are doing that. I submit as a hypothesis, something we are figuring out in the post- industrial era, that business evolves. It is not the definition of business, but business critically involves the design of systems in which uncertainty is treated as a certainty. That is what I have seen and what I have tried to put into practice.

  15. Traceability and Measurement Uncertainty

    DEFF Research Database (Denmark)

    Tosello, Guido; De Chiffre, Leonardo

    2004-01-01

    -Nürnberg, Chair for Quality Management and Manufacturing-Oriented Metrology (Germany). 'Metro-E-Learn' project proposes to develop and implement a coherent learning and competence chain that leads from introductory and foundation e-courses in initial manufacturing engineering studies towards higher....... Machine tool testing 9. The role of manufacturing metrology for QM 10. Inspection planning 11. Quality management of measurements incl. Documentation 12. Advanced manufacturing measurement technology The present report (which represents the section 2 - Traceability and Measurement Uncertainty – of the e-learning......This report is made as a part of the project ‘Metro-E-Learn: European e-Learning in Manufacturing Metrology’, an EU project under the program SOCRATES MINERVA (ODL and ICT in Education), Contract No: 101434-CP-1-2002-1-DE-MINERVA, coordinated by Friedrich-Alexander-University Erlangen...

  16. An uncertainty inventory demonstration - a primary step in uncertainty quantification

    Energy Technology Data Exchange (ETDEWEB)

    Langenbrunner, James R. [Los Alamos National Laboratory; Booker, Jane M [Los Alamos National Laboratory; Hemez, Francois M [Los Alamos National Laboratory; Salazar, Issac F [Los Alamos National Laboratory; Ross, Timothy J [UNM

    2009-01-01

    Tools, methods, and theories for assessing and quantifying uncertainties vary by application. Uncertainty quantification tasks have unique desiderata and circumstances. To realistically assess uncertainty requires the engineer/scientist to specify mathematical models, the physical phenomena of interest, and the theory or framework for assessments. For example, Probabilistic Risk Assessment (PRA) specifically identifies uncertainties using probability theory, and therefore, PRA's lack formal procedures for quantifying uncertainties that are not probabilistic. The Phenomena Identification and Ranking Technique (PIRT) proceeds by ranking phenomena using scoring criteria that results in linguistic descriptors, such as importance ranked with words, 'High/Medium/Low.' The use of words allows PIRT to be flexible, but the analysis may then be difficult to combine with other uncertainty theories. We propose that a necessary step for the development of a procedure or protocol for uncertainty quantification (UQ) is the application of an Uncertainty Inventory. An Uncertainty Inventory should be considered and performed in the earliest stages of UQ.

  17. Structural Uncertainty in Antarctic sea ice simulations

    Science.gov (United States)

    Schneider, D. P.

    2016-12-01

    The inability of the vast majority of historical climate model simulations to reproduce the observed increase in Antarctic sea ice has motivated many studies about the quality of the observational record, the role of natural variability versus forced changes, and the possibility of missing or inadequate forcings in the models (such as freshwater discharge from thinning ice shelves or an inadequate magnitude of stratospheric ozone depletion). In this presentation I will highlight another source of uncertainty that has received comparatively little attention: Structural uncertainty, that is, the systematic uncertainty in simulated sea ice trends that arises from model physics and mean-state biases. Using two large ensembles of experiments from the Community Earth System Model (CESM), I will show that the model is predisposed towards producing negative Antarctic sea ice trends during 1979-present, and that this outcome is not simply because the model's decadal variability is out-of-synch with that in nature. In the "Tropical Pacific Pacemaker" ensemble, in which observed tropical Pacific SST anomalies are prescribed, the model produces very realistic atmospheric circulation trends over the Southern Ocean, yet the sea ice trend is negative in every ensemble member. However, if the ensemble-mean trend (commonly interpreted as the forced response) is removed, some ensemble members show a sea ice increase that is very similar to the observed. While this results does confirm the important role of natural variability, it also suggests a strong bias in the forced response. I will discuss the reasons for this systematic bias and explore possible remedies. This an important problem to solve because projections of 21st -Century changes in the Antarctic climate system (including ice sheet surface mass balance changes and related changes in the sea level budget) have a strong dependence on the mean state of and changes in the Antarctic sea ice cover. This problem is not unique to

  18. Uncertainty and error in complex plasma chemistry models

    Science.gov (United States)

    Turner, Miles M.

    2015-06-01

    Chemistry models that include dozens of species and hundreds to thousands of reactions are common in low-temperature plasma physics. The rate constants used in such models are uncertain, because they are obtained from some combination of experiments and approximate theories. Since the predictions of these models are a function of the rate constants, these predictions must also be uncertain. However, systematic investigations of the influence of uncertain rate constants on model predictions are rare to non-existent. In this work we examine a particular chemistry model, for helium-oxygen plasmas. This chemistry is of topical interest because of its relevance to biomedical applications of atmospheric pressure plasmas. We trace the primary sources for every rate constant in the model, and hence associate an error bar (or equivalently, an uncertainty) with each. We then use a Monte Carlo procedure to quantify the uncertainty in predicted plasma species densities caused by the uncertainty in the rate constants. Under the conditions investigated, the range of uncertainty in most species densities is a factor of two to five. However, the uncertainty can vary strongly for different species, over time, and with other plasma conditions. There are extreme (pathological) cases where the uncertainty is more than a factor of ten. One should therefore be cautious in drawing any conclusion from plasma chemistry modelling, without first ensuring that the conclusion in question survives an examination of the related uncertainty.

  19. A Bayesian Algorithm for Assessing Uncertainty in Radionuclide Source Terms

    Science.gov (United States)

    Robins, Peter

    2015-04-01

    Inferring source term parameters for a radionuclide release is difficult, due to the large uncertainties in forward dispersion modelling as a consequence of imperfect knowledge pertaining to wind vector fields and turbulent diffusion in the Earth's atmosphere. Additional sources of error include the radionuclide measurements obtained from sensors. These measurements may either be subject to random fluctuations or are simple indications that the true, unobserved quantity is below a detection limit. Consequent large reconstruction uncertainties can render a "best" estimate meaningless. A Markov Chain Monte Carlo (MCMC) Bayesian Algorithm is presented that attempts to account for uncertainties in atmospheric transport modelling and radionuclide sensor measurements to quantify uncertainties in radionuclide release source term parameters. Prior probability distributions are created for likely release locations at existing nuclear facilities and seismic events. Likelihood models are constructed using CTBTO adjoint modelling output and probability distributions of sensor response. Samples from the resulting multi-isotope source term parameters posterior probability distribution are generated that can be used to make probabilistic statements about the source term. Examples are given of marginal probability distributions obtained from simulated sensor data. The consequences of errors in numerical weather prediction wind fields are demonstrated with a reconstruction of the Fukushima nuclear reactor accident from International Monitoring System radionuclide particulate sensor data.

  20. Simultaneous EEG Source and Forward Model Reconstruction (SOFOMORE) using a Hierarchical Bayesian Approach

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Mørup, Morten; Winther, Ole

    2011-01-01

    We present an approach to handle forward model uncertainty for EEG source reconstruction. A stochastic forward model representation is motivated by the many random contributions to the path from sources to measurements including the tissue conductivity distribution, the geometry of the cortical...... models. Analysis of simulated and real EEG data provide evidence that reconstruction of the forward model leads to improved source estimates....

  1. Performance of muon reconstruction including Alignment Position Errors for 2016 Collision Data

    CERN Document Server

    CMS Collaboration

    2016-01-01

    From 2016 Run muon reconstruction is using non-zero Alignment Position Errors to account for the residual uncertainties of muon chambers' positions. Significant improvements are obtained in particular for the startup phase after opening/closing the muon detector. Performance results are presented for real data and MC simulations, related to both the offline reconstruction and the High-Level Trigger.

  2. Additivity of entropic uncertainty relations

    Directory of Open Access Journals (Sweden)

    René Schwonnek

    2018-03-01

    Full Text Available We consider the uncertainty between two pairs of local projective measurements performed on a multipartite system. We show that the optimal bound in any linear uncertainty relation, formulated in terms of the Shannon entropy, is additive. This directly implies, against naive intuition, that the minimal entropic uncertainty can always be realized by fully separable states. Hence, in contradiction to proposals by other authors, no entanglement witness can be constructed solely by comparing the attainable uncertainties of entangled and separable states. However, our result gives rise to a huge simplification for computing global uncertainty bounds as they now can be deduced from local ones. Furthermore, we provide the natural generalization of the Maassen and Uffink inequality for linear uncertainty relations with arbitrary positive coefficients.

  3. Uncertainty Management and Sensitivity Analysis

    DEFF Research Database (Denmark)

    Georgiadis, Stylianos; Fantke, Peter

    2017-01-01

    Uncertainty is always there and LCA is no exception to that. The presence of uncertainties of different types and from numerous sources in LCA results is a fact, but managing them allows to quantify and improve the precision of a study and the robustness of its conclusions. LCA practice sometimes...... suffers from an imbalanced perception of uncertainties, justifying modelling choices and omissions. Identifying prevalent misconceptions around uncertainties in LCA is a central goal of this chapter, aiming to establish a positive approach focusing on the advantages of uncertainty management. The main...... objectives of this chapter are to learn how to deal with uncertainty in the context of LCA, how to quantify it, interpret and use it, and how to communicate it. The subject is approached more holistically than just focusing on relevant statistical methods or purely mathematical aspects. This chapter...

  4. Uncertainties of Molecular Structural Parameters

    International Nuclear Information System (INIS)

    Császár, Attila G.

    2014-01-01

    performed. Simply, there are significant disagreements between the same bond lengths measured by different techniques. These disagreements are, however, systematic and can be computed via techniques of quantum chemistry which deal not only with the motions of the electrons (electronic structure theory) but also with the often large amplitude motions of the nuclei. As to the relevant quantum chemical computations, since about 1970 electronic structure theory has become able to make quantitative predictions and thus challenge (or even overrule) many experiments. Nevertheless, quantitative agreement of quantum chemical results with experiment can only be expected when the motions of the atoms are also considered. In the fourth age of quantum chemistry we are living in an era where one can bridge quantitatively the gap between ‘effective’, experimental and ‘equilibrium’, computed structures at even elevated temperatures of interest thus minimizing any real uncertainties of structural parameters. The connections mentioned are extremely important as they help to understand the true uncertainty of measured structural parameters. Traditionally it is microwave (MW) and millimeterwave (MMW) spectroscopy, as well as gas-phase electron diffraction (GED), which yielded the most accurate structural parameters of molecules. The accuracy of the MW and GED experiments approached about 0.001Å and 0.1º under ideal circumstances, worse, sometimes considerably worse, in less than ideal and much more often encountered situations. Quantum chemistry can define both highly accurate equilibrium (so-called Born-Oppenheimer, r e BO , and semiexperimental, r e SE ) structures and, via detailed investigation of molecular motions, accurate temperature-dependent rovibrationally averaged structures. Determining structures is still a rich field for research, understanding the measured or computed uncertainties of structures and structural parameters is still a challenge but there are firm and well

  5. Impact of discharge data uncertainty on nutrient load uncertainty

    Science.gov (United States)

    Westerberg, Ida; Gustavsson, Hanna; Sonesten, Lars

    2016-04-01

    Uncertainty in the rating-curve model of the stage-discharge relationship leads to uncertainty in discharge time series. These uncertainties in turn affect many other analyses based on discharge data, such as nutrient load estimations. It is important to understand how large the impact of discharge data uncertainty is on such analyses, since they are often used as the basis to take important environmental management decisions. In the Baltic Sea basin, nutrient load estimates from river mouths are a central information basis for managing and reducing eutrophication in the Baltic Sea. In this study we investigated rating curve uncertainty and its propagation to discharge data uncertainty and thereafter to uncertainty in the load of phosphorous and nitrogen for twelve Swedish river mouths. We estimated rating curve uncertainty using the Voting Point method, which accounts for random and epistemic errors in the stage-discharge relation and allows drawing multiple rating-curve realisations consistent with the total uncertainty. We sampled 40,000 rating curves, and for each sampled curve we calculated a discharge time series from 15-minute water level data for the period 2005-2014. Each discharge time series was then aggregated to daily scale and used to calculate the load of phosphorous and nitrogen from linearly interpolated monthly water samples, following the currently used methodology for load estimation. Finally the yearly load estimates were calculated and we thus obtained distributions with 40,000 load realisations per year - one for each rating curve. We analysed how the rating curve uncertainty propagated to the discharge time series at different temporal resolutions, and its impact on the yearly load estimates. Two shorter periods of daily water quality sampling around the spring flood peak allowed a comparison of load uncertainty magnitudes resulting from discharge data with those resulting from the monthly water quality sampling.

  6. Decommissioning funding: ethics, implementation, uncertainties

    International Nuclear Information System (INIS)

    2006-01-01

    This status report on Decommissioning Funding: Ethics, Implementation, Uncertainties also draws on the experience of the NEA Working Party on Decommissioning and Dismantling (WPDD). The report offers, in a concise form, an overview of relevant considerations on decommissioning funding mechanisms with regard to ethics, implementation and uncertainties. Underlying ethical principles found in international agreements are identified, and factors influencing the accumulation and management of funds for decommissioning nuclear facilities are discussed together with the main sources of uncertainties of funding systems. (authors)

  7. Uncertainty analysis of environmental models

    International Nuclear Information System (INIS)

    Monte, L.

    1990-01-01

    In the present paper an evaluation of the output uncertainty of an environmental model for assessing the transfer of 137 Cs and 131 I in the human food chain are carried out on the basis of a statistical analysis of data reported by the literature. The uncertainty analysis offers the oppotunity of obtaining some remarkable information about the uncertainty of models predicting the migration of non radioactive substances in the environment mainly in relation to the dry and wet deposition

  8. Chemical model reduction under uncertainty

    KAUST Repository

    Najm, Habib

    2016-01-05

    We outline a strategy for chemical kinetic model reduction under uncertainty. We present highlights of our existing deterministic model reduction strategy, and describe the extension of the formulation to include parametric uncertainty in the detailed mechanism. We discuss the utility of this construction, as applied to hydrocarbon fuel-air kinetics, and the associated use of uncertainty-aware measures of error between predictions from detailed and simplified models.

  9. Reliability analysis under epistemic uncertainty

    International Nuclear Information System (INIS)

    Nannapaneni, Saideep; Mahadevan, Sankaran

    2016-01-01

    This paper proposes a probabilistic framework to include both aleatory and epistemic uncertainty within model-based reliability estimation of engineering systems for individual limit states. Epistemic uncertainty is considered due to both data and model sources. Sparse point and/or interval data regarding the input random variables leads to uncertainty regarding their distribution types, distribution parameters, and correlations; this statistical uncertainty is included in the reliability analysis through a combination of likelihood-based representation, Bayesian hypothesis testing, and Bayesian model averaging techniques. Model errors, which include numerical solution errors and model form errors, are quantified through Gaussian process models and included in the reliability analysis. The probability integral transform is used to develop an auxiliary variable approach that facilitates a single-level representation of both aleatory and epistemic uncertainty. This strategy results in an efficient single-loop implementation of Monte Carlo simulation (MCS) and FORM/SORM techniques for reliability estimation under both aleatory and epistemic uncertainty. Two engineering examples are used to demonstrate the proposed methodology. - Highlights: • Epistemic uncertainty due to data and model included in reliability analysis. • A novel FORM-based approach proposed to include aleatory and epistemic uncertainty. • A single-loop Monte Carlo approach proposed to include both types of uncertainties. • Two engineering examples used for illustration.

  10. Money and Growth under Uncertainty.

    Science.gov (United States)

    ECONOMICS, UNCERTAINTY), (*MONEY, DECISION MAKING), (* BEHAVIOR , MATHEMATICAL MODELS), PRODUCTION, CONSUMPTION , EQUILIBRIUM(PHYSIOLOGY), GROWTH(PHYSIOLOGY), MANAGEMENT ENGINEERING, PROBABILITY, INTEGRAL EQUATIONS, THESES

  11. Supporting qualified database for uncertainty evaluation

    International Nuclear Information System (INIS)

    Petruzzi, A.; Fiori, F.; Kovtonyuk, A.; D'Auria, F.

    2012-01-01

    Uncertainty evaluation constitutes a key feature of BEPU (Best Estimate Plus Uncertainty) process. The uncertainty can be the result of a Monte Carlo type analysis involving input uncertainty parameters or the outcome of a process involving the use of experimental data and connected code calculations. Those uncertainty methods are discussed in several papers and guidelines (IAEA-SRS-52, OECD/NEA BEMUSE reports). The present paper aims at discussing the role and the depth of the analysis required for merging from one side suitable experimental data and on the other side qualified code calculation results. This aspect is mostly connected with the second approach for uncertainty mentioned above, but it can be used also in the framework of the first approach. Namely, the paper discusses the features and structure of the database that includes the following kinds of documents: 1. The' RDS-facility' (Reference Data Set for the selected facility): this includes the description of the facility, the geometrical characterization of any component of the facility, the instrumentations, the data acquisition system, the evaluation of pressure losses, the physical properties of the material and the characterization of pumps, valves and heat losses; 2. The 'RDS-test' (Reference Data Set for the selected test of the facility): this includes the description of the main phenomena investigated during the test, the configuration of the facility for the selected test (possible new evaluation of pressure and heat losses if needed) and the specific boundary and initial conditions; 3. The 'QR' (Qualification Report) of the code calculation results: this includes the description of the nodalization developed following a set of homogeneous techniques, the achievement of the steady state conditions and the qualitative and quantitative analysis of the transient with the characterization of the Relevant Thermal-Hydraulics Aspects (RTA); 4. The EH (Engineering Handbook) of the input nodalization

  12. Supporting Qualified Database for Uncertainty Evaluation

    International Nuclear Information System (INIS)

    Petruzzi, A.; Fiori, F.; Kovtonyuk, A.; Lisovyy, O.; D'Auria, F.

    2013-01-01

    Uncertainty evaluation constitutes a key feature of BEPU (Best Estimate Plus Uncertainty) process. The uncertainty can be the result of a Monte Carlo type analysis involving input uncertainty parameters or the outcome of a process involving the use of experimental data and connected code calculations. Those uncertainty methods are discussed in several papers and guidelines (IAEA-SRS-52, OECD/NEA BEMUSE reports). The present paper aims at discussing the role and the depth of the analysis required for merging from one side suitable experimental data and on the other side qualified code calculation results. This aspect is mostly connected with the second approach for uncertainty mentioned above, but it can be used also in the framework of the first approach. Namely, the paper discusses the features and structure of the database that includes the following kinds of documents: 1. The 'RDS-facility' (Reference Data Set for the selected facility): this includes the description of the facility, the geometrical characterization of any component of the facility, the instrumentations, the data acquisition system, the evaluation of pressure losses, the physical properties of the material and the characterization of pumps, valves and heat losses; 2. The 'RDS-test' (Reference Data Set for the selected test of the facility): this includes the description of the main phenomena investigated during the test, the configuration of the facility for the selected test (possible new evaluation of pressure and heat losses if needed) and the specific boundary and initial conditions; 3. The 'QP' (Qualification Report) of the code calculation results: this includes the description of the nodalization developed following a set of homogeneous techniques, the achievement of the steady state conditions and the qualitative and quantitative analysis of the transient with the characterization of the Relevant Thermal-Hydraulics Aspects (RTA); 4. The EH (Engineering Handbook) of the input nodalization

  13. Analysis of Infiltration Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    R. McCurley

    2003-10-27

    The primary objectives of this uncertainty analysis are: (1) to develop and justify a set of uncertain parameters along with associated distributions; and (2) to use the developed uncertain parameter distributions and the results from selected analog site calculations done in ''Simulation of Net Infiltration for Modern and Potential Future Climates'' (USGS 2001 [160355]) to obtain the net infiltration weighting factors for the glacial transition climate. These weighting factors are applied to unsaturated zone (UZ) flow fields in Total System Performance Assessment (TSPA), as outlined in the ''Total System Performance Assessment-License Application Methods and Approach'' (BSC 2002 [160146], Section 3.1) as a method for the treatment of uncertainty. This report is a scientific analysis because no new and mathematical physical models are developed herein, and it is based on the use of the models developed in or for ''Simulation of Net Infiltration for Modern and Potential Future Climates'' (USGS 2001 [160355]). Any use of the term model refers to those developed in the infiltration numerical model report. TSPA License Application (LA) has included three distinct climate regimes in the comprehensive repository performance analysis for Yucca Mountain: present-day, monsoon, and glacial transition. Each climate regime was characterized using three infiltration-rate maps, including a lower- and upper-bound and a mean value (equal to the average of the two boundary values). For each of these maps, which were obtained based on analog site climate data, a spatially averaged value was also calculated by the USGS. For a more detailed discussion of these infiltration-rate maps, see ''Simulation of Net Infiltration for Modern and Potential Future Climates'' (USGS 2001 [160355]). For this Scientific Analysis Report, spatially averaged values were calculated for the lower-bound, mean, and upper

  14. Climate Certainties and Uncertainties

    International Nuclear Information System (INIS)

    Morel, Pierre

    2012-01-01

    In issue 380 of Futuribles in December 2011, Antonin Pottier analysed in detail the workings of what is today termed 'climate scepticism' - namely the propensity of certain individuals to contest the reality of climate change on the basis of pseudo-scientific arguments. He emphasized particularly that what fuels the debate on climate change is, largely, the degree of uncertainty inherent in the consequences to be anticipated from observation of the facts, not the description of the facts itself. In his view, the main aim of climate sceptics is to block the political measures for combating climate change. However, since they do not admit to this political posture, they choose instead to deny the scientific reality. This month, Futuribles complements this socio-psychological analysis of climate-sceptical discourse with an - in this case, wholly scientific - analysis of what we know (or do not know) about climate change on our planet. Pierre Morel gives a detailed account of the state of our knowledge in the climate field and what we are able to predict in the medium/long-term. After reminding us of the influence of atmospheric meteorological processes on the climate, he specifies the extent of global warming observed since 1850 and the main origin of that warming, as revealed by the current state of knowledge: the increase in the concentration of greenhouse gases. He then describes the changes in meteorological regimes (showing also the limits of climate simulation models), the modifications of hydrological regimes, and also the prospects for rises in sea levels. He also specifies the mechanisms that may potentially amplify all these phenomena and the climate disasters that might ensue. Lastly, he shows what are the scientific data that cannot be disregarded, the consequences of which are now inescapable (melting of the ice-caps, rises in sea level etc.), the only remaining uncertainty in this connection being the date at which these things will happen. 'In this

  15. Total Measurement Uncertainty for the Plutonium Finishing Plant (PFP) Segmented Gamma Scan Assay System

    CERN Document Server

    Fazzari, D M

    2001-01-01

    This report presents the results of an evaluation of the Total Measurement Uncertainty (TMU) for the Canberra manufactured Segmented Gamma Scanner Assay System (SGSAS) as employed at the Hanford Plutonium Finishing Plant (PFP). In this document, TMU embodies the combined uncertainties due to all of the individual random and systematic sources of measurement uncertainty. It includes uncertainties arising from corrections and factors applied to the analysis of transuranic waste to compensate for inhomogeneities and interferences from the waste matrix and radioactive components. These include uncertainty components for any assumptions contained in the calibration of the system or computation of the data. Uncertainties are propagated at 1 sigma. The final total measurement uncertainty value is reported at the 95% confidence level. The SGSAS is a gamma assay system that is used to assay plutonium and uranium waste. The SGSAS system can be used in a stand-alone mode to perform the NDA characterization of a containe...

  16. Managing uncertainty in collaborative robotics engineering projects: The influence of task structure and peer interaction

    Science.gov (United States)

    Jordan, Michelle

    Uncertainty is ubiquitous in life, and learning is an activity particularly likely to be fraught with uncertainty. Previous research suggests that students and teachers struggle in their attempts to manage the psychological experience of uncertainty and that students often fail to experience uncertainty when uncertainty may be warranted. Yet, few educational researchers have explicitly and systematically observed what students do, their behaviors and strategies, as they attempt to manage the uncertainty they experience during academic tasks. In this study I investigated how students in one fifth grade class managed uncertainty they experienced while engaged in collaborative robotics engineering projects, focusing particularly on how uncertainty management was influenced by task structure and students' interactions with their peer collaborators. The study was initiated at the beginning of instruction related to robotics engineering and preceded through the completion of several long-term collaborative robotics projects, one of which was a design project. I relied primarily on naturalistic observation of group sessions, semi-structured interviews, and collection of artifacts. My data analysis was inductive and interpretive, using qualitative discourse analysis techniques and methods of grounded theory. Three theoretical frameworks influenced the conception and design of this study: community of practice, distributed cognition, and complex adaptive systems theory. Uncertainty was a pervasive experience for the students collaborating in this instructional context. Students experienced uncertainty related to the project activity and uncertainty related to the social system as they collaborated to fulfill the requirements of their robotics engineering projects. They managed their uncertainty through a diverse set of tactics for reducing, ignoring, maintaining, and increasing uncertainty. Students experienced uncertainty from more different sources and used more and

  17. Uncertainty vs. Information (Invited)

    Science.gov (United States)

    Nearing, Grey

    2017-04-01

    Information theory is the branch of logic that describes how rational epistemic states evolve in the presence of empirical data (Knuth, 2005), and any logic of science is incomplete without such a theory. Developing a formal philosophy of science that recognizes this fact results in essentially trivial solutions to several longstanding problems are generally considered intractable, including: • Alleviating the need for any likelihood function or error model. • Derivation of purely logical falsification criteria for hypothesis testing. • Specification of a general quantitative method for process-level model diagnostics. More generally, I make the following arguments: 1. Model evaluation should not proceed by quantifying and/or reducing error or uncertainty, and instead should be approached as a problem of ensuring that our models contain as much information as our experimental data. I propose that the latter is the only question a scientist actually has the ability to ask. 2. Instead of building geophysical models as solutions to differential equations that represent conservation laws, we should build models as maximum entropy distributions constrained by conservation symmetries. This will allow us to derive predictive probabilities directly from first principles. Knuth, K. H. (2005) 'Lattice duality: The origin of probability and entropy', Neurocomputing, 67, pp. 245-274.

  18. Pandemic influenza: certain uncertainties.

    Science.gov (United States)

    Morens, David M; Taubenberger, Jeffery K

    2011-09-01

    For at least five centuries, major epidemics and pandemics of influenza have occurred unexpectedly and at irregular intervals. Despite the modern notion that pandemic influenza is a distinct phenomenon obeying such constant (if incompletely understood) rules such as dramatic genetic change, cyclicity, "wave" patterning, virus replacement, and predictable epidemic behavior, much evidence suggests the opposite. Although there is much that we know about pandemic influenza, there appears to be much more that we do not know. Pandemics arise as a result of various genetic mechanisms, have no predictable patterns of mortality among different age groups, and vary greatly in how and when they arise and recur. Some are followed by new pandemics, whereas others fade gradually or abruptly into long-term endemicity. Human influenza pandemics have been caused by viruses that evolved singly or in co-circulation with other pandemic virus descendants and often have involved significant transmission between, or establishment of, viral reservoirs within other animal hosts. In recent decades, pandemic influenza has continued to produce numerous unanticipated events that expose fundamental gaps in scientific knowledge. Influenza pandemics appear to be not a single phenomenon but a heterogeneous collection of viral evolutionary events whose similarities are overshadowed by important differences, the determinants of which remain poorly understood. These uncertainties make it difficult to predict influenza pandemics and, therefore, to adequately plan to prevent them. Published 2011. This article is a US Government work and is in the public domain in the USA.

  19. Pandemic influenza: certain uncertainties

    Science.gov (United States)

    Morens, David M.; Taubenberger, Jeffery K.

    2011-01-01

    SUMMARY For at least five centuries, major epidemics and pandemics of influenza have occurred unexpectedly and at irregular intervals. Despite the modern notion that pandemic influenza is a distinct phenomenon obeying such constant (if incompletely understood) rules such as dramatic genetic change, cyclicity, “wave” patterning, virus replacement, and predictable epidemic behavior, much evidence suggests the opposite. Although there is much that we know about pandemic influenza, there appears to be much more that we do not know. Pandemics arise as a result of various genetic mechanisms, have no predictable patterns of mortality among different age groups, and vary greatly in how and when they arise and recur. Some are followed by new pandemics, whereas others fade gradually or abruptly into long-term endemicity. Human influenza pandemics have been caused by viruses that evolved singly or in co-circulation with other pandemic virus descendants and often have involved significant transmission between, or establishment of, viral reservoirs within other animal hosts. In recent decades, pandemic influenza has continued to produce numerous unanticipated events that expose fundamental gaps in scientific knowledge. Influenza pandemics appear to be not a single phenomenon but a heterogeneous collection of viral evolutionary events whose similarities are overshadowed by important differences, the determinants of which remain poorly understood. These uncertainties make it difficult to predict influenza pandemics and, therefore, to adequately plan to prevent them. PMID:21706672

  20. Sustainability and uncertainty

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint

    2007-01-01

    The widely used concept of sustainability is seldom precisely defined, and its clarification involves making up one's mind about a range of difficult questions. One line of research (bottom-up) takes sustaining a system over time as its starting point and then infers prescriptions from this requi......The widely used concept of sustainability is seldom precisely defined, and its clarification involves making up one's mind about a range of difficult questions. One line of research (bottom-up) takes sustaining a system over time as its starting point and then infers prescriptions from...... and infers prescriptions from this requirement. These two approaches may conflict, and in this conflict the top-down approach has the upper hand, ethically speaking. However, the implicit goal in the top-down approach of justice between generations needs to be refined in several dimensions. But even given...... a clarified ethical goal, disagreements can arise. At present we do not know what substitutions will be possible in the future. This uncertainty clearly affects the prescriptions that follow from the measure of sustainability. Consequently, decisions about how to make future agriculture sustainable...

  1. A commentary on model uncertainty

    International Nuclear Information System (INIS)

    Apostolakis, G.

    1994-01-01

    A framework is proposed for the identification of model and parameter uncertainties in risk assessment models. Two cases are distinguished; in the first case, a set of mutually exclusive and exhaustive hypotheses (models) can be formulated, while, in the second, only one reference model is available. The relevance of this formulation to decision making and the communication of uncertainties is discussed

  2. Hydrology, society, change and uncertainty

    Science.gov (United States)

    Koutsoyiannis, Demetris

    2014-05-01

    Heraclitus, who predicated that "panta rhei", also proclaimed that "time is a child playing, throwing dice". Indeed, change and uncertainty are tightly connected. The type of change that can be predicted with accuracy is usually trivial. Also, decision making under certainty is mostly trivial. The current acceleration of change, due to unprecedented human achievements in technology, inevitably results in increased uncertainty. In turn, the increased uncertainty makes the society apprehensive about the future, insecure and credulous to a developing future-telling industry. Several scientific disciplines, including hydrology, tend to become part of this industry. The social demand for certainties, no matter if these are delusional, is combined by a misconception in the scientific community confusing science with uncertainty elimination. However, recognizing that uncertainty is inevitable and tightly connected with change will help to appreciate the positive sides of both. Hence, uncertainty becomes an important object to study, understand and model. Decision making under uncertainty, developing adaptability and resilience for an uncertain future, and using technology and engineering means for planned change to control the environment are important and feasible tasks, all of which will benefit from advancements in the Hydrology of Uncertainty.

  3. Uncertainty and climate change policy

    OpenAIRE

    Quiggin, John

    2008-01-01

    The paper consists of a summary of the main sources of uncertainty about climate change, and a discussion of the major implications for economic analysis and the formulation of climate policy. Uncertainty typically implies that the optimal policy is more risk-averse than otherwise, and therefore enhances the case for action to mitigate climate change.

  4. Relational uncertainty in service dyads

    DEFF Research Database (Denmark)

    Kreye, Melanie

    2017-01-01

    in service dyads and how they resolve it through suitable organisational responses to increase the level of service quality. Design/methodology/approach: We apply the overall logic of Organisational Information-Processing Theory (OIPT) and present empirical insights from two industrial case studies collected...... via semi-structured interviews and secondary data. Findings: The findings suggest that relational uncertainty is caused by the partner’s unresolved organisational uncertainty, i.e. their lacking capabilities to deliver or receive (parts of) the service. Furthermore, we found that resolving...... the relational uncertainty increased the functional quality while resolving the partner’s organisational uncertainty increased the technical quality of the delivered service. Originality: We make two contributions. First, we introduce relational uncertainty to the OM literature as the inability to predict...

  5. A comparison of ancestral state reconstruction methods for quantitative characters.

    Science.gov (United States)

    Royer-Carenzi, Manuela; Didier, Gilles

    2016-09-07

    Choosing an ancestral state reconstruction method among the alternatives available for quantitative characters may be puzzling. We present here a comparison of seven of them, namely the maximum likelihood, restricted maximum likelihood, generalized least squares under Brownian, Brownian-with-trend and Ornstein-Uhlenbeck models, phylogenetic independent contrasts and squared parsimony methods. A review of the relations between these methods shows that the maximum likelihood, the restricted maximum likelihood and the generalized least squares under Brownian model infer the same ancestral states and can only be distinguished by the distributions accounting for the reconstruction uncertainty which they provide. The respective accuracy of the methods is assessed over character evolution simulated under a Brownian motion with (and without) directional or stabilizing selection. We give the general form of ancestral state distributions conditioned on leaf states under the simulation models. Ancestral distributions are used first, to give a theoretical lower bound of the expected reconstruction error, and second, to develop an original evaluation scheme which is more efficient than comparing the reconstructed and the simulated states. Our simulations show that: (i) the distributions of the reconstruction uncertainty provided by the methods generally make sense (some more than others); (ii) it is essential to detect the presence of an evolutionary trend and to choose a reconstruction method accordingly; (iii) all the methods show good performances on characters under stabilizing selection; (iv) without trend or stabilizing selection, the maximum likelihood method is generally the most accurate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Technical Note: Probabilistically constraining proxy age–depth models within a Bayesian hierarchical reconstruction model

    Directory of Open Access Journals (Sweden)

    J. P. Werner

    2015-03-01

    Full Text Available Reconstructions of the late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting, such as measurements of tree rings, ice cores, and varved lake sediments. Considerable advances could be achieved if time-uncertain proxies were able to be included within these multiproxy reconstructions, and if time uncertainties were recognized and correctly modeled for proxies commonly treated as free of age model errors. Current approaches for accounting for time uncertainty are generally limited to repeating the reconstruction using each one of an ensemble of age models, thereby inflating the final estimated uncertainty – in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space–time covariance structure of the climate to re-weight the possible age models. Here, we demonstrate how Bayesian hierarchical climate reconstruction models can be augmented to account for time-uncertain proxies. Critically, although a priori all age models are given equal probability of being correct, the probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments show that updating the age model probabilities decreases uncertainty in the resulting reconstructions, as compared with the current de facto standard of sampling over all age models, provided there is sufficient information from other data sources in the spatial region of the time-uncertain proxy. This approach can readily be generalized to non-layer-counted proxies, such as those derived from marine sediments.

  7. Entropic uncertainty relation based on generalized uncertainty principle

    Science.gov (United States)

    Hsu, Li-Yi; Kawamoto, Shoichi; Wen, Wen-Yu

    2017-09-01

    We explore the modification of the entropic formulation of uncertainty principle in quantum mechanics which measures the incompatibility of measurements in terms of Shannon entropy. The deformation in question is the type so-called generalized uncertainty principle that is motivated by thought experiments in quantum gravity and string theory and is characterized by a parameter of Planck scale. The corrections are evaluated for small deformation parameters by use of the Gaussian wave function and numerical calculation. As the generalized uncertainty principle has proven to be useful in the study of the quantum nature of black holes, this study would be a step toward introducing an information theory viewpoint to black hole physics.

  8. Anterior Cruciate Ligament Reconstruction Rehabilitation

    Science.gov (United States)

    Wright, Rick W.; Haas, Amanda K.; Anderson, Joy; Calabrese, Gary; Cavanaugh, John; Hewett, Timothy E.; Lorring, Dawn; McKenzie, Christopher; Preston, Emily; Williams, Glenn; Amendola, Annunziato

    2015-01-01

    Context: Anterior cruciate ligament (ACL) reconstruction rehabilitation has evolved over the past 20 years. This evolution has been driven by a variety of level 1 and level 2 studies. Evidence Acquisition: The MOON Group is a collection of orthopaedic surgeons who have developed a prospective longitudinal cohort of the ACL reconstruction patients. To standardize the management of these patients, we developed, in conjunction with our physical therapy committee, an evidence-based rehabilitation guideline. Study Design: Clinical review. Level of Evidence: Level 2. Results: This review was based on 2 systematic reviews of level 1 and level 2 studies. Recently, the guideline was updated by a new review. Continuous passive motion did not improve ultimate motion. Early weightbearing decreases patellofemoral pain. Postoperative rehabilitative bracing did not improve swelling, pain range of motion, or safety. Open chain quadriceps activity can begin at 6 weeks. Conclusion: High-level evidence exists to determine appropriate ACL rehabilitation guidelines. Utilizing this protocol follows the best available evidence. PMID:26131301

  9. Uncertainty aggregation and reduction in structure-material performance prediction

    Science.gov (United States)

    Hu, Zhen; Mahadevan, Sankaran; Ao, Dan

    2018-02-01

    An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.

  10. Evaluation of uncertainty in the Norwegian emission inventory

    Energy Technology Data Exchange (ETDEWEB)

    Rypdal, Kristin

    1999-10-01

    The uncertainty in estimating discharges is systematically examined for all source categories in the IPCC standard report. The uncertainty in the values is estimated quantitatively. This indicates an uncertainty in the yearly discharge of climatic gases in Norway of {+-} 10-20 %. The methane discharge from waste deposits, laughing gas from agriculture and perfluoric carbons from the aluminium production contribute to the major uncertainties in the climatic gas account. The uncertainty tendency (percentage change from a basic year to a final year) is estimated by aid of sensitivity analysis. The analysis indicate that a reduction or increase in the discharge of climatic gases in percentage (expressed in CO{sub 2} equivalents) compared to a basic year is relatively unaffected by mistakes in level and tendency for the single climatic gases. Exception exists for cases where the discharge of a climatic gas or a discharge from a single source that show substantially different tendencies from the tendency of the total discharges. A complete evaluation indicates that the uncertainty in tendency is more than {+-} 1 percentage point for the period of 1990 to 2010. The major routines used for avoiding mistakes in the account are assumed to be comparison with earlier estimates, with corresponding estimates from other counties and comparison of different calculation methods. 5 figs., 52 tabs., 12 refs.

  11. Uncertainty in Simulating Wheat Yields Under Climate Change

    Science.gov (United States)

    Asseng, S.; Ewert, F.; Rosenzweig, Cynthia; Jones, J. W.; Hatfield, J. W.; Ruane, A. C.; Boote, K. J.; Thornburn, P. J.; Rotter, R. P.; Cammarano, D.; hide

    2013-01-01

    Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1,3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.

  12. Interpretation of the peak areas in gamma-ray spectra that have a large relative uncertainty

    International Nuclear Information System (INIS)

    Korun, M.; Maver Modec, P.; Vodenik, B.

    2012-01-01

    Empirical evidence is provided that the areas of peaks having a relative uncertainty in excess of 30% are overestimated. This systematic influence is of a statistical nature and originates in way the peak-analyzing routine recognizes the small peaks. It is not easy to detect this influence since it is smaller than the peak-area uncertainty. However, the systematic influence can be revealed in repeated measurements under the same experimental conditions, e.g., in background measurements. To evaluate the systematic influence, background measurements were analyzed with the peak-analyzing procedure described by Korun et al. (2008). The magnitude of the influence depends on the relative uncertainty of the peak area and may amount, in the conditions used in the peak analysis, to a factor of 5 at relative uncertainties exceeding 60%. From the measurements, the probability for type-II errors, as a function of the relative uncertainty of the peak area, was extracted. This probability is near zero below an uncertainty of 30% and rises to 90% at uncertainties exceeding 50%. - Highlights: ► A systematic influence affecting small peak areas in gamma-ray spectra is described. ► The influence originates in the peak locating procedure, using a pre-determined sensitivity. ► The predetermined sensitivity makes peak areas with large uncertainties to be overestimated. ► The influence depends on the relative uncertainty of the number of counts in the peak. ► Corrections exceeding a factor of 3 are attained at peak area uncertainties exceeding 60%.

  13. Error and Uncertainty in High-resolution Quantitative Sediment Budgets

    Science.gov (United States)

    Grams, P. E.; Schmidt, J. C.; Topping, D. J.; Yackulic, C. B.

    2012-12-01

    Sediment budgets are a fundamental tool in fluvial geomorphology. The power of the sediment budget is in the explicit coupling of sediment flux and sediment storage through the Exner equation for bed sediment conservation. Thus, sediment budgets may be calculated either from the divergence of the sediment flux or from measurements of morphologic change. Until recently, sediment budgets were typically calculated using just one of these methods, and often with sparse data. Recent advances in measurement methods for sediment transport have made it possible to measure sediment flux at much higher temporal resolution, while advanced methods for high-resolution topographic and bathymetric mapping have made it possible to measure morphologic change with much greater spatial resolution. Thus, it is now possible to measure all terms of a sediment budget and more thoroughly evaluate uncertainties in measurement methods and sampling strategies. However, measurements of sediment flux and morphologic change involve different types of uncertainty that are encountered over different time and space scales. Three major factors contribute uncertainty to sediment budgets computed from measurements of sediment flux. These are measurement error, the accumulation of error over time, and physical processes that cause systematic bias. In the absence of bias, uncertainty is proportional to measurement error and the ratio of fluxes at the two measurement stations. For example, if the ratio between measured sediment fluxes is more than 0.8, measurement uncertainty must be less than 10 percent in order to calculate a meaningful sediment budget. Systematic bias in measurements of flux can introduce much larger uncertainty. The uncertainties in sediment budgets computed from morphologic measurements fall into three similar categories. These are measurement error, the spatial and temporal propagation of error, and physical processes that cause bias when measurements are interpolated or

  14. Efficient reconstruction of contaminant release history

    Energy Technology Data Exchange (ETDEWEB)

    Alezander, Francis [Los Alamos National Laboratory; Anghel, Marian [Los Alamos National Laboratory; Gulbahce, Natali [NON LANL; Tartakovsky, Daniel [NON LANL

    2009-01-01

    We present a generalized hybrid Monte Carlo (GHMC) method for fast, statistically optimal reconstruction of release histories of reactive contaminants. The approach is applicable to large-scale, strongly nonlinear systems with parametric uncertainties and data corrupted by measurement errors. The use of discrete adjoint equations facilitates numerical implementation of GHMC, without putting any restrictions on the degree of nonlinearity of advection-dispersion-reaction equations that are used to described contaminant transport in the subsurface. To demonstrate the salient features of the proposed algorithm, we identify the spatial extent of a distributed source of contamination from concentration measurements of a reactive solute.

  15. Measurement uncertainty: Friend or foe?

    Science.gov (United States)

    Infusino, Ilenia; Panteghini, Mauro

    2018-02-02

    The definition and enforcement of a reference measurement system, based on the implementation of metrological traceability of patients' results to higher order reference methods and materials, together with a clinically acceptable level of measurement uncertainty, are fundamental requirements to produce accurate and equivalent laboratory results. The uncertainty associated with each step of the traceability chain should be governed to obtain a final combined uncertainty on clinical samples fulfilling the requested performance specifications. It is important that end-users (i.e., clinical laboratory) may know and verify how in vitro diagnostics (IVD) manufacturers have implemented the traceability of their calibrators and estimated the corresponding uncertainty. However, full information about traceability and combined uncertainty of calibrators is currently very difficult to obtain. Laboratory professionals should investigate the need to reduce the uncertainty of the higher order metrological references and/or to increase the precision of commercial measuring systems. Accordingly, the measurement uncertainty should not be considered a parameter to be calculated by clinical laboratories just to fulfil the accreditation standards, but it must become a key quality indicator to describe both the performance of an IVD measuring system and the laboratory itself. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. Model uncertainty in safety assessment

    International Nuclear Information System (INIS)

    Pulkkinen, U.; Huovinen, T.

    1996-01-01

    The uncertainty analyses are an essential part of any risk assessment. Usually the uncertainties of reliability model parameter values are described by probability distributions and the uncertainty is propagated through the whole risk model. In addition to the parameter uncertainties, the assumptions behind the risk models may be based on insufficient experimental observations and the models themselves may not be exact descriptions of the phenomena under analysis. The description and quantification of this type of uncertainty, model uncertainty, is the topic of this report. The model uncertainty is characterized and some approaches to model and quantify it are discussed. The emphasis is on so called mixture models, which have been applied in PSAs. Some of the possible disadvantages of the mixture model are addressed. In addition to quantitative analyses, also qualitative analysis is discussed shortly. To illustrate the models, two simple case studies on failure intensity and human error modeling are described. In both examples, the analysis is based on simple mixture models, which are observed to apply in PSA analyses. (orig.) (36 refs., 6 figs., 2 tabs.)

  17. Uncertainty characterization in the retrieval of an atmospheric point release

    Science.gov (United States)

    Singh, Sarvesh Kumar; Kumar, Pramod; Turbelin, Grégory; Rani, Raj

    2017-03-01

    The study proposes a methodology in a recent inversion technique, called as Renormalization, to characterize the uncertainties in the reconstruction of a point source. The estimates are derived for measuring the inversion error, the degree of model fit towards measurements (model determination coefficient) and the confidence intervals for the retrieved point source parameters (mainly, location and strength). The inversion error is reflected through an angular estimate which measures the deviation between the measured and predicted concentrations. The uncertainty estimation methodology is evaluated for point source reconstruction studies, using real measurements from two field experiments, known as Fusion Field Trials 2007 (FFT07) in flat terrain and Mock Urban Setting Test (MUST) in urban like terrain. In FFT07 and MUST experiments, the point source location is retrieved with an average Euclidean distance of 22 m and 15 m respectively. The source strength is retrieved, on average, within a factor of 1.5 in both the datasets. The inversion error is observed as 24o and 21o in FFT07 and MUST experiment, respectively. The 95% confidence interval estimates show that the uncertainty in the retrieved parameters is relatively large in approximately 50% FFT07 and 30% MUST trials in spite of their closeness towards true source parameters. For a comparative analysis, the interval estimates are also compared with a more general method of uncertainty estimation, Residual Bootstrap Sampling. In most of the trials, we observed that the intervals estimates with the present method are comparable (within 10-20% variations) to bootstrap estimates. The proposed methodology provides near accurate and computationally efficient uncertainty estimates in comparison to the methods based on Hessian and sampling procedures.

  18. Decisions on new product development under uncertainties

    Science.gov (United States)

    Huang, Yeu-Shiang; Liu, Li-Chen; Ho, Jyh-Wen

    2015-04-01

    In an intensively competitive market, developing a new product has become a valuable strategy for companies to establish their market positions and enhance their competitive advantages. Therefore, it is essential to effectively manage the process of new product development (NPD). However, since various problems may arise in NPD projects, managers should set up some milestones and subsequently construct evaluative mechanisms to assess their feasibility. This paper employed the approach of Bayesian decision analysis to deal with the two crucial uncertainties for NPD, which are the future market share and the responses of competitors. The proposed decision process can provide a systematic analytical procedure to determine whether an NPD project should be continued or not under the consideration of whether effective usage is being made of the organisational resources. Accordingly, the proposed decision model can assist the managers in effectively addressing the NPD issue under the competitive market.

  19. FMEA using uncertainty theories and MCDM methods

    CERN Document Server

    Liu, Hu-Chen

    2016-01-01

    This book offers a thorough and systematic introduction to the modified failure mode and effect analysis (FMEA) models based on uncertainty theories (e.g. fuzzy logic, intuitionistic fuzzy sets, D numbers and 2-tuple linguistic variables) and various multi-criteria decision making (MCDM) approaches such as distance-based MCDM, compromise ranking MCDM and hybrid MCDM, etc. As such, it provides essential FMEA methods and practical examples that can be considered in applying FMEA to enhance the reliability and safety of products and services. The book offers a valuable guide for practitioners and researchers working in the fields of quality management, decision making, information science, management science, engineering, etc. It can also be used as a textbook for postgraduate and senior undergraduate students.

  20. Model uncertainty: Probabilities for models?

    International Nuclear Information System (INIS)

    Winkler, R.L.

    1994-01-01

    Like any other type of uncertainty, model uncertainty should be treated in terms of probabilities. The question is how to do this. The most commonly-used approach has a drawback related to the interpretation of the probabilities assigned to the models. If we step back and look at the big picture, asking what the appropriate focus of the model uncertainty question should be in the context of risk and decision analysis, we see that a different probabilistic approach makes more sense, although it raise some implementation questions. Current work that is underway to address these questions looks very promising

  1. A Systematic Comparison of Particle Filter and EnKF in Assimilating Time-Averaged Observations

    Science.gov (United States)

    Liu, Huaran; Liu, Zhengyu; Lu, Feiyu

    2017-12-01

    The particle filter (PF) and the ensemble Kalman filter (EnKF) are two promising and popularly adopted types of ensemble-based data assimilation methods for paleoclimate reconstruction. However, no systematic comparison between them has been attempted. We compare these two uncertainty based methods in pseudoproxy experiments where synthetic seasonal mean sea surface temperature observations are assimilated. Their skills are evaluated with regards to local, hemispherically averaged and globally averaged analysis error, and their ability to capture large-scale modes of variability. It is found that the EAKF (Ensemble Adjustment Kalman filter, a variant of EnKF) performs better than the PF with only one third of the ensemble size, despite PF's theoretical superiority in allowing for non-Gaussian statistics and nonlinear dynamics. The success of the EAKF is attributed to the facts that (1) Gaussian assumption is somewhat appropriate for this application; (2) The EAKF is less sensitive to sampling errors than the PF due to the different methodological natures. Sixteen members are enough to estimate accurate covariance for the EAKF, but 48 (even 96) members still underrepresent the state space of high-dimensional system for the PF. Our study highlights the importance of a large localization radius in the application of the EnKF to paleoclimate reconstruction due to the sparse proxy network and suggests that additional techniques, such as localization or clustered particle filter, are needed to improve the PF for paleoclimate reconstruction, in addition to the simple importance resampling currently adopted by most research.

  2. Decision-making under great uncertainty

    International Nuclear Information System (INIS)

    Hansson, S.O.

    1992-01-01

    Five types of decision-uncertainty are distinguished: uncertainty of consequences, of values, of demarcation, of reliance, and of co-ordination. Strategies are proposed for each type of uncertainty. The general conclusion is that it is meaningful for decision theory to treat cases with greater uncertainty than the textbook case of 'decision-making under uncertainty'. (au)

  3. Coping with uncertainty in environmental impact assessments: Open techniques

    International Nuclear Information System (INIS)

    Cardenas, Ibsen C.; Halman, Johannes I.M.

    2016-01-01

    Uncertainty is virtually unavoidable in environmental impact assessments (EIAs). From the literature related to treating and managing uncertainty, we have identified specific techniques for coping with uncertainty in EIAs. Here, we have focused on basic steps in the decision-making process that take place within an EIA setting. More specifically, we have identified uncertainties involved in each decision-making step and discussed the extent to which these can be treated and managed in the context of an activity or project that may have environmental impacts. To further demonstrate the relevance of the techniques identified, we have examined the extent to which the EIA guidelines currently used in Colombia consider and provide guidance on managing the uncertainty involved in these assessments. Some points that should be considered in order to provide greater robustness in impact assessments in Colombia have been identified. These include the management of stakeholder values, the systematic generation of project options, and their associated impacts as well as the associated management actions, and the evaluation of uncertainties and assumptions. We believe that the relevant and specific techniques reported here can be a reference for future evaluations of other EIA guidelines in different countries. - Highlights: • uncertainty is unavoidable in environmental impact assessments, EIAs; • we have identified some open techniques to EIAs for treating and managing uncertainty in these assessments; • points for improvement that should be considered in order to provide greater robustness in EIAs in Colombia have been identified; • the paper provides substantiated a reference for possible examinations of EIAs guidelines in other countries.

  4. Decoherence effect on quantum-memory-assisted entropic uncertainty relations

    Science.gov (United States)

    Ming, Fei; Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2018-01-01

    Uncertainty principle significantly provides a bound to predict precision of measurement with regard to any two incompatible observables, and thereby plays a nontrivial role in quantum precision measurement. In this work, we observe the dynamical features of the quantum-memory-assisted entropic uncertainty relations (EUR) for a pair of incompatible measurements in an open system characterized by local generalized amplitude damping (GAD) noises. Herein, we derive the dynamical evolution of the entropic uncertainty with respect to the measurement affecting by the canonical GAD noises when particle A is initially entangled with quantum memory B. Specifically, we examine the dynamics of EUR in the frame of three realistic scenarios: one case is that particle A is affected by environmental noise (GAD) while particle B as quantum memory is free from any noises, another case is that particle B is affected by the external noise while particle A is not, and the last case is that both of the particles suffer from the noises. By analytical methods, it turns out that the uncertainty is not full dependent of quantum correlation evolution of the composite system consisting of A and B, but the minimal conditional entropy of the measured subsystem. Furthermore, we present a possible physical interpretation for the behavior of the uncertainty evolution by means of the mixedness of the observed system; we argue that the uncertainty might be dramatically correlated with the systematic mixedness. Furthermore, we put forward a simple and effective strategy to reduce the measuring uncertainty of interest upon quantum partially collapsed measurement. Therefore, our explorations might offer an insight into the dynamics of the entropic uncertainty relation in a realistic system, and be of importance to quantum precision measurement during quantum information processing.

  5. Coping with uncertainty in environmental impact assessments: Open techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Ibsen C., E-mail: c.cardenas@utwente.nl [IceBridge Research Institutea, Universiteit Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Halman, Johannes I.M., E-mail: J.I.M.Halman@utwente.nl [Universiteit Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2016-09-15

    Uncertainty is virtually unavoidable in environmental impact assessments (EIAs). From the literature related to treating and managing uncertainty, we have identified specific techniques for coping with uncertainty in EIAs. Here, we have focused on basic steps in the decision-making process that take place within an EIA setting. More specifically, we have identified uncertainties involved in each decision-making step and discussed the extent to which these can be treated and managed in the context of an activity or project that may have environmental impacts. To further demonstrate the relevance of the techniques identified, we have examined the extent to which the EIA guidelines currently used in Colombia consider and provide guidance on managing the uncertainty involved in these assessments. Some points that should be considered in order to provide greater robustness in impact assessments in Colombia have been identified. These include the management of stakeholder values, the systematic generation of project options, and their associated impacts as well as the associated management actions, and the evaluation of uncertainties and assumptions. We believe that the relevant and specific techniques reported here can be a reference for future evaluations of other EIA guidelines in different countries. - Highlights: • uncertainty is unavoidable in environmental impact assessments, EIAs; • we have identified some open techniques to EIAs for treating and managing uncertainty in these assessments; • points for improvement that should be considered in order to provide greater robustness in EIAs in Colombia have been identified; • the paper provides substantiated a reference for possible examinations of EIAs guidelines in other countries.

  6. Hybrid spectral CT reconstruction

    Science.gov (United States)

    Clark, Darin P.

    2017-01-01

    Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

  7. Hybrid spectral CT reconstruction.

    Directory of Open Access Journals (Sweden)

    Darin P Clark

    Full Text Available Current photon counting x-ray detector (PCD technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID. In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM. Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with

  8. Sensitivity and uncertainty analyses in aging risk-based prioritizations

    International Nuclear Information System (INIS)

    Hassan, M.; Uryas'ev, S.; Vesely, W.E.

    1993-01-01

    Aging risk evaluations of nuclear power plants using Probabilistic Risk Analyses (PRAs) involve assessments of the impact of aging structures, systems, and components (SSCs) on plant core damage frequency (CDF). These assessments can be used to prioritize the contributors to aging risk reflecting the relative risk potential of the SSCs. Aging prioritizations are important for identifying the SSCs contributing most to plant risk and can provide a systematic basis on which aging risk control and management strategies for a plant can be developed. However, these prioritizations are subject to variabilities arising from uncertainties in data, and/or from various modeling assumptions. The objective of this paper is to present an evaluation of the sensitivity of aging prioritizations of active components to uncertainties in aging risk quantifications. Approaches for robust prioritization of SSCs also are presented which are less susceptible to the uncertainties

  9. An active learning approach with uncertainty, representativeness, and diversity.

    Science.gov (United States)

    He, Tianxu; Zhang, Shukui; Xin, Jie; Zhao, Pengpeng; Wu, Jian; Xian, Xuefeng; Li, Chunhua; Cui, Zhiming

    2014-01-01

    Big data from the Internet of Things may create big challenge for data classification. Most active learning approaches select either uncertain or representative unlabeled instances to query their labels. Although several active learning algorithms have been proposed to combine the two criteria for query selection, they are usually ad hoc in finding unlabeled instances that are both informative and representative and fail to take the diversity of instances into account. We address this challenge by presenting a new active learning framework which considers uncertainty, representativeness, and diversity creation. The proposed approach provides a systematic way for measuring and combining the uncertainty, representativeness, and diversity of an instance. Firstly, use instances' uncertainty and representativeness to constitute the most informative set. Then, use the kernel k-means clustering algorithm to filter the redundant samples and the resulting samples are queried for labels. Extensive experimental results show that the proposed approach outperforms several state-of-the-art active learning approaches.

  10. Uncertainty in simulating wheat yields under climate change

    DEFF Research Database (Denmark)

    Asseng, A; Ewert, F; Rosenzweig, C

    2013-01-01

    Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic...... and objective comparisons among process-based crop simulation models1, 3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range...... of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models...

  11. Long-term reconstructions of total solar irradiance

    Science.gov (United States)

    Krivova, Natalie; Solanki, Sami K.; Dasi Espuig, Maria

    2012-07-01

    Solar irradiance is the main external driver of the Earth's climate, although its relative contribution compared to other internal and anthropogenic factors is not yet well determined. Variations of total solar irradiance have being measured for over three decades and are relatively well understood. Reconstructions of the irradiance into the past remain, however, rather uncertain. In particular, the magnitude of the secular change is highly debated. The reason is the lack of direct and well-sampled proxies of solar magnetic activity on time scales longer than a few decades. Reconstructions on time scales of centuries rely on sunspot observations available since 1610. Reconstructions on millennial time scales use concentrations of the cosmogenic isotopes in terrestrial archives. We will review long-term reconstructions of the solar irradiance using the SATIRE set of models, compare them with other recent models and discuss the remaining uncertainties.

  12. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for internal dosimetry. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Harrison, J.D. [National Radiological Protection Board (United Kingdom); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

    1998-04-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA internal dosimetry models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on internal dosimetry, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  13. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for deposited material and external doses. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Boardman, J. [AEA Technology (United Kingdom); Jones, J.A. [National Radiological Protection Board (United Kingdom); Harper, F.T.; Young, M.L. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

    1997-12-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA deposited material and external dose models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on deposited material and external doses, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  14. Probabilistic accident consequence uncertainty analysis -- Early health effects uncertainty assessment. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [Univ. of New Mexico, Albuquerque, NM (United States); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Goossens, L.H.J.; Kraan, B.C.P. [Delft Univ. of Technology (Netherlands)

    1997-12-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA early health effects models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on early health effects, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  15. Correlation Reconstruction Tomographic PIV

    Science.gov (United States)

    La Foy, Roderick; Vlachos, Pavlos

    2017-11-01

    A new volumetric Particle Image Velocimetry technique was developed that outputs accurate velocity measurements up to very high seeding densities while requiring lower computational expenditure. This technique combines the tomographic and cross-correlation steps by directly reconstructing the 3D cross-correlation volumes. Since many particles contribute to a single correlation peak, this decreases the noise contributions from ghost reconstructions, allowing accurate velocity measurements to be made at exceptionally high seeding densities. Additionally the overall computational cost is lowered by combining the reconstruction and cross-correlation steps. Results comparing the errors of the new technique applied to both simulated and experimental data will be presented.

  16. Stable C, O and clumped isotope systematics and 14C geochronology of carbonates from the Quaternary Chewaucan closed-basin lake system, Great Basin, USA: Implications for paleoenvironmental reconstructions using carbonates

    Science.gov (United States)

    Hudson, Adam M.; Quade, Jay; Ali, Guleed; Boyle, Douglas; Bassett, Scott; Huntington, Katharine W.; De los Santos, Marie G.; Cohen, Andrew S.; Lin, Ke; Wang, Xiangfeng

    2017-09-01

    Isotopic compositions of lacustrine carbonates are commonly used for dating and paleoenvironmental reconstructions. Here we use carbonate δ13C and δ18O, clumped (Δ47), and 14C compositions to better understand the carbonate isotope system in closed-basin lakes and trace the paleohydrologic and temperature evolution in the Chewaucan closed-basin lake system, northern Great Basin, USA, over the Last Glacial/Holocene transition. We focus on shorezone tufas to establish that they form in isotopic equilibrium with lake water and DIC, they can be dated reliably using 14C, and their clumped isotope composition can be used to reconstruct past lake temperature. Calculations of the DIC budget and reservoir age for the lake indicate residence time is short, and dominated by exchange with atmospheric CO2 at all past lake levels. Modern lake DIC and shorezone tufas yield δ13C and 14C values consistent with isotopic equilibrium with recent fossil fuel and bomb-influenced atmospheric CO2, supporting these calculations. δ13C values of fossil tufas are also consistent with isotopic equilibrium with pre-industrial atmospheric CO2 at all shoreline elevations. This indicates that the 14C reservoir effect for this material is negligible. Clumped isotope (Δ47) results indicate shorezone tufas record mean annual lake temperature. Modern (average 13 ± 2 °C) and 18 ka BP-age tufas (average 6 ± 2 °C) have significantly different temperatures consistent with mean annual temperature lowering of 7 ± 3 °C (1 SE) under full glacial conditions. For shorezone tufas and other lake carbonates, including spring mounds, mollusk shells, and ostracod tests, overall δ13C and δ18O values co-vary according to the relative contribution of spring and lacustrine end member DIC and water compositions in the drainage system, but specific isotope values depend strongly upon sample context and are not well correlated with past lake depth. This contrasts with the interpretation that carbonate

  17. Numerical modeling of economic uncertainty

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans

    2007-01-01

    Representation and modeling of economic uncertainty is addressed by different modeling methods, namely stochastic variables and probabilities, interval analysis, and fuzzy numbers, in particular triple estimates. Focusing on discounted cash flow analysis numerical results are presented, comparisons...

  18. Climate Projections and Uncertainty Communication.

    Science.gov (United States)

    Joslyn, Susan L; LeClerc, Jared E

    2016-01-01

    Lingering skepticism about climate change might be due in part to the way climate projections are perceived by members of the public. Variability between scientists' estimates might give the impression that scientists disagree about the fact of climate change rather than about details concerning the extent or timing. Providing uncertainty estimates might clarify that the variability is due in part to quantifiable uncertainty inherent in the prediction process, thereby increasing people's trust in climate projections. This hypothesis was tested in two experiments. Results suggest that including uncertainty estimates along with climate projections leads to an increase in participants' trust in the information. Analyses explored the roles of time, place, demographic differences (e.g., age, gender, education level, political party affiliation), and initial belief in climate change. Implications are discussed in terms of the potential benefit of adding uncertainty estimates to public climate projections. Copyright © 2015 Cognitive Science Society, Inc.

  19. Exposing Position Uncertainty in Middleware

    DEFF Research Database (Denmark)

    Langdal, Jakob; Kjærgaard, Mikkel Baun; Toftkjær, Thomas

    2010-01-01

    Traditionally, the goal for positioning middleware is to provide developers with seamless position transparency, i.e., providing a connection between the application domain and the positioning sensors while hiding the complexity of the positioning technologies in use. A key part of the hidden...... complexity is the uncertainty associated to positions caused by inherent limitations when using sensors to convert physical phenomena to digital representations. We propose to use the notion of seamful design for developers to design a positioning middleware that provides transparent positioning and still...... allows developers some control of the uncertainty aspects of the positioning process. The design presented in this paper shows how uncertainty of positioning can be conceptualized and internalized into a positioning middleware. Furthermore, we argue that a developer who is interacting with uncertainty...

  20. The Uncertainties of Risk Management

    DEFF Research Database (Denmark)

    Vinnari, Eija; Skærbæk, Peter

    2014-01-01

    for expanding risk management. More generally, such uncertainties relate to the professional identities and responsibilities of operational managers as defined by the framing devices. Originality/value – The paper offers three contributions to the extant literature: first, it shows how risk management itself......Purpose – The purpose of this paper is to analyse the implementation of risk management as a tool for internal audit activities, focusing on unexpected effects or uncertainties generated during its application. Design/methodology/approach – Public and confidential documents as well as semi......-structured interviews are analysed through the lens of actor-network theory to identify the effects of risk management devices in a Finnish municipality. Findings – The authors found that risk management, rather than reducing uncertainty, itself created unexpected uncertainties that would otherwise not have emerged...

  1. PET image reconstruction: mean, variance, and optimal minimax criterion

    International Nuclear Information System (INIS)

    Liu, Huafeng; Guo, Min; Gao, Fei; Shi, Pengcheng; Xue, Liying; Nie, Jing

    2015-01-01

    Given the noise nature of positron emission tomography (PET) measurements, it is critical to know the image quality and reliability as well as expected radioactivity map (mean image) for both qualitative interpretation and quantitative analysis. While existing efforts have often been devoted to providing only the reconstructed mean image, we present a unified framework for joint estimation of the mean and corresponding variance of the radioactivity map based on an efficient optimal min–max criterion. The proposed framework formulates the PET image reconstruction problem to be a transformation from system uncertainties to estimation errors, where the minimax criterion is adopted to minimize the estimation errors with possibly maximized system uncertainties. The estimation errors, in the form of a covariance matrix, express the measurement uncertainties in a complete way. The framework is then optimized by ∞-norm optimization and solved with the corresponding H ∞ filter. Unlike conventional statistical reconstruction algorithms, that rely on the statistical modeling methods of the measurement data or noise, the proposed joint estimation stands from the point of view of signal energies and can handle from imperfect statistical assumptions to even no a priori statistical assumptions. The performance and accuracy of reconstructed mean and variance images are validated using Monte Carlo simulations. Experiments on phantom scans with a small animal PET scanner and real patient scans are also conducted for assessment of clinical potential. (paper)

  2. How to live with uncertainties?

    International Nuclear Information System (INIS)

    Michel, R.

    2012-01-01

    In a short introduction, the problem of uncertainty as a general consequence of incomplete information as well as the approach to quantify uncertainty in metrology are addressed. A little history of the more than 30 years of the working group AK SIGMA is followed by an appraisal of its up-to-now achievements. Then, the potential future of the AK SIGMA is discussed based on its actual tasks and on open scientific questions and future topics. (orig.)

  3. New Perspectives on Policy Uncertainty

    OpenAIRE

    Hlatshwayo, Sandile

    2017-01-01

    In recent years, the ubiquitous and intensifying nature of economic policy uncertainty has made it a popular explanation for weak economic performance in developed and developing markets alike. The primary channel for this effect is decreased and delayed investment as firms adopt a ``wait and see'' approach to irreversible investments (Bernanke, 1983; Dixit and Pindyck, 1994). Deep empirical examination of policy uncertainty's impact is rare because of the difficulty associated in measuring i...

  4. Investment choice and inflation uncertainty

    OpenAIRE

    Gregory Fischer

    2013-01-01

    This paper investigates the relationship between infation uncertainty and investment using a panel of loan-level data from small businesses. Micro-level data makes it possible to study phenomena that are obscured in country or industry aggregates. The data show that periods of increased inflation uncertainty are associated with substantial reductions in total investment. Moreover, there is a shift in the composition of investment away from fixed assets and towards working capital - the more f...

  5. Uncertainty in measurements by counting

    Science.gov (United States)

    Bich, Walter; Pennecchi, Francesca

    2012-02-01

    Counting is at the base of many high-level measurements, such as, for example, frequency measurements. In some instances the measurand itself is a number of events, such as spontaneous decays in activity measurements, or objects, such as colonies of bacteria in microbiology. Countings also play a fundamental role in everyday life. In any case, a counting is a measurement. A measurement result, according to its present definition, as given in the 'International Vocabulary of Metrology—Basic and general concepts and associated terms (VIM)', must include a specification concerning the estimated uncertainty. As concerns measurements by counting, this specification is not easy to encompass in the well-known framework of the 'Guide to the Expression of Uncertainty in Measurement', known as GUM, in which there is no guidance on the topic. Furthermore, the issue of uncertainty in countings has received little or no attention in the literature, so that it is commonly accepted that this category of measurements constitutes an exception in which the concept of uncertainty is not applicable, or, alternatively, that results of measurements by counting have essentially no uncertainty. In this paper we propose a general model for measurements by counting which allows an uncertainty evaluation compliant with the general framework of the GUM.

  6. Uncertainties in land use data

    Directory of Open Access Journals (Sweden)

    G. Castilla

    2007-11-01

    Full Text Available This paper deals with the description and assessment of uncertainties in land use data derived from Remote Sensing observations, in the context of hydrological studies. Land use is a categorical regionalised variable reporting the main socio-economic role each location has, where the role is inferred from the pattern of occupation of land. The properties of this pattern that are relevant to hydrological processes have to be known with some accuracy in order to obtain reliable results; hence, uncertainty in land use data may lead to uncertainty in model predictions. There are two main uncertainties surrounding land use data, positional and categorical. The first one is briefly addressed and the second one is explored in more depth, including the factors that influence it. We (1 argue that the conventional method used to assess categorical uncertainty, the confusion matrix, is insufficient to propagate uncertainty through distributed hydrologic models; (2 report some alternative methods to tackle this and other insufficiencies; (3 stress the role of metadata as a more reliable means to assess the degree of distrust with which these data should be used; and (4 suggest some practical recommendations.

  7. Propagation of interval and probabilistic uncertainty in cyberinfrastructure-related data processing and data fusion

    CERN Document Server

    Servin, Christian

    2015-01-01

    On various examples ranging from geosciences to environmental sciences, this book explains how to generate an adequate description of uncertainty, how to justify semiheuristic algorithms for processing uncertainty, and how to make these algorithms more computationally efficient. It explains in what sense the existing approach to uncertainty as a combination of random and systematic components is only an approximation, presents a more adequate three-component model with an additional periodic error component, and explains how uncertainty propagation techniques can be extended to this model. The book provides a justification for a practically efficient heuristic technique (based on fuzzy decision-making). It explains how the computational complexity of uncertainty processing can be reduced. The book also shows how to take into account that in real life, the information about uncertainty is often only partially known, and, on several practical examples, explains how to extract the missing information about uncer...

  8. A Bayesian approach to model uncertainty

    International Nuclear Information System (INIS)

    Buslik, A.

    1994-01-01

    A Bayesian approach to model uncertainty is taken. For the case of a finite number of alternative models, the model uncertainty is equivalent to parameter uncertainty. A derivation based on Savage's partition problem is given

  9. Advances in tracheal reconstruction.

    Science.gov (United States)

    Haykal, Siba; Salna, Michael; Waddell, Thomas K; Hofer, Stefan O

    2014-07-01

    A recent revival of global interest for reconstruction of long-segment tracheal defects, which represents one of the most interesting and complex problems in head and neck and thoracic reconstructive surgery, has been witnessed. The trachea functions as a conduit for air, and its subunits including the epithelial layer, hyaline cartilage, and segmental blood supply make it particularly challenging to reconstruct. A myriad of attempts at replacing the trachea have been described. These along with the anatomy, indications, and approaches including microsurgical tracheal reconstruction will be reviewed. Novel techniques such as tissue-engineering approaches will also be discussed. Multiple attempts at replacing the trachea with synthetic scaffolds have been met with failure. The main lesson learned from such failures is that the trachea must not be treated as a "simple tube." Understanding the anatomy, developmental biology, physiology, and diseases affecting the trachea are required for solving this problem.

  10. Overview of image reconstruction

    International Nuclear Information System (INIS)

    Marr, R.B.

    1980-04-01

    Image reconstruction (or computerized tomography, etc.) is any process whereby a function, f, on R/sup n/ is estimated from empirical data pertaining to its integrals, ∫f(x) dx, for some collection of hyperplanes of dimension k < n. The paper begins with background information on how image reconstruction problems have arisen in practice, and describes some of the application areas of past or current interest; these include radioastronomy, optics, radiology and nuclear medicine, electron microscopy, acoustical imaging, geophysical tomography, nondestructive testing, and NMR zeugmatography. Then the various reconstruction algorithms are discussed in five classes: summation, or simple back-projection; convolution, or filtered back-projection; Fourier and other functional transforms; orthogonal function series expansion; and iterative methods. Certain more technical mathematical aspects of image reconstruction are considered from the standpoint of uniqueness, consistency, and stability of solution. The paper concludes by presenting certain open problems. 73 references

  11. Reconstructions of eyelid defects

    Directory of Open Access Journals (Sweden)

    Nirmala Subramanian

    2011-01-01

    Full Text Available Eyelids are the protective mechanism of the eyes. The upper and lower eyelids have been formed for their specific functions by Nature. The eyelid defects are encountered in congenital anomalies, trauma, and postexcision for neoplasm. The reconstructions should be based on both functional and cosmetic aspects. The knowledge of the basic anatomy of the lids is a must. There are different techniques for reconstructing the upper eyelid, lower eyelid, and medial and lateral canthal areas. Many a times, the defects involve more than one area. For the reconstruction of the lid, the lining should be similar to the conjunctiva, a cover by skin and the middle layer to give firmness and support. It is important to understand the availability of various tissues for reconstruction. One layer should have the vascularity to support the other layer which can be a graft. A proper plan and execution of it is very important.

  12. Forging Provincial Reconstruction Teams

    National Research Council Canada - National Science Library

    Honore, Russel L; Boslego, David V

    2007-01-01

    The Provincial Reconstruction Team (PRT) training mission completed by First U.S. Army in April 2006 was a joint Service effort to meet a requirement from the combatant commander to support goals in Afghanistan...

  13. Breast Reconstruction After Mastectomy

    Science.gov (United States)

    ... It also does not involve cutting of the abdominal muscle and is a free flap. This type of ... figure out the safest ways to perform everyday activities. Does breast reconstruction affect the ability to check ...

  14. Delayed breast implant reconstruction

    DEFF Research Database (Denmark)

    Hvilsom, Gitte B.; Hölmich, Lisbet R.; Steding-Jessen, Marianne

    2011-01-01

    Studies of complications following reconstructive surgery with implants among women with breast cancer are needed. As the, to our knowledge, first prospective long-term study we evaluated the occurrence of complications following delayed breast reconstruction separately for one- and two......-stage procedures. From the Danish Registry for Plastic Surgery of the Breast, which has prospectively registered data for women undergoing breast implantations since 1999, we identified 559 women without a history of radiation therapy undergoing 592 delayed breast reconstructions following breast cancer during...... of reoperation was significantly higher following the one-stage procedure. For both procedures, the majority of reoperations were due to asymmetry or displacement of the implant. In conclusion, non-radiated one- and two-stage delayed breast implant reconstructions are associated with substantial risks...

  15. The evolving breast reconstruction

    DEFF Research Database (Denmark)

    Thomsen, Jørn Bo; Gunnarsson, Gudjon Leifur

    2014-01-01

    The aim of this editorial is to give an update on the use of the propeller thoracodorsal artery perforator flap (TAP/TDAP-flap) within the field of breast reconstruction. The TAP-flap can be dissected by a combined use of a monopolar cautery and a scalpel. Microsurgical instruments are generally...... not needed. The propeller TAP-flap can be designed in different ways, three of these have been published: (I) an oblique upwards design; (II) a horizontal design; (III) an oblique downward design. The latissimus dorsi-flap is a good and reliable option for breast reconstruction, but has been criticized...... for oncoplastic and reconstructive breast surgery and will certainly become an invaluable addition to breast reconstructive methods....

  16. An Evidence-Based Review and Survey of Expert Opinion of Reconstruction of Metastatic Spine Tumors

    NARCIS (Netherlands)

    Altaf, Farhaan; Weber, Michael; Dea, Nicolas; Boriani, Stefano; Ames, Christopher; Williams, Richard; Verlaan, Jorrit-Jan; Laufer, Ilya; Fisher, Charles G.

    2016-01-01

    STUDY DESIGN.: Systematic review and consensus expert opinion. OBJECTIVE.: To provide surgeons and other health care professionals with guidelines for surgical reconstruction of metastatic spine disease based on evidence and expert opinion. SUMMARY OF BACKGROUND DATA.: The surgical treatment of

  17. Quantification and propagation of disciplinary uncertainty via Bayesian statistics

    Science.gov (United States)

    Mantis, George Constantine

    2002-08-01

    Several needs exist in the military, commercial, and civil sectors for new hypersonic systems. These needs remain unfulfilled, due in part to the uncertainty encountered in designing these systems. This uncertainty takes a number of forms, including disciplinary uncertainty, that which is inherent in the analytical tools utilized during the design process. Yet, few efforts to date empower the designer with the means to account for this uncertainty within the disciplinary analyses. In the current state-of-the-art in design, the effects of this unquantifiable uncertainty significantly increase the risks associated with new design efforts. Typically, the risk proves too great to allow a given design to proceed beyond the conceptual stage. To that end, the research encompasses the formulation and validation of a new design method, a systematic process for probabilistically assessing the impact of disciplinary uncertainty. The method implements Bayesian Statistics theory to quantify this source of uncertainty, and propagate its effects to the vehicle system level. Comparison of analytical and physical data for existing systems, modeled a priori in the given analysis tools, leads to quantification of uncertainty in those tools' calculation of discipline-level metrics. Then, after exploration of the new vehicle's design space, the quantified uncertainty is propagated probabilistically through the design space. This ultimately results in the assessment of the impact of disciplinary uncertainty on the confidence in the design solution: the final shape and variability of the probability functions defining the vehicle's system-level metrics. Although motivated by the hypersonic regime, the proposed treatment of uncertainty applies to any class of aerospace vehicle, just as the problem itself affects the design process of any vehicle. A number of computer programs comprise the environment constructed for the implementation of this work. Application to a single

  18. 42 CFR 82.19 - How will NIOSH address uncertainty about dose levels?

    Science.gov (United States)

    2010-10-01

    ... characterized with a probability distribution that accounts for the uncertainty of the estimate. This information will be used by DOL in the calculation of probability of causation, under HHS guidelines for... THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Dose Reconstruction Process...

  19. A framework for model-based optimization of bioprocesses under uncertainty: Identifying critical parameters and operating variables

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Meyer, Anne S.; Gernaey, Krist

    2011-01-01

    This study presents the development and application of a systematic model-based framework for bioprocess optimization, evaluated on a cellulosic ethanol production case study. The implementation of the framework involves the use of dynamic simulations, sophisticated uncertainty analysis (Monte...

  20. Permutationally invariant state reconstruction

    DEFF Research Database (Denmark)

    Moroder, Tobias; Hyllus, Philipp; Tóth, Géza

    2012-01-01

    Feasible tomography schemes for large particle numbers must possess, besides an appropriate data acquisition protocol, an efficient way to reconstruct the density operator from the observed finite data set. Since state reconstruction typically requires the solution of a nonlinear large-scale opti......Feasible tomography schemes for large particle numbers must possess, besides an appropriate data acquisition protocol, an efficient way to reconstruct the density operator from the observed finite data set. Since state reconstruction typically requires the solution of a nonlinear large......-scale optimization problem, this is a major challenge in the design of scalable tomography schemes. Here we present an efficient state reconstruction scheme for permutationally invariant quantum state tomography. It works for all common state-of-the-art reconstruction principles, including, in particular, maximum...... likelihood and least squares methods, which are the preferred choices in today's experiments. This high efficiency is achieved by greatly reducing the dimensionality of the problem employing a particular representation of permutationally invariant states known from spin coupling combined with convex...

  1. Image-Guided Radiotherapy for Left-Sided Breast Cancer Patients: Geometrical Uncertainty of the Heart

    International Nuclear Information System (INIS)

    Topolnjak, Rajko; Borst, Gerben R.; Nijkamp, Jasper; Sonke, Jan-Jakob

    2012-01-01

    Purpose: To quantify the geometrical uncertainties for the heart during radiotherapy treatment of left-sided breast cancer patients and to determine and validate planning organ at risk volume (PRV) margins. Methods and Materials: Twenty-two patients treated in supine position in 28 fractions with regularly acquired cone-beam computed tomography (CBCT) scans for offline setup correction were included. Retrospectively, the CBCT scans were reconstructed into 10-phase respiration correlated four-dimensional scans. The heart was registered in each breathing phase to the planning CT scan to establish the respiratory heart motion during the CBCT scan (σ resp ). The average of the respiratory motion was calculated as the heart displacement error for a fraction. Subsequently, the systematic (Σ), random (σ), and total random (σ tot =√(σ 2 +σ resp 2 )) errors of the heart position were calculated. Based on the errors a PRV margin for the heart was calculated to ensure that the maximum heart dose (D max ) is not underestimated in at least 90% of the cases (M heart = 1.3Σ-0.5σ tot ). All analysis were performed in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions with respect to both online and offline bony anatomy setup corrections. The PRV margin was validated by accumulating the dose to the heart based on the heart registrations and comparing the planned PRV D max to the accumulated heart D max . Results: For online setup correction, the cardiac geometrical uncertainties and PRV margins were ∑ = 2.2/3.2/2.1 mm, σ = 2.1/2.9/1.4 mm, and M heart = 1.6/2.3/1.3 mm for LR/CC/AP, respectively. For offline setup correction these were ∑ = 2.4/3.7/2.2 mm, σ = 2.9/4.1/2.7 mm, and M heart = 1.6/2.1/1.4 mm. Cardiac motion induced by breathing was σ resp = 1.4/2.9/1.4 mm for LR/CC/AP. The PRV D max underestimated the accumulated heart D max for 9.1% patients using online and 13.6% patients using offline bony anatomy setup correction, which validated

  2. Do Orthopaedic Surgeons Acknowledge Uncertainty?

    Science.gov (United States)

    Teunis, Teun; Janssen, Stein; Guitton, Thierry G; Ring, David; Parisien, Robert

    2016-06-01

    Much of the decision-making in orthopaedics rests on uncertain evidence. Uncertainty is therefore part of our normal daily practice, and yet physician uncertainty regarding treatment could diminish patients' health. It is not known if physician uncertainty is a function of the evidence alone or if other factors are involved. With added experience, uncertainty could be expected to diminish, but perhaps more influential are things like physician confidence, belief in the veracity of what is published, and even one's religious beliefs. In addition, it is plausible that the kind of practice a physician works in can affect the experience of uncertainty. Practicing physicians may not be immediately aware of these effects on how uncertainty is experienced in their clinical decision-making. We asked: (1) Does uncertainty and overconfidence bias decrease with years of practice? (2) What sociodemographic factors are independently associated with less recognition of uncertainty, in particular belief in God or other deity or deities, and how is atheism associated with recognition of uncertainty? (3) Do confidence bias (confidence that one's skill is greater than it actually is), degree of trust in the orthopaedic evidence, and degree of statistical sophistication correlate independently with recognition of uncertainty? We created a survey to establish an overall recognition of uncertainty score (four questions), trust in the orthopaedic evidence base (four questions), confidence bias (three questions), and statistical understanding (six questions). Seven hundred six members of the Science of Variation Group, a collaboration that aims to study variation in the definition and treatment of human illness, were approached to complete our survey. This group represents mainly orthopaedic surgeons specializing in trauma or hand and wrist surgery, practicing in Europe and North America, of whom the majority is involved in teaching. Approximately half of the group has more than 10 years

  3. Economic Uncertainty and Family Dynamics in Europe:: Introduction

    Directory of Open Access Journals (Sweden)

    Michaela Kreyenfeld

    2012-12-01

    Full Text Available BACKGROUND Economic uncertainty has become an increasingly important factor in explanations of declining fertility and postponed family formation across Europe. Yet the micro-level evidence on this topic is still limited. OBJECTIVE This special collection of Demographic Research focuses on the issue of how economic and employment uncertainties relate to fertility and family dynamics in Europe. METHODS The collection is comprised of studies that explore how various dimensions of employment uncertainty, such as temporary working contracts and individual and aggregate unemployment, are related to the fertility and family formation of women and men across Europe. The studies cover Germany, the UK, France, Russia, Estonia, Sweden, Italy, Spain, and Israel. RESULTS The various micro-level studies that are assembled in this special collection do not provide a simple answer to the question of whether and how economic uncertainty suppresses (or stimulates fertility. However, some systematic variation by welfare state regime is discernable. CONCLUSIONS Given the recent economic volatility in Europe, we expect that labor market uncertainties will remain an important component of explanations of fertility developments in the 21st century.

  4. Addressing Uncertainties in Cost Estimates for Decommissioning Nuclear Facilities

    International Nuclear Information System (INIS)

    Benjamin, Serge; Descures, Sylvain; Du Pasquier, Louis; Francois, Patrice; Buonarotti, Stefano; Mariotti, Giovanni; Tarakonov, Jurij; Daniska, Vladimir; Bergh, Niklas; Carroll, Simon; AaSTRoeM, Annika; Cato, Anna; De La Gardie, Fredrik; Haenggi, Hannes; Rodriguez, Jose; Laird, Alastair; Ridpath, Andy; La Guardia, Thomas; O'Sullivan, Patrick; ); Weber, Inge; )

    2017-01-01

    The cost estimation process of decommissioning nuclear facilities has continued to evolve in recent years, with a general trend towards demonstrating greater levels of detail in the estimate and more explicit consideration of uncertainties, the latter of which may have an impact on decommissioning project costs. The 2012 report on the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations, a joint recommendation by the Nuclear Energy Agency (NEA), the International Atomic Energy Agency (IAEA) and the European Commission, proposes a standardised structure of cost items for decommissioning projects that can be used either directly for the production of cost estimates or for mapping of cost items for benchmarking purposes. The ISDC, however, provides only limited guidance on the treatment of uncertainty when preparing cost estimates. Addressing Uncertainties in Cost Estimates for Decommissioning Nuclear Facilities, prepared jointly by the NEA and IAEA, is intended to complement the ISDC, assisting cost estimators and reviewers in systematically addressing uncertainties in decommissioning cost estimates. Based on experiences gained in participating countries and projects, the report describes how uncertainty and risks can be analysed and incorporated in decommissioning cost estimates, while presenting the outcomes in a transparent manner

  5. Visual Scanning Hartmann Optical Tester (VSHOT) Uncertainty Analysis (Milestone Report)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, A.; Lewandowski, A.; Wendelin, T.

    2010-10-01

    In 1997, an uncertainty analysis was conducted of the Video Scanning Hartmann Optical Tester (VSHOT). In 2010, we have completed a new analysis, based primarily on the geometric optics of the system, and it shows sensitivities to various design and operational parameters. We discuss sources of error with measuring devices, instrument calibrations, and operator measurements for a parabolic trough mirror panel test. These help to guide the operator in proper setup, and help end-users to understand the data they are provided. We include both the systematic (bias) and random (precision) errors for VSHOT testing and their contributions to the uncertainty. The contributing factors we considered in this study are: target tilt; target face to laser output distance; instrument vertical offset; laser output angle; distance between the tool and the test piece; camera calibration; and laser scanner. These contributing factors were applied to the calculated slope error, focal length, and test article tilt that are generated by the VSHOT data processing. Results show the estimated 2-sigma uncertainty in slope error for a parabolic trough line scan test to be +/-0.2 milliradians; uncertainty in the focal length is +/- 0.1 mm, and the uncertainty in test article tilt is +/- 0.04 milliradians.

  6. Reducing the top quark mass uncertainty with jet grooming

    Science.gov (United States)

    Andreassen, Anders; Schwartz, Matthew D.

    2017-10-01

    The measurement of the top quark mass has large systematic uncertainties coming from the Monte Carlo simulations that are used to match theory and experiment. We explore how much that uncertainty can be reduced by using jet grooming procedures. Using the ATLAS A14 tunes of pythia, we estimate the uncertainty from the choice of tuning parameters in what is meant by the Monte Carlo mass to be around 530 MeV without any corrections. This uncertainty can be reduced by 60% to 200 MeV by calibrating to the W mass and by 70% to 140 MeV by additionally applying soft-drop jet grooming (or to 170 MeV using trimming). At e + e - colliders, the associated uncertainty is around 110 MeV, reducing to 50 MeV after calibrating to the W mass. By analyzing the tuning parameters, we conclude that the importance of jet grooming after calibrating to the W -mass is to reduce sensitivity to the underlying event.

  7. Uncertainty in projected climate change arising from uncertain fossil-fuel emission factors

    Science.gov (United States)

    Quilcaille, Y.; Gasser, T.; Ciais, P.; Lecocq, F.; Janssens-Maenhout, G.; Mohr, S.

    2018-04-01

    Emission inventories are widely used by the climate community, but their uncertainties are rarely accounted for. In this study, we evaluate the uncertainty in projected climate change induced by uncertainties in fossil-fuel emissions, accounting for non-CO2 species co-emitted with the combustion of fossil-fuels and their use in industrial processes. Using consistent historical reconstructions and three contrasted future projections of fossil-fuel extraction from Mohr et al we calculate CO2 emissions and their uncertainties stemming from estimates of fuel carbon content, net calorific value and oxidation fraction. Our historical reconstructions of fossil-fuel CO2 emissions are consistent with other inventories in terms of average and range. The uncertainties sum up to a ±15% relative uncertainty in cumulative CO2 emissions by 2300. Uncertainties in the emissions of non-CO2 species associated with the use of fossil fuels are estimated using co-emission ratios varying with time. Using these inputs, we use the compact Earth system model OSCAR v2.2 and a Monte Carlo setup, in order to attribute the uncertainty in projected global surface temperature change (ΔT) to three sources of uncertainty, namely on the Earth system’s response, on fossil-fuel CO2 emission and on non-CO2 co-emissions. Under the three future fuel extraction scenarios, we simulate the median ΔT to be 1.9, 2.7 or 4.0 °C in 2300, with an associated 90% confidence interval of about 65%, 52% and 42%. We show that virtually all of the total uncertainty is attributable to the uncertainty in the future Earth system’s response to the anthropogenic perturbation. We conclude that the uncertainty in emission estimates can be neglected for global temperature projections in the face of the large uncertainty in the Earth system response to the forcing of emissions. We show that this result does not hold for all variables of the climate system, such as the atmospheric partial pressure of CO2 and the

  8. Anterior cruciate ligament reconstruction: principles of treatment

    Science.gov (United States)

    Paschos, Nikolaos K.; Howell, Stephen M.

    2016-01-01

    Anterior cruciate ligament (ACL) reconstruction is one of the most common procedures in sports medicine. Several areas of controversy exist in ACL tear management which have engaged surgeons and researchers in debates towards identifying an ideal approach for these patients. This instructional review discusses the principles of ACL reconstruction in an attempt to provide guidelines and initiate a critical thinking approach on the most common areas of controversy regarding ACL reconstruction. Using high-level evidence from the literature, as presented in randomised controlled trials, systematic reviews, and meta-analyses, operative versus conservative treatment, timing of surgery, and rehabilitation are discussed. Also, the advantages and disadvantages of the most common types of autografts, such as patellar tendon and hamstrings as well as allografts are presented. Key considerations for the anatomical, histological, biomechanical and clinical data (‘IDEAL’) graft positioning are reviewed. Cite this article: Paschos NK, Howell SM. Anterior cruciate ligament reconstruction: principles of treatment. EFORT Open Rev 2016;398-408. DOI: 10.1302/2058-5241.1.160032. PMID:28461919

  9. A sliding mode observer for hemodynamic characterization under modeling uncertainties

    KAUST Repository

    Zayane, Chadia

    2014-06-01

    This paper addresses the case of physiological states reconstruction in a small region of the brain under modeling uncertainties. The misunderstood coupling between the cerebral blood volume and the oxygen extraction fraction has lead to a partial knowledge of the so-called balloon model describing the hemodynamic behavior of the brain. To overcome this difficulty, a High Order Sliding Mode observer is applied to the balloon system, where the unknown coupling is considered as an internal perturbation. The effectiveness of the proposed method is illustrated through a set of synthetic data that mimic fMRI experiments.

  10. Critical loads - assessment of uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Barkman, A.

    1998-10-01

    The effects of data uncertainty in applications of the critical loads concept were investigated on different spatial resolutions in Sweden and northern Czech Republic. Critical loads of acidity (CL) were calculated for Sweden using the biogeochemical model PROFILE. Three methods with different structural complexity were used to estimate the adverse effects of S0{sub 2} concentrations in northern Czech Republic. Data uncertainties in the calculated critical loads/levels and exceedances (EX) were assessed using Monte Carlo simulations. Uncertainties within cumulative distribution functions (CDF) were aggregated by accounting for the overlap between site specific confidence intervals. Aggregation of data uncertainties within CDFs resulted in lower CL and higher EX best estimates in comparison with percentiles represented by individual sites. Data uncertainties were consequently found to advocate larger deposition reductions to achieve non-exceedance based on low critical loads estimates on 150 x 150 km resolution. Input data were found to impair the level of differentiation between geographical units at all investigated resolutions. Aggregation of data uncertainty within CDFs involved more constrained confidence intervals for a given percentile. Differentiation as well as identification of grid cells on 150 x 150 km resolution subjected to EX was generally improved. Calculation of the probability of EX was shown to preserve the possibility to differentiate between geographical units. Re-aggregation of the 95%-ile EX on 50 x 50 km resolution generally increased the confidence interval for each percentile. Significant relationships were found between forest decline and the three methods addressing risks induced by S0{sub 2} concentrations. Modifying S0{sub 2} concentrations by accounting for the length of the vegetation period was found to constitute the most useful trade-off between structural complexity, data availability and effects of data uncertainty. Data

  11. Defining uncertainty and error in planktic foraminiferal oxygen isotope measurements

    Science.gov (United States)

    Fraass, A. J.; Lowery, C. M.

    2017-02-01

    Foraminifera are the backbone of paleoceanography. Planktic foraminifera are one of the leading tools for reconstructing water column structure. However, there are unconstrained variables when dealing with uncertainty in the reproducibility of oxygen isotope measurements. This study presents the first results from a simple model of foraminiferal calcification (Foraminiferal Isotope Reproducibility Model; FIRM), designed to estimate uncertainty in oxygen isotope measurements. FIRM uses parameters including location, depth habitat, season, number of individuals included in measurement, diagenesis, misidentification, size variation, and vital effects to produce synthetic isotope data in a manner reflecting natural processes. Reproducibility is then tested using Monte Carlo simulations. Importantly, this is not an attempt to fully model the entire complicated process of foraminiferal calcification; instead, we are trying to include only enough parameters to estimate the uncertainty in foraminiferal δ18O records. Two well-constrained empirical data sets are simulated successfully, demonstrating the validity of our model. The results from a series of experiments with the model show that reproducibility is not only largely controlled by the number of individuals in each measurement but also strongly a function of local oceanography if the number of individuals is held constant. Parameters like diagenesis or misidentification have an impact on both the precision and the accuracy of the data. FIRM is a tool to estimate isotopic uncertainty values and to explore the impact of myriad factors on the fidelity of paleoceanographic records, particularly for the Holocene.

  12. Communicating certainty and uncertainty in everyday life: An introduction

    Directory of Open Access Journals (Sweden)

    Letizia Caronia

    2014-04-01

    Full Text Available This introduction focuses on the relevance of certainty and uncertainty in sociallife. We will firstly underscore the structuring role of certainties as it was outlinedby the phenomenological approach to the life-world in the first half of the XXcentury. Drawing on the bottom-up perspective advanced by the interactionistturn in social sciences, we then consider how people routinely (reconstruct thesecertainties in ordinary life through their everyday mundane practices. To empiricallyillustrate how certainties are - at the same time - presupposed and constituted ineveryday communication, we analyze two examples of child/adult interaction. Byilluminating some consequences of building upon unquestionable certainties, weraise the issue of uncertainty as a relevant modality in and for everyday life. In thediscussion we contend that far from being proper to the philosopher’s attitude asformer phenomenology put it, uncertainty and doubt are – or at least may be - thetools for everyday rational and ethical thinking. Finally we present the articles collectedin this issue that represents a collective effort to explore the territories ofcertainty and uncertainty and the relevance the management of epistemics has insocial interaction.

  13. Uncertainty and sensitivity analysis for photovoltaic system modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Clifford W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pohl, Andrew Phillip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jordan, Dirk [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    We report an uncertainty and sensitivity analysis for modeling DC energy from photovoltaic systems. We consider two systems, each comprised of a single module using either crystalline silicon or CdTe cells, and located either at Albuquerque, NM, or Golden, CO. Output from a PV system is predicted by a sequence of models. Uncertainty in the output of each model is quantified by empirical distributions of each model's residuals. We sample these distributions to propagate uncertainty through the sequence of models to obtain an empirical distribution for each PV system's output. We considered models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane-of-array irradiance; (2) estimate effective irradiance from plane-of-array irradiance; (3) predict cell temperature; and (4) estimate DC voltage, current and power. We found that the uncertainty in PV system output to be relatively small, on the order of 1% for daily energy. Four alternative models were considered for the POA irradiance modeling step; we did not find the choice of one of these models to be of great significance. However, we observed that the POA irradiance model introduced a bias of upwards of 5% of daily energy which translates directly to a systematic difference in predicted energy. Sensitivity analyses relate uncertainty in the PV system output to uncertainty arising from each model. We found that the residuals arising from the POA irradiance and the effective irradiance models to be the dominant contributors to residuals for daily energy, for either technology or location considered. This analysis indicates that efforts to reduce the uncertainty in PV system output should focus on improvements to the POA and effective irradiance models.

  14. Measurement of the branching fractions of B-->D**(l) nu(l) decays in events tagged by a fully reconstructed B meson.

    Science.gov (United States)

    Aubert, B; Bona, M; Karyotakis, Y; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Cahn, R N; Jacobsen, R G; Kerth, L T; Kolomensky, Yu G; Lynch, G; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schroeder, T; Walker, D; Asgeirsson, D J; Fulsom, B G; Hearty, C; Mattison, T S; Mckenna, J A; Barrett, M; Khan, A; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Gary, J W; Liu, F; Long, O; Shen, B C; Vitug, G M; Yasin, Z; Zhang, L; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wang, L; Wilson, M G; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Nagel, M; Nauenberg, U; Smith, J G; Ulmer, K A; Wagner, S R; Ayad, R; Soffer, A; Toki, W H; Wilson, R J; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Karbach, M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Mader, W F; Nogowski, R; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Marks, J; Schenk, S; Uwer, U; Klose, V; Lacker, H M; Bard, D J; Dauncey, P D; Nash, J A; Panduro Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Firmino da Costa, J; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordi