WorldWideScience

Sample records for systematic molecular genetic

  1. Molecular genetic gene-environment studies using candidate genes in schizophrenia: a systematic review.

    Science.gov (United States)

    Modinos, Gemma; Iyegbe, Conrad; Prata, Diana; Rivera, Margarita; Kempton, Matthew J; Valmaggia, Lucia R; Sham, Pak C; van Os, Jim; McGuire, Philip

    2013-11-01

    The relatively high heritability of schizophrenia suggests that genetic factors play an important role in the etiology of the disorder. On the other hand, a number of environmental factors significantly influence its incidence. As few direct genetic effects have been demonstrated, and there is considerable inter-individual heterogeneity in the response to the known environmental factors, interactions between genetic and environmental factors may be important in determining whether an individual develops the disorder. To date, a considerable number of studies of gene-environment interactions (G×E) in schizophrenia have employed a hypothesis-based molecular genetic approach using candidate genes, which have led to a range of different findings. This systematic review aims to summarize the results from molecular genetic candidate studies and to review challenges and opportunities of this approach in psychosis research. Finally, we discuss the potential of future prospects, such as new studies that combine hypothesis-based molecular genetic candidate approaches with agnostic genome-wide association studies in determining schizophrenia risk. © 2013 Elsevier B.V. All rights reserved.

  2. The use of genetic markers in the molecular epidemiology of histoplasmosis: a systematic review.

    Science.gov (United States)

    Damasceno, L S; Leitão, T M J S; Taylor, M L; Muniz, M M; Zancopé-Oliveira, R M

    2016-01-01

    Histoplasmosis is a systemic mycosis caused by Histoplasma capsulatum, a dimorphic fungal pathogen that can infect both humans and animals. This disease has worldwide distribution and affects mainly immunocompromised individuals. In the environment, H. capsulatum grows as mold but undergoes a morphologic transition to the yeast morphotype under special conditions. Molecular techniques are important tools to conduct epidemiologic investigations for fungal detection, identification of infection sources, and determination of different fungal genotypes associated to a particular disease symptom. In this study, we performed a systematic review in the PubMed database to improve the understanding about the molecular epidemiology of histoplasmosis. This search was restricted to English and Spanish articles. We included a combination of specific keywords: molecular typing [OR] genetic diversity [OR] polymorphism [AND] H. capsulatum; molecular epidemiology [AND] histoplasmosis; and molecular epidemiology [AND] Histoplasma. In addition, we used the specific terms: histoplasmosis [AND] outbreaks. Non-English or non-Spanish articles, dead links, and duplicate results were excluded from the review. The results reached show that the main methods used for molecular typing of H. capsulatum were: restriction fragment length polymorphism, random amplified polymorphic DNA, microsatellites polymorphism, sequencing of internal transcribed spacers region, and multilocus sequence typing. Different genetic profiles were identified among H. capsulatum isolates, which can be grouped according to their source, geographical origin, and clinical manifestations.

  3. Molecular genetics

    International Nuclear Information System (INIS)

    Kubitschek, H.E.

    1975-01-01

    Progress is reported on studies on the nature and action of lethal and mutagenic lesions in DNA and the mechanisms by which these are produced in bacteria by ionizing radiation or by decay of radioisotopes incorporated in DNA. Studies of radioisotope decay provide the advantages that the original lesion is localized in the genetic material and the immediate physical and chemical changes that occur at decay are known. Specific types of DNA damage were related to characteristic decay properties of several radioisotopes. Incorporated 125 I, for example, induces a double-stranded break in DNA with almost every decay, but causes remarkably little damage of any other kind to the DNA. (U.S.)

  4. Systematic molecular genetic analysis of congenital sideroblastic anemia: evidence for genetic heterogeneity and identification of novel mutations.

    Science.gov (United States)

    Bergmann, Anke K; Campagna, Dean R; McLoughlin, Erin M; Agarwal, Suneet; Fleming, Mark D; Bottomley, Sylvia S; Neufeld, Ellis J

    2010-02-01

    Sideroblastic anemias are heterogeneous congenital and acquired bone marrow disorders characterized by pathologic iron deposits in mitochondria of erythroid precursors. Among the congenital sideroblastic anemias (CSAs), the most common form is X-linked sideroblastic anemia, due to mutations in 5-aminolevulinate synthase (ALAS2). A novel autosomal recessive CSA, caused by mutations in the erythroid specific mitochondrial transporter SLC25A38, was recently defined. Other known etiologies include mutations in genes encoding the thiamine transporter SLC19A2, the RNA-modifying enzyme pseudouridine synthase 1 (PUS1), a mitochondrial ATP-binding cassette transporter (ABCB7), glutaredoxin 5 (GLRX5), as well as mitochondrial DNA deletions. Despite these known diverse causes, in a substantial portion of CSA cases a presumed genetic defect remains unknown. In the context of the recent discovery of SLC25A38 as a major novel cause, we systematically analyzed a large cohort of previously unreported CSA patients. Sixty CSA probands (28 females, 32 males) were examined for ALAS2, SLC25A38, PUS1, GLRX5, and ABCB7 mutations. SLC19A2 and mitochondrial DNA were only analyzed if characteristic syndromic features were apparent. Twelve probands had biallelic mutations in SLC25A38. Seven ALAS2 mutations were detected in eight sporadic CSA cases, two being novel. We also identified a novel homozygous null PUS1 mutation and novel mitochondrial DNA deletions in two patients with Pearson syndrome. No mutations were encountered in GLRX5, ABCB7, or SLC19A2. The remaining undefined probands (43%) can be grouped according to gender, family, and clinical characteristics, suggesting novel X-linked and autosomal recessive forms of CSA. (c) 2009 Wiley-Liss, Inc.

  5. Molecular Population Genetics.

    Science.gov (United States)

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.

  6. Molecular Population Genetics

    Science.gov (United States)

    Casillas, Sònia; Barbadilla, Antonio

    2017-01-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. PMID:28270526

  7. Molecular genetics in aquaculture

    Directory of Open Access Journals (Sweden)

    Liliana Di Stasio

    2010-01-01

    Full Text Available Great advances in molecular genetics have deeply changed the way of doing research in aquaculture, as it has already done in other fields. The molecular revolution started in the 1980’s, thanks to the widespread use of restriction enzymes and Polymerase Chain Reaction technology, which makes it possible to easily detect the genetic variability directly at the DNA level. In aquaculture, the molecular data are used for several purposes, which can be clustered into two main groups. The first one, focused on individuals, includes the sex identification and parentage assignment, while the second one, focused on populations, includes the wide area of the genetic characterization, aimed at solving taxonomic uncertainties, preserving genetic biodiversity and detecting genetic tags. For the future, the increase in the number of molecular markers and the construction of high density genetic maps, as well as the implementation of genomic resources (including genome sequencing, are expected to provide tools for the genetic improvement of aquaculture species through Marked Assisted Selection. In this review the characteristics of different types of molecular markers, along with their applications to a variety of aquaculture issues are presented.

  8. Primer on molecular genetics

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  9. Molecular research on the systematically challenging smoothhound ...

    African Journals Online (AJOL)

    From a series of molecular phylogenetic studies it can be inferred that the genus Mustelus is paraphyletic and that the aplacental species evolved secondarily from the placental species of the genus. The increasing availability of genetic data aids in disentangling systematic issues, such that more meaningful morphological ...

  10. Searching for non-genetic molecular and imaging PTSD risk and resilience markers: Systematic review of literature and design of the German Armed Forces PTSD biomarker study.

    Science.gov (United States)

    Schmidt, Ulrike; Willmund, Gerd-Dieter; Holsboer, Florian; Wotjak, Carsten T; Gallinat, Jürgen; Kowalski, Jens T; Zimmermann, Peter

    2015-01-01

    Biomarkers allowing the identification of individuals with an above average vulnerability or resilience for posttraumatic stress disorder (PTSD) would especially serve populations at high risk for trauma exposure like firefighters, police officers and combat soldiers. Aiming to identify the most promising putative PTSD vulnerability markers, we conducted the first systematic review on potential imaging and non-genetic molecular markers for PTSD risk and resilience. Following the PRISMA guidelines, we systematically screened the PubMed database for prospective longitudinal clinical studies and twin studies reporting on pre-trauma and post-trauma PTSD risk and resilience biomarkers. Using 25 different combinations of search terms, we retrieved 8151 articles of which we finally included and evaluated 9 imaging and 27 molecular studies. In addition, we briefly illustrate the design of the ongoing prospective German Armed Forces (Bundeswehr) PTSD biomarker study (Bw-BioPTSD) which not only aims to validate these previous findings but also to identify novel and clinically applicable molecular, psychological and imaging risk, resilience and disease markers for deployment-related psychopathology in a cohort of German soldiers who served in Afghanistan. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Molecular Genetics of Analbuminaemia

    DEFF Research Database (Denmark)

    Minchiotti, Lorenzo; Caridi, Gianluca; Campagnoli, Monica

    2014-01-01

    the perinatal and childhood period. Twenty-one different molecular lesions in the ALB are now known as cause of the trait. These include one mutation in the start codon, one frameshift/insertion, five frameshift/deletions, seven nonsense mutations and seven mutations affecting splicing. Thus, nonsense mutations...

  12. Alport syndrome. Molecular genetic aspects

    DEFF Research Database (Denmark)

    Hertz, Jens Michael

    2009-01-01

    a highly efficient and sensitive molecular diagnostic approach for analysing the COL4A5 gene in putative AS cases. Based on the present results and the litterature, an algorithm for molecular genetic analysis of the COL4A5 gene is suggested. The overall mutation detection rate was found to be 53......Alport syndrome (AS) is a progressive renal disease that is characterised by hematuria and progressive renal failure, and often accompanied by progressive high-tone sensorineural hearing loss and ocular changes in form of macular flecks and lenticonus. AS is a genetic heterogenous disease, and X...... practice for carrier detection and prenatal diagnosis, in order to be able to offer a better genetic counselling to the families. Knowledge of a possible correlation between genotype and phenotype can be of help in predicting the prognosis. Samples from 135 probands suspected of AS and 359...

  13. Molecular genetics of hepatocellular neoplasia

    OpenAIRE

    Jain, Shilpa; Singhal, Shashideep; Lee, Peng; Xu, Ruliang

    2010-01-01

    Hepatocellular carcinoma (HCC) is the sixth most common malignancy and the third leading cause of cancer deaths worldwide. Proper classification and early identification of HCC and precursor lesions is essential to the successful treatment and survival of HCC patients. Recent molecular genetic, pathologic, and clinical data have led to the stratification of hepatic adenomas into three subgroups: those with mutant TCF1/HNF1 α gene, those with mutant β-catenin, and those without mutations in ei...

  14. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Woods, D.R.

    1982-01-01

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  15. Molecular genetics of hepatocellular neoplasia.

    Science.gov (United States)

    Jain, Shilpa; Singhal, Shashideep; Lee, Peng; Xu, Ruliang

    2010-01-23

    Hepatocellular carcinoma (HCC) is the sixth most common malignancy and the third leading cause of cancer deaths worldwide. Proper classification and early identification of HCC and precursor lesions is essential to the successful treatment and survival of HCC patients. Recent molecular genetic, pathologic, and clinical data have led to the stratification of hepatic adenomas into three subgroups: those with mutant TCF1/HNF1 alpha gene, those with mutant beta-catenin, and those without mutations in either of these loci. Hepatic adenomas with alpha-catenin mutations have a significantly greater risk for malignant transformation in comparison with the other two subgroups. Telangiectatic focal nodular hyperplasia has now been reclassified as telangiectatic adenoma due to the presence of non-random methylation patterns, consistent with the monoclonal origin which is similar to hepatic adenoma and HCC. HCC precursor lesions demonstrate unique molecular alterations of HSP70, CAP2, glypican 3, and glutamine synthetase that have proven useful in the histologic diagnosis of early HCC. Though specific genetic alterations depend on HCC etiology, the main proteins affected include cell membrane receptors (in particular tyrosine kinase receptors) as well as proteins involved in cell signaling (specifically Wnt/beta-catenin, Ras/Raf/MEK/ERK and PI3K/Akt/mTOR pathways), cell cycle regulation (i.e. p53, p16/INK4, cyclin/cdk complex), invasiveness (EMT, TGF-beta) and DNA metabolism. Advances in gene expression profiling have provided new insights into the molecular genetics of HCC. HCCs can now be stratified into two clinically relevant groups: Class A, the low survival subclass (overall survival time 30.3+/- 8.02 months), shows strong expression signatures of cell proliferation and antiapoptosis genes (such as PNCA and cell cycle regulators CDK4, CCNB1, CCNA2, and CKS2) as well as genes involving ubiquitination and sumoylation; Class B, the high survival subclass (overall survival

  16. Molecular genetics of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Radice, P.; Pierotti, M. A. [Istituto Nazionale dei Tumori, Milan (Italy). Division of Experimental Oncology

    1997-09-01

    In the last two decades, molecular studies have enlightened the complexity of the genetic alterations that occur in breast cancer cells. To date, more than 40 different genes or loci have been found to be altered in breast carcinomas. Although some of these genes, as for example ERBB2, appear to be mutated in a high proportion of cases, their mechanism of action and their role in the different stages of cancer development are still poorly understood. More recently, two major determinants of the inherited predisposition to breast cancer, BRCA1 and BRCA2, have been isolated. As a consequence, it is now possible to screen families with a positive history of breast carcinomas for the identification of mutations carriers, in order to address these individuals into adequate programs of cancer surveillance and prevention.

  17. Molecular genetics of breast cancer

    International Nuclear Information System (INIS)

    Radice, P.; Pierotti, M. A.

    1997-01-01

    In the last two decades, molecular studies have enlightened the complexity of the genetic alterations that occur in breast cancer cells. To date, more than 40 different genes or loci have been found to be altered in breast carcinomas. Although some of these genes, as for example ERBB2, appear to be mutated in a high proportion of cases, their mechanism of action and their role in the different stages of cancer development are still poorly understood. More recently, two major determinants of the inherited predisposition to breast cancer, BRCA1 and BRCA2, have been isolated. As a consequence, it is now possible to screen families with a positive history of breast carcinomas for the identification of mutations carriers, in order to address these individuals into adequate programs of cancer surveillance and prevention

  18. Molecular genetic medicine. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, T. (ed.)

    1992-01-01

    Theodore Friedmann has put together an interesting spectrum of articles for volume 2 of Molecular Genetic Medicine. Perhaps related to his own interest in the X chromosome, three articles deal with X-chromosomal topics, while two deal with autosomal disorders and two treat viral disorders. The fragile-X syndrome is thoroughly covered by Brown and Jenkins with an article that is heavily weighted to clinical aspects and now out-of-date RFLP approaches. The timeliness of the volume is insured by the coverage (albeit brief) that they give to the cloning of FMR-1. Gartler et al. present a balanced review of X inactivation - the oft-surveyed subject was comprehensively covered in a manner that provided new perspectives. Lambert et al. provide an exhaustive review of natural and induced mutation of hypoxanthine phosphoribosyltransferase. For autosomal disorders, an excellent review of the molecular genetics of hemoglobin syntheses and their alterations in disease is provided by Berg and Schecter. The level of detail presented seemed just right to this reviewer. A concise review of recent advances in the study of Down syndrome and its animal model, trisomy 16 mice, is provided by Holtzman and Epstein. With regard to viral topics, Chisari thoughtfully reviews hepatitis B virus structure and function and the possible pathogenic mechanisms involved in its induction of hepatocellular carcinoma. Wong-Staal and Haseltine's up-to-date review of the increasingly complex regulatory genes of HIV is marred by a mix-up in figure legends - an exception to an otherwise well-proofread book. In summary, this is a good volume of its type and is recommended for those who might benefit from reading such review articles.

  19. Emerging trends in molecular systematics and molecular phylogeny of mayflies (Insecta: Ephemeroptera

    Directory of Open Access Journals (Sweden)

    K.G. Sivaramakrishnan

    2011-08-01

    Full Text Available Current trends are reviewed in the molecular systematics and phylogeny of the Ephemeroptera (mayflies, an ancient monophyletic lineage of pterygote insects. Theories of mayfly origins are analyzed, followed by a discussion of higher classification schemes in light of recent developments in molecular systematics. Ephemeroptera evolution is a classic example of ancient rapid radiation, presenting challenges for phylogenetic analysis. The utility of combined studies of morphological and molecular data is substantiated with examples and the role of molecular systematics in unraveling the taxonomy of cryptic species complexes is highlighted. The importance of DNA barcoding in mayfly taxonomy is discussed in the light of recent progress, and future contributions of genetics to the study of taxonomy, ecology and evolution in mayflies are discussed.

  20. (-)-Menthol biosynthesis and molecular genetics

    Science.gov (United States)

    Croteau, Rodney B.; Davis, Edward M.; Ringer, Kerry L.; Wildung, Mark R.

    2005-12-01

    (-)-Menthol is the most familiar of the monoterpenes as both a pure natural product and as the principal and characteristic constituent of the essential oil of peppermint ( Mentha x piperita). In this paper, we review the biosynthesis and molecular genetics of (-)-menthol production in peppermint. In Mentha species, essential oil biosynthesis and storage is restricted to the peltate glandular trichomes (oil glands) on the aerial surfaces of the plant. A mechanical method for the isolation of metabolically functional oil glands, has provided a system for precursor feeding studies to elucidate pathway steps, as well as a highly enriched source of the relevant biosynthetic enzymes and of their corresponding transcripts with which cDNA libraries have been constructed to permit cloning and characterization of key structural genes. The biosynthesis of (-)-menthol from primary metabolism requires eight enzymatic steps, and involves the formation and subsequent cyclization of the universal monoterpene precursor geranyl diphosphate to the parent olefin (-)-(4 S)-limonene as the first committed reaction of the sequence. Following hydroxylation at C3, a series of four redox transformations and an isomerization occur in a general “allylic oxidation-conjugate reduction” scheme that installs three chiral centers on the substituted cyclohexanoid ring to yield (-)-(1 R, 3 R, 4 S)-menthol. The properties of each enzyme and gene of menthol biosynthesis are described, as are their probable evolutionary origins in primary metabolism. The organization of menthol biosynthesis is complex in involving four subcellular compartments, and regulation of the pathway appears to reside largely at the level of gene expression. Genetic engineering to up-regulate a flux-limiting step and down-regulate a side route reaction has led to improvement in the composition and yield of peppermint oil.

  1. Genetics and molecular biology of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    King, M.C. [California Univ., Berkeley, CA (United States); Lippman, M. [Georgetown Univ. Medical Center, Washington, DC (United States)] [comps.

    1992-12-31

    This volume contains the abstracts of oral presentations and poster sessions presented at the Cold Springs Harbor Meeting on Cancer Cells, this meeting entitled Genetics and Molecular Biology of Breast Cancer.

  2. Protocols in human molecular genetics

    National Research Council Canada - National Science Library

    Mathew, Christopher G

    1991-01-01

    ... sequences has led to the development of DNA fingerprinting. The application of these techniques to the study of the human genome has culminated in major advances such as the cloning of the cystic fibrosis gene, the construction of genetic linkage maps of each human chromosome, the mapping of many genes responsible for human inherited disorders, genet...

  3. Molecular diversity and genetic relationships in Secale

    Indian Academy of Sciences (India)

    Molecular diversity and genetic relationships in Secale. E. Santos, M. Matos, P. Silva, A. M. Figueiras, C. Benito and O. Pinto-Carnide. J. Genet. 95, 273–281. Table 1. RAPD and ISSR primers used in this study. Primer. 5 –3. Primer. 5 –3. RAPDs (Operon). A1. CAGGCCCTTC. C5. CATGACCGCC. A4. AATCGGGCTG. C6.

  4. Molecular diversity and genetic relationships in Secale

    Indian Academy of Sciences (India)

    Supplementary data: Molecular diversity and genetic relationships in Secale. E. Santos, M. Matos, P. Silva, A. M. Figueiras, C. Benito and O. Pinto-Carnide. J. Genet. 95, 273–281. Table 1. RAPD and ISSR primers used in this study. Primer. 5 –3. Primer. 5 –3. RAPDs (Operon). A1. CAGGCCCTTC. C5. CATGACCGCC. A4.

  5. Molecular markers unravel intraspecific and interspecific genetic ...

    Indian Academy of Sciences (India)

    Molecular markers unravel intraspecific and interspecific genetic variability in Plantago ovata and some of its wild allies. Shivanjali Kotwal, Manoj K. Dhar, Balbir Kour, Kuldeep Raj and Sanjana Kaul. J. Genet. 92, 293–298. Table 1. Jaccard's similarity matrix of AFLP analysis of Plantago species. P. coronopus P. lanceolata ...

  6. Molecular genetics of intellectual disability

    OpenAIRE

    Bessa, C.; Lopes, Fátima; Maciel, P.

    2012-01-01

    The goal of this chapter is to review the current knowledge of the genetic causes of intellectual disability, focusing on alterations at the chromosomal and single gene level, with particular mention to the new technological developments, including array technologies and next-generation sequencing, which allowed an enormous increase in yield from genetic studies. The cellular and physiological pathways that seem to be most affected in intellectual disability will also be addressed. Fina...

  7. A symmetry model for genetic coding via a wallpaper group composed of the traditional four bases and an imaginary base E: towards category theory-like systematization of molecular/genetic biology.

    Science.gov (United States)

    Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun

    2014-05-07

    Previously, we suggested prototypal models that describe some clinical states based on group postulates. Here, we demonstrate a group/category theory-like model for molecular/genetic biology as an alternative application of our previous model. Specifically, we focus on deoxyribonucleic acid (DNA) base sequences. We construct a wallpaper pattern based on a five-letter cruciform motif with letters C, A, T, G, and E. Whereas the first four letters represent the standard DNA bases, the fifth is introduced for ease in formulating group operations that reproduce insertions and deletions of DNA base sequences. A basic group Z5 = {r, u, d, l, n} of operations is defined for the wallpaper pattern, with which a sequence of points can be generated corresponding to changes of a base in a DNA sequence by following the orbit of a point of the pattern under operations in group Z5. Other manipulations of DNA sequence can be treated using a vector-like notation 'Dj' corresponding to a DNA sequence but based on the five-letter base set; also, 'Dj's are expressed graphically. Insertions and deletions of a series of letters 'E' are admitted to assist in describing DNA recombination. Likewise, a vector-like notation Rj can be constructed for sequences of ribonucleic acid (RNA). The wallpaper group B = {Z5×∞, ●} (an ∞-fold Cartesian product of Z5) acts on Dj (or Rj) yielding changes to Dj (or Rj) denoted by 'Dj◦B(j→k) = Dk' (or 'Rj◦B(j→k) = Rk'). Based on the operations of this group, two types of groups-a modulo 5 linear group and a rotational group over the Gaussian plane, acting on the five bases-are linked as parts of the wallpaper group for broader applications. As a result, changes, insertions/deletions and DNA (RNA) recombination (partial/total conversion) are described. As an exploratory study, a notation for the canonical "central dogma" via a category theory-like way is presented for future developments. Despite the large incompleteness of our

  8. Otosclerosis: From Genetics to Molecular Biology.

    Science.gov (United States)

    Babcock, Thomas A; Liu, Xue Zhong

    2018-04-01

    Over the past several years, with the evolution of genetic and molecular research, several etiologic factors have been implicated in the pathogenesis of otosclerosis. Overall, current evidence suggests that otosclerosis is a complex disease with a variety of potential pathways contributing to the development of abnormal bone remodeling in the otic capsule. These pathways involved in the pathogenesis of otosclerosis are influenced by both genetic and environmental factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. [Colorectal cancer (CCR): genetic and molecular alterations].

    Science.gov (United States)

    Juárez-Vázquez, Clara Ibet; Rosales-Reynoso, Mónica Alejandra

    2014-01-01

    The aim of this review is to present a genetic and molecular overview of colorectal carcinogenesis (sporadic and hereditary origin) as a multistage process, where there are a number of molecular mechanisms associated with the development of colorectal cancer and genomic instability that allows the accumulation of mutations in proto-oncogenes and tumor suppressor genes, chromosomal instability, and methylation and microsatellite instability, and the involvement of altered expression of microRNAs' prognosis factors.

  10. Molecular species identification and population genetics of ...

    African Journals Online (AJOL)

    Molecular genetic techniques, such as DNA barcoding and genotyping, are increasingly being used to assist with the conservation and management of chondrichthyans worldwide. Southern Africa is a shark biodiversity hotspot, with a large number of endemic species. According to the IUCN Red List, a quarter of South ...

  11. A molecular genetic toolbox for Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Bredeweg, Erin L.; Pomraning, Kyle R.; Dai, Ziyu

    2017-01-01

    used these tools to build the "Yarrowia lipolytica Cell Atlas," a collection of strains with endogenous fluorescently tagged organelles in the same genetic background, in order to define organelle morphology in live cells. Conclusions: These molecular and isogenetic tools are useful for live assessment...

  12. Molecular diversity and genetic relationships in Secale

    Indian Academy of Sciences (India)

    The objective of this study was to quantify the molecular diversity and to determine the genetic relationships amongSecalespp. and among cultivars ofSecale ... Faculty of Sciences, Campo Grande, Lisboa, Portugal; Departamento de Genética, Facultad de Biologia, Universidad Complutense, C/ José Antonio Novais, 12, ...

  13. Molecular genetics in affective illness

    Energy Technology Data Exchange (ETDEWEB)

    Mendlewicz, J.; Sevy, S.; Mendelbaum, K. (Erasme Univ. Hospital, Brussels (Belgium))

    1993-01-01

    Genetic transmission in manic depressive illness (MDI) has been explored in twins, adoption, association, and linkage studies. The X-linked transmission hypothesis has been tested by using several markers on chromosome X: Xg blood group, color blindness, glucose-6-phosphate dehydrogenase (G6PD), factor IX (hemophilia B), and DNA probes such as DXS15, DXS52, F8C, ST14. The hypothesis of autosomal transmission has been tested by association studies with the O blood group located on chromosome 9, as well as linkage studies on chromosome 6 with the Human Leucocyte Antigens (HLA) haplotypes and on Chromosome 11 with DNA markers for the following genes: D2 dopamine receptor, tyrosinase, C-Harvey-Ras-A (HRAS) oncogene, insuline (ins), and tyrosine hydroxylase (TH). Although linkage studies support the hypothesis of a major locus for the transmission of MDI in the Xq27-28 region, several factors are limiting the results, and are discussed in the present review. 105 refs., 1 fig., 2 tabs.

  14. Molecular genetics of dyslexia: an overview.

    Science.gov (United States)

    Carrion-Castillo, Amaia; Franke, Barbara; Fisher, Simon E

    2013-11-01

    Dyslexia is a highly heritable learning disorder with a complex underlying genetic architecture. Over the past decade, researchers have pinpointed a number of candidate genes that may contribute to dyslexia susceptibility. Here, we provide an overview of the state of the art, describing how studies have moved from mapping potential risk loci, through identification of associated gene variants, to characterization of gene function in cellular and animal model systems. Work thus far has highlighted some intriguing mechanistic pathways, such as neuronal migration, axon guidance, and ciliary biology, but it is clear that we still have much to learn about the molecular networks that are involved. We end the review by highlighting the past, present, and future contributions of the Dutch Dyslexia Programme to studies of genetic factors. In particular, we emphasize the importance of relating genetic information to intermediate neurobiological measures, as well as the value of incorporating longitudinal and developmental data into molecular designs. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Molecular Genetics of Epilepsy: A Clinician's Perspective.

    Science.gov (United States)

    Dhiman, Vikas

    2017-01-01

    Epilepsy is a common neurological problem, and there is a genetic basis in almost 50% of people with epilepsy. The diagnosis of genetic epilepsies makes the patient assured of the reasons of his/her seizures and avoids unnecessary, expensive, and invasive investigations. Last decade has shown tremendous growth in gene sequencing technologies, which have made genetic tests available at the bedside. Whole exome sequencing is now being routinely used in the clinical setting for making a genetic diagnosis. Genetic testing not only makes the diagnosis but also has an effect on the management of the patients, for example, the role of sodium channels blockers in SCN1A + Dravet syndrome patients and usefulness of ketogenic diet therapy in SLC2A1 + generalized epilepsy patients. Many clinicians in our country have no or limited knowledge about the molecular genetics of epilepsies, types of genetic tests available, how to access them and how to interpret the results. The purpose of this review is to give an overview in this direction and encourage the clinicians to start considering genetic testing as an important investigation along with electroencephalogram and magnetic resonance imaging for better understanding and management of epilepsy in their patients.

  16. Molecular genetics of epilepsy: A clinician's perspective

    Directory of Open Access Journals (Sweden)

    Vikas Dhiman

    2017-01-01

    Full Text Available Epilepsy is a common neurological problem, and there is a genetic basis in almost 50% of people with epilepsy. The diagnosis of genetic epilepsies makes the patient assured of the reasons of his/her seizures and avoids unnecessary, expensive, and invasive investigations. Last decade has shown tremendous growth in gene sequencing technologies, which have made genetic tests available at the bedside. Whole exome sequencing is now being routinely used in the clinical setting for making a genetic diagnosis. Genetic testing not only makes the diagnosis but also has an effect on the management of the patients, for example, the role of sodium channels blockers in SCN1A+ Dravet syndrome patients and usefulness of ketogenic diet therapy in SLC2A1+ generalized epilepsy patients. Many clinicians in our country have no or limited knowledge about the molecular genetics of epilepsies, types of genetic tests available, how to access them and how to interpret the results. The purpose of this review is to give an overview in this direction and encourage the clinicians to start considering genetic testing as an important investigation along with electroencephalogram and magnetic resonance imaging for better understanding and management of epilepsy in their patients.

  17. Unmet Needs in Dystonia: Genetics and Molecular Biology-How Many Dystonias?

    Science.gov (United States)

    Verbeek, Dineke S; Gasser, Thomas

    2016-01-01

    Genetic findings of the past years have provided ample evidence for a substantial etiologic heterogeneity of dystonic syndromes. While an increasing number of genes are being identified for Mendelian forms of isolated and combined dystonias using classical genetic mapping and whole-exome sequencing techniques, their precise role in the molecular pathogenesis is still largely unknown. Also, the role of genetic risk factors in the etiology of sporadic dystonias is still enigmatic. Only the systematic ascertainment and precise clinical characterization of very large cohorts with dystonia, combined with systematic genetic studies, will be able to unravel the complex network of factors that determine disease risk and phenotypic expression.

  18. [Comparison of taxonomic importance of morphological and molecular-genetic characters in systematics of Microsporidia (Microsporidia) of blood-sucking mosquitoes (Diptera: Culicidae)].

    Science.gov (United States)

    Simakova, A V

    2014-01-01

    Comparative analysis of the taxonomic position of microsporidians from mosquitoes of the family Culicidae, for which SSU rDNA sequences data were obtained, demonstrates partial contradiction of systems based on morphological and phylogenetic characteristics. Representatives of the genera Anncaliia Issi. et al., 1993 and Vavraia Weiser, 1977 constitute separate evolutionary branches of the phylogenetic tree of microsporidians of blood-sucking mosquitoes. Representatives of other genera, for which the SSU rRNA sequences data were obtained (Amblyospora Hazard, Oldacre, 1975, Andreanna Simakova et al., 2008, Culicospora (Kudo, 1921), Weiser, 1977, Culicosporella Hazard, Savage, 1970, Edhazardia (Kudo, 1930), Sprague, Fucuda, 1989, Hazardia Weiser, 1977, Hyalinocysta Hazard, Oldacre, 1975, Novothelohania Andreadis et al., 2012, Parathelohania Codreanu, 1966, Senoma Simakova et al., 2005, and Trichoctosporea Larsson, 1994), form a separate, monophyletic group in the tree of Microsporidia. They are closely related and probably possess a common ancestor. The genera Amblyospora, Culicospora, Edhazardia, and Trichoctosporea were placed in the family Amblyosporidae with the revision of the diagnosis. On the basis of the obtained data on morphology and molecular phylogeny we placed Intrapredatorus barri Chen et al:, 1998 into the genus Amblyospora as Amblyospora barri, comb. nov., and also the species Amblyospora bakcharia Andreadis et al., 2012, A. kazankia Andreadis et al., 2012, A. mocrushinia Andreadis et al., 2012, and A. rugosa Simakova, Pankova, 2005 into the genus Trichoctosporea as Trichoctosporea bakcharia comb. nov., T. kazankia comb. nov., T. mocrushinia comb. nov., and T. rugosa comb. nov. Microsporidians of blood-sucking mosquitoes originally possessed complicated life cycles with transovarial and oral transmissions and with the presence of intermediate hosts (lower crustaceans). Later, some microsporidians had lost a part of their life cycle, either during

  19. Genetic neurological channelopathies: molecular genetics and clinical phenotypes.

    Science.gov (United States)

    Spillane, J; Kullmann, D M; Hanna, M G

    2016-01-01

    Evidence accumulated over recent years has shown that genetic neurological channelopathies can cause many different neurological diseases. Presentations relating to the brain, spinal cord, peripheral nerve or muscle mean that channelopathies can impact on almost any area of neurological practice. Typically, neurological channelopathies are inherited in an autosomal dominant fashion and cause paroxysmal disturbances of neurological function, although the impairment of function can become fixed with time. These disorders are individually rare, but an accurate diagnosis is important as it has genetic counselling and often treatment implications. Furthermore, the study of less common ion channel mutation-related diseases has increased our understanding of pathomechanisms that is relevant to common neurological diseases such as migraine and epilepsy. Here, we review the molecular genetic and clinical features of inherited neurological channelopathies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Is a new and general theory of molecular systematics emerging?

    Science.gov (United States)

    Edwards, Scott V

    2009-01-01

    The advent and maturation of algorithms for estimating species trees-phylogenetic trees that allow gene tree heterogeneity and whose tips represent lineages, populations and species, as opposed to genes-represent an exciting confluence of phylogenetics, phylogeography, and population genetics, and ushers in a new generation of concepts and challenges for the molecular systematist. In this essay I argue that to better deal with the large multilocus datasets brought on by phylogenomics, and to better align the fields of phylogeography and phylogenetics, we should embrace the primacy of species trees, not only as a new and useful practical tool for systematics, but also as a long-standing conceptual goal of systematics that, largely due to the lack of appropriate computational tools, has been eclipsed in the past few decades. I suggest that phylogenies as gene trees are a "local optimum" for systematics, and review recent advances that will bring us to the broader optimum inherent in species trees. In addition to adopting new methods of phylogenetic analysis (and ideally reserving the term "phylogeny" for species trees rather than gene trees), the new paradigm suggests shifts in a number of practices, such as sampling data to maximize not only the number of accumulated sites but also the number of independently segregating genes; routinely using coalescent or other models in computer simulations to allow gene tree heterogeneity; and understanding better the role of concatenation in influencing topologies and confidence in phylogenies. By building on the foundation laid by concepts of gene trees and coalescent theory, and by taking cues from recent trends in multilocus phylogeography, molecular systematics stands to be enriched. Many of the challenges and lessons learned for estimating gene trees will carry over to the challenge of estimating species trees, although adopting the species tree paradigm will clarify many issues (such as the nature of polytomies and the

  1. Medulloblastoma: Molecular Genetics and Animal Models

    Directory of Open Access Journals (Sweden)

    Corey Raffel

    2004-07-01

    Full Text Available Medulloblastoma is a primary brain tumor found in the cerebellum of children. The tumor occurs in association with two inherited cancer syndromes: Turcot syndrome and Gorlin syndrome. Insights into the molecular biology of the tumor have come from looking at alterations in the genes altered in these syndromes, PTC and APC, respectively. Murine models of medulloblastoma have been constructed based on these alterations. Additional murine models that, while mimicking the appearance of the human tumor, seem unrelated to the human tumor's molecular alterations have been made. In this review, the clinical picture, origin, molecular biology, murine models of medulloblastoma are discussed. Although a great deal has been discovered about this tumor, the genetic alterations responsible for tumor development in a majority of patients have yet to be described.

  2. Molecular Genetic of Atopic dermatitis: An Update

    Science.gov (United States)

    Al-Shobaili, Hani A.; Ahmed, Ahmed A.; Alnomair, Naief; Alobead, Zeiad Abdulaziz; Rasheed, Zafar

    2016-01-01

    Atopic dermatitis (AD) is a chronic multifactorial inflammatory skin disease. The pathogenesis of AD remains unclear, but the disease results from dysfunctions of skin barrier and immune response, where both genetic and environmental factors play a key role. Recent studies demonstrate the substantial evidences that show a strong genetic association with AD. As for example, AD patients have a positive family history and have a concordance rate in twins. Moreover, several candidate genes have now been suspected that play a central role in the genetic background of AD. In last decade advanced procedures similar to genome-wide association (GWA) and single nucleotide polymorphism (SNP) have been applied on different population and now it has been clarified that AD is significantly associated with genes of innate/adaptive immune systems, human leukocyte antigens (HLA), cytokines, chemokines, drug-metabolizing genes or various other genes. In this review, we will highlight the recent advancements in the molecular genetics of AD, especially on possible functional relevance of genetic variants discovered to date. PMID:27004062

  3. Update on the Cytogenetics and Molecular Genetics of Chordoma

    Directory of Open Access Journals (Sweden)

    Larizza Lidia

    2005-02-01

    Full Text Available Abstract Chordoma is a rare mesenchymal tumour of complex biology for which only histologic and immunohistochemical criteria have been defined, but no biomarkers predicting the clinical outcome and response to treatment have yet been recognised. We herein review the interdisciplinary information achieved by epidemiologists, neurosurgeons and basic scientists on chordoma, usually a sporadic tumour, which also includes a small fraction of familial cases. Main focus is on the current knowledge of the genetic alterations which might pinpoint candidate genes and molecular mechanisms shared by sporadic and familiar chordomas. Due to the scarcity of the investigated tumour specimens and the multiple chromosome abnormalities found in tumours with aberrant karyotypes, conventional cytogenetics and Fluorescence In Situ Hybridization failed to detect recurrent chordoma-specific chromosomal rearrangements. Genome-wide approaches such as Comparative Genomic Hybridization (CGH are yet at an initial stage of application and should be implemented using BAC arrays either genome-wide or targeting selected genomic regions, disclosed by Loss of Heterozygosity (LOH studies. An LOH region was shown by a systematic study on a consistent number of chordomas to encompass 1p36, a genomic interval where a candidate gene was suggested to reside. Despite the rarity of multiplex families with chordoma impaired linkage studies, a chordoma locus could be mapped to chromosome 7q33 by positive lod score in three independent families. The role in chordomagenesis of the Tuberous Sclerosis Complex (TSC genes has been proved, but the extent of involvement of TSC1 and TSC2 oncosuppressors in chordoma remains to be assessed. In spite of the scarce knowledge on the genetics and molecular biology of chordoma, recent initiation of clinical trials using molecular-targeted therapy, should validate new molecular targets and predict the efficacy of a given therapy. Comparative genetic and

  4. Molecular Genetic Markers in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Sophia Yohe

    2015-03-01

    Full Text Available Genetics play an increasingly important role in the risk stratification and management of acute myeloid leukemia (AML patients. Traditionally, AML classification and risk stratification relied on cytogenetic studies; however, molecular detection of gene mutations is playing an increasingly important role in classification, risk stratification, and management of AML. Molecular testing does not take the place of cytogenetic testing results, but plays a complementary role to help refine prognosis, especially within specific AML subgroups. With the exception of acute promyelocytic leukemia, AML therapy is not targeted but the intensity of therapy is driven by the prognostic subgroup. Many prognostic scoring systems classify patients into favorable, poor, or intermediate prognostic subgroups based on clinical and genetic features. Current standard of care combines cytogenetic results with targeted testing for mutations in FLT3, NPM1, CEBPA, and KIT to determine the prognostic subgroup. Other gene mutations have also been demonstrated to predict prognosis and may play a role in future risk stratification, although some of these have not been confirmed in multiple studies or established as standard of care. This paper will review the contribution of cytogenetic results to prognosis in AML and then will focus on molecular mutations that have a prognostic or possible therapeutic impact.

  5. Molecular and genetic mechanisms of environmental mutagens

    International Nuclear Information System (INIS)

    Kubitschek, H.E.; Derstine, P.L.; Griego, V.M.; Matsushita, T.; Peak, J.G.; Peak, M.J.; Reynolds, P.R.; Webb, R.B.; Williams-Hill, D.

    1981-01-01

    This program is primarily concerned with elucidation of the nature of DNA lesions produced by environmental and energy related mutagens, their mechanisms of action, and their repair. The main focus is on actions of chemical mutagens and electromagnetic radiations. Synergistic interactions between mutagens and the mutational processes that lead to synergism are being investigated. Mutagens are chosen for study on the basis of their potential for analysis of mutation (as genetic probes), for development of procedures for reducing mutational damage, for their potential importance to risk assessment, and for development of improved mutagen testing systems. Bacterial cells are used because of the rapidity and clarity of scientific results that can be obtained, the detailed genetic maps, and the many well-defined mutand strains available. The conventional tools of microbial and molecular genetics are used, along with intercomparison of genetically related strains. Advantage is taken of tcollective dose commitment will result in more attention being paid to potential releases of radionuclides at relatively short times after disposal

  6. Cardiac channelopathies: genetic and molecular mechanisms.

    Science.gov (United States)

    Abriel, Hugues; Zaklyazminskaya, Elena V

    2013-03-15

    Channelopathies are diseases caused by dysfunctional ion channels, due to either genetic or acquired pathological factors. Inherited cardiac arrhythmic syndromes are among the most studied human disorders involving ion channels. Since seminal observations made in 1995, thousands of mutations have been found in many of the different genes that code for cardiac ion channel subunits and proteins that regulate the cardiac ion channels. The main phenotypes observed in patients carrying these mutations are congenital long QT syndrome (LQTS), Brugada syndrome (BrS), catecholaminergic polymorphic ventricular tachycardia (CPVT), short QT syndrome (SQTS) and variable types of conduction defects (CD). The goal of this review is to present an update of the main genetic and molecular mechanisms, as well as the associated phenotypes of cardiac channelopathies as of 2012. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Psychobiology and molecular genetics of resilience.

    Science.gov (United States)

    Feder, Adriana; Nestler, Eric J; Charney, Dennis S

    2009-06-01

    Every individual experiences stressful life events. In some cases acute or chronic stress leads to depression and other psychiatric disorders, but most people are resilient to such effects. Recent research has begun to identify the environmental, genetic, epigenetic and neural mechanisms that underlie resilience, and has shown that resilience is mediated by adaptive changes in several neural circuits involving numerous neurotransmitter and molecular pathways. These changes shape the functioning of the neural circuits that regulate reward, fear, emotion reactivity and social behaviour, which together are thought to mediate successful coping with stress.

  8. Genetics and molecular biology of hypotension

    Science.gov (United States)

    Robertson, D.

    1994-01-01

    Major strides in the molecular biology of essential hypertension are currently underway. This has tended to obscure the fact that a number of inherited disorders associated with low blood pressure exist and that these diseases may have milder and underrecognized phenotypes that contribute importantly to blood pressure variation in the general population. This review highlights some of the gene products that, if abnormal, could cause hypotension in some individuals. Diseases due to abnormalities in the catecholamine enzymes are discussed in detail. It is likely that genetic abnormalities with hypotensive phenotypes will be as interesting and diverse as those that give rise to hypertensive disorders.

  9. Molecular systematics applied to Phlebotomine sandflies: review and perspectives.

    Science.gov (United States)

    Depaquit, Jérôme

    2014-12-01

    A review of the literature related to the molecular systematics of the Phlebotomine sandflies (Diptera, Psychodidae) is proposed. It shows that molecular systematics is more frequently used to perform evolutionary systematics than to help in the field of alpha taxonomy. On more than 900 living species and subspecies described, 180 (about 20%) have been processed for molecular systematics. The countries of origin where the sandflies processed come from are endemic for leishmaniases and the ratio of species sampled for molecular systematics studies is high for vector groups and low for species not involved in the transmission of leishmaniasis. The main studies focused on intraspecific topics, others on closely related species, and a few compared genera of sandflies. Mitochondrial markers (more than 50% of the markers studied) are preferred to non mitochondrial markers. The use of mtDNA markers alone to explore phylogenetic relationships is considered as dangerous, especially concerning closely related species. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Teaching molecular genetics: Chapter 1--Background principles and methods of molecular biology.

    NARCIS (Netherlands)

    Knoers, N.V.A.M.; Monnens, L.A.H.

    2006-01-01

    In this first chapter of the series "Teaching molecular genetics," an introduction to molecular genetics is presented. We describe the structure of DNA and genes and explain in detail the central dogma of molecular biology, that is, the flow of genetic information from DNA via RNA to polypeptide

  11. Plant Genetics and Molecular Biology: An Introduction.

    Science.gov (United States)

    Varshney, Rajeev K; Pandey, Manish K; Chitikineni, Annapurna

    2018-02-16

    The rapidly evolving technologies can serve as a potential growth engine in agriculture as many of these technologies have revolutionized several industries in the recent past. The tremendous advancements in biotechnology methods, cost-effective sequencing technology, refinement of genomic tools, and standardization of modern genomics-assisted breeding methods hold great promise in taking the global agriculture to the next level through development of improved climate-smart seeds. These technologies can dramatically increase our capacity to understand the molecular basis of traits and utilize the available resources for accelerated development of stable high-yielding, nutritious, input-use efficient, and climate-smart crop varieties. This book aimed to document the monumental advances witnessed during the last decade in multiple fields of plant biotechnology such as genetics, structural and functional genomics, trait and gene discovery, transcriptomics, proteomics, metabolomics, epigenomics, nanotechnology, and analytical tools. This book will serve to update the scientific community, academicians, and other stakeholders in global agriculture on the rapid progress in various areas of agricultural biotechnology. This chapter provides a summary of the book, "Plant Genetics and Molecular Biology." Graphical Abstract.

  12. Systematic reconstruction of autism biology from massive genetic mutation profiles.

    Science.gov (United States)

    Luo, Weijun; Zhang, Chaolin; Jiang, Yong-Hui; Brouwer, Cory R

    2018-04-01

    Autism spectrum disorder (ASD) affects 1% of world population and has become a pressing medical and social problem worldwide. As a paradigmatic complex genetic disease, ASD has been intensively studied and thousands of gene mutations have been reported. Because these mutations rarely recur, it is difficult to (i) pinpoint the fewer disease-causing versus majority random events and (ii) replicate or verify independent studies. A coherent and systematic understanding of autism biology has not been achieved. We analyzed 3392 and 4792 autism-related mutations from two large-scale whole-exome studies across multiple resolution levels, that is, variants (single-nucleotide), genes (protein-coding unit), and pathways (molecular module). These mutations do not recur or replicate at the variant level, but significantly and increasingly do so at gene and pathway levels. Genetic association reveals a novel gene + pathway dual-hit model, where the mutation burden becomes less relevant. In multiple independent analyses, hundreds of variants or genes repeatedly converge to several canonical pathways, either novel or literature-supported. These pathways define recurrent and systematic ASD biology, distinct from previously reported gene groups or networks. They also present a catalog of novel ASD risk factors including 118 variants and 72 genes. At a subpathway level, most variants disrupt the pathway-related gene functions, and in the same gene, they tend to hit residues extremely close to each other and in the same domain. Multiple interacting variants spotlight key modules, including the cAMP (adenosine 3',5'-monophosphate) second-messenger system and mGluR (metabotropic glutamate receptor) signaling regulation by GRKs (G protein-coupled receptor kinases). At a superpathway level, distinct pathways further interconnect and converge to three biology themes: synaptic function, morphology, and plasticity.

  13. UPDATED MOLECULAR GENETICS AND PATHOGENESIS OF ICHTHYOSES

    Science.gov (United States)

    AKIYAMA, MASASHI

    2011-01-01

    ABSTRACT Research into the molecular genetics and pathomechanisms of ichthyoses have advanced considerably, resulting in the identification of several causative genes and molecules underlying the disease. In 2009, the First Ichthyosis Consensus Conference was held to establish a consensus for the nomenclature and classification of inherited ichthyoses, by which an international consensus for the classification of inherited ichthyosis was achieved. In this review, the pathogeneses of various ichthyoses are summarized based on their revised classification and terminology. Skin barrier defects are involved in the pathogenesis of various types of ichthyosis. The known causative molecules underlying ichthyosis include ABCA12, lipoxygenase-3, 12R-lipoxygenase, CYP4F22, ichthyin and steroid sulfatase, all of which are thought to be related to the intercellular lipid layers. ABCA12 is a known keratinocyte lipid transporter associated with lipid transport in lamellar granules and a loss of ABCA12 function leads to defective lipid transport in the keratinocytes, resulting in the most severe, harlequin ichthyosis phenotype. Other causative molecules for ichthyoses are transglutaminase 1, keratins and filaggrin. Transglutaminase 1 plays a role in cornified cell envelope formation. Keratins 1, 10 and 2 are involved in the keratin network of suprabasal keratinocytes and filaggrin is essential for the formation of keratohyalin granules. It is important to obtain information concerning genetic defects and to elucidate ichthyotic disease pathomechanisms for the establishment of an effective therapy and beneficial genetic counseling, including a prenatal diagnosis for families affected by ichthyotic disease. PMID:21928690

  14. Morphological and molecular genetic diversity of Syrian indigenous ...

    African Journals Online (AJOL)

    Morphological and molecular genetic diversity of Syrian indigenous goat populations. Halima Hassen, Barbara Rischkowsky, Adnan Termanini, Ghassen Jessry, Aynalem Haile, Michael Baum, Samir Lababidi ...

  15. Molecular research on the genetic diversity of Tunisian date palm ...

    African Journals Online (AJOL)

    Molecular research on the genetic diversity of Tunisian date palm ( Phoenix dactylifera L.) using the random amplified microsatellite polymorphism (RAMPO) and amplified fragment length polymorphism (AFLP) methods.

  16. Molecular Genetic Studies of Some Eye Diseases Affecting the ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Molecular Genetic Studies of Some Eye Diseases Affecting the Indian Population. Single gene disorders. Complex eye diseases. Genotype-phenotype correlation. Molecular diagnostics.

  17. Chondrosarcoma: With Updates on Molecular Genetics

    Directory of Open Access Journals (Sweden)

    Mi-Jung Kim

    2011-01-01

    Full Text Available Chondrosarcoma (CHS is a malignant cartilage-forming tumor and usually occurs within the medullary canal of long bones and pelvic bones. Based on the morphologic feature alone, a correct diangosis of CHS may be difficult, Therefore, correlation of radiological and clinicopathological features is mandatory in the diagnosis of CHS. The prognosis of CHS is closely related to histologic grading, however, histologic grading may be subjective with high inter-observer variability. In this paper, we present histologic grading system and clinicopathological and radiological findings of conventional CHS. Subtypes of CHSs, such as dedifferentiated, mesenchymal, and clear cell CHSs are also presented. In addition, we introduce updated cytogenetic and molecular genetic findings to expand our understanding of CHS biology. New markers of cell differentiation, proliferation, and cell signaling might offer important therapeutic and prognostic information in near future.

  18. A Molecular Genetic Basis Explaining Altered Bacterial Behavior in Space.

    Directory of Open Access Journals (Sweden)

    Luis Zea

    Full Text Available Bacteria behave differently in space, as indicated by reports of reduced lag phase, higher final cell counts, enhanced biofilm formation, increased virulence, and reduced susceptibility to antibiotics. These phenomena are theorized, at least in part, to result from reduced mass transport in the local extracellular environment, where movement of molecules consumed and excreted by the cell is limited to diffusion in the absence of gravity-dependent convection. However, to date neither empirical nor computational approaches have been able to provide sufficient evidence to confirm this explanation. Molecular genetic analysis findings, conducted as part of a recent spaceflight investigation, support the proposed model. This investigation indicated an overexpression of genes associated with starvation, the search for alternative energy sources, increased metabolism, enhanced acetate production, and other systematic responses to acidity-all of which can be associated with reduced extracellular mass transport.

  19. A Molecular Genetic Basis Explaining Altered Bacterial Behavior in Space

    Science.gov (United States)

    Prasad, Nripesh; Levy, Shawn E.; Stodieck, Louis; Jones, Angela; Shrestha, Shristi; Klaus, David

    2016-01-01

    Bacteria behave differently in space, as indicated by reports of reduced lag phase, higher final cell counts, enhanced biofilm formation, increased virulence, and reduced susceptibility to antibiotics. These phenomena are theorized, at least in part, to result from reduced mass transport in the local extracellular environment, where movement of molecules consumed and excreted by the cell is limited to diffusion in the absence of gravity-dependent convection. However, to date neither empirical nor computational approaches have been able to provide sufficient evidence to confirm this explanation. Molecular genetic analysis findings, conducted as part of a recent spaceflight investigation, support the proposed model. This investigation indicated an overexpression of genes associated with starvation, the search for alternative energy sources, increased metabolism, enhanced acetate production, and other systematic responses to acidity—all of which can be associated with reduced extracellular mass transport. PMID:27806055

  20. Teaching molecular genetics: Chapter 1--Background principles and methods of molecular biology.

    Science.gov (United States)

    Knoers, Nine V A M; Monnens, Leo A H

    2006-02-01

    In this first chapter of the series "Teaching molecular genetics," an introduction to molecular genetics is presented. We describe the structure of DNA and genes and explain in detail the central dogma of molecular biology, that is, the flow of genetic information from DNA via RNA to polypeptide (protein). In addition, several basic and frequently used general molecular tools, such as restriction enzymes, Southern blotting, DNA amplification and sequencing are discussed, in order to lay the foundations for the forthcoming chapters.

  1. Molecular Genetics of Supernumerary Tooth Formation

    Science.gov (United States)

    Wang, Xiu-Ping; Fan, Jiabing

    2011-01-01

    Summary Despite advances in the knowledge of tooth morphogenesis and differentiation, relatively little is known about the aetiology and molecular mechanisms underlying supernumerary tooth formation. A small number of supernumerary teeth may be a common developmental dental anomaly, while multiple supernumerary teeth usually have a genetic component and they are sometimes thought to represent a partial third dentition in humans. Mice, which are commonly used for studying tooth development, only exhibit one dentition, with very few mouse models exhibiting supernumerary teeth similar to those in humans. Inactivation of Apc or forced activation of Wnt/β(catenin signalling results in multiple supernumerary tooth formation in both humans and in mice, but the key genes in these pathways are not very clear. Analysis of other model systems with continuous tooth replacement or secondary tooth formation, such as fish, snake, lizard, and ferret, is providing insights into the molecular and cellular mechanisms underlying succesional tooth development, and will assist in the studies on supernumerary tooth formation in humans. This information, together with the advances in stem cell biology and tissue engineering, will pave ways for the tooth regeneration and tooth bioengineering. PMID:21309064

  2. Molecular genetics, natural history and the demise of childhood leukaemia.

    Science.gov (United States)

    Greaves, M

    1999-12-01

    The patterns of genetic change, clonal evolution, natural history and latency are very different in the paediatric leukaemias compared with adult epithelial cancers but are similar to those in other childhood cancers of mesenchymal stem cell origin. This distinction has a biological logic in the context of the selective pressures for clonal emergence in different developmental and cellular contexts and has a major impact on curability. Most childhood leukaemias and some other mesenchymal stem cell tumours are of fetal origin and can metastasize without corruption of restraints on cell proliferation or bypassing apoptosis. In marked contrast to most invasive or metastatic epithelial carcinomas in adults, these former cancers then retain sensitivity to therapeutic apoptosis. Moreover, their abbreviated and less complex evolutionary status is associated with less genetic diversity and instability, minimising opportunity for clonal selection for resistance. A minority of leukaemias in children and a higher fraction in adults do, however, have genetic alterations that bypass cell cycle controls and apoptosis imposition. These are the 'bad news' genotypes. The cellular and molecular diversity of acute leukaemia impacts also on aetiology. Paediatric acute leukaemias can be initiated prenatally by illegitimate recombination and fusion gene formation in fetal haemopoiesis. For acute lymphoblastic leukaemia (ALL) in children, twin studies suggest that a secondary postnatal molecular event is also required. This may be promoted by an abnormal or delayed response to common infections. Even for a classic case of a cancer that is intrinsically curable by systematic chemotherapy i.e. childhood ALL, prevention may turn out to be the preferred option.

  3. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans.

    Science.gov (United States)

    Verloop, Herman; Dekkers, Olaf M; Peeters, Robin P; Schoones, Jan W; Smit, Johannes W A

    2014-09-01

    Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple clinical endpoints. Interest in clinical effects of genetic variation in deiodinases has clearly increased. We aimed to provide an overview for the role of deiodinase polymorphisms in human physiology and morbidity. In this systematic review, studies evaluating the relationship between deiodinase polymorphisms and clinical parameters in humans were eligible. No restrictions on publication date were imposed. The following databases were searched up to August 2013: Pubmed, EMBASE (OVID-version), Web of Science, COCHRANE Library, CINAHL (EbscoHOST-version), Academic Search Premier (EbscoHOST-version), and ScienceDirect. Deiodinase physiology at molecular and tissue level is described, and finally the role of these polymorphisms in pathophysiological conditions is reviewed. Deiodinase type 1 (D1) polymorphisms particularly show moderate-to-strong relationships with thyroid hormone parameters, IGF1 production, and risk for depression. D2 variants correlate with thyroid hormone levels, insulin resistance, bipolar mood disorder, psychological well-being, mental retardation, hypertension, and risk for osteoarthritis. D3 polymorphisms showed no relationship with inter-individual variation in serum thyroid hormone parameters. One D3 polymorphism was associated with risk for osteoarthritis. Genetic deiodinase profiles only explain a small proportion of inter-individual variations in serum thyroid hormone levels. Evidence suggests a role of genetic deiodinase variants in certain pathophysiological conditions. The value for determination of deiodinase polymorphism in clinical practice needs further investigation. © 2014 European Society of Endocrinology.

  4. Cystic fibrosis, molecular genetics for all life

    Directory of Open Access Journals (Sweden)

    Ausilia Elce

    2015-10-01

    Full Text Available Cystic fibrosis (CF is the most frequent lethal autosomal recessive disorder among Caucasians (incidence: 1:2,500 newborn. In the last two decades CF prognosis considerably improved and many patients well survive into their adulthood. Furthermore, milder CF with a late onset was described. CF is a challenge for laboratory of molecular genetics that greatly contributes to the natural history of the disease since fetal age. Carrier screening and prenatal diagnosis, also by non-invasive analysis of maternal blood fetal DNA, are now available, and many labs offer preimplantation diagnosis. The major criticism in prenatal medicine is the lack of an effective multidisciplinary counseling that helps the couples to plan their reasoned reproductive choice. Most countries offer newborn screening that significantly reduce CF morbidity but different protocols based on blood trypsin, molecular analysis and sweat chloride cause a variable efficiency of the screening programs. Again, laboratory is crucial for CF diagnosis in symptomatic patients: sweat chloride is the diagnostic golden standard, but different methodologies and the lack of quality control in most labs reduce its effectiveness. Molecular analysis contributes to confirm diagnosis in symptomatic subjects; furthermore, it helps to predict the disease outcome on the basis of the mutation (genotype-phenotype correlation and mutations in a myriad of genes, inherited independently by CF transmembrane conductance regulator (CFTR, which may modulate the clinical expression of the disease in each single patient (modifier genes. More recently, the search of the CFTR mutations gained a role in selecting CF patients that may benefit from biological therapy based on correctors and potentiators that are effective in patients bearing specific mutations (personalized therapy. All such applications of molecular diagnostics confirm the “uniqueness” of each CF patient, offering to laboratory medicine the

  5. Application of molecular genetic tools for forest pathology

    Science.gov (United States)

    Mee-Sook Kim; John Hanna; Amy Ross-Davis; Ned Klopfenstein

    2012-01-01

    In recent years, advances in molecular genetics have provided powerful tools to address critical issues in forest pathology to help promote resilient forests. Although molecular genetic tools are initially applied to understand individual components of forest pathosystems, forest pathosystems involve dynamic interactions among biotic and abiotic components of the...

  6. Child Development and Molecular Genetics: 14 Years Later

    Science.gov (United States)

    Plomin, Robert

    2013-01-01

    Fourteen years ago, the first article on molecular genetics was published in this journal: "Child Development, Molecular Genetics, and What to Do With Genes Once They Are Found" (R. Plomin & M. Rutter, 1998). The goal of the article was to outline what developmentalists can do with genes once they are found. These new directions for developmental…

  7. Overview of molecular, cellular, and genetic neurotoxicology.

    Science.gov (United States)

    Wallace, David R

    2005-05-01

    It has become increasingly evident that the field of neurotoxicology is not only rapidly growing but also rapidly evolving, especially over the last 20 years. As the number of drugs and environmental and bacterial/viral agents with potential neurotoxic properties has grown, the need for additional testing has increased. Only recently has the technology advanced to a level that neurotoxicologic studies can be performed without operating in a "black box." Examination of the effects of agents that are suspected of being toxic can occur on the molecular (protein-protein), cellular (biomarkers, neuronal function), and genetic (polymorphisms) level. Together, these areas help to elucidate the potential toxic profiles of unknown (and in some cases, known) agents. The area of proteomics is one of the fastest growing areas in science and particularly applicable to neurotoxicology. Lubec et al, provide a review of the potential and limitations of proteomics. Proteomics focuses on a more comprehensive view of cellular proteins and provides considerably more information about the effects of toxins on the CNS. Proteomics can be classified into three different focuses: post-translational modification, protein-expression profiling, and protein-network mapping. Together, these methods represent a more complete and powerful image of protein modifications following potential toxin exposure. Cellular neurotoxicology involves many cellular processes including alterations in cellular energy homeostasis, ion homeostasis, intracellular signaling function, and neurotransmitter release, uptake, and storage. The greatest hurdle in cellular neurotoxicology has been the discovery of appropriate biomarkers that are reliable, reproducible, and easy to obtain. There are biomarkers of exposure effect, and susceptibility. Finding the appropriate biomarker for a particular toxin is a daunting task. The appropriate biomarker for a particular toxin is a daunting task. The advantage to biomarker

  8. Genetic predisposition to salt-sensitivity : a systematic review

    NARCIS (Netherlands)

    Beeks, Esther; Kessels, Alfons G H; Kroon, Abraham A; van der Klauw, Melanie M; de Leeuw, Peter W

    PURPOSE: To assess the role of genetic polymorphisms in salt sensitivity of blood pressure. DATA IDENTIFICATION: We conducted a systematic review by searching the Medline literature from March 1993 to June 2003. Each paper was scrutinized and data concerning study population, method of salt

  9. Genetic association studies in lumbar disc degeneration: a systematic review.

    Directory of Open Access Journals (Sweden)

    Pasi J Eskola

    Full Text Available Low back pain is associated with lumbar disc degeneration, which is mainly due to genetic predisposition. The objective of this study was to perform a systematic review to evaluate genetic association studies in lumbar disc degeneration as defined on magnetic resonance imaging (MRI in humans.A systematic literature search was conducted in MEDLINE, MEDLINE In-Process, SCOPUS, ISI Web of Science, The Genetic Association Database and The Human Genome Epidemiology Network for information published between 1990-2011 addressing genes and lumbar disc degeneration. Two investigators independently identified studies to determine inclusion, after which they performed data extraction and analysis. The level of cumulative genetic association evidence was analyzed according to The HuGENet Working Group guidelines.Fifty-two studies were included for review. Forty-eight studies reported at least one positive association between a genetic marker and lumbar disc degeneration. The phenotype definition of lumbar disc degeneration was highly variable between the studies and replications were inconsistent. Most of the associations presented with a weak level of evidence. The level of evidence was moderate for ASPN (D-repeat, COL11A1 (rs1676486, GDF5 (rs143383, SKT (rs16924573, THBS2 (rs9406328 and MMP9 (rs17576.Based on this first extensive systematic review on the topic, the credibility of reported genetic associations is mostly weak. Clear definition of lumbar disc degeneration phenotypes and large population-based cohorts are needed. An international consortium is needed to standardize genetic association studies in relation to disc degeneration.

  10. Systematic Representation of Molecular Biology Knowledge.

    Science.gov (United States)

    Fisher, Kathleen M.

    A small set of relationships has been identified which appears to be sufficient for describing all molecular and cellular reactions and structures discussed in an introductory biology course. A precise definition has been developed for each relationship. These 20 relationships are of four types: (1) analytical; (2) spatial; (3) temporal; and (4)…

  11. Genetic Counselling for Schizophrenia in the Era of Molecular Genetics

    Science.gov (United States)

    Hodgkinson, Kathleen A; Murphy, Jillian; O’Neill, Sheri; Brzustowicz, Linda; Bassett, Anne S

    2012-01-01

    Objective To review the role of genetic counselling for individuals with psychiatric illnesses. Method Using schizophrenia as an example and including updated information about a genetic subtype (22q deletion syndrome), we discuss the value of the genetic counselling process in psychiatry, with support from the literature and our clinical experience. Results Genetic counselling, the process through which knowledge about the genetics of illnesses is shared, provides information on the inheritance of illnesses and their recurrence risks; addresses the concerns of patients, their families, and their health care providers; and supports patients and their families dealing with these illnesses. For comprehensive medical management, this service should be available to all individuals with schizophrenia and their families. Conclusions New findings in the genetics of psychiatric illness may have important clinical implications for patients and their families. PMID:11280080

  12. Molecular genetic framework for protophloem formation

    Science.gov (United States)

    Rodriguez-Villalon, Antia; Gujas, Bojan; Kang, Yeon Hee; Breda, Alice S.; Cattaneo, Pietro; Depuydt, Stephen; Hardtke, Christian S.

    2014-01-01

    The phloem performs essential systemic functions in tracheophytes, yet little is known about its molecular genetic specification. Here we show that application of the peptide ligand CLAVATA3/EMBRYO SURROUNDING REGION 45 (CLE45) specifically inhibits specification of protophloem in Arabidopsis roots by locking the sieve element precursor cell in its preceding developmental state. CLE45 treatment, as well as viable transgenic expression of a weak CLE45G6T variant, interferes not only with commitment to sieve element fate but also with the formative sieve element precursor cell division that creates protophloem and metaphloem cell files. However, the absence of this division appears to be a secondary effect of discontinuous sieve element files and subsequent systemically reduced auxin signaling in the root meristem. In the absence of the formative sieve element precursor cell division, metaphloem identity is seemingly adopted by the normally procambial cell file instead, pointing to possibly independent positional cues for metaphloem formation. The protophloem formation and differentiation defects in brevis radix (brx) and octopus (ops) mutants are similar to those observed in transgenic seedlings with increased CLE45 activity and can be rescued by loss of function of a putative CLE45 receptor, BARELY ANY MERISTEM 3 (BAM3). Conversely, a dominant gain-of-function ops allele or mild OPS dosage increase suppresses brx defects and confers CLE45 resistance. Thus, our data suggest that delicate quantitative interplay between the opposing activities of BAM3-mediated CLE45 signals and OPS-dependent signals determines cellular commitment to protophloem sieve element fate, with OPS acting as a positive, quantitative master regulator of phloem fate. PMID:25049386

  13. Phenotypic and molecular genetic analysis of Pyruvate Kinase ...

    African Journals Online (AJOL)

    Phenotypic and molecular genetic analysis of Pyruvate Kinase deficiency in a Tunisian family. Jaouani Mouna, Hamdi Nadia, Chaouch Leila, Kalai Miniar, Mellouli Fethi, Darragi Imen, Boudriga Imen, Chaouachi Dorra, Bejaoui Mohamed, Abbes Salem ...

  14. Genetic diversity and molecular characterization of physic nut ...

    African Journals Online (AJOL)

    ajl

    2013-02-27

    specific genetic ... diversity studies, molecular markers have been applied to identify and to select genotypes with ..... Biologia floral e polinização artificial de pinhão-manso no norte de. Minas Gerais. Pesq. Agropec. Bras.

  15. Molecular Genetic and Gene Therapy Studies of the Musculoskeletal System

    National Research Council Canada - National Science Library

    Baylink, David

    2004-01-01

    The primary goal of the proposed work is to apply several state of the art molecular genetic and gene therapy technologies to address fundamental questions in bone biology with a particular emphasis on attempting: l...

  16. Molecular and Genetic Basis of Stress

    Directory of Open Access Journals (Sweden)

    Bakir Mehić

    2012-05-01

    Full Text Available A person’s reaction to trauma depends on the traumatic situation itself, personality characteristics of the person exposed to trauma, and posttraumatic social environment. Stressor must be extreme event that is extremely dangerous or fatal nature, and which is outside normal human experience [1].Studies investigating psychological consequences of military and civil trauma confirmed the correlation between the nature and intensity of trauma, previous traumatic experience, and psychological consequences. Stress causes the autonomic nervous system hyperactivity. If the stress is extreme or constant symptoms of hyperactivity, increased heart rate, increased respiration, sweating, muscle tension, insomnia and increased anxiety are becoming significant for the prolonging the symptoms of PTSD. Our cells are well adapted to exposure to a mild stress for a short time. In contrast there are potentially serious consequences of exposure to the prolonged stress[2].Various damages arising from the war in Bosnia (1992 - 1995 are almost undetectable, and the consequences for the mental health of the population of Bosnia and Herzegovina are long and painful. It is estimated that in Bosnia and Herzegovina there are 1.75 million people who have some stress-related mental disorders, of which 1 million in the Federation.PTSD may be represented by mutations that must be carried by many genes. There may even be epigenetic reasons for the disorder that have nothing to do with heritable mutations per se. Epigenetic means related to functional changes in the genome that can be regulated by external environmental events that do not involve alterations in the genetic code. One epigenetic mechanism is called “methylation,” a molecular process that affects the activity of a large percentage of genes. Epigenetic investigations say that methylation may be involved in the development of stress regulation in early life[3].A number of longitudinal studies have looked at

  17. NEW MOLECULAR TECHNOLOGIES IN GENETIC DIAGNOSIS OF MALE INFERTILITY

    Directory of Open Access Journals (Sweden)

    V. B. Chernykh

    2017-01-01

    Full Text Available In recent years, the accelerated development of technologies in the field of molecular genetics and cytogenetics has led to significant opportunities of the research and diagnosis of mutations and variations of the genome. This article provides a brief review of new molecular technology, also as the results of their use in reproductive medicine and their perspectives in the genetic diagnosis of male infertility. 

  18. Molecular genetics of hemophilia A: Clinical perspectives

    African Journals Online (AJOL)

    Azza A.G. Tantawy

    incompletely explained by genetic predisposition [71]. The observation of hemophilic monozygotic twins discor- dant for inhibitors points out the interplay of non-genetic fac- tors. Theoretically, challenges of the immune system brought about by infections, vaccinations, and tissue damage in associ- ation with FVIII exposure ...

  19. Molecular research and genetic engineering of resistance to ...

    African Journals Online (AJOL)

    This paper reviews the recent research progress on genetic methods of resistance, the status and existing problems, traditional breeding, the main resistance mechanism, molecular markers and genetic engineering of resistance genes. It is hoped that new breeding methods and new varieties resistant to Verticillium wilt will ...

  20. Construction of intersubspecific molecular genetic map of lentil

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 91; Issue 3. Construction of intersubspecific molecular genetic map of lentil based on ISSR, RAPD and SSR markers. Mamta Gupta Bhawna Verma Naresh Kumar Rakesh K. Chahota Rajeev Rathour Shyam K. Sharma Sabhyata Bhatia Tilak R. Sharma. Research Article Volume ...

  1. Molecular evaluation of genetic diversity and association studies in ...

    Indian Academy of Sciences (India)

    Molecular evaluation of genetic diversity and association studies in rice. (Oryza sativa L.) C. Vanniarajan, K. K. Vinod and Andy Pereira. J. Genet. 91, 9–19. Table 1. Chromosome-wise distribution of SSR alleles and their number (k), polymorphic information content (PIC) and allele discrimination index (Dm). Chromosome.

  2. Molecular-genetic analysis of two cases with retinoblastoma ...

    Indian Academy of Sciences (India)

    Unknown

    Effective counselling and management of retinoblastoma families using genetic information is presently practised in many parts of the world. We studied histopathological, chromosomal and molecular-genetic data of two retinoblastoma pa- tients from India. The two patients, one with bilateral and the other with unilateral ...

  3. Molecular genetic analysis of grain protein content and flour ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 95; Issue 2. Molecular genetic analysis of grain protein content and flour whiteness degree using RILs in common wheat. XIANYIN SUN KE WU YAN ZHAO ZHAOGUO QIAN FANMEI KONG YING GUO YINGYING WANG SISHEN LI. RESEARCH ARTICLE Volume 95 Issue 2 ...

  4. Molecular-genetic analysis of two cases with retinoblastoma ...

    Indian Academy of Sciences (India)

    Effective counselling and management of retinoblastoma families using genetic information is presently practised in many parts of the world. We studied histopathological, chromosomal and molecular-genetic data of two retinoblastoma patients from India. The two patients, one with bilateral and the other with unilateral ...

  5. Use of molecular genetics and historical records to reconstruct the ...

    African Journals Online (AJOL)

    Recent advances in molecular genetics made the inference of past demographic events through the analysis of gene pools from modern populations possible. The technology uses genetic markers to provide previously unavailable resolution into questions of human evolution, migration and the historical relationship of ...

  6. Micropropagation, genetic engineering, and molecular biology of Populus

    Science.gov (United States)

    N. B. Klopfenstein; Y. W. Chun; M. -S. Kim; M. A. Ahuja; M. C. Dillon; R. C. Carman; L. G. Eskew

    1997-01-01

    Thirty-four Populus biotechnology chapters, written by 85 authors, are comprised in 5 sections: 1) in vitro culture (micropropagation, somatic embryogenesis, protoplasts, somaclonal variation, and germplasm preservation); 2) transformation and foreign gene expression; 3) molecular biology (molecular/genetic characterization); 4) biotic and abiotic resistance (disease,...

  7. RESEARCH NOTE Molecular genetic analysis of consanguineous ...

    Indian Academy of Sciences (India)

    Navya

    Department of Biotechnology & Genetic Engineering, Kohat University of. Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan. 7. Diagnostic Genomic Division, Department of Laboratory Medicine & Pathology,. Hamad Medical Corporation, Doha, 3050, Qatar. * These authors have equally contributed in this work.

  8. Molecular and genetic study of wheat rusts

    African Journals Online (AJOL)

    Nicholas Le Maitre

    Phylogenetic trees were created for leaf and stem rust pathotypes. Field isolates of ... Key words: Prevalence, microsatellite, amplified fragment length polymorphisms (AFLP), phylogeny, Puccinia. INTRODUCTION. Puccinia triticina Eriks ..... Genetic distances and reconstruction phylogenetic trees from microsatellite DNA.

  9. Molecular and Genetic Aspects of Congenital Isolated Hypogonadotropic Hypogonadism.

    Science.gov (United States)

    Lima Amato, Lorena Guimaraes; Latronico, Ana Claudia; Gontijo Silveira, Leticia Ferreira

    2017-06-01

    Congenital isolated hypogonadotropic hypogonadism (IHH) is a clinically and genetically heterogenous disorder characterized by abnormal synthesis, secretion, or action of gonadotropin-releasing hormone, a key hypothalamic decapeptide that orchestrates the reproductive axis. Several modes of inheritance have been identified. A growing list of causative genes has been implicated in the molecular pathogenesis of syndromic and nonsyndromic IHH, largely contributing for better understanding the complex neuroendocrine control of reproduction. This article summarizes the great advances of molecular genetics of IHH and pointed up the heterogeneity and complexity of the genetic basis of this condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The genetics of cholesteatoma. A systematic review using narrative synthesis.

    Science.gov (United States)

    Jennings, B A; Prinsley, P; Philpott, C; Willis, G; Bhutta, M F

    2018-02-01

    A cholesteatoma is a mass of keratinising epithelium in the middle ear. It is a rare disorder that is associated with significant morbidity, and its causative risk factors are poorly understood; on a global scale, up to a million people are affected by this each year. We have conducted a systematic literature review to identify reports about the heritability of cholesteatoma or any constitutional genetic factors that may be associated with its aetiology. A systematic search of MEDLINE (EBSCO) and two databases of curated genetic research (OMIM and Phenopedia) was conducted. The participants and populations of interest for this review were people treated for cholesteatoma and their family members. The studies of interest reported evidence of heritability for the trait, or any association with congenital syndromes and particular genetic variants. The searches identified 449 unique studies, of which 35 were included in the final narrative synthesis. A narrative synthesis was conducted, and data were tabulated to record characteristics, including study design, genetic data and author conclusions. Most of the studies identified in the literature search, and described here, are case reports and so represent the lowest level of evidence. In a few case reports, congenital and acquired cholesteatomas have been shown to segregate within families in the pattern typical of a monogenic or oligogenic disorder with incomplete penetrance. Evidence from syndromic cases could suggest that genes controlling ear morphology may be risk factors for cholesteatoma formation. This is the first systematic review about the genetics of cholesteatoma, and we have identified a small body of relevant literature that provides evidence of a heritable component for its aetiology. Cholesteatoma is a complex and heterogeneous clinical phenotype, and it is often associated with chronic otitis media and with some rare congenital syndromes known to affect ear morphology and related pathologies. © 2017

  11. Molecular genetics and gene expression in atherosclerosis

    NARCIS (Netherlands)

    Doevendans, P. A.; Jukema, W.; Spiering, W.; Defesche, J. C.; Kastelein, J. J.

    2001-01-01

    Although molecular cardiology is a relative young discipline, the impact of the new techniques on diagnosis and therapy in cardiovascular disease are extensive. Our insight into pathophysiological mechanisms is rapidly expanding and is changing our understanding of cardiovascular disease radically

  12. Molecular genetic analysis of Down syndrome.

    Science.gov (United States)

    Patterson, David

    2009-07-01

    Down syndrome (DS) is caused by trisomy of all or part of human chromosome 21 (HSA21) and is the most common genetic cause of significant intellectual disability. In addition to intellectual disability, many other health problems, such as congenital heart disease, Alzheimer's disease, leukemia, hypotonia, motor disorders, and various physical anomalies occur at an elevated frequency in people with DS. On the other hand, people with DS seem to be at a decreased risk of certain cancers and perhaps of atherosclerosis. There is wide variability in the phenotypes associated with DS. Although ultimately the phenotypes of DS must be due to trisomy of HSA21, the genetic mechanisms by which the phenotypes arise are not understood. The recent recognition that there are many genetically active elements that do not encode proteins makes the situation more complex. Additional complexity may exist due to possible epigenetic changes that may act differently in DS. Numerous mouse models with features reminiscent of those seen in individuals with DS have been produced and studied in some depth, and these have added considerable insight into possible genetic mechanisms behind some of the phenotypes. These mouse models allow experimental approaches, including attempts at therapy, that are not possible in humans. Progress in understanding the genetic mechanisms by which trisomy of HSA21 leads to DS is the subject of this review.

  13. Molecular discrimination and genetic relationships between some ...

    African Journals Online (AJOL)

    SAM

    2014-03-12

    Mar 12, 2014 ... compounds help scavenge harmful reactive oxygen species ROS. It is also a good reservoir of ... amplification was performed in 25 µL reaction mix containing 20.40 ng genomic DNA, 0.5 unit Taq polymerase ..... Origin evolution and systematics of Cucurbita pepo. (Cucurbitaceae). Econ. Bot. 42:4-15.

  14. Molecular diversity and genetic relationships in Secale

    Indian Academy of Sciences (India)

    Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portuga; BioISI- Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, Lisboa, Portugal; Departamento de Genética, Facultad de Biologia, ...

  15. Molecular taxonomic, epidemiological and population genetic ...

    African Journals Online (AJOL)

    Admin

    Sexual recombination is a likely mechanism contributing to the high genetic diversity of C. gloeosporioides in yam-based cropping systems. Studies have been initiated to understand the mechanisms that generate ... our knowledge, this is the only review of advances in yam ...... Kuala Lumpur, Malaysia, pp 67-69. Singh RD ...

  16. RESEARCH NOTE Molecular genetic analysis of consanguineous ...

    Indian Academy of Sciences (India)

    Navya

    proteins are involved in cell cycle and its regulation. Herein the present clinical genetic study, we present two consanguineous Pakistani families segregating primary microcephaly and intellectual disability. These families were ascertained from the Saraiki ethnic part of. Khyber-Pukhtunkhwa province in Pakistan.

  17. Molecular diversity and genetic relationships in Secale

    Indian Academy of Sciences (India)

    Over the years, there has been much controversy about the taxonomy of the Secale genus. ... have become routine in plant biotechnology, such as genetic diversity studies. ISSR (Zietkiewicz et al. 1994) and ... 1996) were not amplified in the bulk DNA samples. The number of plants used to construct the bulk samples was.

  18. Molecular diversity and genetic relationships in Secale

    Indian Academy of Sciences (India)

    1Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Quinta de Prados,. 5001-801 Vila Real, Portugal. 2Departamento de Genética, Facultad de Biologia, Universidad Complutense, C/ José Antonio Novais, 12,. 28040 Madrid, Spain. 3BioISI- Biosystems & Integrative Sciences Institute, ...

  19. Molecular markers: a potential resource for ginger genetic diversity studies.

    Science.gov (United States)

    Ismail, Nor Asiah; Rafii, M Y; Mahmud, T M M; Hanafi, M M; Miah, Gous

    2016-12-01

    Ginger is an economically important and valuable plant around the world. Ginger is used as a food, spice, condiment, medicine and ornament. There is available information on biochemical aspects of ginger, but few studies have been reported on its molecular aspects. The main objective of this review is to accumulate the available molecular marker information and its application in diverse ginger studies. This review article was prepared by combing material from published articles and our own research. Molecular markers allow the identification and characterization of plant genotypes through direct access to hereditary material. In crop species, molecular markers are applied in different aspects and are useful in breeding programs. In ginger, molecular markers are commonly used to identify genetic variation and classify the relatedness among varieties, accessions, and species. Consequently, it provides important input in determining resourceful management strategies for ginger improvement programs. Alternatively, a molecular marker could function as a harmonizing tool for documenting species. This review highlights the application of molecular markers (isozyme, RAPD, AFLP, SSR, ISSR and others such as RFLP, SCAR, NBS and SNP) in genetic diversity studies of ginger species. Some insights on the advantages of the markers are discussed. The detection of genetic variation among promising cultivars of ginger has significance for ginger improvement programs. This update of recent literature will help researchers and students select the appropriate molecular markers for ginger-related research.

  20. Brazilian Nelore cattle: a melting pot unfolded by molecular genetics.

    Science.gov (United States)

    Dani, M A C; Heinneman, M B; Dani, S U

    2008-10-21

    The aim of the present article was to study the population structure and genetic diversity of Nelore cattle and genetic relationships between Nelore and different taurine and zebu breeds raised in Brazil. DNA polymorphism analysis was carried out with 1976 animals of 16 zebu, taurine and synthetic breeds raised in Brazil. A higher genetic differentiation was observed in taurine than in zebu cattle. Gene flow was intense between the different zebu populations. Genetic affinity analysis within the most conspicuous Brazilian zebu beef cattle, the Nelore, was carried out in a group of 615 animals from 15 representative herds. This analysis revealed at least two major Nelore subtypes, named after some genotype-phenotype associations such as the "thrifty type" and the "demanding type". This study provides molecular genetic evidence that, despite selection based on the phenotype, gene flow and gene segregation still play a major role in maintaining genetic variability within the Nelore and zebu population as a whole in Brazil.

  1. Genetic breeding of silkworms: from traditional hybridization to molecular design.

    Science.gov (United States)

    Ma, San-Yuan; Xia, Qing-You

    2017-11-20

    Sericulture is one of the great inventions of the Chinese people and has become an important cultural feature of China. As China is the long-lasting center of silk production, genetic breeding of silkworm was highly developed historically, and has formed a comprehensive system for breeding and preservation of new varieties. However, silkworm breeding reached a bottleneck recently, because most of the traditional genetic resources have been utilized and silkworm strains have become homogeneous. Meanwhile, sericulture in China meets huge challenges in the 21 st century. In recent years, with the development and rapid application of molecular biology, genomics, transgene and genome editing, silkworm genetic breeding has entered a new era. In this review, we summarize the development of silkworm genetic breeding, especially the progress and perspective of transgene and genome editing in genetic engineering of silkworms. We also discuss the future development of silkworm genetic breeding.

  2. Molecular discrimination and genetic relationships between some ...

    African Journals Online (AJOL)

    Cucurbita pepo ssp. pepo; zucchini group is a widely grown and economically important group belonging to genus Cucurbita, and being one of the easiest groups to cultivate in temperate climate with overwhelming production. Since, RAPD analysis provides a fast and reliable method for molecular characterization and ...

  3. Molecular markers unravel intraspecific and interspecific genetic ...

    Indian Academy of Sciences (India)

    2011). However, to develop efficient interspecific crosses it is essential to determine their phy- logenetic relationships. Although some workers have tried nuclear ribosomal DNA internal transcribed spacer (ITS) regions for this purpose (Ronsted et al. 2002; Dhar et al. 2006), it would be worthwhile to use molecular markers,.

  4. Oligocone trichromacy: clinical and molecular genetic investigations

    DEFF Research Database (Denmark)

    Andersen, Mette K G; Christoffersen, Nynne L B; Sander, Birgit

    2010-01-01

    of unknown significance in CNGB3 and PDE6C in two other patients. CONCLUSIONS: Oligocone trichromacy is a heterogeneous condition with respect to both phenotypic appearance and genetic background. The finding of mutations in genes known to be involved in complete and incomplete achromatopsia supports...... the notion that some forms of OT is an extreme form of incomplete achromatopsia with preferential loss of peripheral cones....

  5. Molecular and Genetic Determinants of Glioma Cell Invasion

    Directory of Open Access Journals (Sweden)

    Kenta Masui

    2017-12-01

    Full Text Available A diffusely invasive nature is a major obstacle in treating a malignant brain tumor, “diffuse glioma”, which prevents neurooncologists from surgically removing the tumor cells even in combination with chemotherapy and radiation. Recently updated classification of diffuse gliomas based on distinct genetic and epigenetic features has culminated in a multilayered diagnostic approach to combine histologic phenotypes and molecular genotypes in an integrated diagnosis. However, it is still a work in progress to decipher how the genetic aberrations contribute to the aggressive nature of gliomas including their highly invasive capacity. Here we depict a set of recent discoveries involving molecular genetic determinants of the infiltrating nature of glioma cells, especially focusing on genetic mutations in receptor tyrosine kinase pathways and metabolic reprogramming downstream of common cancer mutations. The specific biology of glioma cell invasion provides an opportunity to explore the genotype-phenotype correlation in cancer and develop novel glioma-specific therapeutic strategies for this devastating disease.

  6. Primer on molecular genetics. DOE Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  7. The Molecular Genetics of Restless Legs Syndrome.

    Science.gov (United States)

    Rye, David B

    2015-09-01

    Restless legs syndrome (RLS) is a common sensorimotor trait defined by symptoms that interfere with sleep onset and maintenance in a clinically meaningful way. Nonvolitional myoclonus while awake and asleep is a sign of the disorder and an informative endophenotype. The genetic contributions to RLS/periodic leg movements are substantial, are among the most robust defined to date for a common disease, and account for much of the variance in disease expressivity. The disorder is polygenic, as revealed by recent genome-wide association studies. Experimental studies are revealing mechanistic details of how these common variants might influence RLS expressivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Oligocone trichromacy: clinical and molecular genetic investigations

    DEFF Research Database (Denmark)

    Andersen, Mette K G; Christoffersen, Nynne L B; Sander, Birgit

    2010-01-01

    ERG). Five patients also underwent multifocal (mf)ERG, autofluorescence recording, and optical coherence tomography (OCT). Genetic analysis included sequencing of all coding regions and flanking introns of CNGA3, CNGB3, GNAT2, KCNV2, and PDE6C. RESULTS: All patients had subnormal visual acuity, a history...... of congenital nystagmus, and subjectively normal or near-normal color vision; five patients reported photophobia. Clinical examinations revealed largely normal fundi, normal Goldmann visual field results with the IV/4e target, and normal color discrimination or mild color vision deficiency. Electrophysiological...

  9. Advances in molecular genetic studies of primary dystonia

    Directory of Open Access Journals (Sweden)

    MA Ling-yan

    2013-07-01

    Full Text Available Dystonias are heterogeneous hyperkinetic movement disorders characterized by involuntary muscle contractions which result in twisting, repetitive movements and abnormal postures. In recent years, there was a great advance in molecular genetic studies of primary dystonia. This paper will review the clinical characteristics and molecular genetic studies of primary dystonia, including early-onset generalized torsion dystonia (DYT1, whispering dysphonia (DYT4, dopa-responsive dystonia (DYT5, mixed-type dystonia (DYT6, paroxysmal kinesigenic dyskinesia (DYT10, myoclonus-dystonia syndrome (DYT11, rapid-onset dystonia parkinsonism (DYT12, adult-onset cervical dystonia (DYT23, craniocervical dystonia (DYT24 and primary torsion dystonia (DYT25.

  10. Molecular genetics of human obesity: A comprehensive review.

    Science.gov (United States)

    Singh, Rajan Kumar; Kumar, Permendra; Mahalingam, Kulandaivelu

    2017-02-01

    Obesity and its related health complications is a major problem worldwide. Hypothalamus and their signalling molecules play a critical role in the intervening and coordination with energy balance and homeostasis. Genetic factors play a crucial role in determining an individual's predisposition to the weight gain and being obese. In the past few years, several genetic variants were identified as monogenic forms of human obesity having success over common polygenic forms. In the context of molecular genetics, genome-wide association studies (GWAS) approach and their findings signified a number of genetic variants predisposing to obesity. However, the last couple of years, it has also been noticed that alterations in the environmental and epigenetic factors are one of the key causes of obesity. Hence, this review might be helpful in the current scenario of molecular genetics of human obesity, obesity-related health complications (ORHC), and energy homeostasis. Future work based on the clinical discoveries may play a role in the molecular dissection of genetic approaches to find more obesity-susceptible gene loci. Copyright © 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  11. Molecular genetics of pituitary development in zebrafish.

    Science.gov (United States)

    Pogoda, Hans-Martin; Hammerschmidt, Matthias

    2007-08-01

    The pituitary gland of vertebrates consists of two major parts, the neurohypophysis (NH) and the adenohypophysis (AH). As a central part of the hypothalamo-hypophyseal system (HHS), it constitutes a functional link between the nervous and the endocrine system to regulate basic body functions, such as growth, metabolism and reproduction. The development of the AH has been intensively studied in mouse, serving as a model for organogenesis and differential cell specification. However, given that the AH is a relatively recent evolutionary advance of the chordate phylum, it is also interesting to understand its development in lower chordate systems. In recent years, the zebrafish has emerged as a powerful lower vertebrate system for developmental studies, being amenable for large-scale genetic approaches, embryological manipulations, and in vivo imaging. Here, we present an overview of current knowledge of the mechanisms and genetic control of pituitary formation during zebrafish development. First, we describe the components of the zebrafish HHS, and the different pituitary cell types and hormones, followed by a description of the different steps of normal pituitary development. The central part of the review deals with the genes found to be essential for zebrafish AH development, accompanied by a description of the corresponding mutant phenotypes. Finally, we discuss future directions, with particular focus on evolutionary aspects, and some novel functional aspects with growing medical and social relevance.

  12. Molecular genetics and epigenetics of CACTA elements

    KAUST Repository

    Fedoroff, Nina V.

    2013-08-21

    The CACTA transposons, so named for a highly conserved motif at element ends, comprise one of the most abundant superfamilies of Class 2 (cut-and-paste) plant transposons. CACTA transposons characteristically include subterminal sequences of several hundred nucleotides containing closely spaced direct and inverted repeats of a short, conserved sequence of 14-15 bp. The Supressor-mutator (Spm) transposon, identified and subjected to detailed genetic analysis by Barbara McClintock, remains the paradigmatic element of the CACTA family. The Spm transposon encodes two proteins required for transposition, the transposase (TnpD) and a regulatory protein (TnpA) that binds to the subterminal repeats. Spm expression is subject to both genetic and epigenetic regulation. The Spm-encoded TnpA serves as an activator of the epigenetically inactivated, methylated Spm, stimulating both transient and heritable activation of the transposon. TnpA also serves as a negative regulator of the demethylated active element promoter and is required, in addition to the TnpD, for transposition. © Springer Science+Business Media, New York 2013.

  13. Genetic Breeding and Diversity of the Genus Passiflora: Progress and Perspectives in Molecular and Genetic Studies

    Directory of Open Access Journals (Sweden)

    Carlos Bernard M. Cerqueira-Silva

    2014-08-01

    Full Text Available Despite the ecological and economic importance of passion fruit (Passiflora spp., molecular markers have only recently been utilized in genetic studies of this genus. In addition, both basic genetic researches related to population studies and pre-breeding programs of passion fruit remain scarce for most Passiflora species. Considering the number of Passiflora species and the increasing use of these species as a resource for ornamental, medicinal, and food purposes, the aims of this review are the following: (i to present the current condition of the passion fruit crop; (ii to quantify the applications and effects of using molecular markers in studies of Passiflora; (iii to present the contributions of genetic engineering for passion fruit culture; and (iv to discuss the progress and perspectives of this research. Thus, the present review aims to summarize and discuss the relationship between historical and current progress on the culture, breeding, and molecular genetics of passion fruit.

  14. Molecular and genetic inflammation networks in major human diseases.

    Science.gov (United States)

    Zhao, Yongzhong; Forst, Christian V; Sayegh, Camil E; Wang, I-Ming; Yang, Xia; Zhang, Bin

    2016-07-19

    It has been well-recognized that inflammation alongside tissue repair and damage maintaining tissue homeostasis determines the initiation and progression of complex diseases. Albeit with the accomplishment of having captured the most critical inflammation-involved molecules, genetic susceptibilities, epigenetic factors, and environmental factors, our schemata on the role of inflammation in complex diseases remain largely patchy, in part due to the success of reductionism in terms of research methodology per se. Omics data alongside the advances in data integration technologies have enabled reconstruction of molecular and genetic inflammation networks which shed light on the underlying pathophysiology of complex diseases or clinical conditions. Given the proven beneficial role of anti-inflammation in coronary heart disease as well as other complex diseases and immunotherapy as a revolutionary transition in oncology, it becomes timely to review our current understanding of the molecular and genetic inflammation networks underlying major human diseases. In this review, we first briefly discuss the complexity of infectious diseases and then highlight recently uncovered molecular and genetic inflammation networks in other major human diseases including obesity, type II diabetes, coronary heart disease, late onset Alzheimer's disease, Parkinson's disease, and sporadic cancer. The commonality and specificity of these molecular networks are addressed in the context of genetics based on genome-wide association study (GWAS). The double-sword role of inflammation, such as how the aberrant type 1 and/or type 2 immunity leads to chronic and severe clinical conditions, remains open in terms of the inflammasome and the core inflammatome network features. Increasingly available large Omics and clinical data in tandem with systems biology approaches have offered an exciting yet challenging opportunity toward reconstruction of more comprehensive and dynamic molecular and genetic

  15. Classical and molecular genetics of the model legume Lotus japonicus.

    Science.gov (United States)

    Jiang, Q; Gresshoff, P M

    1997-01-01

    The model legume Lotus japonicus was demonstrated to be amenable to classical and molecular genetic analysis, providing the basis for the genetic dissection of the plant processes underlying nodulation and nitrogen fixation. We have developed an efficient method for the sexual hybridization of L. japonicus and obtained F1 progeny derived from a cross of L. japonicus B-129-S9 Gifu x B-581 Funakura. Over half of the cross-pollinations resulted in fertile hybrid seed, which were confirmed morphologically and by single arbitrary primer DNA amplification polymorphisms using the DAF technique. Molecular and morphological markers segregated in true Mendelian fashion in a F2 population of 100 plants. Several DAF loci were linked using the MAPMAKER software to create the first molecular linkage groups of this model legume. The mapping population was advanced to generate a set of immortal recombinant inbred lines (F6; RILs), useful for sharing plant material fixed genetically at most genomic regions. Morphological loci for waved stem shape (Ssh), dark leaf color (Lco), and short flowering period (Fpe) were inherited as single dominant Mendelian loci. DAF markers were dominant and were detected between Gifu and Funakura at about one per primer, suggesting that the parents are closely related. One polymorphism (270G generated by single octomer primer 8.6m) was linked to a morphological locus controlling leaf coloration. The results demonstrate that (i) Lotus japonicus is amenable to diploid genetic analysis, (ii) morphological and molecular markers segregate in true diploid fashion, (iii) molecular polymorphisms can be obtained at a reasonable frequency between the related Gifu and Funakura lines, and iv) the possibility exists for map-based cloning, marker assisted selection and mapping of symbiotic mutations through a genetic and molecular map.

  16. Genome-scale genetic manipulation methods for exploring bacterial molecular biology.

    Science.gov (United States)

    Gagarinova, Alla; Emili, Andrew

    2012-06-01

    Bacteria are diverse and abundant, playing key roles in human health and disease, the environment, and biotechnology. Despite progress in genome sequencing and bioengineering, much remains unknown about the functional organization of prokaryotes. For instance, roughly a third of the protein-coding genes of the best-studied model bacterium, Escherichia coli, currently lack experimental annotations. Systems-level experimental approaches for investigating the functional associations of bacterial genes and genetic structures are essential for defining the fundamental molecular biology of microbes, preventing the spread of antibacterial resistance in the clinic, and driving the development of future biotechnological applications. This review highlights recently introduced large-scale genetic manipulation and screening procedures for the systematic exploration of bacterial gene functions, molecular relationships, and the global organization of bacteria at the gene, pathway, and genome levels.

  17. Molecular Models of Genetic and Organismic Structures

    CERN Document Server

    Baianu, I C

    2004-01-01

    In recent studies we showed that the earlier relational theories of organismic sets (Rashevsky,1967), Metabolic-Replication (M,R)-systems (Rosen,1958)and molecular sets (Bartholomay,1968) share a joint foundation that can be studied within a unified categorical framework of functional organismic structures (Baianu,1980. This is possible because all relational theories have a biomolecular basis, that is, complex structures such as genomes, cells,organs and biological organisms are mathematically represented in terms of biomolecular properties and entities,(that are often implicit in their representation axioms. The definition of organismic sets, for example, requires that certain essential quantities be determined from experiment: these are specified by special sets of values of general observables that are derived from physicochemical measurements(Baianu,1970; Baianu,1980; Baianu et al, 2004a.)Such observables are context-dependent and lead directly to natural transformations in categories and Topoi, that are...

  18. A systematic review of genetic syndromes with obesity.

    Science.gov (United States)

    Kaur, Y; de Souza, R J; Gibson, W T; Meyre, D

    2017-06-01

    Syndromic monogenic obesity typically follows Mendelian patterns of inheritance and involves the co-presentation of other characteristics, such as mental retardation, dysmorphic features and organ-specific abnormalities. Previous reviews on obesity have reported 20 to 30 syndromes but no systematic review has yet been conducted on syndromic obesity. We searched seven databases using terms such as 'obesity', 'syndrome' and 'gene' to conduct a systematic review of literature on syndromic obesity. Our literature search identified 13,719 references. After abstract and full-text review, 119 relevant papers were eligible, and 42 papers were identified through additional searches. Our analysis of these 161 papers found that 79 obesity syndromes have been reported in literature. Of the 79 syndromes, 19 have been fully genetically elucidated, 11 have been partially elucidated, 27 have been mapped to a chromosomal region and for the remaining 22, neither the gene(s) nor the chromosomal location(s) have yet been identified. Interestingly, 54.4% of the syndromes have not been assigned a name, whereas 13.9% have more than one name. We report on organizational inconsistencies (e.g. naming discrepancies and syndrome classification) and provide suggestions for improvements. Overall, this review illustrates the need for increased clinical and genetic research on syndromes with obesity. © 2017 World Obesity Federation.

  19. Genomics, molecular genetics and the food industry.

    Science.gov (United States)

    Pridmore, R D; Crouzillat, D; Walker, C; Foley, S; Zink, R; Zwahlen, M C; Brüssow, H; Pétiard, V; Mollet, B

    2000-03-31

    The production of foods for an increasingly informed and selective consumer requires the coordinated activities of the various branches of the food chain in order to provide convenient, wholesome, tasty, safe and affordable foods. Also, the size and complexity of the food sector ensures that no single player can control a single process from seed production, through farming and processing to a final product marketed in a retail outlet. Furthermore, the scientific advances in genome research and their exploitation via biotechnology is leading to a technology driven revolution that will have advantages for the consumer and food industry alike. The segment of food processing aids, namely industrial enzymes which have been enhanced by the use of biotechnology, has proven invaluable in the production of enzymes with greater purity and flexibility while ensuring a sustainable and cheap supply. Such enzymes produced in safe GRAS microorganisms are available today and are being used in the production of foods. A second rapidly evolving segment that is already having an impact on our foods may be found in the new genetically modified crops. While the most notorious examples today were developed by the seed companies for the agro-industry directed at the farming sector for cost saving production of the main agronomical products like soya and maize, its benefits are also being seen in the reduced use of herbicides and pesticides which will have long term benefits for the environment. Technology-driven advances for the food processing industry and the consumer are being developed and may be divided into two separate sectors that will be presented in greater detail: 1. The application of genome research and biotechnology to the breeding and development of improved plants. This may be as an aid for the cataloging of industrially important plant varieties, the rapid identification of key quality traits for enhanced classical breeding programs, or the genetic modification of

  20. Molecular and genetic study of wheat rusts | Le Maitre | African ...

    African Journals Online (AJOL)

    Molecular and genetic study of wheat rusts. ... Puccinia triticina, Puccinia graminis and Puccinia striiformis cause leaf, stem and yellow rust, respectively. Wheat rusts can cause ... Breeding resistant cultivars is a long process and requires an accurate picture of the current and future pathogen population. Differentiation of ...

  1. [Molecular genetic investigation of sugar beet (Beta vulgaris L.)].

    Science.gov (United States)

    Butorina, A K; Kornienko, A V

    2011-10-01

    Molecular genetic studies of sugar beet (Beta vulgaris L.) are reviewed as a basis for the development of genomics of this species. The methods used to study structural and functional genomics are considered. The results and their application to increase the efficiency of sugar beet breeding are discussed.

  2. Use of molecular genetics and historical records to reconstruct the ...

    African Journals Online (AJOL)

    GRACE

    2006-12-29

    Dec 29, 2006 ... analysis of gene pools from modern populations possible. The technology uses genetic markers to ... The use of these molecular techniques together with historical records in an integrated manner can greatly benefit the .... This approach maximizes cost- and time effectiveness with information deriving from ...

  3. Molecular Genetics and Hormones: New Frontiers in Entrepreneurship Research

    NARCIS (Netherlands)

    M.J.H.M. van der Loos (Matthijs)

    2013-01-01

    textabstractRecent studies suggest that entrepreneurship is partly heritable, but are unable to pinpoint the specific genes involved. This thesis presents results from novel research aiming to identify genes associated with entrepreneurship using genetic data on the molecular level. In addition, the

  4. Recent developments in the molecular genetic understanding of breast cancer

    NARCIS (Netherlands)

    Devilee, P.; Schuuring, E.; van de Vijver, M. J.; Cornelisse, C. J.

    1994-01-01

    The molecular genetic characterization of breast cancer has implicated or identified the involvement of at least 10 distinct gene alterations in the genesis or progression of this disease. The genes involved fall into three distinct classes, possibly reflecting their particular function in the

  5. Molecular markers for genetic diversity and phylogeny research of ...

    African Journals Online (AJOL)

    Brazilian sheep descended from several breeds brought to the New World by Portuguese and Spanish colonists, and they have evolved and adapted to local climatic variations and acquired tolerance or resistance to many diseases. Molecular markers are widely used in analyzing genetic variability, and markers such as ...

  6. The molecular basis of South African genetic porphyria established ...

    African Journals Online (AJOL)

    genetic drift (the operation of chance factors resulting in the high (or low) frequency of a gene in a population) .... island continent. He claims that some present-day descendants of those men suffer from VP. If molecular studies were to show that they have one of the Afrikaner mutations, this would be good indirect evidence ...

  7. Population and molecular genetics of root-knot nematodes

    NARCIS (Netherlands)

    Dautova, M.

    2001-01-01

    This thesis describes studies of root-knot nematodes Meloidogyne spp. - an economically important pest in agriculture - using population and molecular genetics. Variability in virulence to Mi bearing tomato genotypes is shown for

  8. Molecular genetic study of hemophilia B in an Algerian population

    African Journals Online (AJOL)

    DELL

    2016-12-21

    Dec 21, 2016 ... genetic predisposition of developing inhibitors. The objective of this study were, to identify the mutations that produce different forms of HB disease among Algerian patients, to characterise mutations of the. FIX gene and to develop our knowledge about the molecular basis of this disease. MATERIALS AND ...

  9. Isolation and molecular genetic characterization of a yeast strain ...

    African Journals Online (AJOL)

    The yeast was identified by molecular genetics technique based on sequence analysis of the variable D1/D2 domain of the large subunit (26S) ribosomal DNA. Subsequent 26S rRNA gene sequencing showed 100% base sequence homology and it was identified as Candida viswanathii. The degradation of PAHs

  10. Molecular analysis of genetic diversity in elite II synthetic hexaploid ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-20

    Jul 20, 2009 ... Full Length Research Paper. Molecular analysis of genetic diversity in elite II synthetic hexaploid wheat screened against Barley yellow dwarf virus. Huma Saffdar1 ... The history of cultiva- ted wheat and human .... and viewed under the UV light chamber using the computer pro- gram UVIPhotoMW.

  11. The molecular genetics of crown gall tumorigenesis

    International Nuclear Information System (INIS)

    Hooykaas, P.J.J.; Schilperoort, R.A.

    1984-01-01

    The phytopathogenic bacteria Agrobacterium tumefaciens and A. rhizogenes are the causative agents of the widespread plant diseases ''crown gall'' and ''hairy root'' respectively. It is now well established that virulent strains of these bacterial species transfer a piece of bacterial DNA into plant cells, thereby transforming these into tumor cells. In research much attention has been paid to the agrobacteria for several reasons. First is the desire to develop a system for the genetic engineering of plant cells based on the natural system for gene transfer between Agrobacterium species and plant cells. Second, there is a striking resemblance between the etiology of animal cancers and the plant cancer crown gall that was recognized as early as in 1927. This led to basic studies on the process of plant tumor induction and on the recovery of plant cells from the tumorous state. A third important interest lies in crown gall as a disease that is the cause of economically important losses in agriculture an horticulture in Europe, North America, and Austrailia. Research has been aimed at finding means to prevent crown gall and to cure plants of this disease

  12. Molecular genetics and cytogenetics of myeloproliferative disorders.

    Science.gov (United States)

    Bench, A J; Nacheva, E P; Champion, K M; Green, A R

    1998-12-01

    The myeloproliferative disorders are believed to represent clonal malignancies resulting from transformation of a pluripotent stem cell. X-inactivation patterns of peripheral blood cells have been proposed as a useful diagnostic tool but this method is limited by the finding of a clonal X-inactivation pattern in a significant proportion of normal elderly women. There is no pathognomonic chromosomal abnormality associated with the myeloproliferative disorders. However, consistent acquired cytogenetic changes include del(20q), del(13q), trisomy 8 and 9 and duplication of segments of 1q, all of which have been observed at diagnosis or before cytoreductive therapy and therefore represent early lesions which contribute to the pathogenesis of these disorders. Although, the acquired molecular defects underlying most myeloproliferative disorders have not yet been elucidated, translocations associated with the rare 8p11 syndrome have permitted identification of a novel fusion protein. The role of a number of candidate genes in the other myeloproliferative disorders has also been studied, but no mutations have been identified so far. It is likely that a number of genes will be involved, given the varied phenotypes of the diseases. Identification of causal genes will be of considerable interest to both clinicians, who currently lack a specific and sensitive diagnostic test, and scientists interested in fundamental issues of stem cell behaviour.

  13. Molecular genetic markers of breast cancer

    Directory of Open Access Journals (Sweden)

    K. A. Grishina

    2016-01-01

    Full Text Available Breast cancer (BC is the second most common type of cancer worldwide and affects 1 in 8 women over the course of their lifetime. A personalized approach to treating BC can substantially increase efficiency and consequently maintain the active life of many people. This encourages investigators and physicians to better understand tumor biology in order to make a correct diagnosis, to determine recurrence risk, and to choose adequate therapy. This paper discusses the bases for the molecular classification of BC into its expression subtypes, as well as current prognostic kits that assist oncologists in classifying the subtypes of cancer and in predicting the development of the disease. The existing test systems are not universal, each of them is applicable only to a limited group of patients, but they totally cover a considerable number of cases. The tumor gene mutations in BC, which have been characterized by up-to-date methods, can serve as predictive markers for the efficiency of targeted therapy.

  14. Molecular genetic studies on irradiated wheat plants

    International Nuclear Information System (INIS)

    Saleh, O.M.

    2002-01-01

    Composite genotype(octamer hybrid) was obtained from crossing among eight Egyptian hexaploid wheat cultivars differing in their tolerance to drought stress to produce a genotype, which can economize on the irrigation water requirements or can tolerate drought stress. Gamma irradiation with 10-Krad was used to induce mutations, which could improve drought tolerance for this composite. From eight Egyptian wheat cultivars, two were chosen as drought tolerant and drought sensitive genotypes (G-160 and Sk-61, respectively. They were evaluated along with their F1 and F2 for their relative drought tolerance for some yield-related traits. Bulked segregating analysis developed some RAPD and SSR markers with different primers, which were considered as molecular for drought tolerance in wheat. Hal 2-like gene was introduced into Egyptian wheat cultivar G-164 via micro projectile bombardment. Two putative transgenic plants were successfully detected by leaf painting with the herbicide basta. PCR/ Southern blotting analysis indicated the presence of both/either bar and/or Hal 2-like genes in the genomic background of the two transgenic plants

  15. Intelligent DNA-based molecular diagnostics using linked genetic markers

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, D.K.; Perlin, M.W.; Hoffman, E.P.

    1994-12-31

    This paper describes a knowledge-based system for molecular diagnostics, and its application to fully automated diagnosis of X-linked genetic disorders. Molecular diagnostic information is used in clinical practice for determining genetic risks, such as carrier determination and prenatal diagnosis. Initially, blood samples are obtained from related individuals, and PCR amplification is performed. Linkage-based molecular diagnosis then entails three data analysis steps. First, for every individual, the alleles (i.e., DNA composition) are determined at specified chromosomal locations. Second, the flow of genetic material among the individuals is established. Third, the probability that a given individual is either a carrier of the disease or affected by the disease is determined. The current practice is to perform each of these three steps manually, which is costly, time consuming, labor-intensive, and error-prone. As such, the knowledge-intensive data analysis and interpretation supersede the actual experimentation effort as the major bottleneck in molecular diagnostics. By examining the human problem solving for the task, we have designed and implemented a prototype knowledge-based system capable of fully automating linkage-based molecular diagnostics in X-linked genetic disorders, including Duchenne Muscular Dystrophy (DMD). Our system uses knowledge-based interpretation of gel electrophoresis images to determine individual DNA marker labels, a constraint satisfaction search for consistent genetic flow among individuals, and a blackboard-style problem solver for risk assessment. We describe the system`s successful diagnosis of DMD carrier and affected individuals from raw clinical data.

  16. MOLECULAR-GENETIC «PORTRAIT» OF BREAST CANCER

    Directory of Open Access Journals (Sweden)

    S. A. Laptiev

    2017-01-01

    Full Text Available Understanding genetic mechanisms and detection of biological markers of tumor growth forms an individual molecular phenotype oftransformed cells that characterizes stage of tumor, the ability to metastasize, hormonal sensitivity, chemotherapyefficiencyetc. Mutations in proto- and anti-oncogenes controlling mitotic activity of cells and their ability to DNA reparation are often found in tumor cells in patients with cancer. Defects of classical tumor suppressor genes (BRCA1/2, CHEK2, ATM, PALB2, NBS1, TP53, etc. determine the hereditary predisposition to breast cancer caused by genomic instability and appearance of «chimeric» genes, aneuploidies and chromosomal aberrations. Breast cancer is a genetically heterogeneous disease with various molecular, biological and clinical features. Identificationof the molecular phenotype of breast carcinomas is an important prognostic factor of the disease, and it helps to individualize the therapeutic approach for patients.

  17. Corn Storage Protein - A Molecular Genetic Model

    Energy Technology Data Exchange (ETDEWEB)

    Messing, Joachim [Rutgers Univ., Piscataway, NJ (United States)

    2013-05-31

    Corn is the highest yielding crop on earth and probably the most valuable agricultural product of the United States. Because it converts sun energy through photosynthesis into starch and proteins, we addressed energy savings by focusing on protein quality. People and animals require essential amino acids derived from the digestion of proteins. If proteins are relatively low in certain essential amino acids, the crop becomes nutritionally defective and has to be supplemented. Such deficiency affects meat and fish production and countries where corn is a staple. Because corn seed proteins have relatively low levels of lysine and methionine, a diet has to be supplemented with soybeans for the missing lysine and with chemically synthesized methionine. We therefore have studied genes expressed during maize seed development and their chromosomal organization. A critical technical requirement for the understanding of the molecular structure of genes and their positional information was DNA sequencing. Because of the length of sequences, DNA sequencing methods themselves were insufficient for this type of analysis. We therefore developed the so-called “DNA shotgun sequencing” strategy, where overlapping DNA fragments were sequenced in parallel and used to reconstruct large DNA molecules via overlaps. Our publications became the most frequently cited ones during the decade of 1981-1990 and former Associate Director of Science for the Office of Basic Energy Sciences Patricia M. Dehmer presented our work as one of the great successes of this program. A major component of the sequencing strategy was the development of bacterial strains and vectors, which were also used to develop the first biotechnology crops. These crops possessed new traits thanks to the expression of foreign genes in plants. To enable such expression, chimeric genes had to be constructed using our materials and methods by the industry. Because we made our materials and methods freely available to

  18. Hamartomatous polyps - a clinical and molecular genetic study

    DEFF Research Database (Denmark)

    Jelsig, Anne Marie

    2016-01-01

    the knowledge on clinical course and molecular genetics in patients with HPs and HPS, and to investigate research participants' attitude towards the results of extensive genetic testing. Paper I: In the first paper we investigated the occurrence, anatomic distribution, and other demographics of juvenile polyps......-Jeghers syndrome, and the PTEN hamartoma tumour syndrome. Currently, the HPS diagnoses are based on clinical criteria and are often assisted with genetic testing as candidate genes have been described for each syndrome. This thesis is based on six scientific papers. The overall aim of the studies was to expand......% fulfilled to diagnostic criteria of JPS. The majority of patients had a single juvenile polyp. Paper II: In this paper we conducted a review of the HPS based on the current literature. Paper III: We investigated the hypothesis that patients with one or few HPs may have a HPS based on genetic screening. We...

  19. Molecular genetics of autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Luciana Fariña

    2015-11-01

    Full Text Available Los Trastornos del Espectro Autista son un grupo de trastornos neuropsiquiátricos heterogéneos tanto en su fenotipo como en su etiología. La importancia del tema radica en el aumento de la prevalencia, siendo actualmente la prevalencia mundial de 60 a 90 casos cada 10.000 personas. En Uruguay no se cuenta con datos epidemiológicos sobre estos y otros trastornos del desarrollo pero se estima aproximadamente entre 6 a 7 casos cada 1000 personas. El siguiente trabajo monográfico intenta actualizar sobre la etiología, diagnóstico y aplicaciones de la genética molecular en los Trastornos del Espectro Autista con el fin de contribuir a la comprensión de los mismos, generando una posible herramienta para los profesionales de la salud. Estos trastornos son uno de los cuadros de la psiquiatría infantil con mayor impacto familiar y es de destacar la importancia del componente genético en su etiología. Se ha puesto en evidencia tanto en estudios clásicos de genética como a través de las nuevas tecnologías como Genome Wide Association Studies, microarrays y secuenciación del genoma completo el rol que juega la genética en la etiología de dichos trastornos. El conocimiento de la base genética que subyace a los Trastornos del Espectro Autista posibilita la detección de casos de acuerdo a un perfil genético que ayude a encontrar grupos con fenotipos similares. Esto permitirá en un futuro desarrollar medidas de prevención, realizar diagnósticos precoces y dirigir el tratamiento de acuerdo a su base etiológica, lo que tendrá mayor impacto en el pronóstico de estos pacientes.

  20. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    2011-01-01

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  1. Beyond the shape: molecular systematics and phytopathological diagnostic

    Directory of Open Access Journals (Sweden)

    Giuseppe Firrao

    2008-04-01

    Full Text Available Crop protection can be implemented by several strategies, among them prophylaxis guarantees profitable productions and a slight environmental impact. Diagnosis of pathogens exploited different strategies, according to the organisms to be detected. Historically, fungi have been identified by morphological characters, bacteria by physiological tests and viruses by symptoms on indexing plants. Immunological assays (devised to detect bacteria and viruses at first, and nucleic acid based assays (available for all biotic pathogens later, reduced strategy discrepancies. The fast evolution in regulation and techniques that we are living nowadays, deeply changed the terms. It is, now,possible to identify all the pathogens affecting a crop in a single sample (multiplexing and to examine a high number of samples at a time.We can state that there is no pathogen that cannot be identified through assays that guarantee the sensitivity and the specificity required by certification schemes, eradication procedures and quarantine protocols. The same fast technical evolution renders the exploitation of the new sophisticate and powerful tools more and more cheap and simple. At the present stage, a deeper knowledge of the biology and the epidemiology of plant pathogens changes the problem from technical to conceptual. Conventional fungal taxonomy is no more apt to depict frameworks to house the biological complexity of fungal pathogens; molecular phylogeny opened new horizons and posed new questions. Molecular systematics can bring into harmony systematic schemes, biological complexity and phytopathological aspects. To explain concepts, examples including toxigenic Fusarium and Diaporthe helianthi, as a quarantine pathogen, will be discussed.

  2. Pharmacogenomics Bias - Systematic distortion of study results by genetic heterogeneity

    Directory of Open Access Journals (Sweden)

    Zietemann, Vera

    2008-04-01

    Full Text Available Background: Decision analyses of drug treatments in chronic diseases require modeling the progression of disease and treatment response beyond the time horizon of clinical or epidemiological studies. In many such models, progression and drug effect have been applied uniformly to all patients; heterogeneity in progression, including pharmacogenomic effects, has been ignored. Objective: We sought to systematically evaluate the existence, direction and relative magnitude of a pharmacogenomics bias (PGX-Bias resulting from failure to adjust for genetic heterogeneity in both treatment response (HT and heterogeneity in progression of disease (HP in decision-analytic studies based on clinical study data. Methods: We performed a systematic literature search in electronic databases for studies regarding the effect of genetic heterogeneity on the validity of study results. Included studies have been summarized in evidence tables. In the case of lacking evidence from published studies we sought to perform our own simulation considering both HT and HP. We constructed two simple Markov models with three basic health states (early-stage disease, late-stage disease, dead, one adjusting and the other not adjusting for genetic heterogeneity. Adjustment was done by creating different disease states for presence (G+ and absence (G- of a dichotomous genetic factor. We compared the life expectancy gains attributable to treatment resulting from both models and defined pharmacogenomics bias as percent deviation of treatment-related life expectancy gains in the unadjusted model from those in the adjusted model. We calculated the bias as a function of underlying model parameters to create generic results. We then applied our model to lipid-lowering therapy with pravastatin in patients with coronary atherosclerosis, incorporating the influence of two TaqIB polymorphism variants (B1 and B2 on progression and drug efficacy as reported in the DNA substudy of the REGRESS

  3. Clinical applications of schizophrenia genetics: genetic diagnosis, risk, and counseling in the molecular era

    Directory of Open Access Journals (Sweden)

    Costain G

    2012-02-01

    Full Text Available Gregory Costain1,2, Anne S Bassett1–41Clinical Genetics Research Program, Centre for Addiction and Mental Health, 2Institute of Medical Science, University of Toronto, 3Division of Cardiology, Department of Medicine and Department of Psychiatry, University Health Network, 4Department of Psychiatry, University of Toronto, Toronto, Ontario, CanadaAbstract: Schizophrenia is a complex neuropsychiatric disease with documented clinical and genetic heterogeneity, and evidence for neurodevelopmental origins. Driven by new genetic technologies and advances in molecular medicine, there has recently been concrete progress in understanding some of the specific genetic causes of this serious psychiatric illness. In particular, several large rare structural variants have been convincingly associated with schizophrenia, in targeted studies over two decades with respect to 22q11.2 microdeletions, and more recently in large-scale, genome-wide case-control studies. These advances promise to help many families afflicted with this disease. In this review, we critically appraise recent developments in the field of schizophrenia genetics through the lens of immediate clinical applicability. Much work remains in translating the recent surge of genetic research discoveries into the clinic. The epidemiology and basic genetic parameters (such as penetrance and expression of most genomic disorders associated with schizophrenia are not yet well characterized. To date, 22q11.2 deletion syndrome is the only established genetic subtype of schizophrenia of proven clinical relevance. We use this well-established association as a model to chart the pathway for translating emerging genetic discoveries into clinical practice. We also propose new directions for research involving general genetic risk prediction and counseling in schizophrenia.Keywords: schizophrenia, genetics, 22q11 deletion syndrome, copy number variation, genetic counseling, genetic predisposition to disease

  4. Genetic predisposition to acute kidney injury--a systematic review.

    Science.gov (United States)

    Vilander, Laura M; Kaunisto, Mari A; Pettilä, Ville

    2015-12-02

    The risk of an individual to develop an acute kidney injury (AKI), or its severity, cannot be reliably predicted by common clinical risk factors. Whether genetic risk factors have an explanatory role poses an interesting question, however. Thus, we conducted a systematic literature review regarding genetic predisposition to AKI or outcome of AKI patients. We searched Ovid SP (MEDLINE) and EMBASE databases and found 4027 references to AKI. Based on titles and abstracts, we approved 37 articles for further analysis. Nine were published only as abstracts, leaving 28 original articles in the final analysis. We extracted the first author, year of publication, study design, clinical setting, number of studied patients, patients with AKI, ethnicity of patients, studied polymorphisms, endpoints, AKI definition, phenotype, significant findings, and data for quality scoring from each article. We summarized the findings and scored the quality of articles. The articles were quite heterogeneous and of moderate quality (mean 6.4 of 10). Despite different gene polymorphisms with suggested associations with development or severity or outcome of AKI, definitive conclusions would require replication of associations in independent cohort studies and, preferably a hypothesis-free study design.

  5. Molecular malaria diagnostics: A systematic review and meta-analysis.

    Science.gov (United States)

    Roth, Johanna M; Korevaar, Daniël A; Leeflang, Mariska M G; Mens, Pètra F

    2016-01-01

    Accurate diagnosis of malaria is essential for identification and subsequent treatment of the disease. Currently, microscopy and rapid diagnostic tests are the most commonly used diagnostics, next to treatment based on clinical signs only. These tests are easy to deploy, but have a relatively high detection limit. With declining prevalence in many areas, there is an increasing need for more sensitive diagnostics. Molecular tools may be a suitable alternative, although costs and technical requirements currently hamper their implementation in resource limited settings. A range of (near) point-of-care diagnostics is therefore under development, including simplifications in sample preparation, amplification and/or read-out of the test. Accuracy data, in combination with technical characteristics, are essential in determining which molecular test, if any, would be the most promising to be deployed. This review presents a comprehensive overview of the currently available molecular malaria diagnostics, ranging from well-known tests to platforms in early stages of evaluation, and systematically evaluates their published accuracy. No important difference in accuracy was found between the most commonly used PCR-based assays (conventional, nested and real-time PCR), with most of them having high sensitivity and specificity, implying that there are no reasons other than practical ones to choose one technique over the other. Loop-mediated isothermal amplification and other (novel) diagnostics appear to be highly accurate as well, with some offering potential to be used in resource-limited settings.

  6. Antigenic variation: Molecular and genetic mechanisms of relapsing disease

    Energy Technology Data Exchange (ETDEWEB)

    Cruse, J.M.; Lewis, R.E.

    1987-01-01

    This book contains 10 chapters. They are: Contemporary Concepts of Antigenic Variation; Antigenic Variation in the Influenza Viruses; Mechanisms of Escape of Visna Lentiviruses from Immunological Control; A Review of Antigenic Variation by the Equine Infectious Anemia Virus; Biologic and Molecular Variations in AIDS Retrovirus Isolates; Rabies Virus Infection: Genetic Mutations and the Impact on Viral Pathogenicity and Immunity; Immunobiology of Relapsing Fever; Antigenic Variation in African Trypanosomes; Antigenic Variation and Antigenic Diversity in Malaria; and Mechanisms of Immune Evasion in Schistosomiasis.

  7. Familial Renal Cancer: Molecular Genetics and Surgical Management

    Directory of Open Access Journals (Sweden)

    Glen W. Barrisford

    2011-01-01

    Full Text Available Familial renal cancer (FRC is a heterogeneous disorder comprised of a variety of subtypes. Each subtype is known to have unique histologic features, genetic alterations, and response to therapy. Through the study of families affected by hereditary forms of kidney cancer, insights into the genetic basis of this disease have been identified. This has resulted in the elucidation of a number of kidney cancer gene pathways. Study of these pathways has led to the development of novel targeted molecular treatments for patients affected by systemic disease. As a result, the treatments for families affected by von Hippel-Lindau (VHL, hereditary papillary renal carcinoma (HPRC, hereditary leiomyomatosis renal cell carcinoma (HLRCC, and Birt-Hogg-Dubé (BHD are rapidly changing. We review the genetics and contemporary surgical management of familial forms of kidney cancer.

  8. Human fertility, molecular genetics, and natural selection in modern societies.

    Directory of Open Access Journals (Sweden)

    Felix C Tropf

    Full Text Available Research on genetic influences on human fertility outcomes such as number of children ever born (NEB or the age at first childbirth (AFB has been solely based on twin and family-designs that suffer from problematic assumptions and practical limitations. The current study exploits recent advances in the field of molecular genetics by applying the genomic-relationship-matrix based restricted maximum likelihood (GREML methods to quantify for the first time the extent to which common genetic variants influence the NEB and the AFB of women. Using data from the UK and the Netherlands (N = 6,758, results show significant additive genetic effects on both traits explaining 10% (SE = 5 of the variance in the NEB and 15% (SE = 4 in the AFB. We further find a significant negative genetic correlation between AFB and NEB in the pooled sample of -0.62 (SE = 0.27, p-value = 0.02. This finding implies that individuals with genetic predispositions for an earlier AFB had a reproductive advantage and that natural selection operated not only in historical, but also in contemporary populations. The observed postponement in the AFB across the past century in Europe contrasts with these findings, suggesting an evolutionary override by environmental effects and underscoring that evolutionary predictions in modern human societies are not straight forward. It emphasizes the necessity for an integrative research design from the fields of genetics and social sciences in order to understand and predict fertility outcomes. Finally, our results suggest that we may be able to find genetic variants associated with human fertility when conducting GWAS-meta analyses with sufficient sample size.

  9. [Results and promises of genetics of cognitive impairment in schizophrenia: molecular-genetic approaches].

    Science.gov (United States)

    Alfimova, M V; Kondratiev, N V; Golimbet, V E

    2016-01-01

    This review highlights the basic paradigms and directions of molecular genetic studies of cognitive deficits in schizophrenia. Along with the traditional approach based on functional candidate genes, it covers genome-wide association studies (GWAS) for cognition in general population and schizophrenic patients, attempts to integrate GWAS results in polygenic profiles that can be used in personalized care of schizophrenic patients, and a search for biological pathways implicated in the development of cognitive impairments with bioinformatics methods. However, despite significant advances in understanding the genetic basis of the disease and a rapidly growing amount of data on genes associated with cognitive functions, most of the variability of cognitive impairments in patients remains unexplained. The data on the functional complexity of the genome accumulated in the fields of molecular biology and genetics underscore the importance of studying epigenetic mechanisms of cognitive deficits in schizophrenia.

  10. Reliable prediction of adsorption isotherms via genetic algorithm molecular simulation.

    Science.gov (United States)

    LoftiKatooli, L; Shahsavand, A

    2017-01-01

    Conventional molecular simulation techniques such as grand canonical Monte Carlo (GCMC) strictly rely on purely random search inside the simulation box for predicting the adsorption isotherms. This blind search is usually extremely time demanding for providing a faithful approximation of the real isotherm and in some cases may lead to non-optimal solutions. A novel approach is presented in this article which does not use any of the classical steps of the standard GCMC method, such as displacement, insertation, and removal. The new approach is based on the well-known genetic algorithm to find the optimal configuration for adsorption of any adsorbate on a structured adsorbent under prevailing pressure and temperature. The proposed approach considers the molecular simulation problem as a global optimization challenge. A detailed flow chart of our so-called genetic algorithm molecular simulation (GAMS) method is presented, which is entirely different from traditions molecular simulation approaches. Three real case studies (for adsorption of CO 2 and H 2 over various zeolites) are borrowed from literature to clearly illustrate the superior performances of the proposed method over the standard GCMC technique. For the present method, the average absolute values of percentage errors are around 11% (RHO-H 2 ), 5% (CHA-CO 2 ), and 16% (BEA-CO 2 ), while they were about 70%, 15%, and 40% for the standard GCMC technique, respectively.

  11. Empirical Refinements of a Molecular Genetics Learning Progression: The Molecular Constructs

    Science.gov (United States)

    Todd, Amber; Kenyon, Lisa

    2016-01-01

    This article describes revisions to four of the eight constructs of the Duncan molecular genetics learning progression [Duncan, Rogat, & Yarden, (2009)]. As learning progressions remain hypothetical models until validated by multiple rounds of empirical studies, these revisions are an important step toward validating the progression. Our…

  12. Molecular systematics and evolution of Regina and the thamnophiine snakes.

    Science.gov (United States)

    Alfaro, M E; Arnold, S J

    2001-12-01

    Snakes of the tribe Thamnophiini represent an ecologically important component of the herpetofauna in a range of habitats across North America. Thamnophiines are the best-studied colubrids, yet little is known of their systematic relationships. A molecular phylogenetic study of 32 thamnophiine species using three complete mitochondrial genes (cytochrome b, NADH dehydrogenase subunit 2, and 12S ribosomal DNA) recovered a well-supported phylogeny with three major clades: a garter snake group, a water snake group, and a novel semifossorial group. The historically contentious genus Regina, which contains the crayfish-eating snakes, is polyphyletic. The phylogeographic pattern of Thamnophis is consistent with an hypothesis of at least one invasion of northern North America from Mexico.

  13. Genetic and molecular basis of diabetic foot ulcers: Clinical review.

    Science.gov (United States)

    Jhamb, Shaurya; Vangaveti, Venkat N; Malabu, Usman H

    2016-11-01

    Diabetic Foot Ulcers (DFUs) are major complications associated with diabetes and often correlate with peripheral neuropathy, trauma and peripheral vascular disease. It is necessary to understand the molecular and genetic basis of diabetic foot ulcers in order to tailor patient centred care towards particular patient groups. This review aimed to evaluate whether current literature was indicative of an underlying molecular and genetic basis for DFUs and to discuss clinical applications. From a molecular perspective, wound healing is a process that transpires following breach of the skin barrier and is usually mediated by growth factors and cytokines released by specialised cells activated by the immune response, including fibroblasts, endothelial cells, phagocytes, platelets and keratinocytes. Growth factors and cytokines are fundamental in the organisation of the molecular processes involved in making cutaneous wound healing possible. There is a significant role for single nucleotide polymorphism (SNPs) in the fluctuation of these growth factors and cytokines in DFUs. Furthermore, recent evidence suggests a key role for epigenetic mechanisms such as DNA methylation from long standing hyperglycemia and non-coding RNAs in the complex interplay between genes and the environment. Genetic factors and ethnicity can also play a significant role in the development of diabetic neuropathy leading to DFUs. Clinically, interventions which have improved outcomes for people with DFUs or those at risk of DFUs include some systemic therapeutic drug interventions which improve microvascular blood flow, surgical interventions, human growth factors, and hyperbaric oxygen therapy, negative pressure wound therapy, skin replacement or shockwave therapy and the use of topical treatments. Future treatment modalities including stem cell and gene therapies are promising in the therapeutic approach to prevent the progression of chronic diabetic complications. Copyright © 2016 Tissue

  14. The Molecular Genetic Architecture of Self-Employment

    Science.gov (United States)

    van der Loos, Matthijs J. H. M.; Rietveld, Cornelius A.; Eklund, Niina; Koellinger, Philipp D.; Rivadeneira, Fernando; Abecasis, Gonçalo R.; Ankra-Badu, Georgina A.; Baumeister, Sebastian E.; Benjamin, Daniel J.; Biffar, Reiner; Blankenberg, Stefan; Boomsma, Dorret I.; Cesarini, David; Cucca, Francesco; de Geus, Eco J. C.; Dedoussis, George; Deloukas, Panos; Dimitriou, Maria; Eiriksdottir, Guðny; Eriksson, Johan; Gieger, Christian; Gudnason, Vilmundur; Höhne, Birgit; Holle, Rolf; Hottenga, Jouke-Jan; Isaacs, Aaron; Järvelin, Marjo-Riitta; Johannesson, Magnus; Kaakinen, Marika; Kähönen, Mika; Kanoni, Stavroula; Laaksonen, Maarit A.; Lahti, Jari; Launer, Lenore J.; Lehtimäki, Terho; Loitfelder, Marisa; Magnusson, Patrik K. E.; Naitza, Silvia; Oostra, Ben A.; Perola, Markus; Petrovic, Katja; Quaye, Lydia; Raitakari, Olli; Ripatti, Samuli; Scheet, Paul; Schlessinger, David; Schmidt, Carsten O.; Schmidt, Helena; Schmidt, Reinhold; Senft, Andrea; Smith, Albert V.; Spector, Timothy D.; Surakka, Ida; Svento, Rauli; Terracciano, Antonio; Tikkanen, Emmi; van Duijn, Cornelia M.; Viikari, Jorma; Völzke, Henry; Wichmann, H. -Erich; Wild, Philipp S.; Willems, Sara M.; Willemsen, Gonneke; van Rooij, Frank J. A.; Groenen, Patrick J. F.; Uitterlinden, André G.; Hofman, Albert; Thurik, A. Roy

    2013-01-01

    Economic variables such as income, education, and occupation are known to affect mortality and morbidity, such as cardiovascular disease, and have also been shown to be partly heritable. However, very little is known about which genes influence economic variables, although these genes may have both a direct and an indirect effect on health. We report results from the first large-scale collaboration that studies the molecular genetic architecture of an economic variable–entrepreneurship–that was operationalized using self-employment, a widely-available proxy. Our results suggest that common SNPs when considered jointly explain about half of the narrow-sense heritability of self-employment estimated in twin data (σg 2/σP 2 = 25%, h 2 = 55%). However, a meta-analysis of genome-wide association studies across sixteen studies comprising 50,627 participants did not identify genome-wide significant SNPs. 58 SNPs with pentrepreneurship reveal significant associations. Finally, SNP-based genetic scores that use results from the meta-analysis capture less than 0.2% of the variance in self-employment in an independent sample (p≥0.039). Our results are consistent with a highly polygenic molecular genetic architecture of self-employment, with many genetic variants of small effect. Although self-employment is a multi-faceted, heavily environmentally influenced, and biologically distal trait, our results are similar to those for other genetically complex and biologically more proximate outcomes, such as height, intelligence, personality, and several diseases. PMID:23593239

  15. Molecular genetics and livestock selection. Approaches, opportunities and risks

    International Nuclear Information System (INIS)

    Williams, J.L.

    2005-01-01

    Following domestication, livestock were selected both naturally through adaptation to their environments and by man so that they would fulfil a particular use. As selection methods have become more sophisticated, rapid progress has been made in improving those traits that are easily measured. However, selection has also resulted in decreased diversity. In some cases, improved breeds have replaced local breeds, risking the loss of important survival traits. The advent of molecular genetics provides the opportunity to identify the genes that control particular traits by a gene mapping approach. However, as with selection, the early mapping studies focused on traits that are easy to measure. Where molecular genetics can play a valuable role in livestock production is by providing the means to select effectively for traits that are difficult to measure. Identifying the genes underpinning particular traits requires a population in which these traits are segregating. Fortunately, several experimental populations have been created that have allowed a wide range of traits to be studied. Gene mapping work in these populations has shown that the role of particular genes in controlling variation in a given trait can depend on the genetic background. A second finding is that the most favourable alleles for a trait may in fact. be present in animals that perform poorly for the trait. In the long term, knowledge of -the genes controlling particular traits, and the way they interact with the genetic background, will allow introgression between breeds and the assembly of genotypes that are best suited to particular environments, producing animals with the desired characteristics. If used wisely, this approach will maintain genetic diversity while improving performance over a wide range of desired traits. (author)

  16. The molecular genetic architecture of self-employment.

    Directory of Open Access Journals (Sweden)

    Matthijs J H M van der Loos

    Full Text Available Economic variables such as income, education, and occupation are known to affect mortality and morbidity, such as cardiovascular disease, and have also been shown to be partly heritable. However, very little is known about which genes influence economic variables, although these genes may have both a direct and an indirect effect on health. We report results from the first large-scale collaboration that studies the molecular genetic architecture of an economic variable-entrepreneurship-that was operationalized using self-employment, a widely-available proxy. Our results suggest that common SNPs when considered jointly explain about half of the narrow-sense heritability of self-employment estimated in twin data (σ(g(2/σ(P(2 = 25%, h(2 = 55%. However, a meta-analysis of genome-wide association studies across sixteen studies comprising 50,627 participants did not identify genome-wide significant SNPs. 58 SNPs with p<10(-5 were tested in a replication sample (n = 3,271, but none replicated. Furthermore, a gene-based test shows that none of the genes that were previously suggested in the literature to influence entrepreneurship reveal significant associations. Finally, SNP-based genetic scores that use results from the meta-analysis capture less than 0.2% of the variance in self-employment in an independent sample (p≥0.039. Our results are consistent with a highly polygenic molecular genetic architecture of self-employment, with many genetic variants of small effect. Although self-employment is a multi-faceted, heavily environmentally influenced, and biologically distal trait, our results are similar to those for other genetically complex and biologically more proximate outcomes, such as height, intelligence, personality, and several diseases.

  17. Systematic evaluation of genes and genetic variants associated with type 1 diabetes susceptibility

    DEFF Research Database (Denmark)

    Ram, Ramesh; Mehta, Munish; Nguyen, Tri Quang

    2016-01-01

    levels of genes in four different cell types: EBV-transformed B cell lines (resting and 6 h PMA stimulated) and purified CD4+ and CD8+ T cells. We mapped cis-acting expression quantitative trait loci and found 24 non-HLA loci that affected the expression of 31 transcripts significantly in at least one......Genome-wide association studies have found >60 loci that confer genetic susceptibility to type 1 diabetes (T1D). Many of these are defined only by anonymous single nucleotide polymorphisms: the underlying causative genes, as well as the molecular bases by which they mediate susceptibility......, are not known. Identification of how these variants affect the complex mechanisms contributing to the loss of tolerance is a challenge. In this study, we performed systematic analyses to characterize these variants. First, all known genes in strong linkage disequilibrium (r2 > 0.8) with the reported single...

  18. A consortium approach to molecular genetic services. Scottish Molecular Genetics Consortium.

    OpenAIRE

    Brock, D J

    1990-01-01

    The four Scottish university medical genetics centres formed a consortium in 1985 to provide a DNA based service in prenatal diagnosis, carrier detection, and predictive testing for a range of Mendelian disorders. Each centre took sole responsibility for laboratory analyses of an assigned set of disorders, while families continued to be investigated and patients counselled within their own areas. DNA was extracted from relevant tissues in the centre most convenient to the family member and th...

  19. Molecular phylogeny of Pasiphaeidae (Crustacea, Decapoda, Caridea) reveals systematic incongruence of the current classification.

    Science.gov (United States)

    Liao, Yunshi; De Grave, Sammy; Ho, Tsz Wai; Ip, Brian H Y; Tsang, Ling Ming; Chan, Tin-Yam; Chu, Ka Hou

    2017-10-01

    Caridean shrimps constitute one of the most diverse groups of decapod crustaceans, notwithstanding their poorly resolved infraordinal relationships. One of the systematically controversial families in Caridea is the predominantly pelagic Pasiphaeidae, comprises 101 species in seven genera. Pasiphaeidae species exhibit high morphological disparity, as well as ecological niche width, inhabiting shallow to very deep waters (>4000m). The present work presents the first molecular phylogeny of the family, based on a combined dataset of six mitochondrial and nuclear gene markers (12S rDNA, 16S rDNA, histone 3, sodium-potassium ATPase α-subunit, enolase and ATP synthase β-subunit) from 33 species belonged to six genera of Pasiphaeidae with 19 species from 12 other caridean families as outgroup taxa. Maximum likelihood and Bayesian inference analyses conducted on the concatenated dataset of 2265bp suggest the family Pasiphaeidae is not monophyletic, with Psathyrocaris more closely related to other carideans than to the other five pasiphaeid genera included in this analysis. Leptochela occupies a sister position to the remaining genera and is genetically quite distant from them. At the generic level, the analysis supports the monophyly of Pasiphaea, Leptochela and Psathyrocaris, while Eupasiphae is shown to be paraphyletic, closely related to Parapasiphae and Glyphus. The present molecular result strongly implies that certain morphological characters used in the present systematic delineation within Pasiphaeidae may not be synapomorphies and the classification within the family needs to be urgently revised. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Molecular genetic identification of some wheat cultivars in the sudan

    International Nuclear Information System (INIS)

    Mekki, I. I; El Amin, H. B.

    2002-01-01

    Four wheat (Triticum aestivum L.) cultivars, namely condor, El-Nellene, Wadi El Neil and Debeira were characterized on biochemical and molecular bases. The biochemical ones were protein-banding patterns, using sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and isozymes to identify the biochemical genetic fingerprint of the four cultivars. Water-soluble protein-banding pattern showed no polymorphisms among the tested cultivars. The data from starch gel electrophoresis of enzymes, malate dehydrogenase (MDH), esterase (EST) and acid phosphate (ACPH) showed that the cultivars are monomorphic. Further trials to identify the molecular genetic fingerprints of the studied cultivars were carried out using RAPD-PCR twenty-five primers were tested to perform. RAPD-PCR analysis. From the PCR products, a phylogenetic map, i.e, dendrogram, was constructed for the studied cultivars which depicted tow groups. The first group contained Wadi El Neil and Deberia with 48.4% similarity, and the second group contained Condor and El Neileen with 100% similarity. There was no similarity between Condor and Debeira (100% dissimilarity). Therefor, these data can be used subsequently for genetic engineering research and for wheat breeding programmes in the Sudan.(Author)

  1. Understanding the Molecular Genetics of Basal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Cristina Pellegrini

    2017-11-01

    Full Text Available Basal cell carcinoma (BCC is the most common human cancer and represents a growing public health care problem. Several tumor suppressor genes and proto-oncogenes have been implicated in BCC pathogenesis, including the key components of the Hedgehog pathway, PTCH1 and SMO, the TP53 tumor suppressor, and members of the RAS proto-oncogene family. Aberrant activation of the Hedgehog pathway represents the molecular driver in basal cell carcinoma pathogenesis, with the majority of BCCs carrying somatic point mutations, mainly ultraviolet (UV-induced, and/or copy-loss of heterozygosis in the PTCH1 gene. Recent advances in sequencing technology allowed genome-scale approaches to mutation discovery, identifying new genes and pathways potentially involved in BCC carcinogenesis. Mutational and functional analysis suggested PTPN14 and LATS1, both effectors of the Hippo–YAP pathway, and MYCN as new BCC-associated genes. In addition, emerging reports identified frequent non-coding mutations within the regulatory promoter sequences of the TERT and DPH3-OXNAD1 genes. Thus, it is clear that a more complex genetic network of cancer-associated genes than previously hypothesized is involved in BCC carcinogenesis, with a potential impact on the development of new molecular targeted therapies. This article reviews established knowledge and new hypotheses regarding the molecular genetics of BCC pathogenesis.

  2. Understanding the Molecular Genetics of Basal Cell Carcinoma

    Science.gov (United States)

    Maturo, Maria Giovanna; Ciciarelli, Valeria; Gutiérrez García-Rodrigo, Carlota; Fargnoli, Maria Concetta

    2017-01-01

    Basal cell carcinoma (BCC) is the most common human cancer and represents a growing public health care problem. Several tumor suppressor genes and proto-oncogenes have been implicated in BCC pathogenesis, including the key components of the Hedgehog pathway, PTCH1 and SMO, the TP53 tumor suppressor, and members of the RAS proto-oncogene family. Aberrant activation of the Hedgehog pathway represents the molecular driver in basal cell carcinoma pathogenesis, with the majority of BCCs carrying somatic point mutations, mainly ultraviolet (UV)-induced, and/or copy-loss of heterozygosis in the PTCH1 gene. Recent advances in sequencing technology allowed genome-scale approaches to mutation discovery, identifying new genes and pathways potentially involved in BCC carcinogenesis. Mutational and functional analysis suggested PTPN14 and LATS1, both effectors of the Hippo–YAP pathway, and MYCN as new BCC-associated genes. In addition, emerging reports identified frequent non-coding mutations within the regulatory promoter sequences of the TERT and DPH3-OXNAD1 genes. Thus, it is clear that a more complex genetic network of cancer-associated genes than previously hypothesized is involved in BCC carcinogenesis, with a potential impact on the development of new molecular targeted therapies. This article reviews established knowledge and new hypotheses regarding the molecular genetics of BCC pathogenesis. PMID:29165358

  3. Genetic and molecular dissection of naturally occurring variations in rice

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Masahiro [National Institute of Agrobiological Sciences, Tsukuba, Ibaraki (Japan)

    2002-02-01

    The progress for structural analysis of the rice genome has allowed us to embark on the sequencing of the whole rice genome. Resources - genetic markers, sequence data, and genomic clones - derived from many efforts will be used for the functional analysis of rice genes in the next decade. Although artificially induced variations, such as mutants, have been used mainly for genetic and physiological studies in rice and other plant species, the development of DNA markers has made possible access to naturally occurring allelic variations underlying complex traits. Such analysis is often referred to as quantitative traits locus (QTL) analysis. Many QTLs have been mapped for many complex traits in rice. During the analyses of several quantitative traits by the DNA marker-assisted strategy, two questions about QTL analysis have been raised: 1) Does a QTL represent a single Mendelian locus or a cluster of multiple loci? 2) Is it possible to precisely map a QTL and identify QTLs at the molecular level using map-based or other strategies? To answer these questions, a series of analyses on heading date, including the identification of putative QTLs, characterization and fine mapping of QTLs using nearly isogenic lines (NILs), and identification of genes at QTLs for heading date by the map-based strategy has been performed. In addition, several primary permanent mapping populations and secondary genetic resources, such as chromosomal segmental substitution lines, have been developed to facilitate the genetic analysis of naturally occurring allelic variation. (M. Suetake)

  4. Classical and molecular genetics of malignant melanoma and dysplastic naevi

    International Nuclear Information System (INIS)

    Traupe, H.; Macher, E.

    1988-01-01

    The authors conclude that the prevailing concept of monogenic autosomaldominant inheritance of dysplastic naevi and familial melanoma is not compatible with the principles of formal (Mendelian) genetics. The concept of polygenic inheritance offers instead a sound basis to explain familial aggregation of dysplastic naevi and melanoma. The various genes involved have not yet been identified at the molecular level. The recent advances made possible by modern DNA technology have given us a new view of carcinogenesis. In human malignant melanoma, chromosomes 1, 6, 7 are of particular interest and oncogenes located on these chromosomes may be involved with the initiation, promotion and progression of melanoma. Carcinogenesis is viewed as a multistep process and even tumour initiation requires the input of at least two independent oncogenes. Molecular genetics thus adds an important argument for the existence of a polygenic predisposition to melanoma. The concept of polygenic inheritance is not restricted to familial melanoma, but implies that all melanomas basically share the same predisposition and are due to similar genetic mechanisms. In some patients an inherited genetic predisposition is of great importance, whereas in others (the majority) environmental factors (e.g. UV-light-induced mutations) will be the cause of initial steps in the malignant transformation. The concept of polygenic inheritance has consequences for the management of our patients. In contrast to simple Mendelian inheritance, the risk for dysplastic naevi and melanoma is not constantly 50%, but increases with the number of family members already affected. Persons belonging to families with more that 2 affected close relatives should be considered at high risk regardless of the dysplastic naevus status. Strict surveillance of this patient group is warranted for melanoma prevention

  5. A new view on molecular genetic features of stomach cancer

    Directory of Open Access Journals (Sweden)

    A. A. Mashukov

    2017-10-01

    Full Text Available The purpose of this article was to write a literature review on the possibility of genetic typing of patients with stomach cancer at the current stage of the domestic molecular genetic laboratory service development. Materials and мethods. The combination of molecular factors in gastric cancer (GC used in the work was based on their relevance in clinical and experimental studies in case of GC over the last 10 years. The frequency of their use in foreign and domestic research works cited by PubMed and Google Scholar Systems, as well as our own research, was estimated. Results. Signs of genetically-stable stomach cancer (GSGC were: a combination of low, below 10 %, p53 oncoprotein expression, the presence of at least weak VEGFR-C expression, a high, more than 20 %, proliferative tumor index. Chromosomal-unstable tumors were characterized not only by the presence of positive expression of crbB2, but also by more than 10 % expression of p53 oncoprotein and complete absence of VEGFR-C expression. Microsatellite-unstable GC (MUGC was characterized by negative expression of the oncoprotein crbB2, positive p53, lack of VEGFR – C. Epstein–Barr virus-associated GC (EBVAGC was characterized by the absence of the VEGFR-C indicator protein and by the presence of crbB2 positive expression, in combination with a low, below 10 % expression, of the p53 oncoprotein. Conclusions. Understanding the nature of the GC various genetic variants makes possible two basic types of complex treatment individualization: the individualization of chemotherapy and the personification of the surgical modalities.

  6. Epidemiology and genetic diversity of Taenia asiatica: a systematic review.

    Science.gov (United States)

    Ale, Anita; Victor, Bjorn; Praet, Nicolas; Gabriël, Sarah; Speybroeck, Niko; Dorny, Pierre; Devleesschauwer, Brecht

    2014-01-22

    Taenia asiatica has made a remarkable journey through the scientific literature of the past 50 years, starting with the paradoxical observation of high prevalences of T. saginata-like tapeworms in non-beef consuming populations, to the full description of its mitochondrial genome. Experimental studies conducted in the 1980s and 1990s have made it clear that the life cycle of T. asiatica is comparable to that of T. saginata, except for pigs being the preferential intermediate host and liver the preferential location of the cysts. Whether or not T. asiatica can cause human cysticercosis, as is the case for Taenia solium, remains unclear. Given the specific conditions needed to complete its life cycle, in particular the consumption of raw or poorly cooked pig liver, the transmission of T. asiatica shows an important ethno-geographical association. So far, T. asiatica has been identified in Taiwan, South Korea, Indonesia, the Philippines, Thailand, south-central China, Vietnam, Japan and Nepal. Especially this last observation indicates that its distribution is not restricted to South-East-Asia, as was thought so far. Indeed, the molecular tools developed over the last 20 years have made it increasingly possible to differentiate T. asiatica from other taeniids. Such tools also indicated that T. asiatica is related more closely to T. saginata than to T. solium, feeding the debate on its taxonomic status as a separate species versus a subspecies of T. saginata. Furthermore, the genetic diversity within T. asiatica appears to be very minimal, indicating that this parasite may be on the verge of extinction. However, recent studies have identified potential hybrids between T. asiatica and T. saginata, reopening the debate on the genetic diversity of T. asiatica and its status as a separate species.

  7. A systematic molecular circuit design method for gene networks under biochemical time delays and molecular noises

    Directory of Open Access Journals (Sweden)

    Chang Yu-Te

    2008-11-01

    Full Text Available Abstract Background Gene networks in nanoscale are of nonlinear stochastic process. Time delays are common and substantial in these biochemical processes due to gene transcription, translation, posttranslation protein modification and diffusion. Molecular noises in gene networks come from intrinsic fluctuations, transmitted noise from upstream genes, and the global noise affecting all genes. Knowledge of molecular noise filtering and biochemical process delay compensation in gene networks is crucial to understand the signal processing in gene networks and the design of noise-tolerant and delay-robust gene circuits for synthetic biology. Results A nonlinear stochastic dynamic model with multiple time delays is proposed for describing a gene network under process delays, intrinsic molecular fluctuations, and extrinsic molecular noises. Then, the stochastic biochemical processing scheme of gene regulatory networks for attenuating these molecular noises and compensating process delays is investigated from the nonlinear signal processing perspective. In order to improve the robust stability for delay toleration and noise filtering, a robust gene circuit for nonlinear stochastic time-delay gene networks is engineered based on the nonlinear robust H∞ stochastic filtering scheme. Further, in order to avoid solving these complicated noise-tolerant and delay-robust design problems, based on Takagi-Sugeno (T-S fuzzy time-delay model and linear matrix inequalities (LMIs technique, a systematic gene circuit design method is proposed to simplify the design procedure. Conclusion The proposed gene circuit design method has much potential for application to systems biology, synthetic biology and drug design when a gene regulatory network has to be designed for improving its robust stability and filtering ability of disease-perturbed gene network or when a synthetic gene network needs to perform robustly under process delays and molecular noises.

  8. Molecular and genetic aspects of odontogenic tumors: a review.

    Science.gov (United States)

    Garg, Kavita; Chandra, Shaleen; Raj, Vineet; Fareed, Wamiq; Zafar, Muhammad

    2015-06-01

    Odontogenic tumors contain a heterogeneous collection of lesions that are categorized from hamartomas to benign and malignant neoplasms of inconstant aggressiveness. Odontogenic tumors are usually extraordinary with assessed frequency of short of 0.5 cases/100,000 population for every year. The lesions such as odontogenic tumors are inferred from the components of the tooth-structuring contraption. They are discovered solely inside the maxillary and mandibular bones. This audit speaks to experiences and cooperation of the molecular and genetic variations connected to the development and movement of odontogenic tumors which incorporate oncogenes, tumor-silencer genes, APC gene, retinoblastoma genes, DNA repair genes, onco-viruses, development components, telomerase, cell cycle controllers, apoptosis-related elements, and regulators/conttrollers of tooth development. The reasonable and better understanding of the molecular components may prompt new ideas for their detection and administrating a better prognosis of odontogenic tumors.

  9. Molecular and genetic aspects of odontogenic tumors: a review

    Directory of Open Access Journals (Sweden)

    Kavita Garg

    2015-06-01

    Full Text Available Odontogenic tumors contain a heterogeneous collection of lesions that are categorized from hamartomas to benign and malignant neoplasms of inconstant aggressiveness. Odontogenic tumors are usually extraordinary with assessed frequency of short of 0.5 cases/100,000 population for every year. The lesions such as odontogenic tumors are inferred from the components of the tooth-structuring contraption. They are discovered solely inside the maxillary and mandibular bones. This audit speaks to experiences and cooperation of the molecular and genetic variations connected to the development and movement of odontogenic tumors which incorporate oncogenes, tumor-silencer genes, APC gene, retinoblastoma genes, DNA repair genes, onco-viruses, development components, telomerase, cell cycle controllers, apoptosis-related elements, and regulators/controllers of tooth development. The reasonable and better understanding of the molecular components may prompt new ideas for their detection and administrating a better prognosis of odontogenic tumors.

  10. Testicular germ cell tumors: Molecular genetic and clinicomorphological aspects

    Directory of Open Access Journals (Sweden)

    M. V. Nemtsova

    2015-03-01

    Full Text Available Testicular tumors are the most common form of solid cancer in young men. According to the 2004 WHO classification, testicular germ cell tumors (TGCT may present with different histological types. Embryonic cells of varying grade may be a source of TGCT and the occurrence of this type of tumors is directly related to the formation of a pool of male sex cells and gametogenesis. The paper gives information on mo- lecular stages for the process of formation of male sex cells in health, as well as ways of their impairments leading to TGCT. An investigation of the profiles of gene expression and the spectrum of molecular damages revealed genes responsible for a predisposition to the sporadic and hereditary forms of TGCT. The paper presents the current molecular genetic and clinicomorphological characteristics of TGCT. 

  11. 76 FR 18227 - Molecular and Clinical Genetics Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2011-04-01

    ...] Molecular and Clinical Genetics Panel of the Medical Devices Advisory Committee; Notice of Meeting... comment period for the notice announcing a meeting of the Molecular and Clinical Genetics Panel (the panel... Clinical Genetics Panel of the Medical Devices Advisory Committee, and the opening of a public docket to...

  12. [Basal cell carcinoma. Molecular genetics and unusual clinical features].

    Science.gov (United States)

    Reifenberger, J

    2007-05-01

    Basal cell carcinoma is the most common human cancer. Its incidence is steadily increasing. The development of basal cell carcinoma is linked to genetic factors, including the individual skin phototype, as well as the cumulative exposure to UVB. The vast majority of basal cell carcinomas are sporadic tumors, while familial cases associated with certain hereditary syndromes are less common. At the molecular level, basal cell carcinomas are characterized by aberrant activation of sonic hedgehog signaling, usually due to mutations either in the ptch or smoh genes. In addition, about half of the cases carry mutations in the tp53 tumor suppressor gene, which are often UVB-associated C-->T transition mutations. Clinically, basal cell carcinomas may show a high degree of phenotypical variability. In particular, tumors occurring in atypical locations, showing an unusual clinical appearance, or imitating other skin diseases may cause diagnostic problems. This review article summarizes the current state of the art concerning the etiology, predisposition and molecular genetics of basal cell carcinoma. In addition, examples of unusual clinical manifestations are illustrated.

  13. [Acute myeloid leukemia. Genetic diagnostics and molecular therapy].

    Science.gov (United States)

    Schlenk, R F; Döhner, K; Döhner, H

    2013-02-01

    Acute myeloid leukemia (AML) is a genetically heterogeneous disease. The genetic diagnostics have become an essential component in the initial work-up for disease classification, prognostication and prediction. More and more promising molecular targeted therapeutics are becoming available. A prerequisite for individualized treatment strategies is a fast pretherapeutic molecular screening including the fusion genes PML-RARA, RUNX1-RUNX1T1 and CBFB-MYH11 as well as mutations in the genes NPM1, FLT3 and CEBPA. Promising new therapeutic approaches include the combination of all- trans retinoic acid and arsentrioxid in acute promyelocytic leukemia, the combination of intensive chemotherapy with KIT inhibitors in core-binding factor AML and FLT3 inhibitors in AML with FLT3 mutation, as well as gemtuzumab ozogamicin therapy in patients with low and intermediate cytogenetic risk profiles. With the advent of the next generation sequencing technologies it is expected that new therapeutic targets will be identified. These insights will lead to a further individualization of AML therapy.

  14. Plant genetic and molecular responses to water deficit

    Directory of Open Access Journals (Sweden)

    Silvio Salvi

    2011-02-01

    Full Text Available Plant productivity is severely affected by unfavourable environmental conditions (biotic and abiotic stresses. Among others, water deficit is the plant stress condition which mostly limits the quality and the quantity of plant products. Tolerance to water deficit is a polygenic trait strictly dependent on the coordinated expression of a large set of genes coding for proteins directly involved in stress-induced protection/repair mechanisms (dehydrins, chaperonins, enzymes for the synthesis of osmoprotectants and detoxifying compounds, and others as well as genes involved in transducing the stress signal and regulating gene expression (transcription factors, kinases, phosphatases. Recently, research activities in the field evolved from the study of single genes directly involved in cellular stress tolerance (functional genes to the identification and characterization of key regulatory genes involved in stress perception and transduction and able to rapidly and efficiently activate the complex gene network involved in the response to stress. The complexity of the events occurring in response to stress have been recently approached by genomics tools; in fact the analysis of transcriptome, proteome and metabolome of a plant tissue/cell in response to stress already allowed to have a global view of the cellular and molecular events occurring in response to water deficit, by the identification of genes activated and co-regulated by the stress conditions and the characterization of new signalling pathways. Moreover the recent application of forward and reverse genetic approaches, trough mutant collection development, screening and characterization, is giving a tremendous impulse to the identification of gene functions with key role in stress tolerance. The integration of data obtained by high-throughput genomic approaches, by means of powerful informatic tools, is allowing nowadays to rapidly identify of major genes/QTLs involved in stress tolerance

  15. GENETICS AND MOLECULAR BIOLOGY AND PIG MEAT QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    BULLA, J.

    2007-01-01

    Full Text Available The main goals in pig breeding have for many years been to improve growth rate, feedconversion and carcass composition. There have been less efforts to improve meat qualityparameters (WHC, pH, tenderness, colour etc. but the main contribution has been areduction of stress susceptibility and PSE meat. Unfortunately, the quantitative geneticapproach has yielded few clues regarding the fundamental genetic changes that accompaniedthe selection of animal for superior carcass attributes. While mapping efforts are makingsignificant major effects on carcass and his quality composition DNA test would be availableto detect some positive or negative alleles. There are clear breed effects on meat quality,which in some cases are fully related to the presence of a single gene with major effect (RYR1,MYF4, H-FABP, LEPR, IGF2. Molecular biology methods provides excellent opportunitiesto improve meat quality in selection schemes within breeds and lines. Selection on majorgenes will not only increase average levels of quality but also decrease variability (ei increaseuniformity. The aim of this paper is to discuss there genetic and non-genetic opportunities.

  16. GENETICS AND MOLECULAR BIOLOGY AND PIG MEAT QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    J. BULLA

    2007-05-01

    Full Text Available The main goals in pig breeding have for many years been to improve growth rate, feedconversion and carcass composition. There have been less efforts to improve meat qualityparameters (WHC, pH, tenderness, colour etc. but the main contribution has been areduction of stress susceptibility and PSE meat. Unfortunately, the quantitative geneticapproach has yielded few clues regarding the fundamental genetic changes that accompaniedthe selection of animal for superior carcass attributes. While mapping efforts are makingsignificant major effects on carcass and his quality composition DNA test would be availableto detect some positive or negative alleles. There are clear breed effects on meat quality,which in some cases are fully related to the presence of a single gene with major effect (RYR1,MYF4, H-FABP, LEPR, IGF2. Molecular biology methods provides excellent opportunitiesto improve meat quality in selection schemes within breeds and lines. Selection on majorgenes will not only increase average levels of quality but also decrease variability (ei increaseuniformity. The aim of this paper is to discuss there genetic and non-genetic opportunities.

  17. The rapid evolution of molecular genetic diagnostics in neuromuscular diseases.

    Science.gov (United States)

    Volk, Alexander E; Kubisch, Christian

    2017-10-01

    The development of massively parallel sequencing (MPS) has revolutionized molecular genetic diagnostics in monogenic disorders. The present review gives a brief overview of different MPS-based approaches used in clinical diagnostics of neuromuscular disorders (NMDs) and highlights their advantages and limitations. MPS-based approaches like gene panel sequencing, (whole) exome sequencing, (whole) genome sequencing, and RNA sequencing have been used to identify the genetic cause in NMDs. Although gene panel sequencing has evolved as a standard test for heterogeneous diseases, it is still debated, mainly because of financial issues and unsolved problems of variant interpretation, whether genome sequencing (and to a lesser extent also exome sequencing) of single patients can already be regarded as routine diagnostics. However, it has been shown that the inclusion of parents and additional family members often leads to a substantial increase in the diagnostic yield in exome-wide/genome-wide MPS approaches. In addition, MPS-based RNA sequencing just enters the research and diagnostic scene. Next-generation sequencing increasingly enables the detection of the genetic cause in highly heterogeneous diseases like NMDs in an efficient and affordable way. Gene panel sequencing and family-based exome sequencing have been proven as potent and cost-efficient diagnostic tools. Although clinical validation and interpretation of genome sequencing is still challenging, diagnostic RNA sequencing represents a promising tool to bypass some hurdles of diagnostics using genomic DNA.

  18. Public perceptions of agrifood applications of Genetic modification – A systematic review

    NARCIS (Netherlands)

    Frewer, L.J.; Lans, van der I.A.; Fischer, A.R.H.; Reinders, M.J.; Menozzi, D.; Zhang, X.Y.; Berg, van den I.; Zimmermann, K.L.

    2012-01-01

    An extensive literature relating to public perceptions of genetically modified foods applied to agri-food production has been identified through the process of systematic review. Application of systematic review criteria indicated that 335 papers were of appropriate quality or relevance to be

  19. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2012 - 31 January 2013

    Czech Academy of Sciences Publication Activity Database

    Mendel, Jan; Urbánková, Soňa; Vyskočilová, M.

    2013-01-01

    Roč. 13, č. 3 (2013), s. 546-549 ISSN 1755-098X Institutional support: RVO:68081766 Keywords : genetic database * microsatellite marker loci Subject RIV: EB - Genetics ; Molecular Biol ogy Impact factor: 5.626, year: 2013

  20. Systematic analysis, comparison, and integration of disease based human genetic association data and mouse genetic phenotypic information

    Directory of Open Access Journals (Sweden)

    Wang S Alex

    2010-01-01

    Full Text Available Abstract Background The genetic contributions to human common disorders and mouse genetic models of disease are complex and often overlapping. In common human diseases, unlike classical Mendelian disorders, genetic factors generally have small effect sizes, are multifactorial, and are highly pleiotropic. Likewise, mouse genetic models of disease often have pleiotropic and overlapping phenotypes. Moreover, phenotypic descriptions in the literature in both human and mouse are often poorly characterized and difficult to compare directly. Methods In this report, human genetic association results from the literature are summarized with regard to replication, disease phenotype, and gene specific results; and organized in the context of a systematic disease ontology. Similarly summarized mouse genetic disease models are organized within the Mammalian Phenotype ontology. Human and mouse disease and phenotype based gene sets are identified. These disease gene sets are then compared individually and in large groups through dendrogram analysis and hierarchical clustering analysis. Results Human disease and mouse phenotype gene sets are shown to group into disease and phenotypically relevant groups at both a coarse and fine level based on gene sharing. Conclusion This analysis provides a systematic and global perspective on the genetics of common human disease as compared to itself and in the context of mouse genetic models of disease.

  1. Genetic variants associated with drugs-induced immediate hypersensitivity reactions: a PRISMA-compliant systematic review

    NARCIS (Netherlands)

    Oussalah, A.; Mayorga, C.; Blanca, M.; Barbaud, A.; Nakonechna, A.; Cernadas, J.; Gotua, M.; Brockow, K.; Caubet, J.-C.; Bircher, A.; Atanaskovic, M.; Demoly, P.; K Tanno, L.; Terreehorst, I.; Laguna, J. J.; Romano, A.; Guéant, J.-L.

    2016-01-01

    Drug hypersensitivity includes allergic (AR) and nonallergic reactions (NARs) influenced by genetic predisposition. We performed a systematic review of genetic predictors of IgE-mediated AR and NAR with MEDLINE and PubMed search engine between January 1966 and December 2014. Among 3110 citations,

  2. Wrinkled Peas and White-Eyed Fruit Flies: The Molecular Basis of Two Classical Genetic Traits.

    Science.gov (United States)

    Guilfoile, Patrick

    1997-01-01

    Focuses on bridging the gap between classical and molecular genetics for two traits: wrinkled seeds in garden peas and white eye color in fruit flies. Discusses the molecular details of the underlying basis of these traits. Contains 15 references. (JRH)

  3. Molecular systematics of caeciliid caecilians (Amphibia: Gymnophiona) of the Western Ghats, India.

    Science.gov (United States)

    Gower, David J; San Mauro, Diego; Giri, Varad; Bhatta, Gopalakrishna; Govindappa, Venu; Kotharambath, Ramachandran; Oommen, Oommen V; Fatih, Farrah A; Mackenzie-Dodds, Jacqueline A; Nussbaum, Ronald A; Biju, S D; Shouche, Yogesh S; Wilkinson, Mark

    2011-06-01

    Together, Indian plus Seychelles caeciliid caecilian amphibians (Gymnophiona) constitute approximately 10% of the extant species of this order. A molecular phylogenetic analysis of all but one (or two) nominal species (16, in five genera) is presented based on mitochondrial (12S, 16S, cytb, cox1) and nuclear (RAG1) sequence data. Results strongly support monophyly of both Seychelles and peninsular Indian caeciliids, and their sister-group status. Within the Indian caeciliids, Indotyphlus and Gegeneophis are monophyletic sister genera. The phylogenetic position of Gegeneophis ramaswamii, Gegeneophis seshachari, and Gegeneophis carnosus are not well resolved, but all lie outside a well-supported clade of most northern Western Ghats Gegeneophis (madhavai, mhadeiensis, goaensis, danieli/nadkarnii). Most nominal species of Indian caeciliid are diagnosed by robust haplotype clades, though the systematics of G. carnosus-like forms in northern Kerala and southern Karnataka requires substantial further investigation. For the most part, Indian caeciliid species comprise narrowly distributed, allopatric taxa with low genetic diversity. Much greater geographic genetic diversity exists among populations referred to G. seshachari, such that some populations likely represent undescribed species. This, the first phylogenetic analysis of Indian caeciliids, generally provides additional support for recent increases in described species (eight since 1999), and a framework for ongoing taxonomic revision. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Molecular and genetic basis of X-linked immunodeficiency disorders

    Energy Technology Data Exchange (ETDEWEB)

    Puck, J.M. (National Center for Human Genome Research, Bethesda, MD (United States))

    1994-03-01

    Within a short time interval the specific gene defects causing three X-linked human immunodeficiencies, agammaglobulinemia (XLA), hyper-IgM syndrome (HIGM), and severe combined immunodeficiency (XSCID), have been identified. These represent the first human disease phenotypes associated with each of three gene families already recognized to be important in lymphocyte development and signaling: XLA is caused by mutations of a B cell-specific intracellular tyrosine kinase; HIGM, by mutations in the TNF-related CD40 ligand, through which T cells deliver helper signals by direct contact with B cell CD40; and XSCID, by mutations in the [gamma] chain of the lymphocyte receptor for IL-2. Each patient mutation analyzed to date has been unique, representing both a challenge for genetic diagnosis and management and an important resource for dissecting molecular domains and understanding the physiologic function of the gene products.

  5. Molecular Genetics of Charcot-Marie-Tooth Disease: From Genes to Genomes

    Science.gov (United States)

    Azzedine, H.; Senderek, J.; Rivolta, C.; Chrast, R.

    2012-01-01

    Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders of the peripheral nervous system, mainly characterized by distal muscle weakness and atrophy leading to motor handicap. With an estimated prevalence of 1 in 2,500, this condition is one of the most commonly inherited neurological disorders. Mutations in more than 30 genes affecting glial and/or neuronal functions have been associated with different forms of CMT leading to a substantial improvement in diagnostics of the disease and in the understanding of implicated pathophysiological mechanisms. However, recent data from systematic genetic screening performed in large cohorts of CMT patients indicated that molecular diagnosis could be established only in ∼50–70% of them, suggesting that additional genes are involved in this disease. In addition to providing an overview of genetic and functional data concerning various CMT forms, this review focuses on recent data generated through the use of highly parallel genetic technologies (SNP chips, sequence capture and next-generation DNA sequencing) in CMT families, and the current and future impact of these technologies on gene discovery and diagnostics of CMTs. PMID:23293578

  6. Impact of molecular genetics on congenital adrenal hyperplasia management.

    Science.gov (United States)

    Balsamo, A; Baldazzi, L; Menabò, S; Cicognani, A

    2010-09-01

    Congenital adrenal hyperplasia (CAH) is a family of autosomal recessive disorders caused by mutations in genes encoding the enzymes involved in one of the 5 steps of adrenal steroid synthesis or the electron donor P450 oxidoreductase (POR) enzyme. Steroid 21-hydroxylase deficiency (21-OHD), the principal focus of this review, accounts for about 90-95% of all CAH cases, and its biochemical and clinical severity depends on the underlying CYP21A2 gene disruption. Molecular genetic advancements have been achieved in recent years, and the aim of this review is to attempt to highlight its contribution to the comprehension and management of the disease. When possible, we will try to achieve this goal also by providing some results from our personal experience regarding: some aspects of CYP21A2 gene analysis, with basic genotype/phenotype relationships; its crucial role in both genetic counselling and in prenatal diagnosis and treatment in families at risk for 21-OHD; its help in the comprehension of the severity of the disease in patients diagnosed by neonatal screening and possibly treated before an evident salt-loss crisis or before performing adequate blood sampling; its usefulness in the definition of post ACTH 17-hydroxyprogesterone values, discriminating between non-classic, heterozygote and normal subjects; and finally the contribution of genes other than CYP21A2 whose function or dysfunction could influence 21-hydroxylase activity and modify the presentation or management of the disease.

  7. Lysosomal multienzyme complex: biochemistry, genetics, and molecular pathophysiology.

    Science.gov (United States)

    Pshezhetsky, A V; Ashmarina, M

    2001-01-01

    Lysosomal enzymes sialidase (alpha-neuraminidase), beta-galactosidase, and N-acetylaminogalacto-6-sulfate sulfatase are involved in the catabolism of glycolipids, glycoproteins, and oligosaccharides. Their functional activity in the cell depends on their association in a multienzyme complex with lysosomal carboxypeptidase, cathepsin A. We review the data suggesting that the integrity of the complex plays a crucial role at different stages of biogenesis of lysosomal enzymes, including intracellular sorting and proteolytic processing of their precursors. The complex plays a protective role for all components, extending their half-life in the lysosome from several hours to several days; and for sialidase, the association with cathepsin A is also necessary for the expression of enzymatic activity. The disintegration of the complex due to genetic mutations in its components results in their functional deficiency and causes severe metabolic disorders: sialidosis (mutations in sialidase), GM1-gangliosidosis and Morquio disease type B (mutations in beta-galactosidase), galactosialidosis (mutations in cathepsin A), and Morquio disease type A (mutations in N-acetylaminogalacto-6-sulfate sulfatase). The genetic, biochemical, and direct structural studies described here clarify the molecular pathogenic mechanisms of these disorders and suggest new diagnostic tools.

  8. Basic Concepts in Molecular Biology Related to Genetics and Epigenetics.

    Science.gov (United States)

    Corella, Dolores; Ordovas, Jose M

    2017-09-01

    The observation that "one size does not fit all" for the prevention and treatment of cardiovascular disease, among other diseases, has driven the concept of precision medicine. The goal of precision medicine is to provide the best-targeted interventions tailored to an individual's genome. The human genome is composed of billions of sequence arrangements containing a code that controls how genes are expressed. This code depends on other nonstatic regulators that surround the DNA and constitute the epigenome. Moreover, environmental factors also play an important role in this complex regulation. This review provides a general perspective on the basic concepts of molecular biology related to genetics and epigenetics and a glossary of key terms. Several examples are given of polymorphisms and genetic risk scores related to cardiovascular risk. Likewise, an overview is presented of the main epigenetic regulators, including DNA methylation, methylcytosine-phosphate-guanine-binding proteins, histone modifications, other histone regulations, micro-RNA effects, and additional emerging regulators. One of the greatest challenges is to understand how environmental factors (diet, physical activity, smoking, etc.) could alter the epigenome, resulting in healthy or unhealthy cardiovascular phenotypes. We discuss some gene-environment interactions and provide a methodological overview. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  9. Genetics and molecular biology of haemophilias A and B.

    Science.gov (United States)

    Green, P M; Montandon, A J; Bentley, D R; Giannelli, F

    1991-08-01

    The development of rapid procedures for the characterization of mutations is advancing the knowledge of the molecular biology of the haemophilias and transforming the strategies for the diagnoses required for genetic counselling. In haemophilia B more than 300 mutants have been fully characterized. These comprise complete and partial deletions, rare insertions, and 'point' mutations. The latter may impair transcription (promoter mutations), RNA processing (splicing mutations) and translation (frameshifts and stop codons) or cause single amino acid (aa) changes. Eighty-four residues are involved in the 105 presumed detrimental aa substitutions reported so far and these are usually conserved in the factor IX homologues (factors VII, X and protein C) and/or the factor IX of different mammalian species. There are clear correlations between the mutation and clinical features. In addition mutations causing gross physical or functional loss of coding information appear to predispose to the development of antibodies against therapeutic factor IX. Hotspots of mutations have been identified and are usually associated with CpG sequences. In haemophilia A the size and complexity of the factor VIII gene has hindered the analysis of mutants. Most of the studies published so far have analysed only a small fraction of the essential region of the factor VIII gene and this led to the repeated observation of specific types of mutation. The recent development of a rapid method to analyse RNA splicing and the whole coding region of the factor VIII gene should unblock this situation. With regard to genetic counselling, the direct detection of gene defects has increased the proportion of haemophilia B families that can be helped from 60% to virtually 100% and similar expectations may now be formulated for haemophilia A. In the UK a national database of haemophilia B mutations is being constructed to optimize genetic counselling. This should offer a model for a similar development in

  10. Genética molecular: avanços e problemas Molecular genetics: advances and problems

    Directory of Open Access Journals (Sweden)

    Eloi S. Garcia

    1996-03-01

    Full Text Available Este artigo traz a discussão sobre genética molecular em saúde ao campo da saúde pública. Com a revolução produzida pela chegada da engenharia genética, é importante discutir alguns dos avanços e problemas desta tecnologia para a sociedade. Está na hora de se fazer uma avaliação clara e bem informada acerca do que já se conseguiu e do que ainda podemos conseguir através desta tecnologia. A sociedade precisa compreender as implicações éticas e práticas de uma tecnologia capaz de produzir drogas milagrosas, dagnósticos modernos e a cura de todas as doenças. Alguns pontos particularmente delicados pertinentes às questões sociais ligadas à biologia molecular e ao projeto genoma humano são discutidos.This article is an attempt to draw the discussion on molecular genetics in health into the public health domain. Now that the genetic engineering revolution has arrived, it is important to point out the advances and problems this technology poses for society. It is time for a clear, informed assessment of what we have already achieved and may soon achieve using this technology. Clearly, society needs to understand the ethical and practical implications of a technology which can produce miracle drugs and modern diagnoses and cure virtually every disease. Important points from sensitive social issues raised by molecular biology and the human genome project are discussed.

  11. Teaching Applied Genetics and Molecular Biology to Agriculture Engineers. Application of the European Credit Transfer System

    Science.gov (United States)

    Weiss, J.; Egea-Cortines, M.

    2008-01-01

    We have been teaching applied molecular genetics to engineers and adapted the teaching methodology to the European Credit Transfer System. We teach core principles of genetics that are universal and form the conceptual basis of most molecular technologies. The course then teaches widely used techniques and finally shows how different techniques…

  12. Genetic association studies of obesity in Africa: a systematic review.

    Science.gov (United States)

    Yako, Y Y; Echouffo-Tcheugui, J B; Balti, E V; Matsha, T E; Sobngwi, E; Erasmus, R T; Kengne, A P

    2015-03-01

    Obesity is increasing in Africa, but the underlying genetic background largely remains unknown. We assessed existing evidence on genetic determinants of obesity among populations within Africa. MEDLINE and EMBASE were searched and the bibliographies of retrieved articles were examined. Included studies had to report on the association of a genetic marker with obesity indices and the presence/occurrence of obesity/obesity trait. Data were extracted on study design and characteristics, genetic determinants and effect estimates of associations with obesity indices. According to this data, over 300 polymorphisms in 42 genes have been studied in various population groups within Africa mostly through the candidate gene approach. Polymorphisms in genes such as ACE, ADIPOQ, ADRB2, AGRP, AR, CAPN10, CD36, C7orf31, DRD4, FTO, MC3R, MC4R, SGIP1 and LEP were found to be associated with various measures of obesity. Of the 36 polymorphisms previously validated by genome-wide association studies (GWAS) elsewhere, only FTO and MC4R polymorphisms showed significant associations with obesity in black South Africans, Nigerians and Ghanaians. However, these data are insufficient to establish the true nature of genetic susceptibility to obesity in populations within Africa. There has been recent progress in describing the genetic architecture of obesity among populations within Africa. This effort needs to be sustained via GWAS studies. © 2015 World Obesity.

  13. Molecular toolbox for the identification of unknown genetically modified organisms.

    Science.gov (United States)

    Ruttink, Tom; Demeyer, Rolinde; Van Gulck, Elke; Van Droogenbroeck, Bart; Querci, Maddalena; Taverniers, Isabel; De Loose, Marc

    2010-03-01

    Competent laboratories monitor genetically modified organisms (GMOs) and products derived thereof in the food and feed chain in the framework of labeling and traceability legislation. In addition, screening is performed to detect the unauthorized presence of GMOs including asynchronously authorized GMOs or GMOs that are not officially registered for commercialization (unknown GMOs). Currently, unauthorized or unknown events are detected by screening blind samples for commonly used transgenic elements, such as p35S or t-nos. If (1) positive detection of such screening elements shows the presence of transgenic material and (2) all known GMOs are tested by event-specific methods but are not detected, then the presence of an unknown GMO is inferred. However, such evidence is indirect because it is based on negative observations and inconclusive because the procedure does not identify the causative event per se. In addition, detection of unknown events is hampered in products that also contain known authorized events. Here, we outline alternative approaches for analytical detection and GMO identification and develop new methods to complement the existing routine screening procedure. We developed a fluorescent anchor-polymerase chain reaction (PCR) method for the identification of the sequences flanking the p35S and t-nos screening elements. Thus, anchor-PCR fingerprinting allows the detection of unique discriminative signals per event. In addition, we established a collection of in silico calculated fingerprints of known events to support interpretation of experimentally generated anchor-PCR GM fingerprints of blind samples. Here, we first describe the molecular characterization of a novel GMO, which expresses recombinant human intrinsic factor in Arabidopsis thaliana. Next, we purposefully treated the novel GMO as a blind sample to simulate how the new methods lead to the molecular identification of a novel unknown event without prior knowledge of its transgene

  14. Maximizing genetic differentiation in core collections by PCA-based clustering of molecular marker data

    NARCIS (Netherlands)

    Heerwaarden, van J.; Odong, T.L.; Eeuwijk, van F.A.

    2013-01-01

    Developing genetically diverse core sets is key to the effective management and use of crop genetic resources. Core selection increasingly uses molecular marker-based dissimilarity and clustering methods, under the implicit assumption that markers and genes of interest are genetically correlated. In

  15. Improved Student Linkage of Mendelian and Molecular Genetic Concepts through a Yeast-Based Laboratory Module

    Science.gov (United States)

    Wolyniak, Michael J.

    2013-01-01

    A study of modern genetics requires students to successfully unite the principles of Mendelian genetics with the functions of DNA. Traditional means of teaching genetics are often successful in teaching Mendelian and molecular ideas but not in allowing students to see how the two subjects relate. The laboratory module presented here attempts to…

  16. SNPs ANALYSIS AS A TOOL IN MOLECULAR GENETICS DIAGNOSTICS

    Directory of Open Access Journals (Sweden)

    Dewi Rusnita

    2015-05-01

    Full Text Available AbstrakSingle Nucleotide Polymorphism (SNP merupakan variasi genetik yang ditemukan pada lebih dari 1% populasi. Haplotipe, yang merupakan sekelompok SNP atau alel dalam satu kromosom, dapat di turunkan ke generasi selanjutnya dan dapat digunakan untuk menelusuri gen penyebab penyakit (marker genetik. Artikel ini bertujuan menjelaskan aplikasi analisis SNP dalam diagnosis beberapa sindrom yang disebabkan gangguan genetik. Berdasarkan laporan studi terdahulu, sindrom yang disebabkan oleh UPD (uniparental disomy maupun penyakit autosomal resesif yang muncul sebagai akibat perkawinan sedarah dapat dideteksi dengan SNP array melalui analisis block of homozygosity dalam kromosom. Kelebihan lain SNP array adalah kemampuannya dalam mendeteksi mosaicism level rendah yang tidak terdeteksi dengan pemeriksaan sitogenetik konvensional. Bahkan saat ini, SNP array sedang diujicobakan dalam IVF untuk mendapatkan bayi yang sehat. Hal ini dapat dilakukan dengan mendeteksi ada atau tidaknya gen tunggal penyebab penyakit pada embrio hasil bayi tabung sebelum embrio ditanamkan ke uterus. Analisis SNP dengan SNP array mempunyai banyak kelebihan dibanding metode pemeriksaan SNP lainnya dan diharapkan dapat digunakan secara luas dalam bidang diagnostik molekuler genetik di masa mendatang.AbstractSingle Nucleotide Polymorphism (SNP is a genetic variant with a frequency of >1% of a large population. Haplotypes, a combination of a set of SNPs/alleles that appear as “associated blocks” on one chromosome, tend to be inherited together to the next offspring and can be used as genetic markers to trace particular diseases. This article aimed at explaining of SNP analysis application in diagnosis of genetic-disorder related syndrome. Previous studies showed that syndromes caused by UPD or autosomal recessive disorder as a result of consanguineous marriage can be identified by SNP array through analysing block of homozygosity region in a chromosome. Another advantage of SNP

  17. MOLECULAR GENETIC MARKERS AND METHODS OF THEIR IDENTIFICATION IN MODERN FISH-FARMING

    Directory of Open Access Journals (Sweden)

    I. Hrytsyniak

    2014-03-01

    Full Text Available Purpose. The application of molecular genetic markers has been widely used in modern experimental fish-farming in recent years. This methodology is currently presented by a differentiated approach with individual mechanisms and clearly defined possibilities. Numerous publications in the scientific literature that are dedicated to molecular genetic markers for the most part offer purely practical data. Thus, the synthesis and analysis of existing information on the general principles of action and the limits of the main methods of using molecular genetic markers is an actual problem. In particular, such a description will make it possible to plan more effectively the experiment and to obtain the desired results with high reliability. Findings. The main types of variable parts of DNA that can be used as molecular genetic markers in determining the level of stock hybridization, conducting genetic inventory of population and solving other problems in modern fish-farming are described in this paper. Also, the article provides an overview of principal modern methods that can be used to identify molecular genetic markers. Originality. This work is a generalization of modern ideas about the mechanisms of experiments with molecular genetic markers in fish-farming. Information is provided in the form of consistent presentation of the principles and purpose of each method, as well as significant advances during their practical application. Practical value. The proposed review of classic and modern literature data on molecular genetic markers can be used for planning, modernization and correction of research activity in modern fish-farming.

  18. Genetic, functional and molecular features of glucocorticoid receptor binding.

    Directory of Open Access Journals (Sweden)

    Francesca Luca

    Full Text Available Glucocorticoids (GCs are key mediators of stress response and are widely used as pharmacological agents to treat immune diseases, such as asthma and inflammatory bowel disease, and certain types of cancer. GCs act mainly by activating the GC receptor (GR, which interacts with other transcription factors to regulate gene expression. Here, we combined different functional genomics approaches to gain molecular insights into the mechanisms of action of GC. By profiling the transcriptional response to GC over time in 4 Yoruba (YRI and 4 Tuscans (TSI lymphoblastoid cell lines (LCLs, we suggest that the transcriptional response to GC is variable not only in time, but also in direction (positive or negative depending on the presence of specific interacting transcription factors. Accordingly, when we performed ChIP-seq for GR and NF-κB in two YRI LCLs treated with GC or with vehicle control, we observed that features of GR binding sites differ for up- and down-regulated genes. Finally, we show that eQTLs that affect expression patterns only in the presence of GC are 1.9-fold more likely to occur in GR binding sites, compared to eQTLs that affect expression only in its absence. Our results indicate that genetic variation at GR and interacting transcription factors binding sites influences variability in gene expression, and attest to the power of combining different functional genomic approaches.

  19. [Recent advances in molecular genetics of GM2 gangliosidosis].

    Science.gov (United States)

    Wakamatsu, N

    1995-12-01

    Recent advances in molecular genetics of GM2 gangliosidosis are reviewed. GM2 gangliosidosis is an autosomal recessive, neurodegenerative disease caused by a deficiency of beta-hexosaminidase (Hex, EC 3.2.1.52) A activity, resulting in accumulation of GM2 ganglioside in the lysosomes of neuronal cells. There are two catalytically active forms of this enzyme: Hex A, composed of one alpha and one beta subunits. Three forms of this disease, Tay-Sachs disease, Sandhoff disease, and GM2 activator deficiency, have been recognized according to whether the defect involves the alpha subunit, beta subunit, or GM2 activator protein, respectively. A number of gene abnormalities responsible for the disease have been identified and mutations specific for phenotypes and racial backgrounds are summarized. Recently, the murine models of human Tay-Sachs disease and Sandhoff disease have been produced. With the finding of dramatically clinical phenotypes in these mice, these models could be useful for research on the pathogenesis or therapy of these diseases.

  20. The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism

    Science.gov (United States)

    Bianco, Suzy D. C.; Kaiser, Ursula B.

    2010-01-01

    Idiopathic hypogonadotropic hypogonadism (IHH) has an incidence of 1–10 cases per 100,000 births. About 60% of patients with IHH present with associated anosmia, also known as Kallmann syndrome, characterized by total or partial loss of olfaction. Many of the gene mutations associated with Kallmann syndrome have been mapped to KAL1 or FGFR1. However, together, these mutations account for only about 15% of Kallmann syndrome cases. More recently, mutations in PROK2 and PROKR2 have been linked to the syndrome and may account for an additional 5–10% of cases. The remaining 40% of patients with IHH have a normal sense of smell. Prior to 2003, the only gene linked to normosmic IHH was the gonadotropin-releasing hormone receptor gene. However, mutations in this receptor are believed to account for only 10% of cases. Subsequently, mutations in KISS1R, TAC3 and TACR3 were identified as causes of normosmic IHH. Certain genes, including PROK2 and FGFR1, are associated with both anosmic and normosmic IHH. Despite recent advances in the field, the genetic causes of the majority of cases of IHH remain unknown. This Review discusses genes associated with hypogonadotropic disorders and the molecular mechanisms by which mutations in these genes may result in IHH. PMID:19707180

  1. Molecular genetics of human primary microcephaly: an overview

    Science.gov (United States)

    2015-01-01

    Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental disorder that is characterised by microcephaly present at birth and non-progressive mental retardation. Microcephaly is the outcome of a smaller but architecturally normal brain; the cerebral cortex exhibits a significant decrease in size. MCPH is a neurogenic mitotic disorder, though affected patients demonstrate normal neuronal migration, neuronal apoptosis and neural function. Twelve MCPH loci (MCPH1-MCPH12) have been mapped to date from various populations around the world and contain the following genes: Microcephalin, WDR62, CDK5RAP2, CASC5, ASPM, CENPJ, STIL, CEP135, CEP152, ZNF335, PHC1 and CDK6. It is predicted that MCPH gene mutations may lead to the disease phenotype due to a disturbed mitotic spindle orientation, premature chromosomal condensation, signalling response as a result of damaged DNA, microtubule dynamics, transcriptional control or a few other hidden centrosomal mechanisms that can regulate the number of neurons produced by neuronal precursor cells. Additional findings have further elucidated the microcephaly aetiology and pathophysiology, which has informed the clinical management of families suffering from MCPH. The provision of molecular diagnosis and genetic counselling may help to decrease the frequency of this disorder. PMID:25951892

  2. Molecular genetic analysis of tumor suppressor genes in ovarian cancer

    International Nuclear Information System (INIS)

    Lee, Je Ho; Park, Sang Yun

    1992-04-01

    To examine the loci of putative tumor suppressor genes in ovarian cancers, we performed the molecular genetic analysis with fresh human ovarian cancers and observed the following data. Frequent allelic losses were observed on chromosomes 4p(42%), 6p(50%), 7p(43%), 8q(31%), 12p(38%), 12q(33%), 16p(33%), 16q(37%), and 19p(34%) in addition to the previously reported 6q, 11p, and 17p in ovarian caroinomas. we have used an additional probe, TCP10 to narrow down the deleted region on chromosome 6q. TCP10 was reported to be mapped to 6q 25-27. Allelic loss was found to be 40% in epithelial ovarian caroinomas. This finding suggests that chromosome 6q 24-27 is one of putative region haboring the tumor suppressor gene of epithelial ovarian cancer (particularly serous type). To examine the association between FAL(Fractional Allelic Loss) and histopathological features, the FAL value on each phenotypically different tumor was calculated as the ratio of the number of allelic losses versus the number of cases informative in each chromosomal arm. The average FALs for each phenotypically different tumor were: serous cystoadenocarcinomas. FAL=0.31 : mucinous 0.12 : and clear cell carcinoma. FAL=0.20. (Author)

  3. Genetic analysis of CHARGE syndrome identifies overlapping molecular biology.

    Science.gov (United States)

    Moccia, Amanda; Srivastava, Anshika; Skidmore, Jennifer M; Bernat, John A; Wheeler, Marsha; Chong, Jessica X; Nickerson, Deborah; Bamshad, Michael; Hefner, Margaret A; Martin, Donna M; Bielas, Stephanie L

    2018-01-04

    PurposeCHARGE syndrome is an autosomal-dominant, multiple congenital anomaly condition characterized by vision and hearing loss, congenital heart disease, and malformations of craniofacial and other structures. Pathogenic variants in CHD7, encoding adenosine triphosphate-dependent chromodomain helicase DNA binding protein 7, are present in the majority of affected individuals. However, no causal variant can be found in 5-30% (depending on the cohort) of individuals with a clinical diagnosis of CHARGE syndrome.MethodsWe performed whole-exome sequencing (WES) on 28 families from which at least one individual presented with features highly suggestive of CHARGE syndrome.ResultsPathogenic variants in CHD7 were present in 15 of 28 individuals (53.6%), whereas 4 (14.3%) individuals had pathogenic variants in other genes (RERE, KMT2D, EP300, or PUF60). A variant of uncertain clinical significance in KDM6A was identified in one (3.5%) individual. The remaining eight (28.6%) individuals were not found to have pathogenic variants by WES.ConclusionThese results demonstrate that the phenotypic features of CHARGE syndrome overlap with multiple other rare single-gene syndromes. Additionally, they implicate a shared molecular pathology that disrupts epigenetic regulation of multiple-organ development.GENETICS in MEDICINE advance online publication, 4 January 2018; doi:10.1038/gim.2017.233.

  4. [Molecular, genetic and physiological analysis of photoinhibition and photosynthetic

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    A major goal of this project is to use a combined molecular genetic, biochemical and physiological approach to understand the relationship between photosynthetic performance and the structure of the multifunctional D1 reaction center protein of Photosystem II encoded by the chloroplast psbA gene. Relative to other chloroplast proteins, turover of D1 is rapid and highly light dependent and de novo synthesis of D1 is required for a plant's recovery from short term exposure to irradiances which induce photoinhibitory damage. These observations have led to models for a damage/repair cycle of PSII involving the targeted degradation and replacement of photodamaged D1. To investigate the effects of perturbing the D1 cycle on photosynthesis and autotrophic growth under high and low irradiance, we have examined the consequences of site-specific mutations of the psbA and 16S rRNA genes affecting synthesis, maturation and function/stability of the D1 protein introduced into the chloroplast genome of wildtype strain of the green alga Chlamydomonas reinhardtii using biolistic transformation.

  5. Molecular Genetics of Type 1 Glycogen Storage Diseases.

    Science.gov (United States)

    Yang Chou J; Mansfield

    1999-04-01

    Glycogen storage disease type 1 (GSD-1), also known as von Gierke disease, is caused by a deficiency in the activity of the enzyme glucose-6-phosphatase (G6Pase). It is an autosomal recessive disorder characterized by hypoglycemia, hepatomegaly, kidney enlargement, growth retardation, lactic acidemia, hyperlipidemia and hyperuricemia. The disease presents with both clinical and biochemical heterogeneity consistent with the existence of two major subgroups, GSD-1a and GSD-1b, which have been confirmed at the molecular genetic level. GSD-1a, the most prevalent form, is caused by mutations in the G6Pase gene that abolish or greatly reduce enzymatic activity. The gene maps to chromosome 17q21 and encodes a microsomal transmembrane protein. Animal models of GSD-1a exist and are being exploited to delineate the disease more precisely. It has been proposed that GSD-1b is caused by a defect in the microsomal glucose-6-phosphate transporter. The gene responsible for GSD-1b has been mapped to chromosome 11q23 and a cDNA encoding a microsomal transmembrane protein has been identified. The function of this putative GSD-1b protein remains to be determined. These recent developments, along with newly characterized animal models of GSD-1a, are increasing our understanding of the interrelationship between the components of the G6Pase complex and type 1 glycogen storage diseases.

  6. Is There a Genetic Predisposition to Frozen Shoulder?: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Prodromidis, Apostolos D; Charalambous, Charalambos P

    2016-02-23

    Frozen shoulder is a common disorder that leads to substantial functional loss for patients by impairing activities of daily living. It also adversely affects patients and society by impairing the ability to work. Its pathogenesis is not fully understood. The aim of the present study was to perform a systematic review and meta-analysis to assess the evidence suggesting a genetic link to frozen shoulder. A literature search of MEDLINE, EMBASE, and CINAHL databases using relevant keywords revealed 5506 studies. After appropriate screening of titles, abstracts, and full studies, seven studies were analyzed. Three studies investigated rates of frozen shoulder among relatives. One study (n = 1828 twin pairs) showed an 11.6% prevalence in twin pairs and demonstrated a heritability of 42% for frozen shoulder after adjusting for age. A second study (n = 273) showed that 20% of patients with frozen shoulder had a positive family history involving a first-degree relative. The relative risk of frozen shoulder was 4:1 when all patients with frozen shoulder were compared with a control population. A third study (n = 87) showed that 29% of patients with frozen shoulder had a first-degree relative with frozen shoulder. Two studies evaluated racial predilection for frozen shoulder. One study (n = 50) reported a substantially higher number of white patients (76%) with frozen shoulder than black patients (24%). A second study (n = 87) showed that being born or having parents or grandparents born in the British Isles were risk factors for frozen shoulder. Four immunological studies investigated human leukocyte antigen (HLA)-B27 as a risk factor for frozen shoulder. Meta-analysis of two of these studies with clearly defined controls showed significantly higher rates of HLA-B27 positivity in patients with frozen shoulder as compared with controls (p genetic predisposition to frozen shoulder. However, as there is a lack of unbiased genetic approaches, there is an opportunity for genome

  7. Genetic networks inducing invasive growth in Saccharomyces cerevisiae identified through systematic genome-wide overexpression.

    Science.gov (United States)

    Shively, Christian A; Eckwahl, Matthew J; Dobry, Craig J; Mellacheruvu, Dattatreya; Nesvizhskii, Alexey; Kumar, Anuj

    2013-04-01

    The budding yeast Saccharomyces cerevisiae can respond to nutritional and environmental stress by implementing a morphogenetic program wherein cells elongate and interconnect, forming pseudohyphal filaments. This growth transition has been studied extensively as a model signaling system with similarity to processes of hyphal development that are linked with virulence in related fungal pathogens. Classic studies have identified core pseudohyphal growth signaling modules in yeast; however, the scope of regulatory networks that control yeast filamentation is broad and incompletely defined. Here, we address the genetic basis of yeast pseudohyphal growth by implementing a systematic analysis of 4909 genes for overexpression phenotypes in a filamentous strain of S. cerevisiae. Our results identify 551 genes conferring exaggerated invasive growth upon overexpression under normal vegetative growth conditions. This cohort includes 79 genes lacking previous phenotypic characterization. Pathway enrichment analysis of the gene set identifies networks mediating mitogen-activated protein kinase (MAPK) signaling and cell cycle progression. In particular, overexpression screening suggests that nuclear export of the osmoresponsive MAPK Hog1p may enhance pseudohyphal growth. The function of nuclear Hog1p is unclear from previous studies, but our analysis using a nuclear-depleted form of Hog1p is consistent with a role for nuclear Hog1p in repressing pseudohyphal growth. Through epistasis and deletion studies, we also identified genetic relationships with the G2 cyclin Clb2p and phenotypes in filamentation induced by S-phase arrest. In sum, this work presents a unique and informative resource toward understanding the breadth of genes and pathways that collectively constitute the molecular basis of filamentation.

  8. Genetic dissimilarity among sweet potato genotypes using morphological and molecular descriptors

    Directory of Open Access Journals (Sweden)

    Elisângela Knoblauch Viega de Andrade

    2017-08-01

    Full Text Available This study aimed to evaluate the genetic dissimilarity among sweet potato genotypes using morphological and molecular descriptors. The experiment was conducted in the Olericulture Sector at Federal University of Jequitinhonha and Mucuri Valleys (UFVJM and evaluated 60 sweet potato genotypes. For morphological characterization, 24 descriptors were used. For molecular characterization, 11 microsatellite primers specific for sweet potatoes were used, obtaining 210 polymorphic bands. Morphological and molecular diversity was obtained by dissimilarity matrices based on the coefficient of simple matching and the Jaccard index for morphological and molecular data, respectively. From these matrices, dendrograms were built. There is a large amount of genetic variability among sweet potato genotypes of the germplasm bank at UFVJM based on morphological and molecular characterizations. There was no duplicate suspicion or strong association between morphological and molecular analyses. Divergent accessions have been identified by molecular and morphological analyses, which can be used as parents in breeding programmes to produce progenies with high genetic variability.

  9. [Turner syndrome and genetic polymorphism: a systematic review].

    Science.gov (United States)

    Trovó de Marqui, Alessandra Bernadete

    2015-01-01

    To present the main results of the literature on genetic polymorphisms in Turner Syndrome and their association with the clinical signs and the etiology of this chromosomal disorder. The review was conducted in the PubMed database without any time limit, using the terms Turner syndrome and genetic polymorphism. A total of 116 articles were found, and based on the established inclusion and exclusion criteria 17 were selected for the review. The polymorphisms investigated in patients with Turner Syndrome were associated with growth deficit, causing short stature, low bone mineral density, autoimmunity and cardiac abnormalities, which are frequently found in patients with Turner Syndrome. The role of single nucleotide polymorphisms (SNPs) in the etiology of Turner syndrome, i.e., in chromosomal nondisjunction, was also confirmed. Genetic polymorphisms appear to be associated with Turner Syndrome. However, in view of the small number of published studies and their contradictory findings, further studies in different populations are needed in order to clarify the role of genetic variants in the clinical signs and etiology of the Turner Syndrome. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  10. Molecular Systematics of the Fishing Bat Myotis (Pizonyx) vivesi

    OpenAIRE

    Stadelmann, B.; Herrera, L. G.; Arroyo-Cabrales, J.; Flores-Martínez, J. J.; May, B. P.; Ruedi, M.

    2017-01-01

    Phylogenetic reconstructions based on molecular data have shown recurrent morphological convergence during evolution of the species-rich genus Myotis. Species or groups of species with similar feeding strategies have evolved independently several times to produce remarkable similarities in external morphology. In this context, we investigated the contentious phylogenetic position of 1 of the 2 piscivorous bat species, Myotis vivesi, which was not included in previous molecular studies. This b...

  11. Organic Metals. Systematic Molecular Modifications of Hexamethylenetetraheterofulvalene Donors

    DEFF Research Database (Denmark)

    Engler, E. M.; Patel, V. V.; Andersen, Jan Rud

    1978-01-01

    Two synthetic approaches for modifying hexamethylenetetraheterofulvalene donors are described for the purpose of perturbing in a systematic way the interesting solid state properties of the TCNQ salts of the parent systems. The first approach consists of a steric modification in which a methyl gr...

  12. Genetic Factors in Tendon Injury: A Systematic Review of the Literature.

    Science.gov (United States)

    Vaughn, Natalie H; Stepanyan, Hayk; Gallo, Robert A; Dhawan, Aman

    2017-08-01

    Tendon injury such as tendinopathy or rupture is common and has multiple etiologies, including both intrinsic and extrinsic factors. The genetic influence on susceptibility to tendon injury is not well understood. To analyze the published literature regarding genetic factors associated with tendon injury. Systematic review; Level of evidence, 3. A systematic review of published literature was performed in concordance with the Preferred Reporting Items of Systematic Reviews and Meta-analysis (PRISMA) guidelines to identify current evidence for genetic predisposition to tendon injury. PubMed, Ovid, and ScienceDirect databases were searched. Studies were included for review if they specifically addressed genetic factors and tendon injuries in humans. Reviews, animal studies, or studies evaluating the influence of posttranscription factors and modifications (eg, proteins) were excluded. Overall, 460 studies were available for initial review. After application of inclusion and exclusion criteria, 11 articles were ultimately included for qualitative synthesis. Upon screening of references of these 11 articles, an additional 15 studies were included in the final review, for a total of 26 studies. The genetic factors with the strongest evidence of association with tendon injury were those involving type V collagen A1, tenascin-C, matrix metalloproteinase-3, and estrogen-related receptor beta. The published literature is limited to relatively homogenous populations, with only level 3 and level 4 data. Additional research is needed to make further conclusions about the genetic factors involved in tendon injury.

  13. Hamartomatous polyps - a clinical and molecular genetic study.

    Science.gov (United States)

    Jelsig, Anne Marie

    2016-08-01

    Hamartomatous polyps (HPs) in the gastrointestinal (GI) tract are rare compared to other types of GI polyps, yet they are the most common type of polyp in children. The symptoms are usually rectal bleeding, abdominal pain, obstipation, anaemia, and/or small bowel obstruction. The polyps are typically removed concurrently with endoscopy when located in the colon, rectum, or stomach, whereas polyps in the small bowel are removed during push-enteroscopy, device-assisted enteroscopy, or by surgery. HPs can be classified as juvenile polyps or Peutz-Jeghers polyps based on their histopathological appearance. Patients with one or a few juvenile polyps are usually not offered clinical follow-up as the polyp(s) are considered not to harbour any malignant potential. Nevertheless, it is important to note that juvenile polyps and HPs are also found in patients with hereditary hamartomatous polyposis syndromes (HPS). Patients with HPS have an increased risk of cancer, recurrences of polyps, and extraintestinal complications. The syndromes are important to diagnose, as patients should be offered surveillance from childhood or early adolescence. The syndromes include juvenile polyposis syndrome, Peutz-Jeghers syndrome, and the PTEN hamartoma tumour syndrome. Currently, the HPS diagnoses are based on clinical criteria and are often assisted with genetic testing as candidate genes have been described for each syndrome. This thesis is based on six scientific papers. The overall aim of the studies was to expand the knowledge on clinical course and molecular genetics in patients with HPs and HPS, and to investigate research participants' attitude towards the results of extensive genetic testing.   Paper I: In the first paper we investigated the occurrence, anatomic distribution, and other demographics of juvenile polyps in the colon and rectum in Denmark in 1995-2014. Based on the Danish Pathology Data Bank we found that 1772 patients had 2108 JPs examined in the period, and we

  14. Neuroblastoma: morphological pattern, molecular genetic features, and prognostic factors

    Directory of Open Access Journals (Sweden)

    A. M. Stroganova

    2016-01-01

    Full Text Available Neuroblastoma, the most common extracranial tumor of childhood, arises from the developing neurons of the sympathetic nervous system (neural cress stem cells and has various biological and clinical characteristics. The mean age at disease onset is 18 months. Neuroblastoma has a number of unique characteristics: a capacity for spontaneous regression in babies younger than 12 months even in the presence of distant metastases, for differentiation (maturation into ganglioneuroma in infants after the first year of life, and for swift aggressive development and rapid metastasis. There are 2 clinical classifications of neuroblastoma: the International neuroblastoma staging system that is based on surgical results and the International Neuroblastoma Risk Group Staging System. One of the fundamentally important problems for the clinical picture of neuroblastoma is difficulties making its prognosis. Along with clinical parameters (a patient’s age, tumor extent and site, some histological, molecular biochemical (ploidy and genetic (chromosomal aberrations, MYCN gene status, deletion of the locus 1p36 and 11q, the longer arm of chromosome 17, etc. characteristics of tumor cells are of considerable promise. MYCN gene amplification is observed in 20–30 % of primary neuroblastomas and it is one of the major indicators of disease aggressiveness, early chemotherapy resistance, and a poor prognosis. There are 2 types of MYCN gene amplification: extrachromosomal (double acentric chromosomes and intrachromosomal (homogenically painted regions. Examination of double acentric chromosomes revealed an interesting fact that it may be eliminated (removed from the nucleus through the formation of micronuclei. MYCN oncogene amplification is accompanied frequently by 1p36 locus deletion and longer 17q arm and less frequently by 11q23 deletion; these are poor prognostic factors for the disease. The paper considers in detail the specific, unique characteristics of the

  15. Dengue in Latin America: Systematic Review of Molecular Epidemiological Trends

    Science.gov (United States)

    Ramos-Castañeda, José; Barreto dos Santos, Flavia; Martínez-Vega, Ruth; Galvão de Araujo, Josélio Maria; Joint, Graham; Sarti, Elsa

    2017-01-01

    Dengue, the predominant arthropod-borne viral disease affecting humans, is caused by one of four distinct serotypes (DENV-1, -2, -3 or -4). A literature analysis and review was undertaken to describe the molecular epidemiological trends in dengue disease and the knowledge generated in specific molecular topics in Latin America, including the Caribbean islands, from 2000 to 2013 in the context of regional trends in order to identify gaps in molecular epidemiological knowledge and future research needs. Searches of literature published between 1 January 2000 and 30 November 2013 were conducted using specific search strategies for each electronic database that was reviewed. A total of 396 relevant citations were identified, 57 of which fulfilled the inclusion criteria. All four dengue virus serotypes were present and co-circulated in many countries over the review period (with the predominance of individual serotypes varying by country and year). The number of countries in which more than one serotype circulated steadily increased during the period under review. Molecular epidemiology data were found for Argentina, Bolivia, Brazil, the Caribbean region, Colombia, Ecuador, Mexico and Central America, Paraguay, Peru and Venezuela. Distinct lineages with different dynamics were found in each country, with co-existence, extinction and replacement of lineages occurring over the review period. Despite some gaps in the literature limiting the possibility for comparison, our review has described the molecular epidemiological trends of dengue infection. However, several gaps in molecular epidemiological information across Latin America and the Caribbean were identified that provide avenues for future research; in particular, sequence determination of the dengue virus genome is important for more precise phylogenetic classification and correlation with clinical outcome and disease severity. PMID:28068335

  16. Genetic discrimination and life insurance: a systematic review of the evidence.

    Science.gov (United States)

    Joly, Yann; Ngueng Feze, Ida; Simard, Jacques

    2013-01-31

    Since the late 1980s, genetic discrimination has remained one of the major concerns associated with genetic research and clinical genetics. Europe has adopted a plethora of laws and policies, both at the regional and national levels, to prevent insurers from having access to genetic information for underwriting. Legislators from the United States and the United Kingdom have also felt compelled to adopt protective measures specifically addressing genetics and insurance. But does the available evidence really confirm the popular apprehension about genetic discrimination and the subsequent genetic exceptionalism? This paper presents the results of a systematic, critical review of over 20 years of genetic discrimination studies in the context of life insurance. The available data clearly document the existence of individual cases of genetic discrimination. The significance of this initial finding is, however, greatly diminished by four observations. First, the methodology used in most of the studies is not sufficiently robust to clearly establish either the prevalence or the impact of discriminatory practices. Second, the current body of evidence was mostly developed around a small number of 'classic' genetic conditions. Third, the heterogeneity and small scope of most of the studies prevents formal statistical analysis of the aggregate results. Fourth, the small number of reported genetic discrimination cases in some studies could indicate that these incidents took place due to occasional errors, rather than the voluntary or planned choice, of the insurers. Important methodological limitations and inconsistencies among the studies considered make it extremely difficult, at the moment, to justify policy action taken on the basis of evidence alone. Nonetheless, other empirical and theoretical factors have emerged (for example, the prevalence and impact of the fear of genetic discrimination among patients and research participants, the (un)importance of genetic

  17. Recommendations for reporting results of diagnostic genetic testing (biochemical, cytogenetic and molecular genetic)

    NARCIS (Netherlands)

    Claustres, Mireille; Kozich, Viktor; Dequeker, Els; Fowler, Brain; Hehir-Kwa, Jayne Y.; Miller, Konstantin; Oosterwijk, Cor; Peterlin, Borut; van Ravenswaaij-Arts, Conny; Zimmermann, Uwe; Zuffardi, Orsetta; Hastings, Ros J.; Barton, David E.

    Genetic test results can have considerable importance for patients, their parents and more remote family members. Clinical therapy and surveillance, reproductive decisions and genetic diagnostics in family members, including prenatal diagnosis, are based on these results. The genetic test report

  18. Preimplantation genetic screening: a systematic review and meta-analysis of RCTs

    NARCIS (Netherlands)

    Mastenbroek, S.; Twisk, M.; van der Veen, F.; Repping, S.

    2011-01-01

    Preimplantation genetic screening (PGS) has increasingly been used in the past decade. Here we present a systematic review and meta-analysis of RCTs on the effect of PGS on the probability of live birth after IVF. PubMed and trial registers were searched for RCTs on PGS. Trials were assessed

  19. Host genetics and outcome in meningococcal disease: a systematic review and meta-analysis

    NARCIS (Netherlands)

    Brouwer, Matthijs C.; Read, Robert C.; van de Beek, Diederik

    2010-01-01

    Various genes regulate the intensity of the inflammatory and coagulation response to infection and therefore might determine the severity and outcome of meningococcal disease. We systematically reviewed the published work for case control studies on the influence of host genetics on severity and

  20. Panel 4: Recent advances in otitis media in molecular biology, biochemistry, genetics, and animal models.

    Science.gov (United States)

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F; Bakaletz, Lauren O; Brown, Steve D; Cheeseman, Michael T; Juhn, Steven K; Jung, Timothy T K; Lim, David J; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J Christopher

    2013-04-01

    Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications.

  1. Molecular genetic contributions to socioeconomic status and intelligence.

    Science.gov (United States)

    Marioni, Riccardo E; Davies, Gail; Hayward, Caroline; Liewald, Dave; Kerr, Shona M; Campbell, Archie; Luciano, Michelle; Smith, Blair H; Padmanabhan, Sandosh; Hocking, Lynne J; Hastie, Nicholas D; Wright, Alan F; Porteous, David J; Visscher, Peter M; Deary, Ian J

    2014-05-01

    Education, socioeconomic status, and intelligence are commonly used as predictors of health outcomes, social environment, and mortality. Education and socioeconomic status are typically viewed as environmental variables although both correlate with intelligence, which has a substantial genetic basis. Using data from 6815 unrelated subjects from the Generation Scotland study, we examined the genetic contributions to these variables and their genetic correlations. Subjects underwent genome-wide testing for common single nucleotide polymorphisms (SNPs). DNA-derived heritability estimates and genetic correlations were calculated using the 'Genome-wide Complex Trait Analyses' (GCTA) procedures. 21% of the variation in education, 18% of the variation in socioeconomic status, and 29% of the variation in general cognitive ability was explained by variation in common SNPs (SEs ~ 5%). The SNP-based genetic correlations of education and socioeconomic status with general intelligence were 0.95 (SE 0.13) and 0.26 (0.16), respectively. There are genetic contributions to intelligence and education with near-complete overlap between common additive SNP effects on these traits (genetic correlation ~ 1). Genetic influences on socioeconomic status are also associated with the genetic foundations of intelligence. The results are also compatible with substantial environmental contributions to socioeconomic status.

  2. Sequencing cDNAs: An Introduction to DNA Sequence Analysis in the Undergraduate Molecular Genetics Course.

    Science.gov (United States)

    Galewsky, Samuel

    2000-01-01

    Introduces a series of molecular genetics laboratories where students pick a single colony from a Drosophila melanogester embryo cDNA library and purify the plasmid, then analyze the insert through restriction digests and gel electrophoresis. (Author/YDS)

  3. Monitoring standards for molecular genetic testing in the United Kingdom, the Netherlands, and Ireland.

    NARCIS (Netherlands)

    Ramsden, S.C.; Deans, Z.; Robinson, D.O.; Mountford, R.; Sistermans, E.A.; Grody, W.W.; McQuaid, S.; Patton, S.J.; Stenhouse, S.A.

    2006-01-01

    Molecular genetic techniques have entered many areas of clinical practice. Public expectations from this technology are understandably high. To maintain confidence in this technology, laboratories must implement the highest standards of quality assurance (QA). External quality assessment (EQA) is

  4. A molecular-genetic approach to studying source-sink interactions in Arabidopsis thalian. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, S. I.

    2000-06-01

    This is a final report describing the results of the research funded by the DOE Energy Biosciences Program grant entitled ''A Molecular-Genetic Approach to Studying Source-Sink Interactions in Arabidiopsis thaliana''.

  5. Genetic and molecular markers of the Queensland fruit fly, Bactrocera tryoni.

    Science.gov (United States)

    Zhao, J T; Frommer, M; Sved, J A; Gillies, C B

    2003-01-01

    Twenty-six microsatellite markers, along with two restriction fragment length polymorphism (RFLP) markers and three morphological markers, have been mapped to five linkage groups, corresponding to the five autosomes of the Queensland fruit fly, Bactrocera tryoni. All these molecular and genetic markers were genotyped in three-generation pedigrees. Eight molecular markers were also localized to the salivary gland polytene chromosomes by in situ hybridization. This provides a substantial starting point for an integrated genetic and physical map of B. tryoni.

  6. Molecular and Population Genetics Tools for Animal Resources Conservation: A Brief Overview

    Directory of Open Access Journals (Sweden)

    Claudia Terezia Socol

    2015-05-01

    Full Text Available Advances in animal genome data and in genetic analysis, next to the increasing use of artificial reproductive technology resulted in progress into the animal sciences area, transposing the applied technologies into the omics field. This paper provides a brief overview related to some aspects of the population genetics characterization, as well as on the animal population genetic improvement and on the main molecular tools available for farm animals, highlighting at the same time the perspectives and priorities in terms of the advanced genetic methods, that can be considered for farm animal genetic resources (FAnGR breeding, improvement and conservation programmes in Romania.

  7. Genetic diversity and molecular discrimination of wild tea plants from ...

    African Journals Online (AJOL)

    To efficiently assess and discriminate wild tea germplasms, inter-simple sequence repeats (ISSR) were used to determine genetic relationships among 40 wild tea plants. A total of 275 bands were generated with 15 ISSR primers, of which 274 (99.6%) were polymorphic. The mean genetic similarity coefficient, the mean ...

  8. Molecular characterization and assessment of genetic diversity of ...

    African Journals Online (AJOL)

    R Madhusudhana

    Selecting parents of diverse genetic base with contrasting phenotype is an important step in developing mapping populations for quantitative trait loci (QTL) detection and marker-assisted selection. We studied genetic diversity in 31 sorghum parents using 413 sorghum simple sequence repeats (SSR) markers.

  9. Molecular genetic analysis of consanguineous families with primary ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 96; Issue 2 ... Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Gomal Centre of Biochemistry and Biotechnology,Gomal University Dera Ismail Khan, Khyber-Pakhtoonkhwa 29050, Pakistan; Institute of Human Genetics, ...

  10. Molecular genetic analysis of grain protein content and flour ...

    Indian Academy of Sciences (India)

    is the most important trait for the nutritional value of grain and for the factors that influences the technological ... genotype–environment interaction. In a particular genetic background, quantitative trait locus ..... Triboï E. 2005 Genetic analysis of dry matter and nitrogen accu- mulation and protein composition in wheat kernels.

  11. Lack of consistence between morphological and molecular genetic ...

    African Journals Online (AJOL)

    tdtzeng

    2011-02-14

    Feb 14, 2011 ... geography and climatic shifts were considered (Hewitt,. 2000). Stern climatic shifts can create great changes in species' geographical distribution and abundance, which can be expected to have genetic consequences and the advent of DNA technology provides proper markers to examine the genetic ...

  12. Molecular genetic analysis of consanguineous families with primary ...

    Indian Academy of Sciences (India)

    Abstract. Autosomal recessive primary microcephaly is a rare genetic disorder that is characterized by reduced head circumference and a varying degree of intellectual disability. Genetic studies on consanguineous families with primary microcephaly have identified 15 (MCPH) causative genes that include MCPH1, WDR62, ...

  13. Morphological and molecular genetic diversity of Syrian indigenous ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-05-04

    May 4, 2016 ... Domestic goats in Syria may provide an interesting source of genetic variability due to its proximity to the centers of domestication. This study aimed to assess the morphological variation, genetic diversity and population substructure of the Syrian goat populations. Commonly, three goat genotypes are.

  14. Molecular genetics of schizophrenia: past, present and future

    Indian Academy of Sciences (India)

    Significant technological advances for identification of single nucleotide polymorphisms (SNPs) and use of microarrays have further strengthened research methodologies for genetic analysis of complex traits. In this review, we summarize the evolution of schizophrenia genetics from the past to the present, current trends ...

  15. Molecular genetic variation in the African wild rice Oryza ...

    African Journals Online (AJOL)

    ... the level of genetic diversity and rainfall. The clear association of genetic diversity with rainfall allows the extrapolation of the potential impacts of global warming on diversity when empirical data on predicted climate models, particularly rainfall, are available. This knowledge would therefore be useful in the development of

  16. Phenotypic and molecular evaluation of genetic diversity of rapeseed

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... The genetic diversity and relationships among rapeseed genotypes were evaluated using quantitative analysis ...... Utility of. AFLP markers for the assessment of genetic diversity within Brassica nigra germplasm. Plant Breed. 123: 13-16. Nyende AB (2008). Biotechnology in plant nutrient management for.

  17. [The development of molecular human genetics and its significance for perspectives of modern medicine].

    Science.gov (United States)

    Coutelle, C; Speer, A; Grade, K; Rosenthal, A; Hunger, H D

    1989-01-01

    The introduction of molecular human genetics has become a paradigma for the application of genetic engineering in medicine. The main principles of this technology are the isolation of molecular probes, their application in hybridization reactions, specific gene-amplification by the polymerase chain reaction, and DNA sequencing reactions. These methods are used for the analysis of monogenic diseases by linkage studies and the elucidation of the molecular defect causing these conditions, respectively. They are also the basis for genomic diagnosis of monogenic diseases, introduced into the health care system of the GDR by a national project on Duchenne/Becker muscular dystrophy, Cystic Fibrosis and Phenylketonuria. The rapid development of basic research on the molecular analysis of the human genome and genomic diagnosis indicates, that human molecular genetics is becoming a decisive basic discipline of modern medicine.

  18. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans

    NARCIS (Netherlands)

    Verloop, H.; Dekkers, O.M.; Peeters, R.P.; Schoones, J.W.; Smit, J.W.

    2014-01-01

    Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple

  19. Mosaic trisomy 17 at amniocentesis: Prenatal diagnosis, molecular genetic analysis, and literature review

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2016-10-01

    Conclusion: Low-level mosaicism for trisomy 17 detected by amniocentesis without ultrasound abnormality can be associated with a favorable outcome. Molecular genetic analysis of uncultured amniocytes at repeat amniocentesis is useful for genetic counseling. A review of the literature shows a correlation between an adverse fetal outcome and a higher trisomy 17 mosaicism level at amniocentesis associated with ultrasound abnormality.

  20. Genetics/genomics education for nongenetic health professionals: a systematic literature review.

    Science.gov (United States)

    Talwar, Divya; Tseng, Tung-Sung; Foster, Margaret; Xu, Lei; Chen, Lei-Shih

    2017-07-01

    The completion of the Human Genome Project has enhanced avenues for disease prevention, diagnosis, and management. Owing to the shortage of genetic professionals, genetics/genomics training has been provided to nongenetic health professionals for years to establish their genomic competencies. We conducted a systematic literature review to summarize and evaluate the existing genetics/genomics education programs for nongenetic health professionals. Five electronic databases were searched from January 1990 to June 2016. Forty-four studies met our inclusion criteria. There was a growing publication trend. Program participants were mainly physicians and nurses. The curricula, which were most commonly provided face to face, included basic genetics; applied genetics/genomics; ethical, legal, and social implications of genetics/genomics; and/or genomic competencies/recommendations in particular professional fields. Only one-third of the curricula were theory-based. The majority of studies adopted a pre-/post-test design and lacked follow-up data collection. Nearly all studies reported participants' improvements in one or more of the following areas: knowledge, attitudes, skills, intention, self-efficacy, comfort level, and practice. However, most studies did not report participants' age, ethnicity, years of clinical practice, data validity, and data reliability. Many genetics/genomics education programs for nongenetic health professionals exist. Nevertheless, enhancement in methodological quality is needed to strengthen education initiatives.Genet Med advance online publication 20 October 2016.

  1. Cystic fibrosis genetics: from molecular understanding to clinical application

    Science.gov (United States)

    Cutting, Garry R.

    2015-01-01

    The availability of the human genome sequence and tools for interrogating individual genomes provide an unprecedented opportunity to apply genetics to medicine. Mendelian conditions, which are caused by dysfunction of a single gene, offer powerful examples that illustrate how genetics can provide insights into disease. Cystic fibrosis, one of the more common lethalautosomal recessive Mendelian disorders, is presented here as an example. Recent progress in elucidating disease mechanism and causes of phenotypic variation, as well as in the development of treatments, demonstrates that genetics continues to play an important part in cystic fibrosis research 25 years after the d iscove1y of the disease-causing gene. PMID:25404111

  2. Molecular systematics of Barbatosphaeria (Sordariomycetes): multigene phylogeny and secondary ITS structure

    Czech Academy of Sciences Publication Activity Database

    Réblová, Martina; Réblová, K.; Štěpánek, Václav

    2015-01-01

    Roč. 35, December 2015 (2015), s. 21-38 ISSN 0031-5850 R&D Projects: GA ČR GAP506/12/0038 Institutional support: RVO:67985939 ; RVO:61388971 Keywords : Barbatosphaeria * molecular systematic * ITS secondary structures Subject RIV: EF - Botanics; EE - Microbiology, Virology (MBU-M) Impact factor: 5.725, year: 2015

  3. Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea)

    Czech Academy of Sciences Publication Activity Database

    Tkach, V.V.; Kudlai, Olena; Kostadinova, Aneta

    2016-01-01

    Roč. 46, č. 3 (2016), s. 171-185 ISSN 0020-7519 R&D Projects: GA ČR(CZ) GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Echinostomatoidea * Molecular phylogeny * Systematics * Echinostomatidae (sensu stricto) * Caballerotrematidae n. fam. * Himasthlidae * Echinochasmidae * Host associations Subject RIV: EG - Zoology Impact factor: 3.730, year: 2016

  4. Molecular Genetics Techniques to Develop New Treatments for Brain Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Jacob; Fathallan-Shaykh, Hassan

    2006-09-22

    The objectives of this report are: (1) to devise novel molecular gene therapies for malignant brain tumors, (2) advance our understanding of the immune system in the central nervous system; and (3) apply genomics to find molecular probes to diagnose brain tumors, predict prognosis, biological behavior and their response to treatment.

  5. FROM ATOMISTIC TO SYSTEMATIC COARSE-GRAINED MODELS FOR MOLECULAR SYSTEMS

    KAUST Repository

    Harmandaris, Vagelis

    2017-10-03

    The development of systematic (rigorous) coarse-grained mesoscopic models for complex molecular systems is an intense research area. Here we first give an overview of methods for obtaining optimal parametrized coarse-grained models, starting from detailed atomistic representation for high dimensional molecular systems. Different methods are described based on (a) structural properties (inverse Boltzmann approaches), (b) forces (force matching), and (c) path-space information (relative entropy). Next, we present a detailed investigation concerning the application of these methods in systems under equilibrium and non-equilibrium conditions. Finally, we present results from the application of these methods to model molecular systems.

  6. Permanent genetic resources added to molecular ecology resources database 1 February 2013-31 March 2013

    Czech Academy of Sciences Publication Activity Database

    Arias, M. C.; Atteke, C.; Augusto, S. C.; Bailey, J.; Bazaga, P.; Beheregaray, L. B.; Benoit, L.; Blatrix, R.; Born, C.; Brito, R. M.; Chen, H.-K.; Covarrubias, S.; de Vega, C.; Djiéto-Lordon, C.; Dubois, M.-P.; Francisco, F. O.; García, C.; Concalves, P. H. P.; González, C.; Gutiérrez-Rodríguez, C.; Hammer, M. P.; Herrera, C. M.; Itoh, H.; Kamimura, S.; Karaoglu, H.; Kojima, S.; Li, S.-L.; Ling, H. J.; Matos Maravi, Pavel F.; McKey, D.; Mezui-M’Eko, J.; Ornelas, J. F.; Park, R. F.; Pozo, M. I.; Ramula, S.; Rigueiro, C.; Sandoval-Castillo, J.; Santiago, L. R.; Seino, M. M.; Song, C.-B.; Takeshima, H.; Vasemägi, A.; Wellings, C. R.; Yan, J.; Du, Y.-Z.; Zhang, C.-R.; Zhang, T.-Y.

    2013-01-01

    Roč. 13, č. 4 (2013), s. 760-762 ISSN 1755-098X Institutional support: RVO:60077344 Keywords : molecular ecology Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.626, year: 2013 http://onlinelibrary.wiley.com/doi/10.1111/1755-0998.12121/pdf

  7. Chronic Stress and Neuropathology: Neurochemical, Molecular, and Genetic Factors

    National Research Council Canada - National Science Library

    Koob, George F; Zorrilla, Eric P

    2005-01-01

    ... to selective breeding in the rat. Genetic differences in stress responsiveness in replicate line 1 were associated with differences in anxiety-like behavior, body weight gain and voluntary intake of sweet solutions and ethanol...

  8. Genetic, molecular and functional analyses of complement factor I deficiency

    DEFF Research Database (Denmark)

    Nilsson, S.C.; Trouw, L.A.; Renault, N.

    2009-01-01

    Complete deficiency of complement inhibitor factor I (FI) results in secondary complement deficiency due to uncontrolled spontaneous alternative pathway activation leading to susceptibility to infections. Current genetic examination of two patients with near complete FI deficiency and three patie...

  9. Combating mutations in genetic disease and drug resistance: understanding molecular mechanisms to guide drug design.

    Science.gov (United States)

    Albanaz, Amanda T S; Rodrigues, Carlos H M; Pires, Douglas E V; Ascher, David B

    2017-06-01

    Mutations introduce diversity into genomes, leading to selective changes and driving evolution. These changes have contributed to the emergence of many of the current major health concerns of the 21st century, from the development of genetic diseases and cancers to the rise and spread of drug resistance. The experimental systematic testing of all mutations in a system of interest is impractical and not cost-effective, which has created interest in the development of computational tools to understand the molecular consequences of mutations to aid and guide rational experimentation. Areas covered: Here, the authors discuss the recent development of computational methods to understand the effects of coding mutations to protein function and interactions, particularly in the context of the 3D structure of the protein. Expert opinion: While significant progress has been made in terms of innovative tools to understand and quantify the different range of effects in which a mutation or a set of mutations can give rise to a phenotype, a great gap still exists when integrating these predictions and drawing causality conclusions linking variants. This often requires a detailed understanding of the system being perturbed. However, as part of the drug development process it can be used preemptively in a similar fashion to pharmacokinetics predictions, to guide development of therapeutics to help guide the design and analysis of clinical trials, patient treatment and public health policy strategies.

  10. TAXONOMY AND GENETIC RELATIONSHIPS OF PANGASIIDAE, ASIAN CATFISHES, BASED ON MORPHOLOGICAL AND MOLECULAR ANALYSES

    Directory of Open Access Journals (Sweden)

    Rudhy Gustiano

    2007-12-01

    Full Text Available Pangasiids are economically important riverine catfishes generally residing in freshwater from the Indian subcontinent to the Indonesian Archipelago. The systematics of this family are still poorly known. Consequently, lack of such basic information impedes the understanding of the biology of the Pangasiids and the study of their aquaculture potential as well as improvement of seed production and growth performance. The objectives of the present study are to clarify phylogeny of this family based on a biometric analysis and molecular evidence using 12S ribosomal mtDNA on the total of 1070 specimens. The study revealed that 28 species are recognised as valid in Pangasiidae. Four genera are also recognized as Helicophagus Bleeker 1858, Pangasianodon Chevey 1930, Pteropangasius Fowler 1937, and Pangasius Valenciennes 1840 instead of two as reported by previous workers. The phylogenetic analysis demonstrated the recognised genera, and genetic relationships among taxa. Overall, trees from the different analyses show similar topologies and confirm the hypothesis derived from geological history, palaeontology, and similar models in other taxa of fishes from the same area. The oldest genus may already have existed when the Asian mainland was still connected to the islands in the southern part about 20 million years ago.

  11. Eating disorders: the current status of molecular genetic research

    OpenAIRE

    Scherag, Susann; Hebebrand, Johannes; Hinney, Anke

    2009-01-01

    Abstract Anorexia nervosa (AN) and bulimia nervosa (BN) are complex disorders characterized by disordered eating behavior where the patient?s attitude towards weight and shape, as well as their perception of body shape, are disturbed. Formal genetic studies on twins and families suggested a substantial genetic influence for AN and BN. Candidate gene studies have initially focused on the serotonergic and other central neurotransmitter systems and on genes involved in body weight reg...

  12. Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources.

    Science.gov (United States)

    Boettcher, P J; Tixier-Boichard, M; Toro, M A; Simianer, H; Eding, H; Gandini, G; Joost, S; Garcia, D; Colli, L; Ajmone-Marsan, P

    2010-05-01

    The genetic diversity of the world's livestock populations is decreasing, both within and across breeds. A wide variety of factors has contributed to the loss, replacement or genetic dilution of many local breeds. Genetic variability within the more common commercial breeds has been greatly decreased by selectively intense breeding programmes. Conservation of livestock genetic variability is thus important, especially when considering possible future changes in production environments. The world has more than 7500 livestock breeds and conservation of all of them is not feasible. Therefore, prioritization is needed. The objective of this article is to review the state of the art in approaches for prioritization of breeds for conservation, particularly those approaches that consider molecular genetic information, and to identify any shortcomings that may restrict their application. The Weitzman method was among the first and most well-known approaches for utilization of molecular genetic information in conservation prioritization. This approach balances diversity and extinction probability to yield an objective measure of conservation potential. However, this approach was designed for decision making across species and measures diversity as distinctiveness. For livestock, prioritization will most commonly be performed among breeds within species, so alternatives that measure diversity as co-ancestry (i.e. also within-breed variability) have been proposed. Although these methods are technically sound, their application has generally been limited to research studies; most existing conservation programmes have effectively primarily based decisions on extinction risk. The development of user-friendly software incorporating these approaches may increase their rate of utilization.

  13. Molecular and Genetic Investigation of Tau in Chronic Traumatic Encephalopathy (Log No. 13267017)

    Science.gov (United States)

    2017-10-01

    term goal is to identify molecular mechanisms regulating tau that can be used as diagnostics and to develop therapeutics for CTE. The immediate goal...AWARD NUMBER: W81XWH-14-1-0399 TITLE: Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy (Log No. 13267017) PRINCIPAL...INTRODUCTION: Repetitive mild traumatic brain injury leads to neurological symptoms and chronic traumatic encephalopathy (CTE). The molecular changes

  14. EMQN/CMGS best practice guidelines for the molecular genetic testing of Huntington disease

    Science.gov (United States)

    Losekoot, Monique; van Belzen, Martine J; Seneca, Sara; Bauer, Peter; Stenhouse, Susan A R; Barton, David E

    2013-01-01

    Huntington disease (HD) is caused by the expansion of an unstable polymorphic trinucleotide (CAG)n repeat in exon 1 of the HTT gene, which translates into an extended polyglutamine tract in the protein. Laboratory diagnosis of HD involves estimation of the number of CAG repeats. Molecular genetic testing for HD is offered in a wide range of laboratories both within and outside the European community. In order to measure the quality and raise the standard of molecular genetic testing in these laboratories, the European Molecular Genetics Quality Network has organized a yearly external quality assessment (EQA) scheme for molecular genetic testing of HD for over 10 years. EQA compares a laboratory's output with a fixed standard both for genotyping and reporting of the results to the referring physicians. In general, the standard of genotyping is very high but the clarity of interpretation and reporting of the test result varies more widely. This emphasizes the need for best practice guidelines for this disorder. We have therefore developed these best practice guidelines for genetic testing for HD to assist in testing and reporting of results. The analytical methods and the potential pitfalls of molecular genetic testing are highlighted and the implications of the different test outcomes for the consultand and his or her family members are discussed. PMID:22990145

  15. The psychological impact of predictive genetic testing for Huntington's disease: a systematic review of the literature.

    Science.gov (United States)

    Crozier, S; Robertson, N; Dale, M

    2015-02-01

    Huntington's disease (HD) is a neurodegenerative genetic condition for which a predictive genetic test by mutation analysis has been available since 1993. However, whilst revealing the future presence of the disease, testing may have an adverse psychological impact given that the disease is progressive, incurable and ultimately fatal. This review seeks to systematically explore the psychological impact of genetic testing for individuals undergoing pre-symptomatic mutation analysis. Three databases (Medline, PsycInfo and Scopus) were interrogated for studies utilising standardised measures to assess psychological impact following predictive genetic testing for HD. From 100 papers initially identified, eight articles were eligible for inclusion. Psychological impact of predictive genetic testing was not found to be associated with test result. No detrimental effect of predictive genetic testing on non-carriers was found, although the process was not found to be psychologically neutral. Fluctuation in levels of distress was found over time for carriers and non-carriers alike. Methodological weaknesses of published literature were identified, notably the needs of individuals not requesting genetic testing, as well as inadequate support for individuals registering elevated distress and declining post-test follow-up. Further assessment of these vulnerable individuals is warranted to establish the extent and type of future psychological support.

  16. The molecular genetics of inflammatory, autoimmune, and infectious diseases of the sinonasal tract: a review.

    Science.gov (United States)

    Montone, Kathleen T

    2014-06-01

    The sinonasal tract is frequently affected by a variety of nonneoplastic inflammatory disease processes that are often multifactorial in their etiology but commonly have a molecular genetic component. To review the molecular genetics of a variety of nonneoplastic inflammatory diseases of the sinonasal tract. Inflammatory lesions of the sinonasal tract can be divided into 3 main categories: (1) chronic rhinosinusitis, (2) infectious diseases, and (3) autoimmune diseases/vasculitides. The molecular diagnosis and pathways of a variety of these inflammatory lesions are currently being elucidated and will shed light on disease pathogenesis and treatment. The sinonasal tract is frequently affected by inflammatory lesions that arise through complex interactions of environmental, infectious, and genetic factors. Because these lesions are all inflammatory in nature, the molecular pathology surrounding them is most commonly due to upregulation and down-regulation of genes that affect inflammatory responses and immune regulation.

  17. [Research progress on cellular and molecular genetics of acute non-lymphocytic leukemia].

    Science.gov (United States)

    Xiong, Wen-Yan; Tu, San-Fang; Lu, Zhi-Gang; Li, Yu-Hua

    2010-04-01

    With the extensive application of cellular and molecular genetic techniques in the research of acute leukemia (AL), the diagnosis of AL type has been developed from FAB typing which was based on morphological classification in 1976 to MICM typing in 2001. This progress highlights the importance of cellular and molecular genetic changes in the diagnosis of leukemia. The cellular and molecular genetic abnormalities in acute leukemia can make the stratification of risk and give the guidance for prognosis and treatment, which is also critical for the development of new drugs. This article has focused on chromosomal abnormalities, fusion gene expression and their relationship with the leukemia diagnosis, prognosis and treatment. This article is also a concise review on several common gene mutations in cytogenetics of ANLL for the assessment of disease prognosis. In recent years, further exploration of molecular cytogenetic mechanisms of various types of leukemia in ANLL contributed to the development of new therapeutic strategy for leukemia.

  18. Genetic, molecular and functional analyses of complement factor I deficiency

    DEFF Research Database (Denmark)

    Nilsson, S.C.; Trouw, L.A.; Renault, N.

    2009-01-01

    could be expressed, in vitro, but was not functional because it lacks the serine protease domain. Furthermore, this truncated FI was not detected in serum of the patient. Structural investigations using molecular modeling were performed to predict the potential impact the mutations have on FI structure....... This is the first study that investigates, at the functional level, the consequences of molecular defects identified in patients with full FI deficiency Udgivelsesdato: 2009/1...

  19. The impact of advances in human molecular biology on radiation genetic risk estimation in man

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1996-01-01

    This paper provides an overview of the conceptual framework, the data base, methods and assumptions used thus far to assess the genetic risks of exposure of human populations to ionising radiation. These are then re-examined in the contemporary context of the rapidly expanding knowledge of the molecular biology of human mendelian diseases. This re-examination reveals that (i) many of the assumptions used thus far in radiation genetic risk estimation may not be fully valid and (ii) the current genetic risk estimates are probably conservative, but provide an adequate margin of safety for radiological protection. The view is expressed that further advances in the field of genetic risk estimation will be largely driven by advances in the molecular biology of human genetic diseases. (author). 37 refs., 5 tabs

  20. Molecular approaches in the prenatal diagnosis and therapy of genetic disorders.

    Science.gov (United States)

    Myrianthopoulos, N C

    1987-01-01

    During the last decade a new class of DNA markers, the restriction fragment length polymorphisms (RFLPs), has been developed by molecular genetic techniques. Genetic linkage studies using RFLPs have resulted in a large number of chromosome assignments of genes, making possible prenatal diagnosis and presymptomatic testing in many genetic disorders. Even so, of the estimated 100,000 genes that comprise the human genome fewer than 2,000, or 2%, have been mapped. Studies of the molecular basis of some of these mutant genes have brought to light a remarkable multiplicity and diversity of mutations that produce relatively few clinical phenotypes. Many genetic disorders including the thalassemias, familial hypercholesterolemia, Tay-Sachs disease, cystic fibrosis, and congenital adrenal hyperplasia, have been shown to be genetically heterogeneous. It is necessary, therefore, to know the precise mutation in order to make accurate diagnosis and restore proper enzyme or gene function.

  1. [Determining mitochondrial molecular markers suitable for genetic diversity analysis of Cordyceps militaris].

    Science.gov (United States)

    Zhang, Yongjie; Guo, Lihong; Zhang, Shu; Liu, Xingzhong

    2015-07-04

    To screen efficient molecular markers suitable for genetic diversity analysis of Cordyceps militaris from mitochondrial DNA. We amplified 12 mitochondrial DNA fragments and 3 nuclear DNA fragments from each of 20 C. militaris isolates and analyzed nucleotide variations on these DNA fragments. We revealed a greatly higher genetic variation in mitochondrial DNA fragments than in nuclear DNA fragments. Specifically, C. militaris isolates exhibited intron presence/absence diversity in some mitochondrial fragments, and more variable sites were found in mitochondrial fragments than in nuclear fragments. The extent of nucleotide variations also varied by mitochondrial fragment, and intronic proteins seemed to be more vulnerable to amino acid changes than exonic proteins. Genetic diversity increased with the number of molecular markers used. We recommended using (in order) nad3-cox2. cox2-nad5, cox2, cox3, cob, and cox1 for future genetic diversity and population genetic studies of C. militaris.

  2. Evaluating Genetic Counseling for Family Members of Individuals With Schizophrenia in the Molecular Age

    Science.gov (United States)

    Bassett, Anne S.

    2014-01-01

    Background: Myths and concerns about the extent and meaning of genetic risk in schizophrenia may contribute to significant stigma and burden for families. Genetic counseling has long been proposed to be a potentially informative and therapeutic intervention for schizophrenia. Surprisingly, however, available data are limited. We evaluated a contemporary genetic counseling protocol for use in a community mental health-care setting by non–genetics professionals. Methods: We used a pre-post study design with longitudinal follow-up to assess the impact of genetic counseling on family members of individuals with schizophrenia, where molecular testing had revealed no known clinically relevant genetic risk variant. We assessed the outcome using multiple measures, including standard items and scales used to evaluate genetic counseling for other complex diseases. Results: Of the 122 family members approached, 78 (63.9%) actively expressed an interest in the study. Participants (n = 52) on average overestimated the risk of familial recurrence at baseline, and demonstrated a significant improvement in this estimate postintervention (P genetic counseling was high (96.1%). Conclusions: These results provide initial evidence of the efficacy of schizophrenia genetic counseling for families, even in the absence of individually relevant genetic test results or professional genetics services. The findings support the integration of contemporary genetic counseling for families into the general management of schizophrenia in the community. PMID:23104866

  3. Genetic discrimination and life insurance: a systematic review of the evidence

    Science.gov (United States)

    2013-01-01

    Background Since the late 1980s, genetic discrimination has remained one of the major concerns associated with genetic research and clinical genetics. Europe has adopted a plethora of laws and policies, both at the regional and national levels, to prevent insurers from having access to genetic information for underwriting. Legislators from the United States and the United Kingdom have also felt compelled to adopt protective measures specifically addressing genetics and insurance. But does the available evidence really confirm the popular apprehension about genetic discrimination and the subsequent genetic exceptionalism? Methods This paper presents the results of a systematic, critical review of over 20 years of genetic discrimination studies in the context of life insurance. Results The available data clearly document the existence of individual cases of genetic discrimination. The significance of this initial finding is, however, greatly diminished by four observations. First, the methodology used in most of the studies is not sufficiently robust to clearly establish either the prevalence or the impact of discriminatory practices. Second, the current body of evidence was mostly developed around a small number of 'classic' genetic conditions. Third, the heterogeneity and small scope of most of the studies prevents formal statistical analysis of the aggregate results. Fourth, the small number of reported genetic discrimination cases in some studies could indicate that these incidents took place due to occasional errors, rather than the voluntary or planned choice, of the insurers. Conclusion Important methodological limitations and inconsistencies among the studies considered make it extremely difficult, at the moment, to justify policy action taken on the basis of evidence alone. Nonetheless, other empirical and theoretical factors have emerged (for example, the prevalence and impact of the fear of genetic discrimination among patients and research participants

  4. A genetic analysis of segregation distortion revealed by molecular ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. RESEARCH NOTE. A genetic analysis of segregation ... 2College of Life Science, Northeast Forest University, Harbin 150040, People's Republic of China. [Cai J., Zhang X., Wang B., Yan M., Qi Y. and Kong L. ... elite agronomic traits (Zhang et al. 2011). However, there is still no report about ...

  5. Genetic and molecular markers of proteinuria and glomerulosclerosis

    NARCIS (Netherlands)

    IJpelaar, Daphne Hubertina Thea

    2009-01-01

    The clinical course of renal diseases depends on the type of renal disorder, genetic factors, environmental influences, and the severity of renal fibrosis. Proteinuria is the abnormal amount of proteins present in the urine. Proteinuria is an independent risk factor for development of renal

  6. Advances in genetics and molecular breeding of three legume crops ...

    Indian Academy of Sciences (India)

    2012-10-15

    Oct 15, 2012 ... for crop improvement. Progress in the development of genomic ... genetic maps and genomic resources will certainly accelerate crop improvement programmes in the SAT legumes. http://www.ias.ac.in/jbiosci ..... and oil quality at UAS-D, while genotyping with 53 poly- morphic markers was generated at ...

  7. A unifying study of phenotypic and molecular genetic variability in ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Journal of Genetics; Volume 93; Issue 1 ... Populations from the Paranaense biogeographic province showed the highest mean value of number of seeds per fruit making them valuable as well with regard to the exploitation of management strategies as a ... Please take note of this change.

  8. Advances in genetics and molecular breeding of three legume crops ...

    Indian Academy of Sciences (India)

    2012-10-15

    Oct 15, 2012 ... genetic maps and genomic resources will certainly accelerate crop improvement programmes in the SAT legumes. http://www.ias.ac.in/jbiosci ... soil plant analytical development; SSR, simple sequence repeats; TAC, transcript assembly contig; TE, transpiration efficiency; TUS, tentative unique sequences.

  9. Molecular Mechanisms Influencing Genetic Diversity of Campylobacter jejuni

    NARCIS (Netherlands)

    Gaasbeek, E.J.

    2009-01-01

    Campylobacter jejuni is an important food-borne pathogen, causing human bacterial gastroenteritis. Throughout the years several methods have been developed for typing C. jejuni. These methods uncovered the existence of enormous genetic diversity within the species. Stable lineages of C. jejuni are

  10. Molecular and genetic characterization of OSH6 ( Oryza sativa ...

    African Journals Online (AJOL)

    Genetic studies of dissociation (Ds) insertion mutant rice plants indicated that ectopic expression of truncated OSH6 (Oryza sativa Homeobox 6) mRNA may be responsible for the mutant phenotype of knotted leaf formation at the peduncle. Additionally, ectopic expression of truncated OSH6 mRNA in the OSH6-Ds mutant ...

  11. Molecular evaluation of genetic diversity and association studies in ...

    Indian Academy of Sciences (India)

    In the present study, we tested rice genotypes that included un(der)exploited landraces of Tamil Nadu along with indica and japonica test cultivars to ascertain their genetic diversity structure. Highly polymorphic microsatellite markers were used for generating marker segregation data. A novel measure, allele discrimination ...

  12. Linguini Models of Molecular Genetic Mapping and Fingerprinting.

    Science.gov (United States)

    Thompson, James N., Jr.; Gray, Stanton B.; Hellack, Jenna J.

    1997-01-01

    Presents an exercise using linguini noodles to demonstrate an aspect of DNA fingerprinting. DNA maps that show genetic differences can be produced by digesting a certain piece of DNA with two or more restriction enzymes both individually and in combination. By rearranging and matching linguini fragments, students can recreate the original pattern…

  13. Molecular genetic diversity study of Lepidium sativum population ...

    African Journals Online (AJOL)

    Vostro 2520

    Generally, Tigray and Amhara regions showed moderate to high diversity in ISSR analysis. ... other crops. The main purpose of its cultivation in. Ethiopia is to use it as a medicinal plant. It is used for human abdominal ache and diarrhea. Moreover, L. ... of 10 primers were obtained from the Genetic Research Laboratory.

  14. Molecular genetics of schizophrenia: past, present and future

    Indian Academy of Sciences (India)

    Unknown

    leucocyte antigen; IDDM, insulin dependent diabetes mellitus; MAO, monoamine oxidase; MHC, major histocompatibility complex; RA ... 1. Introduction. Schizophrenia is a common disorder with a proven genetic basis but complex mode of inheritance. Onset is generally during adolescence with a lifetime morbid risk being.

  15. Molecular genetic analysis of consanguineous families with primary ...

    Indian Academy of Sciences (India)

    MUZAMMIL AHMAD KHAN

    Physiologically, most of these MCPH proteins are involved in cell cycle and its regulation. ... in ASPM presumably truncates the protein synthesis that results in loss of armadillo-type fold domain. [Khan M. A., Windpassinger C., Ali M. Z., ..... 2014 A Drosophila genetic resource of mutats to study mechanism underlying human ...

  16. Molecular analysis of genetic diversity in elite II synthetic hexaploid ...

    African Journals Online (AJOL)

    The present study was conducted to assess the genetic diversity of Elite-II synthetic hexaploid (SH) wheat by genome DNA fingerprinting as revealed by random amplified polymorphic DNA (RAPD) analysis. Ten decamer RAPD primers (OPG-1, OPG-2, OPG-3, OPG-4, OPG-5, OPA-3, OPA-4, OPA-5, OPA-8, and OPA-15) ...

  17. Molecular evaluation of genetic diversity and association studies in ...

    Indian Academy of Sciences (India)

    2012-04-05

    Apr 5, 2012 ... poor farmers who practice subsistence farming (Ram et al. 2007). Although less productive, these landraces have shown excellent adaptation to local conditions and they are known to harbour great genetic potential for rice improvement, par- ticularly for stress tolerance (Hanamaratti et al. 2008; Lisa et al.

  18. Molecular genetic diversity in cocoa clones with potential for ...

    African Journals Online (AJOL)

    Adeilson

    2016-11-02

    Nov 2, 2016 ... Schnell RJ (2008). Geographic and Genetic Population Differentiation of the Amazonian Chocolate Tree (Theobroma cacao L). PLoS One. 3(10):e3311. Motamayor JC, Risterucci AM, Lanaud C (2003). Cacao domestication. II: progenitor germplasm of the Trinitario cacao cultivar. Heredity. 91:322-330.

  19. Potato leafroll virus : molecular analysis and genetically engineered resistance

    NARCIS (Netherlands)

    Wilk, van der F.

    1995-01-01

    The nucleotide sequence of the genomic RNA of potato leafroll virus (PLRV) was elucidated and its genetic organization deduced (Chapter 2). Six open reading frames (ORFs) were shown to be present on the genome. Both the PLRV coat protein gene and the RNA- dependent RNA polymerase gene were

  20. Molecular based assessment of genetic diversity of xoconostle ...

    African Journals Online (AJOL)

    aghomotsegin

    2014-01-08

    Jan 8, 2014 ... Xoconostle or acidic prickly pear is an important fruit in Mexico; it is produced by a group of Opuntia plants known for their nutritional qualities and adapted to harsh environmental conditions. In this study, we report for the first time the estimation of genetic diversity within a set of 24 xoconostle accessions ...

  1. Preliminary molecular analysis of the genetic diversity of some ...

    African Journals Online (AJOL)

    In the arid and semi arid areas, salt bush (Atriplex) represents an important forage resource. The characterization of the genetic diversity of these species is useful for their classification, their conservation and their improvement. In this context, we used the random amplified polymorphic DNA-polymerase chain reaction ...

  2. Genetics and Molecular Diagnostics in Retinoblastoma--An Update.

    Science.gov (United States)

    Soliman, Sameh E; Racher, Hilary; Zhang, Chengyue; MacDonald, Heather; Gallie, Brenda L

    2017-01-01

    Retinoblastoma is the prototype genetic cancer: in one or both eyes of young children, most retinoblastomas are initiated by biallelic mutation of the retinoblastoma tumor suppressor gene, RB1, in a developing retinal cell. All those with bilateral retinoblastoma have heritable cancer, although 95% have not inherited the RB1 mutation. Non-heritable retinoblastoma is always unilateral, with 98% caused by loss of both RB1 alleles from the tumor, whereas 2% have normal RB1 in tumors initiated by amplification of the MYCN oncogene. Good understanding of retinoblastoma genetics supports optimal care for retinoblastoma children and their families. Retinoblastoma is the first cancer to officially acknowledge the seminal role of genetics in cancer, by incorporating "H" into the eighth edition of cancer staging (2017): those who carry the RB1 cancer-predisposing gene are H1; those proven to not carry the familial RB1 mutation are H0; and those at unknown risk are HX. We suggest H0* be used for those with residual retinoblastoma, and cancer progression ensues with increasing genomic disarray. Looking forward, novel therapies are anticipated from studies of retinoblastoma and metastatic tumor cells and the second primary cancers that the carriers of RB1 mutations are at high risk to develop. Here, we summarize the concepts of retinoblastoma genetics for ophthalmologists in a question/answer format to assist in the care of patients and their families. Copyright 2017 Asia-Pacific Academy of Ophthalmology.

  3. Molecular genetic study of hemophilia B in an Algerian population ...

    African Journals Online (AJOL)

    exogenous factor XI) development is currently the most significant treatment complication. In this study, we evaluated the relationship between inhibitor development and FIX gene mutation types. In summary, our preliminary results will be used to build an Algerian mutation database which would facilitate genetic counseling ...

  4. Molecular and genetic characterization of OSH6 (Oryza sativa ...

    African Journals Online (AJOL)

    Jane

    2011-03-07

    Mar 7, 2011 ... Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics, 144: 1425-1436. Katsutoshi T, Yukihiro I, Shinichiro Y, Akio M, Hirohiko H, Nori K (2009). Isolation and mapping of three rice mutants that showed ectopic expression of KNOX genes in leaves. Plant Sci.

  5. Molecular based assessment of genetic diversity of xoconostle ...

    African Journals Online (AJOL)

    Xoconostle or acidic prickly pear is an important fruit in Mexico; it is produced by a group of Opuntia plants known for their nutritional qualities and adapted to harsh environmental conditions. In this study, we report for the first time the estimation of genetic diversity within a set of 24 xoconostle accessions using inter simple ...

  6. Molecular genetic analysis of the Chinese Erhualian pig breed | Yue ...

    African Journals Online (AJOL)

    The Chinese Erhualian is one of the most prolific pig breeds in the world, but it is in danger of being replaced by other exotic pig breeds because of its slow growth rate and high fat content in the body. To obtain some genetic information for conservation, we analysed the Erhualian pigs by using a PCR-RFLP for the ...

  7. Molecular assessment of genetic diversity in cluster bean ...

    Indian Academy of Sciences (India)

    pestle in a 1.5 mL conical micro-centrifuge tubes with liquid nitrogen. Dneasy. ® plant mini kit protocols ... products was drawn using unweighted pair group method us- ing arithmetic averages algorithm (UPGMA) .... Mignouna H. D., Ng N. Q., Ikea J. and Thotapilly G. 1998 Genetic diversity in cowpea as revealed by random ...

  8. Molecular assessment of genetic diversity in mung bean germplasm

    Indian Academy of Sciences (India)

    2008-04-02

    Apr 2, 2008 ... wider range of diversity but also groups the accessions ac- cording to their field performance for ... minous out group for all studies to test whether our reaction conditions were optimized to resolve it as a ...... Mignouna H. D., Ng N. Q., Ikea J. and Thotapilly G. 1998 Genetic diversity in cowpea as revealed by ...

  9. Genetic variability of hull-less barley accessions based on molecular and quantitative data

    Directory of Open Access Journals (Sweden)

    Ricardo Meneses Sayd

    2015-02-01

    Full Text Available The objective of this work was to characterize and quantify the genetic, molecular, and agronomic variability of hull-less barley genotypes, for the selection of parents and identification of genotypes adapted to the irrigated production system in the Brazilian Cerrado. Eighteen hull-less barley accessions were evaluated, and three covered barley accessions served as reference. The characterization was based on 157 RAPD molecular markers and ten agronomic traits. Genetic distance matrices were obtained based on molecular markers and quantitative traits. Graphic grouping and dispersion analyses were performed. Genetic, molecular, and agronomic variability was high among genotypes. Ethiopian accessions were genetically more similar, and the Brazilian ones were genetically more distant. For agronomic traits, two more consistent groupings were obtained, one with the most two-rowed materials, and the other with six-rowed materials. The more diverging materials were the two-rowed CI 13453, CN Cerrado 5, CN Cerrado 1, and CN Cerrado 2. The PI 356466, CN Cerrado 1, PI 370799, and CI 13453 genotypes show agronomic traits of interest and, as genetically different genotypes, they are indicated for crossing, in breeding programs.

  10. A report template for molecular genetic tests designed to improve communication between the clinician and laboratory.

    Science.gov (United States)

    Scheuner, Maren T; Hilborne, Lee; Brown, Julie; Lubin, Ira M

    2012-07-01

    Errors are most likely to occur during the pre- and postanalytic phases of the genetic testing process, which can contribute to underuse, overuse, and misuse of genetic tests. To mitigate these errors, we created a template for molecular genetic test reports that utilizes the combined features of synoptic reporting and narrative interpretation. A variation of the Delphi consensus process with an expert panel was used to create a draft report template, which was further informed by focus group discussions with primary care physicians. There was agreement that molecular genetic test reports should present information in groupings that flow in a logical manner, and most participants preferred the following order of presentation: patient and physician information, test performed, test results and interpretation, guidance on next steps, and supplemental information. We define data elements for the report as "required," "optional," "possible," and "not necessary"; provide recommendations regarding the grouping of these data elements; and describe the ideal design of the report template, including the preferred order of the report sections, formatting of data, and length of the report. With input from key stakeholders and building upon prior work, we created a template for molecular genetic test reports designed to improve clinical decision making at the point of care. The template design should lead to more effective communication between the laboratory and ordering clinician. Studies are needed to assess the usefulness and effectiveness of molecular genetic test reports generated using this template.

  11. Advances in the molecular genetics of gliomas - implications for classification and therapy.

    Science.gov (United States)

    Reifenberger, Guido; Wirsching, Hans-Georg; Knobbe-Thomsen, Christiane B; Weller, Michael

    2017-07-01

    Genome-wide molecular-profiling studies have revealed the characteristic genetic alterations and epigenetic profiles associated with different types of gliomas. These molecular characteristics can be used to refine glioma classification, to improve prediction of patient outcomes, and to guide individualized treatment. Thus, the WHO Classification of Tumours of the Central Nervous System was revised in 2016 to incorporate molecular biomarkers - together with classic histological features - in an integrated diagnosis, in order to define distinct glioma entities as precisely as possible. This paradigm shift is markedly changing how glioma is diagnosed, and has important implications for future clinical trials and patient management in daily practice. Herein, we highlight the developments in our understanding of the molecular genetics of gliomas, and review the current landscape of clinically relevant molecular biomarkers for use in classification of the disease subtypes. Novel approaches to the genetic characterization of gliomas based on large-scale DNA-methylation profiling and next-generation sequencing are also discussed. In addition, we illustrate how advances in the molecular genetics of gliomas can promote the development and clinical translation of novel pathogenesis-based therapeutic approaches, thereby paving the way towards precision medicine in neuro-oncology.

  12. Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    Directory of Open Access Journals (Sweden)

    Juliana Morini Küpper Cardoso Perseguini

    2011-01-01

    Full Text Available A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats - SSRs and amplified fragment length polymorphisms - AFLPs for assessing the genetic diversity of carioca beans. The amount of information provided by Roger's modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm.

  13. Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models

    Science.gov (United States)

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher

    2014-01-01

    Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532

  14. Advances in genetics and molecular breeding of three legume crops ...

    Indian Academy of Sciences (India)

    Molecular markers are the most powerful genomic tools to increase the efficiency and precision of breeding practices for crop improvement. Progress in the development of genomic resources in the leading legume crops of the semi-arid tropics (SAT), namely, chickpea (Cicer arietinum), pigeonpea (Cajanus cajan) and ...

  15. Advances in genetics and molecular breeding of three legume crops ...

    Indian Academy of Sciences (India)

    Together with these trait-associated markers along with those already available, molecular breeding programmes have been initiated for enhancing drought tolerance, resistance to fusarium wilt and ascochyta blight in chickpea and resistance to foliar diseases in groundnut. These trait-associated robust markers along with ...

  16. Molecular dissection of white pine genetic resistance to Cronartium ribicola

    Science.gov (United States)

    Jun-Jun Liu; Richard Sniezko

    2011-01-01

    Pinus monticola (Dougl. ex D. Don.) maintains a complex defence system that detects white pine blister rust pathogen (Cronartium ribicola J.C.Fisch.) and activates resistance responses. A thorough understanding of how it functions at the molecular level would provide us new strategies for creating forest trees with durable disease resistance. Our research focuses on...

  17. the genetic and molecular studies of hepatitis c virus

    African Journals Online (AJOL)

    DR. AMIN

    Hepatitis C virus: Molecular biology and current therapeutic options. Indian Journaal of Medical Research 131: 17-34. Shimoike, T., McKenna, S. A., Lindhout, D.A. and Puglisi,. J.D. (2009). Translational insensitivity to potent activation of pkr by HCV IRES RNA. Antiviral. Res. Simmonds, P., Bukh, J., Combet, C., Deleage, G.,.

  18. Construction of intergeneric conjugal transfer for molecular genetic ...

    African Journals Online (AJOL)

    SAM

    2014-03-26

    Mar 26, 2014 ... To facilitate molecular studies of Streptomyces mobaraensis producing transglutaminase, an effective transformation method was established via intergeneric conjugal transfer using Escherichia coli. ET12567 harboring the ØC31-derived integration vector, pSET152. The highest frequency was attained.

  19. Construction of intergeneric conjugal transfer for molecular genetic ...

    African Journals Online (AJOL)

    To facilitate molecular studies of Streptomyces mobaraensis producing transglutaminase, an effective transformation method was established via intergeneric conjugal transfer using Escherichia coli ET12567 harboring the ØC31-derived integration vector, pSET152. The highest frequency was attained on ISP4 medium ...

  20. MAJOR MOLECULAR GENETIC DRIVERS IN SPORADIC PRIMARY HYPERPARATHYROIDISM.

    Science.gov (United States)

    Arnold, Andrew

    2016-01-01

    Primary hyperparathyroidism is primarily due to a solitary parathyroid adenoma but multi-gland disease, parathyroid carcinoma, and ectopic parathyroid hormone production can occur. Although primary hyperparathyroidism mostly presents sporadically, strong familial predispositions also exist. Much is known about heritable genetic mutations responsible for these syndromes, including multiple endocrine neoplasia types 1 and 2A, hyperparathyroidism-jaw tumor syndrome, and familial hypocalciuric hypercalcemia. Acquired mutations in common sporadic hyperparathyroidism have also been discovered. Here we focus on the most common and well-established genetic drivers: 1) involvement of the oncogene cyclin D1 in human neoplasia was first established in parathyroid adenomas, followed by recognition of its importance in other tumor types including breast cancer and B-lymphoid malignancy; and 2) somatic mutation of the MEN1 gene, first identified as the source of pathogenic germline mutations in patients with familial endocrinopathies, is found in a substantial fraction of non-familial parathyroid adenomas.

  1. Nephelium lappaceum L. genetic diversity by morphological and molecular characterization

    OpenAIRE

    De Andrade, Renata Aparecida [UNESP; Wickert, Ester [UNESP; Martins, Antonio Baldo Geraldo [UNESP; De Andrade, Mariana Macedo Costa [UNESP; De Macedo Lemos, Eliana Gertrudes [UNESP

    2011-01-01

    The rambutan (Nephelium lappaceum) is an exotic fruit with great market potential in Brazil. However, there are few available informations about plants with potential for cultivation, because great morphologic variation is observed among plants and for consequence, little uniformity in the orchards and in the fruits. This research had for objective to evaluate the genetic diversity of a collection of rambutan plants obtained by seeds through morfo-chemical analyses of plants and fruits and by...

  2. Molecular and Genetic Inflammation Networks in Major Human Diseases

    OpenAIRE

    Zhao, Yongzhong; Forst, Christian V.; Sayegh, Camil E.; Wang, I-Ming; Yang, Xia; Zhang, Bin

    2016-01-01

    It has been well-recognized that inflammation alongside tissue repair and damage maintaining tissue homeostasis determines the initiation and progression of complex diseases. Albeit with the accomplishment of having captured most critical inflammation involved molecules, genetic susceptibilities, epigenetic factors, and environmental exposures, our schemata on role of inflammation in complex disease, remain largely patchy, in part due to the success of reductionism in terms of research method...

  3. [Research progress on molecular genetics of male homosexuality].

    Science.gov (United States)

    Tu, Dan; Xu, Ruiwei; Zhao, Guanglu; Wang, Binbin; Feng, Tiejian

    2016-08-01

    Sexual orientation is influenced by both environmental factors and biological factors. Family and twin studies have shown that genetic factors play an important role in the formation of male homosexuality. Genome-wide scan also revealed candidate chromosomal regions which may be associated with male homosexuality, but so far no clearly related genes have been found. This article reviews the progress of relevant studies and candidate genes which are related to male homosexuality.

  4. Dating Antarctic ice sheet collapse: Proposing a molecular genetic approach

    Science.gov (United States)

    Strugnell, Jan M.; Pedro, Joel B.; Wilson, Nerida G.

    2018-01-01

    Sea levels at the end of this century are projected to be 0.26-0.98 m higher than today. The upper end of this range, and even higher estimates, cannot be ruled out because of major uncertainties in the dynamic response of polar ice sheets to a warming climate. Here, we propose an ecological genetics approach that can provide insight into the past stability and configuration of the West Antarctic Ice Sheet (WAIS). We propose independent testing of the hypothesis that a trans-Antarctic seaway occurred at the last interglacial. Examination of the genomic signatures of bottom-dwelling marine species using the latest methods can provide an independent window into the integrity of the WAIS more than 100,000 years ago. Periods of connectivity facilitated by trans-Antarctic seaways could be revealed by dating coalescent events recorded in DNA. These methods allow alternative scenarios to be tested against a fit to genomic data. Ideal candidate taxa for this work would need to possess a circumpolar distribution, a benthic habitat, and some level of genetic structure indicated by phylogeographical investigation. The purpose of this perspective piece is to set out an ecological genetics method to help resolve when the West Antarctic Ice Shelf last collapsed.

  5. Genetic characterization of Aberdeen Angus cattle using molecular markers

    Directory of Open Access Journals (Sweden)

    Luciana Pimentel de Mello Klocker Vasconcellos

    2003-01-01

    Full Text Available Aberdeen Angus beef cattle from the Brazilian herd were studied genetically using restriction fragment length polymorphism (RFLP of the kappa-casein - HinfI (CSN3 - HinfI, beta-lactoglobulin - HaeIII (LGB - HaeIII and growth hormone AluI (GH- AluI genes, as well as four microsatellites (TEXAN15, CSFM50, BM1224 and BM7160. The RFLP genotypes were determined using the polymerase chain reaction (PCR followed by digestion with restriction endonucleases and electrophoresis in agarose gels. With the exception of the microsatellite BM7160, which was analyzed in an automatic sequencer, the PCR products were genotyped by silver staining. The allele and genotype frequencies, heterozygosities and gene diversity were estimated. The values for these parameters of variability were comparable to other cattle breeds. The genetic relationship of the Aberdeen Angus to other breeds (Caracu, Canchim, Charolais, Guzerath, Gyr, Nelore, Santa Gertrudis and Simmental was investigated using Nei's genetic distance. Cluster analysis placed the Aberdeen Angus in an isolated group in the Bos taurus breeds branch. This fact is in agreement with the geographic origin of this breed.

  6. Molecular genetic diversity and genetic structure of Vietnamese indigenous pig populations

    DEFF Research Database (Denmark)

    Pham, L. D.; Do, Duy Ngoc; Nam, L. Q.

    2014-01-01

    The study characterized genetic diversity and genetic structure of five indigenous pig populations (Ha Lang, Muong Te, Mong Cai, Lung and Lung Pu), two wild pig populations (Vietnamese and Thai wild pigs) and an exotic pig breed (Yorkshire) using FAO/ISAG recommended 16 microsatellite markers...... in 236 samples. All estimated loci were very polymorphic indicated by high values of polymorphism information content (from 0.76 in S0225 to 0.92 in Sw2410). Indigenous populations had very high level of genetic diversity (mean He = 0.75); of all indigenous breeds, Lung Pu showed highest mean number...... of alleles (MNA = 10.1), gene diversity (He = 0.82), allele richness (5.33) and number of private alleles (10). Thirteen percentage of the total genetic variation observed was due to differences among populations. The neighbour-joining dendrogram obtained from Nei's standard genetic distance differentiated...

  7. Molecular genetics and diagnosis of phenylketonuria: state of the art.

    Science.gov (United States)

    Blau, Nenad; Shen, Nan; Carducci, Carla

    2014-07-01

    Detection of individuals with phenylketonuria (PKU), an autosomal recessively inherited disorder in phenylalanine degradation, is straightforward and efficient due to newborn screening programs. A recent introduction of the pharmacological treatment option emerged rapid development of molecular testing. However, variants responsible for PKU do not all suppress enzyme activity to the same extent. A spectrum of over 850 variants, gives rise to a continuum of hyperphenylalaninemia from very mild, requiring no intervention, to severe classical PKU, requiring urgent intervention. Locus-specific and genotypes database are today an invaluable resource of information for more efficient classification and management of patients. The high-tech molecular methods allow patients' genotype to be obtained in a few days, especially if each laboratory develops a panel for the most frequent variants in the corresponding population.

  8. [Wolfram syndrome: clinical features, molecular genetics of WFS1 gene].

    Science.gov (United States)

    Tanabe, Katsuya; Matsunaga, Kimie; Hatanaka, Masayuki; Akiyama, Masaru; Tanizawa, Yukio

    2015-02-01

    Wolfram syndrome(WFS: OMIM 222300) is a rare recessive neuro-endocrine degenerative disorder, known as DIDMOAD(Diabetes Insipidus, early-onset Diabetes Mellitus, Optic Atrophy and Deafness) syndrome. Most affected individuals carry recessive mutations in the Wolfram syndrome 1 gene(WFS1). The WFS1 protein is an endoplasmic reticulum(ER) embedded protein, which functions in ER calcium homeostasis and unfolded protein responses. Dysregulation of these cellular processes results in the development of ER stress, leading to apoptosis. In addition, abundantly present WFS1 protein in insulin secretory granules plays a role in the intra-granular acidification. However, the phenotypic pleiomorphism and molecular complexity of this disease limit the understanding of WFS. Here we review clinical features, molecular mechanisms and mutations of WFS1 gene that relate to this syndrome.

  9. Update on Anaplastic Thyroid Carcinoma: Morphological, Molecular, and Genetic Features of the Most Aggressive Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Moira Ragazzi

    2014-01-01

    Full Text Available Anaplastic thyroid carcinoma (ATC is the most aggressive form of thyroid cancer. It shows a wide spectrum of morphological presentations and the diagnosis could be challenging due to its high degree of dedifferentiation. Molecular and genetic features of ATC are widely heterogeneous as well and many efforts have been made to find a common profile in order to clarify its cancerogenetic process. A comprehensive review of the current literature is here performed, focusing on histopathological and genetic features.

  10. Molecular genetics of chronic neutrophilic leukemia, chronic myelomonocytic leukemia and atypical chronic myeloid leukemia

    OpenAIRE

    Li, Bing; Gale, Robert Peter; Xiao, Zhijian

    2014-01-01

    According to the 2008 World Health Organization classification, chronic neutrophilic leukemia, chronic myelomonocytic leukemia and atypical chronic myeloid leukemia are rare diseases. The remarkable progress in our understanding of the molecular genetics of myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms has made it clear that there are some specific genetic abnormalities in these 3 rare diseases. At the same time, there is considerable overlap among these disord...

  11. MILLIMETER-SCALE GENETIC GRADIENTS AND COMMUNITY-LEVEL MOLECULAR CONVERGENCE IN A HYPERSALINE MICROBIAL MAT

    Energy Technology Data Exchange (ETDEWEB)

    Fenner, Marsha W; Kunin, Victor; Raes, Jeroen; Harris, J. Kirk; Spear, John R.; Walker, Jeffrey J.; Ivanova, Natalia; Mering, Christian von; Bebout, Brad M.; Pace, Norman R.; Bork, Peer; Hugenholtz, Philip

    2008-04-30

    To investigate the extent of genetic stratification in structured microbial communities, we compared the metagenomes of 10 successive layers of a phylogenetically complex hypersaline mat from Guerrero Negro, Mexico. We found pronounced millimeter-scale genetic gradients that are consistent with the physicochemical profile of the mat. Despite these gradients, all layers displayed near identical and acid-shifted isoelectric point profiles due to a molecular convergence of amino acid usage indicating that hypersalinity enforces an overriding selective pressure on the mat community.

  12. Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique

    OpenAIRE

    Raphael, Kathryn A; Shearman, Deborah CA; Gilchrist, A Stuart; Sved, John A; Morrow, Jennifer L; Sherwin, William B; Riegler, Markus; Frommer, Marianne

    2014-01-01

    Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now a range of classical and molecular genetic tools that can be used to develop improved Sterile Insect Technique (SIT) strains for control ...

  13. Genetic Diversity of Some Sweet Cherry Cultivars Based on Molecular Markers

    Directory of Open Access Journals (Sweden)

    Ioana Virginia Berindean

    2016-11-01

    Full Text Available Sweet cherry (Prunus avium L., originated around the Caspian and Black Sea, is an important fruit tree species of economic interest, and hence, breeding and conservation are requested (. Genetic analysis at the molecular level can be used effectively to study molecular polymorphism existing between intraspecific and interspecific tree species and phylogenetic relationships between them and their hybrids. The purpose of this study was to characterize and determine genetic relationships among the sweet cherry native genotypes belonging to Fruit Research & Development Station Bistrita, Romania, using RAPD markers. To eliminate the existence of possible synonyms from national romanian collection, we collect four Van cultivars, from four different national collection. For molecular analysis of the 16 varieties of sweet cherry were considered 13 RAPD primers selected from the literature. They were later used to determine the genetic variability at the molecular level using PAST program, and the dendrogram was generated based on Jaccard’s genetic distance. The dendrogram constructed by PAST software. The quantity and quality of the DNA obtained was suitable to achieve PCR amplification step. Only seven out of the 13 RAPD primers have generate polymorphic bands. The rest of seven were monomorphics. The most polymorphic primer was OPB10 which generated 11 bands from which 100% were polymorphic.Seven RAPD primers generated a high level of polymorphism which allowed to divide these cherry varieties into two groups according to their genetic geographical origin and the pedigree.

  14. Strengthening molecular genetics and training in craniosynostosis: The need of the hour

    Directory of Open Access Journals (Sweden)

    Mayadhar Barik

    2014-01-01

    Full Text Available Craniosynostosis (CS is premature fusion of skull. It is divided into two groups: Syndromic craniosynostosis (SCS and non-syndromic craniosynostosis (NSC. Its incidence in Indian population is 1:1000 live births where as in the USA it is 1:2500 live births. Its incidence varies from country to country. Molecular genetics having great interest and relevance in medical students, faculty, scientist, pediatric neurosurgeon and staff nurses, our objective was to educate the medical students, residents, researchers, clinicians, pediatric neurosurgeon, anesthetists, pediatricians, staff nurses and paramedics. We summarized here including with diagnosis, investigations, surgical therapy, induction therapy, and molecular therapy. Molecular genetics training is needed to know the information regarding development of skull, cranial connective tissue, craniofacial dysplasia, frame work, network of receptors and its etiopathogenesis. The important part is clinically with molecular therapy (MT how to manage CS in rural sector and metropolitan cities need a special attention.

  15. Pseudomonas viridiflava, a multi host plant pathogen with significant genetic variation at the molecular level.

    Directory of Open Access Journals (Sweden)

    Panagiotis F Sarris

    Full Text Available The pectinolytic species Pseudomonas viridiflava has a wide host range among plants, causing foliar and stem necrotic lesions and basal stem and root rots. However, little is known about the molecular evolution of this species. In this study we investigated the intraspecies genetic variation of P. viridiflava amongst local (Cretan, as well as international isolates of the pathogen. The genetic and phenotypic variability were investigated by molecular fingerprinting (rep-PCR and partial sequencing of three housekeeping genes (gyrB, rpoD and rpoB, and by biochemical and pathogenicity profiling. The biochemical tests and pathogenicity profiling did not reveal any variability among the isolates studied. However, the molecular fingerprinting patterns and housekeeping gene sequences clearly differentiated them. In a broader phylogenetic comparison of housekeeping gene sequences deposited in GenBank, significant genetic variability at the molecular level was found between isolates of P. viridiflava originated from different host species as well as among isolates from the same host. Our results provide a basis for more comprehensive understanding of the biology, sources and shifts in genetic diversity and evolution of P. viridiflava populations and should support the development of molecular identification tools and epidemiological studies in diseases caused by this species.

  16. Systematics and genetic structure of Ponderosae taxa (Pinaceae) inhabiting the mountain islands of the Southwest.

    Science.gov (United States)

    Rehfeldt, G E

    1999-05-01

    The systematics and genetic structure of taxa representing the Ponderosae subsection of genus Pinus were assessed for disjunct, isolated, and peripheral populations occupying the mountain islands of the Southwest. Wind-pollinated progenies of 290 trees were compared in common gardens according to ten variables reflecting allometric, needle, and phenologic characteristics of 2-yr-old trees. The tests also included populations of similar taxa from the Rocky Mountains to the north and the Sierra Madre to the south. Principal component and canonical discriminant analyses demonstrated that the taxa segregated into three distinct groups, one of which contained two subgroups. These groupings collectively accounted for all of the many and confusing taxonomic descriptions that exist for the Ponderosae of the southwest United States and northern Mexico. The results suggested that intertaxa hybrids or hybrid derivatives may have been segregating within the progenies of only three of the parental trees. Hybridization, therefore, appears to be infrequent and inconsequential to the interrelationships among taxa and to contemporary genetic structures of taxa. Univariate analyses showed that the three distinct groups displayed different genetic structures despite similarities in their geographic distributions. While genetic variation within populations of all groups was abundant, a group labeled "quinquefoliata" displayed little variation among populations; one labeled "engelmannii" had abundant interpopulation variation that was largely randomly distributed across the landscape; and in a group containing the subgroups called "scopulorum" and "taxon X," abundant interpopulation variability was arranged systematically along moderately steep clines. These disparate genetic structures showed no apparent effects of the isolated, disjunct, and peripheral conditions under which populations of these taxa exist.

  17. DataGenno: building a new tool to bridge molecular and clinical genetics

    Directory of Open Access Journals (Sweden)

    Fabricio F Costa

    2011-03-01

    Full Text Available Fabricio F Costa1,2, Luciano S Foly1, Marcelo P Coutinho11DataGenno Interactive Research Ltd., Itaperuna, Rio de Janeiro, Brazil; 2Cancer Biology and Epigenomics Program, Children's Memorial Research Center, Northwestern University's Feinberg School of Medicine, Chicago, IL, USAAbstract: Clinical genetics is one of the most challenging fields in medicine, with thousands of children born every year with congenital defects that have no satisfactory diagnosis. There are more than 6,000 known single-gene disorders that can cause birth defects or diseases in approximately 1 in every 200 births. Clinical and molecular information on genetic diseases and syndromes are widespread in the literature, and there are few databases combining this information. Therefore, it is very challenging for health care professionals and researchers to translate the latest advances in science and medicine into effective clinical interventions and new treatments. In order to overcome this obstacle and promote networking, we are building DataGenno, an online medical and scientific portal. DataGenno has been developed to be a source of information on genetic diseases and syndromes for the needs of all heath care professionals and researchers. Our database will be able to integrate both clinical and molecular aspects of genetic diseases in a fully interactive environment. DataGenno’s system already contains clinical and molecular information for 300 diseases, with approximately 6,000 signs and symptoms of these diseases in a database combined with a search engine. Our main goal is to cover all genetic diseases described to date, providing not only clinical information such as morphological and anatomical features but also the most comprehensive molecular genetics/genomics features and available testing information. We are also developing ways to connect DataGenno’s portal with Electronic Health Records in order to improve the efficiency of patient care. Additionally

  18. Genetic Diversity and Molecular Evolution of Chinese Waxy Maize Germplasm

    Science.gov (United States)

    Zheng, Hongjian; Wang, Hui; Yang, Hua; Wu, Jinhong; Shi, Biao; Cai, Run; Xu, Yunbi; Wu, Aizhong; Luo, Lijun

    2013-01-01

    Waxy maize (Zea mays L. var. certaina Kulesh), with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection. PMID:23818949

  19. Molecular Genetic Characterization of Thyroid Dyshormonogenesis in a French Bulldog.

    Science.gov (United States)

    Major, S; Pettigrew, R W; Fyfe, J C

    2015-01-01

    A case of congenital hypothyroidism with goiter (CHG) in a juvenile French bulldog was identified and hypothesized to be caused by dyshormonogenesis of genetic etiology. To describe case management, unusual phenotypic aspects, and a CHG-causing mutation in a French bulldog. Thyroid tissue and blood from a CHG-affected French bulldog and 4 normal control dogs and buccal brush samples of 125 French bulldogs were studied. Standard clinical assessment and laboratory tests were applied. Thyroid peroxidase (TPO) iodide oxidation activity was measured in vitro, and TPO protein was assessed on Western blots. Thyroid peroxidase exons and flanking splice sites were amplified from genomic DNA and sequenced. Thyroid peroxidase cDNA was amplified from thyroid RNA and sequenced. At 9 months of age, the affected dog had signs of cretinism, but near-normal skeletal maturation. The enlarged thyroid glands exhibited noninflammatory fibrosis and aberrant follicular organization. Thyroid peroxidase activity and immunocrossreactive protein were undetectable. There was a T>C mutation of the intron 12 splice donor consensus that caused abnormally spliced mRNA, consistent with absent TPO function. The mutant allele was not observed in 125 clinically normal French bulldogs. Presumptive CHG in a French bulldog with unusual clinical presentation is described. Genetic etiology was confirmed by identifying the underlying TPO mutation. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  20. Molecular Genetic Evidence for Shared Etiology of Autism and Prodigy.

    Science.gov (United States)

    Ruthsatz, Joanne; Petrill, Stephen A; Li, Ning; Wolock, Samuel L; Bartlett, Christopher W

    2015-01-01

    Child prodigies are rare individuals with an exceptional working memory and unique attentional skills that may facilitate the attainment of professional skill levels at an age well before what is observed in the general population. Some characteristics of prodigy have been observed to be quantitatively similar to those observed in autism spectrum disorder (ASD), suggesting possible shared etiology, though objectively validated prodigies are so rare that evidence has been sparse. We performed a family-based genome-wide linkage analysis on 5 nuclear and extended families to search for genetic loci that influence the presence of both prodigy and ASD, assuming that the two traits have the same genetic etiology in the analysis model in order to find shared loci. A shared locus on chromosome 1p31-q21 reached genome-wide significance with two extended family-based linkage methods consisting of the Bayesian PPL method and the LOD score maximized over the trait parameters (i.e., MOD), yielding a simulation-based empirical significance of p = 0.000742 and p = 0.000133, respectively. Within linkage regions, we performed association analysis and assessed if copy number variants could account for the linkage signal. No evidence of specificity for either the prodigy or the ASD trait was observed. This finding suggests that a locus on chromosome 1 increases the likelihood of both prodigy and autism in these families. © 2015 S. Karger AG, Basel.

  1. Genetic and molecular dosimetry of HZE radiation (US-1 RADIAT)

    Science.gov (United States)

    Nelson, Gregory A.; Schubert, W. W.; Kazarians, G. A.; Richards, G. F.; Benton, E. V.; Benton, E. R.; Henke, R. P.

    1995-01-01

    In order to estimate radiation exposure in space, experiments were conducted during the 1st International Microgravity Laboratory (IML-1) mission in order to isolate genetic changes in animal cells caused by cosmic rays. The space measurements were evaluated against results from synthetic cosmic rays produced by particle accelerators on the ground. The biological material used was the tiny soil nematode, Caenorhabditis elegans. The measurements were made by thermoluminescent detectors and plastic nuclear track detectors. The development and the chromosome mechanics in microgravity were studied, and the mutagenesis induced by radiation exposure was analyzed. The results showed that there are no obvious differences in the development, behavior and chromosome mechanics, as a function of gravity unloading (reproduction, self-fertilization and mating of males with hermaphrodites, gross anatomy, symmetry and gametogenesis, pairing, disjoining and recombination of chromosomes). A variety of mutants were isolated, and it was noted that mutants isolated from regions of identified high particles were more severely affected than those isolated by random screening. Linear energy transfer particles seem to favor large scale genetic lesions.

  2. Genetic diversity and molecular characterization of Saccharomyces cerevisiae strains from winemaking environments

    OpenAIRE

    Schuller, Dorit Elisabeth

    2004-01-01

    Tese de doutoramento em Ciências The principal aim of the present work is to assess the genetic diversity of fermenting Saccharomyces cerevisiae strains found in vineyards belonging to the Vinho Verde Region in order to create a strain collection representing the region’s biodiversity wealth as a basis for future strain selection and improvement programs. Validation of molecular techniques for accurate genotyping is an indispensable prerequisite for biogeographical surveys. Molecular ty...

  3. [The research-study of pneumococci transformation in the laboratory, and the rise of bacterial genetics and molecular biology].

    Science.gov (United States)

    Carrada-Bravo, Teodoro

    2016-02-01

    The virulence of pneumococci for mice depends on the production of a polysaccharide-capsule, which encloses the bacteria and protects it against phagocytosis. Capsulated pneumococci yield smooth, brilliant colonies designated S, but mutant strains arise frequently which have lost the capacity to sinthetise the capsule, are avirulent and rough designated R. F. Griffith discovery of bacterial "transformation" in 1928, is a landmark in the history of genetics, because hereditary determinants could be transferred from one bacteria to another, and laid the foundation for the subsequent recognition of deoxyribonucleic acid (DNA) as the hereditary material. A systematic analysis of the chemical nature of the "transforming principle", by O. T. Avery and his colleagues during next 10 years, culminated in a formidable weight of evidence that it possessed all properties of DNA. In 1953, J. D. Watson and F. H. C Crick by a brilliant synthesis, fitted the chemical X-ray diffraction data together into a symmetrical double-helix structure, which possessed the inherent properties of genetic material, and carries the information necessary to direct all biochemical-cellular activities and self-replications. This paper describes de early rise and development of bacterial genetics and molecular biology.

  4. Molecular and morphological systematics of the Ellisellidae (Coelenterata: Octocorallia): Parallel evolution in a globally distributed family of octocorals

    KAUST Repository

    Bilewitch, Jaret P.

    2014-04-01

    The octocorals of the Ellisellidae constitute a diverse and widely distributed family with subdivisions into genera based on colonial growth forms. Branching patterns are repeated in several genera and congeners often display region-specific variations in a given growth form. We examined the systematic patterns of ellisellid genera and the evolution of branching form diversity using molecular phylogenetic and ancestral morphological reconstructions. Six of eight included genera were found to be polyphyletic due to biogeographical incompatibility with current taxonomic assignments and the creation of at least six new genera plus several reassignments among existing genera is necessary. Phylogenetic patterns of diversification of colony branching morphology displayed a similar transformation order in each of the two primary ellisellid clades, with a sea fan form estimated as the most-probable common ancestor with likely origins in the Indo-Pacific region. The observed parallelism in evolution indicates the existence of a constraint on the genetic elements determining ellisellid colonial morphology. However, the lack of correspondence between levels of genetic divergence and morphological diversity among genera suggests that future octocoral studies should focus on the role of changes in gene regulation in the evolution of branching patterns. © 2014 Elsevier Inc.

  5. Physiological, Molecular and Genetic Mechanisms of Long-Term Habituation

    Energy Technology Data Exchange (ETDEWEB)

    Calin-Jageman, Robert J

    2009-09-12

    Work funded on this grant has explored the mechanisms of long-term habituation, a ubiquitous form of learning that plays a key role in basic cognitive functioning. Specifically, behavioral, physiological, and molecular mechanisms of habituation have been explored using a simple model system, the tail-elicited siphon-withdrawal reflex (T-SWR) in the marine mollusk Aplysia californica. Substantial progress has been made on the first and third aims, providing some fundamental insights into the mechanisms by which memories are stored. We have characterized the physiological correlates of short- and long-term habituation. We found that short-term habituation is accompanied by a robust sensory adaptation, whereas long-term habituation is accompanied by alterations in sensory and interneuron synaptic efficacy. Thus, our data indicates memories can be shifted between different sites in a neural network as they are consolidated from short to long term. At the molecular level, we have accomplished microarray analysis comparing gene expression in both habituated and control ganglia. We have identified a network of putatively regulated transcripts that seems particularly targeted towards synaptic changes (e.g. SNAP25, calmodulin) . We are now beginning additional work to confirm regulation of these transcripts and build a more detailed understanding of the cascade of molecular events leading to the permanent storage of long-term memories. On the third aim, we have fostered a nascent neuroscience program via a variety of successful initiatives. We have funded over 11 undergraduate neuroscience scholars, several of whom have been recognized at national and regional levels for their research. We have also conducted a pioneering summer research program for community college students which is helping enhance access of underrepresented groups to life science careers. Despite minimal progress on the second aim, this project has provided a) novel insight into the network mechanisms by

  6. Systematic documentation and analysis of human genetic variation using the microattribution approach

    Science.gov (United States)

    Giardine, Belinda; Borg, Joseph; Higgs, Douglas R.; Peterson, Kenneth R.; Maglott, Donna; Basak, A. Nazli; Clark, Barnaby; Faustino, Paula; Felice, Alex E.; Francina, Alain; Gallivan, Monica V. E.; Georgitsi, Marianthi; Gibbons, Richard J.; Giordano, Piero C.; Harteveld, Cornelis L.; Joly, Philippe; Kanavakis, Emmanuel; Kollia, Panagoula; Menzel, Stephan; Miller, Webb; Moradkhani, Kamran; Old, John; Papachatzopoulou, Adamantia; Papadakis, Manoussos N.; Papadopoulos, Petros; Pavlovic, Sonja; Philipsen, Sjaak; Radmilovic, Milena; Riemer, Cathy; Schrijver, Iris; Stojiljkovic, Maja; Thein, Swee Lay; Traeger-Synodinos, Jan; Tully, Ray; Wada, Takahito; Waye, John; Wiemann, Claudia; Zukic, Branka; Chui, David H. K.; Wajcman, Henri; Hardison, Ross C.; Patrinos, George P.

    2013-01-01

    We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to these disorders, and then implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories 1. A total of 1,941 unique genetic variants in 37 genes, encoding globins (HBA2, HBA1, HBG2, HBG1, HBD, HBB) and other erythroid proteins (ALOX5AP, AQP9, ARG2, ASS1, ATRX, BCL11A, CNTNAP2, CSNK2A1, EPAS1, ERCC2, FLT1, GATA1, GPM6B, HAO2, HBS1L, KDR, KL, KLF1, MAP2K1, MAP3K5, MAP3K7, MYB, NOS1, NOS2, NOS3, NOX3, NUP133, PDE7B, SMAD3, SMAD6, and TOX) are currently documented in these databases with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants and now provides a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The large repository of previously reported data, together with more recent data, acquired by microattribution, demonstrates how the comprehensive documentation of human variation will provide key insights into normal biological processes and how these are perturbed in human genetic disease. Using the microattribution process set out here, datasets which took decades to accumulate for the globin genes could be assembled rapidly for other genes and disease systems. The principles established here for the globin gene system will serve as a model for other systems and the analysis of other common and/or complex human genetic diseases. PMID:21423179

  7. Application of Molecular Genetics to the Investigation of Inherited Bleeding Disorders

    DEFF Research Database (Denmark)

    Lethagen, Stefan Rune; Dunø, Morten; Nielsen, Lars Bo

    2013-01-01

    22. In hemophilia B, more than 1100 unique F9 mutations have been described scattered all over the gene. Carrier analysis, genetic counseling, prenatal and pre-implantation genetic diagnosis are all based on correct identifying the disease-causing mutation. Linkage analysis can be considered when...... the causative mutation is unknown. More rare bleeding disorders are generally recessively inherited, and are often caused by mutations that are specific for individual families, and mutations are scattered throughout the genes. Laboratories performing molecular genetic analyses must have validated internal...

  8. Molecular Genetics of Metal Detoxification: Prospects for Phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Ow, David W. ow@pgec.ams.usda.gov

    2000-09-01

    Unlike compounds that can be broken down, the remediation of most heavy metals and radionuclides requires physical extraction from contaminated sources. Plants can extract inorganics, but effective phytoextraction requires plants that produce high biomass, grow rapidly and possess high capacity-uptake for the inorganic substance. Either hyperaccumulator plants must be bred for increased growth and biomass or hyperaccumulation traits must be engineered into fast growing, high biomass plants. This latter approach requires fundamental knowledge of the molecular mechanisms in the uptake and storage of inorganics. Much has been learned in recent years on how plants and certain fungi chelate and transport selected heavy metals. This progress has been facilitated by the use of Schizosaccharomyces pombe as a model system. The use of a model organism for study permits rapid characterization of the molecular process. As target genes are identified in a model organism, their sequences can be modified for expression in a heterologous host or aid in the search of homologous genes in more complex organisms. Moreover, as plant nutrient uptake is intrinsically linked to the association with rhizospheric fungi, elucidating metal sequestration in this fungus permits additional opportunities for engineering rhizospheric microbes to assist in phytoextraction.

  9. Molecular genetics of glucose-6-phosphate dehydrogenase deficiency in Mexico.

    Science.gov (United States)

    Medina, M D; Vaca, G; Lopez-Guido, B; Westwood, B; Beutler, E

    1997-01-01

    Several studies carried out between 1965 and 1985 showed that G-6-PD deficiency in Mexico is heterogeneous at the biochemical level and that the G-6-PD A- phenotype is relatively common. We have now investigated the molecular basis of G-6-PD deficiency in Mexico. Up-to-date 60 chromosomes with G6PD mutations have been studied, 16 in previous studies and 44 in the present work. Molecular analysis of DNA from G-6-PD deficient Mexican mestizos and their relatives show that G-6-PD A- genotypes are relatively common but also that in Mexico G-6-PD deficiency is heterogeneous at the DNA level. Thus, five different genotypes have been observed: G-6-PD A-(202A/376G) (41 chromosomes), G-6-PD A-(376G/968C) (14 chromosomes), G-6-PD Seattle844C (3 chromosomes), G-6-PD "Mexico City"680A (1 chromosome) and G-6-PD Guadalajara1159T (1 chromosome). The G-6-PD A-(202A/376G), G-6-PD A-(376G/968C) and G-6-PD Seattle844C mutations in Mexico are on the same Pvu II/ Pst I/ 1311 / Nla III haplotypes as found in individuals from Africa, Spain and the Canary Islands. Consequently, these mutations were probably imported to Mexico through African slaves and/or the Spanish immigrants during and after the colonization.

  10. Transfer of genetic therapy across human populations: molecular targets for increasing patient coverage in repeat expansion diseases.

    Science.gov (United States)

    Varela, Miguel A; Curtis, Helen J; Douglas, Andrew G L; Hammond, Suzan M; O'Loughlin, Aisling J; Sobrido, Maria J; Scholefield, Janine; Wood, Matthew J A

    2016-02-01

    Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets.

  11. Molecular genetic techniques for gene manipulation in Candida albicans

    Science.gov (United States)

    Xu, Qiu-Rong; Yan, Lan; Lv, Quan-Zhen; Zhou, Mi; Sui, Xue; Cao, Yong-Bing; Jiang, Yuan-Ying

    2014-01-01

    Candida albicans is one of the most common fungal pathogen in humans due to its high frequency as an opportunistic and pathogenic fungus causing superficial as well as invasive infections in immunocompromised patients. An understanding of gene function in C. albicans is necessary to study the molecular basis of its pathogenesis, virulence and drug resistance. Several manipulation techniques have been used for investigation of gene function in C. albicans, including gene disruption, controlled gene expression, protein tagging, gene reintegration, and overexpression. In this review, the main cassettes containing selectable markers used for gene manipulation in C. albicans are summarized; the advantages and limitations of these cassettes are discussed concerning the influences on the target gene expression and the virulence of the mutant strains. PMID:24759671

  12. Genetics of anxiety disorders: Genetic epidemiological and molecular studies in humans.

    Science.gov (United States)

    Shimada-Sugimoto, Mihoko; Otowa, Takeshi; Hettema, John M

    2015-07-01

    This review provides a broad overview of the state of research in the genetics of anxiety disorders (AD). Genetic epidemiological studies report a moderate level of familial aggregation (odds ratio: 4-6) and heritability estimates are about 30-50%. Twin studies suggest that the genetic architecture of AD is not isomorphic with their classifications, sharing risk factors with each other. So far, linkage and association studies of AD have produced inconclusive results. Genome-wide association studies of AD can provide an unbiased survey of common genetic variations across the entire genome. Given the shared causes of AD that transcend our current diagnostic classifications, clustering anxiety phenotypes into broader groups may be a powerful approach to identifying susceptibility locus for AD. Using such a shared genetic risk factor, meta-analyses of genome-wide association studies of AD conducted by large consortia are needed. Environmental factors also make a substantial contribution to the cause of AD. Although candidate gene studies of gene by environmental (G × E) interaction have appeared recently, no genome-wide search for G × E interactions have been performed. Epigenetic modification of DNA appears to have important effects on gene expression mediating environmental influences on disease risk. Given that G × E can be linked to an epigenetic modification, a combination analysis of genome-wide G × E interaction and methylation could be an alternative method to find risk variants for AD. This genetic research will enable us to utilize more effective strategies for the prevention and treatment of AD in the near future. © 2015 The Authors. Psychiatry and Clinical Neurosciences © 2015 Japanese Society of Psychiatry and Neurology.

  13. Genetics and molecular pathology of Stargardt-like macular degeneration.

    Science.gov (United States)

    Vasireddy, Vidyullatha; Wong, Paul; Ayyagari, Radha

    2010-05-01

    Stargardt-like macular degeneration (STGD3) is an early onset, autosomal dominant macular degeneration. STGD3 is characterized by a progressive pathology, the loss of central vision, atrophy of the retinal pigment epithelium, and accumulation of lipofuscin, clinical features that are also characteristic of age-related macular degeneration. The onset of clinical symptoms in STGD3, however, is typically observed within the second or third decade of life (i.e., starting in the teenage years). The clinical profile at any given age among STGD3 patients can be variable suggesting that, although STGD3 is a single gene defect, other genetic or environmental factors may play a role in moderating the final disease phenotype. Genetic studies localized the STGD3 disease locus to a small region on the short arm of human chromosome 6, and application of a positional candidate gene approach identified protein truncating mutations in the elongation of very long chain fatty acids-4 gene (ELOVL4) in patients with this disease. The ELOVL4 gene encodes a protein homologous to the ELO group of proteins that participate in fatty acid elongation in yeast. Pathogenic mutations found in the ELOVL4 gene result in altered trafficking of the protein and behave with a dominant negative effect. Mice carrying an Elovl4 mutation developed photoreceptor degeneration and depletion of very long chain fatty acids (VLCFA). ELOVL4 protein participates in the synthesis of fatty acids with chain length longer than 26 carbons. Studies on ELOVL4 indicate that VLCFA may be necessary for normal function of the retina, and the defective protein trafficking and/or altered VLCFA elongation underlies the pathology associated with STGD3. Determining the role of VLCFA in the retina and discerning the implications of abnormal trafficking of mutant ELOVL4 and depleted VLCFA content in the pathology of STGD3 will provide valuable insight in understanding the retinal structure, function, and pathology underlying STGD3

  14. Molecular genetic analysis of Type II diabetes associated m.3243A ...

    African Journals Online (AJOL)

    Saidul Abrar

    Molecular genetic analysis of Type II diabetes associated m.3243A>G mitochondrial DNA mutation in a Pakistani family. Saidul Abrar a, Khushi Muhammad b, Hasnain Zaman c, Suleman Khan b, Faisal Nouroz a,d, Nousheen Bibi a,* a Department of Bioinformatics, Hazara University Mansehra, Pakistan b Department of ...

  15. Scarlet Fever Upsurge in England and Molecular-Genetic Analysis in North-West London, 2014

    Centers for Disease Control (CDC) Podcasts

    2016-08-16

    Sarah Gregory reads an abridged version of the article, Scarlet Fever Upsurge in England and Molecular-Genetic Analysis in North-West London, 2014.  Created: 8/16/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/16/2016.

  16. Molecular genetics of lignin-degrading fungi and their applications in organopollutant degradation

    Science.gov (United States)

    Daniel Cullen

    2002-01-01

    This chapter provides an overview of the physiology and associated molecular genetics of wood- decaying fungi as they relate to organopollutant degradation. White-rot fungi are characterized by an ability to fragment all major structural polymers of wood including lignin. More poorly understood are the brown-rot fungi, which rapidly depolymerize cellulosic materials...

  17. Studying Human Disease Genes in "Caenorhabditis Elegans": A Molecular Genetics Laboratory Project

    Science.gov (United States)

    Cox-Paulson, Elisabeth A.; Grana, Theresa M.; Harris, Michelle A.; Batzli, Janet M.

    2012-01-01

    Scientists routinely integrate information from various channels to explore topics under study. We designed a 4-wk undergraduate laboratory module that used a multifaceted approach to study a question in molecular genetics. Specifically, students investigated whether "Caenorhabditis elegans" can be a useful model system for studying genes…

  18. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches

    Directory of Open Access Journals (Sweden)

    Li Hai-Long

    2011-06-01

    Full Text Available Abstract Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp..

  19. Merging molecular data for evaluating cross country genetic diversity of pigs.

    Science.gov (United States)

    Integration of molecular data generated by microsatellite panels recommended by FAO around the world should be initiated in order to accomplish objectives stated in the Global Plan of Action for Animal Genetic Resources. To that end microsatellite datasets from U.S. (n=179, including imported Chines...

  20. Microvillus Inclusion Disease: Prenatal Ultrasound Findings, Molecular Diagnosis and Genetic Counseling of Congenital Diarrhea

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2010-12-01

    Conclusion: Prenatal sonographic identification of dilated bowel loops in association with polyhydramnios suggests congenital diarrhea and a differential diagnosis of microvillus inclusion disease in addition to congenital chloride diarrhea and congenital sodium diarrhea. Molecular analysis of the MYO5B gene is helpful in genetic counseling and prenatal diagnosis of recurrent microvillus inclusion disease in subsequent pregnancies.

  1. The Genetic and Molecular Studies of Hepatitis C Virus: A Review ...

    African Journals Online (AJOL)

    Persistent infection with Hepatitis c virus (HCV) has emerged as one of the primary causes of chronic liver disease with an estimated 170 million people infected by HCV, more than 4 times the number of people living with HIV throughout the world. The present review looks at the genetic and molecular nature of this virus ...

  2. Molecular genetic features and risk assessment in a series of 30 ...

    African Journals Online (AJOL)

    Background: The objective of the study was to investigate the relationship between molecular genetic features and the standard criteria of risk assessment in patients affected by gastrointestinal stromal tumours (GISTs). Methods: A review was conducted of a series of 30 patients, with a mean age of 67 years, who underwent ...

  3. Narcolepsy and familial advanced sleep-phase syndrome: molecular genetics of sleep disorders.

    NARCIS (Netherlands)

    Tafti, M.; Dauvilliers, Y.; Overeem, S.

    2007-01-01

    Sleep disorders are very prevalent and represent an emerging worldwide epidemic. However, research into the molecular genetics of sleep disorders remains surprisingly one of the least active fields. Nevertheless, rapid progress is being made in several prototypical disorders, leading recently to the

  4. Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers

    Science.gov (United States)

    Pomegranate (Punica granatum L.) is one of the oldest known edible fruits and more and more it arouse interest of scientific community given its numerous biological activities. However, information about its genetic resources and characterization using reliable molecular markers are still scarce. In...

  5. Are there depression and anxiety genetic markers and mutations? A systematic review.

    Science.gov (United States)

    Lacerda-Pinheiro, Sally França; Pinheiro Junior, Roberto Flávio Fontenelle; Pereira de Lima, Marcos Antonio; Lima da Silva, Claúdio Gleidiston; Vieira dos Santos, Maria do Socorro; Teixeira Júnior, Antonio Gilvan; Lima de Oliveira, Pedro Neto; Ribeiro, Karla Denise Barros; Rolim-Neto, Modesto Leite; Bianco, Bianca Alves Vieira

    2014-10-01

    Genetic factors may encourage or even cause the occurrence of mood disorders such as anxiety and/or depression. However, despite the significant amount of work and sophisticated technology is not fully elucidated which genes or regions of nuclear or mitochondrial DNA, or which types of genetic changes, alone or in combination, can represent reliable genetic markers of anxiety and/or depression. To identify whether there are genetic changes that can cause depression or anxiety and if there are genetic markers that can be used to detect these changes. A systematic review of 01.01.2004 to 03.28.2014 was held by VHL (Virtual Health Library). The search was performed with the descriptors ׳׳anxiety׳׳, ׳׳depression׳׳, "mutation" and "genetic markers׳׳. The selected articles were indexed in MEDLINE. The information pertinent to the study was selected, categorized and analyzed. Of the 374 articles found, 29 met the eligibility criteria. FMR1 gene polymorphisms, dopaminergic (DAT, DRD, COMT), serotonin (5-HTTLPR, HTR1A, HTR2A), interleukins, MCR1, HCN (potassium channel), neurorregulinas, GABAergic (GABA, GAD, DBI) DBI, GABA (Gabra) receptors and GAD genes (GAD1, GAD2) appear to contribute to generate condition of depression or anxiety like. Mutations in mitochondrial DNA in 124pb allele of D2S2944 in ofil 1 and 2 loci of chromosomes 4 and 7, respectively, and the chromosomes 8p, 17p and 15q appear to be associated with the origin of depression or anxiety. Some studies show only associations with one of the disorders, mainly anxiety. Few have shown association with both simultaneously. Other studies showed specific association of gender, or even specific ethnic groups. It was noticed, controversies over certain markers. Interesting results were observed in combination of changes, especially in cases of SNPs, indicating that perhaps this is the most appropriate way to find reliable markers. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Molecular genetics of a Chinese family with spinocerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Dan-dan WU

    2015-10-01

    Full Text Available Objective To study the genotype of the members of a Chinese family with spinocerebellar ataxia (SCA. Methods The peripheral blood samples of 6 patients and 40 asymptomatic people belonged to the family were collected. Referring to the clinical manifestations of the proband and second-generation sequencing results, the CAG trinucleotide repeats of the pathogenic gene ATXN2 were amplified by polymerase chain reaction (PCR. The repeated times of the trinucleotide in normally and abnormally amplified alleles were defined by agarose gel electrophoresis and PCR products sequencing. Results Autosomal dominant heredity was the cause of the SCA in this family. Six out of 46 in the fourth-generation were SCA2 patients, 7 were the carriers of pathogenic allele. The repeated times of CAG trinucleotide were within the normal range in one of the two alleles of ATXN2, but they were in abnormal range in the another one. The repeated times of CAG trinucleotide were 40-46 in abnormal alleles of patients. Conclusion Autosomal dominant heredity SCA2 has been diagnosed in this family caused by the dynamic nutation of CAG trinucleotide repeats, and 7 pathogenic allele carriers in this family were confirmed by genetic diagnosis. DOI: 10.11855/j.issn.0577-7402.2015.08.07

  7. Genetic Cholestasis: Lessons from the Molecular Physiology of Bile Formation

    Directory of Open Access Journals (Sweden)

    Peter LM Jansen

    2000-01-01

    Full Text Available Progressive familial intrahepatic cholestasis (PFIC is a group of severe genetic cholestatic liver diseases of early life. PFIC types 1 and 2 are characterized by cholestasis and a low to normal serum gamma-glutamyltransferase (GGT activity, whereas in PFIC type 3, the serum GGT activity is elevated. PFIC types 1 and 2 occur due to mutations in loci at chromosome 18 and chromosome 2, respectively. The pathophysiology of PFIC type 1 is not well understood. PFIC types 2 and 3 are caused by transport defects in the liver affecting the hepatobiliary secretion of bile acids and phospholipids, respectively. Benign recurrent intrahepatic cholestasis (BRIC is linked to a mutation in the same familial intrahepatic cholestasis 1 locus at chromosome 18. Defects of bile acid synthesis may be difficult to differentiate from these transport defects.Intrahepatic cholestasis of pregnancy (ICP appears to be related to these cholestatic diseases. For example, heterozygosity in families with PFIC type 3 is associated with ICP, but ICP has also been reported in families with BRIC.In Dubin-Johnson syndrome there is no cholestasis; only the hepatobiliary transport of conjugated bilirubin is affected. This, therefore, is a mild disease, and patients have a normal lifespan.

  8. Direct-to-consumer genetic testing: a systematic review of european guidelines, recommendations, and position statements.

    Science.gov (United States)

    Rafiq, Muhammad; Ianuale, Carolina; Ricciardi, Walter; Boccia, Stefania

    2015-10-01

    Personalized healthcare is expected to yield promising results, with a paradigm shift toward more personalization in the practice of medicine. This emerging field has wide-ranging implications for all the stakeholders. Commercial tests in the form of multiplex genetic profiles are currently being provided to consumers, without the physicians' consultation, through the Internet, referred to as direct-to-consumer genetic tests (DTC GT). The objective was to review all the existing European guidelines on DTC GT, and its associated interventions, to list all the supposed benefits and harms, issues and concerns, and recommendations. We conducted a systematic review of position statements, policies, guidelines, and recommendations, produced by professional organizations or other relevant bodies for use of DTC GT in Europe. Seventeen documents met the inclusion criteria, which were subjected to thematic analysis, and the texts were coded for statements related to use of DTC GT. Professional societies and associations are currently more suggestive of potential disadvantages of DTC GT, recommending improved genetic literacy of both populations and health professionals, and implementation research on the genetic tests to integrate public health genomics into healthcare systems.

  9. Hereditary breast and ovarian cancer: successful systematic implementation of a group approach to genetic counselling.

    Science.gov (United States)

    Benusiglio, Patrick R; Di Maria, Marina; Dorling, Leila; Jouinot, Anne; Poli, Antoine; Villebasse, Sophie; Le Mentec, Marine; Claret, Béatrice; Boinon, Diane; Caron, Olivier

    2017-01-01

    The increase in referrals to cancer genetics clinics, partially associated with the "Angelina Jolie effect", presents a challenge to existing services, many are already running at full capacity. More efficient ways to deliver genetic counselling are therefore urgently needed. We now systematically offer group instead of standard individual counselling to patients with suspected Hereditary Breast and Ovarian Cancer. Group sessions last 30 min. The first twenty consist of a presentation by the genetic counsellor, the next ten of a discussion involving a cancer geneticist and a psychologist. A short individual consultation ensues, where personal and family issues are addressed and consent obtained. Blood is drawn afterwards. Satisfaction and knowledge are evaluated. We report data for the Oct-2014-Aug-2015 period. 210 patients attended group counselling, up to eight simultaneously. We always fitted them within a 4-h time frame. Mean satisfaction score was 41/43. Knowledge scores increased from 3.1/6 to 4.9/6 post-counselling (p value counselling, we have withstood increases in referrals without compromising care. The "Angelina Jolie effect" and rapid developments in personalized medicine threaten to overwhelm cancer genetics clinics. In this context, our innovative approach should ensure that all patients have access to approved services.

  10. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws

    Science.gov (United States)

    Šmajs, David; Norris, Steven J.; Weinstock, George M.

    2013-01-01

    Pathogenic uncultivable treponemes, similar to syphilis-causing Treponema pallidum subspecies pallidum, include T. pallidum ssp. pertenue, T. pallidum ssp. endemicum and Treponema carateum, which cause yaws, bejel and pinta, respectively. Genetic analyses of these pathogens revealed striking similarity among these bacteria and also a high degree of similarity to the rabbit pathogen, T. paraluiscuniculi, a treponeme not infectious to humans. Genome comparisons between pallidum and non-pallidum treponemes revealed genes with potential involvement in human infectivity, whereas comparisons between pallidum and pertenue treponemes identified genes possibly involved in the high invasivity of syphilis treponemes. Genetic variability within syphilis strains is considered as the basis of syphilis molecular epidemiology with potential to detect more virulent strains, whereas genetic variability within a single strain is related to its ability to elude the immune system of the host. Genome analyses also shed light on treponemal evolution and on chromosomal targets for molecular diagnostics of treponemal infections. PMID:22198325

  11. Impact of Professional Learning on Teachers' Representational Strategies and Students' Cognitive Engagement with Molecular Genetics Concepts

    Science.gov (United States)

    Nichols, Kim

    2018-01-01

    A variety of practices and specialised representational systems are required to understand, communicate and construct molecular genetics knowledge. This study describes teachers' use of multimodal representations of molecular genetics concepts and how their strategies and choice of resources were interpreted, understood and used by students to…

  12. 76 FR 6623 - Molecular and Clinical Genetics Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-02-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0066] Molecular and Clinical Genetics Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY... public. Name of Committee: Molecular and Clinical Genetics Panel of the Medical Devices Advisory...

  13. Clinical, biochemical and molecular genetic correlations in adenylosuccinate lyase deficiency.

    Science.gov (United States)

    Race, V; Marie, S; Vincent, M F; Van den Berghe, G

    2000-09-01

    Adenylosuccinate lyase (ADSL) deficiency (MIM 103050) is an autosomal recessive inborn error of purine synthesis characterized by the accumulation in body fluids of succinylaminoimidazolecarboxamide (SAICA) riboside and succinyladenosine (S-Ado), the dephosphorylated derivatives of the two substrates of the enzyme. Because ADSL-deficient patients display widely variable degrees of psychomotor retardation, we have expressed eight mutated ADSL enzymes as thioredoxin fusions and compared their properties with the clinical and biochemical characteristics of 10 patients. Three expressed mutated ADSL enzymes (M26L, R426H and T450S) were thermolabile, four (A2V, R141W, R303C and S395R) were thermostable and one (del206-218), was inactive. Thermolabile mutations decreased activities with SAICA ribotide (SAICAR) and adenylosuccinate (S-AMP) in parallel, or more with SAICAR than with S-AMP. Patients homozygous for one of these mutations, R426H, displayed similarly decreased ADSL activities in their fibroblasts, S-Ado:SAICA riboside ratios of approximately 1 in their cerebrospinal fluid and were profoundly retarded. With the exception of A2V, thermostable mutations decreased activity with S-AMP to a much more marked extent than with SAICAR. Two unrelated patients homozygous for one of the thermostable mutations, R303C, also displayed a much more marked decrease in the activity of fibroblast ADSL with S-AMP than with SAICAR, had S-Ado:SAICA riboside ratios between 3 and 4 in their cerebrospinal fluid and were mildly retarded. These results suggest that, in some cases, the genetic lesion of ADSL determines the ratio of its activities with S-AMP versus SAICAR, which in turn defines the S-Ado:SAICA riboside ratio and the patients' mental status.

  14. Clinical and Molecular Genetic Features of Autoinflammatory Syndromes in Children

    Directory of Open Access Journals (Sweden)

    Е. I. Alexeeva

    2015-01-01

    Full Text Available Objective: Our aim was to study the prevalence and clinical features of autoinflammatory syndromes among patients with systemic juvenile idiopathic arthritis. Methods: A prospective nonrandomized study was conducted. All its members have been studied for mutations in TNFRSF1A and NLRP3 genes by the sequencing method. Results: 90 children (27 boys, 63 girls aged from 1 to 17 (average age 8.2 years, with a guide diagnosis: «Systemic juvenile idiopathic arthritis», were examined. As a result, 10 (14% patients showed mutations in TNFRSF1A gene, leading to the development of TRAPS-syndrome (8 had the most common mutation of R92Q; 3 — not previously described mutations in NLRP3 gene. 2 patients had the diagnosis of CINCA/NOMID Syndrome, 1 — Muckle–Wells Syndrome. In three cases, mutations leading to the development of TRAPS-syndromethe were identified in the first line of descent. Classical examples of autoinflammatory syndromes such as cryopyrin-associated periodic syndrome (CAPS, and tumor necrosis factor receptor associated periodic syndrome (TRAPS. The data about their pathogenesis, clinical features, diagnosis and treatment is presented. Conclusion: It is shown that early detection and adequate treatment of patients with autoinflammatory syndromes, characterized by severe disease and serious prognosis, is difficult due to lack of awareness of pediatricians and unavailability of genetic diagnosis of these syndromes. The necessity of the development of a universal model of the diagnostic algorithm for identification of autoinflammatory syndromes using next-generation sequencing technologies is grounded. 

  15. Internet-Based Direct-to-Consumer Genetic Testing: A Systematic Review

    Science.gov (United States)

    Rubinelli, Sara; Ceretti, Elisabetta; Gelatti, Umberto

    2015-01-01

    Background Direct-to-consumer genetic tests (DTC-GT) are easily purchased through the Internet, independent of a physician referral or approval for testing, allowing the retrieval of genetic information outside the clinical context. There is a broad debate about the testing validity, their impact on individuals, and what people know and perceive about them. Objective The aim of this review was to collect evidence on DTC-GT from a comprehensive perspective that unravels the complexity of the phenomenon. Methods A systematic search was carried out through PubMed, Web of Knowledge, and Embase, in addition to Google Scholar according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist with the key term “Direct-to-consumer genetic test.” Results In the final sample, 118 articles were identified. Articles were summarized in five categories according to their focus on (1) knowledge of, attitude toward use of, and perception of DTC-GT (n=37), (2) the impact of genetic risk information on users (n=37), (3) the opinion of health professionals (n=20), (4) the content of websites selling DTC-GT (n=16), and (5) the scientific evidence and clinical utility of the tests (n=14). Most of the articles analyzed the attitude, knowledge, and perception of DTC-GT, highlighting an interest in using DTC-GT, along with the need for a health care professional to help interpret the results. The articles investigating the content analysis of the websites selling these tests are in agreement that the information provided by the companies about genetic testing is not completely comprehensive for the consumer. Given that risk information can modify consumers’ health behavior, there are surprisingly few studies carried out on actual consumers and they do not confirm the overall concerns on the possible impact of DTC-GT. Data from studies that investigate the quality of the tests offered confirm that they are not informative, have little predictive

  16. Chemical Genetics — A Versatile Method to Combine Science and Higher Level Teaching in Molecular Genetics

    Directory of Open Access Journals (Sweden)

    Björn Sandrock

    2012-10-01

    Full Text Available Phosphorylation is a key event in many cellular processes like cell cycle, transformation of environmental signals to transcriptional activation or polar growth. The chemical genetics approach can be used to analyse the effect of highly specific inhibition in vivo and is a promising method to screen for kinase targets. We have used this approach to study the role of the germinal centre kinase Don3 during the cell division in the phytopathogenic fungus Ustilago maydis. Due to the easy determination of the don3 phenotype we have chosen this approach for a genetic course for M.Sc. students and for IMPRS (International Max-Planck research school students. According to the principle of “problem-based learning” the aim of this two-week course is to transfer knowledge about the broad spectrum of kinases to the students and that the students acquire the ability to design their own analog-sensitive kinase of interest. In addition to these training goals, we benefit from these annual courses the synthesis of basic constructs for genetic modification of several kinases in our model system U. maydis.

  17. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    International Nuclear Information System (INIS)

    Sze, Heven

    2008-01-01

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular (Ca2+) during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  18. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    Energy Technology Data Exchange (ETDEWEB)

    Heven Sze

    2008-06-22

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular [Ca2+] during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  19. Association between Genetic Variants and Diabetes Mellitus in Iranian Populations: A Systematic Review of Observational Studies

    Science.gov (United States)

    Khodaeian, Mehrnoosh; Enayati, Samaneh; Tabatabaei-Malazy, Ozra; Amoli, Mahsa M.

    2015-01-01

    Introduction. Diabetes mellitus as the most prevalent metabolic disease is a multifactorial disease which is influenced by environmental and genetic factors. In this systematic review, we assessed the association between genetic variants and diabetes/its complications in studies with Iranian populations. Methods. Google Scholar, PubMed, Scopus, and Persian web databases were systematically searched up to January 2014. The search terms were “gene,” “polymorphism,” “diabetes,” and “diabetic complications”; nephropathy, retinopathy, neuropathy, foot ulcer, and CAD (coronary artery diseases); and Persian equivalents. Animal studies, letters to editor, and in vitro studies were excluded. Results. Out of overall 3029 eligible articles, 88 articles were included. We found significant association between CTLA-4, IL-18, VDR, TAP2, IL-12, and CD4 genes and T1DM, HNFα and MODY, haptoglobin, paraoxonase, leptin, TCF7L2, calreticulin, ERα, PPAR-γ2, CXCL5, calpain-10, IRS-1 and 2, GSTM1, KCNJ11, eNOS, VDR, INSR, ACE, apoA-I, apo E, adiponectin, PTPN1, CETP, AT1R, resistin, MMP-3, BChE K, AT2R, SUMO4, IL-10, VEGF, MTHFR, and GSTM1 with T2DM or its complications. Discussion. We found some controversial results due to heterogeneity in ethnicity and genetic background. We thought genome wide association studies on large number of samples will be helpful in identifying diabetes susceptible genes as an alternative to studying individual candidate genes in Iranian populations. PMID:26587547

  20. Molecular and genetic epidemiology of cancer in low- and medium-income countries.

    Science.gov (United States)

    Malhotra, Jyoti

    2014-01-01

    Genetic and molecular factors can play an important role in an individual's cancer susceptibility and response to carcinogen exposure. Cancer susceptibility and response to carcinogen exposure can be either through inheritance of high penetrance but rare germline mutations that constitute heritable cancer syndromes, or it can be inherited as common genetic variations or polymorphisms that are associated with low to moderate risk for development of cancer. These polymorphisms can interact with environmental exposures and can influence an individual's cancer risk through multiple pathways, including affecting the rate of metabolism of carcinogens or the immune response to these toxins. Thus, these genetic polymorphisms can account for some of the geographical differences seen in cancer prevalence between different populations. This review explores the role of molecular epidemiology in the field of cancer prevention and control in low- and medium-income countries. Using data from Human Genome Project and HapMap Project, genome-wide association studies have been able to identify multiple susceptibility loci for different cancers. The field of genetic and molecular epidemiology has been further revolutionized by the discovery of newer, faster, and more efficient DNA-sequencing technologies including next-generation sequencing. The new DNA-sequencing technologies can play an important role in planning and implementation of cancer prevention and screening strategies. More research is needed in this area, especially in investigating new biomarkers and measuring gene-environment interactions. Copyright © 2014 Icahn School of Medicine at Mount Sinai. Published by Elsevier Inc. All rights reserved.

  1. Destructive effects of smoking on molecular and genetic factors of periodontal disease

    Directory of Open Access Journals (Sweden)

    Hanioka Takashi

    2010-02-01

    Full Text Available Abstract Many epidemiological evidences have proven the association between smoking and periodontal disease. The causality can be further established by linking findings of traditional epidemiological studies with the developments in molecular techniques that occurred in the last decade. The present article reviews recent studies that address the effect of smoking on molecular and genetic factors in periodontal disease. Most findings support the fact that tobacco smoking modulates destruction of the periodontium through different pathways: microcirculatory and host immune systems, connective tissue, and bone metabolism. Although smokers experience an increased burden of inflammatory responses to microbial challenges compared to non-smokers, understanding the association between smoking and periodontal diseases involves substantial problems with respect to accuracy of measurements, and particularly, sampling of many subjects. It remains unclear whether genetic susceptibility to periodontal disease is influenced by exposure to smoking or the effect of smoking on periodontal disease is influenced by genetic susceptibility. Employment of molecular techniques may play a key role in further elucidation of mechanisms linking smoking and periodontal destruction, the direct relationship as environmental factors and indirect relationship through genetic factors.

  2. Destructive effects of smoking on molecular and genetic factors of periodontal disease.

    Science.gov (United States)

    Ojima, Miki; Hanioka, Takashi

    2010-02-20

    Many epidemiological evidences have proven the association between smoking and periodontal disease. The causality can be further established by linking findings of traditional epidemiological studies with the developments in molecular techniques that occurred in the last decade. The present article reviews recent studies that address the effect of smoking on molecular and genetic factors in periodontal disease. Most findings support the fact that tobacco smoking modulates destruction of the periodontium through different pathways: microcirculatory and host immune systems, connective tissue, and bone metabolism. Although smokers experience an increased burden of inflammatory responses to microbial challenges compared to non-smokers, understanding the association between smoking and periodontal diseases involves substantial problems with respect to accuracy of measurements, and particularly, sampling of many subjects. It remains unclear whether genetic susceptibility to periodontal disease is influenced by exposure to smoking or the effect of smoking on periodontal disease is influenced by genetic susceptibility. Employment of molecular techniques may play a key role in further elucidation of mechanisms linking smoking and periodontal destruction, the direct relationship as environmental factors and indirect relationship through genetic factors.

  3. Morphological descriptors and ISSR molecular markers in the evaluation of genetic variability of Tectona grandis genotypes.

    Science.gov (United States)

    Chimello, A M; Jesus, J G; Teodoro, P E; Rossi, A A B; Araújo, K L; Marostega, T N; Neves, L G; Barelli, M A A

    2017-05-25

    This study aimed to evaluate the genetic variability of the teak germplasm bank, using morphological traits and inter-simple sequence repeat molecular markers. Thirty clones were evaluated in a randomized complete block design with three replicates, and each plot was composed of three plants. A joint analysis of quantitative and qualitative variables was performed using the Gower algorithm. Quantitative, qualitative, and molecular variables were analyzed simultaneously using the Ward-MLM procedure. There is genetic variability among the 30 teak genotypes studied, considering the quantitative, qualitative, and molecular variables by the Ward-MLM statistical procedure. Morphological traits used proved to be efficient for the study of genetic variability; however, it was not possible to compose a descriptor table for clonal teak genotypes based on the traits evaluated. The Gower method was efficient in discriminating the groups, demonstrating that the simultaneous analysis of qualitative and quantitative data is feasible and can allow greater efficiency in the knowledge of the variability among teak genotypes. The genotype 22 showed to be the most divergent compared to the other genotypes, except for the cluster of genotypes by the UPGMA method based on the Gower distance obtained by the Ward-MLM procedure, which formed a group with genotypes 9 and 30, in the morphological and molecular analyses and was grouped alone.

  4. The Molecular Epidemiology and Genetic Environment of Carbapenemases Detected in Africa.

    Science.gov (United States)

    Sekyere, John Osei; Govinden, Usha; Essack, Sabiha

    2016-01-01

    Research articles describing carbapenemases and their genetic environments in Gram-negative bacteria were reviewed to determine the molecular epidemiology of carbapenemases in Africa. The emergence of resistance to the carbapenems, the last resort antibiotic for difficult to treat bacterial infections, affords clinicians few therapeutic options, with a resulting increase in morbidities, mortalities, and healthcare costs. However, the molecular epidemiology of carbapenemases throughout Africa is less described. Research articles and conference proceedings describing the genetic environment and molecular epidemiology of carbapenemases in Africa were retrieved from Google Scholar, Scifinder, Pubmed, Web of Science, and Science Direct databases. Predominant carbapenemase genes so far described in Africa include the blaOXA-48 type, blaIMP, blaVIM, and blaNDM in Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter cloacae, Citrobacter spp., and Escherichia coli carried on various plasmid types and sizes, transposons, and integrons. Class D and class B carbapenemases, mainly prevalent in A. baumannii, K. pneumoniae, E. cloacae, Citrobacter spp., and E. coli were the commonest carbapenemases. Carbapenemases are mainly reported in North and South Africa as under-resourced laboratories, lack of awareness and funding preclude the detection and reporting of carbapenemase-mediated resistance. Consequently, the true molecular epidemiology of carbapenemases and their genetic environment in Africa is still unknown.

  5. Molecular genetics and genomics generate new insights into invertebrate pest invasions.

    Science.gov (United States)

    Kirk, Heather; Dorn, Silvia; Mazzi, Dominique

    2013-07-01

    Invertebrate pest invasions and outbreaks are associated with high social, economic, and ecological costs, and their significance will intensify with an increasing pressure on agricultural productivity as a result of human population growth and climate change. New molecular genetic and genomic techniques are available and accessible, but have been grossly underutilized in studies of invertebrate pest invasions, despite that they are useful tools for applied pest management and for understanding fundamental features of pest invasions including pest population demographics and adaptation of pests to novel and/or changing environments. Here, we review current applications of molecular genetics and genomics in the study of invertebrate pest invasions and outbreaks, and we highlight shortcomings from the current body of research. We then discuss recent conceptual and methodological advances in the areas of molecular genetics/genomics and data analysis, and we highlight how these advances will further our understanding of the demographic, ecological, and evolutionary features of invertebrate pest invasions. We are now well equipped to use molecular data to understand invertebrate dispersal and adaptation, and this knowledge has valuable applications in agriculture at a time when these are critically required.

  6. Porphyrin-sensitized solar cells: systematic molecular optimization, coadsorption and cosensitization.

    Science.gov (United States)

    Song, Heli; Liu, Qingyun; Xie, Yongshu

    2018-02-15

    As a promising low-cost solar energy conversion technique, dye-sensitized solar cells have undergone spectacular development since 1991. For practical applications, improvement of power conversion efficiency has always been one of the major research topics. Porphyrins are outstanding sensitizers endowed with strong sunlight harvesting ability in the visible region and multiple reaction sites available for functionalization. However, judicious molecular design in consideration of light-harvest, energy levels, operational dynamics, adsorption geometry and suppression of back reactions is specifically required for achieving excellent photovoltaic performance. This feature article highlights some of the recently developed porphyrin sensitizers, especially focusing on the systematic dye structure optimization approach in combination with coadsorption and cosensitization methods in pursuing higher efficiencies. Herein, we expect to provide more insights into the structure-performance correlation and molecular engineering strategies in a stepwise manner.

  7. A systematic review of genetic skeletal disorders reported in Chinese biomedical journals between 1978 and 2012

    Directory of Open Access Journals (Sweden)

    Cui Yazhou

    2012-08-01

    Full Text Available Abstract Little information is available on the prevalence, geographic distribution and mutation spectrum of genetic skeletal disorders (GSDs in China. This study systematically reviewed GSDs as defined in “Nosology and Classification of genetic skeletal disorders (2010 version” using Chinese biomedical literature published over the past 34 years from 1978 to 2012. In total, 16,099 GSDs have been reported. The most frequently reported disorders were Marfan syndrome, osteogenesis imperfecta, fibrous dysplasia, mucopolysaccharidosis, multiple cartilaginous exostoses, neurofibromatosis type 1 (NF1, osteopetrosis, achondroplasia, enchondromatosis (Ollier, and osteopoikilosis, accounting for 76.5% (12,312 cases of the total cases. Five groups (group 8, 12, 14, 18, 21 defined by “Nosology and Classification of genetic skeletal disorders” have not been reported in the Chinese biomedical literature. Gene mutation testing was performed in only a minor portion of the 16,099 cases of GSDs (187 cases, 1.16%. In total, 37 genes for 41 different GSDs were reported in Chinese biomedical literature, including 43 novel mutations. This review revealed a significant imbalance in rare disease identification in terms of geographic regions and hospital levels, suggesting the need to create a national multi-level network to meet the specific challenge of care for rare diseases in China.

  8. How is genetic testing evaluated? A systematic review of the literature.

    Science.gov (United States)

    Pitini, Erica; De Vito, Corrado; Marzuillo, Carolina; D'Andrea, Elvira; Rosso, Annalisa; Federici, Antonio; Di Maria, Emilio; Villari, Paolo

    2018-02-08

    Given the rapid development of genetic tests, an assessment of their benefits, risks, and limitations is crucial for public health practice. We performed a systematic review aimed at identifying and comparing the existing evaluation frameworks for genetic tests. We searched PUBMED, SCOPUS, ISI Web of Knowledge, Google Scholar, Google, and gray literature sources for any documents describing such frameworks. We identified 29 evaluation frameworks published between 2000 and 2017, mostly based on the ACCE Framework (n = 13 models), or on the HTA process (n = 6), or both (n = 2). Others refer to the Wilson and Jungner screening criteria (n = 3) or to a mixture of different criteria (n = 5). Due to the widespread use of the ACCE Framework, the most frequently used evaluation criteria are analytic and clinical validity, clinical utility and ethical, legal and social implications. Less attention is given to the context of implementation. An economic dimension is always considered, but not in great detail. Consideration of delivery models, organizational aspects, and consumer viewpoint is often lacking. A deeper analysis of such context-related evaluation dimensions may strengthen a comprehensive evaluation of genetic tests and support the decision-making process.

  9. Genetic Diversity Analysis of Tagetes Species Using PCR Based Molecular Markers

    International Nuclear Information System (INIS)

    Shahzadi, I.; Ahmad, R.; Waheed, U.; Shah, M. F.

    2016-01-01

    Tagetes is a genus of medicinally important wild and cultivated plants containing several chemical compounds. Lack of information on variation at molecular level present in Tagetes species is paramount to understand the genetic basis of medicinally important compounds. Current study aims at finding genetic variability in Tagetes species using random and specific molecular markers. Two primer systems including 25 RAPD and 3 STS (limonene gene) were used to ascertain genetic diversity of 15 Tagetes genotypes belonging to different species. We found that 20 of the 25 tested RAPD primers generated stable band patterns with 167 loci of amplification products. The proportion of polymorphic bands was 95.21 percent for RAPD primers. Three STS primers generated a total of 29 amplification products, of which 96.55 percent were polymorphic. Homology of genotypes was 53.18 percent and 51.11 percent with RAPD and STS primers respectively. The dendrogram obtained revealed that the range of overall genetic distances estimated was 22 percent to 100 percent through RAPD and 9 percent to 100 percent through STS markers. The findings help to establish that PCR-based assay such as RAPD and STS could be used successfully for estimation of genetic diversity of different genotypes of Tagetes that can be used for selection of parents for improvement of the species. (author)

  10. Morphology delimits more species than molecular genetic clusters of invasive Pilosella.

    Science.gov (United States)

    Moffat, Chandra E; Ensing, David J; Gaskin, John F; De Clerck-Floate, Rosemarie A; Pither, Jason

    2015-07-01

    • Accurate assessments of biodiversity are paramount for understanding ecosystem processes and adaptation to change. Invasive species often contribute substantially to local biodiversity; correctly identifying and distinguishing invaders is thus necessary to assess their potential impacts. We compared the reliability of morphology and molecular sequences to discriminate six putative species of invasive Pilosella hawkweeds (syn. Hieracium, Asteraceae), known for unreliable identifications and historical introgression. We asked (1) which morphological traits dependably discriminate putative species, (2) if genetic clusters supported morphological species, and (3) if novel hybridizations occur in the invaded range.• We assessed 33 morphometric characters for their discriminatory power using the randomForest classifier and, using AFLPs, evaluated genetic clustering with the program structure and subsequently with an AMOVA. The strength of the association between morphological and genotypic dissimilarity was assessed with a Mantel test.• Morphometric analyses delimited six species while genetic analyses defined only four clusters. Specifically, we found (1) eight morphological traits could reliably distinguish species, (2) structure suggested strong genetic differentiation but for only four putative species clusters, and (3) genetic data suggest both novel hybridizations and multiple introductions have occurred.• (1) Traditional floristic techniques may resolve more species than molecular analyses in taxonomic groups subject to introgression. (2) Even within complexes of closely related species, relatively few but highly discerning morphological characters can reliably discriminate species. (3) By clarifying patterns of morphological and genotypic variation of invasive Pilosella, we lay foundations for further ecological study and mitigation. © 2015 Botanical Society of America, Inc.

  11. Molecular Insights into the Genetic Diversity of Garcinia cambogia Germplasm Accessions

    Directory of Open Access Journals (Sweden)

    C Tharachand

    2015-10-01

    Full Text Available ABSTRACTIn this work, the genetic relationship among twelveGarcinia cambogia (Gaertn. Desr. accessions were evaluated using Random Amplified Polymorphic DNA markers. The samples were part of the germplasm collected and maintained at NBPGR Regional station, Thrissur, India. Out of thirty RAPD primers used for screening, seven primers produced a total of 128 polymorphic markers in twelve accessions. The Polymorphic Information Content (PIC ranged from 0.28 (OPA18 to 0.37 (OPA9 and Marker Index (MI ranged between 3.61 (OPA12 and 5.93 (OPA3 among the primers used. Jaccard's coefficient of genetic similarity ranged between 0.07 and 0.64. The dendrogram constructed based on the similarity matrix generated from the molecular and morphological data showed the genetic relationship among the sampled accessions. Mantel matrix test showed a positive correlation (r = 0.49 between the cluster analysis of RAPD data and morphological data. The clustering pattern in the molecular dendrogram and Principle Coordinate Analysis (PCoA showed that the genotypes were diverse, which was in congruence with the similarity index values and morphological dendrogram. High frequency of similarity values in the range of 0.11 to 0.17 suggested the existence of high genetic diversity among the accessions. The high level of genetic diversity among the studied accessions ofG.cambogia was also supported by the large variation in the morphological characters observed in the flowers, leaves, fruits and seeds of these sampled accessions. This is the first report for the molecular based genetic diversity studies for these accessions.

  12. Hemangiosarcoma after breast-conserving therapy of breast cancer. Report of four cases with molecular genetic diagnosis and literature review

    International Nuclear Information System (INIS)

    Nestle-Kraemling, Carolin; Boelke, Edwin; Budach, Wilfried

    2011-01-01

    Hemangiosarcomas of the breast represent a rare disease of the breast mainly occurring as secondary neoplasias with a latency of 5-10 years after primary treatment of breast cancer and are associated with an unfavourable prognosis. Radiation therapy, which is integrated within the concept of breast conserving therapy ranks as the main risk factor. In this report we describe the clinical course of 4 patients including their molecular genetic pattern and give a summary of the actual literature. Hemangiosarcomas occur as a secondary neoplasm with a latency of 5-10 years after primary treatment of breast cancer and have an unfavorable prognosis. A genetic predisposition is assumed, but we could not find a significant role of tumor suppressor genes BRCA1, BRCA2 or p53 in our patients. Due to limited data available for these tumors, recommendations for therapy include radical tumor resection achieving wide free margins and inconsistent regimens of chemo- and/or immunetherapy modalities. In the majority these are based on systemic therapy regimens for other cutaneous sarcomas, such as Kaposi's sarcoma. Efforts should be taken for a nation-wide systematic registration of all cases of post-irradiation hemangiosarcomas.

  13. [Hemangiosarcoma after breast-conserving therapy of breast cancer: report of four cases with molecular genetic diagnosis and literature review].

    Science.gov (United States)

    Nestle-Krämling, Carolin; Bölke, Edwin; Budach, Wilfried; Peiper, Matthias; Niederacher, Dieter; Janni, Wolfgang; Eisenberger, Claus Ferdinand; Knoefel, Wolfram Trudo; Scherer, Axel; Baldus, Stephan Ernst; Lammering, Guido; Gerber, Peter Arne; Matuschek, Christiane

    2011-10-01

    Hemangiosarcomas of the breast represent a rare disease of the breast mainly occurring as secondary neoplasias with a latency of 5-10 years after primary treatment of breast cancer and are associated with an unfavourable prognosis. Radiation therapy, which is integrated within the concept of breast conserving therapy ranks as the main risk factor. In this report we describe the clinical course of 4 patients including their molecular genetic pattern and give a summary of the actual literature. Hemangiosarcomas occur as a secondary neoplasm with a latency of 5-10 years after primary treatment of breast cancer and have an unfavorable prognosis. A genetic predisposition is assumed, but we could not find a significant role of tumor suppressor genes BRCA1, BRCA2 or p53 in our patients. Due to limited data available for these tumors, recommendations for therapy include radical tumor resection achieving wide free margins and inconsistent regimens of chemo- and/or immunetherapy modalities. In the majority these are based on systemic therapy regimens for other cutaneous sarcomas, such as Kaposi's sarcoma. Efforts should be taken for a nation-wide systematic registration of all cases of post-irradiation hemangiosarcomas.

  14. Molecular markers for genetic diversity, gene flow and genetic population structure of freshwater mussel species

    Directory of Open Access Journals (Sweden)

    AB Choupina

    Full Text Available Freshwater mussel species are in global decline. Anthropogenic changes of river channels and the decrease of autochthonous fish population, the natural hosts of mussels larval stages (glochidia, are the main causes. Therefore, the conservation of mussel species depends not only on habitat conservation, but also on the availability of the fish host. In Portugal, information concerning most of the mussel species is remarkably scarce. One of the most known species, Unio pictorum is also in decline however, in the basins of the rivers Tua and Sabor (Northeast of Portugal, there is some indication of relatively large populations. The aforementioned rivers can be extremely important for this species conservation not only in Portugal, but also in the remaining Iberian Peninsula. Thus, it is important to obtain data concerning Unio pictorum bioecology (distribution, habitat requirements, population structure, genetic variability, reproductive cycle and recruitment rates, as well as the genetic variability and structure of the population. Concomitantly, information concerning fish population structure, the importance of the different fish species as “glochidia” hosts and their appropriate density to allow effective mussel recruitment, will also be assessed. The achieved data is crucial to obtain information to develop effective management measures in order to promote the conservation of this bivalve species, the conservation of autochthonous fish populations, and consequently the integrity of the river habitats.

  15. On the attenuation and amplification of molecular noise in genetic regulatory networks

    Directory of Open Access Journals (Sweden)

    Wang Yu-Chao

    2006-02-01

    Full Text Available Abstract Background Noise has many important roles in cellular genetic regulatory functions at the nanomolar scale. At present, no good theory exists for identifying all possible mechanisms of genetic regulatory networks to attenuate the molecular noise to achieve regulatory ability or to amplify the molecular noise to randomize outcomes to the advantage of diversity. Therefore, the noise filtering of genetic regulatory network is an important topic for gene networks under intrinsic fluctuation and extrinsic noise. Results Based on stochastic dynamic regulation equation, the intrinsic fluctuation in reaction rates is modeled as a state-dependent stochastic process, which will influence the stability of gene regulatory network, especially, with low concentrations of reacting species. Then the mechanisms of genetic regulatory network to attenuate or amplify extrinsic fluctuation are revealed from the nonlinear stochastic filtering point of view. Furthermore, a simple measure of attenuation level or amplification level of extrinsic noise for genetic regulatory networks is also introduced by nonlinear robust filtering method. Based on the global linearization scheme, a convenient method is introduced to measure noise attenuation or amplification for each gene of the nonlinear stochastic regulatory network by solving a set of filtering problems, which correspond to a set of linearized stochastic regulatory networks. Finally, by the proposed methods, several simulation examples of genetic regulatory networks are given to measure their robust stability under intrinsic fluctuations, and to estimate the genes' attenuation and amplification levels under extrinsic noises. Conclusion In this study, a stochastic nonlinear dynamic model is developed for genetic regulatory networks under intrinsic fluctuation and extrinsic noise. By the method we proposed, we could determine the robust stability under intrinsic fluctuations and identify the genes that are

  16. Maximizing genetic differentiation in core collections by PCA-based clustering of molecular marker data.

    Science.gov (United States)

    van Heerwaarden, Joost; Odong, T L; van Eeuwijk, F A

    2013-03-01

    Developing genetically diverse core sets is key to the effective management and use of crop genetic resources. Core selection increasingly uses molecular marker-based dissimilarity and clustering methods, under the implicit assumption that markers and genes of interest are genetically correlated. In practice, low marker densities mean that genome-wide correlations are mainly caused by genetic differentiation, rather than by physical linkage. Although of central concern, genetic differentiation per se is not specifically targeted by most commonly employed dissimilarity and clustering methods. Principal component analysis (PCA) on genotypic data is known to effectively describe the inter-locus correlations caused by differentiation, but to date there has been no evaluation of its application to core selection. Here, we explore PCA-based clustering of marker data as a basis for core selection, with the aim of demonstrating its use in capturing genetic differentiation in the data. Using simulated datasets, we show that replacing full-rank genotypic data by the subset of genetically significant PCs leads to better description of differentiation and improves assignment of genotypes to their population of origin. We test the effectiveness of differentiation as a criterion for the formation of core sets by applying a simple new PCA-based core selection method to simulated and actual data and comparing its performance to one of the best existing selection algorithms. We find that although gains in genetic diversity are generally modest, PCA-based core selection is equally effective at maximizing diversity at non-marker loci, while providing better representation of genetically differentiated groups.

  17. Ethnic background and genetic variation in the evaluation of cancer risk: a systematic review.

    Directory of Open Access Journals (Sweden)

    Lijun Jing

    Full Text Available The clinical use of genetic variation in the evaluation of cancer risk is expanding, and thus understanding how determinants of cancer susceptibility identified in one population can be applied to another is of growing importance. However there is considerable debate on the relevance of ethnic background in clinical genetics, reflecting both the significance and complexity of genetic heritage. We address this via a systematic review of reported associations with cancer risk for 82 markers in 68 studies across six different cancer types, comparing association results between ethnic groups and examining linkage disequilibrium between risk alleles and nearby genetic loci. We find that the relevance of ethnic background depends on the question. If asked whether the association of variants with disease risk is conserved across ethnic boundaries, we find that the answer is yes, the majority of markers show insignificant variability in association with cancer risk across ethnic groups. However if the question is whether a significant association between a variant and cancer risk is likely to reproduce, the answer is no, most markers do not validate in an ethnic group other than the discovery cohort's ancestry. This lack of reproducibility is not attributable to studies being inadequately populated due to low allele frequency in other ethnic groups. Instead, differences in local genomic structure between ethnic groups are associated with the strength of association with cancer risk and therefore confound interpretation of the implied physiologic association tracked by the disease allele. This suggest that a biological association for cancer risk alleles may be broadly consistent across ethnic boundaries, but reproduction of a clinical study in another ethnic group is uncommon, in part due to confounding genomic architecture. As clinical studies are increasingly performed globally this has important implications for how cancer risk stratifiers should be

  18. Lignocellulose-converting enzyme activity profiles correlate with molecular systematics and phylogeny grouping in the incoherent genus Phlebia (Polyporales, Basidiomycota).

    Science.gov (United States)

    Kuuskeri, Jaana; Mäkelä, Miia R; Isotalo, Jarkko; Oksanen, Ilona; Lundell, Taina

    2015-10-19

    The fungal genus Phlebia consists of a number of species that are significant in wood decay. Biotechnological potential of a few species for enzyme production and degradation of lignin and pollutants has been previously studied, when most of the species of this genus are unknown. Therefore, we carried out a wider study on biochemistry and systematics of Phlebia species. Isolates belonging to the genus Phlebia were subjected to four-gene sequence analysis in order to clarify their phylogenetic placement at species level and evolutionary relationships of the genus among phlebioid Polyporales. rRNA-encoding (5.8S, partial LSU) and two protein-encoding gene (gapdh, rpb2) sequences were adopted for the evolutionary analysis, and ITS sequences (ITS1+5.8S+ITS2) were aligned for in-depth species-level phylogeny. The 49 fungal isolates were cultivated on semi-solid milled spruce wood medium for 21 days in order to follow their production of extracellular lignocellulose-converting oxidoreductases and carbohydrate active enzymes. Four-gene phylogenetic analysis confirmed the polyphyletic nature of the genus Phlebia. Ten species-level subgroups were formed, and their lignocellulose-converting enzyme activity profiles coincided with the phylogenetic grouping. The highest enzyme activities for lignin modification (manganese peroxidase activity) were obtained for Phlebia radiata group, which supports our previous studies on the enzymology and gene expression of this species on lignocellulosic substrates. Our study implies that there is a species-level connection of molecular systematics (genotype) to the efficiency in production of both lignocellulose-converting carbohydrate active enzymes and oxidoreductases (enzyme phenotype) on spruce wood. Thus, we may propose a similar phylogrouping approach for prediction of lignocellulose-converting enzyme phenotypes in new fungal species or genetically and biochemically less-studied isolates of the wood-decay Polyporales.

  19. Abundant genetic overlap between blood lipids and immune-mediated diseases indicates shared molecular genetic mechanisms.

    Directory of Open Access Journals (Sweden)

    Ole A Andreassen

    Full Text Available Epidemiological studies suggest a relationship between blood lipids and immune-mediated diseases, but the nature of these associations is not well understood. We used genome-wide association studies (GWAS to investigate shared single nucleotide polymorphisms (SNPs between blood lipids and immune-mediated diseases. We analyzed data from GWAS (n~200,000 individuals, applying new False Discovery Rate (FDR methods, to investigate genetic overlap between blood lipid levels [triglycerides (TG, low density lipoproteins (LDL, high density lipoproteins (HDL] and a selection of archetypal immune-mediated diseases (Crohn's disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, psoriasis and sarcoidosis. We found significant polygenic pleiotropy between the blood lipids and all the investigated immune-mediated diseases. We discovered several shared risk loci between the immune-mediated diseases and TG (n = 88, LDL (n = 87 and HDL (n = 52. Three-way analyses differentiated the pattern of pleiotropy among the immune-mediated diseases. The new pleiotropic loci increased the number of functional gene network nodes representing blood lipid loci by 40%. Pathway analyses implicated several novel shared mechanisms for immune pathogenesis and lipid biology, including glycosphingolipid synthesis (e.g. FUT2 and intestinal host-microbe interactions (e.g. ATG16L1. We demonstrate a shared genetic basis for blood lipids and immune-mediated diseases independent of environmental factors. Our findings provide novel mechanistic insights into dyslipidemia and immune-mediated diseases and may have implications for therapeutic trials involving lipid-lowering and anti-inflammatory agents.

  20. Genetic polymorphisms associated with adverse reactions of molecular-targeted therapies in renal cell carcinoma.

    Science.gov (United States)

    Yamamoto, Kazuhiro; Yano, Ikuko

    2018-01-04

    The prognosis of patients with metastatic renal cell carcinoma has drastically improved due to the development of molecular-targeted drugs and their use in clinical practice. However, these drugs cause some diverse adverse reactions in patients and sometimes affect clinical outcomes of cancer therapy. Therefore, predictive markers are necessary to avoid severe adverse reactions, to establish novel and effective prevention methods, and to improve treatment outcomes. Some genetic factors involved in these adverse reactions have been reported; however, perspectives on each adverse response have not been integrated yet. In this review, genetic polymorphisms relating to molecular-targeted therapy-induced adverse reactions in patients with renal cell carcinoma are summarized in the points of pharmacokinetic and pharmacodynamic mechanisms. We also discuss about the relationship between systemic drug exposure and adverse drug reactions.

  1. Molecular systematics and evolution of the "Apollo" butterflies of the genus Parnassius (Lepidoptera: Papilionidae) based on mitochondrial DNA sequence data.

    Science.gov (United States)

    Omoto, Keiichi; Katoh, Toru; Chichvarkhin, Anton; Yagi, Takashi

    2004-02-04

    Sequences of 777 bp of mtDNA-ND5 locus were determined in order to shed light on the molecular systematics and evolution of the "Apollo" butterflies. Examined were nearly all of about 50 species of the genus Parnassius, together with seven species of the allied genera in the subfamily Parnassiinae (Papilionidae). The NJ and the MP phylogenetic trees show that the "Apollos" constitute a monophyletic group, comprising a number of cluster groups probably reflecting a relatively rapid radiation in evolution. The clusters of species-groups denoted I-VIII correspond to those species-groups recognized on the basis of morphological characters. Our findings will also help understand the biological relationships among several species or subspecies on which the classical taxonomy is in dispute. The unexpected finding is that among the samples of allied genera compared, Hypermnestra helios appears to be the most closely related to the "Apollos", despite morphological and behavioral dissimilarity. Furthermore, in contrast to the previous higher taxonomy, Archon apollinus which is classified in the tribe Parnassiini was found genetically closer to the tribe Zerynthiini, raising a taxonomic controversy.

  2. Genetic Divergent of Tomato Lines Based on AFLP Molecular Markers and Relationship with Heterosis

    Directory of Open Access Journals (Sweden)

    M Nabipoor

    2012-10-01

    Full Text Available Tomato as a highly nutritious vegetable crop is widely grown in the world. Hybrid seed is preferably used for tomato production. Identification of superior hybrid combination is one of the most important steps in the hybrid breeding programs. Breeding of high yielding hybrids is expensive and involves testing large numbers of hybrid combinations in multi-environment trials. Successful prediction of heterosis from the genetic similarity of their parents based on molecular markers has been reported in several crops and can be very helpful in hybrid breeding. The present study was carried out to evaluate genetic divergent among tomato lines and to assess the relationship between genetic distance and heterosis among them. Thirty genotypes were examined for DNA polymorphism, using amplified fragment length polymorphisms (AFLPs. A total of 165 polymorphic variants were generated and genetic distances ranged from 0.04 to 0.23. Our result indicated that AFLP markers were successful in identification of polymorphism and genetic distances among tomato lines, but correlation of genetic distance based on AFLPs with mid-parent heterosis of yield, fruit weight, fruit number and fruit durability time was low and not useful for predicting heterosis in tomato genotypes.

  3. Ecology and molecular genetics of anoxygenic photosynthetic arsenite oxidation by arxA

    OpenAIRE

    Hernandez-Maldonado, Jaime

    2017-01-01

    Thesis statement:Anoxygenic photosynthetic arsenite oxidation encoded by arxA is a bacterial arsenic metabolism that contributes to the biogeochemical cycle of arsenic in extreme environments.Abstract:This dissertation provides molecular genetics and environmental insight into the poorly-understood phenomenon of a photosynthetic microbial metabolism fueled by arsenic. The hypothesis is that arxA is critical for photosynthetic arsenite oxidation and actively found in the environment, which ha...

  4. Ellis-Van Creveld Syndrome: Prenatal Diagnosis, Molecular Analysis and Genetic Counseling

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2010-12-01

    Conclusion: Prenatal sonographic identification of endocardial cushion defects in association with shortening of the long bones should alert clinicians to the possibility of EvC syndrome and prompt a careful search of hexadactyly of the hands. Molecular analysis of the EVC and EVC2 genes is helpful in genetic counseling in cases with prenatally detected postaxial polydactyly, thoracic narrowness, short limbs and endocardial cushion defects.

  5. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 April 2012 – 31 May 2012

    Czech Academy of Sciences Publication Activity Database

    Mendel, Jan; Papoušek, Ivo; Marešová, Eva; Vetešník, Lukáš; Halačka, Karel; Nowak, M.; Čížková, Dagmar

    2012-01-01

    Roč. 12, č. 5 (2012), s. 972-974 ISSN 1755-098X R&D Projects: GA ČR GP206/09/P608 Institutional support: RVO:68081766 Keywords : Romanogobio * gudgeon * microsatellites * hybrid Subject RIV: EB - Genetics ; Molecular Biol ogy Impact factor: 7.432, year: 2012 http://tomato. biol .trinity.edu/manuscripts/12-5/mer-12-0021.pdf

  6. Molecular genetics and genomics generate new insights into invertebrate pest invasions

    OpenAIRE

    Kirk, Heather; Dorn, Silvia; Mazzi, Dominique

    2013-01-01

    Invertebrate pest invasions and outbreaks are associated with high social, economic, and ecological costs, and their significance will intensify with an increasing pressure on agricultural productivity as a result of human population growth and climate change. New molecular genetic and genomic techniques are available and accessible, but have been grossly underutilized in studies of invertebrate pest invasions, despite that they are useful tools for applied pest management and for understandi...

  7. Molecular Genetic Methods Implementation for Phytopathogen Identification in Forest Stands and Nurseries of the Russian Federation

    Directory of Open Access Journals (Sweden)

    T. S. Alimova

    2014-08-01

    Full Text Available The results of the application of molecular genetics methods for the analysis of the plant pathogens present in forest plantations and nurseries of the Russian Federation, including doughnut fungus and annosum root rot are presented. The prospects and benefits of using DNA analysis for early diagnosis of plant diseases without isolation of the pathogen in pure culture, shortening time of analysis, and the possibility of mass screening are discussed.

  8. Molecular Genetic Insights on Cheetah (Acinonyx jubatus) Ecology and Conservation in Namibia

    OpenAIRE

    Marker, Laurie L.; Wilkerson, Alison J. Pearks; Sarno, Ronald J.; Martenson, Janice; Breitenmoser-Würsten, Christian; O'Brien, Stephen J.; Johnson, Warren E.

    2017-01-01

    The extent and geographic patterns of molecular genetic diversity of the largest remaining free-ranging cheetah population were described in a survey of 313 individuals from throughout Namibia. Levels of relatedness, including paternity/maternity (parentage), were assessed across all individuals using 19 polymorphic microsatellite loci, and unrelated cheetahs (n = 89) from 7 regions were genotyped at 38 loci to document broad geographical patterns. There was limited differentiation among regi...

  9. Use of Molecular Genetic Engineering in the Study of Animal Parasites and Their Vectors

    OpenAIRE

    LoVerde, Philip T

    1989-01-01

    Molecular genetics coupled with advances in immunology and parasite culture has become a powerful tool to study animal parasites and their vectors. Recombinant DNA techniques allow one to identify individual genes of DNA probes, amplify the nucleic acid of interest, and use this material to study: the role of the gene product in the biology of the organism; the evolution of parasites and their hosts; heterogeneity between species and within species; taxonomy and develop refined taxonomic tool...

  10. Genetic basis of dental agenesis--molecular genetics patterning clinical dentistry.

    Science.gov (United States)

    Chhabra, N; Goswami, M; Chhabra, A

    2014-03-01

    Tooth agenesis is one of the most common congenital malformations in humans. Hypodontia can either occur as an isolated condition (non-syndromic hypodontia) or can be associated with a syndrome (syndromic hypodontia), highlighting the heterogeneity of the condition. Though much progress has been made to identify the developmental basis of tooth formation, knowledge of the etiological basis of inherited tooth loss is still lacking. To date, the mutation spectra of non-syndromic form of familial and sporadic tooth agenesis in humans have revealed defects in various such genes that encode transcription factors, MSX1 and PAX9 or genes that code for a protein involved in canonical Wnt signaling (AXIN2), and a transmembrane receptor of fibroblast growth factors (FGFR1). The aim of this paper is to review the current literature on the molecular mechanisms responsible for selective hypodontia in humans and to present a detailed overview of causative genes and syndromes associated with hypodontia.

  11. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime; Rakoczy, John; Steincamp, James

    2003-01-01

    Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.

  12. The genetic and environmental influences on childhood obesity: a systematic review of twin and adoption studies

    DEFF Research Database (Denmark)

    Silventoinen, K; Rokholm, B; Kaprio, J

    2010-01-01

    In this systematic review, we aimed to collect together all previous twin and adoption studies on childhood and adolescent obesity up to the age of 18 years. Using several sources, we identified nine twin and five adoption studies; all of these studies had used relative weight as an indicator...... a substantial effect in mid-childhood, but this effect disappeared at adolescence. Adoption studies supported the role of family environment in childhood obesity as correlations were found between adoptees and adoptive parents; however, correlations were substantially stronger between parents...... of obesity. Except the two twin studies from the Korean population, all studies represented Caucasian populations. In a meta-analysis of these twin studies, we found that genetic factors had a strong effect on the variation of body mass index (BMI) at all ages. The common environmental factors showed...

  13. The UK National External Quality Assessment Scheme (UK NEQAS) for molecular genetic testing in haemophilia.

    Science.gov (United States)

    Perry, David J; Goodeve, Anne; Hill, Marian; Jennings, Ian; Kitchen, Steve; Walker, Isobel

    2006-11-01

    Molecular genetic analysis of families with haemophilia and other inherited bleeding disorders is now a common laboratory investigation. In contrast to phenotypic testing in which strict quality control is adhered to, in haemophilia molecular genetic testing there has been a lack of any external quality assurance schemes. In 1998 the UK National External Quality Assessment Scheme (UK NEQAS) established a pilot quality assurance scheme for molecular genetic testing in haemophilia. Results from three initial surveys highlighted problems with the quality of samples when used to screen for the intron 22 inversion within the F8 gene. The scheme was re-launched in 2003, and since that time there have been five exercises involving whole blood or immortalised cell line DNA. The results together with an overall summary of the exercise are subsequently returned to participants. Exercises to date have focused exclusively on haemophilia A and QA, material has included screening for the intron 1 and intron 22 inversions as well as sequence analysis. A paper exercise circulated in 2003 highlighted problems with the format of reports and, following feedback to participants, only a single error has been made in the subsequent four exercises. Participating laboratories now receive QA material every six months. Immortalised cell line material was introduced in 2005 and was shown to perform well. This will allow expansion of the scheme and a reduction in the dependence on blood donation.

  14. X-linked ichthyosis without STS deficiency: Clinical, genetical, and molecular studies

    Energy Technology Data Exchange (ETDEWEB)

    Robledo, R.; Melis, P.; Schillinger, E.; Siniscalco, M. [Istituto di Genetica Molecolare del, Trieste (Italy)] [and others

    1995-11-06

    We report on a Sardinian pedigree with congenital ichthyosis associated with normal levels of steroid sulfatase and a normal molecular pattern, as detectable with a cDNA probe for the steroid sulfatase (STS) gene. Though the pattern of transmission of the disease is consistent with X-linked recessive inheritance, this form of ichthyosis was found to segregate independently of genetic polymorphisms detected by probes of the region Xp22.3, where the STS locus has been mapped. The search for close genetic linkages with other polymorphic markers scattered along the entire X chromosome has so far been fruitless. For the time being, the main conclusion derived from these data is that STS deficiency is not a sine qua non for X-linked ichthyosis which may also result from a mutational event at an X-chromosomal site genetically unlinked to the STS locus. 16 refs., 4 figs.

  15. Molecular genetic analysis of activation-tagged transcription factors thought to be involved in photomorphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Neff, Michael M.

    2011-06-23

    This is a final report for Department of Energy Grant No. DE-FG02-08ER15927 entitled “Molecular Genetic Analysis of Activation-Tagged Transcription Factors Thought to be Involved in Photomorphogenesis”. Based on our preliminary photobiological and genetic analysis of the sob1-D mutant, we hypothesized that OBP3 is a transcription factor involved in both phytochrome and cryptochrome-mediated signal transduction. In addition, we hypothesized that OBP3 is involved in auxin signaling and root development. Based on our preliminary photobiological and genetic analysis of the sob2-D mutant, we also hypothesized that a related gene, LEP, is involved in hormone signaling and seedling development.

  16. Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers (SSR).

    Science.gov (United States)

    Hasnaoui, Nejib; Buonamici, Anna; Sebastiani, Federico; Mars, Messaoud; Zhang, Dapeng; Vendramin, Giovanni G

    2012-02-01

    Pomegranate (Punica granatum L.) is one of the oldest known edible fruits and more and more it arouse interest of scientific community given its numerous biological activities. However, information about its genetic resources and characterization using reliable molecular markers are still scarce. In the present study, we report the development of 4 new polymorphic SSR markers. They have been used in addition to 11 SSRs previously published to investigate molecular diversity of 33 P. granatum ecotypes. Based on the multi-locus profiles, twenty-two distinctive genotypes were identified. Globally, quite low genetic diversity has been revealed, as measured by allele richness (2.83 per locus) and heterozygosity (He=0.245; Ho=0.243), reflecting the narrow genetic background of the plant material. Four synonymous groups could be detected involving 15 accessions. Results of ordination and cluster analysis suggested that almost all the Tunisian cultivars share similar genetic background, and are likely derived from a small number of introductions in ancient times. Results issued from this study provide essential information to project a pomegranate core-collection without plant material duplication and for sustainable management of pomegranate landraces at national and international level. Furthermore, these SSR markers are powerful tool for marker assisted selection (MAS) program and for QTL studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Molecular marker studies in riverine buffaloes, for characterization and diagnosis of genetic defects

    International Nuclear Information System (INIS)

    Yadav, B.R.

    2005-01-01

    The buffalo is probably the last livestock species to have been domesticated, with many genetic, physiological and behavioural traits not yet well understood. Molecular markers have been used for characterizing animals and breeds, diagnosing diseases and identifying anatomical and physiological anomalies. RFLP studies showed low heterozygosity, but genomic and oligonucleotide probes showed species-specific bands useful for identification of carcass or other unknown samples. Use of RAPD revealed band frequencies, band sharing frequencies, genetic distances, and genetic and identity indexes in different breeds. Bovine microsatellite primers indicate that 70.9% of bovine loci were conserved in buffalo. Allele numbers, sizes, frequencies, heterozygosity and polymorphism information content showed breed-specific patterns. Different marker types - genomic and oligonucleotide probes, RAPD and microsatellites - are useful in parent identification. Individual specific DNA fingerprinting techniques were applied with twin-born animal (XX/XY) chimerism, sex identification, anatomically defective and XO individuals. Molecular markers are a potential tool for geneticists and breeders to evaluate existing germplasm and to manipulate it to develop character-specific strains and to provide the basis for effective genetic conservation. (author)

  18. Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization

    International Nuclear Information System (INIS)

    Daróczy, László; Janiga, Gábor; Thévenin, Dominique

    2014-01-01

    A two-dimensional cross-flow tube bank heat exchanger arrangement problem with internal laminar flow is considered in this work. The objective is to optimize the arrangement of tubes and find the most favorable geometries, in order to simultaneously maximize the rate of heat exchange while obtaining a minimum pressure loss. A systematic study was performed involving a large number of simulations. The global optimization method NSGA-II was retained. A fully automatized in-house optimization environment was used to solve the problem, including mesh generation and CFD (computational fluid dynamics) simulations. The optimization was performed in parallel on a Linux cluster with a very good speed-up. The main purpose of this article is to illustrate and analyze a heat exchanger arrangement problem in its most general form and to provide a fundamental understanding of the structure of the Pareto front and optimal geometries. The considered conditions are particularly suited for low-power applications, as found in a growing number of practical systems in an effort toward increasing energy efficiency. For such a detailed analysis with more than 140 000 CFD-based evaluations, a design-of-experiment study involving a response surface would not be sufficient. Instead, all evaluations rely on a direct solution using a CFD solver. - Highlights: • Cross-flow tube bank heat exchanger arrangement problem. • A fully automatized multi-objective optimization based on genetic algorithm. • A systematic study involving a large number of CFD (computational fluid dynamics) simulations

  19. Magnetic resonance imaging patterns of muscle involvement in genetic muscle diseases: a systematic review.

    Science.gov (United States)

    Leung, Doris G

    2017-07-01

    A growing body of the literature supports the use of magnetic resonance imaging as a potential biomarker for disease severity in the hereditary myopathies. We performed a systematic review of the medical literature to evaluate patterns of fat infiltration observed in magnetic resonance imaging studies of muscular dystrophy and congenital myopathy. Searches were performed using MEDLINE, EMBASE, and grey literature databases. Studies that described fat infiltration of muscles in patients with muscular dystrophy or congenital myopathy were selected for full-length review. Data on preferentially involved or spared muscles were extracted for analysis. A total of 2172 titles and abstracts were screened, and 70 publications met our criteria for inclusion in the systematic review. There were 23 distinct genetic disorders represented in this analysis. In most studies, preferential involvement and sparing of specific muscles were reported. We conclude that magnetic resonance imaging studies can be used to identify distinct patterns of muscle involvement in the hereditary myopathies. However, larger studies and standardized methods of reporting are needed to develop imaging as a diagnostic tool in these diseases.

  20. A Baseline Algorithm for Molecular Diagnosis of Genetic Eye Diseases: Ophthalmologist’s Perspective

    Directory of Open Access Journals (Sweden)

    Hande Taylan Şekeroğlu

    2016-12-01

    Full Text Available To the Editor: Genetic eye diseases constitute a large and heterogeneous group. Individual diseases may cause multiple structural/functional anomalies and developmental features. Family history may be suggestive; however, it may also be challenging, particularly in late-onset conditions or in cases of variable expression. In the current era of genetic advances, diagnosis of a genetic eye disease is facilitated by well-established collaboration between ophthalmologists and geneticists, as increasingly more patients will be asking for genetic counseling and prenatal diagnosis in addition to ophthalmologic management. Molecular investigation of a genetic eye disease requires customized analysis and advanced technology in addition to the requisite detailed family history and accurate ophthalmological diagnosis. A common indication for genetic testing is the validation of a preliminary diagnosis made in clinical practice. The need to determine the prognostic implications of the genotype, assessment of the recurrence risk and in particular, the possibility of specific gene therapy in the near future encourages clinicians to pursue genetic research. We present here a baseline algorithm covering common genetic mechanisms in order to outline a basic molecular approach for ophthalmologists. The first step of the flow chart, a prudent clinical examination with complete description of the phenotype, is indispensible for making a precise and accurate preliminary diagnosis (Figure 1. If the phenotype is pathognomonic, Sanger sequencing is preferred for confirmation.1 A previously established genotype-phenotype correlation may add to the value, either by providing accurate prognostic information or by indicating which particular mutation to look for. One such example may be electroretinographic supranormal rod response, indicating KCNV2 mutation type cone dystrophy, which can be precisely detected by Sanger sequencing or qPCR.2 Conventional karyotyping reveals

  1. DNA Re-EvolutioN: a game for learning molecular genetics and evolution.

    Science.gov (United States)

    Miralles, Laura; Moran, Paloma; Dopico, Eduardo; Garcia-Vazquez, Eva

    2013-01-01

    Evolution is a main concept in biology, but not many students understand how it works. In this article we introduce the game DNA Re-EvolutioN as an active learning tool that uses genetic concepts (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules. Students will learn about molecular evolution while playing a game that mixes up theory and entertainment. The game can be easily adapted to different educational levels. The main goal of this play is to arrive at the end of the game with the longest protein. Students play with pawns and dices, a board containing hypothetical events (mutations, selection) that happen to molecules, "Evolution cards" with indications for DNA mutations, prototypes of a DNA and a mRNA chain with colored "nucleotides" (plasticine balls), and small pieces simulating t-RNA with aminoacids that will serve to construct a "protein" based on the DNA chain. Students will understand how changes in DNA affect the final protein product and may be subjected to positive or negative selection, using a didactic tool funnier than classical theory lectures and easier than molecular laboratory experiments: a flexible and feasible game to learn and enjoy molecular evolution at no-cost. The game was tested by majors and non-majors in genetics from 13 different countries and evaluated with pre- and post-tests obtaining very positive results. © 2013 by The International Union of Biochemistry and Molecular Biology.

  2. Genetics of borderline personality disorder: systematic review and proposal of an integrative model.

    Science.gov (United States)

    Amad, Ali; Ramoz, Nicolas; Thomas, Pierre; Jardri, Renaud; Gorwood, Philip

    2014-03-01

    Borderline personality disorder (BPD) is one of the most common mental disorders and is characterized by a pervasive pattern of emotional lability, impulsivity, interpersonal difficulties, identity disturbances, and disturbed cognition. Here, we performed a systematic review of the literature concerning the genetics of BPD, including familial and twin studies, association studies, and gene-environment interaction studies. Moreover, meta-analyses were performed when at least two case-control studies testing the same polymorphism were available. For each gene variant, a pooled odds ratio (OR) was calculated using fixed or random effects models. Familial and twin studies largely support the potential role of a genetic vulnerability at the root of BPD, with an estimated heritability of approximately 40%. Moreover, there is evidence for both gene-environment interactions and correlations. However, association studies for BPD are sparse, making it difficult to draw clear conclusions. According to our meta-analysis, no significant associations were found for the serotonin transporter gene, the tryptophan hydroxylase 1 gene, or the serotonin 1B receptor gene. We hypothesize that such a discrepancy (negative association studies but high heritability of the disorder) could be understandable through a paradigm shift, in which "plasticity" genes (rather than "vulnerability" genes) would be involved. Such a framework postulates a balance between positive and negative events, which interact with plasticity genes in the genesis of BPD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Molecular genetics of colorectal cancer Genética molecular del cáncer colorrectal

    Directory of Open Access Journals (Sweden)

    D. Cruz-Bustillo Clarens

    2004-01-01

    Full Text Available Colorectal tumours constitute an excellent system to study carcinogenesis and the molecular events implicated in the development of cancer. Attending to the way it is transmitted, colorectal cancer may appear in one of three forms: sporadic, familial, and hereditary. The sporadic form is most common and has no familial or hereditary associated factor thus far, while familial and hereditary forms show the same inheritance pattern. Hereditary colorectal cancers develop by means of defined stages that go from lesions in the crypt of the colon through adenomas to manifest cancer. They are characterised by the accumulation of multiple mutations in tumour suppressor genes and oncogenes that affect the balance between cell proliferation and apoptosis. The colorectal carcinogenesis pathway is not unique and there are probably several ways for the initiation, development and progression of colorectal tumours.Los tumores colorrectales constituyen un excelente sistema para estudiar la carcinogénesis y los eventos moleculares involucrados en el desarrollo de un tumor. El cáncer colorrectal puede presentarse en tres formas, según su forma de transmisión: esporádico, familiar y hereditario. La forma esporádica que es la mayoritaria, no tiene hasta el momento ningún factor familiar o hereditario asociado, mientras que las formas familiares y hereditarias siguen un patrón de herencia en la propensión familiar a padecerlo. Los cánceres colorrectales hereditarios se desarrollan mediante etapas definidas que van desde lesiones en la cripta del colon a través de adenomas hasta manifestar el cáncer y se caracterizan por la acumulación de múltiples mutaciones en genes supresores de tumor y oncogenes que afectan el balance entre la proliferación celular y la apoptosis. La vía de carcinogénesis colorrectal no es una sola y probablemente existan varios caminos para el inicio, desarrollo y progresión de un tumor colorrectal.

  4. A more accurate approach to molecular genetics analysis in vascular disease.

    Science.gov (United States)

    Villadóniga, Jose Ignacio Lao

    2008-09-01

    Vascular disease (VD) and its complications are the leading cause of morbility and death in modern civilisations. Primary VD is a very complex and multifactorial process which is still not well understood. Recent studies provide clear and convincing evidences that genetic risk factors (gene polymorphisms) contribute significantly to the pathogenesis and expression of VD. Thus, we have to analyse the interaction of multiple polymorphisms in multiple genes coding for several proteins involved in the molecular etiopathogenesis of VD. All these polymorphisms are interacting among them, enhancing or antagonizing their pathogenic effects, and at the same time, their final phenotypic expression is constantly modulated by other non-genetic factors (environmental and behavioural). Thus, gene-environment interaction analysis would be crucial for the correct etiopathogenic evaluation. According to a particular assortment of positive and negative gene variants (alleles) present in their genetic pool some individuals develop VD without manifesting very extreme levels of any of the classical risk factors while other individuals remain free of disease despite exposure to several risk factors. Taking into account that this heterogeneity is due to their different genetic susceptibility it is necessary to make an analyse in deep including all genetic polymorphisms which have been involved in the vascular etiopathogenesis in order to design the most appropriate intervention strategy. Using a more accurate genetic polymorphism analysis it would be possible to predict complications in order to make prevention designing an individualized drug therapy on the basis of a person's genetic makeup. However, an accurate genetic testing is not being used as often as it is expected because there are so many polymorphisms to consider and DNA tests available to analyse them are usually dispersed throughout different laboratories because they are not included in an unified protocol. In this sense

  5. Genetic variants associated with drugs-induced immediate hypersensitivity reactions: a PRISMA-compliant systematic review.

    Science.gov (United States)

    Oussalah, A; Mayorga, C; Blanca, M; Barbaud, A; Nakonechna, A; Cernadas, J; Gotua, M; Brockow, K; Caubet, J-C; Bircher, A; Atanaskovic, M; Demoly, P; K Tanno, L; Terreehorst, I; Laguna, J J; Romano, A; Guéant, J-L

    2016-04-01

    Drug hypersensitivity includes allergic (AR) and nonallergic reactions (NARs) influenced by genetic predisposition. We performed a systematic review of genetic predictors of IgE-mediated AR and NAR with MEDLINE and PubMed search engine between January 1966 and December 2014. Among 3110 citations, the search selected 53 studies, 42 of which remained eligible. These eligible studies have evaluated genetic determinants of immediate reactions (IR) to beta-lactams (n = 19), NAR against aspirin (n = 12) and other nonsteroidal anti-inflammatory drugs (NSAIDs) (n = 8), and IR to biologics (n = 3). We reported two genomewide association studies and four case-control studies on candidate genes validated by replication. Genes involved in IR to beta-lactams belonged to HLA type 2 antigen processing, IgE production, atopy, and inflammation, including 4 genes validated by replications, HLA-DRA, ILR4, NOD2, and LGALS3. Genes involved in NAR to aspirin belonged to arachidonic acid pathway, membrane-spanning 4A gene family, histamine production pathway, and pro-inflammatory cytokines, while those involved in NAR to all NSAIDs belonged to arachidonic acid pathway and HLA antigen processing pathway. ALOX5 was a common predictor of studies on NAR to both aspirin and NSAIDs. Although these first conclusions could be drawn, this review highlights also the lack of reliable data and the need for replicating studies in contrasted populations, taking into account worldwide allele frequencies, gene-gene interactions, and contrasted situations of environmental exposure. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Genetic Variations as Modifying Factors to Dietary Zinc Requirements—A Systematic Review

    Directory of Open Access Journals (Sweden)

    Kaitlin J. Day

    2017-02-01

    Full Text Available Due to reduced cost and accessibility, the use of genetic testing has appealed to health professionals for personalising nutrition advice. However, translation of the evidence linking polymorphisms, dietary requirements, and pathology risk proves to be challenging for nutrition and dietetic practitioners. Zinc status and polymorphisms of genes coding for zinc-transporters have been associated with chronic diseases. The present study aimed to systematically review the literature to assess whether recommendations for zinc intake could be made according to genotype. Eighteen studies investigating 31 Single Nucleotide Polymorphisms (SNPs in relation to zinc intake and/or status were identified. Five studies examined type 2 diabetes; zinc intake was found to interact independently with two polymorphisms in the zinc-transporter gene SLC30A8 to affect glucose metabolism indicators. While the outcomes were statistically significant, the small size of the effect and lack of replication raises issues regarding translation into nutrition and dietetic practice. Two studies assessed the relationship of polymorphisms and cognitive performance; seven studies assessed the association between a range of outcomes linked to chronic conditions in aging population; two papers described the analysis of the genetic contribution in determining zinc concentration in human milk; and two papers assessed zinc concentration in plasma without linking to clinical outcomes. The data extracted confirmed a connection between genetics and zinc requirements, although the direction and magnitude of the dietary modification for carriers of specific genotypes could not be defined. This study highlights the need to summarise nutrigenetics studies to enable health professionals to translate scientific evidence into dietary recommendations.

  7. Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics: The PDGene database.

    Directory of Open Access Journals (Sweden)

    Christina M Lill

    Full Text Available More than 800 published genetic association studies have implicated dozens of potential risk loci in Parkinson's disease (PD. To facilitate the interpretation of these findings, we have created a dedicated online resource, PDGene, that comprehensively collects and meta-analyzes all published studies in the field. A systematic literature screen of -27,000 articles yielded 828 eligible articles from which relevant data were extracted. In addition, individual-level data from three publicly available genome-wide association studies (GWAS were obtained and subjected to genotype imputation and analysis. Overall, we performed meta-analyses on more than seven million polymorphisms originating either from GWAS datasets and/or from smaller scale PD association studies. Meta-analyses on 147 SNPs were supplemented by unpublished GWAS data from up to 16,452 PD cases and 48,810 controls. Eleven loci showed genome-wide significant (P < 5 × 10(-8 association with disease risk: BST1, CCDC62/HIP1R, DGKQ/GAK, GBA, LRRK2, MAPT, MCCC1/LAMP3, PARK16, SNCA, STK39, and SYT11/RAB25. In addition, we identified novel evidence for genome-wide significant association with a polymorphism in ITGA8 (rs7077361, OR 0.88, P  =  1.3 × 10(-8. All meta-analysis results are freely available on a dedicated online database (www.pdgene.org, which is cross-linked with a customized track on the UCSC Genome Browser. Our study provides an exhaustive and up-to-date summary of the status of PD genetics research that can be readily scaled to include the results of future large-scale genetics projects, including next-generation sequencing studies.

  8. Is There a Genetic Predisposition to Anterior Cruciate Ligament Tear? A Systematic Review.

    Science.gov (United States)

    John, Rakesh; Dhillon, Mandeep Singh; Sharma, Siddhartha; Prabhakar, Sharad; Bhandari, Mohit

    2016-12-01

    Injuries to the anterior cruciate ligament (ACL) are among the most common knee ligament injuries and frequently warrant reconstruction. The etiopathogenesis of these injuries has focused mainly on mechanism of trauma, patient sex, and anatomic factors as predisposing causes. Several genetic factors that could predispose to an ACL tear have recently been reported. This systematic review summarizes the current evidence for a genetic predisposition to ACL tears. The principal research question was to identify genetic factors, based on the available literature, that could predispose an individual to an ACL tear. Systematic review. The PubMed, EMBASE, Cochrane, and HuGE databases were searched; the search was run from the period of inception until June 21, 2015. A secondary search was performed by screening the references of full-text articles obtained and by manually searching selected journals. Articles were screened with prespecified inclusion criteria. The quality of studies included in the review was assessed for risk of bias by 2 reviewers using the Newcastle-Ottawa Scale. A total of 994 records were identified by the search, out of which 17 studies (16 case-control studies and 1 cross-sectional study) were included in the final review. Two studies observed a familial predisposition to an ACL tear. Fourteen studies looked at specific gene polymorphisms in 20 genes, from which different polymorphisms in 10 genes were positively associated with an ACL tear. In addition to these polymorphisms, 8 haplotypes were associated with ACL tear. One study looked at gene expression analysis. Although specific gene polymorphisms and haplotypes have been identified, it is difficult to come to a conclusion on the basis of the existing literature. Several sources of bias have been identified in these studies, and the results cannot be extrapolated to the general population. More studies are needed in larger populations of different ethnicities. Gene-gene interactions and gene

  9. Molecular analysis of genetic diversity among vine accessions using DNA markers.

    Science.gov (United States)

    da Costa, A F; Teodoro, P E; Bhering, L L; Tardin, F D; Daher, R F; Campos, W F; Viana, A P; Pereira, M G

    2017-04-13

    Viticulture presents a number of economic and social advantages, such as increasing employment levels and fixing the labor force in rural areas. With the aim of initiating a program of genetic improvement in grapevine from the State University of the state of Rio de Janeiro North Darcy Ribeiro, genetic diversity between 40 genotypes (varieties, rootstock, and species of different subgenera) was evaluated using Random amplified polymorphic DNA (RAPD) molecular markers. We built a matrix of binary data, whereby the presence of a band was assigned as "1" and the absence of a band was assigned as "0." The genetic distance was calculated between pairs of genotypes based on the arithmetic complement from the Jaccard Index. The results revealed the presence of considerable variability in the collection. Analysis of the genetic dissimilarity matrix revealed that the most dissimilar genotypes were Rupestris du Lot and Vitis rotundifolia because they were the most genetically distant (0.5972). The most similar were genotypes 31 (unidentified) and Rupestris du lot, which showed zero distance, confirming the results of field observations. A duplicate was confirmed, consistent with field observations, and a short distance was found between the variety 'Italy' and its mutation, 'Ruby'. The grouping methods used were somewhat concordant.

  10. Molecular Genetic Approaches for Environmental Stress Tolerant Crop Plants: Progress and Prospects.

    Science.gov (United States)

    Kaur, Ranjeet; Kumar Bhunia, Rupam; Ghosh, Ananta Kumar

    2016-01-01

    Global food security is threatened by the severe environmental conditions that have reduced the worldwide crop yield. Plants possess inherent mechanisms to cope with the initial stress phase but to ensure their survival through harsh climate, the intervention of genetic engineering is desirable. We present a comprehensive review on the progress made in the field of developing environmental stress tolerant crops and the prospects that can be undertaken for achieving it. We review the effects of abiotic and biotic stresses on crop plants, and the use of different molecular genetic approaches to cope with these environmental stresses for establishment of sustainable agriculture. The various strategies employed in different crops have also been discussed. We also summarized the major patents in the field of plant stress tolerance that have been granted in the last five years. On the basis of these analyses, we propose that genetic engineering of crops is the preferred approach over the traditional methods for yielding healthier and viable agriculture in response to the different stressful environments. The wild progenitors of cultivated crop species can prove to be highly potential genetic resources in this regard and can be exploited to produce better crops that are relatively tolerant towards various environmental stresses. Thus, elucidation of genetic loci and deciphering the underlying mechanisms that confer tolerance to plants against stressful conditions followed by its successful introgression into elite, high-yielding crop varieties can be an effective way to engineer the crops for sustainable agriculture.

  11. Molecular genetic and molecular evolutionary studies on the bacteriochlorophyll synthesis genes of Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Burke-Agueero, Donald H. [Univ. of California, Berkeley, CA (United States)

    1992-08-01

    Rhodobacter capsulatus, purple bacterium capable of either aerobic or photosynthetic growth, has proven to be very useful in genetic studies of photosynthesis. Forty-four genes clustered together within a 46 kilobase region are required to establish photosynthetic ability in R. capsulatus. Approximately twenty of these genes are involved in bacteriochlorophyll synthesis of which eight ``bch`` genes are the subject of this thesis. Six of these genes were found to code for the two ring reductases. The first converts protochlorophyllide (PChlide) into a chlorin, the immediate precursor to chlorophyll a, and then into a bacteriochlorin. Each reductase is shown to be made up of three subunits. PChlide reductase is coded by the genes bchN, bchB, and bchL. Proteins with amino acid sequences markedly similar to those of bchN and bchL have been shown in other organisms to be required for chlorophyll synthesis; hence, their designation as chlN and chlB. A third chloroplast-encoded gene of heretofore unknown function shares amino acid identities with bchB and is probably the third subunit of the plant PChlide reductase. The bchA locus, which encodes the chlorin reductase, is found to be made up of three separate, translationally coupled genes, referred to as bchX, bchY, and bchZ. Amino acid similarities between bchX, bchL, and the nitrogenase reductase protein nifH suggest that all three classes of proteins share certain three-dimensional structural features, including elements that are central to the enzymatic mechanism of nifH. PChlide reductase and chlorin reductase are clearly derived from a common ancestor. Several lines of analysis suggests the ancestor of both enzyme systems reduced PChlide twice to produce bacteriochlorophyll supporting the concept bacteriochlorophyll as the ancestral reaction center pigment.

  12. Molecular genetic and molecular evolutionary studies on the bacteriochlorophyll synthesis genes of Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Burke-Agueero, D.H.

    1992-08-01

    Rhodobacter capsulatus, purple bacterium capable of either aerobic or photosynthetic growth, has proven to be very useful in genetic studies of photosynthesis. Forty-four genes clustered together within a 46 kilobase region are required to establish photosynthetic ability in R. capsulatus. Approximately twenty of these genes are involved in bacteriochlorophyll synthesis of which eight bch'' genes are the subject of this thesis. Six of these genes were found to code for the two ring reductases. The first converts protochlorophyllide (PChlide) into a chlorin, the immediate precursor to chlorophyll a, and then into a bacteriochlorin. Each reductase is shown to be made up of three subunits. PChlide reductase is coded by the genes bchN, bchB, and bchL. Proteins with amino acid sequences markedly similar to those of bchN and bchL have been shown in other organisms to be required for chlorophyll synthesis; hence, their designation as chlN and chlB. A third chloroplast-encoded gene of heretofore unknown function shares amino acid identities with bchB and is probably the third subunit of the plant PChlide reductase. The bchA locus, which encodes the chlorin reductase, is found to be made up of three separate, translationally coupled genes, referred to as bchX, bchY, and bchZ. Amino acid similarities between bchX, bchL, and the nitrogenase reductase protein nifH suggest that all three classes of proteins share certain three-dimensional structural features, including elements that are central to the enzymatic mechanism of nifH. PChlide reductase and chlorin reductase are clearly derived from a common ancestor. Several lines of analysis suggests the ancestor of both enzyme systems reduced PChlide twice to produce bacteriochlorophyll supporting the concept bacteriochlorophyll as the ancestral reaction center pigment.

  13. Investigation of the Lobular Carcinoma in Situ, Using Molecular Genetic Techniques, for the Involvement of Novel Genes

    National Research Council Canada - National Science Library

    Mastracci, Teresa L; Andrulis, Irene L

    2005-01-01

    .... Our study proposes to investigate LN lesions, lacking any adjacent invasive carcinoma, for alterations in and expression of known and novel genes/proteins with the goal of characterizing a molecular genetic profile...

  14. Genética Molecular das Epidermólises Bolhosas Molecular Genetics of Epidermolysis Bullosa

    Directory of Open Access Journals (Sweden)

    Hiram Larangeira de Almeida Jr

    2002-10-01

    Full Text Available O estudo das alterações moleculares das epidermólises bolhosas tem contribuído para que se compreenda melhor essas enfermidades. Na epidermólise bolhosa simples a maioria dos casos está associada com alteração nas citoqueratinas basais 5 (gen KRT5 e 14 (gen KRT14, o que modifica o citoesqueleto na camada basal da epiderme, levando à degeneração dessa camada, formando bolha intra-epidérmica. Mutações na plectina (gen PLEC1, componente da placa interna do hemidesmossoma, levam também à clivagem intra-epidérmica. Na epidermólise bolhosa juncional vários gens estão envolvidos, em decorrência da complexidade da zona da membrana basal, todos levando ao descolamento dos queratinócitos basais na lâmina lúcida, pela disfunção da aderência entre esses e a lâmina densa. Alterações na laminina 5 (gens LAMA3, LAMB3 e LAMC2, integrina alfa6beta4 (gens ITGA6 e ITGB4 e colágeno XVII (gen COL17A1 foram descritas. Por fim, na epidermólise bolhosa distrófica apenas um gen está mutado, alterando o colágeno VII (gen COL7A1, principal componente das fibrilas ancorantes, produzindo clivagem abaixo da lâmina densa, variando fenotipicamente de acordo com a conseqüência da mutação. Outra aplicação importante dessas informações refere-se ao diagnóstico pré-natal, com a perspectiva no futuro da terapia gênica.New data regarding the molecular aspects of the heterogeneous group of epidermolysis bullosa has brought some important information about its pathogenesis. In epidermolysis bullosa simplex the majority of mutations are localized in the genes of the basal cytokeratin 5 (gene KRT5 and 14 (gene KRT14, cytolysis at this layer with intraepidermal blister is seen under light microscopy. Mutations of plectin (gene PLEC1, a protein found in the inner hemidesmosomal plaque, leads also to intraepidermal blisters. In junctional epidermolysis bullosa many proteins from the basal membrane zone are involved, such as laminin 5 (genes

  15. Molecular genetic and genetic correlations in sodium channelopathies: Lack of founder effect and evidence for a second gene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Zhou, J.; Feero, W.G.; Conwit, R.; Galloway, G.; Hoffman, E.P. (Univ. of Pittsburgh, PA (United States)); Wessel, H.B. (Children' s Hospital, Pittsburgh, PA (United States) Univ. of Pittsburgh, PA (United States)); Todorovic, S.M. (Univ. of Belgrade (Yugoslavia)); Barany, F. (Cornell Univ., New York, NY (United States)); Hausmanowa-Petrusewicz, I.; Fidzianska, A. (Polish Academy of Sciences, Warsaw (Poland)); Arahata, K. (National Inst. of Neuroscience, Tokyo (Japan)); Sillen, A. (University Hospital, Uppsala (Sweden)); Marks, H.G. (A. I. duPont Inst., Wilmington, DE (United States)); Hartlage, P. (Medical College of Georgia, Augusta (United States)); Ricker, K. (Univ. of Wuerzburg (Germany)); Lehmann-Horn, F. (Univ. of Ulm (Germany)); Hayakawa, H. (Hitachi General Hospital (Japan))

    1993-06-01

    The authors present a correlation of molecular genetic data (mutations) and genetic data (dinucleotide-repeat polymorphisms) for a cohort of seven hyperkalemic periodic paralysis (HyperPP) and two paramyotonia congenita (PC) families from diverse ethnic backgrounds. They found that each of three previously identified point mutations of the adult skeletal muscle sodium-channel gene occurred on two different dinucleotide-repeat haplotypes. These results indicate that dinucleotide-repeat haplotypes are not predictive of allelic heterogeneity in sodium channelopathies, contrary to previous suggestions. In addition, they identified a HyperPP pedigree in which the dominant disorder was not linked to the sodium-channel gene. Thus, a second locus can give rise to a similar clinical phenotype. Some individuals in this pedigree exhibited a base change causing the nonconservative substitution of an evolutionarily conserved amino acid. Because this change was not present in 240 normal chromosomes and was near another HyperPP mutation, it fulfilled the most commonly used criteria for being a mutation rather than a polymorphism. However, linkage studies using single-strand conformation polymorphism-derived and sequence-derived haplotypes excluded this base change as a causative mutation: these data serve as a cautionary example of potential pitfalls in the delineation of change-of-function point mutations. 35 refs., 5 figs., 1 tab.

  16. A Molecular Perspective on Systematics, Taxonomy and Classification Amazonian Discus Fishes of the Genus Symphysodon

    Science.gov (United States)

    Amado, Manuella Villar; Farias, Izeni P.; Hrbek, Tomas

    2011-01-01

    With the goal of contributing to the taxonomy and systematics of the Neotropical cichlid fishes of the genus Symphysodon, we analyzed 336 individuals from 24 localities throughout the entire distributional range of the genus. We analyzed variation at 13 nuclear microsatellite markers, and subjected the data to Bayesian analysis of genetic structure. The results indicate that Symphysodon is composed of four genetic groups: group PURPLE—phenotype Heckel and abacaxi; group GREEN—phenotype green; group RED—phenotype blue and brown; and group PINK—populations of Xingú and Cametá. Although the phenotypes blue and brown are predominantly biological group RED, they also have substantial contributions from other biological groups, and the patterns of admixture of the two phenotypes are different. The two phenotypes are further characterized by distinct and divergent mtDNA haplotype groups, and show differences in mean habitat use measured as pH and conductivity. Differences in mean habitat use is also observed between most other biological groups. We therefore conclude that Symphysodon comprises five evolutionary significant units: Symphysodon discus (Heckel and abacaxi phenotypes), S. aequifasciatus (brown phenotype), S. tarzoo (green phenotype), Symphysodon sp. 1 (blue phenotype) and Symphysodon sp. 2 (Xingú group). PMID:21811676

  17. Combination of broad molecular screening and cytogenetic analysis for genetic risk assignment and diagnosis in patients with acute leukemia.

    Science.gov (United States)

    Meyer-Monard, S; Parlier, V; Passweg, J; Mühlematter, D; Hess, U; Bargetzi, M; Kühne, T; Cabrol, C; Gratwohl, A; Jotterand, M; Tichelli, A

    2006-02-01

    We evaluated the impact of genetic analysis combining cytogenetics and broad molecular screening on leukemia diagnosis according to World Health Organization (WHO) and on genetic risk assignment. A two-step nested multiplex RT-PCR assay was used that allowed the detection of 29 fusion transcripts. A total of 186 patients (104 males (56%), 174 adults (94%), 12 children (6%), 155 AML (83%), 31 ALL (17%)) characterized by morphology and immunophenotyping were included. Of these 186 patients, 120 (65%) had a genetic abnormality. Molecular typing revealed a fusion transcript in 49 (26%) patients and cytogenetic analysis revealed an abnormal karyotype in 119 (64%). A total of 27 (14%) cases were genetically classified as favorable, 107 (58%) intermediate and 52 (28%) unfavorable. For 38 (20%) patients, there was a discrepancy in the genetic risk assignments obtained from broad molecular screening and cytogenetics. Cryptic fusion transcripts in nine (5%) patients changed the genetic risk assignment in four and the WHO classification in four patients. In 34 patients (18%), cytogenetics defined the risk assignment by revealing structural and numerical chromosomal abnormalities not detected by molecular screening. Broad molecular screening and cytogenetics are complementary in the diagnosis and genetic risk assignment of acute leukemia.

  18. Molecular clustering of patients with diabetes and pulmonary tuberculosis: A systematic review and meta-analysis.

    Science.gov (United States)

    Blanco-Guillot, Francles; Delgado-Sánchez, Guadalupe; Mongua-Rodríguez, Norma; Cruz-Hervert, Pablo; Ferreyra-Reyes, Leticia; Ferreira-Guerrero, Elizabeth; Yanes-Lane, Mercedes; Montero-Campos, Rogelio; Bobadilla-Del-Valle, Miriam; Torres-González, Pedro; Ponce-de-León, Alfredo; Sifuentes-Osornio, José; Garcia-Garcia, Lourdes

    2017-01-01

    Many studies have explored the relationship between diabetes mellitus (DM) and tuberculosis (TB) demonstrating increased risk of TB among patients with DM and poor prognosis of patients suffering from the association of DM/TB. Owing to a paucity of studies addressing this question, it remains unclear whether patients with DM and TB are more likely than TB patients without DM to be grouped into molecular clusters defined according to the genotype of the infecting Mycobacterium tuberculosis bacillus. That is, whether there is convincing molecular epidemiological evidence for TB transmission among DM patients. Objective: We performed a systematic review and meta-analysis to quantitatively evaluate the propensity for patients with DM and pulmonary TB (PTB) to cluster according to the genotype of the infecting M. tuberculosis bacillus. We conducted a systematic search in MEDLINE and LILACS from 1990 to June, 2016 with the following combinations of key words "tuberculosis AND transmission" OR "tuberculosis diabetes mellitus" OR "Mycobacterium tuberculosis molecular epidemiology" OR "RFLP-IS6110" OR "Spoligotyping" OR "MIRU-VNTR". Studies were included if they met the following criteria: (i) studies based on populations from defined geographical areas; (ii) use of genotyping by IS6110- restriction fragment length polymorphism (RFLP) analysis and spoligotyping or mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR) or other amplification methods to identify molecular clustering; (iii) genotyping and analysis of 50 or more cases of PTB; (iv) study duration of 11 months or more; (v) identification of quantitative risk factors for molecular clustering including DM; (vi) > 60% coverage of the study population; and (vii) patients with PTB confirmed bacteriologically. The exclusion criteria were: (i) Extrapulmonary TB; (ii) TB caused by nontuberculous mycobacteria; (iii) patients with PTB and HIV; (iv) pediatric PTB patients; (v) TB in closed

  19. Molecular genetic tools to infer the origin of forest plants and wood.

    Science.gov (United States)

    Finkeldey, Reiner; Leinemann, Ludger; Gailing, Oliver

    2010-02-01

    Most forest tree species exhibit high levels of genetic diversity that can be used to trace the origin of living plants or their products such as timber and processed wood. Recent progress to isolate DNA not only from living tissue but also from wood and wood products offers new opportunities to test the declared origin of material such as seedlings for plantation establishment or timber. However, since most forest tree populations are weakly differentiated, the identification of genetic markers to differentiate among spatially isolated populations is often difficult and time consuming. Two important fields of "forensic" applications are described: Molecular tools are applied to test the declared origin of forest reproductive material used for plantation establishment and of internationally traded timber and wood products. These applications are illustrated taking examples from Germany, where mechanisms have been developed to improve the control of the trade with forest seeds and seedlings, and from the trade with wood of the important Southeast Asian tree family Dipterocarpaceae. Prospects and limitations of the use of molecular genetic methods to conclude on the origin of forest plants, wood, and wood products are discussed.

  20. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws.

    Science.gov (United States)

    Smajs, David; Norris, Steven J; Weinstock, George M

    2012-03-01

    Pathogenic uncultivable treponemes, similar to syphilis-causing Treponema pallidum subspecies pallidum, include T. pallidum ssp. pertenue, T. pallidum ssp. endemicum and Treponema carateum, which cause yaws, bejel and pinta, respectively. Genetic analyses of these pathogens revealed striking similarity among these bacteria and also a high degree of similarity to the rabbit pathogen, Treponema paraluiscuniculi, a treponeme not infectious to humans. Genome comparisons between pallidum and non-pallidum treponemes revealed genes with potential involvement in human infectivity, whereas comparisons between pallidum and pertenue treponemes identified genes possibly involved in the high invasivity of syphilis treponemes. Genetic variability within syphilis strains is considered as the basis of syphilis molecular epidemiology with potential to detect more virulent strains, whereas genetic variability within a single strain is related to its ability to elude the immune system of the host. Genome analyses also shed light on treponemal evolution and on chromosomal targets for molecular diagnostics of treponemal infections. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Molecular markers to assess genetic diversity and mutant identifications in Jatropha curcas

    International Nuclear Information System (INIS)

    Azhar Mohamad; Yie Min Kwan; Fatin Mastura Derani; Abdul Rahim Harun

    2010-01-01

    Jatropha curcas (Linnaeus) belongs to the Euphorbiaceae family, is a multipurpose use, drought resistant and perennial plant. It is an economic important crop, which generates wide interest in understanding the genetic diversity of the species towards selection and breeding of superior genotypes. Jatropha accessions are closely related family species. Thus, better understanding of the effectiveness of the different DNA-based markers is an important step towards plant germplasm characterization and evaluation. It is becoming a prerequisite for more effective application of marker techniques in breeding programs. Inter-simple sequence repeats (ISSRs) has shown rapid, simple, reproducible and inexpensive means in molecular taxonomy, conservation breeding and genetic diversity analysis. These markers were used to understand diversity and differentiate amongst accessions of Jatropha population and mutant lines generated by acute gamma radiation. The ISSR for marker applications are essential to facilitate management, conservation and genetic improvement programs towards improvement of bio-diesel production and medication substances. A total of 62 ISSR primers were optimized for polymorphism evaluations on five foreign accessions (Africa, India, Myanmar, Indonesia, Thailand), nine local accessions and two mutants of Jatropha. Optimization was resulted 54 ISSR primers affirmative for the polymorphism evaluation study, which encountered 12 ISSR primers, showed significance polymorphism amongst the accessions and mutants. Marker derived from ISSR profiling is a powerful method for identification and molecular classification of Jatropha from accession to generated mutant varieties. (author)

  2. Alleles versus mutations: Understanding the evolution of genetic architecture requires a molecular perspective on allelic origins.

    Science.gov (United States)

    Remington, David L

    2015-12-01

    Perspectives on the role of large-effect quantitative trait loci (QTL) in the evolution of complex traits have shifted back and forth over the past few decades. Different sets of studies have produced contradictory insights on the evolution of genetic architecture. I argue that much of the confusion results from a failure to distinguish mutational and allelic effects, a limitation of using the Fisherian model of adaptive evolution as the lens through which the evolution of adaptive variation is examined. A molecular-based perspective reveals that allelic differences can involve the cumulative effects of many mutations plus intragenic recombination, a model that is supported by extensive empirical evidence. I discuss how different selection regimes could produce very different architectures of allelic effects under a molecular-based model, which may explain conflicting insights on genetic architecture from studies of variation within populations versus between divergently selected populations. I address shortcomings of genome-wide association study (GWAS) practices in light of more suitable models of allelic evolution, and suggest alternate GWAS strategies to generate more valid inferences about genetic architecture. Finally, I discuss how adopting more suitable models of allelic evolution could help redirect research on complex trait evolution toward addressing more meaningful questions in evolutionary biology. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  3. Prevalence of autism spectrum disorder phenomenology in genetic disorders: a systematic review and meta-analysis.

    Science.gov (United States)

    Richards, Caroline; Jones, Christopher; Groves, Laura; Moss, Jo; Oliver, Chris

    2015-10-01

    Autism spectrum disorder (ASD) phenomenology is reported to be more common in individuals with some genetic syndromes than in the general population; however, no meta-analysis has provided prevalence data within and between syndromes. In this systematic review and meta-analysis, we aimed to synthesise data from a wide range of papers to provide accurate estimates about ASD phenomenology in genetic and metabolic syndromes. We identified syndromes reported as most likely to be associated with ASD. We searched Ovid PsycINFO, Ovid MEDLINE, Ovid Embase, and PubMed Central for English-language papers published from database creation up to early 2014 with use of syndrome-specific keywords and a set of ASD keywords. We screened and extracted papers that had ASD prevalence data for ten or more people within a genetic syndrome. With use of a prespecified set of reliable criteria, we applied quality weighting to papers and estimated a quality-effects prevalence of ASD phenomenology for each syndrome. We then calculated relative risks to compare ASD between all syndromes and also calculated odds ratios to compare prevalence with the general population taking the current estimate of one in 68 people. We identified 168 papers reporting the prevalence of ASD phenomenology and found widely varying methods and quality of data. Quality-weighted effect prevalence estimates of ASD phenomenology were established for Rett's syndrome (female individuals only 61%), Cohen's syndrome (54%), Cornelia de Lange syndrome (43%), tuberous sclerosis complex (36%), Angelman's syndrome (34%), CHARGE syndrome (30%), fragile X syndrome (male individuals only 30%; mixed sex 22%), neurofibromatosis type 1 (18%), Down's syndrome (16%), Noonan's syndrome (15%), Williams' syndrome (12%), and 22q11.2 deletion syndrome (11%). Relative risks and the odds ratio compared with the general population were highest for Rett's syndrome and Cohen's syndrome. In all syndromes, odds ratios showed ASD phenomenology to

  4. New STS molecular markers for assessment of genetic diversity and DNA fingerprinting in hop (Humulus lupulus L.)

    Czech Academy of Sciences Publication Activity Database

    Patzak, J.; Vrba, Lukáš; Matoušek, Jaroslav

    2007-01-01

    Roč. 50, č. 1 (2007), s. 15-25 ISSN 0831-2796 R&D Projects: GA ČR GA521/03/0072 Institutional research plan: CEZ:AV0Z50510513 Keywords : hop (Humulus lupulus L.) * genetic diversity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.785, year: 2007

  5. Molecular genetics and prognosis of lung cancer in young patients: Research highlights

    Directory of Open Access Journals (Sweden)

    Yong SONG

    2017-04-01

    Full Text Available Differed from the elderly patients with lung cancer, the younger patients with lung cancer, less than 50 years old, present unique clinical features. Recently, the incidence of lung cancer in young people has shown a rising trend, making the research on this field more valuable. At present, molecular targeted therapy is one of the most popular areas of non-small-cell lung cancer (NSCLC, and researches are focused on the epidermal growth factor receptor (EGFR and echinoderm microtubule associated protein like4-anaplastic lymphoma kinase (EML4-ALK. In addition, the previous researches revealed the differences between the young and elderly patients with lung cancer on molecular genetics and prognosis, so the researches on prognostic factors for young patients with lung cancer are of great clinical significance. The present paper will focus on the aspects of pathogenesis, molecular genetics and prognosis in young patients with lung cancer. DOI: 10.11855/j.issn.0577-7402.2017.03.01

  6. Molecular phylogeny of Toxoplasmatinae: comparison between inferences based on mitochondrial and apicoplast genetic sequences

    Directory of Open Access Journals (Sweden)

    Michelle Klein Sercundes

    2016-03-01

    Full Text Available Abstract Phylogenies within Toxoplasmatinae have been widely investigated with different molecular markers. Here, we studied molecular phylogenies of the Toxoplasmatinae subfamily based on apicoplast and mitochondrial genes. Partial sequences of apicoplast genes coding for caseinolytic protease (clpC and beta subunit of RNA polymerase (rpoB, and mitochondrial gene coding for cytochrome B (cytB were analyzed. Laboratory-adapted strains of the closely related parasites Sarcocystis falcatula and Sarcocystis neurona were investigated, along with Neospora caninum, Neospora hughesi, Toxoplasma gondii (strains RH, CTG and PTG, Besnoitia akodoni, Hammondia hammondiand two genetically divergent lineages of Hammondia heydorni. The molecular analysis based on organellar genes did not clearly differentiate between N. caninum and N. hughesi, but the two lineages of H. heydorni were confirmed. Slight differences between the strains of S. falcatula and S. neurona were encountered in all markers. In conclusion, congruent phylogenies were inferred from the three different genes and they might be used for screening undescribed sarcocystid parasites in order to ascertain their phylogenetic relationships with organisms of the family Sarcocystidae. The evolutionary studies based on organelar genes confirm that the genusHammondia is paraphyletic. The primers used for amplification of clpC and rpoB were able to amplify genetic sequences of organisms of the genus Sarcocystisand organisms of the subfamily Toxoplasmatinae as well.

  7. Genetic characterization, molecular epidemiology, and phylogenetic relationships of insect-specific viruses in the taxon Negevirus.

    Science.gov (United States)

    Nunes, Marcio R T; Contreras-Gutierrez, María Angélica; Guzman, Hilda; Martins, Livia C; Barbirato, Mayla Feitoza; Savit, Chelsea; Balta, Victoria; Uribe, Sandra; Vivero, Rafael; Suaza, Juan David; Oliveira, Hamilton; Nunes Neto, Joaquin P; Carvalho, Valeria L; da Silva, Sandro Patroca; Cardoso, Jedson F; de Oliveira, Rodrigo Santo; da Silva Lemos, Poliana; Wood, Thomas G; Widen, Steven G; Vasconcelos, Pedro F C; Fish, Durland; Vasilakis, Nikos; Tesh, Robert B

    2017-04-01

    The recently described taxon Negevirus is comprised of a diverse group of insect-specific viruses isolated from mosquitoes and phlebotomine sandflies. In this study, a comprehensive genetic characterization, molecular, epidemiological and evolutionary analyses were conducted on nearly full-length sequences of 91 new negevirus isolates obtained in Brazil, Colombia, Peru, Panama, USA and Nepal. We demonstrated that these arthropod restricted viruses are clustered in two major phylogenetic groups with origins related to three plant virus genera (Cilevirus, Higrevirus and Blunevirus). Molecular analyses demonstrated that specific host correlations are not present with most negeviruses; instead, high genetic variability, wide host-range, and cross-species transmission were noted. The data presented here also revealed the existence of five novel insect-specific viruses falling into two arthropod-restrictive virus taxa, previously proposed as distinct genera, designated Nelorpivirus and Sandewavirus. Our results provide a better understanding of the molecular epidemiology, evolution, taxonomy and stability of this group of insect-restricted viruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Molecular microbiology of gut bacteria: genetic diversity and community structure analysis.

    Science.gov (United States)

    Peterka, M; Tepsic, Katarina; Accetto, T; Kostanjsek, R; Ramsak, Andreja; Lipoglavsek, L; Avgustin, G

    2003-01-01

    Recently developed molecular biology approaches make possible the detailed genetic, taxonomic and ecological examination of microorganisms from various habitats. Animal gut represents one of the most complex microbial ecosystems with a large degree of microbial biodiversity present. Bacteria inhabiting the gut usually play important roles in metabolic transformations of substrates and sometimes, e.g. in ruminants, they make the basis for an obligate symbiosis with the host. Here we discuss molecular microbiology as a strategy for examination of gut bacteria, concentrating on a typical and in such environment dominant group of strictly anaerobic Gram-negative bacteria from the phylogenetic group Cytophaga/Flexibacter/Bacteroides. The bacteria from the genus Prevotella are the most abundant Gram-negative bacteria in the rumen and form a distinctive phylogenetic cluster, clearly separated from prevotellas isolated from other ecological niches. They may represent a good choice for a model organism in genetic manipulation experiments and for studies of gene transfer mechanisms taking place in the gut. The molecular tools for detection and monitoring of ruminal prevotellas are discussed.

  9. Genetic Alterations in the Molecular Subtypes of Bladder Cancer: Illustration in the Cancer Genome Atlas Dataset.

    Science.gov (United States)

    Choi, Woonyoung; Ochoa, Andrea; McConkey, David J; Aine, Mattias; Höglund, Mattias; Kim, William Y; Real, Francisco X; Kiltie, Anne E; Milsom, Ian; Dyrskjøt, Lars; Lerner, Seth P

    2017-09-01

    Recent whole genome mRNA expression profiling studies revealed that bladder cancers can be grouped into molecular subtypes, some of which share clinical properties and gene expression patterns with the intrinsic subtypes of breast cancer and the molecular subtypes found in other solid tumors. The molecular subtypes in other solid tumors are enriched with specific mutations and copy number aberrations that are thought to underlie their distinct progression patterns, and biological and clinical properties. The availability of comprehensive genomic data from The Cancer Genome Atlas (TCGA) and other large projects made it possible to correlate the presence of DNA alterations with tumor molecular subtype membership. Our overall goal was to determine whether specific DNA mutations and/or copy number variations are enriched in specific molecular subtypes. We used the complete TCGA RNA-seq dataset and three different published classifiers developed by our groups to assign TCGA's bladder cancers to molecular subtypes, and examined the prevalence of the most common DNA alterations within them. We interpreted the results against the background of what was known from the published literature about the prevalence of these alterations in nonmuscle-invasive and muscle-invasive bladder cancers. The results confirmed that alterations involving RB1 and NFE2L2 were enriched in basal cancers, whereas alterations involving FGFR3 and KDM6A were enriched in luminal tumors. The results further reinforce the conclusion that the molecular subtypes of bladder cancer are distinct disease entities with specific genetic alterations. Our observation showed that some of subtype-enriched mutations and copy number aberrations are clinically actionable, which has direct implications for the clinical management of patients with bladder cancer. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  10. Systematic benchmark of substructure search in molecular graphs - From Ullmann to VF2

    Directory of Open Access Journals (Sweden)

    Ehrlich Hans-Christian

    2012-07-01

    Full Text Available Abstract Background Searching for substructures in molecules belongs to the most elementary tasks in cheminformatics and is nowadays part of virtually every cheminformatics software. The underlying algorithms, used over several decades, are designed for the application to general graphs. Applied on molecular graphs, little effort has been spend on characterizing their performance. Therefore, it is not clear how current substructure search algorithms behave on such special graphs. One of the main reasons why such an evaluation was not performed in the past was the absence of appropriate data sets. Results In this paper, we present a systematic evaluation of Ullmann’s and the VF2 subgraph isomorphism algorithms on molecular data. The benchmark set consists of a collection of 1235 SMARTS substructure expressions and selected molecules from the ZINC database. The benchmark evaluates substructures search times for complete database scans as well as individual substructure-molecule pairs. In detail, we focus on the influence of substructure formulation and size, the impact of molecule size, and the ability of both algorithms to be used on multiple cores. Conclusions The results show a clear superiority of the VF2 algorithm in all test scenarios. In general, both algorithms solve most instances in less than one millisecond, which we consider to be acceptable. Still, in direct comparison, the VF2 is most often several folds faster than Ullmann’s algorithm. Additionally, Ullmann’s algorithm shows a surprising number of run time outliers.

  11. The study of evolution in the Crow - Kimura molecular genetics model using methods of calculus of variations

    Science.gov (United States)

    Subbotina, Nina N.; Shagalova, Lyubov G.

    2017-11-01

    The Cauchy problem for a nonlinear noncoercive Hamilton - Jacobi equation with state constraints is under consideration. Such a problem originates in molecular biology. It describes the process of evolution in molecular genetics according to the Crow - Kimura model. A generalized solution of prescribed structure is constructed and justifed via calculus of variations. The results of computer simulation are presented.

  12. Molecular genetic variability of Australian isolates of five cereal rust pathogens.

    Science.gov (United States)

    Keiper, Felicity J; Hayden, Matthew J; Park, Robert F; Wellings, Colin R

    2003-05-01

    Rust fungi cause economically important diseases of cereals, and their ability to rapidly evolve new virulent races has hindered attempts to control them by genetic resistance. PCR-based molecular tools may assist in understanding the genetic structure of pathogen populations. The high multiplex DNA fingerprinting techniques, amplified fragment length polymorphisms (AFLP), selectively amplified microsatellites (SAM) and sequence-specific amplification polymorphisms (S-SAP) were assessed for their potential in investigations of the genetic relationships among isolates of the wheat rust pathogens, Puccinia graminis f. sp. tritici (Pgt), Puccinia triticina (Pt), and P. striiformis f. sp. tritici (Pst), the oat stem rust pathogen P. graminis f. sp. avenae (Pga), and a putative new P. striiformis special form tentatively designated Barley grass yellow rust (Bgyr). Marker information content, as indicated by the number of species-specific fragments, polymorphic fragments among pathotypes, percentage of polymorphic loci, and the marker index, was highest for the SAM assay, followed by the AFLP and S-SAP assays. UPGMA analysis revealed that all marker types efficiently discriminated the five different taxa and Mantel tests revealed significant correlations between the marker types. Within pathogen groups, the marker types differed in the amount of variation detected among isolates; however, the major differences were consistent and polymorphism was generally low. This was reflected by the AMOVA analysis that significantly partitioned 90% of the genetic variation between taxa. Of the three marker types, SAMS were the most informative, and have the potential for the development of locus-specific microsatellites.

  13. Quality assurance practices in Europe: a survey of molecular genetic testing laboratories

    Science.gov (United States)

    Berwouts, Sarah; Fanning, Katrina; Morris, Michael A; Barton, David E; Dequeker, Elisabeth

    2012-01-01

    In the 2000s, a number of initiatives were taken internationally to improve quality in genetic testing services. To contribute to and update the limited literature available related to this topic, we surveyed 910 human molecular genetic testing laboratories, of which 291 (32%) from 29 European countries responded. The majority of laboratories were in the public sector (81%), affiliated with a university hospital (60%). Only a minority of laboratories was accredited (23%), and 26% was certified. A total of 22% of laboratories did not participate in external quality assessment (EQA) and 28% did not use reference materials (RMs). The main motivations given for accreditation were to improve laboratory profile (85%) and national recognition (84%). Nearly all respondents (95%) would prefer working in an accredited laboratory. In accredited laboratories, participation in EQA (Pquality assurance (Pquality implementation score (QIS), we showed that accredited laboratories (average score 92) comply better than certified laboratories (average score 69, Pquality indicators. We conclude that quality practices vary widely in European genetic testing laboratories. This leads to a potentially dangerous situation in which the quality of genetic testing is not consistently assured. PMID:22739339

  14. Genetic diversity analysis of Chrysopidae family (Insecta, Neuroptera) via molecular markers.

    Science.gov (United States)

    Yari, Kheirollah; Mirmoayedi, Alinaghi; Marami, Marzieh; Kazemi, Elham; Kahrizi, Danial

    2014-09-01

    In entomology, improvement of molecular methods would be beneficial tools for accurate identification and detecting the genetic diversity of insect species to discover a corroborative evidence for the traditional classification based on morphology. The aim of this study was focused on RAPD-PCR method for distinguishing the genetic diversity between eight species of Chrysopidae family. In current research, many specimens were collected in different locations of Tehran province (Iran), between them 24 specimens were identified. The wing venation, male genitalia and other morphological characters were used for identification and also the sexing of species was recognized with study of external genitalia. Then, the DNA was extracted with CTAB method. The RAPD-PCR method was carried out with twenty random primers. The agarose gel electrophoresis was used for separation of the PCR products. Based on electrophoresis results, 133 bands were amplified and between them, 126 bands were poly-morph and others were mono-morph. Also, among the applied primers, the primers OPA02 with 19 bands and OPA03 with 8 bands were amplified the maximum and minimum of bands, respectively. The results showed that 80.35 and 73.21 % of genetic similarity existed between Chrysopa pallens-Chrysopa dubitans, and between the Chrysoperla kolthoffi and Chrysoperla carnea, respectively. The minimum (45.53 %) of genetic similarity was observed between C. kolthoffi and C. dubitans, and the maximum (0.80 %) was seen between C. pallens and C. dubitans.

  15. Molecular genetic evidence for interspecific hybridization among endemic Hispaniolan Bursera (Burseraceae).

    Science.gov (United States)

    Weeks, Andrea; Simpson, Beryl B

    2004-06-01

    Historically, genetic introgression among species as well as hybrid origins for species of the diploid tree genus Bursera (Burseraceae) have been proposed based on the supposition that individuals morphologically intermediate between sympatric "parent" species must be derived from hybridization. This study reports the first molecular genetic evidence for both unidirectional and reciprocal interspecific hybridization within Bursera. Phylogenies of hybrids and other species in B. subgenus Bursera are reconstructed based on nuclear and chloroplast sequence data. Compelling evidence supports the hybrid origin of three endemic Hispaniolan species: B. brunea (B. nashii × B. simaruba), B. gracilipes (B. spinescens × B. simaruba), and B. ovata (B. simaruba × B. spinescens). Cloning studies of nuclear markers from B. ovata suggests that this species is an introgressed or later backcross generation hybrid and thus reproduces sexually.

  16. Search of molecular ground state via genetic algorithm: Implementation on a hybrid SIMD-MIMD platform

    International Nuclear Information System (INIS)

    Pucello, N.; D'Agostino, G.; Pisacane, F.

    1997-01-01

    A genetic algorithm for the optimization of the ground-state structure of a metallic cluster has been developed and ported on a SIMD-MIMD parallel platform. The SIMD part of the parallel platform is represented by a Quadrics/APE100 consisting of 512 floating point units, while the MIMD part is formed by a cluster of workstations. The proposed algorithm is composed by a part where the genetic operators are applied to the elements of the population and a part which performs a further local relaxation and the fitness calculation via Molecular Dynamics. These parts have been implemented on the MIMD and on the SIMD part, respectively. Results have been compared to those generated by using Simulated Annealing

  17. Molecular and Genetic Basis of Hereditary Connective-Tissue Diseases Accompanied by Frequent Fractures

    Directory of Open Access Journals (Sweden)

    G. T. Yakhyaeva

    2016-01-01

    Full Text Available Frequent bone fractures in infancy require the elimination of a large number (> 100 of genetic disorders. The modern diagnostic method of hereditary diseases characterized by debilitating course is a new generation sequencing. The article presents the results of molecular-genetic study conducted in 18 patients with clinical symptoms of connective tissue disorders. 10 (56% patients had mutations in the genes encoding type I collagen chains, leading to the development of osteogenesis imperfecta, 5 (28% — mutations in IV and V type collagen genes that are responsible for the development of Ehlers-Danlos syndrome. 3 (17% patients had mutations in the gene encoding fibrillin-1 protein, deficiency of which is manifested by Marfan syndrome. However, the correlation between patient's phenotype and discovered mutations in the investigated gene is established not in all cases.

  18. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants

    Science.gov (United States)

    Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki

    2014-01-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops. PMID:25320561

  19. Molecular analysis and genetic diversity of Aedes albopictus (Diptera, Culicidae) from China.

    Science.gov (United States)

    Ruiling, Zhang; Peien, Leng; Xuejun, Wang; Zhong, Zhang

    2018-05-01

    Aedes albopictus is one of the most invasive species, which can carry Dengue virus, Yellow fever virus and more than twenty arboviruses. Based on mitochondrial gene cytochrome c oxidase I (COI) and samples collected from 17 populations, we investigated the molecular character and genetic diversity of Ae. albopictus from China. Altogether, 25 haplotypes were detected, including 10 shared haplotypes and 15 private haplotypes. H1 was the dominant haplotype, which is widely distributed in 13 populations. Tajima'D value of most populations was significantly negative, demonstrating that populations experienced rapid range expansion recently. Most haplotypes clustered together both in phylogenetic and median-joining network analysis without clear phylogeographic patterns. However, neutrality tests revealed shallow divergences among Hainan and Guangxi with other populations (0.15599 ≤ F ST ≤ 0.75858), which probably due to interrupted gene flow, caused by geographical isolations. In conclusion, Ae. albopictus populations showed low genetic diversity in China.

  20. Molecular evidence and high genetic diversity of shrew-borne Seewis virus in Slovenia.

    Science.gov (United States)

    Resman, Katarina; Korva, Miša; Fajs, Luka; Zidarič, Tanja; Trilar, Tomi; Zupanc, Tatjana Avšič

    2013-10-01

    Seewis virus, the shrew-borne hantavirus from Sorex araneus, has been molecularly detected in reservoir hosts in many different central European countries and Russia. Slovenia is a known endemic country for rodent-borne hantaviruses, therefore the aim of the study was to investigate the presence of shrew-borne hantaviruses in insectivores. Viral L, S and M segment have been recovered only from tissue samples of 7 S. araneus, despite several shrew species were tested. Phylogenetic analysis showed high genetic diversity of SWSV in Slovenia, ranging from 3 to 19.4% for different viral segments. The most divergent were M segment sequences, with 19.4% nucleotide divergence among Slovenian strains. Above that, different SWSV strains from Slovenia do not group into separate geographic clusters. While three separate genetic clades were determined, two of them were simultaneously present in one location at the same time. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Impact of Molecular Genetics on Outcome in Myelofibrosis Patients after Allogeneic Stem Cell Transplantation.

    Science.gov (United States)

    Kröger, Nicolaus; Panagiota, Victoria; Badbaran, Anita; Zabelina, Tatjana; Triviai, Ioanna; Araujo Cruz, Michelle Maria; Shahswar, Rabia; Ayuk, Francis; Gehlhaar, Marten; Wolschke, Christine; Bollin, Robin; Walter, Carolin; Dugas, Martin; Wiehlmann, Lutz; Lehmann, Ulrich; Koenecke, Christian; Chaturvedi, Anuhar; Alchalby, Haefaa; Stadler, Michael; Eder, Matthias; Christopeit, Max; Göhring, Gudrun; Koenigsmann, Michael; Schlegelberger, Brigitte; Kreipe, Hans-Heinrich; Ganser, Arnold; Stocking, Carol; Fehse, Boris; Thol, Felicitas; Heuser, Michael

    2017-07-01

    Molecular genetics may influence outcome for patients with myelofibrosis. To determine the impact of molecular genetics on outcome after allogeneic stem cell transplantation, we screened 169 patients with primary myelofibrosis (n = 110), post-essential thrombocythemia/polycythemia vera myelofibrosis (n = 46), and myelofibrosis in transformation (n = 13) for mutations in 16 frequently mutated genes. The most frequent mutation was JAK2V617F (n = 101), followed by ASXL1 (n = 49), calreticulin (n = 34), SRSF2 (n = 16), TET2 (n = 10), U2AF1 (n = 11), EZH2 (n = 7), MPL (n = 6), IDH2 (n = 5), IDH1 (n = 4), and CBL (n = 1). The cumulative incidence of nonrelapse mortality (NRM) at 1 year was 21% and of relapse at 5 years 25%. The 5-year rates progression-free (PFS) and overall survival (OS) were and 56%, respectively. In a multivariate analysis CALR mutation was an independent factor for lower NRM (HR, .415; P = .05), improved PFS (HR, .393; P = .01), and OS (HR, .448; P = .03). ASXL1 and IDH2 mutations were independent risk factors for lower PFS (HR, 1.53 [P = .008], and HR, 5.451 [P = .002], respectively), whereas no impact was observed for "triple negative" patients. Molecular genetics, especially CALR, IDH2, and ASXL1 mutations, may thus be useful to predict outcome independently from known clinical risk factors after allogeneic stem cell transplantation for myelofibrosis. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  2. Cervical Cancer Genetic Susceptibility: A Systematic Review and Meta-Analyses of Recent Evidence.

    Directory of Open Access Journals (Sweden)

    Gabriela A Martínez-Nava

    Full Text Available Cervical cancer (CC has one of the highest mortality rates among women worldwide. Several efforts have been made to identify the genetic susceptibility factors underlying CC development. However, only a few polymorphisms have shown consistency among studies.We conducted a systematic review of all recent case-control studies focused on the evaluation of single nucleotide polymorphisms (SNPs and CC risk, stringently following the "PRISMA" statement recommendations. The MEDLINE data base was used for the search. A total of 100 case-control studies were included in the meta-analysis. Polymorphisms that had more than two reports were meta-analyzed by fixed or random models according to the heterogeneity presented among studies.We found significant negative association between the dominant inheritance model of p21 rs1801270 polymorphism (C/A+A/A and CC (pooled OR = 0.76; 95%CI: 0.63-0.91; p<0.01. We also found a negative association with the rs2048718 BRIP1 polymorphism dominant inheritance model (T/C+C/C and CC (pooled OR = 0.83; 95%CI: 0.70-0.98; p = 0.03, as well as with the rs11079454 BRIP1 polymorphism recessive inheritance model and CC (pooled OR = 0.79; 95%CI: 0.63-0.99; p = 0.04. Interestingly, we observed a strong tendency of the meta-analyzed studies to be of Asiatic origin (67%. We also found a significant low representation of African populations (4%.Our results provide evidence of the negative association of p21 rs1801270 polymorphism, as well as BRIP1 rs2048718 and rs11079454 polymorphisms, with CC risk. This study suggests the urgent need for more replication studies focused on GWAS identified CC susceptibility variants, in order to reveal the most informative genetic susceptibility markers for CC across different populations.

  3. A systematic review of lessons learned from PET molecular imaging research in atypical parkinsonism

    Energy Technology Data Exchange (ETDEWEB)

    Niccolini, Flavia; Politis, Marios [Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King' s College London, London (United Kingdom)

    2016-11-15

    To systematically review the previous studies and current status of positron emission tomography (PET) molecular imaging research in atypical parkinsonism. MEDLINE, ISI Web of Science, Cochrane Library, and Scopus electronic databases were searched for articles published until 29th March 2016 and included brain PET studies in progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and corticobasal syndrome (CBS). Only articles published in English and in peer-reviewed journals were included in this review. Case-reports, reviews, and non-human studies were excluded. Seventy-seven PET studies investigating the dopaminergic system, glucose metabolism, microglial activation, hyperphosphorilated tau, opioid receptors, the cholinergic system, and GABA{sub A} receptors in PSP, MSA, and CBS patients were included in this review. Disease-specific patterns of reduced glucose metabolism have shown higher accuracy than dopaminergic imaging techniques to distinguish between parkinsonian syndromes. Microglial activation has been found in all forms of atypical parkinsonism and reflects the known distribution of neuropathologic changes in these disorders. Opioid receptors are decreased in the striatum of PSP and MSA patients. Subcortical cholinergic dysfunction was more severe in MSA and PSP than Parkinson's disease patients although no significant changes in cortical cholinergic receptors were seen in PSP with cognitive impairment. GABA{sub A} receptors were decreased in metabolically affected cortical and subcortical regions in PSP patients. PET molecular imaging has provided valuable insight for understanding the mechanisms underlying atypical parkinsonism. Changes at a molecular level occur early in the course of these neurodegenerative diseases and PET imaging provides the means to aid differential diagnosis, monitor disease progression, identify of novel targets for pharmacotherapy, and monitor response to new treatments. (orig.)

  4. A systematic review of lessons learned from PET molecular imaging research in atypical parkinsonism

    International Nuclear Information System (INIS)

    Niccolini, Flavia; Politis, Marios

    2016-01-01

    To systematically review the previous studies and current status of positron emission tomography (PET) molecular imaging research in atypical parkinsonism. MEDLINE, ISI Web of Science, Cochrane Library, and Scopus electronic databases were searched for articles published until 29th March 2016 and included brain PET studies in progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and corticobasal syndrome (CBS). Only articles published in English and in peer-reviewed journals were included in this review. Case-reports, reviews, and non-human studies were excluded. Seventy-seven PET studies investigating the dopaminergic system, glucose metabolism, microglial activation, hyperphosphorilated tau, opioid receptors, the cholinergic system, and GABA A receptors in PSP, MSA, and CBS patients were included in this review. Disease-specific patterns of reduced glucose metabolism have shown higher accuracy than dopaminergic imaging techniques to distinguish between parkinsonian syndromes. Microglial activation has been found in all forms of atypical parkinsonism and reflects the known distribution of neuropathologic changes in these disorders. Opioid receptors are decreased in the striatum of PSP and MSA patients. Subcortical cholinergic dysfunction was more severe in MSA and PSP than Parkinson's disease patients although no significant changes in cortical cholinergic receptors were seen in PSP with cognitive impairment. GABA A receptors were decreased in metabolically affected cortical and subcortical regions in PSP patients. PET molecular imaging has provided valuable insight for understanding the mechanisms underlying atypical parkinsonism. Changes at a molecular level occur early in the course of these neurodegenerative diseases and PET imaging provides the means to aid differential diagnosis, monitor disease progression, identify of novel targets for pharmacotherapy, and monitor response to new treatments. (orig.)

  5. Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics : A systematic study of several common force fields

    NARCIS (Netherlands)

    Trinh, T.T.; Vlugt, T.J.H.; Kjelstrup, S.H.

    2014-01-01

    We report a systematic investigation of the thermal conductivity of various three-site models of carbon dioxide (CO2) using nonequilibrium molecular dynamics in the temperature range 300–1000 K and for pressures up to 200 MPa. A direct comparison with experimental data is made. Three popular CO2

  6. Non-invasive genetic sampling for molecular sexing and microsatellite genotyping of hyacinth macaw (Anodorhynchus hyacinthinus).

    Science.gov (United States)

    Presti, Flavia T; Meyer, Janaína; Antas, Paulo T Z; Guedes, Neiva M R; Miyaki, Cristina Y

    2013-03-01

    Molted feather sampling is a useful tool for genetic analyses of endangered species, but it is often very laborious due to the low quality and quantity of the DNA obtained. In the present study we show the parts of feathers that resulted in better yield of DNA. In descending order these were: blood clot outside the umbilicus, umbilicus (without blood clot), tip, inner membrane, and small calamus. Compared to DNA extracted from blood samples, DNA extracted from feathers produced microsatellite alleles of poorer quality and had to be processed immediately after extraction. As expected due to the level of DNA degradation, molecular sexing protocols that result in shorter PCR products were more efficient.

  7. Genetic variation of space flight carried rice and mutant analysis by AFLP molecular marker

    International Nuclear Information System (INIS)

    Pu Zhigang; Zhang Zhiyong; Xiang Yuewu; Zhang Zhixiong; Cai Pingzhong; Wen Chunmiao; Zheng Jiakui

    2006-01-01

    Rice seeds were carried by 'Shenzhou No.3' space shuttle, a mutant with golden chaff, stem and leaf was selected and named Golden 1 after the seeds returned to the earth. Except the golden color, other traits of Golden 1 are no obviously different with its original material H9808. Genetic analysis identified that color variation was control by a pair of recessive gene. The DNA fragments of the mutant were compared with its parent by AFLP molecular markers. Five specific bands were found through a serial selection. (authors)

  8. Molecular and genetic aspects in the etiopathogenesis of ameloblastoma: An update

    Science.gov (United States)

    Nagi, Ravleen; Sahu, Shashikant; Rakesh, N

    2016-01-01

    Ameloblastoma is the second most common benign epithelial odontogenic tumor and though it is of a benign nature, it is locally invasive, has a high recurrence rate and could potentially become malignant. Many theories have been proposed to explain the pathogenesis of ameloblastoma. Proper understanding of the pathogenic mechanism involved in ameloblastoma and its proliferation aids in constituting proper treatment of choice at an early stage, preventing morbidity associated with extensive therapy. An attempt has been made to discuss the current concepts related to molecular and genetic changes that occur in ameloblastoma as these could affect treatment plan and prognosis. PMID:27721617

  9. Molecular genetics of experimental hypertension and the metabolic syndrome: from gene pathways to new therapies

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Kurtz, T. W.

    2007-01-01

    Roč. 49, č. 5 (2007), s. 941-952 ISSN 0194-911X R&D Projects: GA MZd(CZ) NR8545; GA ČR(CZ) GA301/04/0390; GA ČR(CZ) GA301/06/0028 Grant - others:The Howard Hughes Institute(US) HHMI55005624 Institutional research plan: CEZ:AV0Z50110509 Keywords : SHR * CD36 * metabolic syndrome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.194, year: 2007

  10. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241)

    DEFF Research Database (Denmark)

    Pilu, R.; Panzeri, D.; Gavazzi, G.

    2003-01-01

    90% reduction of phytic acid and about a tenfold increase in seed-free phosphate content. Although germination rate was decreased by about 30% compared to wild-type, developement of mutant plants was apparentely unaffected. The results of the genetic, biochemical and molecular characterization......Phytic acid, myo-inositol 1,2,3,4,5,6-hexakisphosphate, is the major storage compound of phosphorous (P) in plants, predominantly accumulating in seeds (up to 4-5% of dry weight) and pollen. In cereals, phytic acid is deposited in embryo and aleurone grain tissues as a mixed 'phytate' salt...

  11. Molecular systematics and phylogeography of Amazonian poison frogs of the genus Dendrobates.

    Science.gov (United States)

    Symula, R; Schulte, R; Summers, K

    2003-03-01

    The study of Amazonian biodiversity requires detailed knowledge of the phylogenetic relationships of closely related taxa distributed across Amazonia. The Amazonian poison frogs of the genus Dendrobates have undergone many taxonomic revisions, but the phylogenetic relationships within this group remain poorly understood. Most previous classifications were based on morphology and skin toxin analyses, with limited use of DNA sequence data. Using mtDNA sequence data from four gene regions (cytochrome b, cytochrome oxidase I, 16S rRNA, and 12S rRNA), we present a molecular phylogenetic analysis of the evolutionary relationships within a representative group of Amazonian Dendrobates. We use the resulting phylogenetic hypothesis to investigate different biogeographic hypotheses concerning genetic divergence and species diversity in Amazonia. The results of the analysis support the presence of ancient paleogeographic barriers to gene flow between eastern and western Amazonia, and indicate substantial genetic divergence between species found in the northern and southern regions of western Amazonia. Copyright 2002 Elsevier Science (USA)

  12. Molecular genetic analysis of a cattle population to reconstitute the extinct Algarvia breed

    Directory of Open Access Journals (Sweden)

    Rangel-Figueiredo Teresa

    2010-06-01

    Full Text Available Abstract Background Decisions to initiate conservation programmes need to account for extant variability, diversity loss and cultural and economic aspects. Molecular markers were used to investigate if putative Algarvia animals could be identified for use as progenitors in a breeding programme to recover this nearly extinct breed. Methods 46 individuals phenotypically representative of Algarvia cattle were genotyped for 27 microsatellite loci and compared with 11 Portuguese autochthonous and three imported breeds. Genetic distances and factorial correspondence analyses (FCA were performed to investigate the relationship among Algarvia and related breeds. Assignment tests were done to identify representative individuals of the breed. Y chromosome and mtDNA analyses were used to further characterize Algarvia animals. Gene- and allelic-based conservation analyses were used to determine breed contributions to overall genetic diversity. Results Genetic distance and FCA results confirmed the close relationship between Algarvia and southern Portuguese breeds. Assignment tests without breed information classified 17 Algarvia animals in this cluster with a high probability (q > 0.95. With breed information, 30 cows and three bulls were identified (q > 0.95 that could be used to reconstitute the Algarvia breed. Molecular and morphological results were concordant. These animals showed intermediate levels of genetic diversity (MNA = 6.0 ± 1.6, Rt = 5.7 ± 1.4, Ho = 0.63 ± 0.19 and He = 0.69 ± 0.10 relative to other Portuguese breeds. Evidence of inbreeding was also detected (Fis = 0.083, P st = 0.028, P > 0.05. Algarvia cattle provide an intermediate contribution (CB = 6.18, CW = -0.06 and D1 = 0.50 to the overall gene diversity of Portuguese cattle. Algarvia and seven other autochthonous breeds made no contribution to the overall allelic diversity. Conclusions Molecular analyses complemented previous morphological findings to identify 33 animals that

  13. Forensic interpretation of molecular variation on networks of disease transmission and genetic inheritance.

    Science.gov (United States)

    Velsko, Stephan P; Osburn, Joanne; Allen, Jonathan

    2014-11-01

    This paper describes the inference-on-networks (ION) framework for forensic interpretat ION of molecular typing data in cases involving allegations of infectious microbial transmission, association of disease outbreaks with alleged sources, and identifying familial relationships using mitochondrial or Y chromosomal DNA. The framework is applicable to molecular typing data obtained using any technique, including those based on electrophoretic separations. A key insight is that the networks associated with disease transmission or DNA inheritance can be used to define specific testable relationships and avoid the ambiguity and subjectivity associated with the criteria used for inferring genetic relatedness now in use. We discuss specific applications of the framework to the 2003 severe acute respiratory syndrome (SARS) outbreak in Singapore and the 2001 foot-and-mouth disease virus (FMDV) outbreak in Great Britain. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  14. Molecular epidemiological analysis of Mycoplasma bovis isolates from the United Kingdom shows two genetically distinct clusters

    DEFF Research Database (Denmark)

    McAuliffe, Laura; Kokotovic, Branko; Ayling, Roger D.

    2004-01-01

    polymorphism (AFLP), and random amplified polymorphic DNA (RAPD) analysis. In addition, the influence of variable surface protein (Vsp) profiles on the profiles generated with molecular typing techniques was studied. Both AFLP and RAPD separated the isolates into two distinct groups, but PFGE showed less......Mycoplasma bovis is an important veterinary pathogen causing pneumonia, arthritis, and mastitis in infected cattle. We investigated the genetic diversity of 53 isolates collected in the United Kingdom between 1996 and 2002 with pulsed-field gel electrophoresis (PFGE), amplified fragment length...... congruence with the other techniques. There was no clear relationship between the geographic origin or year of isolation of the isolates and the profiles produced. No correlation between Vsp profiles and any of the molecular typing techniques was observed. We propose that RAPD and AFLP provide valuable tools...

  15. Molecular genetic approach for screening of hereditary non-polyposis colorectal cancer

    Directory of Open Access Journals (Sweden)

    Metka Ravnik-Glavač

    2005-07-01

    Full Text Available Background: The main goal of knowledge concerning human diseases is to transfer as much as possible useful information into clinical applications. Hereditary non-polyposis colorectal cancer (HNPCC is the most common autosomal dominant inherited predisposition for colorectal cancer, accounting for 1–2% of all bowel cancer. The only way to diagnose HNPCC is by a family history consistent with the disease defined by International Collaborative Group on HNPCC (Amsterdam criteria I and II. The main molecular cause of HNPCC is a constitutional mutation in one of the mismatch repair (MMR genes. Since HNPCC mutations have been detected also in families that did not fulfil the Amsterdam criteria, molecular genetic characteristics of HNPCC cancers have been proposed as valuable first step in HNPCC identification. Microsatellite instability is present in about 90% of cancers of HNPCC patients. However, of all MSI colorectal cancers 80– 90% are sporadic. Several molecular mechanisms have been uncovered that enable distinguishing to some extent between sporadic and HNPCC cancers with MSI including hypermethylation of hMLH1 promoter and frequent mutations in BAX and TGFBR2 in sporadic CRC with MSI-H.Conclusions: The determination of MSI status and careful separation of MSI positive colorectal cancer into sporadic MSIL, sporadic MSI-H, and HNPCC MSI-H followed by mutation detection in MMR genes is important for prevention, screening and management of colorectal cancer. In some studies we and others have already shown that large-scale molecular genetic analysis for HNPCC can be done and is sensitive enough to approve population screening. Population screening includes also colonoscopy which is restricted only to the obligate carriers of the mutation. This enables that the disease is detected in earlier stages which would greatly decrease medical treatment costs and most importantly decrease mortality. In Slovenia we have started population screening based

  16. Molecular systematics and species limits in the Philippine fantails (Aves: Rhipidura).

    Science.gov (United States)

    Sánchez-González, Luis A; Moyle, Robert G

    2011-11-01

    Islands have long-attracted scientists because of their relatively simple biotas and stark geographic boundaries. However, for many islands and archipelagos, this simplicity may be overstated because of methodological and conceptual limitations when these biotas were described. One archipelago that has received relatively little recent attention is the Philippine islands. Although much of its biota was documented long ago, taxonomic revision and evolutionary study has been surprisingly scarce, and only a few molecular phylogenetic studies are beginning to appear. We present a molecular phylogeny and taxonomic revision for the Philippine fantails (Aves: Rhipidura) using nuclear and mitochondrial DNA sequences. Our results suggest that current taxonomy underestimates diversity in the group. Some morphologically distinct subspecies warrant species status, whereas one was indistinguishable genetically and morphologically and should not be retained. A few taxa require additional sampling for thorough taxonomic assessment. Patterns of diversity within Philippine Rhipidura mostly corroborate predictions of the Pleistocene aggregate island complex (PAIC) hypothesis, in which diversity is expected to be partitioned by deep water channels separating Pleistocene aggregate islands rather than by current islands. Substantial structure within PAIC clades indicates that additional drivers of diversification should be considered. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Molecular phylogeny and systematics of the highly polymorphic Rumex bucephalophorus complex (Polygonaceae).

    Science.gov (United States)

    Talavera, M; Balao, F; Casimiro-Soriguer, R; Ortiz, M Á; Terrab, A; Arista, M; Ortiz, P L; Stuessy, T F; Talavera, S

    2011-12-01

    Rumex bucephalophorus is a very polymorphic species that has been subjected to various taxonomic studies in which diverse infraspecific taxa have been recognised on the basis of diaspore traits. In this study we used molecular markers (ITS and AFLP) to explore this remarkable diversity, to test previous hypotheses of classification, and attempt to explain biogeographic patterns. Results show that R. bucephalophorus forms a monophyletic group in which diversification began around 4.2 Mya, at the end of Messinian Salinity Crisis. The two molecular markers clearly show a deep divergence separating subsp. bucephalophorus from all other subspecific taxa, among which subsp. canariensis also constitutes a separate and well distinguishable unit. In contrast, subspecies hispanicus and subsp. gallicus constitute a monophyletic group in which three subgroups can be recognised: subsp. hispanicus, subsp. gallicus var. gallicus and subsp. gallicus var. subaegeus. However, these three subgroups are not clearly distinguished genetically or morphologically, so that in formal classification it would be preferable to treat them at the varietal level. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Molecular prevalence and genetic characterization of piroplasms in dogs from Tunisia.

    Science.gov (United States)

    Rjeibi, Mohamed R; Amairia, Safa; Rouatbi, Mariem; Ben Salem, Fatma; Mabrouk, Moez; Gharbi, Mohamed

    2016-10-01

    In this study, the prevalence of piroplasms in dogs was assessed using polymerase chain reaction (PCR) to identify Babesia and Theileria species in 200 dogs from Northern and Central Tunisia between spring and autumn 2014. The overall molecular prevalence for piroplasms was 14·5% ± 0·05 (29/200); PCR detected 2 species, namely Babesia vogeli and Theileria annulata with an overall prevalence of 12·5 ± 0·04 and 2% ± 0·02, respectively. No differences in the molecular prevalences of B. vogeli were revealed for age and sex (P > 0·05). The molecular prevalence of B. vogeli was significantly higher in central Tunisia (26·5% ± 0·01) compared with the North (9·6% ± 0·04) (P 0·05). Comparison of the partial sequences of 18S rRNA and Tams 1 genes confirmed the presence of 2 novel B. vogeli and T. annulata genotypes. This is the first molecular detection of T. annulata and genetic characterization of dogs' piroplasms in Tunisia. Further studies are needed to better assess the epidemiological feature of piroplasms infection in North Africa.

  19. A systematic review of genetic studies of thyroid disorders in Taiwan

    Directory of Open Access Journals (Sweden)

    Chun-Jui Huang

    2015-03-01

    Full Text Available A systematic review of genetic studies of thyroid disorders in Taiwan identified studies of gene mutations involved in the synthesis and binding of thyroid hormone, as well as mutations of proto-oncogenes and tumor suppressor genes in thyroid cancer. Studies related to gene polymorphisms in patients with autoimmune thyroid disease (AITD and thyroid cancer were also reviewed. The most prevalent mutations in the Han-Chinese population were c.2268insT in the thyroid peroxidase (TPO gene and c.919-2A>G in the Pendred syndrome (PDS gene. Additional mutations have also been revealed in the genes encoding TPO (n = 5, thyroglobulin (TG; n = 6, pendrin (n = 2, and thyroxine-binding globulin (TBG; n = 2, which were novel at the time they were reported. The prevalence of various somatic mutations in differentiated thyroid cancer was similar in Taiwan and Western countries, with the RAS kinase mutation and tyrosine receptor kinase (TRK and rearranged during transfection (RET proto-oncogenes being detected in lower frequencies and the B-type RAF kinase (BRAF mutation accounting for the majority of cases. Recent microRNA analysis revealed an association between miR146b and the BRAF mutation, which was associated with poor prognosis of papillary thyroid carcinoma (PTC. Susceptibility to Graves' disease (GD was linked to the human leukocyte antigen (HLA region. The associated alleles were different in Han-Chinese and Caucasians; HLA-DPB1*0501, the major allele in Taiwan, has a low frequency in the West. By contrast, a high frequency of HLA-DRB1*0301 was detected in Caucasians but not Han-Chinese. In addition to the HLA region, cytotoxic T lymphocyte-associated molecule-4 (CTLA4 gene polymorphisms +49G>A and +6230G>A (CT60 were positively associated with GD. The GG genotype and G allele of single nucleotide polymorphism (SNP +49G>A were also related to relapse of Graves' hyperthyroidism after antithyroid drug withdrawal. Differences in the genetic

  20. A molecular, genetic and physiological analysis of plant aluminum tolerance (abstract)

    International Nuclear Information System (INIS)

    Pineros, M.

    2005-01-01

    Aluminum (Al) toxicity is an important agronomic trait, limiting crop production on acid soils that comprise up to 50% of the world's potentially arable lands. A significant genetic variation in Al tolerance exists in both crop plants and Arabidopsis. The exploitation of this genetic variation to breed crops with increased Al tolerance has been a productive and active area of research, however, the underlying molecular, genetic and physiological bases are still not well understood. Only very recently was the first Al tolerance gene, ALMT1, isolated in wheat and shown to be a novel Al-activated malate transporter. Work in our laboratory has focused on using integrated genomic (gene and protein expression profiling), molecular genetic and physiological approaches to identify novel Al tolerance genes and the physiological mechanisms they control in the cereal crops maize and sorghum, and also in arabidopsis. In sorghum we had previously shown that Al tolerance is the result of a single locus, Alt/sub SB/ which maps to the top of sorghum chromosome 3 in a region totally distinct from where the major Al tolerance maps in wheat and other related members of the Triticeae. Very recently, we have used map-based cloning techniques in sorghum to clone Alt/sub SB/ and have found it is a novel Al tolerance gene. Here we will present a molecular characterization of the Alt/sub SB/ gene and also the physiological mechanism of sorghum Al tolerance it controls. In arabidopsis, we have previously shown that Al tolerance is a quantitative trait and have identified two major Al tolerance QTL on chromosomes 1 and 5. These genes function to confer tolerance via Al via activated root malate release. We found that a member of the arabidopsis gene family that is a close homolog to wheat ALMT1 maps near the largest tolerance QTL on chromosome 1 and have also found this gene encodes the Al-activated malate transport involved in arabidopsis Al tolerance. However, we have clear molecular

  1. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity

    Science.gov (United States)

    Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I.; Taylor, Kent D.; Azziz, Ricardo; Goodarzi, Mark O.

    2015-01-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS. PMID:26305227

  2. A Genomic Encyclopedia of the Root Nodule Bacteria: assessing genetic diversity through a systematic biogeographic survey.

    Science.gov (United States)

    Reeve, Wayne; Ardley, Julie; Tian, Rui; Eshragi, Leila; Yoon, Je Won; Ngamwisetkun, Pinyaruk; Seshadri, Rekha; Ivanova, Natalia N; Kyrpides, Nikos C

    2015-01-01

    Root nodule bacteria are free-living soil bacteria, belonging to diverse genera within the Alphaproteobacteria and Betaproteobacteria, that have the capacity to form nitrogen-fixing symbioses with legumes. The symbiosis is specific and is governed by signaling molecules produced from both host and bacteria. Sequencing of several model RNB genomes has provided valuable insights into the genetic basis of symbiosis. However, the small number of sequenced RNB genomes available does not currently reflect the phylogenetic diversity of RNB, or the variety of mechanisms that lead to symbiosis in different legume hosts. This prevents a broad understanding of symbiotic interactions and the factors that govern the biogeography of host-microbe symbioses. Here, we outline a proposal to expand the number of sequenced RNB strains, which aims to capture this phylogenetic and biogeographic diversity. Through the Vavilov centers of diversity (Proposal ID: 231) and GEBA-RNB (Proposal ID: 882) projects we will sequence 107 RNB strains, isolated from diverse legume hosts in various geographic locations around the world. The nominated strains belong to nine of the 16 currently validly described RNB genera. They include 13 type strains, as well as elite inoculant strains of high commercial importance. These projects will strongly support systematic sequence-based studies of RNB and contribute to our understanding of the effects of biogeography on the evolution of different species of RNB, as well as the mechanisms that determine the specificity and effectiveness of nodulation and symbiotic nitrogen fixation by RNB with diverse legume hosts.

  3. The socioeconomics of genetically modified biofortified crops: a systematic review and meta-analysis.

    Science.gov (United States)

    De Steur, Hans; Wesana, Joshua; Blancquaert, Dieter; Van Der Straeten, Dominique; Gellynck, Xavier

    2017-02-01

    Building upon the growing interest and research on genetically modified (GM) biofortification, its socioeconomic potential has been increasingly examined. We conducted two systematic reviews and meta-analyses to provide comprehensive evidence of consumers' willingness to pay (11 economic valuation studies, 64 estimates) and cost-effectiveness/benefits (five economic evaluation studies, 30 estimates). Worldwide, consumers were willing to pay 23.9% more for GM biofortified food crops. Aside from crop and design-related differences, information provision was deemed crucial. Positive information (nutrition and GM benefits) is associated with the highest consumer willingness to pay, compared with negative, objective, and conflicting GM information, especially when negative information was mentioned last. This health intervention would reduce the aggregated micronutrient deficiency burden in Asia (15.6 million disability-adjusted life years (DALYs)) by 12.5-51.4%, at a low cost of USD 7.9-27.8 per DALY in a pessimistic and optimistic scenario, respectively. Given that GM biofortified crops could tackle hidden hunger in a cost-effective and well-accepted way, its implementation is worth pursuing. A case study on folate biofortification further elaborates on the importance of socioeconomic research and the determinants of their market potential. © 2016 New York Academy of Sciences.

  4. Genetic diversity of Toxoplasma gondii isolates from ruminants: A systematic review.

    Science.gov (United States)

    Sharif, Mehdi; Amouei, Afsaneh; Sarvi, Shahabeddin; Mizani, Azadeh; Aarabi, Mohsen; Hosseini, Seyed-Abdollah; Daryani, Ahmad

    2017-10-03

    Toxoplasma gondii is a protozoan capable of infecting all warm-blooded animals. This parasite has been classified into three major lineages. Our aim was to assess and compare the identified Types and genotypes in ruminants. From November 2014 to April 2015, four English language databases and four Persian databases that reported data on the T. gondii genotyping in ruminants were searched. Overall, typing results of the 250/307 T. gondii isolates in all animals showed that Type II was a predominant Type (81.4%). In addition, genotyping data from the 82/215 T. gondii isolates or strains indicated that atypical genotypes were predominant (38.13%). This systematic review has demonstrated a large degree of genetic diversity in some countries. However, in the new nomenclature of genotyping, there are atypical or exotic genotypes, such as Chinese 1, Types Br (I, II, III and IV), and Type 12. Further genotyping studies are required to corroborate the current results. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Current landscape and new paradigms of proficiency testing and external quality assessment for molecular genetics.

    Science.gov (United States)

    Kalman, Lisa V; Lubin, Ira M; Barker, Shannon; du Sart, Desiree; Elles, Rob; Grody, Wayne W; Pazzagli, Mario; Richards, Sue; Schrijver, Iris; Zehnbauer, Barbara

    2013-07-01

    Participation in proficiency testing (PT) or external quality assessment (EQA) programs allows the assessment and comparison of test performance among different clinical laboratories and technologies. In addition to the approximately 2300 tests for individual genetic disorders, recent advances in technology have enabled the development of clinical tests that quickly and economically analyze the entire human genome. New PT/EQA approaches are needed to ensure the continued quality of these complex tests. To review the availability and scope of PT/EQA for molecular genetic testing for inherited conditions in Europe, Australasia, and the United States; to evaluate the successes and demonstrated value of available PT/EQA programs; and to examine the challenges to the provision of comprehensive PT/EQA posed by new laboratory practices and methodologies. The available literature on this topic was reviewed and supplemented with personal experiences of several PT/EQA providers. Proficiency testing/EQA schemes are available for common genetic disorders tested in many clinical laboratories but are not available for most genetic tests offered by only one or a few laboratories. Provision of broad, method-based PT schemes, such as DNA sequencing, would allow assessment of many tests for which formal PT is not currently available. Participation in PT/EQA improves the quality of testing by identifying inaccuracies that laboratories can trace to errors in their testing processes. Areas of research and development to ensure that PT/EQA programs can meet the needs of new and evolving genetic tests and technologies are identified and discussed.

  6. Characterization of Movement Disorder Phenomenology in Genetically Proven, Familial Frontotemporal Lobar Degeneration: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Gasca-Salas, Carmen; Masellis, Mario; Khoo, Edwin; Shah, Binit B; Fisman, David; Lang, Anthony E; Kleiner-Fisman, Galit

    2016-01-01

    Mutations in granulin (PGRN) and tau (MAPT), and hexanucleotide repeat expansions near the C9orf72 genes are the most prevalent genetic causes of frontotemporal lobar degeneration. Although behavior, language and movement presentations are common, the relationship between genetic subgroup and movement disorder phenomenology is unclear. We conducted a systematic review and meta-analysis of the literature characterizing the spectrum and prevalence of movement disorders in genetic frontotemporal lobar degeneration. Electronic databases were searched using terms related to frontotemporal lobar degeneration and movement disorders. Articles were included when cases had a proven genetic cause. Study-specific prevalence estimates for clinical features were transformed using Freeman-Tukey arcsine transformation, allowing for pooled estimates of prevalence to be generated using random-effects models. The mean age at onset was earlier in those with MAPT mutations compared to PGRN (pphenomenology in genetic frontotemporal lobar degeneration. Standardized prospective collection of clinical information in conjunction with genetic characterization will be crucial for accurate clinico-genetic correlation.

  7. Genetic and molecular analysis in the 70CD region of the third chromosome of Drosophila melanogaster.

    Science.gov (United States)

    Burmester, T; Mink, M; Pál, M; Lászlóffy, Z; Lepesant, J; Maróy, P

    2000-04-04

    A collection of lethal and semi-lethal P-element insertions in the 70CD region of chromosome 3 of Drosophila melanogaster was used to investigate genes and gene arrangements by a combination of genetic, cytological, functional and molecular methods. The 12 lethal insertions studied fall into seven complementation groups of six genes. Lethal phases, expression patterns and other phenotypic aspects of these genes were determined. The genes and additional available sequences were placed on cloned genomic DNA fragments and arranged in an EcoRI map of 150kb that covers approximately the bands 70C7-8 to 70D1. Determination of deficiency breakpoints links the genetic, physical and molecular data. The sequences adjacent to seven independent P-element insertions were established after plasmid rescue or polymerase chain reaction. Similarity searches allowed the assignment of the P-element insertions to known mutations, expressed sequence tags, sequence tagged sites, or homologous genes of other species. Among these were identified a putative transacylase, a putative cell cycle gene, and the gene responsible for the dominant Polycomb-suppressor phenotype of devenir. The genomic sequence of the l(3)70Ca/b gene reveals a novel heat shock protein (hsc70Cb). l(3)70Da was identified as a member of the CDC48/PEX1 ATPase family and its coding sequence was determined.

  8. Genetic expression profiles of adult and pediatric ependymomas: molecular pathways, prognostic indicators, and therapeutic targets.

    Science.gov (United States)

    Nagasawa, Daniel T; Trang, Andy; Choy, Winward; Spasic, Marko; Yew, Andrew; Zarinkhou, Golmah; Garcia, Heather M; Yang, Isaac

    2013-04-01

    Ependymomas are tumors that can present within either the intracranial or spinal regions. While 90% of all pediatric ependymomas are intracranial, spinal cord ependymomas are more commonly found in patients 20-40 years old. Treatment for spinal lesions has achieved local control rates up to 100% following gross total resection, while pediatric intracranial tumors have 40-60% mortality. Given the inability to effectively treat ependymomas with current standard practices, researchers have focused their efforts on evaluating chromosomal alterations, genetic expression profiles, epigenetic events, and molecular pathways. While these studies have provided critical insight into the potential mechanisms underlying ependymoma pathogenesis, understanding of the intricate interplay between the various pathways involved in tumor initiation, development, and progression will require deeper investigation. However, several potential prognostic markers and therapeutic targets have been identified, providing key areas of focus for future research. The utilization of unique genetic expression profiles based upon patient age, tumor location, tumor grade, and subtype has revealed a multitude of findings warranting further study. Inspection of various molecular pathways associated with ependymomas may establish the foundation for developing novel therapies capable of achieving significant clinical improvements with individualized regimens specifically designed for personalized treatment strategies. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. The value of molecular genetic analysis in the diagnosis and prognosis of renal cell tumours.

    Science.gov (United States)

    Kovacs, G

    1994-01-01

    Renal cell tumours have a heterogeneous morphology, which may also be changed during tumour progression. Through the use of molecular cytogenetic techniques, it has become possible to divide renal cell tumours into genetically well-defined entities. Papillary renal cell tumours are characterized by loss of the Y chromosome and trisomy of chromosomes 3q, 7, 8, 12, 16, 17 and 20. Non-papillary renal cell carcinomas show a specific loss of chromosome 3p and trisomy of chromosome 5q sequences and frequent loss of chromosome 6q, 8p, 9 and 14q sequences. Chromophobe renal cell carcinomas are marked by a highly specific combination of loss of chromosomes 1, 2, 6, 10, 13, 17 and 21 and gross rearrangement of mitochondrial DNA. Subsets of renal oncocytomas show minimal karyotype alterations or translocation 11q13;? or loss of the Y chromosome and chromosome 1. There are some data suggesting that molecular genetic markers may be used not only for diagnosing of renal cell tumours but also for predicting the prognosis of tumour subtypes. Trisomy of chromosomes 7 and 17 and loss of the Y chromosome marks papillary renal cell adenomas, whereas additional trisomies such as those of chromosomes 3q, 8, 12, 16 and 20 are associated with papillary renal cell carcinomas. Although non-papillary renal cell tumours develop as a carcinoma, their clinical behaviour is in strong correlation with secondary karyotype changes such as loss of chromosomes 6q, 8p, 9 and 14q.

  10. The role of natural selection in circadian behaviour: a molecular-genetic approach.

    Science.gov (United States)

    Rosato, Ezio; Kyriacou, Charalambos P

    2011-06-30

    Circadian rhythms (~24 h) in biochemistry, physiology and behaviour are found in almost all eukaryotes and some bacteria. The elucidation of the molecular components of the 24 h circadian clock in a number of model organisms in recent years has provided an opportunity to assess the adaptive value of variation in clock genes. Laboratory experiments using artificially generated mutants reveal that the circadian period is adaptive in a 24 h world. Natural genetic variation can also be studied, and there are a number of ways in which the signature of natural selection can be detected. These include the study of geographical patterns of genetic variation, which provide a first indication that selection may be at work, and the use of sophisticated statistical neutrality tests, which examine whether the pattern of variation observed is consistent with a selective rather than a neutral (or drift) scenario. Finally, examining the probable selective agents and their differential effects on the circadian phenotype of the natural variants provides the final compelling evidence for selection. We present some examples of how these types of analyses have not only enlightened the evolutionary study of clocks, but have also contributed to a more pragmatic molecular understanding of the function of clock proteins.

  11. Molecular genetic testing of uveal melanoma from routinely processed and stained cytology specimens

    Science.gov (United States)

    Christopher, Benjamin N.; Cebulla, Colleen M.; Wakely, Paul E.; Davidorf, Frederick H.; Abdel-Rahman, Mohamed H.

    2013-01-01

    In the following study we investigated the utility of molecular genetic testing of the DNA extracted from routinely stained and processed smears from uveal melanoma (UM). Smears from five uveal melanoma cell lines and 12 primary tumors were prepared and stained with Papanicolaou and Romanowsky stains. Genotyping was carried out utilizing 14 microsatellite markers on chromosomes 3, 6 and 8. Mutational screening for alterations in GNAQ and GNA11 genes was carried out by restriction fragment length polymorphism. The results were compared to those obtained through direct sequencing of frozen tumor tissues. High quality DNA was extracted from the stained slides with no difference in the efficiency of DNA extraction between the two staining techniques. The extracted DNA was of adequate quality for genotyping and mutational screening. DNA extracted from approximately 200 tumor cells is sufficient for reproducible testing of allelic imbalances and for studying the common somatic mutations in GNAQ and GNA11 genes. In conclusion, we presented the feasibility of utilizing routinely stained cytology smears from UM for molecular genetic testing. The DNA obtained is of sufficient quality to carry out genotyping for markers on chromosome 3, 6 and 8, as well as screening for somatic mutations in GNAQ and GNA11 genes. PMID:21945171

  12. Productos de la naturaleza y el caso Association for Molecular Pathology v. Myriad Genetics, Inc.

    Directory of Open Access Journals (Sweden)

    Carlos A. Conde-Gutiérrez

    2013-11-01

    Full Text Available La Corte Suprema de Justicia de Estados Unidos, en el caso Association for Molecular Pathology v. Myriad Genetics, Inc., revocó patentes que reivindicaban secuencias de ADN aislado, por considerar que no son diferentes de los productos de la naturaleza, aunque otras patentes sobre genes que han sido sintetizados (ADNC resultaron indemnes. Esta decisión redefinió el alcance de la doctrina de los productos de la naturaleza en invenciones biotecnológicas como había sido establecido en Diamond v. Chakrabart; adicionalmente, esta nueva reinterpretación de la Corte se armoniza con lo establecido con anterioridad por el Tribunal de Justicia Andino. El presente artículo analiza la doctrina de los productos de la naturaleza a la luz del caso Association for Molecular Pathology v. Myriad Genetics, Inc., sus implicaciones para la industria biotecnológica a nivel mundial y la jurisprudencia del Tribunal Andino de Justicia frente al tema.

  13. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2005-09-15

    We have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, we have developed a molecular model that has facilitated our understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5, EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 (and three HLL genes) and ETO1 (and ETOL genes) in my laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the previous period, we have identified and characterized a gene that genetically acts upstream of the ethylene receptors. ETO1 encodes negative regulators of ethylene biosynthesis.

  14. GAtor: A First-Principles Genetic Algorithm for Molecular Crystal Structure Prediction.

    Science.gov (United States)

    Curtis, Farren; Li, Xiayue; Rose, Timothy; Vázquez-Mayagoitia, Álvaro; Bhattacharya, Saswata; Ghiringhelli, Luca M; Marom, Noa

    2018-04-10

    We present the implementation of GAtor, a massively parallel, first-principles genetic algorithm (GA) for molecular crystal structure prediction. GAtor is written in Python and currently interfaces with the FHI-aims code to perform local optimizations and energy evaluations using dispersion-inclusive density functional theory (DFT). GAtor offers a variety of fitness evaluation, selection, crossover, and mutation schemes. Breeding operators designed specifically for molecular crystals provide a balance between exploration and exploitation. Evolutionary niching is implemented in GAtor by using machine learning to cluster the dynamically updated population by structural similarity and then employing a cluster-based fitness function. Evolutionary niching promotes uniform sampling of the potential energy surface by evolving several subpopulations, which helps overcome initial pool biases and selection biases (genetic drift). The various settings offered by GAtor increase the likelihood of locating numerous low-energy minima, including those located in disconnected, hard to reach regions of the potential energy landscape. The best structures generated are re-relaxed and re-ranked using a hierarchy of increasingly accurate DFT functionals and dispersion methods. GAtor is applied to a chemically diverse set of four past blind test targets, characterized by different types of intermolecular interactions. The experimentally observed structures and other low-energy structures are found for all four targets. In particular, for Target II, 5-cyano-3-hydroxythiophene, the top ranked putative crystal structure is a Z' = 2 structure with P1̅ symmetry and a scaffold packing motif, which has not been reported previously.

  15. Genetic polymorphism, molecular characterization and relatedness of Macrobrachium species (Palaemonidae) based on RAPD-PCR.

    Science.gov (United States)

    Guerra, A L; Lima, A V B; Taddei, F G; Castiglioni, L

    2010-11-30

    The prawn genus Macrobrachium belongs to the family Palaemonidae. Its species are widely distributed in lakes, reservoirs, floodplains, and rivers in tropical and subtropical regions of South America. Globally, the genus Macrobrachium includes nearly 210 known species, many of which have economic and ecological importance. We analyzed three species of this genus (M. jelskii, M. amazonicum and M. brasiliense) using RAPD-PCR to assess their genetic variability, genetic structure and the phylogenetic relationship between them and to look for molecular markers that enable separation of M. jelskii and M. amazonicum, which are closely related syntopic species. Ten different random decamer primers were used for DNA amplification, yielding 182 fragments. Three of these fragments were monomorphic and exclusive to M. amazonicum or M. jelskii and can be used as specific molecular markers to identify and separate these two species. Similarity indices and a phylogenetic tree showed that M. amazonicum and M. jelskii are closest to each other, while M. brasiliense was the most differentiated species among them; this may be attributed to the different habitat conditions to which these species have been submitted. This information will be useful for further studies on these important crustacean species.

  16. Reno-endocrinal disorders: A basic understanding of the molecular genetics

    Directory of Open Access Journals (Sweden)

    Sukhminder Jit Singh Bajwa

    2012-01-01

    Full Text Available The successful management of endocrine diseases is greatly helped by the complete understanding of the underlying pathology. The knowledge about the molecular genetics contributes immensely in the appropriate identification of the causative factors of the diseases and their subsequent management. The fields of nephrology and endocrinology are also interrelated to a large extent. Besides performing the secretory functions, the renal tissue also acts as target organ for many hormones such as antidiuretic hormone (ADH, atrial natriuretic peptides (ANP, and aldosterone. Understanding the molecular genetics of these hormones is important because the therapeutic interventions in many of these conditions is related to shared renal and endocrine functions, including the anemia of renal disease, chronic kidney disease, mineral bone disorders, and hypertension related to chronic kidney disease. Their understanding and in-depth knowledge is very essential in designing and formulating the therapeutic plans and innovating new management strategies. However, we still have to go a long way in order to completely understand the various confounding causative relationships between the pathology and disease of these reno-endocrinal manifestations.

  17. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2002-12-03

    The authors have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, they developed a molecular model that has facilitated the understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5 EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 and three HLS1-LIKE genes in the laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the award period, they have identified and begun preliminary characterization of two genes that genetically act upstream of the ethylene receptors. ETO1 and RAN1 encode negative regulators of ethylene biosynthesis and signaling respectively. Progress on the analysis of these genes along with HOOKLESS1 is described.

  18. Toward Molecular Level of the “Salmonella-Victim” Ecology, Genetics, and Evolution

    Directory of Open Access Journals (Sweden)

    S.N. Rumyantsev

    2004-01-01

    Full Text Available Bacteria of the Salmonella genus are polypathogenic agents that can affect both men and animals, causing devastating and fatal illness. Despite considerable immunological, epidemiological, and genetic efforts, and increased understanding of how the Salmonella infection develops, many key questions concerning Salmonella infection remain unanswered. Salmonella can be carried as harmless commensals in some sectors of the population. In some individuals, however, the same microbes cause illness while others display immunity to primary Salmonella infection. Nothing is known about the molecular base of the Salmonella pathogenicity. Even the ability of Salmonella to destroy the victim’s cells has been the subject of century-long discussions. In this article, some key findings concerning ecology, molecular ecology, and cell level of the Salmonella infection genetics are summarized and interpreted from the viewpoint of evolutionary theory with certitude that this approach can help to decipher the undiscovered secrets of Salmonella infection’s epidemiology and pathogenesis, as well as the clinical course and severity, and to select ways for fighting against Salmonella.

  19. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    Science.gov (United States)

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Molecular insight into systematics, host associations, life cycles and geographic distribution of the nematode family Rhabdiasidae.

    Science.gov (United States)

    Tkach, Vasyl V; Kuzmin, Yuriy; Snyder, Scott D

    2014-04-01

    Rhabdiasidae Railliet, 1915 is a globally distributed group of up to 100 known species of nematodes parasitic in amphibians and reptiles. This work presents the results of a molecular phylogenetic analysis of 36 species of Rhabdiasidae from reptiles and amphibians from six continents. New DNA sequences encompassing partial 18S rDNA, ITS1, 5.8S rDNA, ITS2 and partial 28S rDNA regions of nuclear ribosomal DNA were obtained from 27 species and pre-existing sequences for nine species were incorporated. The broad taxonomic, host and geographical coverage of the specimens allowed us to address long-standing questions in rhabdiasid systematics, evolution, geographic distribution, and patterns of host association. Our analysis demonstrated that rhabdiasids parasitic in snakes are an independent genus sister to the rest of the Rhabdiasidae, a status supported by life cycle data. Based on the combined evidence of molecular phylogeny, morphology and life cycle characteristics, a new genus Serpentirhabdias gen. nov. with the type species Serpentirhabdias elaphe (Sharpilo, 1976) comb. nov. is established. The phylogeny supports the monophyly of Entomelas Travassos, 1930, Pneumonema Johnston, 1916 and the largest genus of the family, Rhabdias Stiles and Hassall, 1905. DNA sequence comparisons demonstrate the presence of more than one species in the previously monotypic Pneumonema from Australian scincid lizards. The distribution of some morphological characters in the genus Rhabdias shows little consistency within the phylogenetic tree topology, in particular the apical structures widely used in rhabdiasid systematics. Our data suggest that some of the characters, while valuable for species differentiation, are not appropriate for differentiation among higher taxa and are of limited phylogenetic utility. Rhabdias is the only genus with a cosmopolitan distribution, but some of the lineages within Rhabdias are distributed on a single continent or a group of adjacent

  1. Southern-by-Sequencing: A Robust Screening Approach for Molecular Characterization of Genetically Modified Crops

    Directory of Open Access Journals (Sweden)

    Gina M. Zastrow-Hayes

    2015-03-01

    Full Text Available Molecular characterization of events is an integral part of the advancement process during genetically modified (GM crop product development. Assessment of these events is traditionally accomplished by polymerase chain reaction (PCR and Southern blot analyses. Southern blot analysis can be time-consuming and comparatively expensive and does not provide sequence-level detail. We have developed a sequence-based application, Southern-by-Sequencing (SbS, utilizing sequence capture coupled with next-generation sequencing (NGS technology to replace Southern blot analysis for event selection in a high-throughput molecular characterization environment. SbS is accomplished by hybridizing indexed and pooled whole-genome DNA libraries from GM plants to biotinylated probes designed to target the sequence of transformation plasmids used to generate events within the pool. This sequence capture process enriches the sequence data obtained for targeted regions of interest (transformation plasmid DNA. Taking advantage of the DNA adjacent to the targeted bases (referred to as next-to-target sequence that accompanies the targeted transformation plasmid sequence, the data analysis detects plasmid-to-genome and plasmid-to-plasmid junctions introduced during insertion into the plant genome. Analysis of these junction sequences provides sequence-level information as to the following: the number of insertion loci including detection of unlinked, independently segregating, small DNA fragments; copy number; rearrangements, truncations, or deletions of the intended insertion DNA; and the presence of transformation plasmid backbone sequences. This molecular evidence from SbS analysis is used to characterize and select GM plants meeting optimal molecular characterization criteria. SbS technology has proven to be a robust event screening tool for use in a high-throughput molecular characterization environment.

  2. Genetic biomarkers for differential diagnosis of major depressive disorder and bipolar disorder: A systematic and critical review.

    Science.gov (United States)

    Menezes, Itiana Castro; von Werne Baes, Cristiane; Lacchini, Riccardo; Juruena, Mario Francisco

    2018-01-11

    Depressive symptoms are present in the depressive mood state of bipolar disorder (BPD) and major depression disorder (MDD). Often, in clinical practice, BPD patients are misdiagnosed with MDD. Therefore, genetic biomarkers could contribute to the improvement of differential diagnosis between BPD and MDD. This systematic and critical review aimed to find in literature reliable genetic biomarkers that may show differences between BPD and MDD. This systematic review followed the PRISMA-P method. The terms used to search PubMed, Scopus, PsycINFO, and Web of Science were depress*, bipolar, diagnos*, genetic*, biomark*. After applying the selection criteria, N = 27 studies were selected, being n = 9 about biomarkers for BPD; n = 15, about MDD; and n = 3 for distinguishing MDD from BPD. A total of N = 3086 subjects were assessed in the selected studies (n = 486 in BPD group; n = 1212 in MDD group; and n = 1388, healthy control group). The articles were dated up to June 2017. Of the N = 27 studies, n = 16 assessed gene, n = 1 miRNA, n = 2 lcnRNA and n = 3 protein expressions, n = 4 methylation, and n = 4 polymorphisms. Some studies applied more than one of these genetic analyses. To find reliable genetic biomarkers we have taken into account the methodological care during the studies development and their validity. The genetic biomarkers selected are related to genes that play a fundamental role in synaptic plasticity, neurogenesis, mood control, brain ageing, immune-inflammatory processes and mitochondrial respiratory chain. BDNF gene expression was one of the genetic biomarkers that highlighted because of its capacity of distinguishing BPD and MDD groups, and being adequately reproduced by more than one selected study. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Molecular characterization and genetic diversity of Jatropha curcas L. in Costa Rica

    Directory of Open Access Journals (Sweden)

    Marcela Vásquez-Mayorga

    2017-02-01

    Full Text Available We estimated the genetic diversity of 50 Jatropha curcas samples from the Costa Rican germplasm bank using 18 EST-SSR, one G-SSR and nrDNA-ITS markers. We also evaluated the phylogenetic relationships among samples using nuclear ribosomal ITS markers. Non-toxicity was evaluated using G-SSRs and SCARs markers. A Neighbor-Joining (NJ tree and a Maximum Likelihood (ML tree were constructed using SSR markers and ITS sequences, respectively. Heterozygosity was moderate (He = 0.346, but considerable compared to worldwide values for J. curcas. The PIC (PIC = 0.274 and inbreeding coefficient (f =  − 0.102 were both low. Clustering was not related to the geographical origin of accessions. International accessions clustered independently of collection sites, suggesting a lack of genetic structure, probably due to the wide distribution of this crop and ample gene flow. Molecular markers identified only one non-toxic accession (JCCR-24 from Mexico. This work is part of a countrywide effort to characterize the genetic diversity of the Jatropha curcas germplasm bank in Costa Rica.

  4. Molecular Markers and Cotton Genetic Improvement: Current Status and Future Prospects

    Science.gov (United States)

    Malik, Waqas; Iqbal, Muhammad Zaffar; Ali Khan, Asif; Qayyum, Abdul; Ali Abid, Muhammad; Noor, Etrat; Qadir Ahmad, Muhammad; Hasan Abbasi, Ghulam

    2014-01-01

    Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutum L.) is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence of G. raimondii and G. arboreum and next generation sequencing (NGS) technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS) are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i) comparative analysis of low- and high-throughput marker technologies available in cotton, (ii) genetic diversity in the available wild and improved gene pools of cotton, (iii) identification of the genomic regions within cotton genome underlying economic traits, and (iv) marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands. PMID:25401149

  5. Developmental psychopathology in an era of molecular genetics and neuroimaging: A developmental neurogenetics approach.

    Science.gov (United States)

    Hyde, Luke W

    2015-05-01

    The emerging field of neurogenetics seeks to model the complex pathways from gene to brain to behavior. This field has focused on imaging genetics techniques that examine how variability in common genetic polymorphisms predict differences in brain structure and function. These studies are informed by other complimentary techniques (e.g., animal models and multimodal imaging) and have recently begun to incorporate the environment through examination of Imaging Gene × Environment interactions. Though neurogenetics has the potential to inform our understanding of the development of psychopathology, there has been little integration between principles of neurogenetics and developmental psychopathology. The paper describes a neurogenetics and Imaging Gene × Environment approach and how these approaches have been usefully applied to the study of psychopathology. Six tenets of developmental psychopathology (the structure of phenotypes, the importance of exploring mechanisms, the conditional nature of risk, the complexity of multilevel pathways, the role of development, and the importance of who is studied) are identified, and how these principles can further neurogenetics applications to understanding the development of psychopathology is discussed. A major issue of this piece is how neurogenetics and current imaging and molecular genetics approaches can be incorporated into developmental psychopathology perspectives with a goal of providing models for better understanding pathways from among genes, environments, the brain, and behavior.

  6. Genetic and Molecular Mechanisms of Quantitative Trait Loci Controlling Maize Inflorescence Architecture.

    Science.gov (United States)

    Li, Manfei; Zhong, Wanshun; Yang, Fang; Zhang, Zuxin

    2018-03-01

    The establishment of inflorescence architecture is critical for the reproduction of flowering plant species. The maize plant generates two types of inflorescences, the tassel and the ear, and their architectures have a large effect on grain yield and yield-related traits that are genetically controlled by quantitative trait loci (QTLs). Since ear and tassel architecture are deeply affected by the activity of inflorescence meristems, key QTLs and genes regulating meristematic activity have important impacts on inflorescence development and show great potential for optimizing grain yield. Isolation of yield trait-related QTLs is challenging, but these QTLs have direct application in maize breeding. Additionally, characterization and functional dissection of QTLs can provide genetic and molecular knowledge of quantitative variation in inflorescence architecture. In this review, we summarize currently identified QTLs responsible for the establishment of ear and tassel architecture and discuss the potential genetic control of four ear-related and four tassel-related traits. In recent years, several inflorescence architecture-related QTLs have been characterized at the gene level. We review the mechanisms of these characterized QTLs.

  7. Molecular detection and genetic diversity of Babesia gibsoni in dogs in Bangladesh.

    Science.gov (United States)

    Terao, Masashi; Akter, Shirin; Yasin, Md Golam; Nakao, Ryo; Kato, Hirotomo; Alam, Mohammad Zahangir; Katakura, Ken

    2015-04-01

    Babesia gibsoni is a tick-borne hemoprotozoan parasite of dogs that often causes fever and hemolytic illness. Detection of B. gibsoni has been predominantly reported in Asian countries, including Japan, Korea, Taiwan, Malaysia, Bangladesh and India. The present study shows the first molecular characterization of B. gibsoni detected from dogs in Bangladesh. Blood samples were collected on FTA® Elute cards from 50 stray dogs in Mymensingh District in Bangladesh. DNA eluted from the cards was subjected to nested PCR for the 18S rRNA gene of Babesia species. Approximately 800bp PCR products were detected in 15 of 50 dogs (30%). Based on restriction fragment length polymorphism (RFLP) and direct sequencing of the PCR products, all parasite isolates were identified as B. gibsoni. Furthermore, the BgTRAP (B. gibsoni thrombospondin-related adhesive protein) gene fragments were detected in 13 of 15 18S rRNA gene PCR positive blood samples. Phylogenetic analysis of the BgTRAP gene revealed that B. gibsoni parasites in Bangladesh formed a cluster, which was genetically different from other Asian B. gibsoni isolates. In addition, tandem repeat analysis of the BgTRAP gene clearly showed considerable genetic variation among Bangladeshi isolates. These results suggested that B. gibsoni parasites in a different genetic clade are endemic in dogs in Bangladesh. Further studies are required to elucidate the origin, distribution, vector and pathogenesis of B. gibsoni parasites circulating in dogs in Bangladesh. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Bio++: a set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics

    Directory of Open Access Journals (Sweden)

    Galtier Nicolas

    2006-04-01

    Full Text Available Abstract Background A large number of bioinformatics applications in the fields of bio-sequence analysis, molecular evolution and population genetics typically share input/ouput methods, data storage requirements and data analysis algorithms. Such common features may be conveniently bundled into re-usable libraries, which enable the rapid development of new methods and robust applications. Results We present Bio++, a set of Object Oriented libraries written in C++. Available components include classes for data storage and handling (nucleotide/amino-acid/codon sequences, trees, distance matrices, population genetics datasets, various input/output formats, basic sequence manipulation (concatenation, transcription, translation, etc., phylogenetic analysis (maximum parsimony, markov models, distance methods, likelihood computation and maximization, population genetics/genomics (diversity statistics, neutrality tests, various multi-locus analyses and various algorithms for numerical calculus. Conclusion Implementation of methods aims at being both efficient and user-friendly. A special concern was given to the library design to enable easy extension and new methods development. We defined a general hierarchy of classes that allow the developer to implement its own algorithms while remaining compatible with the rest of the libraries. Bio++ source code is distributed free of charge under the CeCILL general public licence from its website http://kimura.univ-montp2.fr/BioPP.

  9. Forensic molecular genetic diversity analysis of Chinese Hui ethnic group based on a novel STR panel.

    Science.gov (United States)

    Fang, Yating; Guo, Yuxin; Xie, Tong; Jin, Xiaoye; Lan, Qiong; Zhou, Yongsong; Zhu, Bofeng

    2018-03-26

    In present study, the genetic polymorphisms of 22 autosomal short tandem repeat (STR) loci were analyzed in 496 unrelated Chinese Xinjiang Hui individuals. These autosomal STR loci were multiplex amplified and genotyped based on a novel STR panel. There were 246 observed alleles with the allele frequencies ranging from 0.0010 to 0.3609. All polymorphic information content values were higher than 0.7. The combined power of discrimination and the combined probability of exclusion were 0.999999999999999999999999999426766 and 0.999999999860491, respectively. Based on analysis of molecular variance method, genetic differentiation analysis between the Xinjiang Hui and other reported groups were conducted at these 22 loci. The results indicated that there were no significant differences in statistics between Hui group and Northern Han group (including Han groups from Hebei, Henan, Shaanxi provinces), and significant deviations with Southern Han group (including those from Guangdong, Guangxi provinces) at 7 loci, and Uygur group at 10 loci. To sum up, these 22 autosomal STR loci were high genetic polymorphic in Xinjiang Hui group.

  10. Molecular Markers and Cotton Genetic Improvement: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Waqas Malik

    2014-01-01

    Full Text Available Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutum L. is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence of G. raimondii and G. arboreum and next generation sequencing (NGS technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i comparative analysis of low- and high-throughput marker technologies available in cotton, (ii genetic diversity in the available wild and improved gene pools of cotton, (iii identification of the genomic regions within cotton genome underlying economic traits, and (iv marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands.

  11. Molecular genetic insights on cheetah (Acinonyx jubatus) ecology and conservation in Namibia.

    Science.gov (United States)

    Marker, Laurie L; Pearks Wilkerson, Alison J; Sarno, Ronald J; Martenson, Janice; Breitenmoser-Würsten, Christian; O'Brien, Stephen J; Johnson, Warren E

    2008-01-01

    The extent and geographic patterns of molecular genetic diversity of the largest remaining free-ranging cheetah population were described in a survey of 313 individuals from throughout Namibia. Levels of relatedness, including paternity/maternity (parentage), were assessed across all individuals using 19 polymorphic microsatellite loci, and unrelated cheetahs (n = 89) from 7 regions were genotyped at 38 loci to document broad geographical patterns. There was limited differentiation among regions, evidence that this is a generally panmictic population. Measures of genetic variation were similar among all regions and were comparable with Eastern African cheetah populations. Parentage analyses confirmed several observations based on field studies, including 21 of 23 previously hypothesized family groups, 40 probable parent/offspring pairs, and 8 sibling groups. These results also verified the successful integration and reproduction of several cheetahs following natural dispersal or translocation. Animals within social groups (family groups, male coalitions, or sibling groups) were generally related. Within the main study area, radio-collared female cheetahs were more closely interrelated than similarly compared males, a pattern consistent with greater male dispersal. The long-term maintenance of current patterns of genetic variation in Namibia depends on retaining habitat characteristics that promote natural dispersal and gene flow of cheetahs.

  12. The history of Old World camelids in the light of molecular genetics.

    Science.gov (United States)

    Burger, Pamela Anna

    2016-06-01

    Old World camels have come into the focus as sustainable livestock species, unique in their morphological and physiological characteristics and capable of providing vital products even under extreme environmental conditions. The evolutionary history of dromedary and Bactrian camels traces back to the middle Eocene (around 40 million years ago, mya), when the ancestors of Camelus emerged on the North American continent. While the genetic status of the two domestic species has long been established, the wild two-humped camel has only recently been recognized as a separate species, Camelus ferus, based on molecular genetic data. The demographic history established from genome drafts of Old World camels shows the independent development of the three species over the last 100,000 years with severe bottlenecks occurring during the last glacial period and in the recent past. Ongoing studies involve the immune system, relevant production traits, and the global population structure and domestication of Old World camels. Based on the now available whole genome drafts, specific metabolic pathways have been described shedding new light on the camels' ability to adapt to desert environments. These new data will also be at the origin for genome-wide association studies to link economically relevant phenotypes to genotypes and to conserve the diverse genetic resources in Old World camelids.

  13. Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus

    Directory of Open Access Journals (Sweden)

    Timms Peter

    2011-04-01

    Full Text Available Abstract Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58, we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of

  14. Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus).

    Science.gov (United States)

    Marsh, James; Kollipara, Avinash; Timms, Peter; Polkinghorne, Adam

    2011-04-18

    Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58), we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Three genes (incA, ORF663, tarP) were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. While the continued use of ompA as a fine-detailed molecular marker for epidemiological

  15. Systematics of the blindsnakes (Serpentes: Scolecophidia: Typhlopoidea) based on molecular and morphological evidence.

    Science.gov (United States)

    Pyron, Robert Alexander; Wallach, Van

    2014-07-08

    The blindsnake superfamily Typhlopoidea (Gerrhopilidae, Typhlopidae, and Xenotyphlopidae) is a diverse, widespread part of the global snake fauna. A recent systematic revision based on molecular phylogenetic analyses and some morphological evidence presented a preliminary solution to the non-monophyly of many previously recognized genera, but additional clarification is needed regarding the recognition of some species and genera. We rectify these problems here with a new molecular phylogenetic analysis including 95 of the 275 currently recognized, extant typhlopoids, incorporating both nuclear and mitochondrial loci. We supplement this with data on the external, visceral, and hemipenial morphology of nearly all species to generate a revised classification for Typhlopoidea. Based on morphological data, we re-assign Cathetorhinus from Typhlopidae to Gerrhopilidae. Xenotyphlopidae maintains its current contents (Xenotyphlops). In Typhlopidae, one monotypic genus is synonymized with its larger sister-group as it cannot be unambiguously diagnosed morphologically (Sundatyphlops with Anilios), and two genera are synonymizedwith Typhlops (Antillotyphlops and Cubatyphlops), as they are not reciprocally monophyletic. The genus Asiatyphylops is renamed Argyrophis, the senior synonym for the group. We erect one new genus (Lemuriatyphlops) for a phylogenetically distinct species-group in Asiatyphlopinae. Fourteen of eighteen recognized typhlopid genera are maintained in four subfamilies: Afrotyphlopinae (Afrotyphlops, Grypotyphlops [re-assigned from Asiatyphlopinae], Letheobia, and Rhinotyphlops), Asiatyphlopinae (Acutotyphlops, Anilios, Cyclotyphlops, Indotyphlops, Malayotyphlops, Ramphotyphlops, and Xerotyphlops), Madatyphlopinae (Madatyphlops), and Typhlopinae (Amerotyphlops and Typhlops), some with altered contents. Diagnoses based on morphology are provided for all 19 typhlopoid genera, accounting for all 275 species. This taxonomy provides a robust platform for future

  16. MolabIS--an integrated information system for storing and managing molecular genetics data.

    Science.gov (United States)

    Truong, Cong V C; Groeneveld, Linn F; Morgenstern, Burkhard; Groeneveld, Eildert

    2011-10-31

    Long-term sample storage, tracing of data flow and data export for subsequent analyses are of great importance in genetics studies. Therefore, molecular labs do need a proper information system to handle an increasing amount of data from different projects. We have developed a molecular labs information management system (MolabIS). It was implemented as a web-based system allowing the users to capture original data at each step of their workflow. MolabIS provides essential functionality for managing information on individuals, tracking samples and storage locations, capturing raw files, importing final data from external files, searching results, accessing and modifying data. Further important features are options to generate ready-to-print reports and convert sequence and microsatellite data into various data formats, which can be used as input files in subsequent analyses. Moreover, MolabIS also provides a tool for data migration. MolabIS is designed for small-to-medium sized labs conducting Sanger sequencing and microsatellite genotyping to store and efficiently handle a relative large amount of data. MolabIS not only helps to avoid time consuming tasks but also ensures the availability of data for further analyses. The software is packaged as a virtual appliance which can run on different platforms (e.g. Linux, Windows). MolabIS can be distributed to a wide range of molecular genetics labs since it was developed according to a general data model. Released under GPL, MolabIS is freely available at http://www.molabis.org.

  17. [Molecular genetic characteristics of Duchenne-Becker muscular dystrophy in the Republic of Moldova].

    Science.gov (United States)

    Sacare, V K

    2008-10-01

    Solution to some problems of clinical genealogical and molecular genetic study of Duchenne muscular dystrophy (DMD) in the Republic of Moldova and prenatal diagnosis aimed at preventing the birth of infants with this disease is proposed. An integrated clinical and molecular genetic study of families with a high risk of DMD has allowed its specific characteristics in the Moldovan population to be identified. The spectrum of mutations at the gene level in DMD patients and their role in prenatal and clinical diagnosis have been determined. RFLP analysis and PCR have been used to estimate the informativeness of families with a high DMD risk; prenatal diagnosis has been performed in some of them. Population analysis of the frequencies of polymorphic restriction sites have been carried out for loci pERT87-8/Tag1, pERT87-15/BamH1, and 16intron/Tag1. The results of analysis of deletion frequencies in the dystrophin gene and the frequencies of the pERT87-8, pERT87-15, and 16intron intragenic polymorphic loci have served as a basis for a strategy of molecular diagnosis. The new strategy allows the informativeness to be evaluated and, hence, clinical, preclinical, and prenatal diagnosis to be performed in approximately 94% of cases. A modified PCR method (MPCR) using the system of primers pERT87-8/Tag1 and 16intron/Tag1 has been developed for direct search for deletions. The method makes it possible to avoid diagnostic errors and decrease both the duration and the cost of the analysis.

  18. Sex-specific genetic variance and the evolution of sexual dimorphism: a systematic review of cross-sex genetic correlations.

    Science.gov (United States)

    Poissant, Jocelyn; Wilson, Alastair J; Coltman, David W

    2010-01-01

    The independent evolution of the sexes may often be constrained if male and female homologous traits share a similar genetic architecture. Thus, cross-sex genetic covariance is assumed to play a key role in the evolution of sexual dimorphism (SD) with consequent impacts on sexual selection, population dynamics, and speciation processes. We compiled cross-sex genetic correlations (r(MF)) estimates from 114 sources to assess the extent to which the evolution of SD is typically constrained and test several specific hypotheses. First, we tested if r(MF) differed among trait types and especially between fitness components and other traits. We also tested the theoretical prediction of a negative relationship between r(MF) and SD based on the expectation that increases in SD should be facilitated by sex-specific genetic variance. We show that r(MF) is usually large and positive but that it is typically smaller for fitness components. This demonstrates that the evolution of SD is typically genetically constrained and that sex-specific selection coefficients may often be opposite in sign due to sub-optimal levels of SD. Most importantly, we confirm that sex-specific genetic variance is an important contributor to the evolution of SD by validating the prediction of a negative correlation between r(MF) and SD.

  19. Genetic-molecular characterization of backcross generations for sexual conversion in papaya (Carica papaya L.).

    Science.gov (United States)

    Ramos, H C C; Pereira, M G; Pereira, T N S; Barros, G B A; Ferreguetti, G A

    2014-12-04

    The low number of improved cultivars limits the expansion of the papaya crop, particularly because of the time required for the development of new varieties using classical procedures. Molecular techniques associated with conventional procedures accelerate this process and allow targeted improvements. Thus, we used microsatellite markers to perform genetic-molecular characterization of papaya genotypes obtained from 3 backcross generations to monitor the inbreeding level and parental genome proportion in the evaluated genotypes. Based on the analysis of 20 microsatellite loci, 77 genotypes were evaluated, 25 of each generation of the backcross program as well as the parental genotypes. The markers analyzed were identified in 11 of the 12 linkage groups established for papaya, ranging from 1 to 4 per linkage group. The average values for the inbreeding coefficient were 0.88 (BC1S4), 0.47 (BC2S3), and 0.63 (BC3S2). Genomic analysis revealed average values of the recurrent parent genome of 82.7% in BC3S2, 64.4% in BC1S4, and 63.9% in BC2S3. Neither the inbreeding level nor the genomic proportions completely followed the expected average values. This demonstrates the significance of molecular analysis when examining different genotype values, given the importance of such information for selection processes in breeding programs.

  20. Charcot-Marie-Tooth disease: electrophysiology, molecular genetics and clinical management.

    Science.gov (United States)

    Carter, Greg T; England, John D; Chance, Phillip F

    2004-02-01

    Over the past decade there has been a huge increase in the understanding of the molecular basis of Charcot-Marie-Tooth disease (CMT). Additionally there has been a better delineation of the neurophysiological deficits and clinical problems associated with CMT. This paper reviews the current molecular basis of CMT and the electrophysiological, clinical and phenotypical characteristics of the various subtypes, followed by a discussion of novel and promising therapeutic interventions that potentially could be used as part of a treatment regimen for CMT. These interventions may involve attempts to slow down or stop neurodegenerative processes through nerve growth factors, limiting oxidative stress by using antioxidants, or normalizing gene expression through genetic manipulation. Other potential therapeutic target areas include the progesterone receptor on myelin-forming Schwann cells, the immune system via modulation of nerve inflammation, and enhancing glutathione transferase activity. While ongoing molecular research continues to identify more of the mutant genes and proteins that cause the various disease subtypes, the focus of clinical research should continue to be on developing pharmaceutical and rehabilitative therapies to reverse nerve degeneration and ultimately improve the functioning of people with CMT.