WorldWideScience

Sample records for system-wide predator control

  1. System-wide significance of predation on juvenile salmonids in Columbia and Snake River reservoirs and evaluation of predation control measures. Annual report 1993

    International Nuclear Information System (INIS)

    Gadomski, D.M.; Poe, T.P.

    1994-01-01

    This project had three major goals. The first was to assist the Oregon Department of Fish and Wildlife with predation indexing as part of an effort to estimate the relative magnitude of juvenile salmonid losses to northern squawfish Ptychocheilus oregonensis in reservoirs throughout the Columbia River Basin. The second goal was to evaluate the northern squawfish control program and test critical assumptions about mid-reservoir predation processes. The final goal was to determine mechanisms underlying northern squawfish recruitment and factors affecting year-class strength

  2. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Russell G.; Winther, Eric C.; Fox, Lyle G.

    2004-01-01

    This report presents results for year twelve in a basin-wide program to harvest northern pikeminnow1 (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and damangling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified

  3. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Russell G.; Winther, Eric C.; Fox, Lyle G.

    2003-03-01

    This report presents results for year eleven in a basin-wide program to harvest northern pikeminnow (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible.

  4. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Russell G.; Glaser, Bryce G.; Amren, Jennifer

    2003-03-01

    This report presents results for year ten in a basin-wide program to harvest northern pikeminnow (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and damangling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified

  5. Development of a system wide predator control program: Stepwise implementation of a predation index, predator control fisheries, and evaluation plan in the Columbia River Basin. Volume 2 - Evaluation: 1993 Annual report; ANNUAL

    International Nuclear Information System (INIS)

    Willis, C.F.; Ward, D.L.

    1995-01-01

    An attempt was made to determine the extent to which northern squawfish predation on juvenile salmonids is a problem in the Columbia River Basin, and to evaluate how effectively fisheries can be used to control northern squawfish populations and reduce juvenile salmonid losses to predation. These studies were initiated as part of a basinwide program to control northern squawfish predation and reduce mortality of juvenile salmonids on their migration to the ocean. Modeling simulations based on work in the John Day Reservoir from 1982 through 1988 indicated that if northern squawfish larger than 250 mm fork length were exploited, at a rate of 10-20%, reductions in their numbers and restructuring of their populations could reduce their predation on juvenile salmonids by 50% or more. The authors evaluated the success of three test fisheries conducted in 1993-a sport-reward fishery, a dam-angling fishery, and a trap-net fishery, to achieve a 10-20% exploitation rate on northern squawfish . The authors also began evaluating the response of northern squawfish populations to sustained fisheries. In addition, the authors gathered information regarding the economic, social, and legal feasibility of sustaining each fishery, and report on the structure and function of the fish collection and distribution system

  6. System-wide power management control via clock distribution network

    Science.gov (United States)

    Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

    2015-05-19

    An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

  7. Optimal control of native predators

    Science.gov (United States)

    Martin, Julien; O'Connell, Allan F.; Kendall, William L.; Runge, Michael C.; Simons, Theodore R.; Waldstein, Arielle H.; Schulte, Shiloh A.; Converse, Sarah J.; Smith, Graham W.; Pinion, Timothy; Rikard, Michael; Zipkin, Elise F.

    2010-01-01

    We apply decision theory in a structured decision-making framework to evaluate how control of raccoons (Procyon lotor), a native predator, can promote the conservation of a declining population of American Oystercatchers (Haematopus palliatus) on the Outer Banks of North Carolina. Our management objective was to maintain Oystercatcher productivity above a level deemed necessary for population recovery while minimizing raccoon removal. We evaluated several scenarios including no raccoon removal, and applied an adaptive optimization algorithm to account for parameter uncertainty. We show how adaptive optimization can be used to account for uncertainties about how raccoon control may affect Oystercatcher productivity. Adaptive management can reduce this type of uncertainty and is particularly well suited for addressing controversial management issues such as native predator control. The case study also offers several insights that may be relevant to the optimal control of other native predators. First, we found that stage-specific removal policies (e.g., yearling versus adult raccoon removals) were most efficient if the reproductive values among stage classes were very different. Second, we found that the optimal control of raccoons would result in higher Oystercatcher productivity than the minimum levels recommended for this species. Third, we found that removing more raccoons initially minimized the total number of removals necessary to meet long term management objectives. Finally, if for logistical reasons managers cannot sustain a removal program by removing a minimum number of raccoons annually, managers may run the risk of creating an ecological trap for Oystercatchers.

  8. Predator control of ecosystem nutrient dynamics.

    Science.gov (United States)

    Schmitz, Oswald J; Hawlena, Dror; Trussell, Geoffrey C

    2010-10-01

    Predators are predominantly valued for their ability to control prey, as indicators of high levels of biodiversity and as tourism attractions. This view, however, is incomplete because it does not acknowledge that predators may play a significant role in the delivery of critical life-support services such as ecosystem nutrient cycling. New research is beginning to show that predator effects on nutrient cycling are ubiquitous. These effects emerge from direct nutrient excretion, egestion or translocation within and across ecosystem boundaries after prey consumption, and from indirect effects mediated by predator interactions with prey. Depending on their behavioural ecology, predators can create heterogeneous or homogeneous nutrient distributions across natural landscapes. Because predator species are disproportionately vulnerable to elimination from ecosystems, we stand to lose much more from their disappearance than their simple charismatic attractiveness. 2010 Blackwell Publishing Ltd/CNRS.

  9. STRATEGY OF DATA INTEGRITY CONTROL FOR SYSTEM WIDE INFORMATION MANAGEMENT CONCEPT

    Directory of Open Access Journals (Sweden)

    Lev E. Rudel'son

    2017-01-01

    Full Text Available The growth in demand for air transportation services is steadily ahead of the capacity of carriers. The most advanced aviation empires set a goal to triple the capacity of the current air traffic management system by the mid-twenties. The technical basis for such achievements is equipping all aircraft with automatic dependent surveillance broadcast systems, which provides both control over the parameters of their movement anywhere in the world, and reliable mutual exchange of verified information on the air picture and forecasts of its development between all pilots and ground services.The concepts of collaborative decision-making on air traffic flows management and System Wide Information Management, suggested by ICAO experts, have proclaimed the idea of the flight information availability as a means of increasing the intensity of flights, not only for considering, but also for making changes in it by all the participants of the process of organizing and servicing the flows – analysts, meteorologists, planners, air traffic controllers, pilots (in the part relating to their area. The technology of specialists’ cooperation is proposed. It allows to make sensible decisions on servicing aircraft flows for the whole depth of their flights (both on routes and along free trajectories when changing the conditions for performing flights.The task is to develop software procedures for computer support of new concepts that ensure the integrity of aeronautical data used by all the participants in the operational organization of flows. All the interconnected elements of air traffic management (personnel and equipment may distort the system public information with the known probability of cooperation outcomes. The article proposes a three-level algorithm for neutralizing data mismatch in the elements of a distributed network of process participants ground and on-board computing facilities, allowing in the actual time to maintain consistency of information

  10. Predator interference effects on biological control: The "paradox" of the generalist predator revisited

    OpenAIRE

    Bhowmick, Suman; Quansah, Emmanuel; Basheer, Aladeen; Parshad, Rana D.; Upadhyay, Ranjit Kumar

    2015-01-01

    An interesting conundrum in biological control questions the efficiency of generalist predators as biological control agents. Theory suggests, generalist predators are poor agents for biological control, primarily due to mutual interference. However field evidence shows they are actually quite effective in regulating pest densities. In this work we provide a plausible answer to this paradox. We analyze a three species model, where a generalist top predator is introduced into an ecosystem as a...

  11. Predator interference effects on biological control: The "paradox" of the generalist predator revisited

    Science.gov (United States)

    Parshad, Rana D.; Bhowmick, Suman; Quansah, Emmanuel; Basheer, Aladeen; Upadhyay, Ranjit Kumar

    2016-10-01

    An interesting conundrum in biological control questions the efficiency of generalist predators as biological control agents. Theory suggests, generalist predators are poor agents for biological control, primarily due to mutual interference. However field evidence shows they are actually quite effective in regulating pest densities. In this work we provide a plausible answer to this paradox. We analyze a three species model, where a generalist top predator is introduced into an ecosystem as a biological control, to check the population of a middle predator, that in turn is depredating on a prey species. We show that the inclusion of predator interference alone, can cause the solution of the top predator equation to blow-up in finite time, while there is global existence in the no interference case. This result shows that interference could actually cause a population explosion of the top predator, enabling it to control the target species, thus corroborating recent field evidence. Our results might also partially explain the population explosion of certain species, introduced originally for biological control purposes, such as the cane toad (Bufo marinus) in Australia, which now functions as a generalist top predator. We also show both Turing instability and spatio-temporal chaos in the model. Lastly we investigate time delay effects.

  12. System-wide hybrid MPC-PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction.

    Science.gov (United States)

    Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit

    2013-11-01

    The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Multiple micro-predators controlling bacterial communities in the environment.

    Science.gov (United States)

    Johnke, Julia; Cohen, Yossi; de Leeuw, Marina; Kushmaro, Ariel; Jurkevitch, Edouard; Chatzinotas, Antonis

    2014-06-01

    Predator-prey interactions are a main issue in ecological theory, including multispecies predator-prey relationships and intraguild predation. This knowledge is mainly based on the study of plants and animals, while its relevance for microorganisms is not well understood. The three key groups of micro-predators include protists, predatory bacteria and bacteriophages. They greatly differ in size, in prey specificity, in hunting strategies and in the resulting population dynamics. Yet, their potential to jointly control bacterial populations and reducing biomass in complex environments such as wastewater treatment plants is vast. Here, we present relevant ecological concepts and recent findings on micropredators, and propose that an integrative approach to predation at the microscale should be developed enabling the exploitation of this potential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Hydrological disturbance diminishes predator control in wetlands.

    Science.gov (United States)

    Dorn, Nathan J; Cook, Mark I

    2015-11-01

    Effects of predators on prey populations can be especially strong in aquatic ecosystems, but disturbances may mediate the strength of predator limitation and even allow outbreaks of some prey populations. In a two-year study we investigated the numerical responses of crayfish (Procambarus fallax) and small fishes (Poeciliidae and Fundulidae) to a brief hydrological disturbance in replicated freshwater wetlands with an experimental drying and large predatory fish reduction. The experiment and an in situ predation assay tested the component of the consumer stress model positing that disturbances release prey from predator limitation. In the disturbed wetlands, abundances of large predatory fish were seasonally reduced, similar to dynamics in the Everglades (southern Florida). Densities of small fish were unaffected by the disturbance, but crayfish densities, which were similar across all wetlands before drying, increased almost threefold in the year after the disturbance. Upon re-flooding, juvenile crayfish survival was inversely related to the abundance of large fish across wetlands, but we found no evidence for enhanced algal food quality. At a larger landscape scale (500 km2 of the Everglades), crayfish densities over eight years were positively correlated with the severity of local dry disturbances (up to 99 days dry) during the preceding dry season. In contrast, densities of small-bodied fishes in the same wetlands were seasonally depressed by dry disturbances. The results from our experimental wetland drought and the observations of crayfish densities in the Everglades represent a large-scale example of prey population release following a hydrological disturbance in a freshwater ecosystem. The conditions producing crayfish pulses in the Everglades appear consistent with the mechanics of the consumer stress model, and we suggest crayfish pulses may influence the number of nesting wading birds in the Everglades.

  15. Sport hunting, predator control and conservation of large carnivores.

    Directory of Open Access Journals (Sweden)

    Craig Packer

    Full Text Available Sport hunting has provided important economic incentives for conserving large predators since the early 1970's, but wildlife managers also face substantial pressure to reduce depredation. Sport hunting is an inherently risky strategy for controlling predators as carnivore populations are difficult to monitor and some species show a propensity for infanticide that is exacerbated by removing adult males. Simulation models predict population declines from even moderate levels of hunting in infanticidal species, and harvest data suggest that African countries and U.S. states with the highest intensity of sport hunting have shown the steepest population declines in African lions and cougars over the past 25 yrs. Similar effects in African leopards may have been masked by mesopredator release owing to declines in sympatric lion populations, whereas there is no evidence of overhunting in non-infanticidal populations of American black bears. Effective conservation of these animals will require new harvest strategies and improved monitoring to counter demands for predator control by livestock producers and local communities.

  16. A method exploiting direct communication between phasor measurement units for power system wide-area protection and control algorithms.

    Science.gov (United States)

    Almas, Muhammad Shoaib; Vanfretti, Luigi

    2017-01-01

    Synchrophasor measurements from Phasor Measurement Units (PMUs) are the primary sensors used to deploy Wide-Area Monitoring, Protection and Control (WAMPAC) systems. PMUs stream out synchrophasor measurements through the IEEE C37.118.2 protocol using TCP/IP or UDP/IP. The proposed method establishes a direct communication between two PMUs, thus eliminating the requirement of an intermediate phasor data concentrator, data mediator and/or protocol parser and thereby ensuring minimum communication latency without considering communication link delays. This method allows utilizing synchrophasor measurements internally in a PMU to deploy custom protection and control algorithms. These algorithms are deployed using protection logic equations which are supported by all the PMU vendors. Moreover, this method reduces overall equipment cost as the algorithms execute internally in a PMU and therefore does not require any additional controller for their deployment. The proposed method can be utilized for fast prototyping of wide-area measurements based protection and control applications. The proposed method is tested by coupling commercial PMUs as Hardware-in-the-Loop (HIL) with Opal-RT's eMEGAsim Real-Time Simulator (RTS). As illustrative example, anti-islanding protection application is deployed using proposed method and its performance is assessed. The essential points in the method are: •Bypassing intermediate phasor data concentrator or protocol parsers as the synchrophasors are communicated directly between the PMUs (minimizes communication delays).•Wide Area Protection and Control Algorithm is deployed using logic equations in the client PMU, therefore eliminating the requirement for an external hardware controller (cost curtailment)•Effortless means to exploit PMU measurements in an environment familiar to protection engineers.

  17. Coordinating rule-based and system-wide model predictive control strategies to reduce storage expansion of combined urban drainage systems: The case study of Lundtofte, Denmark

    DEFF Research Database (Denmark)

    Meneses, Elbys Jose; Gaussens, Marion; Jakobsen, Carsten

    2018-01-01

    with environmental requirements. A coordinating, rule-based RTC strategy and a global, system-wide risk-based dynamic optimization strategy (model predictive control), were compared using a detailed hydrodynamic model. RTC allowed a reduction of the planned storage volume by 21% while improving the system...... a five-year period. This study illustrates that including RTC during the planning stages reduces the infrastructural costs while offering better environmental protection, and that dynamic risk-based optimisation allows prioritising environmental impact reduction for particularly sensitive locations....

  18. Using consumption rate to assess potential predators for biological control of white perch

    Directory of Open Access Journals (Sweden)

    Gosch N.J.C.

    2011-08-01

    Full Text Available Control of undesirable fishes is important in aquatic systems, and using predation as a tool for biological control is an attractive option to fishery biologists. However, determining the appropriate predators for biological control is critical for success. The objective of this study was to evaluate the utility of consumption rate as an index to determine the most effective predators for biological control of an invasive fish. Consumption rate values were calculated for nine potential predators that prey on white perch Morone americana in Branched Oak and Pawnee reservoirs, Nebraska. The consumption rate index provided a unique and insightful means of determining the potential effectiveness of each predator species in controlling white perch. Cumulative frequency distributions facilitated interpretation by providing a graphical presentation of consumption rates by all individuals within each predator species. Largemouth bass Micropterus salmoides, walleye Sander vitreus and sauger S. canadensis were the most efficient white perch predators in both reservoirs; however, previous attempts to increase biomass of these predators have failed suggesting that successful biological control is unlikely using existing predator species in these Nebraska reservoirs.

  19. Using consumption rate to assess potential predators for biological control of white perch

    Science.gov (United States)

    Gosch, N.J.C.; Pope, K.L.

    2011-01-01

    Control of undesirable fishes is important in aquatic systems, and using predation as a tool for biological control is an attractive option to fishery biologists. However, determining the appropriate predators for biological control is critical for success. The objective of this study was to evaluate the utility of consumption rate as an index to determine the most effective predators for biological control of an invasive fish. Consumption rate values were calculated for nine potential predators that prey on white perch Morone americana in Branched Oak and Pawnee reservoirs, Nebraska. The consumption rate index provided a unique and insightful means of determining the potential effectiveness of each predator species in controlling white perch. Cumulative frequency distributions facilitated interpretation by providing a graphical presentation of consumption rates by all individuals within each predator species. Largemouth bass Micropterus salmoides, walleye Sander vitreus and sauger S. canadensis were the most efficient white perch predators in both reservoirs; however, previous attempts to increase biomass of these predators have failed suggesting that successful biological control is unlikely using existing predator species in these Nebraska reservoirs. ?? 2011 ONEMA.

  20. Development of a System-wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Young, Franklin R.; Wachtel, Mark L.; Petersen, Marc R.

    2003-03-01

    We are reporting on the progress of the Northern Pikeminnow Sport-Reward Fishery (NPSRF) in the lower Columbia and Snake rivers for 1998. The objectives of this project were to (1) implement a sport fishery that rewards anglers who harvest northern pikeminnow Ptychocheilus oregonensis {ge}279 mm (11 inches) total length, (2) collect catch data on selected fish species caught by fishery participants while targeting northern pikeminnow, (3) monitor and report incidental catch of sensitive salmonid species by anglers targeting northern pikeminnow and, (4) collect, monitor and report data on angler participation, catch and catch per angler day of northern pikeminnow during the season. A total of 108,903 northern pikeminnow {ge}279 mm were harvested during the 1998 season and 21,959 angler days were spent harvesting these fish. Harvest was below the seven year average of 150,874 and participation was well below the seven-year average of 51,013 angler days. Catch per angler day for all anglers during the season was 4.96 and exceeded the seven-year average of 2.96 northern pikeminnow per angler day. Peamouth Mylocheilus caurinus, and white sturgeon Acipencer transmontanus, were the other species most often harvested by returning NPSRF anglers targeting northern pikeminnow. Harvest of salmonids Oncorhynchus spp. by NPSRF anglers targeting northern pikeminnow remained below limits established by the National Marine Fisheries Service (NMFS).

  1. Coordinating Rule-Based and System-Wide Model Predictive Control Strategies to Reduce Storage Expansion of Combined Urban Drainage Systems: The Case Study of Lundtofte, Denmark

    Directory of Open Access Journals (Sweden)

    Elbys Jose Meneses

    2018-01-01

    Full Text Available The environmental benefits of combining traditional infrastructure solutions for urban drainage (increasing storage volume with real time control (RTC strategies were investigated in the Lundofte catchment in Denmark, where an expensive traditional infrastructure expansion is planned to comply with environmental requirements. A coordinating, rule-based RTC strategy and a global, system-wide risk-based dynamic optimization strategy (model predictive control, were compared using a detailed hydrodynamic model. RTC allowed a reduction of the planned storage volume by 21% while improving the system performance in terms of combined sewer overflow (CSO volumes, environmental impacts, and utility costs, which were reduced by up to 10%. The risk-based optimization strategy provided slightly better performance in terms of reducing CSO volumes, with evident improvements in environmental impacts and utility costs, due to its ability to prioritize among the environmental sensitivity of different recipients. A method for extrapolating annual statistics from a limited number of events over a time interval was developed and applied to estimate yearly performance, based on the simulation of 46 events over a five-year period. This study illustrates that including RTC during the planning stages reduces the infrastructural costs while offering better environmental protection, and that dynamic risk-based optimisation allows prioritising environmental impact reduction for particularly sensitive locations.

  2. System Wide Information Management (SWIM)

    Science.gov (United States)

    Hritz, Mike; McGowan, Shirley; Ramos, Cal

    2004-01-01

    This viewgraph presentation lists questions regarding the implementation of System Wide Information Management (SWIM). Some of the questions concern policy issues and strategies, technology issues and strategies, or transition issues and strategies.

  3. Pest species diversity enhances control of spider mites and whiteflies by a generalist phytoseiid predator

    NARCIS (Netherlands)

    Messelink, G.J.; van Maanen, R.; van Holstein-Saj, R.; Sabelis, M.W.; Janssen, A.

    2010-01-01

    To test the hypothesis that pest species diversity enhances biological pest control with generalist predators, we studied the dynamics of three major pest species on greenhouse cucumber: Western flower thrips, Frankliniella occidentalis (Pergande), greenhouse whitefly, Trialeurodes vaporariorum

  4. Energetic conditions promoting top-down control of prey by predators.

    Directory of Open Access Journals (Sweden)

    Kristin N Marshall

    Full Text Available Humans remove large amounts of biomass from natural ecosystems, and large bodied high trophic level animals are especially sensitive and vulnerable to exploitation. The effects of removing top-predators on food webs are often difficult to predict because of limited information on species interaction strengths. Here we used a three species predator-prey model to explore relationships between energetic properties of trophodynamic linkages and interaction strengths to provide heuristic rules that indicate observable energetic conditions that are most likely to lead to stable and strong top-down control of prey by predator species. We found that strong top-down interaction strengths resulted from low levels of energy flow from prey to predators. Strong interactions are more stable when they are a consequence of low per capita predation and when predators are subsidized by recruitment. Diet composition also affects stability, but the relationship depends on the form of the functional response. Our results imply that for generalist satiating predators, strong top-down control on prey is most likely for prey items that occupy a small portion of the diet and when density dependent recruitment is moderately high.

  5. Supplying high-quality alternative prey in the litter increases control of an above-ground plant pest by a generalist predator

    NARCIS (Netherlands)

    Muñoz-Cárdenas, Karen; Ersin, Firdevs; Pijnakker, Juliette; Houten, van Yvonne; Hoogerbrugge, Hans; Leman, Ada; Pappas, Maria L.; Duarte, Marcus V.A.; Messelink, Gerben J.; Sabelis, Maurice W.; Janssen, Arne

    2017-01-01

    Supplying predators with alternative food can have short-term positive effects on prey densities through predator satiation (functional response) and long-term negative effects through increases of predator populations (numerical response). In biological control, alternative food sources for

  6. Supplying high-quality alternative prey in the litter increases control of an above-ground plant pest by a generalist predator

    NARCIS (Netherlands)

    Muñoz-Cárdenas, K.; Ersin, F.; Pijnakker, J.; van Houten, Y.; Hoogerbrugge, H.; Leman, A.; Pappas, M.L.; Duarte, M.V.A.; Messelink, G.J.; Sabelis, M.W.; Janssen, A.

    Supplying predators with alternative food can have short-term positive effects on prey densities through predator satiation (functional response) and long-term negative effects through increases of predator populations (numerical response). In biological control, alternative food sources for

  7. Biological control of citrus mealybug, Planococcus citri (Risso) using coccinellid predator, Cryptolaemus montrouzieri Muls.

    Science.gov (United States)

    Afifi, Amal I; El Arnaouty, Said A; Attia, Angel R; Abd Alla, Asmaa El-Metwally

    2010-03-01

    The coccinellid predator, Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) was used to control the citrus mealybug, Planococcus citri (Risso) (Homoptera: Pseudococcidae) on the croton ornamental shrubs, Codiaeum variegatum L. at Giza governorate, Egypt. Cryptolaemus montrouzieri Mulsant, 50 adults/Croton shrub, were released once on October 27, 2008 in the open field. Obtained results indicated that percentages of reduction among the egg masses, nymphs and adults of P. citri, one month after releasing the predator reached to 41.5, 42.3 and 57.5%, respectively. Two months later, the corresponding rates were 80.6, 86.5 and 91.5%. Finally, after three months of releasing the predator, reduction rates reached to 100% for all stages of the pest. The associated natural enemies in the field were consisted of three predaceous insects and one parasitic species. The insect predators secured were the hemerobiid predator, Sympherobius amicus Navas; the coccinellid predator, Scymnus syriacus (Mars.) and the chrysopid predator, Chrysoperla carnea (Stephens). The parasitic species was the encyrtid, Coccidoxenoides peregrinus (Timberlake). The aforementioned natural enemies were found feeding on the citrus mealybug, Planococcus citri infesting croton shrubs. In the second season, 2009 there is no mealybug, P. citri individuals were found on the croton shrubs.

  8. The chaos and control of a food chain model supplying additional food to top-predator

    International Nuclear Information System (INIS)

    Sahoo, Banshidhar; Poria, Swarup

    2014-01-01

    Highlights: • We propose a chaotic food chain model supplying additional food to top-predator. • Local and global stability conditions are derived in presence of additional food. • Chaos is controlled only by increasing quantity of additional food. • System enters into periodic region and depicts Hopf bifurcations supplying additional food. • This an application of non-chemical methods for controlling chaos. -- Abstract: The control and management of chaotic population is one of the main objectives for constructing mathematical model in ecology today. In this paper, we apply a technique of controlling chaotic predator–prey population dynamics by supplying additional food to top-predator. We formulate a three species predator–prey model supplying additional food to top-predator. Existence conditions and local stability criteria of equilibrium points are determined analytically. Persistence conditions for the system are derived. Global stability conditions of interior equilibrium point is calculated. Theoretical results are verified through numerical simulations. Phase diagram is presented for various quality and quantity of additional food. One parameter bifurcation analysis is done with respect to quality and quantity of additional food separately keeping one of them fixed. Using MATCONT package, we derive the bifurcation scenarios when both the parameters quality and quantity of additional food vary together. We predict the existence of Hopf point (H), limit point (LP) and branch point (BP) in the model for suitable supply of additional food. We have computed the regions of different dynamical behaviour in the quantity–quality parametric plane. From our study we conclude that chaotic population dynamics of predator prey system can be controlled to obtain regular population dynamics only by supplying additional food to top predator. This study is aimed to introduce a new non-chemical chaos control mechanism in a predator–prey system with the

  9. Lessons from long-term predator control: a case study with the red fox

    NARCIS (Netherlands)

    Kirkwood, R.J.; Sutherland, D.R.; Murphy, S.; Dann, P.

    2014-01-01

    Context: Predator-control aims to reduce an impact on prey species, but efficacy of long-term control is rarely assessed and the reductions achieved are rarely quantified. Aims: We evaluated the changing efficacy of a 58-year-long campaign against red foxes (Vulpes vulpes) on Phillip Island, a

  10. Development of a systemwide predator control program: Stepwise implementation of a predation index, predator control fisheries, and evaluation plan in the Columbia River Basin. Volume 2 -- Evaluation: 1993 Annual report

    International Nuclear Information System (INIS)

    Willis, C.F.; Ward, D.L.

    1995-06-01

    An attempt was made to determine the extent to which northern squawfish predation on juvenile salmonids is a problem in the Columbia River Basin, and to evaluate how effectively fisheries can be used to control northern squawfish populations and reduce juvenile salmonid losses to predation. These studies were initiated as part of a basinwide program to control northern squawfish predation and reduce mortality of juvenile salmonids on their migration to the ocean. Modeling simulations based on work in the John Day Reservoir from 1982 through 1988 indicated that if northern squawfish larger than 250 mm fork length were exploited, at a rate of 10--20%, reductions in their numbers and restructuring of their populations could reduce their predation on juvenile salmonids by 50% or more. The authors evaluated the success of three test fisheries conducted in 1993--a sport-reward fishery, a dam-angling fishery, and a trap-net fishery, to achieve a 10--20% exploitation rate on northern squawfish. The authors also began evaluating the response of northern squawfish populations to sustained fisheries. In addition, the authors gathered information regarding the economic, social, and legal feasibility of sustaining each fishery, and report on the structure and function of the fish collection and distribution system

  11. Warming impact on herbivore population composition affects top-down control by predators.

    Science.gov (United States)

    Wang, Ying-Jie; Nakazawa, Takefumi; Ho, Chuan-Kai

    2017-04-19

    Understanding warming impact on herbivores facilitates predicting plant/crop dynamics in natural/agricultural systems. However, it remains unclear how warming will affect herbivore population size and population composition, consequently altering herbivore colonization in a tri-trophic system (plant-herbivore-predator or crop-pest-biocontrol agent). We studied a soybean-aphid-lady beetle system, by conducting (1) a laboratory warming experiment to examine warming impact (+2 °C or +4 °C) on the aphid population size and composition (alate proportion), and (2) a field colonization experiment to examine whether the warming-induced effect subsequently interacts with predators (lady beetles) in affecting aphid colonization. The results showed that warming affected the initial aphid population composition (reduced alate proportion) but not population size; this warming-induced effect strengthened the top-down control by lady beetles and slowing aphid colonization. In other words, biocontrol on crop pests by predators could improve under 2-4 °C warming. Furthermore, aphid colonization was affected by an interaction between the alate proportion and predator (lady beetle) presence. This study suggests that warming affects herbivore population composition and likely mediates top-down control on herbivore colonization by predators. This mechanism may be crucial but underappreciated in climate change ecology because population composition (wing form, sex ratio, age/body size structure) shifts in many species under environmental change.

  12. Supplemental food that supports both predator and pest: A risk for biological control?

    NARCIS (Netherlands)

    Leman, A.; Messelink, G.J.

    2015-01-01

    Supplemental food sources to support natural enemies in crops are increasingly being tested and used. This is particularly interesting for generalist predators that can reproduce on these food sources. However, a potential risk for pest control could occur when herbivores also benefit from

  13. Report on the Predation Index, Predator Control Fisheries, and Program Evaluation for the Columbia River Basin Experimental Northern Pikeminnow Management Program, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Russell [Pacific States Marine Fisheries Commission].

    2009-09-10

    This report presents results for year seventeen in the basin-wide Experimental Northern Pikeminnow Management Program to harvest northern pikeminnow1 (Ptychocheilus oregonensis) in the Columbia and Snake Rivers. This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991 - a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and dam-angling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional

  14. Time Delayed Stage-Structured Predator-Prey Model with Birth Pulse and Pest Control Tactics

    OpenAIRE

    Yan, Mei; Li, Yongfeng; Xiang, Zhongyi

    2014-01-01

    Normally, chemical pesticides kill not only pests but also their natural enemies. In order to better control the pests, two-time delayed stage-structured predator-prey models with birth pulse and pest control tactics are proposed and analyzed by using impulsive differential equations in present work. The stability threshold conditions for the mature prey-eradication periodic solutions of two models are derived, respectively. The effects of key parameters including killing efficiency rate, pul...

  15. An Impulsively Controlled Three-Species Prey-Predator Model with Stage Structure and Birth Pulse for Predator

    Directory of Open Access Journals (Sweden)

    Yanyan Hu

    2015-01-01

    Full Text Available We investigate the dynamic behaviors of a two-prey one-predator system with stage structure and birth pulse for predator. By using the Floquet theory of linear periodic impulsive equation and small amplitude perturbation method, we show that there exists a globally asymptotically stable two-prey eradication periodic solution when the impulsive period is less than some critical value. Further, we study the permanence of the investigated model. Our results provide valuable strategy for biological economics management. Numerical analysis is also inserted to illustrate the results.

  16. How recruitment, intraspecific interactions, and predation control species borders in a tidal estuary.

    Science.gov (United States)

    Leonard, George H; Ewanchuk, Patrick J; Bertness, Mark D

    1999-03-01

    We examined the relative contribution of recruitment, intraspecific species interactions, and predation in controlling the upper intertidal border of the northern acorn barnacle, Semibalanusbalanoides, in a tidal estuary in Maine. We hypothesized that the contracted border at sites that experienced low tidal currents was due to flow-mediated recruitment that resulted in reduced survival due to the absence of neighbor buffering of thermal stress (i.e., positive intraspecific interactions). We tested this hypothesis by manipulating the density of recently settled barnacles and their thermal environment in a field experiment. Counter to our original hypothesis, barnacles with neighbors suffered severe mortality at low-flow sites. When density-dependent predation by the green crab (Carcinusmaenus) was experimentally eliminated, however, we did detect evidence for positive interactions at the low-flow sites but not at the high-flow sites. In spite of the close proximity of the sites, maximum daily rock temperatures at the low-flow sites were slightly, but consistently, greater than those at high-flow sites. Our findings suggest that the upper intertidal border of S. balanoides in the Damariscotta River is limited at low-flow sites by a combination of reduced recruitment, elevated mortality from thermal stress and enhanced predation by green crabs. More generally, our findings highlight how physical stress and predation interact to alter the nature of density-dependent species interactions in natural assemblages.

  17. Eco Control of Agro Pests using Imaging, Modelling & Natural Predators

    Directory of Open Access Journals (Sweden)

    Fina Faithpraise

    2014-10-01

    Full Text Available Caterpillars in their various forms: size, shape, and colour cause significant harm to crops and humans. This paper offers a solution for the detection and control of caterpillars through the use of a sustainable pest control system that does not require the application of chemical pesticides, which damage human health and destroy the naturally beneficial insects within the environment. The proposed system is capable of controlling 80% of the population of caterpillars in less than 65 days by deploying a controlled number of larval parasitoid wasps (Cotesia Flavipes, Cameron into the crop environment. This is made possible by using a continuous time model of the interaction between the caterpillar and the Cotesia Flavipes (Cameron wasps using a set of simultaneous, non-linear, ordinary differential equations incorporating natural death rates based on the Weibull probability distribution function. A negative binomial distribution is used to model the efficiency and the probability that the wasp will find and parasitize a host larva. The caterpillar is presented in all its life-cycle stages of: egg, larva, pupa and adult and the Cotesia Flavipes (Cameron wasp is present as an adult larval parasitoid. Biological control modelling is used to estimate the quantity of the Cotesia Flavipes (Cameron wasps that should be introduced into the caterpillar infested environment to suppress its population density to an economically acceptable level within a prescribed number of days.

  18. Role of quantity of additional food to predators as a control in predator-prey systems with relevance to pest management and biological conservation.

    Science.gov (United States)

    Srinivasu, P D N; Prasad, B S R V

    2011-10-01

    Necessity to understand the role of additional food as a tool in biological control programs is being increasingly felt, particularly due to its eco-friendly nature. A thorough mathematical analysis in this direction revealed the vital role of quality and quantity of the additional food in the controllability of the predator-prey systems. In this article controllability of the additional food--provided predator-prey system is studied from perspectives of pest eradication and biological conservation. Time optimal paths have been constructed to drive the state of the system to a desired terminal state by choosing quantity of the additional food as control variable. The theory developed in this article has been illustrated by solving problems related to pest eradication and biological conservation.

  19. Infection with schistosome parasites in snails leads to increased predation by prawns: implications for human schistosomiasis control.

    Science.gov (United States)

    Swartz, Scott J; De Leo, Giulio A; Wood, Chelsea L; Sokolow, Susanne H

    2015-12-01

    Schistosomiasis - a parasitic disease that affects over 200 million people across the globe - is primarily transmitted between human definitive hosts and snail intermediate hosts. To reduce schistosomiasis transmission, some have advocated disrupting the schistosome life cycle through biological control of snails, achieved by boosting the abundance of snails' natural predators. But little is known about the effect of parasitic infection on predator-prey interactions, especially in the case of schistosomiasis. Here, we present the results of laboratory experiments performed on Bulinus truncatus and Biomphalaria glabrata snails to investigate: (i) rates of predation on schistosome-infected versus uninfected snails by a sympatric native river prawn, Macrobrachium vollenhovenii, and (ii) differences in snail behavior (including movement, refuge-seeking and anti-predator behavior) between infected and uninfected snails. In predation trials, prawns showed a preference for consuming snails infected with schistosome larvae. In behavioral trials, infected snails moved less quickly and less often than uninfected snails, and were less likely to avoid predation by exiting the water or hiding under substrate. Although the mechanism by which the parasite alters snail behavior remains unknown, these results provide insight into the effects of parasitic infection on predator-prey dynamics and suggest that boosting natural rates of predation on snails may be a useful strategy for reducing transmission in schistosomiasis hotspots. © 2015. Published by The Company of Biologists Ltd.

  20. Do predators control prey species abundance? An experimental test with brown treesnakes on Guam

    Science.gov (United States)

    Campbell, Earl W.; Yackel Adams, Amy A.; Converse, Sarah J.; Fritts, Thomas H.; Rodda, Gordon H.

    2012-01-01

    The effect of predators on the abundance of prey species is a topic of ongoing debate in ecology; the effect of snake predators on their prey has been less debated, as there exists a general consensus that snakes do not negatively influence the abundance of their prey. However, this viewpoint has not been adequately tested. We quantified the effect of brown treesnake (Boiga irregularis) predation on the abundance and size of lizards on Guam by contrasting lizards in two 1-ha treatment plots of secondary forest from which snakes had been removed and excluded vs. two 1-ha control plots in which snakes were monitored but not removed or excluded. We removed resident snakes from the treatment plots with snake traps and hand capture, and snake immigration into these plots was precluded by electrified snake barriers. Lizards were sampled in all plots quarterly for a year following snake elimination in the treatment plots. Following the completion of this experiment, we used total removal sampling to census lizards on a 100-m2 subsample of each plot. Results of systematic lizard population monitoring before and after snake removal suggest that the abundance of the skink, Carlia ailanpalai, increased substantially and the abundance of two species of gekkonids, Lepidodactylus lugubris and Hemidactylus frenatus, also increased on snake-free plots. No treatment effect was observed for the skink Emoia caeruleocauda. Mean snout–vent length of all lizard species only increased following snake removal in the treatment plots. The general increase in prey density and mean size was unexpected in light of the literature consensus that snakes do not control the abundance of their prey species. Our findings show that, at least where alternate predators are lacking, snakes may indeed affect prey populations.

  1. Quality control method to measure predator evasion in wild and mass-reared Mediterranean fruit flies (Diptera: Tephritidae)

    International Nuclear Information System (INIS)

    Hendrichs, M.; Wornoayporn, V.; Hendrichs, J.; Katsoyannos, B.

    2007-01-01

    Sterile male insects, mass-reared and released as part of sterile insect technique (SIT) programs, must survive long enough in the field to mature sexually and compete effectively with wild males for wild females. An often reported problem in Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) SIT programs is that numbers of released sterile males decrease rapidly in the field for various reasons, including losses to different types of predators. This is a serious issue in view that most operational programs release sterile flies at an age when they are still immature. Previous field and field-cage tests have confirmed that flies of laboratory strains are less able to evade predators than wild flies. Such tests involve, however, considerable manipulation and observation of predators and are therefore not suitable for routine measurements of predator evasion. Here we describe a simple quality control method with aspirators to measure agility in medflies and show that this parameter is related to the capacity of flies to evade predators. Although further standardization of the test is necessary to allow more accurate inter-strain comparisons, results confirm the relevance of measuring predator evasion in mass-reared medfly strains. Besides being a measure of this sterile male quality parameter, the described method could be used for the systematic selection of strains with a higher capacity for predator evasion. (author) [es

  2. Dynamics of an impulsively controlled Michaelis-Menten type predator-prey system

    Science.gov (United States)

    Baek, Hunki; Lim, Yongdo

    2011-04-01

    We study a predator-prey system with a Michaelis-Menten functional response and impulsive perturbations which contain chemical and biological control terms. By applying the Floquet theory, we establish conditions for the existence and stability of prey-free solutions of the system. We also show the existence of a positive periodic solution of the system by using the bifurcation theorem and find a sufficient condition that makes the system permanent. Moreover, numerical results on impulsive perturbations show that the system we consider can give birth to various kinds of dynamical behaviors.

  3. Light intensity controls anti-predator defences in Daphnia: the suppression of life-history changes

    OpenAIRE

    Effertz, Christoph; von Elert, Eric

    2014-01-01

    A huge variety of organisms respond to the presence of predators with inducible defences, each of which is associated with costs. Many genotypes have the potential to respond with more than one defence, and it has been argued that it would be maladaptive to exhibit all possible responses at the same time. Here, we test how a well-known anti-fish defence in Daphnia, life-history changes (LHC), is controlled by light. We show that the kairomone-mediated reduction in size at first reproduction i...

  4. A natural antipredation experiment: predator control and reduced sea ice increases colony size in a long-lived duck.

    Science.gov (United States)

    Hanssen, Sveinn A; Moe, Børge; Bårdsen, Bård-Jørgen; Hanssen, Frank; Gabrielsen, Geir W

    2013-09-01

    Anthropogenic impact on the environment and wildlife are multifaceted and far-reaching. On a smaller scale, controlling for predators has been increasing the yield from local natural prey resources. Globally, human-induced global warming is expected to impose severe negative effects on ecosystems, an effect that is expected to be even more pronounced in the scarcely populated northern latitudes. The clearest indication of a changing Arctic climate is an increase in both air and ocean temperatures leading to reduced sea ice distribution. Population viability is for long-lived species dependent on adult survival and recruitment. Predation is the main mortality cause in many bird populations, and egg predation is considered the main cause of reproductive failure in many birds. To assess the effect of predation and climate, we compared population time series from a natural experiment where a trapper/down collector has been licensed to actively protect breeding common eiders Somateria mollissima (a large seaduck) by shooting/chasing egg predators, with time series from another eider colony located within a nature reserve with no manipulation of egg predators. We found that actively limiting predator activity led to an increase in the population growth rate and carrying capacity with a factor of 3-4 compared to that found in the control population. We also found that population numbers were higher in years with reduced concentration of spring sea ice. We conclude that there was a large positive impact of human limitation of egg predators, and that this lead to higher population growth rate and a large increase in size of the breeding colony. We also report a positive effect of warming climate in the high arctic as reduced sea-ice concentrations was associated with higher numbers of breeding birds.

  5. Time Delayed Stage-Structured Predator-Prey Model with Birth Pulse and Pest Control Tactics

    Directory of Open Access Journals (Sweden)

    Mei Yan

    2014-01-01

    Full Text Available Normally, chemical pesticides kill not only pests but also their natural enemies. In order to better control the pests, two-time delayed stage-structured predator-prey models with birth pulse and pest control tactics are proposed and analyzed by using impulsive differential equations in present work. The stability threshold conditions for the mature prey-eradication periodic solutions of two models are derived, respectively. The effects of key parameters including killing efficiency rate, pulse period, the maximum birth effort per unit of time of natural enemy, and maturation time of prey on the threshold values are discussed in more detail. By comparing the two threshold values of mature prey-extinction, we provide the fact that the second control tactic is more effective than the first control method.

  6. Multi-State Dependent Impulsive Control for Holling I Predator-Prey Model

    Directory of Open Access Journals (Sweden)

    Huidong Cheng

    2012-01-01

    Full Text Available According to the different effects of biological and chemical control, we propose a model for Holling I functional response predator-prey system concerning pest control which adopts different control methods at different thresholds. By using differential equation geometry theory and the method of successor functions, we prove that the existence of order one periodic solution of such system and the attractiveness of the order one periodic solution by sequence convergence rules and qualitative analysis. Numerical simulations are carried out to illustrate the feasibility of our main results which show that our method used in this paper is more efficient and easier than the existing ones for proving the existence of order one periodic solution.

  7. What Drives Bird Vision? Bill Control and Predator Detection Overshadow Flight

    Directory of Open Access Journals (Sweden)

    Graham R. Martin

    2017-11-01

    Full Text Available Although flight is regarded as a key behavior of birds this review argues that the perceptual demands for its control are met within constraints set by the perceptual demands of two other key tasks: the control of bill (or feet position, and the detection of food items/predators. Control of bill position, or of the feet when used in foraging, and timing of their arrival at a target, are based upon information derived from the optic flow-field in the binocular region that encompasses the bill. Flow-fields use information extracted from close to the bird using vision of relatively low spatial resolution. The detection of food items and predators is based upon information detected at a greater distance and depends upon regions in the retina with relatively high spatial resolution. The tasks of detecting predators and of placing the bill (or feet accurately, make contradictory demands upon vision and these have resulted in trade-offs in the form of visual fields and in the topography of retinal regions in which spatial resolution is enhanced, indicated by foveas, areas, and high ganglion cell densities. The informational function of binocular vision in birds does not lie in binocularity per se (i.e., two eyes receiving slightly different information simultaneously about the same objects but in the contralateral projection of the visual field of each eye. This ensures that each eye receives information from a symmetrically expanding optic flow-field centered close to the direction of the bill, and from this the crucial information of direction of travel and time-to-contact can be extracted, almost instantaneously. Interspecific comparisons of visual fields between closely related species have shown that small differences in foraging techniques can give rise to different perceptual challenges and these have resulted in differences in visual fields even within the same genus. This suggests that vision is subject to continuing and relatively rapid

  8. What Drives Bird Vision? Bill Control and Predator Detection Overshadow Flight.

    Science.gov (United States)

    Martin, Graham R

    2017-01-01

    Although flight is regarded as a key behavior of birds this review argues that the perceptual demands for its control are met within constraints set by the perceptual demands of two other key tasks: the control of bill (or feet) position, and the detection of food items/predators. Control of bill position, or of the feet when used in foraging, and timing of their arrival at a target, are based upon information derived from the optic flow-field in the binocular region that encompasses the bill. Flow-fields use information extracted from close to the bird using vision of relatively low spatial resolution. The detection of food items and predators is based upon information detected at a greater distance and depends upon regions in the retina with relatively high spatial resolution. The tasks of detecting predators and of placing the bill (or feet) accurately, make contradictory demands upon vision and these have resulted in trade-offs in the form of visual fields and in the topography of retinal regions in which spatial resolution is enhanced, indicated by foveas, areas, and high ganglion cell densities. The informational function of binocular vision in birds does not lie in binocularity per se (i.e., two eyes receiving slightly different information simultaneously about the same objects) but in the contralateral projection of the visual field of each eye. This ensures that each eye receives information from a symmetrically expanding optic flow-field centered close to the direction of the bill, and from this the crucial information of direction of travel and time-to-contact can be extracted, almost instantaneously. Interspecific comparisons of visual fields between closely related species have shown that small differences in foraging techniques can give rise to different perceptual challenges and these have resulted in differences in visual fields even within the same genus. This suggests that vision is subject to continuing and relatively rapid natural selection

  9. Time optimal control of an additional food provided predator-prey system with applications to pest management and biological conservation.

    Science.gov (United States)

    Srinivasu, P D N; Prasad, B S R V

    2010-04-01

    Use of additional food has been widely recognized by experimental scientists as one of the important tools for biological control such as species conservation and pest management. The quality and quantity of additional food supplied to the predators is known to play a vital role in the controllability of the system. The present study is continuation of a previous work that highlights the importance of quality and quantity of the additional food in the dynamics of a predator-prey system in the context of biological control. In this article the controllability of the predator-prey system is analyzed by considering inverse of quality of the additional food as the control variable. Control strategies are offered to steer the system from a given initial state to a required terminal state in a minimum time by formulating Mayer problem of optimal control. It is observed that an optimal strategy is a combination of bang-bang controls and could involve multiple switches. Properties of optimal paths are derived using necessary conditions for Mayer problem. In the light of the results evolved in this work it is possible to eradicate the prey from the eco-system in the minimum time by providing the predator with high quality additional food, which is relevant in the pest management. In the perspective of biological conservation this study highlights the possibilities to drive the state to an admissible interior equilibrium (irrespective of its stability nature) of the system in a minimum time.

  10. Development of a systemwide predator control program: Stepwise implementation of a predator index, predator control fisheries, and evaluation plan in the Columbia River basin (Northern Squawfish Management Program). Section 1: Implementation; Annual report 1995

    International Nuclear Information System (INIS)

    Young, F.R.

    1997-04-01

    The authors report their results from the fifth year of a basinwide program to harvest northern squawfish (Ptychocheilus oregonensis) in an effort to reduce mortality due to northern squawfish predation on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern squawfish on juvenile salmonids may account for most of the 10--20% mortality juvenile salmonids experience in each of eight Columbia and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that if predator-sized northern squawfish were exploited at a 10--20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%

  11. Predators control post-fledging mortality in tawny owls, Strix aluco

    DEFF Research Database (Denmark)

    Sunde, Peter

    2005-01-01

    Despite its recognition as an important source of variation in recruitment probability, the ecological processes leading to mortality between fledging and independence are poorly studied. Accordingly, the proximate and ultimate impact of bottom-up (food limitation) and top-down factors (predators......, pathogens) for individual survival as well as population productivity is largely unknown in most terrestrial birds. Survival and behaviour of 131 radio-tagged tawny owls (Strix aluco) during the post-fledging dependency period were studied for each of three years with high food abundance and three years...... of poor food supply in Danish deciduous woods. To identify the effects of food limitation, 32 young received extra food 2-3 weeks prior to fledging, as opposed to 99 young that were fed by their parents only. Thirty-six percent of the young from control broods died between fledging and independence...

  12. Biological Control Outcomes Using the Generalist Aphid Predator Aphidoletes aphidimyza under Multi-Prey Conditions

    Directory of Open Access Journals (Sweden)

    Sarah E. Jandricic

    2016-12-01

    Full Text Available The aphidophagous midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae is used in biological control programs against aphids in many crops. Short-term trials with this natural enemy demonstrated that that females prefer to oviposit among aphids colonizing the new growth of plants, leading to differential attack rates for aphid species that differ in their within-plant distributions. Thus, we hypothesized that biological control efficacy could be compromised when more than one aphid species is present. We further hypothesized that control outcomes may be different at different crop stages if aphid species shift their preferred feeding locations. Here, we used greenhouse trials to determine biological control outcomes using A. aphidimyza under multi-prey conditions and at different crop stages. At all plant stages, aphid species had a significant effect on the number of predator eggs laid. More eggs were found on M. persicae versus A. solani-infested plants, since M. persicae consistently colonized plant meristems across plant growth stages. This translated to higher numbers of predatory larvae on M. periscae-infested plants in two out of our three experiments, and more consistent control of this pest (78%–95% control across all stages of plant growth. In contrast, control of A. solani was inconsistent in the presence of M. persicae, with 36%–80% control achieved. An additional experiment demonstrated control of A. solani by A. aphidimyza was significantly greater in the absence of M. persicae than in its presence. Our study illustrates that suitability of a natural enemy for pest control may change over a crop cycle as the position of prey on the plant changes, and that prey preference based on within-plant prey location can negatively influence biological control programs in systems with pest complexes. Careful monitoring of the less-preferred pest and its relative position on the plant is suggested.

  13. Predators with multiple ontogenetic niche shifts have limited potential for population growth and top-down control of their prey

    NARCIS (Netherlands)

    van Leeuwen, A.; Huss, M.; Gårdmark, A.; Casini, M.; Vitale, F.; Hjelm, J.; Persson, L.; de Roos, A.M.

    2013-01-01

    Catastrophic collapses of top predators have revealed trophic cascades and community structuring by top-down control. When populations fail to recover after a collapse, this may indicate alternative stable states in the system. Overfishing has caused several of the most compelling cases of these

  14. Cascading predator control interacts with productivity to determine the trophic level of biomass accumulation in a benthic food web

    NARCIS (Netherlands)

    Eriksson, Britas Klemens; Rubach, Anja; Batsleer, Jurgen; Hillebrand, Helmut

    Large-scale exploitation of higher trophic levels by humans, together with global-scale nutrient enrichment, highlights the need to explore interactions between predator loss and resource availability. The hypothesis of exploitation ecosystems suggests that top-down and bottom-up control alternate

  15. Neoseiulus paspalivorus, a predator from coconut, as a candidate for controlling dry bulb mites infesting stored tulip bulbs

    NARCIS (Netherlands)

    Lesna, I.; Silva, da F.R.; Sato, Y.; Lommen, S.T.E.

    2014-01-01

    The dry bulb mite, Aceria tulipae, is the most important pest of stored tulip bulbs in The Netherlands. This tiny, eriophyoid mite hides in the narrow space between scales in the interior of the bulb. To achieve biological control of this hidden pest, candidate predators small enough to move in

  16. Neoseiulus Paspalivorus, a Predator from Coconut, as a Candidate for Controlling Dry Bulb Mites Infesting Stored Tulip Bulbs

    NARCIS (Netherlands)

    Lesna, I.; da Silva, F.R.; Sato, Y.; Sabelis, M.W.; Lommen, S.T.E.

    2014-01-01

    The dry bulb mite, Aceria tulipae, is the most important pest of stored tulip bulbs in The Netherlands. This tiny, eriophyoid mite hides in the narrow space between scales in the interior of the bulb. To achieve biological control of this hidden pest, candidate predators small enough to move in

  17. Unintended consequences of invasive predator control in an Australian forest: overabundant wallabies and vegetation change.

    Directory of Open Access Journals (Sweden)

    Nick Dexter

    Full Text Available Over-abundance of native herbivores is a problem in many forests worldwide. The abundance of native macropod wallabies is extremely high at Booderee National Park (BNP in south-eastern Australia. This has occurred because of the reduction of exotic predators through an intensive baiting program, coupled with the absence of other predators. The high density of wallabies at BNP may be inhibiting the recruitment of many plant species following fire-induced recruitment events. We experimentally examined the post-fire response of a range of plant species to browsing by wallabies in a forest heavily infested with the invasive species, bitou bush Chrysanthemoides monilifera. We recorded the abundance and size of a range of plant species in 18 unfenced (browsed and 16 fenced (unbrowsed plots. We found the abundance and size of bitou bush was suppressed in browsed plots compared to unbrowsed plots. Regenerating seedlings of the canopy or middle storey tree species Eucalyptus pilularis, Acacia implexa, Allocasuarina littoralis, Breynia oblongifolia and Banksia integrifolia were either smaller or fewer in number in grazed plots than treatment plots as were the vines Kennedia rubicunda, Glycine tabacina and Glycine clandestina. In contrast, the understorey fern, Pteridium esculentum increased in abundance in the browsed plots relative to unbrowsed plots probably because of reduced competition with more palatable angiosperms. Twelve months after plots were installed the community structure of the browsed and unbrowsed plots was significantly different (P = 0.023, Global R = 0.091. The relative abundance of C. monilifera and P. esculentum contributed most to the differences. We discuss the possible development of a low diversity bracken fern parkland in Booderee National Park through a trophic cascade, similar to that caused by overabundant deer in the northern hemisphere. We also discuss its implications for broad scale fox control in southern

  18. Intraguild predation of Geocoris punctipes on Eretmocerus eremicus and its influence on the control of the whitefly Trialeurodes vaporariorum.

    Science.gov (United States)

    Bao-Fundora, Lourdes; Ramirez-Romero, Ricardo; Sánchez-Hernández, Carla V; Sánchez-Martínez, José; Desneux, Nicolas

    2016-06-01

    Geocoris punctipes (Hemiptera: Lygaeidae) and Eretmocerus eremicus (Hymenoptera: Aphelinidae) are whitefly natural enemies. Previously, under laboratory conditions, we showed that G. punctipes engages in intraguild predation (IGP), the attack of one natural enemy by another, on E. eremicus. However, it is unknown whether this IGP interaction takes place under more complex scenarios, such as semi-field conditions. Even more importantly, the effect of this interaction on the density of the prey population requires investigation. Therefore, the present study aimed to establish whether this IGP takes place under semi-field conditions and to determine whether the predation rate of G. punctipes on the whitefly decreases when IGP takes place. Molecular analysis showed that, under semi-field conditions, G. punctipes performed IGP on E. eremicus. However, although IGP did take place, the predation rate by G. punctipes on the whitefly was nevertheless higher when both natural enemies were present together than when the predator was present alone. While IGP of G. punctipes on E. eremicus does occur under semi-field conditions, it does not adversely affect whitefly control. The concomitant use of these two natural enemies seems a valid option for inundative biological control programmes of T. vaporariorum in tomato. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  19. Development of a systemwide predator control program: Stepwise implementation of a predation index, predator control fisheries, and evaluation plan in the Columbia River Basin. Section 1: Implementation. Annual report 1994

    International Nuclear Information System (INIS)

    Willis, C.F.; Young, F.R.

    1995-09-01

    The authors report the results from the forth year of a basinwide program to harvest northern squawfish (Ptychocheilus oregonensis) in an effort to reduce mortality due to northern squawfish predation on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern squawfish on juvenile salmonids may account for most of the 10--20% mortality juvenile salmonids experience in each of eight Columbia and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated it is not necessary to eradicate northern squawfish to substantially reduce predation-caused mortality of juvenile salmonids. Instead, if northern squawfish were exploited at a 10--20% rate, reductions in numbers of larger, older fish resulting in restructuring of their population could reduce their predation on juvenile salmonids by 50% or more. Consequently, the authors designed and tested a sport-reward angling fishery and a commercial longline fishery in the John Day pool in 1990. They also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, they implemented three test fisheries on a multi-pool, or systemwide, scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery

  20. Biological control of two-spotted spider mites using phytoseiid predators

    OpenAIRE

    Sabelis, M.W.

    1982-01-01

    The searching behaviour of individual predators of four phytoseiid species ( Phytoseiulus persimilis , Amblyseius p o tentillae , Amblyseius bibens , Metaseiulus occidentalis ) is investigated in relation to the two-spotted spider mite ( Tetranychus urticae ), which infests greenhouse roses. Especially the role of spider- mite webbing in the predator-prey relation is s...

  1. Light intensity controls anti-predator defences in Daphnia: the suppression of life-history changes.

    Science.gov (United States)

    Effertz, Christoph; von Elert, Eric

    2014-05-07

    A huge variety of organisms respond to the presence of predators with inducible defences, each of which is associated with costs. Many genotypes have the potential to respond with more than one defence, and it has been argued that it would be maladaptive to exhibit all possible responses at the same time. Here, we test how a well-known anti-fish defence in Daphnia, life-history changes (LHC), is controlled by light. We show that the kairomone-mediated reduction in size at first reproduction is inversely coupled to the light intensity. A similar effect was found for the kairomone-mediated expression of candidate genes in Daphnia. We argue that the light intensity an individual is exposed to determines the degree of LHC, which allows for plastic adjustment to fluctuating environments and simultaneously minimizes the associated costs of multiple alternately deployable defences. It is hypothesized that this allows for a coupling of multiple defences, i.e. LHC and diel vertical migration.

  2. ALGORITHMIC support for THE System Wide Information Management concept

    OpenAIRE

    2016-01-01

    The theoretical problems of computer support for the "System Wide Information Management" concept, which was proposed by experts of the International Civil Aviation Organization, are discussed. Within the framework of its provisions certain new requirements for all initial stages of air traffic management preceding the direct aircrafts control are formulated. Algorithmic instruments for ensuring a conflictlessness of a summary plan for the use of airspace during the plan’s implementation are ...

  3. Can climate change jeopardize predator control of invasive herbivore species? A case study in avocado agro-ecosystems in Spain.

    Science.gov (United States)

    Montserrat, Marta; Sahún, Rosa María; Guzmán, Celeste

    2013-02-01

    Climate change is one of the most important factors affecting the phenology, distribution, composition and diversity of organisms. In agricultural systems many pests and natural enemies are arthropods. As poikilotherm organisms, their body temperature is highly dependent on environmental conditions. Because higher trophic levels typically have lower tolerance to high temperatures than lower trophic levels, trends towards increasing local or regional temperatures may affect the strength of predator/prey interactions and disrupt pest control. Furthermore, increasing temperatures may create climate corridors that could facilitate the invasion and establishment of invasive species originating from warmer areas. In this study we examined the effect of environmental conditions on the dynamics of an agro-ecosystem community located in southern Spain, using field data on predator/prey dynamics and climate gathered during four consecutive years. The study system was composed of an ever-green tree species (avocado), an exotic tetranychid mite, and two native species of phytoseiid mites found in association with this new pest. We also present a climatological analysis of the temperature trend in the area of study during the last 28 years, as evidence of temperature warming occurring in the area. We found that the range of temperatures with positive per capita growth rates was much wider in prey than in predators, and that relative humidity contributed to explain the growth rate variation in predators, but not in prey. Predator and prey differences in thermal performance curves could explain why natural enemies did not respond numerically to the pest when environmental conditions were harsh.

  4. Complex Dynamical Behaviors in a Predator-Prey System with Generalized Group Defense and Impulsive Control Strategy

    Directory of Open Access Journals (Sweden)

    Shunyi Li

    2013-01-01

    Full Text Available A predator-prey system with generalized group defense and impulsive control strategy is investigated. By using Floquet theorem and small amplitude perturbation skills, a local asymptotically stable prey-eradication periodic solution is obtained when the impulsive period is less than some critical value. Otherwise, the system is permanent if the impulsive period is larger than the critical value. By using bifurcation theory, we show the existence and stability of positive periodic solution when the pest eradication lost its stability. Numerical examples show that the system considered has more complicated dynamics, including (1 high-order quasiperiodic and periodic oscillation, (2 period-doubling and halving bifurcation, (3 nonunique dynamics (meaning that several attractors coexist, and (4 chaos and attractor crisis. Further, the importance of the impulsive period, the released amount of mature predators and the degree of group defense effect are discussed. Finally, the biological implications of the results and the impulsive control strategy are discussed.

  5. Response of pest control by generalist predators to local-scale plant diversity: a meta-analysis.

    Science.gov (United States)

    Dassou, Anicet Gbèblonoudo; Tixier, Philippe

    2016-02-01

    Disentangling the effects of plant diversity on the control of herbivores is important for understanding agricultural sustainability. Recent studies have investigated the relationships between plant diversity and arthropod communities at the landscape scale, but few have done so at the local scale. We conducted a meta-analysis of 32 papers containing 175 independent measures of the relationship between plant diversity and arthropod communities. We found that generalist predators had a strong positive response to plant diversity, that is, their abundance increased as plant diversity increased. Herbivores, in contrast, had an overall weak and negative response to plant diversity. However, specialist and generalist herbivores differed in their response to plant diversity, that is, the response was negative for specialists and not significant for generalists. While the effects of scale remain unclear, the response to plant diversity tended to increase for specialist herbivores, but decrease for generalist herbivores as the scale increased. There was no clear effect of scale on the response of generalist predators to plant diversity. Our results suggest that the response of herbivores to plant diversity at the local scale is a balance between habitat and trophic effects that vary according to arthropod specialization and habitat type. Synthesis and applications. Positive effects of plant diversity on generalist predators confirm that, at the local scale, plant diversification of agroecosystems is a credible and promising option for increasing pest regulation. Results from our meta-analysis suggest that natural control in plant-diversified systems is more likely to occur for specialist than for generalist herbivores. In terms of pest management, our results indicate that small-scale plant diversification (via the planting of cover crops or intercrops and reduced weed management) is likely to increase the control of specialist herbivores by generalist predators.

  6. Neoseiulus paspalivorus, a predator from coconut, as a candidate for controlling dry bulb mites infesting stored tulip bulbs.

    Science.gov (United States)

    Lesna, Izabela; da Silva, Fernando R; Sato, Yukie; Sabelis, Maurice W; Lommen, Suzanne T E

    2014-06-01

    The dry bulb mite, Aceria tulipae, is the most important pest of stored tulip bulbs in The Netherlands. This tiny, eriophyoid mite hides in the narrow space between scales in the interior of the bulb. To achieve biological control of this hidden pest, candidate predators small enough to move in between the bulb scales are required. Earlier experiments have shown this potential for the phytoseiid mite, Neoseiulus cucumeris, but only after the bulbs were exposed to ethylene, a plant hormone that causes a slight increase in the distance between tulip bulb scales, just sufficient to allow this predator to reach the interior part of the bulb. Applying ethylene, however, is not an option in practice because it causes malformation of tulip flowers. In fact, to prevent this cosmetic damage, bulb growers ventilate rooms where tulip bulbs are stored, thereby removing ethylene produced by the bulbs (e.g. in response to mite or fungus infestation). Recently, studies on the role of predatory mites in controlling another eriophyoid mite on coconuts led to the discovery of an exceptionally small phytoseiid mite, Neoseiulus paspalivorus. This predator is able to move under the perianth of coconuts where coconut mites feed on meristematic tissue of the fruit. This discovery prompted us to test N. paspalivorus for its ability to control A. tulipae on tulip bulbs under storage conditions (ventilated rooms with bulbs in open boxes; 23 °C; storage period June-October). Using destructive sampling we monitored predator and prey populations in two series of replicated experiments, one at a high initial level of dry bulb mite infestation, late in the storage period, and another at a low initial dry bulb mite infestation, halfway the storage period. The first and the second series involved treatment with N. paspalivorus and a control experiment, but the second series had an additional treatment in which the predator N. cucumeris was released. Taking the two series of experiments together

  7. Development of a systemwide predator control program: Stepwise implementation of a predation index, predator control fisheries, and evaluation plan in the Columbia River Basin. Section 2: Evaluation, Annual Report 1994

    International Nuclear Information System (INIS)

    Willis, C.F.; Young, F.R.

    1995-08-01

    The authors are reporting progress on evaluation of the Northern Squawfish Management Program in 1994. The objectives in 1994 were to (1) evaluate exploitation rate, size composition, and incidental catch of northern squawfish (Ptychocheilus oregonensis) captured in the various fisheries and estimate reductions in predation on juvenile salmonids since implementation of the management program, and (2) evaluate changes through 1994 in relative abundance, smolt consumption rate, size and age structure, growth, and fecundity of northern squawfish in lower Columbia and Snake River reservoirs and in the Columbia River downstream from Bonneville Dam

  8. Biological control of two-spotted spider mites using phytoseiid predators

    NARCIS (Netherlands)

    Sabelis, M.W.

    1982-01-01

    The searching behaviour of individual predators of four phytoseiid species ( Phytoseiulus persimilis , Amblyseius p o tentillae , Amblyseius bibens , Metaseiulus occidentalis ) is investigated in

  9. Does predation control adult sex ratios and longevities in marine pelagic copepods?

    DEFF Research Database (Denmark)

    Hirst, A.G.; Bonnet, D.; Conway, D.V.P.

    2010-01-01

    We assess the causes of adult sex ratio skew in marine pelagic copepods by examining changes in these ratios between the juveniles and adults, sexual differences in juvenile stage durations, and mortality rates of adults in the field and laboratory (when free from predators). In the field, late...... copepodite stages (CIV and CV) commonly have sex ratios that are either not significantly different from equity (1 : 1), or slightly male biased. By contrast, in adults, these ratios are commonly significantly biased toward female dominance. Sex ratio skews are therefore primarily attributable to processes...... in adults. Members of the non-Diaptomoidea have especially skewed adult ratios; in the members Oithonidae and Clausocalanidae this is not generated from differences between male and female adult physiological longevity (i.e., laboratory longevity when free of predators). In the genera Acartia, Oithona...

  10. More than mere numbers: the impact of lethal control on the social stability of a top-order predator.

    Science.gov (United States)

    Wallach, Arian D; Ritchie, Euan G; Read, John; O'Neill, Adam J

    2009-09-02

    Population control of socially complex species may have profound ecological implications that remain largely invisible if only their abundance is considered. Here we discuss the effects of control on a socially complex top-order predator, the dingo (Canis lupus dingo). Since European occupation of Australia, dingoes have been controlled over much of the continent. Our aim was to investigate the effects of control on their abundance and social stability. We hypothesized that dingo abundance and social stability are not linearly related, and proposed a theoretical model in which dingo populations may fluctuate between three main states: (A) below carrying capacity and socially fractured, (B) above carrying capacity and socially fractured, or (C) at carrying capacity and socially stable. We predicted that lethal control would drive dingoes into the unstable states A or B, and that relaxation of control would allow recovery towards C. We tested our predictions by surveying relative abundance (track density) and indicators of social stability (scent-marking and howling) at seven sites in the arid zone subject to differing degrees of control. We also monitored changes in dingo abundance and social stability following relaxation and intensification of control. Sites where dingoes had been controlled within the previous two years were characterized by low scent-marking activity, but abundance was similar at sites with and without control. Signs of social stability steadily increased the longer an area was allowed to recover from control, but change in abundance did not follow a consistent path. Comparison of abundance and stability among all sites and years demonstrated that control severely fractures social groups, but that the effect of control on abundance was neither consistent nor predictable. Management decisions involving large social predators must therefore consider social stability to ensure their conservation and ecological functioning.

  11. Warming impact on herbivore population composition affects top-down control by predators

    OpenAIRE

    Ying-Jie Wang; Takefumi Nakazawa; Chuan-Kai Ho

    2017-01-01

    Understanding warming impact on herbivores facilitates predicting plant/crop dynamics in natural/agricultural systems. However, it remains unclear how warming will affect herbivore population size and population composition, consequently altering herbivore colonization in a tri-trophic system (plant-herbivore-predator or crop-pest-biocontrol agent). We studied a soybean-aphid-lady beetle system, by conducting (1) a laboratory warming experiment to examine warming impact (+2??C or +4??C) on th...

  12. Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus.

    Directory of Open Access Journals (Sweden)

    Laura Hobley

    2012-02-01

    Full Text Available Bdellovibrio bacteriovorus is a Delta-proteobacterium that oscillates between free-living growth and predation on Gram-negative bacteria including important pathogens of man, animals and plants. After entering the prey periplasm, killing the prey and replicating inside the prey bdelloplast, several motile B. bacteriovorus progeny cells emerge. The B. bacteriovorus HD100 genome encodes numerous proteins predicted to be involved in signalling via the secondary messenger cyclic di-GMP (c-di-GMP, which is known to affect bacterial lifestyle choices. We investigated the role of c-di-GMP signalling in B. bacteriovorus, focussing on the five GGDEF domain proteins that are predicted to function as diguanylyl cyclases initiating c-di-GMP signalling cascades. Inactivation of individual GGDEF domain genes resulted in remarkably distinct phenotypes. Deletion of dgcB (Bd0742 resulted in a predation impaired, obligately axenic mutant, while deletion of dgcC (Bd1434 resulted in the opposite, obligately predatory mutant. Deletion of dgcA (Bd0367 abolished gliding motility, producing bacteria capable of predatory invasion but unable to leave the exhausted prey. Complementation was achieved with wild type dgc genes, but not with GGAAF versions. Deletion of cdgA (Bd3125 substantially slowed predation; this was restored by wild type complementation. Deletion of dgcD (Bd3766 had no observable phenotype. In vitro assays showed that DgcA, DgcB, and DgcC were diguanylyl cyclases. CdgA lacks enzymatic activity but functions as a c-di-GMP receptor apparently in the DgcB pathway. Activity of DgcD was not detected. Deletion of DgcA strongly decreased the extractable c-di-GMP content of axenic Bdellovibrio cells. We show that c-di-GMP signalling pathways are essential for both the free-living and predatory lifestyles of B. bacteriovorus and that obligately predatory dgcC- can be made lacking a propensity to survive without predation of bacterial pathogens and thus possibly

  13. Predator diversity, intraguild predation, and indirect effects drive parasite transmission.

    Science.gov (United States)

    Rohr, Jason R; Civitello, David J; Crumrine, Patrick W; Halstead, Neal T; Miller, Andrew D; Schotthoefer, Anna M; Stenoien, Carl; Johnson, Lucinda B; Beasley, Val R

    2015-03-10

    Humans are altering biodiversity globally and infectious diseases are on the rise; thus, there is interest in understanding how changes to biodiversity affect disease. Here, we explore how predator diversity shapes parasite transmission. In a mesocosm experiment that manipulated predator (larval dragonflies and damselflies) density and diversity, non-intraguild (non-IG) predators that only consume free-living cercariae (parasitic trematodes) reduced metacercarial infections in tadpoles, whereas intraguild (IG) predators that consume both parasites and tadpole hosts did not. This likely occurred because IG predators reduced tadpole densities and anticercarial behaviors, increasing per capita exposure rates of the surviving tadpoles (i.e., via density- and trait-mediated effects) despite the consumption of parasites. A mathematical model demonstrated that non-IG predators reduce macroparasite infections, but IG predation weakens this "dilution effect" and can even amplify parasite burdens. Consistent with the experiment and model, a wetland survey revealed that the diversity of IG predators was unrelated to metacercarial burdens in amphibians, but the diversity of non-IG predators was negatively correlated with infections. These results are strikingly similar to generalities that have emerged from the predator diversity-pest biocontrol literature, suggesting that there may be general mechanisms for pest control and that biocontrol research might inform disease management and vice versa. In summary, we identified a general trait of predators--where they fall on an IG predation continuum--that predicts their ability to reduce infections and possibly pests in general. Consequently, managing assemblages of predators represents an underused tool for the management of human and wildlife diseases and pest populations.

  14. The Effects of Resource Limitation on a Predator-Prey Model with Control Measures as Nonlinear Pulses

    Directory of Open Access Journals (Sweden)

    Wenjie Qin

    2014-01-01

    Full Text Available The dynamical behavior of a Holling II predator-prey model with control measures as nonlinear pulses is proposed and analyzed theoretically and numerically to understand how resource limitation affects pest population outbreaks. The threshold conditions for the stability of the pest-free periodic solution are given. Latin hypercube sampling/partial rank correlation coefficients are used to perform sensitivity analysis for the threshold concerning pest extinction to determine the significance of each parameter. Comparing this threshold value with that without resource limitation, our results indicate that it is essential to increase the pesticide’s efficacy against the pest and reduce its effectiveness against the natural enemy, while enhancing the efficiency of the natural enemies. Once the threshold value exceeds a critical level, both pest and its natural enemies populations can oscillate periodically. Further-more, when the pulse period and constant stocking number as a bifurcation parameter, the predator-prey model reveals complex dynamics. In addition, numerical results are presented to illustrate the feasibility of our main results.

  15. System-wide Benefits of Intermeal Fasting by Autophagy.

    Science.gov (United States)

    Martinez-Lopez, Nuria; Tarabra, Elena; Toledo, Miriam; Garcia-Macia, Marina; Sahu, Srabani; Coletto, Luisa; Batista-Gonzalez, Ana; Barzilai, Nir; Pessin, Jeffrey E; Schwartz, Gary J; Kersten, Sander; Singh, Rajat

    2017-12-05

    Autophagy failure is associated with metabolic insufficiency. Although caloric restriction (CR) extends healthspan, its adherence in humans is poor. We established an isocaloric twice-a-day (ITAD) feeding model wherein ITAD-fed mice consume the same food amount as ad libitum controls but at two short windows early and late in the diurnal cycle. We hypothesized that ITAD feeding will provide two intervals of intermeal fasting per circadian period and induce autophagy. We show that ITAD feeding modifies circadian autophagy and glucose/lipid metabolism that correlate with feeding-driven changes in circulating insulin. ITAD feeding decreases adiposity and, unlike CR, enhances muscle mass. ITAD feeding drives energy expenditure, lowers lipid levels, suppresses gluconeogenesis, and prevents age/obesity-associated metabolic defects. Using liver-, adipose-, myogenic-, and proopiomelanocortin neuron-specific autophagy-null mice, we mapped the contribution of tissue-specific autophagy to system-wide benefits of ITAD feeding. Our studies suggest that consuming two meals a day without CR could prevent the metabolic syndrome. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Candidate predators for biological control of the poultry red mite Dermanyssus gallinae

    NARCIS (Netherlands)

    Lesna, I.; Wolfs, P.; Faraji, F.; Roy, L.; Komdeur, J.; Sabelis, M.W.

    2009-01-01

    The poultry red mite, Dermanyssus gallinae, is currently a significant pest in the poultry industry in Europe. Biological control by the introduction of predatory mites is one of the various options for controlling poultry red mites. Here, we present the first results of an attempt to identify

  17. Candidate predators for biological control of the poultry red mite Dermanyssus gallinae

    NARCIS (Netherlands)

    Lesna, Izabela; Wolfs, Peter; Faraji, Farid; Roy, Lise; Komdeur, Jan; Sabelis, Maurice W.

    The poultry red mite, Dermanyssus gallinae, is currently a significant pest in the poultry industry in Europe. Biological control by the introduction of predatory mites is one of the various options for controlling poultry red mites. Here, we present the first results of an attempt to identify

  18. Hybridization between a native and introduced predator of Adelgidae: An unintended result of classical biological control

    Science.gov (United States)

    N.P. Havill; Gina Davis; David Mausel; Joanne Klein; Richard McDonald; Cera Jones; Melissa Fischer; Scott Salom; Adelgisa. Caccone

    2012-01-01

    Hybridization between introduced biological control agents and native species has the potential to impact native biodiversity and pest control efforts. This study reports progress towards predicting the outcome of hybridization between two beetle species, the introduced Laricobius nigrinus Fender and the native L. rubidus LeConte...

  19. Innate predator recognition in giant pandas.

    Science.gov (United States)

    Du, Yiping; Huang, Yan; Zhang, Hemin; Li, Desheng; Yang, Bo; Wei, Ming; Zhou, Yingmin; Liu, Yang

    2012-02-01

    Innate predator recognition confers a survival advantage to prey animals. We investigate whether giant pandas exhibit innate predator recognition. We analyzed behavioral responses of 56 naive adult captive giant pandas (Ailuropoda melanoleuca), to urine from predators and non-predators and water control. Giant pandas performed more chemosensory investigation and displayed flehmen behaviors more frequently in response to predator urine compared to both non-predator urine and water control. Subjects also displayed certain defensive behaviors, as indicated by vigilance, and in certain cases, fleeing behaviors. Our results suggest that there is an innate component to predator recognition in captive giant pandas, although such recognition was only slight to moderate. These results have implications that may be applicable to the conservation and reintroduction of this endangered species.

  20. Ocean acidification alters predator behaviour and reduces predation rate.

    Science.gov (United States)

    Watson, Sue-Ann; Fields, Jennifer B; Munday, Philip L

    2017-02-01

    Ocean acidification poses a range of threats to marine invertebrates; however, the emerging and likely widespread effects of rising carbon dioxide (CO 2 ) levels on marine invertebrate behaviour are still little understood. Here, we show that ocean acidification alters and impairs key ecological behaviours of the predatory cone snail Conus marmoreus Projected near-future seawater CO 2 levels (975 µatm) increased activity in this coral reef molluscivore more than threefold (from less than 4 to more than 12 mm min -1 ) and decreased the time spent buried to less than one-third when compared with the present-day control conditions (390 µatm). Despite increasing activity, elevated CO 2 reduced predation rate during predator-prey interactions with control-treated humpbacked conch, Gibberulus gibberulus gibbosus; 60% of control predators successfully captured and consumed their prey, compared with only 10% of elevated CO 2 predators. The alteration of key ecological behaviours of predatory invertebrates by near-future ocean acidification could have potentially far-reaching implications for predator-prey interactions and trophic dynamics in marine ecosystems. Combined evidence that the behaviours of both species in this predator-prey relationship are altered by elevated CO 2 suggests food web interactions and ecosystem structure will become increasingly difficult to predict as ocean acidification advances over coming decades. © 2017 The Author(s).

  1. Control of predators in industrial scale microalgae cultures with Pulsed Electric Fields.

    Science.gov (United States)

    Rego, D; Redondo, L M; Geraldes, V; Costa, L; Navalho, J; Pereira, M T

    2015-06-01

    This work describes the utilization of Pulsed Electric Fields to control the protozoan contamination of a microalgae culture, in an industrial 2.7 m(3) microalgae photobioreactor. The contaminated culture was treated with Pulsed Electric Fields, PEF, for 6h with an average of 900 V/cm, 65 μs pulses of 50 Hz. Working with recirculation, all the culture was uniformly exposed to the PEF throughout the assay. The development of the microalgae and protozoan populations was followed and the results showed that PEF is effective on the selective elimination of protozoa from microalgae cultures, inflicting on the protozoa growth halt, death or cell rupture, without affecting microalgae productivity. Specifically, the results show a reduction of the active protozoan population of 87% after 6h treatment and 100% after few days of normal cultivation regime. At the same time, microalgae growth rate remained unaffected. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Leadership development: A lever for system-wide educational change

    African Journals Online (AJOL)

    The continuous poor performance of South Africa's learners is detrimental to its developing economy. The need for education change prompted two universities to initiate a system-wide change strategy in a poorly performing school district. The leverage for change was leadership development, involving school principals ...

  3. Leadership Development: A Lever for System-Wide Educational Change

    Science.gov (United States)

    Naicker, Suraiya R.; Mestry, Raj

    2016-01-01

    The continuous poor performance of South Africa's learners is detrimental to its developing economy. The need for education change prompted two universities to initiate a system-wide change strategy in a poorly performing school district. The leverage for change was leadership development, involving school principals and district officials. The…

  4. The Response of Heterotrophic Prokaryote and Viral Communities to Labile Organic Carbon Inputs Is Controlled by the Predator Food Chain Structure.

    Science.gov (United States)

    Sandaa, Ruth-Anne; Pree, Bernadette; Larsen, Aud; Våge, Selina; Töpper, Birte; Töpper, Joachim P; Thyrhaug, Runar; Thingstad, Tron Frede

    2017-08-23

    Factors controlling the community composition of marine heterotrophic prokaryotes include organic-C, mineral nutrients, predation, and viral lysis. Two mesocosm experiments, performed at an Arctic location and bottom-up manipulated with organic-C, had very different results in community composition for both prokaryotes and viruses. Previously, we showed how a simple mathematical model could reproduce food web level dynamics observed in these mesocosms, demonstrating strong top-down control through the predator chain from copepods via ciliates and heterotrophic nanoflagellates. Here, we use a steady-state analysis to connect ciliate biomass to bacterial carbon demand. This gives a coupling of top-down and bottom-up factors whereby low initial densities of ciliates are associated with mineral nutrient-limited heterotrophic prokaryotes that do not respond to external supply of labile organic-C. In contrast, high initial densities of ciliates give carbon-limited growth and high responsiveness to organic-C. The differences observed in ciliate abundance, and in prokaryote abundance and community composition in the two experiments were in accordance with these predictions. Responsiveness in the viral community followed a pattern similar to that of prokaryotes. Our study provides a unique link between the structure of the predator chain in the microbial food web and viral abundance and diversity.

  5. A System-Wide Approach to Diabetic Nephropathy

    KAUST Repository

    Palafox, Luis

    2011-07-07

    Diabetes mellitus is a complex human disease that affects more than 280 million people worldwide. One of the diabetic long-term complications is diabetic nephropathy that it is responsible for 50% of all end-stage renal disease. The complexity of diabetes and the lack of comprehensive systematic studies have halted the development of drugs and clinical therapies for the treatment of diabetes and its major complications. The present project, based on the db/db mice as animal model, investigates the repercussions of diabetes mellitus in the transcriptome as well as the mechanism of action of pirfenidone, an antifibrotic drug, in the treatment of diabetic nephropathy. The study was centered on the system-wide measurements transcriptional state of the mouse kidney. The expression profile of three experimental groups: control, diabetic, and diabetic treated with the drug, were analyzed using expression clustering, gene ontology enrichment analysis, protein-protein interaction network mapping, and gene expression behavior. The results show significant expression dysregulation of genes involved in RNA processing, fatty acid oxidation, and oxidative phosphorylation under the diabetic condition. The drug is able to regulate the expression levels of RNA processing genes but it does not show any effect in the expression profile of genes required in the oxidative phosphorylation and in the fatty acid metabolism. In conclusion diabetes mellitus induce the dysregulation of the splicing apparatus, the oxidative phosphorylation, and the fatty acid metabolic pathway at an expression level. The malfunction of these biological pathways causes cellular stress by increasing the concentration of reactive oxygen species within the cell due to a high oxidative and respiratory activity of mitochondria in addition to the increased demand of the folding machinery as a consequence of a dysregulation of the splicing apparatus. Pirfenidone regulates the expression of RNA processing genes mainly

  6. Watching from a distance: A robotically controlled laser and real-time subject tracking software for the study of conditioned predator/prey-like interactions.

    Science.gov (United States)

    Wilson, James C; Kesler, Mitch; Pelegrin, Sara-Lynn E; Kalvi, LeAnna; Gruber, Aaron; Steenland, Hendrik W

    2015-09-30

    The physical distance between predator and prey is a primary determinant of behavior, yet few paradigms exist to study this reliably in rodents. The utility of a robotically controlled laser for use in a predator-prey-like (PPL) paradigm was explored for use in rats. This involved the construction of a robotic two-dimensional gimbal to dynamically position a laser beam in a behavioral test chamber. Custom software was used to control the trajectory and final laser position in response to user input on a console. The software also detected the location of the laser beam and the rodent continuously so that the dynamics of the distance between them could be analyzed. When the animal or laser beam came within a fixed distance the animal would either be rewarded with electrical brain stimulation or shocked subcutaneously. Animals that received rewarding electrical brain stimulation could learn to chase the laser beam, while animals that received aversive subcutaneous shock learned to actively avoid the laser beam in the PPL paradigm. Mathematical computations are presented which describe the dynamic interaction of the laser and rodent. The robotic laser offers a neutral stimulus to train rodents in an open field and is the first device to be versatile enough to assess distance between predator and prey in real time. With ongoing behavioral testing this tool will permit the neurobiological investigation of predator/prey-like relationships in rodents, and may have future implications for prosthetic limb development through brain-machine interfaces. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Development of a Systemwide Predator Control Program, Section I : Northern Squawfish Management Program Implementation, 1994 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Willis, Charles F. (S.P. Cramer and Associates, Inc., Gresham, OR); Young, Franklin R. (Columbia Basin Fish and Wildlife Authority, Portland, OR)

    1995-09-01

    The authors report the results from the forth year of a basinwide program to harvest northern squawfish (Ptychocheilus oregonensis) in an effort to reduce mortality due to northern squawfish predation on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern squawfish on juvenile salmonids may account for most of the 10--20% mortality juvenile salmonids experience in each of eight Columbia and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated it is not necessary to eradicate northern squawfish to substantially reduce predation-caused mortality of juvenile salmonids. Instead, if northern squawfish were exploited at a 10--20% rate, reductions in numbers of larger, older fish resulting in restructuring of their population could reduce their predation on juvenile salmonids by 50% or more. Consequently, the authors designed and tested a sport-reward angling fishery and a commercial longline fishery in the John Day pool in 1990. They also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, they implemented three test fisheries on a multi-pool, or systemwide, scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery.

  8. Intraguild predation control

    NARCIS (Netherlands)

    Lenteren, van J.C.

    2002-01-01

    From 1–6 October 2000, the Antonie van Leeuwenhoek Symposiun (7th European Workshop on Insect Parasitoids) was held in Haarlem, The Netherlands. At this symposium, the 100 participants discussed the biology of insect parasitoids in sections on the History of insect parasitism; Physiological and

  9. Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands

    Directory of Open Access Journals (Sweden)

    Nyindo Mramba

    2011-07-01

    Full Text Available Abstract Background The current status of insecticide resistance in mosquitoes and the effects of insecticides on non-target insect species have raised the need for alternative control methods for malaria vectors. Predation has been suggested as one of the important regulation mechanisms for malaria vectors in long-lasting aquatic habitats, but the predation efficiency of the potential predators is largely unknown in the highlands of western Kenya. In the current study, we examined the predation efficiency of five predators on Anopheles gambiae s.s larvae in 24 hour and semi- field evaluations. Methods Predators were collected from natural habitats and starved for 12 hours prior to starting experiments. Preliminary experiments were conducted to ascertain the larval stage most predated by each predator species. When each larval instar was subjected to predation, third instar larvae were predated at the highest rate. Third instar larvae of An. gambiae were introduced into artificial habitats with and without refugia at various larval densities. The numbers of surviving larvae were counted after 24 hours in 24. In semi-field experiments, the larvae were counted daily until they were all either consumed or had developed to the pupal stage. Polymerase chain reaction was used to confirm the presence of An. gambiae DNA in predator guts. Results Experiments found that habitat type (P P P P An. gambiae DNA was found in at least three out of ten midguts for all predator species. Gambusia affins was the most efficient, being three times more efficient than tadpoles. Conclusion These experiments provide insight into the efficiency of specific natural predators against mosquito larvae. These naturally occurring predators may be useful in biocontrol strategies for aquatic stage An. gambiae mosquitoes. Further investigations should be done in complex natural habitats for these predators.

  10. Predator recognition in rainbowfish, Melanotaenia duboulayi, embryos.

    Directory of Open Access Journals (Sweden)

    Lois Jane Oulton

    Full Text Available Exposure to olfactory cues during embryonic development can have long term impacts on birds and amphibians behaviour. Despite the vast literature on predator recognition and responses in fishes, few researchers have determined how fish embryos respond to predator cues. Here we exposed four-day-old rainbowfish (Melanotaenia duboulayi embryos to cues emanating from a novel predator, a native predator and injured conspecifics. Their response was assessed by monitoring heart rate and hatch time. Results showed that embryos have an innate capacity to differentiate between cues as illustrated by faster heart rates relative to controls. The greatest increase in heart rate occurred in response to native predator odour. While we found no significant change in the time taken for eggs to hatch, all treatments experienced slight delays as expected if embryos are attempting to reduce exposure to larval predators.

  11. Community cascades in a marine pelagic food web controlled by the non-visual apex predator Mnemiopsis leidyi

    DEFF Research Database (Denmark)

    Tiselius, Peter; Møller, Lene Friis

    2017-01-01

    Trophic cascades are a ubiquitous feature of many terrestrial and fresh-water food webs, but have been difficult to demonstrate in marine systems with multispecies trophic levels. Here we describe significant trophic cascades in an open coastal planktonic ecosystem exposed to an introduced top...... occurrence of the ctenophore was important. The years without M. leidyi had significantly higher biomass of copepods in July, the month preceding the outburst of the ctenophore. The profound changes of the pelagic ecosystem faced with a non-selective apex predator shows that marine communities...

  12. Predation and caribou populations

    Directory of Open Access Journals (Sweden)

    Dale R. Seip

    1991-10-01

    Full Text Available Predation, especially wolf (Canis lupus predation, limits many North American caribou (Rangifer tarandus populations below the density that food resources could sustain. The impact of predation depends on the parameters for the functional and numerical response of the wolves, relative to the potential annual increment of the caribou population. Differences in predator-avoidance strategies largely explain the major differences in caribou densities that occur naturally in North America. Caribou migrations that spatially separate caribou from wolves allow relatively high densities of caribou to survive. Non-migratory caribou that live in areas where wolf populations are sustained by alternate prey can be eliminated by wolf predation.

  13. Combined use of the entomopathogenic fungus, Metarhizium brunneum, and the mosquito predator, Toxorhynchites brevipalpis, for control of mosquito larvae: Is this a risky biocontrol strategy?

    Science.gov (United States)

    Alkhaibari, Abeer M; Maffeis, Thierry; Bull, James C; Butt, Tariq M

    2018-03-01

    Mosquitoes transmit several diseases, which are of global significance (malaria, dengue, yellow fever, Zika). The geographic range of mosquitoes is increasing due to climate change, tourism and trade. Both conidial and blastospore formulations of the entomopathogenic fungus, Metarhizium brunneum ARSEF 4556, are being investigated as mosquito larvicides. However, concerns have been raised over possible non-target impacts to arthropod mosquito predators such as larvae of Toxorhynchites brevipalpis which feed on larvae of mosquito vector species. Laboratory-based, small container bioassays showed, that T. bevipalpis larvae are susceptible to relatively high concentrations (i.e. ≥10 7  spores ml -1 ) of inoculum with blastospores being significantly more virulent than conidia. At lower concentrations (e.g. <10 7  spores ml -1 ), it appears that M. brunneum complements T. brevipalpis resulting in higher control than if either agent was used alone. At a concentration of 10 5  spores ml -1 , the LT 50 of for conidia and blastospores alone was 5.64 days (95% CI: 4.79-6.49 days) and 3.89 days (95% CI: 3.53-4.25 days), respectively. In combination with T. brevipalpis, this was reduced to 3.15 days (95% CI: 2.82-3.48 days) and 2.82 days (95% CI: 2.55-3.08 days). Here, combined treatment with the fungus and predator was beneficial but weaker than additive. At 10 7 and 10 8  blastospores ml -1 , mosquito larval mortality was mostly due to the fungal pathogen when the predator was combined with blastospores. However, with conidia, the effects of combined treatment were additive/synergistic at these high concentrations. Optimisation of fungal concentration and formulation will reduce: (1) risk to the predator and (2) application rates and costs of M. brunneum for control of mosquito larvae. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Harvesting and Conversation in a Predator-Prey System

    NARCIS (Netherlands)

    Hoekstra, Jeljer; Bergh, van den Jeroen C.J.M.

    2001-01-01

    Optimal harvesting of prey in a predator-prey ecosystem is studiedunder the condition that the existence of the predator has value. Predators (birds) and humans (fishers) compete for prey (shellfish). The behavior of the system is studied and conditions for optimal control are deduced. Various

  15. Period doubling cascades of prey-predator model with nonlinear harvesting and control of over exploitation through taxation

    Science.gov (United States)

    Gupta, R. P.; Banerjee, Malay; Chandra, Peeyush

    2014-07-01

    The present study investigates a prey predator type model for conservation of ecological resources through taxation with nonlinear harvesting. The model uses the harvesting function as proposed by Agnew (1979) [1] which accounts for the handling time of the catch and also the competition between standard vessels being utilized for harvesting of resources. In this paper we consider a three dimensional dynamic effort prey-predator model with Holling type-II functional response. The conditions for uniform persistence of the model have been derived. The existence and stability of bifurcating periodic solution through Hopf bifurcation have been examined for a particular set of parameter value. Using numerical examples it is shown that the system admits periodic, quasi-periodic and chaotic solutions. It is observed that the system exhibits periodic doubling route to chaos with respect to tax. Many forms of complexities such as chaotic bands (including periodic windows, period-doubling bifurcations, period-halving bifurcations and attractor crisis) and chaotic attractors have been observed. Sensitivity analysis is carried out and it is observed that the solutions are highly dependent to the initial conditions. Pontryagin's Maximum Principle has been used to obtain optimal tax policy to maximize the monetary social benefit as well as conservation of the ecosystem.

  16. Ras GTPase-like protein MglA, a controller of bacterial social-motility in Myxobacteria, has evolved to control bacterial predation by Bdellovibrio.

    Directory of Open Access Journals (Sweden)

    David S Milner

    2014-04-01

    Full Text Available Bdellovibrio bacteriovorus invade Gram-negative bacteria in a predatory process requiring Type IV pili (T4P at a single invasive pole, and also glide on surfaces to locate prey. Ras-like G-protein MglA, working with MglB and RomR in the deltaproteobacterium Myxococcus xanthus, regulates adventurous gliding and T4P-mediated social motility at both M. xanthus cell poles. Our bioinformatic analyses suggested that the GTPase activating protein (GAP-encoding gene mglB was lost in Bdellovibrio, but critical residues for MglA(Bd GTP-binding are conserved. Deletion of mglA(Bd abolished prey-invasion, but not gliding, and reduced T4P formation. MglA(Bd interacted with a previously uncharacterised tetratricopeptide repeat (TPR domain protein Bd2492, which we show localises at the single invasive pole and is required for predation. Bd2492 and RomR also interacted with cyclic-di-GMP-binding receptor CdgA, required for rapid prey-invasion. Bd2492, RomR(Bd and CdgA localize to the invasive pole and may facilitate MglA-docking. Bd2492 was encoded from an operon encoding a TamAB-like secretion system. The TamA protein and RomR were found, by gene deletion tests, to be essential for viability in both predatory and non-predatory modes. Control proteins, which regulate bipolar T4P-mediated social motility in swarming groups of deltaproteobacteria, have adapted in evolution to regulate the anti-social process of unipolar prey-invasion in the "lone-hunter" Bdellovibrio. Thus GTP-binding proteins and cyclic-di-GMP inputs combine at a regulatory hub, turning on prey-invasion and allowing invasion and killing of bacterial pathogens and consequent predatory growth of Bdellovibrio.

  17. [The effects of transgenic Cry1Ac+Cry2Ab cotton on cotton bollworm control and functional response of predators on whitefly].

    Science.gov (United States)

    Luo, Jun-yu; Zhang, Shuai; Lv, Li-min; Wang, Chun-yi; Zhu, Xiang-zhen; Cui, Jin-jie

    2015-06-01

    In this study, we detected and clarified the roles of transgenic Cry1Ac+Cry2Ab cotton "639020" in controlling cotton bollworm (Helicoverpa armigera) during critical periods of bud stage (second generation of bollworm), flowering stage (third generation of bollworm) and bolling stage (fourth generation of bollworm) as well as the influences of 639020 cotton on functional response of the main predators (Chrysopa sinica larvae, Propylaea japonica, Orius and Erigonidium graminicola ) on whitefly using transgenic Cry1Ac cotton "CCRI41" and conventional cotton "CCRI49" as the control. Our results showed that the 639020 cotton well controlled the second and third generation of bollworm, and the level of insect resistance increased by 52.85% and 16.22% separately compared with that of CCRI41, with a significant effect on the second generation of bollworm. Moreover, the number of bollworm eggs in 639020 cotton field was lower than that in CCRI41 and CCRI49 cotton fields (except the second generation of bollworm) during the cotton bud, flowering and bolling stages. Although the number of bollworm larvae in 639020 cotton field was significantly lower than that in CCRI49 field, and both under the controlling index, it has no significant difference compared with that in CCRI41 cotton field. There were also no obvious changes in predator functions of Chrysopa sinica, Propylaea japonica, Orius and Erigonidium graminicola on bemisia tabaci between 639020, CCRI41 and CCRI49 cotton filed. This study evaluated the safety of new transgenic cotton on environment, anti-insect activity of exogenous gene and the safety of production and application prospect.

  18. Predator identity can explain nest predation patterns. Chapter 11

    Science.gov (United States)

    Jennifer L. Reidy; Frank R., III Thompson

    2012-01-01

    Knowledge of dominant predators is necessary to identify predation patterns and mitigate losses to nest predation, especially for endangered songbirds. We monitored songbird nests with timelapse infrared video cameras at Fort Hood Military Reservation, Texas, from 1997 to 2002 and 2005, and in Austin, Texas, during 2005, 2006, 2008, and 2009. Predation was the most...

  19. Revealing the role of predator interference in a predator-prey system with disease in prey population

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Kooi, B.W.; Biswas, B.

    2015-01-01

    Predation on a species subjected to an infectious disease can affect both the infection level and the population dynamics. There is an ongoing debate about the act of managing disease in natural populations through predation. Recent theoretical and empirical evidence shows that predation...... on infected populations can have both positive and negative influences on disease in prey populations. Here, we present a predator-prey system where the prey population is subjected to an infectious disease to explore the impact of predator on disease dynamics. Specifically, we investigate how...... on the strength of interference among predators, predators enhance or control disease outbreaks and population persistence. Moreover, the presence of multistable regimes makes the system very sensitive to perturbations and facilitates a number of regime shifts. Since, the habitat structure and the choice...

  20. An investigation into the use of ''expert systems'' for system-wide diagnostics

    International Nuclear Information System (INIS)

    Booth, A.W.; Carroll, J.T.

    1987-01-01

    This paper has explained how expert systems function and how they might be used to provide a FASTBUS system-wide diagnostic program. The authors propose that the system be used to diagnose the FASTBUS system at FERMILAB's CDF experiment. There are many important areas which have not been addressed in great detail in this paper (such as the roles of the knowledge engineer and the expert during the knowledge acquisition phase), but the central idea of the embodiment of an expert skill in a computer is clear. Development of a system-wide diagnostic program requires building knowledge from all our system experts, into the system. To expand the expert system beyond its network diagnostic ability, to include finding faulty modules would be worthwhile. Having an ''intelligent'' assistant who is on shift 24 hours each day would relieve the ''real'' experts from laborious, time-consuming and sometimes repetitive tasks undertaken during the debugging process. The system could also provide a testbed for evaluation and comparison when considering future expert-system applications such as ''run-control'' and ''data analysis''. In the context of a system-wide diagnostic program, an ''expert system'' is not intended to replace human experts but simply to help them. It is envisaged that there will always be important interaction between the human expert and the ''expert system''. The incremental development of the ''expert system'' should ensure that it is useful in the short term (by debugging to the S.I./segment level for example), and even more useful in the medium to longer term as it acquires more and more knowledge and the ability to debug to the module level. Expert systems exist and are working successfully in many problem domains. See the bibliography for examples of ''expert systems'' built in the high energy physics environment

  1. System-wide analysis of the transcriptional network of human myelomonocytic leukemia cells predicts attractor structure and phorbol-ester-induced differentiation and dedifferentiation transitions

    Science.gov (United States)

    Sakata, Katsumi; Ohyanagi, Hajime; Sato, Shinji; Nobori, Hiroya; Hayashi, Akiko; Ishii, Hideshi; Daub, Carsten O.; Kawai, Jun; Suzuki, Harukazu; Saito, Toshiyuki

    2015-02-01

    We present a system-wide transcriptional network structure that controls cell types in the context of expression pattern transitions that correspond to cell type transitions. Co-expression based analyses uncovered a system-wide, ladder-like transcription factor cluster structure composed of nearly 1,600 transcription factors in a human transcriptional network. Computer simulations based on a transcriptional regulatory model deduced from the system-wide, ladder-like transcription factor cluster structure reproduced expression pattern transitions when human THP-1 myelomonocytic leukaemia cells cease proliferation and differentiate under phorbol myristate acetate stimulation. The behaviour of MYC, a reprogramming Yamanaka factor that was suggested to be essential for induced pluripotent stem cells during dedifferentiation, could be interpreted based on the transcriptional regulation predicted by the system-wide, ladder-like transcription factor cluster structure. This study introduces a novel system-wide structure to transcriptional networks that provides new insights into network topology.

  2. System-wide Benchmark Simulation Model for integrated analysis of urban wastewater systems

    DEFF Research Database (Denmark)

    Saagi, R.; Flores-Alsina, X.; Gernaey, K. V.

    Interactions between different components (sewer, wastewater treatment plant (WWTP) and river) of an urban wastewater system (UWS) are widely recognized (Benedetti et al., 2013). This has resulted in an increasing interest in the modelling of the UWS. System-wide models take into account the inte......Interactions between different components (sewer, wastewater treatment plant (WWTP) and river) of an urban wastewater system (UWS) are widely recognized (Benedetti et al., 2013). This has resulted in an increasing interest in the modelling of the UWS. System-wide models take into account...... the interactions between the different subsystems and allow us to operate the UWS in a holistic manner. Such an integrated approach makes it feasible to evaluate control strategies at an UWS scale with the aim of improving receiving water quality. Currently, benchmark simulation models are widely used to evaluate......) measures. We demonstrate the need of using a holistic approach due to the strong interactions between the elements of the UWS (catchment, WWTP and sewer)....

  3. A Computer Simulation of the System-Wide Effects of Parallel-Offset Route Maneuvers

    Science.gov (United States)

    Lauderdale, Todd A.; Santiago, Confesor; Pankok, Carl

    2010-01-01

    Most aircraft managed by air-traffic controllers in the National Airspace System are capable of flying parallel-offset routes. This paper presents the results of two related studies on the effects of increased use of offset routes as a conflict resolution maneuver. The first study analyzes offset routes in the context of all standard resolution types which air-traffic controllers currently use. This study shows that by utilizing parallel-offset route maneuvers, significant system-wide savings in delay due to conflict resolution of up to 30% are possible. It also shows that most offset resolutions replace horizontal-vectoring resolutions. The second study builds on the results of the first and directly compares offset resolutions and standard horizontal-vectoring maneuvers to determine that in-trail conflicts are often more efficiently resolved by offset maneuvers.

  4. System-wide Benefits of Intermeal Fasting by Autophagy

    NARCIS (Netherlands)

    Martinez-Lopez, Nuria; Tarabra, Elena; Toledo, Miriam; Garcia-Macia, Marina; Sahu, Srabani; Coletto, Luisa; Batista-Gonzalez, Ana; Barzilai, Nir; Pessin, Jeffrey E.; Schwartz, Gary J.; Kersten, Sander; Singh, Rajat

    2017-01-01

    Autophagy failure is associated with metabolic insufficiency. Although caloric restriction (CR) extends healthspan, its adherence in humans is poor. We established an isocaloric twice-a-day (ITAD) feeding model wherein ITAD-fed mice consume the same food amount as ad libitum controls but at two

  5. System-wide Analysis of the T Cell Response

    Directory of Open Access Journals (Sweden)

    Ruxandra Covacu

    2016-03-01

    Full Text Available The T cell receptor (TCR controls the cellular adaptive immune response to antigens, but our understanding of TCR repertoire diversity and response to challenge is still incomplete. For example, TCR clones shared by different individuals with minimal alteration to germline gene sequences (public clones are detectable in all vertebrates, but their significance is unknown. Although small in size, the zebrafish TCR repertoire is controlled by processes similar to those operating in mammals. Thus, we studied the zebrafish TCR repertoire and its response to stimulation with self and foreign antigens. We found that cross-reactive public TCRs dominate the T cell response, endowing a limited TCR repertoire with the ability to cope with diverse antigenic challenges. These features of vertebrate public TCRs might provide a mechanism for the rapid generation of protective T cell immunity, allowing a short temporal window for the development of more specific private T cell responses.

  6. The influence of generalist predators in spatially extended predator-prey systems

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu

    2015-01-01

    The presence of generalist predators is known to have important ecological impacts in several fields. They have wide applicability in the field of biological control. However, their role in the spatial distribution of predator and prey populations is still not clear. In this paper, the spatial...... the cases. In the presence of generalist predators, the system shows different pattern formations and spatiotemporal chaos which has important implications for ecosystem functioning not only in terms of their predictability, but also in influencing species persistence and ecosystem stability in response...

  7. Bioinsecticide-predator interactions: azadirachtin behavioral and reproductive impairment of the coconut mite predator Neoseiulus baraki.

    Directory of Open Access Journals (Sweden)

    Debora B Lima

    Full Text Available Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae. The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot (Acari: Phytoseiidae. Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents.

  8. System-wide electrification and appropriate functions of tractor and implement

    Directory of Open Access Journals (Sweden)

    Sebastian Tetzlaff

    2015-10-01

    Full Text Available The advantages of electric drive technology in industrial applications have been known for a long time. In addition to the flexibility and variability for the system integration, the very good controllability and the overload capacity should be mentioned. To increase the effectiveness of agricultural machinery and equipment crucially, the different electrical/electronic systems, drives and functions have to be interconnected machine internally and also externally, based on a system-wide approach. Thereby single machinery, machinery combinations and finally complete harvest chains can be used in a smarter and more efficient way. Using the example of a tractor-swather combination the suitability of electric drives itself and of the hybrid and interface concept is proven. Newly developed functions for overload protection and prediction of the working process are presented and their integration into the machine overarching energy and operational management is described. The transferability of the results and solutions to cognate applications is ensured. Keywords

  9. The narrow range of perceived predation: a 19 group study

    Directory of Open Access Journals (Sweden)

    Olivier Mesly

    2013-05-01

    Full Text Available This paper rests largely on the works of Mesly (1999 to 2012. It argues that the phenomenon of perceived predation as a functional behavioural phenomenon is subjected to certain limits, a finding based on studies performed on 19 different groups spread over a four-year span. It also finds a constant of k = 1.3 which reflects the invariant nature of perceived predation. These findings add to the theory of financial predation which stipulates that financial predators operate below the limits of detection pertaining to their customers (and market regulators. They are experts at minimizing the perception that clients could have that they are after their money, causing them financial harm, by surprise (perceived predation. Understanding the narrow range in which financial predators operate is setting the grounds to offer better protection to investors and to implementing better control and punitive measures.

  10. Experimental predator removal causes rapid salt marsh die-off.

    Science.gov (United States)

    Bertness, Mark D; Brisson, Caitlin P; Coverdale, Tyler C; Bevil, Matt C; Crotty, Sinead M; Suglia, Elena R

    2014-07-01

    Salt marsh habitat loss to vegetation die-offs has accelerated throughout the western Atlantic in the last four decades. Recent studies have suggested that eutrophication, pollution and/or disease may contribute to the loss of marsh habitat. In light of recent evidence that predators are important determinants of marsh health in New England, we performed a total predator exclusion experiment. Here, we provide the first experimental evidence that predator depletion can cause salt marsh die-off by releasing the herbivorous crab Sesarma reticulatum from predator control. Excluding predators from a marsh ecosystem for a single growing season resulted in a >100% increase in herbivory and a >150% increase in unvegetated bare space compared to plots with predators. Our results confirm that marshes in this region face multiple, potentially synergistic threats. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  11. Interannual control of plankton communities by deep winter mixing and prey/predator interactions in the NW Mediterranean: Results from a 30-year 3D modeling study

    Science.gov (United States)

    Auger, P. A.; Ulses, C.; Estournel, C.; Stemmann, L.; Somot, S.; Diaz, F.

    2014-05-01

    A realistic modeling approach is designed to address the role of winter mixing on the interannual variability of plankton dynamics in the north-western (NW) Mediterranean basin. For the first time, a high-resolution coupled hydrodynamic-biogeochemical model (Eco3m-S) covering a 30-year period (1976-2005) is validated on available in situ and satellite data for the NW Mediterranean. In this region, cold, dry winds in winter often lead to deep convection and strong upwelling of nutrients into the euphotic layer. High nutrient contents at the end of winter then support the development of a strong spring bloom of phytoplankton. Model results indicate that annual primary production is not affected by winter mixing due to seasonal balance (minimum in winter and maximum in spring). However, the total annual water column-integrated phytoplankton biomass appears to be favored by winter mixing because zooplankton grazing activity is low in winter and early spring. This reduced grazing is explained here by the rarefaction of prey due to both light limitation and the effect of mixing-induced dilution on prey/predator interactions. A negative impact of winter mixing on winter zooplankton biomass is generally simulated except for mesozooplankton. This difference is assumed to stem from the lower parameterized mortality, top trophic position and detritivorous diet of mesozooplankton in the model. Moreover, model suggests that the variability of annual mesozooplankton biomass is principally modulated by the effects of winter mixing on winter biomass. Thus, interannual variability of winter nutrient contents in the euphotic layer, resulting from winter mixing, would control spring primary production and thus annual mesozooplankton biomass. Our results show a bottom-up control of mesozooplankton communities, as observed at a coastal location of the Ligurian Sea.

  12. Local and landscape drivers of predation services in urban gardens.

    Science.gov (United States)

    Philpott, Stacy M; Bichier, Peter

    2017-04-01

    In agroecosystems, local and landscape features, as well as natural enemy abundance and richness, are significant predictors of predation services that may result in biological control of pests. Despite the increasing importance of urban gardening for provisioning of food to urban populations, most urban gardeners suffer from high pest problems, and have little knowledge about how to manage their plots to increase biological control services. We examined the influence of local, garden scale (i.e., herbaceous and arboreal vegetation abundance and diversity, ground cover) and landscape (i.e., landscape diversity and surrounding land use types) characteristics on predation services provided by naturally occurring predators in 19 urban gardens in the California central coast. We introduced sentinel pests (moth eggs and larvae and pea aphids) onto greenhouse-raised plants taken to gardens and assigned to open or bagged (predator exclosure) treatments. We found high predation rates with between 40% and 90% of prey items removed in open treatments. Predation services varied with local and landscape factors, but significant predictors differed by prey species. Predation of eggs and aphids increased with vegetation complexity in gardens, but larvae predation declined with vegetation complexity. Smaller gardens experienced higher predation services, likely due to increases in predator abundance in smaller gardens. Several ground cover features influenced predation services. In contrast to patterns in rural agricultural landscapes, predation on aphids declined with increases in landscape diversity. In sum, we report the relationships between several local management factors, as well as landscape surroundings, and implications for garden management. © 2017 by the Ecological Society of America.

  13. Assessing predation risk to threatened fauna from their prevalence in predator scats: dingoes and rodents in arid Australia.

    Science.gov (United States)

    Allen, Benjamin L; Leung, Luke K-P

    2012-01-01

    The prevalence of threatened species in predator scats has often been used to gauge the risks that predators pose to threatened species, with the infrequent occurrence of a given species often considered indicative of negligible predation risks. In this study, data from 4087 dingo (Canis lupus dingo and hybrids) scats were assessed alongside additional information on predator and prey distribution, dingo control effort and predation rates to evaluate whether or not the observed frequency of threatened species in dingo scats warrants more detailed investigation of dingo predation risks to them. Three small rodents (dusky hopping-mice Notomys fuscus; fawn hopping-mice Notomys cervinus; plains mice Pseudomys australis) were the only threatened species detected in fauna assumed to derive a benefit from the presence of dingoes may instead be susceptible to dingo-induced declines under certain conditions.

  14. Vertebrate predators have minimal cascading effects on plant production or seed predation in an intact grassland ecosystem

    Science.gov (United States)

    John L. Maron; Dean E. Pearson

    2011-01-01

    The strength of trophic cascades in terrestrial habitats has been the subject of considerable interest and debate. We conducted an 8-year experiment to determine how exclusion of vertebrate predators, ungulates alone (to control for ungulate exclusion from predator exclusion plots) or none of these animals influenced how strongly a three-species assemblage of rodent...

  15. Assessing predation risk to threatened fauna from their prevalence in predator scats: dingoes and rodents in arid Australia.

    Directory of Open Access Journals (Sweden)

    Benjamin L Allen

    Full Text Available The prevalence of threatened species in predator scats has often been used to gauge the risks that predators pose to threatened species, with the infrequent occurrence of a given species often considered indicative of negligible predation risks. In this study, data from 4087 dingo (Canis lupus dingo and hybrids scats were assessed alongside additional information on predator and prey distribution, dingo control effort and predation rates to evaluate whether or not the observed frequency of threatened species in dingo scats warrants more detailed investigation of dingo predation risks to them. Three small rodents (dusky hopping-mice Notomys fuscus; fawn hopping-mice Notomys cervinus; plains mice Pseudomys australis were the only threatened species detected in <8% of dingo scats from any given site, suggesting that dingoes might not threaten them. However, consideration of dingo control effort revealed that plains mice distribution has largely retracted to the area where dingoes have been most heavily subjected to lethal control. Assessing the hypothetical predation rates of dingoes on dusky hopping-mice revealed that dingo predation alone has the potential to depopulate local hopping-mice populations within a few months. It was concluded that the occurrence of a given prey species in predator scats may be indicative of what the predator ate under the prevailing conditions, but in isolation, such data can have a poor ability to inform predation risk assessments. Some populations of threatened fauna assumed to derive a benefit from the presence of dingoes may instead be susceptible to dingo-induced declines under certain conditions.

  16. Effects of predation and dispersal on Mastomys natalensis population dynamics in Tanzanian maize fields

    DEFF Research Database (Denmark)

    Vibe-Petersen, Solveig; Leirs, Herwig; de Bruyn, L

    2006-01-01

    ), excluding predators by nets and attracting avian predators by nest boxes and perch poles. Because dispersal of the rodents could mask the predation pressure treatment effects, control and predator exclusion treatments were repeated with enclosed rodent populations. 3.  Population growth during the annual......1.  We investigate the effects of different levels of predation pressure and rodent dispersal on the population dynamics of the African pest rodent Mastomys natalensis in maize fields in Tanzania. 2.  Three levels of predation risk were used in an experimental set-up: natural level (control...... risk. Reducing dispersal of rodents removed the effect of predation on population growth and peak size, suggesting that local predators may play a role in driving rodent dispersal, but have otherwise little direct effect on population dynamics....

  17. Factors influencing the predation rates of Anisops breddini (Hemiptera: Notonectidae feeding on mosquito larvae

    Directory of Open Access Journals (Sweden)

    R. Weterings

    2014-12-01

    Full Text Available Notonectidae are a family of water bugs that are known to be important predators of mosquito larvae and have great potential in the biological control of vector mosquitoes. An experiment was conducted to assess mosquito larvae predation by Anisops breddini, a species common to Southeast Asia. The predation rates were recorded in context of prey density, predator density, predator size and prey type. Predation rates were strongly affected by prey type and less by prey density and predator density. They ranged between 1.2 prey items per day for pupae of Aedes aegeypti and Armigeres moultoni to 5.9 for Ae. aegypti larvae. Compared with studies on other Notonectidae species, the predation rates appear low, which is probably caused by the relative small size of the specimens used in this study. An. breddini is very common in the region and often found in urban areas; therefore, the species has potential as a biological control agent.

  18. Stress triangle: do introduced predators exert indirect costs on native predators and prey?

    Directory of Open Access Journals (Sweden)

    Jennifer R Anson

    Full Text Available Non-consumptive effects of predators on each other and on prey populations often exceed the effects of direct predation. These effects can arise from fear responses elevating glucocorticoid (GC hormone levels (predator stress hypothesis or from increased vigilance that reduces foraging efficiency and body condition (predator sensitive foraging hypothesis; both responses can lead to immunosuppression and increased parasite loads. Non-consumptive effects of invasive predators have been little studied, even though their direct impacts on local species are usually greater than those of their native counterparts. To address this issue, we explored the non-consumptive effects of the invasive red fox Vulpes vulpes on two native species in eastern Australia: a reptilian predator, the lace monitor Varanus varius and a marsupial, the ringtail possum Pseudocheirus peregrinus. In particular, we tested predictions derived from the above two hypotheses by comparing the basal glucocorticoid levels, foraging behaviour, body condition and haemoparasite loads of both native species in areas with and without fox suppression. Lace monitors showed no GC response or differences in haemoparasite loads but were more likely to trade safety for higher food rewards, and had higher body condition, in areas of fox suppression than in areas where foxes remained abundant. In contrast, ringtails showed no physiological or behavioural differences between fox-suppressed and control areas. Predator sensitive foraging is a non-consumptive cost for lace monitors in the presence of the fox and most likely represents a response to competition. The ringtail's lack of response to the fox potentially represents complete naiveté or strong and rapid selection to the invasive predator. We suggest evolutionary responses are often overlooked in interactions between native and introduced species, but must be incorporated if we are to understand the suite of forces that shape community

  19. Tameness and stress physiology in a predator-naive island species confronted with novel predation threat.

    Science.gov (United States)

    Rödl, Thomas; Berger, Silke; Romero, L Michael; Wikelski, Martin

    2007-02-22

    Tame behaviour, i.e. low wariness, in terrestrial island species is often attributed to low predation pressure. However, we know little about its physiological control and its flexibility in the face of predator introductions. Marine iguanas (Amblyrhynchus cristatus) on the Galapagos Islands are a good model to study the physiological correlates of low wariness. They have lived virtually without predation for 5-15 Myr until some populations were first confronted with feral cats and dogs some 150 years ago. We tested whether and to what extent marine iguanas can adjust their behaviour and endocrine stress response to novel predation threats. Here, we show that a corticosterone stress response to experimental chasing is absent in naive animals, but is quickly restored with experience. Initially, low wariness also increases with experience, but remains an order of magnitude too low to allow successful escape from introduced predators. Our data suggest that the ability of marine iguanas to cope with predator introductions is limited by narrow reaction norms for behavioural wariness rather than by constraints in the underlying physiological stress system. In general, we predict that island endemics show flexible physiological stress responses but are restricted by narrow behavioural plasticity.

  20. Predator biodiversity increases the survivorship of juvenile predators.

    Science.gov (United States)

    Takizawa, Tadashi; Snyder, William E

    2011-07-01

    When predator biodiversity strengthens herbivore suppression, the pattern generally is attributed to interspecific complementarity. However, the relaxation of intraspecific interference within diverse communities has received less attention as an underlying factor, and most experiments to date span much less than one predator generation. Here, working with a community of aphid predators, we compared the survivorship of juvenile predators embedded within diverse versus single-species communities of adult predators. We found that greater predator diversity improved juvenile survivorship for three of four predator taxa (the lady beetles Hippodamia convergens and Coccinella septempunctata, and the bug Nabis alternatus; but not the small bug Geocoris bullatus), whereas survivorship was relatively low when juveniles foraged among only conspecific adults. When aphid densities differed they were lowest for the diverse treatment, and so resource availability could not explain differences in juvenile survivorship. Instead, feeding trials indicated that cannibalism generally posed a greater risk to juveniles than did intraguild predation (with Geocoris again the exception). Our results suggest that the dilution of intraspecific interference may play an important, and perhaps underappreciated, role in shaping predator diversity effects. Furthermore, relatively strong cannibalism but weak intraguild predation has the potential to project diversity effects forward into subsequent generations.

  1. Reduced foraging in the presence of predator cues by the Black Spiny-tailed Iguana, Ctenosaura similis (Sauria: Iguanidae

    Directory of Open Access Journals (Sweden)

    Vincent R. Farallo

    2010-12-01

    Full Text Available The presence of a predator may have direct and indirect effects on the behavior of the prey. Although altered behavior may help prey avoid predators, it also can have a potential impact on critical activities such as foraging. Predator-prey interactions are routinely studied in laboratory-based experiments owing to theperceived difficulties of conducting such experiments in natural settings. We conducted an experimental study under field conditions in Palo Verde National Park in northwestern Costa Rica to assess behavioral responses of Black Spiny-tailed Iguanas (Ctenosaurasimilis to the presence of predators and predator cues. Free-roaming iguanas were offered mango in designated areas in the presence of a predator (Boa constrictor, a predator cue (B. constrictor feces, and a control (no predator or predator cue. Results indicate that iguanas reduced their foraging efforts in the presence of both a predator and its cue.

  2. Attention, Predation, Counterintuition

    DEFF Research Database (Denmark)

    Clasen, Mathias

    2012-01-01

    of Dracula to account for the novel’s impact and resilience. Dracula connected squarely with late-Victorian anxieties, but the novel also appeals to trans-historical adaptive dispositions. I analyze Stoker’s use of narrative strategies to grab and sustain attention, and Count Dracula as a supercharged...... predator, a counterintuitive monster well-designed to engage attention and spark the imagination....

  3. Roadway network productivity assessment : system-wide analysis under variant travel demand

    Science.gov (United States)

    2008-11-01

    The analysis documented in this report examines the hypothesis that the system-wide productivity of a metropolitan freeway system in peak periods is higher in moderate travel demand conditions than in excessive travel demand conditions. The approach ...

  4. Predator avoidance in extremophile fish.

    Science.gov (United States)

    Bierbach, David; Schulte, Matthias; Herrmann, Nina; Zimmer, Claudia; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Riesch, Rüdiger; Plath, Martin

    2013-02-06

    Extreme habitats are often characterized by reduced predation pressures, thus representing refuges for the inhabiting species. The present study was designed to investigate predator avoidance of extremophile populations of Poecilia mexicana and P. sulphuraria that either live in hydrogen sulfide-rich (sulfidic) springs or cave habitats, both of which are known to have impoverished piscine predator regimes. Focal fishes that inhabited sulfidic springs showed slightly weaker avoidance reactions when presented with several naturally occurring predatory cichlids, but strongest differences to populations from non-sulfidic habitats were found in a decreased shoaling tendency with non-predatory swordtail (Xiphophorus hellerii) females. When comparing avoidance reactions between P. mexicana from a sulfidic cave (Cueva del Azufre) and the adjacent sulfidic surface creek (El Azufre), we found only slight differences in predator avoidance, but surface fish reacted much more strongly to the non-predatory cichlid Vieja bifasciata. Our third experiment was designed to disentangle learned from innate effects of predator recognition. We compared laboratory-reared (i.e., predator-naïve) and wild-caught (i.e., predator-experienced) individuals of P. mexicana from a non-sulfidic river and found no differences in their reaction towards the presented predators. Overall, our results indicate (1) that predator avoidance is still functional in extremophile Poecilia spp. and (2) that predator recognition and avoidance reactions have a strong genetic basis.

  5. Predator Avoidance in Extremophile Fish

    Directory of Open Access Journals (Sweden)

    Martin Plath

    2013-02-01

    Full Text Available Extreme habitats are often characterized by reduced predation pressures, thus representing refuges for the inhabiting species. The present study was designed to investigate predator avoidance of extremophile populations of Poecilia mexicana and P. sulphuraria that either live in hydrogen sulfide-rich (sulfidic springs or cave habitats, both of which are known to have impoverished piscine predator regimes. Focal fishes that inhabited sulfidic springs showed slightly weaker avoidance reactions when presented with several naturally occurring predatory cichlids, but strongest differences to populations from non-sulfidic habitats were found in a decreased shoaling tendency with non-predatory swordtail (Xiphophorus hellerii females. When comparing avoidance reactions between P. mexicana from a sulfidic cave (Cueva del Azufre and the adjacent sulfidic surface creek (El Azufre, we found only slight differences in predator avoidance, but surface fish reacted much more strongly to the non-predatory cichlid Vieja bifasciata. Our third experiment was designed to disentangle learned from innate effects of predator recognition. We compared laboratory-reared (i.e., predator-naïve and wild-caught (i.e., predator-experienced individuals of P. mexicana from a non-sulfidic river and found no differences in their reaction towards the presented predators. Overall, our results indicate (1 that predator avoidance is still functional in extremophile Poecilia spp. and (2 that predator recognition and avoidance reactions have a strong genetic basis.

  6. Plastic responses of a sessile prey to multiple predators: a field and experimental study.

    Directory of Open Access Journals (Sweden)

    Philipp Emanuel Hirsch

    Full Text Available Theory predicts that prey facing a combination of predators with different feeding modes have two options: to express a response against the feeding mode of the most dangerous predator, or to express an intermediate response. Intermediate phenotypes protect equally well against several feeding modes, rather than providing specific protection against a single predator. Anti-predator traits that protect against a common feeding mode displayed by all predators should be expressed regardless of predator combination, as there is no need for trade-offs.We studied phenotypic anti-predator responses of zebra mussels to predation threat from a handling-time-limited (crayfish and a gape-size-limited (roach predator. Both predators dislodge mussels from the substrate but diverge in their further feeding modes. Mussels increased expression of a non-specific defense trait (attachment strength against all combinations of predators relative to a control. In response to roach alone, mussels showed a tendency to develop a weaker and more elongated shell. In response to crayfish, mussels developed a harder and rounder shell. When exposed to either a combination of predators or no predator, mussels developed an intermediate phenotype. Mussel growth rate was positively correlated with an elongated weaker shell and negatively correlated with a round strong shell, indicating a trade-off between anti-predator responses. Field observations of prey phenotypes revealed the presence of both anti-predator phenotypes and the trade-off with growth, but intra-specific population density and bottom substrate had a greater influence than predator density.Our results show that two different predators can exert both functionally equivalent and inverse selection pressures on a single prey. Our field study suggests that abiotic factors and prey population density should be considered when attempting to explain phenotypic diversity in the wild.

  7. Influence of edge on predator prey distribution and abundance

    Science.gov (United States)

    Ferguson, Steven H.

    2004-03-01

    I investigated the effect of spatial configuration on distribution and abundance of invertebrate trophic groups by counting soil arthropods under boxes (21 × 9.5 cm) arranged in six different patterns that varied in the amount of edge (137-305 cm). I predicted fewer individuals from the consumer trophic group (Collembola) in box groups with greater amount of edge. This prediction was based on the assumption that predators (mites, ants, spiders, centipedes) select edge during foraging and thereby reduce abundance of the less mobile consumer group under box patterns with greater edge. Consumer abundance (Collembola) was not correlated with amount of edge. Among the predator groups, mite, ant and centipede abundance related to the amount of edge of box groups. However, in contrast to predictions, abundance of these predators was negatively correlated with amount of edge in box patterns. All Collembola predators, with the exception of ants, were less clumped in distribution than Collembola. The results are inconsistent with the view that predators used box edges to predate the less mobile consumer trophic group. Alternative explanations for the spatial patterns other than predator-prey relations include (1) a negative relationship between edge and moisture, (2) a positive relationship between edge and detritus decomposition (i.e. mycelium as food for the consumer group), and (3) a negative relationship between edge and the interstices between adjacent boxes. Landscape patterns likely affect microclimate, food, and predator-prey relations and, therefore, future experimental designs need to control these factors individually to distinguish among alternative hypotheses.

  8. Predator avoidance in extremophile fish

    OpenAIRE

    Bierbach, David; Schulte, Matthias; Herrmann, Nina; Zimmer, Claudia; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Riesch, Rüdiger; Plath, Martin

    2013-01-01

    Extreme habitats are often characterized by reduced predation pressures, thus representing refuges for the inhabiting species. The present study was designed to investigate predator avoidance of extremophile populations of Poecilia mexicana and P. sulphuraria that either live in hydrogen sulfide-rich (sulfidic) springs or cave habitats, both of which are known to have impoverished piscine predator regimes. Focal fishes that inhabited sulfidic springs showed slightly weaker avoidance reactions...

  9. Predators induce interspecific herbivore competition for food in refuge space

    NARCIS (Netherlands)

    Pallini, A.; Janssen, A.; Sabelis, M.W.

    1998-01-01

    Resource competition among herbivorous arthropods has long been viewed as unimportant because herbivore populations are controlled by predators. Although recently resurrected as an organizing force in arthropod communities on plants, there is still general agreement that resource competition among

  10. Understanding predation: implications toward forest management

    Science.gov (United States)

    Harvey R. Smith

    1991-01-01

    It is generally accepted that when gypsy moths rest in the litter survival is low due to predation by ground-foraging generalist predators and that predation can maintain these populations indefinitely. Forest Service research on predators of gypsy moth continues to focus on population dynamics, the mechanisms of predation and forest management implications.

  11. Bat Predation by Spiders

    Science.gov (United States)

    Nyffeler, Martin; Knörnschild, Mirjam

    2013-01-01

    In this paper more than 50 incidences of bats being captured by spiders are reviewed. Bat-catching spiders have been reported from virtually every continent with the exception of Antarctica (∼90% of the incidences occurring in the warmer areas of the globe between latitude 30° N and 30° S). Most reports refer to the Neotropics (42% of observed incidences), Asia (28.8%), and Australia-Papua New Guinea (13.5%). Bat-catching spiders belong to the mygalomorph family Theraphosidae and the araneomorph families Nephilidae, Araneidae, and Sparassidae. In addition to this, an attack attempt by a large araneomorph hunting spider of the family Pisauridae on an immature bat was witnessed. Eighty-eight percent of the reported incidences of bat catches were attributable to web-building spiders and 12% to hunting spiders. Large tropical orb-weavers of the genera Nephila and Eriophora in particular have been observed catching bats in their huge, strong orb-webs (of up to 1.5 m diameter). The majority of identifiable captured bats were small aerial insectivorous bats, belonging to the families Vespertilionidae (64%) and Emballonuridae (22%) and usually being among the most common bat species in their respective geographic area. While in some instances bats entangled in spider webs may have died of exhaustion, starvation, dehydration, and/or hyperthermia (i.e., non-predation death), there were numerous other instances where spiders were seen actively attacking, killing, and eating the captured bats (i.e., predation). This evidence suggests that spider predation on flying vertebrates is more widespread than previously assumed. PMID:23516436

  12. Aphids, predators and parasitoids.

    Science.gov (United States)

    Wadhams, L J; Birkett, M A; Powell, W; Woodcock, C M

    1999-01-01

    A number of studies have demonstrated the role of herbivore-induced release of plant volatiles in mediating foraging behaviour of aphid parasitoids, particularly with the parasitoid Aphidius ervi, its aphid host Acyrthosiphon pisum and the aphid food plant Vicia faba. These studies have shown that feeding by the aphid alters the composition of volatiles released by the plant and that these compounds act as synomones for the foraging parasitoid. Of particular interest is the species-specificity of the herbivore-induced synomones associated with different aphids feeding on V. faba. Aphids employ various pheromones that mediate behaviour, particularly mating and alarm responses. These pheromones play important roles in reproduction and defence against predation and parasitism. Many species of aphids reproduce sexually on their primary hosts during the autumn and the sexual females produce a pheromone that attracts males. The sex pheromones for a number of aphid species have been identified and laboratory and field studies have shown that synthetic material can act as a kairomone in attracting predators and parasitoids. The aphid alarm pheromone is released from the cornicles of aphids when they are attacked by predators or parasitoids. The activity of the main alarm pheromone component, (E)-beta-farnesene, is inhibited by the related sesquiterpene hydrocarbon beta-caryophyllene, which is reported to attract the lacewing Chrysoperla carnea. In addition, electrophysiological studies have shown that the seven-spot ladybird, Coccinella septempunctata, possesses specific olfactory receptors for (E)-beta-farnesene and beta-caryophyllene. Laboratory studies show these compounds to have behavioural activity with C. septempunctata, suggesting that they may be involved in prey location.

  13. System-wide analysis reveals intrinsically disordered proteins are prone to ubiquitylation after misfolding stress.

    Science.gov (United States)

    Ng, Alex H M; Fang, Nancy N; Comyn, Sophie A; Gsponer, Jörg; Mayor, Thibault

    2013-09-01

    Damaged and misfolded proteins that are no longer functional in the cell need to be eliminated. Failure to do so might lead to their accumulation and aggregation, a hallmark of many neurodegenerative diseases. Protein quality control pathways play a major role in the degradation of these proteins, which is mediated mainly by the ubiquitin proteasome system. Despite significant focus on identifying ubiquitin ligases involved in these pathways, along with their substrates, a systems-level understanding of these pathways has been lacking. For instance, as misfolded proteins are rapidly ubiquitylated, unconjugated ubiquitin is rapidly depleted from the cell upon misfolding stress; yet it is unknown whether certain targets compete more efficiently to be ubiquitylated. Using a system-wide approach, we applied statistical and computational methods to identify characteristics enriched among proteins that are further ubiquitylated after heat shock. We discovered that distinct populations of structured and, surprisingly, intrinsically disordered proteins are prone to ubiquitylation. Proteomic analysis revealed that abundant and highly structured proteins constitute the bulk of proteins in the low-solubility fraction after heat shock, but only a portion is ubiquitylated. In contrast, ubiquitylated, intrinsically disordered proteins are enriched in the low-solubility fraction after heat shock. These proteins have a very low abundance in the cell, are rarely encoded by essential genes, and are enriched in binding motifs. In additional experiments, we confirmed that several of the identified intrinsically disordered proteins were ubiquitylated after heat shock and demonstrated for two of them that their disordered regions are important for ubiquitylation after heat shock. We propose that intrinsically disordered regions may be recognized by the protein quality control machinery and thereby facilitate the ubiquitylation of proteins after heat shock.

  14. Generalization of predator recognition: Velvet geckos display anti-predator behaviours in response to chemicals from non-dangerous elapid snakes

    Directory of Open Access Journals (Sweden)

    Jonathan K. WEBB, Weiguo DU, David PIKE, Richard SHINE

    2010-06-01

    Full Text Available Many prey species detect chemical cues from predators and modify their behaviours in ways that reduce their risk of predation. Theory predicts that prey should modify their anti-predator responses according to the degree of threat posed by the predator. That is, prey should show the strongest responses to chemicals of highly dangerous prey, but should ignore or respond weakly to chemicals from non-dangerous predators. However, if anti-predator behaviours are not costly, and predators are rarely encountered, prey may exhibit generalised antipredator behaviours to dangerous and non-dangerous predators. In Australia, most elapid snakes eat lizards, and are therefore potentially dangerous to lizard prey. Recently, we found that the nocturnal velvet gecko Oedura lesueurii responds to chemicals from dangerous and non-dangerous elapid snakes, suggesting that it displays generalised anti-predator behaviours to chemicals from elapid snakes. To explore the generality of this result, we videotaped the behaviour of velvet geckos in the presence of chemical cues from two small elapid snakes that rarely consume geckos: the nocturnal golden-crowned snake Cacophis squamulosus and the diurnal marsh snake Hemiaspis signata. We also videotaped geckos in trials involving unscented cards (controls and cologne-scented cards (pungency controls. In trials involving Cacophis and Hemiaspis chemicals, 50% and 63% of geckos spent long time periods (> 3 min freezing whilst pressed flat against the substrate, respectively. Over half the geckos tested exhibited anti-predator behaviours (tail waving, tail vibration, running in response to Cacophis (67% or Hemiaspis (63% chemicals. These behaviours were not observed in control or pungency control trials. Our results support the idea that the velvet gecko displays generalised anti-predator responses to chemical cues from elapid snakes. Generalised responses to predator chemicals may be common in prey species that co-occur with

  15. Predator experience overrides learned aversion to heterospecifics in stickleback species pairs.

    Science.gov (United States)

    Kozak, Genevieve M; Boughman, Janette W

    2015-04-22

    Predation risk can alter female mating decisions because the costs of mate searching and selecting attractive mates increase when predators are present. In response to predators, females have been found to plastically adjust mate preference within species, but little is known about how predators alter sexual isolation and hybridization among species. We tested the effects of predator exposure on sexual isolation between benthic and limnetic threespine sticklebacks (Gasterosteus spp.). Female discrimination against heterospecific mates was measured before and after females experienced a simulated attack by a trout predator or a control exposure to a harmless object. In the absence of predators, females showed increased aversion to heterospecifics over time. We found that predator exposure made females less discriminating and precluded this learned aversion to heterospecifics. Benthic and limnetic males differ in coloration, and predator exposure also affected sexual isolation by weakening female preferences for colourful males. Predator effects on sexual selection were also tested but predators had few effects on female choosiness among conspecific mates. Our results suggest that predation risk may disrupt the cognitive processes associated with mate choice and lead to fluctuations in the strength of sexual isolation between species. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Predator decline leads to decreased stability in a coastal fish community.

    Science.gov (United States)

    Britten, Gregory L; Dowd, Michael; Minto, Cóilín; Ferretti, Francesco; Boero, Ferdinando; Lotze, Heike K

    2014-12-01

    Fisheries exploitation has caused widespread declines in marine predators. Theory predicts that predator depletion will destabilise lower trophic levels, making natural communities more vulnerable to environmental perturbations. However, empirical evidence has been limited. Using a community matrix model, we empirically assessed trends in the stability of a multispecies coastal fish community over the course of predator depletion. Three indices of community stability (resistance, resilience and reactivity) revealed significantly decreasing stability concurrent with declining predator abundance. The trophically downgraded community exhibited weaker top-down control, leading to predator-release processes in lower trophic levels and increased susceptibility to perturbation. At the community level, our results suggest that high predator abundance acts as a stabilising force to the naturally stochastic and highly autocorrelated dynamics in low trophic species. These findings have important implications for the conservation and management of predators in marine ecosystems and provide empirical support for the theory of predatory control. © 2014 John Wiley & Sons Ltd/CNRS.

  17. Plant species composition alters the sign and strength of an emergent multi-predator effect by modifying predator foraging behaviour.

    Directory of Open Access Journals (Sweden)

    Andrew Wilby

    Full Text Available The prediction of pest-control functioning by multi-predator communities is hindered by the non-additive nature of species functioning. Such non-additivity, commonly termed an emergent multi-predator effect, is known to be affected by elements of the ecological context, such as the structure and composition of vegetation, in addition to the traits of the predators themselves. Here we report mesocosm experiments designed to test the influence of plant density and species composition (wheat monoculture or wheat and faba bean polyculture on the emergence of multi-predator effects between Adalia bipunctata and Chrysoperla carnea, in their suppression of populations of the aphid Metopolophium dirhodum. The mesocosm experiments were followed by a series of behavioural observations designed to identify how interactions among predators are modified by plant species composition and whether these effects are consistent with the observed influence of plant species composition on aphid population suppression. Although plant density was shown to have no influence on the multi-predator effect on aphid population growth, plant composition had a marked effect. In wheat monoculture, Adalia and Chrysoperla mixed treatments caused greater suppression of M. dirhodum populations than expected. However this positive emergent effect was reversed to a negative multi-predator effect in wheat and faba bean polyculture. The behavioural observations revealed that although dominant individuals did not respond to the presence of faba bean plants, the behaviour of sub-dominants was affected markedly, consistent with their foraging for extra-floral nectar produced by the faba bean. This interaction between plant composition and predator community composition on the foraging behaviour of sub-dominants is thought to underlie the observed effect of plant composition on the multi-predator effect. Thus, the emergence of multi-predator effects is shown to be strongly influenced by

  18. Plant species composition alters the sign and strength of an emergent multi-predator effect by modifying predator foraging behaviour.

    Science.gov (United States)

    Wilby, Andrew; Anglin, Linda Anderson; Nesbit, Christopher M

    2013-01-01

    The prediction of pest-control functioning by multi-predator communities is hindered by the non-additive nature of species functioning. Such non-additivity, commonly termed an emergent multi-predator effect, is known to be affected by elements of the ecological context, such as the structure and composition of vegetation, in addition to the traits of the predators themselves. Here we report mesocosm experiments designed to test the influence of plant density and species composition (wheat monoculture or wheat and faba bean polyculture) on the emergence of multi-predator effects between Adalia bipunctata and Chrysoperla carnea, in their suppression of populations of the aphid Metopolophium dirhodum. The mesocosm experiments were followed by a series of behavioural observations designed to identify how interactions among predators are modified by plant species composition and whether these effects are consistent with the observed influence of plant species composition on aphid population suppression. Although plant density was shown to have no influence on the multi-predator effect on aphid population growth, plant composition had a marked effect. In wheat monoculture, Adalia and Chrysoperla mixed treatments caused greater suppression of M. dirhodum populations than expected. However this positive emergent effect was reversed to a negative multi-predator effect in wheat and faba bean polyculture. The behavioural observations revealed that although dominant individuals did not respond to the presence of faba bean plants, the behaviour of sub-dominants was affected markedly, consistent with their foraging for extra-floral nectar produced by the faba bean. This interaction between plant composition and predator community composition on the foraging behaviour of sub-dominants is thought to underlie the observed effect of plant composition on the multi-predator effect. Thus, the emergence of multi-predator effects is shown to be strongly influenced by plant species

  19. Fasting or fear: disentangling the roles of predation risk and food deprivation in the nitrogen metabolism of consumers.

    Science.gov (United States)

    Dalton, Christopher M; Tracy, Karen E; Hairston, Nelson G; Flecker, Alexander S

    2018-03-01

    Predators can alter nutrient cycles simply by inducing stress in prey. This stress accelerates prey's protein catabolism, nitrogen waste production, and nitrogen cycling. Yet predators also reduce the feeding rates of their prey, inducing food deprivation that is expected to slow protein catabolism and nitrogen cycling. The physiology of prey under predation risk thus balances the influences of predation risk and food deprivation, and this balance is central to understanding the role of predators in nutrient cycles. We explored the separate and combined effects of predation risk and food deprivation on prey physiology and nutrient cycling by exposing guppies (Poecilia reticulata) to predation risk and food deprivation in a 2 × 2 design. We simulated predation risk using chemical cues from a natural predator of guppies, and we created food deprivation by rationing food availability. We measured guppy response as food consumption, growth, tissue energy density, tissue carbon:nitrogen, and nitrogen (N) excretion and assimilation. We found that N-linked physiological processes (N consumption, assimilation, excretion) were strongly affected by predation risk, independent of food consumption. Guppies excreted substantially less under predation risk than they did under food deprivation or control conditions. These results suggest that predation risk, per se, triggers physiological changes in guppies that increase N retention and decrease N excretion. We suggest that slower N metabolism under predation risk is an adaptive response that minimizes protein loss in the face of predictable, predator-induced food restriction. Notably, N metabolism shares common hormonal control with food seeking behavior, and we speculate that increased N retention is a direct and immediate result of reduced food seeking under predation risk. Contrary to predation-stress-based hypotheses for how predators affect nutrient cycling by prey, our result indicates that even short-term exposure to predators

  20. Aquatic macroinvertebrate responses to native and non-native predators

    Directory of Open Access Journals (Sweden)

    Haddaway N. R.

    2014-01-01

    Full Text Available Non-native species can profoundly affect native ecosystems through trophic interactions with native species. Native prey may respond differently to non-native versus native predators since they lack prior experience. Here we investigate antipredator responses of two common freshwater macroinvertebrates, Gammarus pulex and Potamopyrgus jenkinsi, to olfactory cues from three predators; sympatric native fish (Gasterosteus aculeatus, sympatric native crayfish (Austropotamobius pallipes, and novel invasive crayfish (Pacifastacus leniusculus. G. pulex responded differently to fish and crayfish; showing enhanced locomotion in response to fish, but a preference for the dark over the light in response to the crayfish. P.jenkinsi showed increased vertical migration in response to all three predator cues relative to controls. These different responses to fish and crayfish are hypothesised to reflect the predators’ differing predation types; benthic for crayfish and pelagic for fish. However, we found no difference in response to native versus invasive crayfish, indicating that prey naiveté is unlikely to drive the impacts of invasive crayfish. The Predator Recognition Continuum Hypothesis proposes that benefits of generalisable predator recognition outweigh costs when predators are diverse. Generalised responses of prey as observed here will be adaptive in the presence of an invader, and may reduce novel predators’ potential impacts.

  1. Predator-prey interactions, flight initiation distance and brain size.

    Science.gov (United States)

    Møller, A P; Erritzøe, J

    2014-01-01

    Prey avoid being eaten by assessing the risk posed by approaching predators and responding accordingly. Such an assessment may result in prey-predator communication and signalling, which entail further monitoring of the predator by prey. An early antipredator response may provide potential prey with a selective advantage, although this benefit comes at the cost of disturbance in terms of lost foraging opportunities and increased energy expenditure. Therefore, it may pay prey to assess approaching predators and determine the likelihood of attack before fleeing. Given that many approaching potential predators are detected visually, we hypothesized that species with relatively large eyes would be able to detect an approaching predator from afar. Furthermore, we hypothesized that monitoring of predators by potential prey relies on evaluation through information processing by the brain. Therefore, species with relatively larger brains for their body size should be better able to monitor the intentions of a predator, delay flight for longer and hence have shorter flight initiation distances than species with smaller brains. Indeed, flight initiation distances increased with relative eye size and decreased with relative brain size in a comparative study of 107 species of birds. In addition, flight initiation distance increased independently with size of the cerebellum, which plays a key role in motor control. These results are consistent with cognitive monitoring as an antipredator behaviour that does not result in the fastest possible, but rather the least expensive escape flights. Therefore, antipredator behaviour may have coevolved with the size of sense organs, brains and compartments of the brain involved in responses to risk of predation. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  2. The effects of different predator species on antipredator behavior in the Trinidadian guppy, Poecilia reticulata

    Science.gov (United States)

    Botham, M. S.; Kerfoot, C. J.; Louca, V.; Krause, J.

    2006-09-01

    Different types of predators often elicit different antipredator responses in a common type of prey. Alternatively, some prey species may adopt a general response, which provides limited protection from many different types of predator. The Trinidadian guppy, Poecilia reticulata, is faced with a wide range of different predators throughout its range and is known to display varying levels of antipredator behavior depending on the predator assemblage. Pike cichlids, Crenicichla frenata, are regarded as the primary aquatic guppy predator in streams in the northern mountain range in Trinidad. As such, they are seen to be responsible for many of the differences in morphology, life history traits, and behavior between guppy populations from areas with few predators and those from areas with many pike cichlids. In this study we investigated how guppies responded when faced with different predator species using three common aquatic predators. We exposed shoals of ten guppies to one out of four treatments: no predator (control), pike cichlid, acara cichlid ( Aequidens pulcher), and wolf fish ( Hoplias malabaricus); and we made behavioral observations on both focal individuals and the shoal as a whole. Guppies showed significantly greater levels of predator inspection and shoaling behavior, foraged less, spent more time in the surface water, and stayed in significantly larger shoals when faced with pike cichlids than in other treatments. We discuss these results in the context of multiple predator effects.

  3. Predation of the Peach Aphid Myzus persicae by the mirid Predator Macrolophus pygmaeus on Sweet Peppers: Effect of Prey and Predator Density

    Directory of Open Access Journals (Sweden)

    Lara De Backer

    2015-06-01

    Full Text Available Integrated Pest Management strategies are widely implemented in sweet peppers. Aphid biological control on sweet pepers includes curative applications of parasitoids and generalist predators, but with limited efficiency. Macrolophus pygmaeus is a zoophytophagous predator which has been reported to predate on aphids, but has traditionally been used to control other pests, including whiteflies. In this work, we evaluate the effectiveness of M. pygmaeus in controlling Myzus persicae (Homoptera: Aphididae by testing different combinations of aphid and predator densities in cage-experiments under greenhouse conditions. The impact of the presence of an alternative factitious prey (E. kuehniella eggs was also investigated. Macrolophus pygmaeus, at densities of four individuals/plant, caused rapid decline of newly established aphid populations. When aphid infestations were heavy, the mirid bug reduced the aphid numbers but did not fully eradicate aphid populations. The availability of a factitious prey did not influence M. pygmaeus predation on aphids. Based on our data, preventive application of M. pygmaeus, along with a supplementary food source , is recommended to control early infestations of aphids.

  4. Predator behaviour and predation risk in the heterogeneous Arctic environment.

    Science.gov (United States)

    Lecomte, Nicolas; Careau, Vincent; Gauthier, Gilles; Giroux, Jean-François

    2008-05-01

    1. Habitat heterogeneity and predator behaviour can strongly affect predator-prey interactions but these factors are rarely considered simultaneously, especially when systems encompass multiple predators and prey. 2. In the Arctic, greater snow geese Anser caerulescens atlanticus L. nest in two structurally different habitats: wetlands that form intricate networks of water channels, and mesic tundra where such obstacles are absent. In this heterogeneous environment, goose eggs are exposed to two types of predators: the arctic fox Vulpes lagopus L. and a diversity of avian predators. We hypothesized that, contrary to birds, the hunting ability of foxes would be impaired by the structurally complex wetland habitat, resulting in a lower predation risk for goose eggs. 3. In addition, lemmings, the main prey of foxes, show strong population cycles. We thus further examined how their fluctuations influenced the interaction between habitat heterogeneity and fox predation on goose eggs. 4. An experimental approach with artificial nests suggested that foxes were faster than avian predators to find unattended goose nests in mesic tundra whereas the reverse was true in wetlands. Foxes spent 3.5 times more time between consecutive attacks on real goose nests in wetlands than in mesic tundra. Their attacks on goose nests were also half as successful in wetlands than in mesic tundra whereas no difference was found for avian predators. 5. Nesting success in wetlands (65%) was higher than in mesic tundra (56%) but the difference between habitats increased during lemming crashes (15%) compared to other phases of the cycle (5%). Nests located at the edge of wetland patches were also less successful than central ones, suggesting a gradient in accessibility of goose nests in wetlands for foxes. 6. Our study shows that the structural complexity of wetlands decreases predation risk from foxes but not avian predators in arctic-nesting birds. Our results also demonstrate that cyclic

  5. Effects of plant gross morphology on predator consumption rates.

    Science.gov (United States)

    Reynolds, Paula G; Cuddington, Kim

    2012-06-01

    We find that spatial structure, and in particular, differences in gross plant morphology, can alter the consumption rates of generalist insect predators. We compared Asian lady beetle, Harmonia axyridis Pallas, and green lacewing larvae, Chrysoperla carnea Stephens, consumption rates of pea aphids, Acyrthosiphon pisum Harris, in homogeneous environments (petri dishes) and heterogeneous environments (whole plants). Spatial complexity is often described as reducing predator success, and we did find that predators consumed significantly more aphids on leaf tissue in petri dishes than on whole plants with the same surface area. However, subtle differences in plant morphology may have more unexpected effects. A comparison of consumption rates on four different isogenic pea morphs (Pisum sativum L.) controlled for surface area indicated that both lady beetles and lacewings were more successful on morphologies that were highly branched. We speculate that predators move more easily over highly branched plants because there are more edges to grasp.

  6. Predation on Japanese quail vs. house sparrow eggs in artificial nests: small eggs reveal small predators

    Science.gov (United States)

    Thomas J. Maier; Richard M. DeGraaf

    2000-01-01

    Nest predation studies frequently use eggs such as Japanese Quail (Coturnix japonica) to identify potential predators of Neotropical migrants' eggs, but such eggs may be too large or thick-shelled to identify the full complement of potential predators. We compared predation events and predators of Japanese Quail and smaller House Sparrow (

  7. Political Predation and Economic Development

    OpenAIRE

    Azam, Jean-Paul; Bates, Robert H; Biais, Bruno

    2005-01-01

    Economic growth occurs as resources are reallocated from the traditional sector to the more productive modern sector. Yet, the latter is more vulnerable to political predation. Hence, political risk hinders development. We analyse a politico-economic game between citizens and governments, whose type (benevolent or predatory) is unknown to the citizens. In equilibrium, opportunistic governments mix between predation and restraint. As long as restraint is observed, political expectations improv...

  8. Inferring predator behavior from attack rates on prey-replicas that differ in conspicuousness.

    Science.gov (United States)

    Stuart, Yoel E; Dappen, Nathan; Losin, Neil

    2012-01-01

    Behavioral ecologists and evolutionary biologists have long studied how predators respond to prey items novel in color and pattern. Because a predatory response is influenced by both the predator's ability to detect the prey and a post-detection behavioral response, variation among prey types in conspicuousness may confound inference about post-prey-detection predator behavior. That is, a relatively high attack rate on a given prey type may result primarily from enhanced conspicuousness and not predators' direct preference for that prey. Few studies, however, account for such variation in conspicuousness. In a field experiment, we measured predation rates on clay replicas of two aposematic forms of the poison dart frog Dendrobates pumilio, one novel and one familiar, and two cryptic controls. To ask whether predators prefer or avoid a novel aposematic prey form independently of conspicuousness differences among replicas, we first modeled the visual system of a typical avian predator. Then, we used this model to estimate replica contrast against a leaf litter background to test whether variation in contrast alone could explain variation in predator attack rate. We found that absolute predation rates did not differ among color forms. Predation rates relative to conspicuousness did, however, deviate significantly from expectation, suggesting that predators do make post-detection decisions to avoid or attack a given prey type. The direction of this deviation from expectation, though, depended on assumptions we made about how avian predators discriminate objects from the visual background. Our results show that it is important to account for prey conspicuousness when investigating predator behavior and also that existing models of predator visual systems need to be refined.

  9. Inferring predator behavior from attack rates on prey-replicas that differ in conspicuousness.

    Directory of Open Access Journals (Sweden)

    Yoel E Stuart

    Full Text Available Behavioral ecologists and evolutionary biologists have long studied how predators respond to prey items novel in color and pattern. Because a predatory response is influenced by both the predator's ability to detect the prey and a post-detection behavioral response, variation among prey types in conspicuousness may confound inference about post-prey-detection predator behavior. That is, a relatively high attack rate on a given prey type may result primarily from enhanced conspicuousness and not predators' direct preference for that prey. Few studies, however, account for such variation in conspicuousness. In a field experiment, we measured predation rates on clay replicas of two aposematic forms of the poison dart frog Dendrobates pumilio, one novel and one familiar, and two cryptic controls. To ask whether predators prefer or avoid a novel aposematic prey form independently of conspicuousness differences among replicas, we first modeled the visual system of a typical avian predator. Then, we used this model to estimate replica contrast against a leaf litter background to test whether variation in contrast alone could explain variation in predator attack rate. We found that absolute predation rates did not differ among color forms. Predation rates relative to conspicuousness did, however, deviate significantly from expectation, suggesting that predators do make post-detection decisions to avoid or attack a given prey type. The direction of this deviation from expectation, though, depended on assumptions we made about how avian predators discriminate objects from the visual background. Our results show that it is important to account for prey conspicuousness when investigating predator behavior and also that existing models of predator visual systems need to be refined.

  10. Growth, uniformity, local responsiveness, and system-wide adaptation in multiunit franchising

    OpenAIRE

    Boulay, Jacques; Caemmerer, Barbara; Evanschitzky, Heiner; Duniach, Krista

    2016-01-01

    Using the resource-based view framework, we investigate the link between multiunit franchising (MUF) and performance on four key challenges in franchise chain management: growth, uniformity, local responsiveness, and system-wide adaptation. Our findings support the assertion that system growth is positively related to MUF rate within a system, in particular in relation to geographic expansion. Interestingly, while uniformity does not seem to be related to MUF rate, we find marginal support fo...

  11. Integrative review of benefit levers' characteristics for system-wide spread of best healthcare practices.

    Science.gov (United States)

    ten Ham, Wilma; Minnie, Karin; van der Walt, Christa

    2016-01-01

    To critically analyse the characteristics of the benefit levers that are required for effective system-wide spread of evidence-based practice. Evidence-based nursing practice is the cornerstone of quality patient care and merits system-wide implementation. Achieving system-wide spread of evidence-based innovations requires adoption of four benefit levers (the facilitators for spreading innovations), conceptualized by Edwards and Grinspun: alignment, leadership for change, permeation plans and supporting and reinforcing structures. Although these concepts have been explored and described in primary studies, they were only recently identified as benefit levers and their characteristics have not been reviewed in the context of health care using an integrative literature review. An integrative literature review using an adapted Whittemore and Knafl design. A comprehensive search using multiple sites such as Scopus, EBSCOhost, ProQuest, ScienceDirect, Cochrane Library, Nexus, SAePublications, Sabinet, Google Scholar and grey literature was conducted (January-March 2012) and updated (December 2014). After reading the abstracts, titles and full-text articles, forty (N = 40) research and non-research documents met the inclusion criteria. Thirty-five documents remained after critical appraisal. A systematic approach was used to analyse and synthesize the data and formulate concluding statements. Data revealed characteristics about alignment (personal, organizational and contextual attributes), permeation plans (phases), leadership for change (types, strategies, position, attitude and support) and supporting and reinforcing structures (types and requirements). Benefit levers should be used to promote the spread of evidence-based practices. However, more studies concerning benefit levers, specifically regarding 'alignment' and 'permeation plans', are required to promote system-wide spread of best healthcare practices. © 2015 John Wiley & Sons Ltd.

  12. Coral reef fish rapidly learn to identify multiple unknown predators upon recruitment to the reef.

    Directory of Open Access Journals (Sweden)

    Matthew D Mitchell

    Full Text Available Organisms often undergo shifts in habitats as their requirements change with ontogeny.Upon entering a new environment, it is vitally important to be able to rapidly assess predation risk. Predation pressure should selectively promote mechanisms that enable the rapid identification of novel predators. Here we tested the ability of a juvenile marine fish to simultaneously learn the identity of multiple previously unknown predators. Individuals were conditioned with a 'cocktail' of novel odours (from two predators and two non-predators paired with either a conspecific alarm cue or a saltwater control and then tested for recognition of the four odours individually and two novel odours (one predator and one non-predator the following day. Individuals conditioned with the 'cocktail' and alarm cue responded to the individual 'cocktail' odours with an antipredator response compared to controls. These results demonstrate that individuals acquire recognition of novel odours and that the responses were not due to innate recognition of predators or due to a generalised response to novel odours. Upon entering an unfamiliar environment prey species are able to rapidly assess the risk of predation, enhancing their chances of survival, through the assessment of chemical stimuli.

  13. Interaction between two predator mites of Tetranychus urticae koch (Acariformes: Tetranychidae) in laboratory

    International Nuclear Information System (INIS)

    Arguelles R, Angelica; Plazas, Natali; Bustos R, Alexander; Cantor R, Fernando; Rodriguez, Daniel; Hilarion, Alejandra

    2013-01-01

    Tetranychus urticae (Acari: Tetranychidae) is an important pest of ornamental crops. A species of predatory mite used for its control is Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytoseiidae). This research proposes the use of joint releases of the two cited predators for the control of the pest. Several situations leading to interaction were evaluated: high density of one predator and low density of the other one, being the prey present or absent. The scenario with predators in equal densities and in presence of the prey was also evaluated. When a predator is in higher density and the prey present, the predator with the lower density increases the interference with the consumption of preys by the predator with higher density. On the other hand, when the consumption of T. urticae reduces, intraguild predation increases. P. persimilis shows intraguild predation behavior when t. urticae is absent and N. californicus is present, consuming all developmental stages of its conspecific. Instead, N. californicus only feed on conspecific larvae, when the fitofagous was absent and P. persimilis was present. When the two predators were present in the same assemblage and with the same population density, the quantity of T. urticae consumed by both of them was not higher than the consumed one when each predator was present in separate way.

  14. Effects of parents and Brown-headed Cowbirds (Molothrus ater) on nest predation risk for a songbird

    Science.gov (United States)

    Latif, Quresh S; Heath, Sacha K; Rotenberry, John T

    2012-01-01

    Nest predation limits avian fitness, so ornithologists study nest predation, but they often only document patterns of predation rates without substantively investigating underlying mechanisms. Parental behavior and predator ecology are two fundamental drivers of predation rates and patterns, but the role of parents is less certain, particularly for songbirds. Previous work reproduced microhabitat-predation patterns experienced by Yellow Warblers (Setophaga petechia) in the Mono Lake basin at experimental nests without parents, suggesting that these patterns were driven by predator ecology rather than predator interactions with parents. In this study, we further explored effects of post-initiation parental behavior (nest defense and attendance) on predation risk by comparing natural versus experimental patterns related to territory density, seasonal timing of nest initiation, and nest age. Rates of parasitism by Brown-headed Cowbirds (Molothrus ater) were high in this system (49% nests parasitized), so we also examined parasitism-predation relationships. Natural nest predation rates (NPR) correlated negatively with breeding territory density and nonlinearly (U-shaped relationship) with nest-initiation timing, but experimental nests recorded no such patterns. After adjusting natural-nest data to control for these differences from experimental nests other than the presence of parents (e.g., defining nest failure similarly and excluding nestling-period data), we obtained similar results. Thus, parents were necessary to produce observed patterns. Lower natural NPR compared with experimental NPR suggested that parents reduced predation rates via nest defense, so this parental behavior or its consequences were likely correlated with density or seasonal timing. In contrast, daily predation rates decreased with nest age for both nest types, indicating this pattern did not involve parents. Parasitized nests suffered higher rates of partial predation but lower rates of

  15. Nest predation risk explains variation in avian clutch size

    Science.gov (United States)

    Dillon, Kristen G.; Conway, Courtney J.

    2018-01-01

    Questions about the ecological drivers of, and mechanistic constraints on, productivity have driven research on life-history evolution for decades. Resource availability and offspring mortality are considered among the 2 most important influences on the number of offspring per reproductive attempt. We used a factorial experimental design to manipulate food abundance and perceived offspring predation risk in a wild avian population (red-faced warblers; Cardellina rubrifrons) to identify the mechanistic cause of variation in avian clutch size. Additionally, we tested whether female quality helped explain the extant variation in clutch size. We found no support for the Food Limitation or Female Quality Hypotheses, but we did find support for both predictions of the Nest Predation Risk Hypothesis. Females that experienced an experimentally heightened perception of offspring predation risk responded by laying a smaller clutch than females in the control group. Additionally, predation rates at artificial nests were highest where red-faced warbler clutch size was smallest (at high elevations). Life-history theory predicts that an individual should invest less in reproduction when high nest predation risk reduces the likely benefit from that nesting attempt and, indeed, we found that birds exhibit phenotypic plasticity in clutch size by laying fewer eggs in response to increasing nest predation risk.

  16. Developing a predation index and evaluating ways to reduce salmonid losses to predation in the Columbia River basin

    International Nuclear Information System (INIS)

    Nigro, A.A.

    1990-12-01

    We report our results of studies to develop a predation index and evaluate ways to reduce juvenile salmonid losses to predation in the Columbia River Basin. Study objectives of each were: develop an index to estimate predation losses of juvenile salmonids (Oncorhynchus spp) in reservoirs throughout the Columbia River Basin, describe the relationships among predator-caused mortality of juvenile salmonids and physical and biological variables, examine the feasibility of developing bounty, commercial or recreational fisheries on northern squawfish (Ptychocheilus oregonensis) and develop a plan to evaluate the efficacy of predator control fisheries; determine the economic feasibility of developing bounty and commercial fisheries for northern squawfish, assist ODFW with evaluating the economic feasibility of recreational fisheries for northern squawfish and assess the economic feasibility of utilizing northern squawfish, carp (Cyprinus carpio) and suckers (Castostomus spp) in multispecies fisheries; evaluate commercial technology of various fishing methods for harvesting northern squawfish in Columbia River reservoirs and field test the effectiveness of selected harvesting systems, holding facilities and transportation systems; and modify the existing Columbia River Ecosystem Model (CREM) to include processes necessary to evaluate effects of removing northern squawfish on their population size structure and abundance, document the ecological processes, mathematical equations and computer (FORTRAN) programming of the revised version of CREM and conduct systematic analyses of various predator removal scenarios, using revised CREM to generate the simulations. Individual reports are indexed separately

  17. Effects of sublethal entrainment stresses on the vulnerability of juvenile bluegill sunfish to predation

    Energy Technology Data Exchange (ETDEWEB)

    Cada, G.F.; Solomon, J.A.; Loar, J.M.

    1981-07-01

    This report provides a review of literature concerning the effects of sublethal stresses on predator-prey interactions in aquatic systems. In addition, the results of a preliminary laboratory study of the susceptibility of entrainment-stressed juvenile bluegill to striped bass predation are presented. Juvenile bluegill were exposed to thermal and physical entrainment stresses in the ORNL Power Plant Simulator and subsequently to predation by juvenile striped bass in a susceptibility to predation experimental design. None of the entrainment stresses tested (thermal shock, physical effects of pump and condenser passage, and combination of thermal and physical shock) was found to significantly increase predation rates as compared to controls, and no significant interactions between thermal and physical stresses were detected. The validity of laboratory predator-prey studies and the application of indirect mortality information for setting protective standards and predicting environmental impacts are discussed.

  18. Selective attention in peacocks during predator detection.

    Science.gov (United States)

    Yorzinski, Jessica L; Platt, Michael L

    2014-05-01

    Predation can exert strong selective pressure on the evolution of behavioral and morphological traits in birds. Because predator avoidance is key to survival and birds rely heavily on visual perception, predation may have shaped avian visual systems as well. To address this question, we examined the role of visual attention in antipredator behavior in peacocks (Pavo cristatus). Peacocks were exposed to a model predator while their gaze was continuously recorded with a telemetric eye-tracker. We found that peacocks spent more time looking at and made more fixations on the predator compared to the same spatial location before the predator was revealed. The duration of fixations they directed toward conspecifics and environmental features decreased after the predator was revealed, indicating that the peacocks were rapidly scanning their environment with their eyes. Maximum eye movement amplitudes and amplitudes of consecutive saccades were similar before and after the predator was revealed. In cases where conspecifics detected the predator first, peacocks appeared to learn that danger was present by observing conspecifics' antipredator behavior. Peacocks were faster to detect the predator when they were fixating closer to the area where the predator would eventually appear. In addition, pupil size increased after predator exposure, consistent with increased physiological arousal. These findings demonstrate that peacocks selectively direct their attention toward predatory threats and suggest that predation has influenced the evolution of visual orienting systems.

  19. System-wide analysis of health financing equity in Cambodia: a study protocol.

    Science.gov (United States)

    Wiseman, Virginia; Asante, Augustine; Ir, Por; Limwattananon, Supon; Jacobs, Bart; Liverani, Marco; Hayen, Andrew; Jan, Stephen

    2017-01-01

    To assess progress towards universal health coverage, countries like Cambodia require evidence on equity in the financing and distribution of healthcare benefits. This evidence must be based on a system-wide perspective that recognises the complex roles played by the public and private sectors in many contemporary healthcare systems. To undertake a system-wide assessment of who pays and who benefits from healthcare in Cambodia and to understand the factors influencing this. Financing and benefit incidence analysis will be used to calculate the financing burden and distribution of healthcare benefits across socioeconomic groups. Data on healthcare usage, living standards and self-assessed health status will be derived from a cross-sectional household survey designed for this study involving a random sample of 5000 households. This will be supplemented by secondary data from the Cambodian National Health Accounts 2014 and the Cambodian Socioeconomic Survey (CSES) 2014. We will also collect qualitative data through focus group discussions and in-depth interviews to inform the interpretation of the quantitative analyses. This study will produce previously unavailable information on who pays for, and who benefits from, health services across the entire health system of Cambodia. This evidence comes at a critical juncture in healthcare reform in South-East Asia with so many countries seeking guidance on the equity impact of their current financing arrangements that include a complex mix of public and private providers.

  20. Developing educational leaders: A partnership between two universities to bring about system-wide change

    Directory of Open Access Journals (Sweden)

    Suraiya R Naicker

    2015-05-01

    Full Text Available This study investigated a system-wide change strategy in a South African school district, which sought to build the leadership capacity of principals and district officials to improve instruction. The three-year venture was called the Leadership for Learning Programme (LLP. A distinctive feature of the LLP was that it was based on a partnership between two universities, a local one with understanding of the local context of schools, and an international institution, which brought international expertise, experience and repute/branding. Both universities had a shared vision to contribute to the ailing South African school landscape by using leadership development to leverage change. The LLP was implemented in a single school district, where the overall learner performance was unsatisfactory. A qualitative approach was used to research this change intervention. One of the main findings was that collaboration between principals collectively and district officials, as well as among principals, was lacking. It is recommended that collaborative structures such as professional learning communities, networks and teams are established to reduce isolation and fragmented work practices in the school district. This may speed up system-wide change towards improved learner performance.

  1. Clinical leadership development requires system-wide interventions, not just courses.

    Science.gov (United States)

    Swanwick, Tim; McKimm, Judy

    2012-04-01

    This is the third article in a series on clinical leadership and medical education. In the first two articles in this series we looked at the nature of leadership and examined professional outcomes, standards and competency frameworks from around the world that describe what it is we are trying to instil in medical students and doctors in postgraduate training. In this article we explore current trends in leadership development and describe broad approaches to clinical leadership development, highlighting those strategies that are likely to be more (or less) successful. Narrative review and discussion. Key trends and principles for best practice in leadership development are identified. Recommendations for the design of leadership development programmes are made alongside suggestions for system-wide interventions. Leadership development should be both drawn from and embedded in work-based activities, and as far as possible linked to the development of the organisation as a whole. Intervening at the level of the individual may not be enough. System-wide interventions are required that actively engage students and trainees in the practices of management and leadership, and involve them early. © Blackwell Publishing Ltd 2012.

  2. Selective Predation of a Stalking Predator on Ungulate Prey

    Science.gov (United States)

    Heurich, Marco; Zeis, Klara; Küchenhoff, Helmut; Müller, Jörg; Belotti, Elisa; Bufka, Luděk; Woelfing, Benno

    2016-01-01

    Prey selection is a key factor shaping animal populations and evolutionary dynamics. An optimal forager should target prey that offers the highest benefits in terms of energy content at the lowest costs. Predators are therefore expected to select for prey of optimal size. Stalking predators do not pursue their prey long, which may lead to a more random choice of prey individuals. Due to difficulties in assessing the composition of available prey populations, data on prey selection of stalking carnivores are still scarce. We show how the stalking predator Eurasian lynx (Lynx lynx) selects prey individuals based on species identity, age, sex and individual behaviour. To address the difficulties in assessing prey population structure, we confirm inferred selection patterns by using two independent data sets: (1) data of 387 documented kills of radio-collared lynx were compared to the prey population structure retrieved from systematic camera trapping using Manly’s standardized selection ratio alpha and (2) data on 120 radio-collared roe deer were analysed using a Cox proportional hazards model. Among the larger red deer prey, lynx selected against adult males—the largest and potentially most dangerous prey individuals. In roe deer lynx preyed selectively on males and did not select for a specific age class. Activity during high risk periods reduced the risk of falling victim to a lynx attack. Our results suggest that the stalking predator lynx actively selects for size, while prey behaviour induces selection by encounter and stalking success rates. PMID:27548478

  3. Selective Predation of a Stalking Predator on Ungulate Prey.

    Directory of Open Access Journals (Sweden)

    Marco Heurich

    Full Text Available Prey selection is a key factor shaping animal populations and evolutionary dynamics. An optimal forager should target prey that offers the highest benefits in terms of energy content at the lowest costs. Predators are therefore expected to select for prey of optimal size. Stalking predators do not pursue their prey long, which may lead to a more random choice of prey individuals. Due to difficulties in assessing the composition of available prey populations, data on prey selection of stalking carnivores are still scarce. We show how the stalking predator Eurasian lynx (Lynx lynx selects prey individuals based on species identity, age, sex and individual behaviour. To address the difficulties in assessing prey population structure, we confirm inferred selection patterns by using two independent data sets: (1 data of 387 documented kills of radio-collared lynx were compared to the prey population structure retrieved from systematic camera trapping using Manly's standardized selection ratio alpha and (2 data on 120 radio-collared roe deer were analysed using a Cox proportional hazards model. Among the larger red deer prey, lynx selected against adult males-the largest and potentially most dangerous prey individuals. In roe deer lynx preyed selectively on males and did not select for a specific age class. Activity during high risk periods reduced the risk of falling victim to a lynx attack. Our results suggest that the stalking predator lynx actively selects for size, while prey behaviour induces selection by encounter and stalking success rates.

  4. A Generalist Protist Predator Enables Coexistence in Multitrophic Predator-Prey Systems Containing a Phage and the Bacterial Predator Bdellovibrio

    Directory of Open Access Journals (Sweden)

    Julia Johnke

    2017-10-01

    Full Text Available Complex ecosystems harbor multiple predators and prey species whose direct and indirect interactions are under study. In particular, the combined effects of predator diversity and resource preference on prey removal are not known. To understand the effect of interspecies interactions, combinations of micro-predators—i.e., protists (generalists, predatory bacteria (semi-specialists, and phages (specialists—and bacterial prey were tracked over a 72-h period in miniature membrane bioreactors. While specialist predators alone drove their preferred prey to extinction, the inclusion of a generalist resulted in uniform losses among prey species. Most importantly, presence of a generalist predator enabled coexistence of all predators and prey. As the generalist predator also negatively affected the other predators, we suggest that resource partitioning between predators and the constant availability of resources for bacterial growth due to protist predation stabilizes the system and keeps its diversity high. The appearance of resistant prey strains and subsequent evolution of specialist predators unable to infect the ancestral prey implies that multitrophic communities are able to persist and stabilize themselves. Interestingly, the appearance of BALOs and phages unable to infect their prey was only observed for the BALO or phage in the absence of additional predators or prey species indicating that competition between predators might influence coevolutionary dynamics.

  5. Interactive effects of prey refuge and additional food for predator in a diffusive predator-prey system

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S.K.

    2017-01-01

    Additional food for predators has been considered as one of the best established techniques in integrated pest management and biological conservation programs. In natural systems, there are several other factors, e.g., prey refuge, affect the success of pest control. In this paper, we analyze...... of Turing patterns such as stripes, spots, holes, and mixtures of them are obtained. It is found that the supply of additional food to the predator is unable to control the prey (pest) population when prey refuge is high. Moreover, when both prey refuge and additional food are low, spatial distribution...

  6. Predation risk affects growth and reproduction of an invasive snail and its lethal effect depends on prey size

    Science.gov (United States)

    Guo, Jing; Martín, Pablo R.; Zhang, Chunxia

    2017-01-01

    The behavior of invasive species under predation risk has been studied extensively, but their growth and reproductive responses have rarely been investigated. We conducted experiments with juveniles and adults of the invasive freshwater snail Pomacea canaliculata, and we observed changes in growth and reproduction in response to predation risk from a caged predator (Trachemys scripta elegans). P. canaliculata produced eggs earlier in the presence of predators and injured conspecifics compared with the control group (no risk), although the total number of egg masses laid by per female was exceeded by that of the controls after 15 days. Egg hatching success noticeably decreased under predation risk, and the incubation period was significantly prolonged; however, the oviposition height of the snails was not affected. A lethal effect of predation risk was detected in juvenile snails but not in adults. The growth of juvenile P. canaliculata was inhibited under predation risk, probably due to a reduction in food intake. Adult females exhibited a greater reduction in growth under predation risk than males, which likely resulted in part from the high reproductive investment of females in egg laying. These results indicate that P. canaliculata snails under predation risk face a trade-off between predator avoidance and growth and reproduction, where the lethal effect of predation risk is linked to the size of the prey. PMID:29136660

  7. Predation risk affects growth and reproduction of an invasive snail and its lethal effect depends on prey size.

    Directory of Open Access Journals (Sweden)

    Jing Guo

    Full Text Available The behavior of invasive species under predation risk has been studied extensively, but their growth and reproductive responses have rarely been investigated. We conducted experiments with juveniles and adults of the invasive freshwater snail Pomacea canaliculata, and we observed changes in growth and reproduction in response to predation risk from a caged predator (Trachemys scripta elegans. P. canaliculata produced eggs earlier in the presence of predators and injured conspecifics compared with the control group (no risk, although the total number of egg masses laid by per female was exceeded by that of the controls after 15 days. Egg hatching success noticeably decreased under predation risk, and the incubation period was significantly prolonged; however, the oviposition height of the snails was not affected. A lethal effect of predation risk was detected in juvenile snails but not in adults. The growth of juvenile P. canaliculata was inhibited under predation risk, probably due to a reduction in food intake. Adult females exhibited a greater reduction in growth under predation risk than males, which likely resulted in part from the high reproductive investment of females in egg laying. These results indicate that P. canaliculata snails under predation risk face a trade-off between predator avoidance and growth and reproduction, where the lethal effect of predation risk is linked to the size of the prey.

  8. A cross-system meta-analysis reveals coupled predation effects on prey biomass and diversity

    NARCIS (Netherlands)

    Katano, Izumi; Doi, Hideyuki; Eriksson, Britas Klemens; Hillebrand, Helmut

    2015-01-01

    Predator diversity and abundance are under strong human pressure in all types of ecosystems. Whereas predator potentially control standing biomass and species interactions in food webs, their effects on prey biomass and especially prey biodiversity have not yet been systematically quantified. Here,

  9. Water mites: predators and parasites

    OpenAIRE

    Gledhill, T.

    1985-01-01

    The majority of water mites found in freshwater belong to the Hydrachnellae, a group which exhibit striking morphological diversity. This paper reviews work on the structure, morphology and taxonomy. The role of water mites as predators, their life history and their parasitic associations with aquatic insect or freshwater mollusc hosts is discussed along with the distribution of water mites in the British Isles.

  10. Role of intraguild predation in aphidophagous guilds

    Czech Academy of Sciences Publication Activity Database

    Hemptinne, J. L.; Magro, A.; Saladin, C.; Dixon, Anthony F. G.

    2012-01-01

    Roč. 136, č. 3 (2012), s. 161-170 ISSN 0931-2048 Institutional support: RVO:67179843 Keywords : aphidophagous guilds * cost of intraguild predation * interspecific predation * intraguild predation * ladybird beetles * omnivory Subject RIV: EH - Ecology, Behaviour Impact factor: 1.560, year: 2012

  11. Predation by Red Foxes (Vulpes vulpes at an Outdoor Piggery

    Directory of Open Access Journals (Sweden)

    Patricia A. Fleming

    2016-10-01

    Full Text Available Outdoor pig operations are an alternative to intensive systems of raising pigs; however for the majority of outdoor pork producers, issues of biosecurity and predation control require significant management and (or capital investment. Identifying and quantifying predation risk in outdoor pork operations has rarely been done, but such data would be informative for these producers as part of their financial and logistical planning. We quantified potential impact of fox predation on piglets bred on an outdoor pork operation in south-western Australia. We used remote sensor cameras at select sites across the farm as well as above farrowing huts to record interactions between predators and pigs (sows and piglets. We also identified animal losses from breeding records, calculating weaning rate as a proportion of piglets born. Although only few piglets were recorded lost to fox predation (recorded by piggery staff as carcasses that are “chewed”, it is likely that foxes were contributing substantially to the 20% of piglets that were reported “missing”. Both sets of cameras recorded a high incidence of fox activity; foxes appeared on camera soon after staff left for the day, were observed tracking and taking live piglets (despite the presence of sows, and removed dead carcasses from in front of the cameras. Newly born and younger piglets appeared to be the most vulnerable, especially when they are born out in the paddock, but older piglets were also lost. A significant ( p = 0.001 effect of individual sow identification on the weaning rate, but no effect of sow age (parity, suggests that individual sow behavior towards predators influences predation risk for litters. We tracked the movement of piglet carcasses by foxes, and confirmed that foxes make use of patches of native vegetation for cover, although there was no effect of paddock, distance to vegetation, or position on the farm on weaning rate. Trials with non-toxic baits reveal high levels

  12. How much Dillenia indica seed predation occurs from Asian elephant dung?

    Science.gov (United States)

    Sekar, Nitin; Giam, Xingli; Sharma, Netra Prasad; Sukumar, Raman

    2016-01-01

    Elephants are thought to be effective seed dispersers, but research on whether elephant dung effectively protects seeds from seed predation is lacking. Quantifying rates of seed predation from elephant dung will facilitate comparisons between elephants and alternative dispersers, helping us understand the functional role of megaherbivores in ecosystems. We conducted an experiment to quantify the predation of Dillenia indica seeds from elephant dung in Buxa Reserve, India from December 2012 to April 2013. Using dung boluses from the same dung pile, we compared the number of seeds in boluses that are a) opened immediately upon detection (control boluses), b) made available only to small seed predators (seed predators and secondary dispersers for 1-4 months. Using a model built on this experiment, we estimated that seed predation by small seed predators (most likely ants and termites) destroys between 82.9% and 96.4% of seeds in elephant dung between the time of defecation and the median germination date for D. indica. Exposure to larger seed predators and secondary dispersers did not lead to a significant additional reduction in the number of seeds per dung bolus. Our findings suggest that post-dispersal seed predation by small insects (dispersers of D. indica in a tropical moist forest habitat.

  13. System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells

    Science.gov (United States)

    Nowak, Jacqueline; Ivakov, Alexander; Somssich, Marc; Persson, Staffan; Nikoloski, Zoran

    2017-01-01

    The actin cytoskeleton is an essential intracellular filamentous structure that underpins cellular transport and cytoplasmic streaming in plant cells. However, the system-level properties of actin-based cellular trafficking remain tenuous, largely due to the inability to quantify key features of the actin cytoskeleton. Here, we developed an automated image-based, network-driven framework to accurately segment and quantify actin cytoskeletal structures and Golgi transport. We show that the actin cytoskeleton in both growing and elongated hypocotyl cells has structural properties facilitating efficient transport. Our findings suggest that the erratic movement of Golgi is a stable cellular phenomenon that might optimize distribution efficiency of cell material. Moreover, we demonstrate that Golgi transport in hypocotyl cells can be accurately predicted from the actin network topology alone. Thus, our framework provides quantitative evidence for system-wide coordination of cellular transport in plant cells and can be readily applied to investigate cytoskeletal organization and transport in other organisms. PMID:28655850

  14. The Ecology of Coral Reef Top Predators in the Papahānaumokuākea Marine National Monument

    Directory of Open Access Journals (Sweden)

    Jonathan J. Dale

    2011-01-01

    Full Text Available Coral reef habitats in the Papahānaumokuākea Marine National Monument (PMNM are characterized by abundant top-level predators such as sharks and jacks. The predator assemblage is dominated both numerically and in biomass by giant trevally (Caranx ignobilis and Galapagos sharks (Carcharhinus galapagensis. A lower diversity of predatory teleosts, particularly groupers and snappers, distinguishes the PMNM from other remote, unfished atolls in the Pacific. Most coral reef top predators are site attached to a “home” atoll, but move extensively within these atolls. Abundances of the most common sharks and jacks are highest in atoll fore reef habitats. Top predators within the PMNM forage on a diverse range of prey and exert top-down control over shallow-water reef fish assemblages. Ecological models suggest ecosystem processes may be most impacted by top predators through indirect effects of predation. Knowledge gaps are identified to guide future studies of top predators in the PMNM.

  15. Alien predators are more dangerous than native predators to prey populations

    OpenAIRE

    Salo, Pälvi; Korpimäki, Erkki; Banks, Peter B; Nordström, Mikael; Dickman, Chris R

    2007-01-01

    Alien predators are widely considered to be more harmful to prey populations than native predators. To evaluate this expectation, we conducted a meta-analysis of the responses of vertebrate prey in 45 replicated and 35 unreplicated field experiments in which the population densities of mammalian and avian predators had been manipulated. Our results showed that predator origin (native versus alien) had a highly significant effect on prey responses, with alien predators having an impact double ...

  16. Nonconsumptive effects in a multiple predator system reduce the foraging efficiency of a keystone predator.

    Science.gov (United States)

    Davenport, Jon M; Chalcraft, David R

    2013-09-01

    Many studies have demonstrated that the nonconsumptive effect (NCE) of predators on prey traits can alter prey demographics in ways that are just as strong as the consumptive effect (CE) of predators. Less well studied, however, is how the CE and NCE of multiple predator species can interact to influence the combined effect of multiple predators on prey mortality. We examined the extent to which the NCE of one predator altered the CE of another predator on a shared prey and evaluated whether we can better predict the combined impact of multiple predators on prey when accounting for this influence. We conducted a set of experiments with larval dragonflies, adult newts (a known keystone predator), and their tadpole prey. We quantified the CE and NCE of each predator, the extent to which NCEs from one predator alters the CE of the second predator, and the combined effect of both predators on prey mortality. We then compared the combined effect of both predators on prey mortality to four predictive models. Dragonflies caused more tadpoles to hide under leaf litter (a NCE), where newts spend less time foraging, which reduced the foraging success (CE) of newts. Newts altered tadpole behavior but not in a way that altered the foraging success of dragonflies. Our study suggests that we can better predict the combined effect of multiple predators on prey when we incorporate the influence of interactions between the CE and NCE of multiple predators into a predictive model. In our case, the threat of predation to prey by one predator reduced the foraging efficiency of a keystone predator. Consequently, the ability of a predator to fill a keystone role could be compromised by the presence of other predators.

  17. Learned predation risk management by spider mites

    Directory of Open Access Journals (Sweden)

    Thomas eHackl

    2014-09-01

    Full Text Available Predation is a prime selective force shaping prey behavior. Investment in anti-predator behavior is traded-off against time and energy for other fitness-enhancing activities such as foraging or reproduction. To optimize this benefit/cost trade-off, prey should be able to innately and/or by experience modulate their behavior to the level of predation risk. Here, we assessed learned predation risk management in the herbivorous two-spotted spider mite Tetranychus urticae. We exposed spider mites coming from benign (naïve or high immediate predation risk (experienced environments to latent and/or no risk and assessed their site choice, activity and oviposition. Benign environments were characterized by the absence of any predator cues, high immediate risk environments by killed spider mites, physical presence of the predatory mite Phytoseiulus persimilis and associated chemosensory traces left on the surface, and latent risk environments by only predator traces. In the no-choice experiment both naïve and experienced spider mites laid their first egg later on leaves with than without predator traces. Irrespective of predator traces presence/absence, experienced mites laid their first egg earlier than naïve ones did. Naïve spider mites were more active, indicating higher restlessness, and laid fewer eggs on leaves with predator traces, whereas experienced mites were less active and laid similar numbers of eggs on leaves with and without predator traces. In the choice experiment both naïve and experienced spider mites preferentially resided and oviposited on leaves without predator traces but experienced mites were less active than naïve ones. Overall, our study suggests that spider mites experienced with high predation risk behave bolder under latent risk than naïve spider mites. Since predator traces alone do not indicate immediate risk, we argue that the attenuated anti-predator response of experienced spider mites represents adaptive learned

  18. The Truth About the Internet and Online Predators

    CERN Document Server

    Dingwell, Heath; Peterson, Fred L

    2011-01-01

    To help readers avoid and recognize risky behaviors, The Truth About the Internet and Online Predators explains many of the dangers associated with the Internet. The A-to-Z entries detail the social, legal, and personal risks of Internet use, while personal testimonies and question-and-answer sections provide readers with an inside look at common issues online. Entries include:. Bullies and cyberbullying. Characteristics of online predators. Chat rooms and instant messaging. Internet safety. Parental control. Peers and peer pressure. Phishing and pharming. Privacy issues. Social networking Web

  19. Susceptibility of Select Agents to Predation by Predatory Bacteria

    Directory of Open Access Journals (Sweden)

    Riccardo Russo

    2015-12-01

    Full Text Available Select Agents are microorganisms and toxins considered to be exploitable as biological weapons. Although infections by many Select Agents can be treated by conventional antibiotics, the risk of an emerging or engineered drug resistant strain is of great concern. One group of microorganisms that is showing potential to control drug resistant Gram-negative bacteria are the predatory bacteria from the genera Bdellovibrio spp. and Micavibrio spp. In this study, we have examined the ability of Bdellovibrio bacteriovorus (B. bacteriovorus strain 109J, HD100 and Micavibrio aeruginosavorus (M. aeruginosavorus ARL-13 to prey on a variety of Select Agents. Our findings demonstrate that B. bacteriovorus and M. aeruginosavorus are able to prey efficiently on Yersinia pestis and Burkholderia mallei. Modest predation was also measured in co-cultures of B. bacteriovorus and Francisella tularensis. However, neither of the predators showed predation when Burkholderia pseudomallei and Brucella melitensis were used as prey.

  20. Evolution determines how global warming and pesticide exposure will shape predator-prey interactions with vector mosquitoes.

    Science.gov (United States)

    Tran, Tam T; Janssens, Lizanne; Dinh, Khuong V; Op de Beeck, Lin; Stoks, Robby

    2016-07-01

    How evolution may mitigate the effects of global warming and pesticide exposure on predator-prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4°C warming and exposure to the pesticide endosulfan shape the predation on Culex pipiens mosquitoes by damselfly predators from replicated low- and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey. Possibly, under warming escape speeds of the mosquitoes increased more than the attack efficiency of the predators. Endosulfan imposed mortality and induced behavioral changes (including increased filtering and thrashing and a positional shift away from the bottom) in mosquito larvae. Although the pesticide was only lethal for the mosquitoes, it reduced predation rates by the low-latitude predators. This can be explained by the combination of the evolution of a faster life history and associated higher vulnerabilities to the pesticide (in terms of growth rate and lowered foraging activity) in the low-latitude predators and pesticide-induced survival selection in the mosquitoes. Our results suggest that predation rates on mosquitoes at the high latitude will be reduced under warming unless predators evolve toward the current low-latitude phenotype or low-latitude predators move poleward.

  1. Predation Efficiency of Nile Catfish, Clarias gariepinus (Burchell, 1822) on Fry Nile Tilapia, Oreochromis niloticus (Linnaeus, 1758): Effect of Prey Density, Predator Size, Feed Supplementation and Submerged Vegetation

    OpenAIRE

    *(1), Mohsen Abdel-Tawwab

    2014-01-01

    The overpopulation of tilapia in confined ponds is an obvious problem, and causes stunted growth due to the shortage of natural food, particularly in semi-intensive culture. However, the control of tilapias population by predator culture has been practiced worldwide. The factors affecting predation efficiency of Nile catfish, Clarias gariepinus (B.) for controlling the overpopulation of Nile tilapia, Oreochromis niloticus (L.) were studied in four indoor experiments. Nile catfish with differe...

  2. Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Yunger, John A.; /Northern Illinois U. /Northern Illinois U.

    1996-01-01

    Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avian vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus Pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers wer 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in dits. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for P. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on P. leucopus spatial patterns mediated through M. Pennsylvanicus. The role of food limitation was studied using natural and manipulative

  3. Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Yunger, John A. [Northern Illinois U.

    1996-01-01

    Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avian vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers were 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in diets. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for £.. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on .f.. leucopus spatial patterns mediated through M. pennsylvanicus. The role of food limitation was studied using natural and manipulative

  4. The effect of cat Felis catus predation on three breeding ...

    African Journals Online (AJOL)

    Breeding success of Pterodroma macroptera, Procellaria aequinoctialis and Pachyptila vittata salvini in three cat-free and three control areas were used to evaluate the effects of cat Felis catus predation on the avifauna of Marion Island. Breeding success of all three species was significantly higher in the combined cat-free ...

  5. Predator efficiency reconsidered for a ladybird-aphid system

    Czech Academy of Sciences Publication Activity Database

    Kindlmann, Pavel; Yasuda, H.; Kajita, Y.; Sato, S.; Dixon, Anthony F. G.

    2015-01-01

    Roč. 3, mar (2015), s. 27 ISSN 2296-701X R&D Projects: GA MŠk(CZ) LO1415; GA ČR GB14-36098G Institutional support: RVO:67179843 Keywords : biological control * generation time ratio * population dynamics * predator-prey systems * ladybirds * aphids Subject RIV: EH - Ecology, Behaviour

  6. Laricobius osakensis, a hemlock wooly adelgid predator from Japan

    Science.gov (United States)

    Ashley Lamb; Michael E. Montgomery; Ligia Cota Viera; Shigehiko Shiyake; Scott. Salom

    2011-01-01

    The approach for the biological control of hemlock woolly adelgid (HWA), Adelges tsugae Annand, has been to release multiple species of host-specific predators in order to reduce HWA populations below damaging thresholds. Beetles in the genus Laricobius prey excusively on adelgids and have life histories matched closely to that of...

  7. Cannibalism and intraguild predation of eggs within a diverse predator assemblage.

    Science.gov (United States)

    Takizawa, Tadashi; Snyder, William E

    2011-02-01

    Greater biodiversity among aphid predators sometimes leads to greater predator reproductive success. This could occur if cannibalism of predator eggs is consistently stronger than intraguild predation, such that diversity dilutes cannibalism risk when total predator densities remain constant across diversity levels. We compared the frequency of cannibalism versus intraguild predation by adult predators of four species [the lady beetles Coccinella septempunctata L. and Hippodamia convergens Guerin-Meneville, and the predatory bugs Geocoris bullatus (Say) and Nabis alternatus Parshley] on the eggs of three predator species (all of these predators but Nabis). For both coccinellid species, egg predation averaged across all intraguild predators was less frequent than cannibalism. In contrast, Geocoris eggs were generally more likely to be consumed by intraguild predators than by conspecifics. Closer inspection of the data revealed that Geocoris consistently consumed fewer eggs than the other species, regardless of egg species. Indeed, for lady beetle eggs it was relatively infrequent egg predation by Geocoris that brought down the average across all heterospecific predators, masking the fact that adults of the two lady beetles were no more likely to act as egg cannibals than as intraguild predators. Nabis ate eggs of the two beetles at approximately equal rates, but rarely ate Geocoris eggs. Female predators generally consumed more eggs than did males, but this did not alter any of the patterns described above. Altogether, our results suggest that species-specific differences in egg predation rates determined the relative intensity of egg intraguild-predation versus cannibalism, rather than any more general trend for egg cannibalism to always exceed intraguild predation. © 2011 Entomological Society of America

  8. Invasive predators and global biodiversity loss.

    Science.gov (United States)

    Doherty, Tim S; Glen, Alistair S; Nimmo, Dale G; Ritchie, Euan G; Dickman, Chris R

    2016-10-04

    Invasive species threaten biodiversity globally, and invasive mammalian predators are particularly damaging, having contributed to considerable species decline and extinction. We provide a global metaanalysis of these impacts and reveal their full extent. Invasive predators are implicated in 87 bird, 45 mammal, and 10 reptile species extinctions-58% of these groups' contemporary extinctions worldwide. These figures are likely underestimated because 23 critically endangered species that we assessed are classed as "possibly extinct." Invasive mammalian predators endanger a further 596 species at risk of extinction, with cats, rodents, dogs, and pigs threatening the most species overall. Species most at risk from predators have high evolutionary distinctiveness and inhabit insular environments. Invasive mammalian predators are therefore important drivers of irreversible loss of phylogenetic diversity worldwide. That most impacted species are insular indicates that management of invasive predators on islands should be a global conservation priority. Understanding and mitigating the impact of invasive mammalian predators is essential for reducing the rate of global biodiversity loss.

  9. Identification and evaluation of semiochemicals for the biological control of the beetle Omorgus suberosus (F.) (Coleoptera: Trogidae), a facultative predator of eggs of the sea turtle Lepidochelys olivacea (Eschscholtz).

    Science.gov (United States)

    Cortez, Vieyle; Verdú, José R; Ortiz, Antonio J; Halffter, Gonzalo

    2017-01-01

    The beetle Omorgus suberosus (F.) is a facultative predator of eggs of the olive ridley turtle Lepidochelys olivacea (Eschscholtz). Laboratory and field investigations were conducted in order to characterize volatile attractants of O. suberosus and to explore the potential for application of these volatiles in a selective mass trapping method. Headspace sorptive extraction (HSSE) coupled to thermo-desorption gas chromatography-mass spectrometry (TD-GC-MS) analysis of the volatile constituents from beetles or turtle nests revealed 24 potential compounds. However, electroantennographic (EAG) measurements revealed antennal sensitivity only to indole, linoleic acid, trimethylamine, dimethyl sulphide, dimethyl disulphide and ammonia. Behavioural tests showed that these compounds are highly attractive to O. suberosus. Field trapping experiments revealed that indole and ammonia were more attractive than the other volatile compounds and showed similar attractiveness to that produced by conventional baits (chicken feathers). The use of a combined bait of indole and NH3 would therefore be the most effective trap design. The data presented are the first to demonstrate effective massive capture of O. suberosus using an attractant-based trapping method. These findings have potential for the development of an efficient mass trapping method for control of this beetle as part of efforts towards conservation of L. olivacea at La Escobilla in Oaxaca, Mexico.

  10. Identification and evaluation of semiochemicals for the biological control of the beetle Omorgus suberosus (F. (Coleoptera: Trogidae, a facultative predator of eggs of the sea turtle Lepidochelys olivacea (Eschscholtz.

    Directory of Open Access Journals (Sweden)

    Vieyle Cortez

    Full Text Available The beetle Omorgus suberosus (F. is a facultative predator of eggs of the olive ridley turtle Lepidochelys olivacea (Eschscholtz. Laboratory and field investigations were conducted in order to characterize volatile attractants of O. suberosus and to explore the potential for application of these volatiles in a selective mass trapping method. Headspace sorptive extraction (HSSE coupled to thermo-desorption gas chromatography-mass spectrometry (TD-GC-MS analysis of the volatile constituents from beetles or turtle nests revealed 24 potential compounds. However, electroantennographic (EAG measurements revealed antennal sensitivity only to indole, linoleic acid, trimethylamine, dimethyl sulphide, dimethyl disulphide and ammonia. Behavioural tests showed that these compounds are highly attractive to O. suberosus. Field trapping experiments revealed that indole and ammonia were more attractive than the other volatile compounds and showed similar attractiveness to that produced by conventional baits (chicken feathers. The use of a combined bait of indole and NH3 would therefore be the most effective trap design. The data presented are the first to demonstrate effective massive capture of O. suberosus using an attractant-based trapping method. These findings have potential for the development of an efficient mass trapping method for control of this beetle as part of efforts towards conservation of L. olivacea at La Escobilla in Oaxaca, Mexico.

  11. Compatibility assessment between four ethanolic plant extracts with a bug predator Orius horvathi (Reuter (Heteroptera: Anthocoridae used for controlling the western flower thrips Frankliniella occidentalis (Pergande (Thysanoptera: Thripidae

    Directory of Open Access Journals (Sweden)

    Razavi Nooshin

    2016-01-01

    Full Text Available The western flower thrips, Frankliniella occidentalis (Pergande attacks a large number of crop plants. The current insecticides have caused resistance in insects and have caused outbreaks of thrips. In many instances, alternative methods of insect management and natural products, offer adequate pest control and pose fewer hazards. Several species of minute pirate bugs of the genus Orius play a significant role in the biological control of a large number of thrips species, such as F. occidentalis. In this study, the insecticidal activity of four ethanolic plant extracts (Cercis siliquastrum L., Calendula officinalis L., Peganum harmala L., Melia azedarach L. in integration with Orius horvathi (Reuter were evaluated for controlling F. occidentalis. The present research aimed to find plant extracts with a good impact on F. occidentalis but which have fewer side effects on O. horvathi. The results showed that P. harmala extract can be considered compatible with the natural enemy for controlling thrips. When the predatory bugs O. horvathi, were released three days after P. harmala extract spraying, the integration was more effective. While the P. harmala plant extract plays an important role in thrips control, it is necessary to consider the specified time interval between the application of the P. harmala plant extract and the release of the O. horvathi predatory bugs. The ethanolic extract of M. azedarach caused a balance between the pest population and the natural enemy. This result is very important in an Integrated Pest Management (IPM program because this ethanolic extract of M. azedarach had lower side effects on the natural enemy. This means that an integration of plant derived chemicals and the natural enemy, O. horvathi, can effectively control thrips.

  12. Differential Behavioral Responses to Water-Borne Cues to Predation in Two Container-Dwelling Mosquitoes

    Science.gov (United States)

    KESAVARAJU, B.; JULIANO, S. A.

    2007-01-01

    Larvae of the mosquito Toxorhynchites rutilus (Coquillett) prey upon other container-dwelling insects, including larvae of Aedes albopictus (Skuse), which is native to Asia but was introduced into the United States, and on the native tree hole mosquito Ochlerotatus triseriatus (Say). Previous work has established that O. triseriatus adopts low-risk behaviors in the presence of predation risk from T. rutilus. It is unknown whether introduced A. albopictus show a similar response to this predator. Behavior of fourth instars of A. albopictus or O. triseriatus was recorded in water that had held either A. albopictus or O. triseriatus larvae alone (control) and in water that had held T. rutilus larvae feeding on either A. albopictus or O. triseriatus (predation). Activity and position of larvae were recorded in 30-min instantaneous scan censuses. In response to water-borne cues to predation, O. triseriatus adopted low-risk behaviors (more resting, less feeding and movement), but A. albopictus did not change its behavior. We also tested the species specificity of the cues by recording the behavior of A. albopictus in water prepared using O. triseriatus and vice versa. O. triseriatus adopted low-risk behaviors even in predation water prepared by feeding T. rutilus with A. albopictus, but A. albopictus did not alter its behavior significantly between predation and control treatments prepared using O. triseriatus. Thus, A. albopictus does not seem to respond behaviorally to cues produced by this predator and may be more vulnerable to predation than is O. triseriatus. PMID:17710216

  13. The feasibility and efficacy of early-season releases of a generalist predator (Forficula auricularia L.) to control populations of the RAA (Dysaphis plantaginea Passerini) in Southeastern France.

    Science.gov (United States)

    Dib, H; Jamont, M; Sauphanor, B; Capowiez, Y

    2016-04-01

    Augmentative biological control is not commonly used in commercial orchards. We used an exclusion system to evaluate the potential of early-season releases of the European earwig (Forficula auricularia L., Dermaptera: Forficulidae) for control of the rosy apple aphid (Dysaphis plantaginea Passerini, Hemiptera: Aphididae) in the spring of 2009 in two pesticide-free apple orchards. In order to conduct this experiment we successfully reared earwigs with a high survival rate of nymphs (more than 96%) which may have commercial application. There were three treatments in the study: (i) a 'release treatment' where we confined the released earwigs in the canopy by using a barrier system; (ii) an 'exclusion treatment' where we blocked free access of earwigs into the canopy using the same barrier system; and (iii) a 'control treatment' that represented the natural situation. Contrary to expectations, earwig releases did not reduce D. plantaginea populations. In general, the abundance of natural enemies and their groups did not differ significantly among treatments, except for earwigs. We observed that the exclusion systems we used successfully kept both earwigs and ants away from tree canopies; total numbers on trees in the 'exclusion treatment' were significantly lower than on the other two treatments. Due to the complexity and difficulty of evaluating augmentative releases of natural enemies in open orchard conditions, we conclude that new technical approaches to control site conditions are needed when conducting such studies.

  14. Patch choice under predation hazard

    Czech Academy of Sciences Publication Activity Database

    Křivan, Vlastimil; Vrkoč, Ivo

    2000-01-01

    Roč. 58, č. 4 (2000), s. 329-340 ISSN 0040-5809 R&D Projects: GA ČR GA201/98/0227; GA MŠk VS96086 Institutional research plan: CEZ:AV0Z5007907; CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : adaptive behaviour * heterogeneous environment * predation Subject RIV: BA - General Mathematics Impact factor: 1.833, year: 2000

  15. Determining the bounds of skilful forecast range for probabilistic prediction of system-wide wind power generation

    Directory of Open Access Journals (Sweden)

    Dirk Cannon

    2017-06-01

    Full Text Available State-of-the-art wind power forecasts beyond a few hours ahead rely on global numerical weather prediction models to forecast the future large-scale atmospheric state. Often they provide initial and boundary conditions for nested high resolution simulations. In this paper, both upper and lower bounds on forecast range are identified within which global ensemble forecasts provide skilful information for system-wide wind power applications. An upper bound on forecast range is associated with the limit of predictability, beyond which forecasts have no more skill than predictions based on climatological statistics. A lower bound is defined at the lead time beyond which the resolved uncertainty associated with estimating the future large-scale atmospheric state is larger than the unresolved uncertainty associated with estimating the system-wide wind power response to a given large-scale state.The bounds of skilful ensemble forecast range are quantified for three leading global forecast systems. The power system of Great Britain (GB is used as an example because independent verifying data is available from National Grid. The upper bound defined by forecasts of GB-total wind power generation at a specific point in time is found to be 6–8 days. The lower bound is found to be 1.4–2.4 days. Both bounds depend on the global forecast system and vary seasonally. In addition, forecasts of the probability of an extreme power ramp event were found to possess a shorter limit of predictability (4.5–5.5 days. The upper bound on this forecast range can only be extended by improving the global forecast system (outside the control of most users or by changing the metric used in the probability forecast. Improved downscaling and microscale modelling of the wind farm response may act to decrease the lower bound. The potential gain from such improvements have diminishing returns beyond the short-range (out to around 2 days.

  16. Greenhouse gas impacts of ethanol from Iowa corn: Life cycle assessment versus system wide approach

    International Nuclear Information System (INIS)

    Feng, Hongli; Rubin, Ofir D.; Babcock, Bruce A.

    2010-01-01

    Life cycle assessment (LCA) is the standard approach used to evaluate the greenhouse gas (GHG) benefits of biofuels. However, the need for the appropriate use of LCA in policy contexts is highlighted by recent findings that corn-based ethanol may actually increase GHG emissions. This is in contrary to most existing LCA results. LCA estimates can vary across studies due to heterogeneities in inputs and production technology. Whether marginal or average impacts are considered can matter as well. Most important of all, LCA is product-centered. The determination of the impact of biofuels expansion requires a system wide approach (SWA) that accounts for impacts on all affected products and processes. This paper presents both LCA and SWA for ethanol based on Iowa corn. LCA was conducted in several different ways. Growing corn in rotation with soybean generates 35% less GHG emissions than growing corn after corn. Based on average corn production, ethanol's GHG benefits were lower in 2007 than in 2006 because of an increase in continuous corn in 2007. When only additional corn was considered, ethanol emitted about 22% less GHGs than gasoline. SWA was applied to two simple cases. Using 2006 as a baseline and 2007 as a scenario, corn ethanol's benefits were about 20% of the emissions of gasoline. If geographical limits are expanded beyond Iowa, then corn ethanol could generate more GHG emissions than gasoline. These results highlight the importance of boundary definition for both LCA and SWA.

  17. Greenhouse gas impacts of ethanol from Iowa corn: Life cycle assessment versus system wide approach

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Hongli [Department of Economics, 377 Heady Hall, Iowa State University, Ames, IA 50011-1070 (United States); Rubin, Ofir D. [Department of Economics, 573 Heady Hall, Iowa State University, Ames, IA 50011-1070 (United States); Babcock, Bruce A. [Center for Agricultural and Rural Development (CARD), Iowa State University, Ames, IA 50011-1070 (United States); Department of Economics, 578F Heady Hall, Iowa State University, Ames, IA 50011-1070 (United States)

    2010-06-15

    Life cycle assessment (LCA) is the standard approach used to evaluate the greenhouse gas (GHG) benefits of biofuels. However, the need for the appropriate use of LCA in policy contexts is highlighted by recent findings that corn-based ethanol may actually increase GHG emissions. This is in contrary to most existing LCA results. LCA estimates can vary across studies due to heterogeneities in inputs and production technology. Whether marginal or average impacts are considered can matter as well. Most important of all, LCA is product-centered. The determination of the impact of biofuels expansion requires a system wide approach (SWA) that accounts for impacts on all affected products and processes. This paper presents both LCA and SWA for ethanol based on Iowa corn. LCA was conducted in several different ways. Growing corn in rotation with soybean generates 35% less GHG emissions than growing corn after corn. Based on average corn production, ethanol's GHG benefits were lower in 2007 than in 2006 because of an increase in continuous corn in 2007. When only additional corn was considered, ethanol emitted about 22% less GHGs than gasoline. SWA was applied to two simple cases. Using 2006 as a baseline and 2007 as a scenario, corn ethanol's benefits were about 20% of the emissions of gasoline. If geographical limits are expanded beyond Iowa, then corn ethanol could generate more GHG emissions than gasoline. These results highlight the importance of boundary definition for both LCA and SWA. (author)

  18. Assessment of the State-of-the-Art of System-Wide Safety and Assurance Technologies

    Science.gov (United States)

    Roychoudhury, Indranil; Reveley, Mary S.; Phojanamongkolkij, Nipa; Leone, Karen M.

    2017-01-01

    Since its initiation, the System-wide Safety Assurance Technologies (SSAT) Project has been focused on developing multidisciplinary tools and techniques that are verified and validated to ensure prevention of loss of property and life in NextGen and enable proactive risk management through predictive methods. To this end, four technical challenges have been listed to help realize the goals of SSAT, namely (i) assurance of flight critical systems, (ii) discovery of precursors to safety incidents, (iii) assuring safe human-systems integration, and (iv) prognostic algorithm design for safety assurance. The objective of this report is to provide an extensive survey of SSAT-related research accomplishments by researchers within and outside NASA to get an understanding of what the state-of-the-art is for technologies enabling each of the four technical challenges. We hope that this report will serve as a good resource for anyone interested in gaining an understanding of the SSAT technical challenges, and also be useful in the future for project planning and resource allocation for related research.

  19. Age and sex-selective predation moderate the overall impact of predators.

    Science.gov (United States)

    Hoy, Sarah R; Petty, Steve J; Millon, Alexandre; Whitfield, D Philip; Marquiss, Michael; Davison, Martin; Lambin, Xavier

    2015-05-01

    Currently, there is no general agreement about the extent to which predators impact prey population dynamics and it is often poorly predicted by predation rates and species abundances. This could, in part be caused by variation in the type of selective predation occurring. Notably, if predation is selective on categories of individuals that contribute little to future generations, it may moderate the impact of predation on prey population dynamics. However, despite its prevalence, selective predation has seldom been studied in this context. Using recoveries of ringed tawny owls (Strix aluco) predated by 'superpredators', northern goshawks (Accipiter gentilis) as they colonized the area, we investigated the extent to which predation was sex and age-selective. Predation of juvenile owls was disproportionately high. Amongst adults, predation was strongly biased towards females and predation risk appeared to increase with age. This implies age-selective predation may shape the decline in survival with age, observed in tawny owls. To determine whether selective predation can modulate the overall impact of predation, age-based population matrix models were used to simulate the impact of five different patterns of age-selective predation, including the pattern actually observed in the study site. The overall impact on owl population size varied by up to 50%, depending on the pattern of selective predation. The simulation of the observed pattern of predation had a relatively small impact on population size, close to the least harmful scenario, predation on juveniles only. The actual changes in owl population size and structure observed during goshawk colonization were also analysed. Owl population size and immigration were unrelated to goshawk abundance. However, goshawk abundance appeared to interact with owl food availability to have a delayed effect on recruitment into the population. This study provides strong evidence to suggest that predation of other predators is

  20. Barn owl (Tyto alba predation on small mammals and its role in the control of hantavirus natural reservoirs in a periurban area in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    L. Magrini

    Full Text Available The aim of this study was to inventory the species of small mammals in Uberlândia, Minas Gerais, Brazil, based on regurgitated pellets of the barn owl and to compare the frequency of rodent species in the diet and in the environment. Since in the region there is a high incidence of hantavirus infection, we also evaluate the importance of the barn owl in the control of rodents that transmit the hantavirus. Data on richness and relative abundance of rodents in the municipality were provided by the Centro de Controle de Zoonoses, from three half-yearly samplings with live traps. In total, 736 food items were found from the analysis of 214 pellets and fragments. Mammals corresponded to 86.0% of food items and were represented by one species of marsupial (Gracilinanus agilis and seven species of rodents, with Calomys tener (70.9% and Necromys lasiurus (6.7% being the most frequent. The proportion of rodent species in barn owl pellets differed from that observed in trap samplings, with Calomys expulsus, C. tener and Oligoryzomys nigripes being consumed more frequently than expected. Although restricted to a single place and based on few individuals, the present study allowed the inventory of eight species of small mammals in Uberlândia. The comparison of the relative frequencies of rodent species in the diet and in the environment indicated selectivity. The second most preyed upon species was N. lasiurus, the main hantavirus reservoir in the Cerrado biome. In this way, the barn owl might play an important role in the control of this rodent in the region, contributing to the avoidance of a higher number of cases of hantavirus infection.

  1. Barn owl (Tyto alba) predation on small mammals and its role in the control of hantavirus natural reservoirs in a periurban area in southeastern Brazil.

    Science.gov (United States)

    Magrini, L; Facure, K G

    2008-11-01

    The aim of this study was to inventory the species of small mammals in Uberlândia, Minas Gerais, Brazil, based on regurgitated pellets of the barn owl and to compare the frequency of rodent species in the diet and in the environment. Since in the region there is a high incidence of hantavirus infection, we also evaluate the importance of the barn owl in the control of rodents that transmit the hantavirus. Data on richness and relative abundance of rodents in the municipality were provided by the Centro de Controle de Zoonoses, from three half-yearly samplings with live traps. In total, 736 food items were found from the analysis of 214 pellets and fragments. Mammals corresponded to 86.0% of food items and were represented by one species of marsupial (Gracilinanus agilis) and seven species of rodents, with Calomys tener (70.9%) and Necromys lasiurus (6.7%) being the most frequent. The proportion of rodent species in barn owl pellets differed from that observed in trap samplings, with Calomys expulsus, C. tener and Oligoryzomys nigripes being consumed more frequently than expected. Although restricted to a single place and based on few individuals, the present study allowed the inventory of eight species of small mammals in Uberlândia. The comparison of the relative frequencies of rodent species in the diet and in the environment indicated selectivity. The second most preyed upon species was N. lasiurus, the main hantavirus reservoir in the Cerrado biome. In this way, the barn owl might play an important role in the control of this rodent in the region, contributing to the avoidance of a higher number of cases of hantavirus infection.

  2. Analysis of the predator community of a subterranean herbivorous insect based on polymerase chain reaction.

    Science.gov (United States)

    Lundgren, Jonathan G; Ellsbury, Michael E; Prischmann, Deirdre A

    2009-12-01

    The identity and impact of trophic linkages within subterranean arthropod communities are challenging to establish, a fact that hinders the development of conservation biological control programs of subterranean herbivores. Diabrotica virgifera (the western corn rootworm) is a severe agricultural pest that lives subterraneously during its pre-imaginal stages and succumbs to high levels of pre-imaginal mortality from unknown agents. The guts of 1500 field-collected arthropod predators were analyzed for D. virgifera-specific DNA sequences using quantitative polymerase chain reaction (qPCR). These gut analyses were used to generate relative and taxon-specific prey consumption indices for the major predator taxa and to determine relative consumption levels during D. virgifera egg and larval stages by predator feeding guilds. Laboratory feeding assays were used to determine the meal size consumed during 5 min and digestion rates of D. virgifera DNA of four predators abundant in D. virgifera-infested cornfields. More than 17 taxa consumed D. virgifera in the field. Harvestmen and small rove beetles were the most abundant predators captured, and the most frequent predators within the community to consume D. virgifera. The largest proportions of individual species' populations testing positive for D. virgifera DNA were found in ground beetles (Scarites quadriceps and Poecilus chalcites) and spiders, wolf spiders, and predaceous mites. Because of the longer duration of the egg stage, significantly more predators consumed D. virgifera eggs than larvae, but a similar proportion of the predator community fed on eggs and larvae. Predators with sucking mouthparts had a higher consumption index than chewing predators. Laboratory assays confirmed that sucking predators consume more D. virgifera DNA during 5 min than the chewing predators, and all four predators digested this DNA at a similar rate. This research substantiates that a diverse community of soil-dwelling and

  3. Dynamic complexity of a two-prey one-predator system with impulsive effect

    International Nuclear Information System (INIS)

    Zhang Yujuan; Xiu Zhilong; Chen Lansun

    2005-01-01

    In this paper, we investigate the dynamic complexity of a two-prey one-predator system with impulsive perturbation on predator at fixed moments. With the increase of the predation rate for the super competitor, the system displays complicated phenomena including a sequence of direct and inverse cascade of periodic-doubling, chaos, and symmetry breaking bifurcation. Moreover, we discuss the effect of the period of releasing predator on the dynamical behaviors of the unforced continuous system, and find that periodically releasing predator at fixed moments change the properties of the unforced continuous system. We suggest a highly effective method in pest control. The target pest population can be driven to extinction and the non-target pest (or harmless insect) can be permanent by choosing impulsive period, while classical method cannot emulate

  4. Cryptocephaline Egg Case Provides Incomplete Protection from Generalist Predators (Coleoptera: Chrysomelidae

    Directory of Open Access Journals (Sweden)

    Matthias Schöller

    2014-01-01

    Full Text Available The egg case of Cryptocephalus rufipes (Goeze is described and illustrated. In laboratory trials, eggs of field-collected C. rufipes were observed for larval emergence (untreated control or exposed to two species of generalist predators, Chrysoperla carnea (Stephens or Xylocoris flavipes (Reuter in no-choice experiments. The behaviour of the predators upon contact with the C. rufipes eggs was observed. The number of hatching larvae was counted and compared. In the presence of each of the two species of predators, larval emergence was significantly reduced. Eggs that were not protected by an egg case were completely consumed by the predators. C. rufipes eggs were therefore incompletely protected from the studied generalist predators. This is the first study showing experimentally the protective function of cryptocephaline egg case.

  5. Anti-predator meshing may provide greater protection for sea turtle nests than predator removal.

    Science.gov (United States)

    O'Connor, Julie M; Limpus, Colin J; Hofmeister, Kate M; Allen, Benjamin L; Burnett, Scott E

    2017-01-01

    The problem of how to protect sea turtle nests from terrestrial predators is of worldwide concern. On Queensland's southern Sunshine Coast, depredation of turtle nests by the introduced European red fox (Vulpes vulpes) has been recorded as the primary terrestrial cause of egg and hatchling mortality. We investigated the impact of foxes on the nests of the loggerhead turtle (Caretta caretta) and occasional green turtle (Chelonia mydas) over ten nesting seasons. Meshing of nests with fox exclusion devices (FEDs) was undertaken in all years accompanied by lethal fox control in the first five-year period, but not in the second five-year period. Lethal fox control was undertaken in the study area from 2005 to February 2010, but foxes still breached 27% (range19-52%) of turtle nests. In the second five-year period, despite the absence of lethal fox control, the average percentage of nests breached was less than 3% (range 0-4%). Comparison of clutch depredation rates in the two five-year periods demonstrated that continuous nest meshing may be more effective than lethal fox control in mitigating the impact of foxes on turtle nests. In the absence of unlimited resources available for the eradication of exotic predators, the use of FEDs and the support and resourcing of a dedicated volunteer base can be considered an effective turtle conservation tool on some beaches.

  6. Anti-predator meshing may provide greater protection for sea turtle nests than predator removal.

    Directory of Open Access Journals (Sweden)

    Julie M O'Connor

    Full Text Available The problem of how to protect sea turtle nests from terrestrial predators is of worldwide concern. On Queensland's southern Sunshine Coast, depredation of turtle nests by the introduced European red fox (Vulpes vulpes has been recorded as the primary terrestrial cause of egg and hatchling mortality. We investigated the impact of foxes on the nests of the loggerhead turtle (Caretta caretta and occasional green turtle (Chelonia mydas over ten nesting seasons. Meshing of nests with fox exclusion devices (FEDs was undertaken in all years accompanied by lethal fox control in the first five-year period, but not in the second five-year period. Lethal fox control was undertaken in the study area from 2005 to February 2010, but foxes still breached 27% (range19-52% of turtle nests. In the second five-year period, despite the absence of lethal fox control, the average percentage of nests breached was less than 3% (range 0-4%. Comparison of clutch depredation rates in the two five-year periods demonstrated that continuous nest meshing may be more effective than lethal fox control in mitigating the impact of foxes on turtle nests. In the absence of unlimited resources available for the eradication of exotic predators, the use of FEDs and the support and resourcing of a dedicated volunteer base can be considered an effective turtle conservation tool on some beaches.

  7. A Stage-Structured Prey-Predator Fishery Model In The Presence Of Toxicity With Taxation As A Control Parameter of Harvesting Effort

    Directory of Open Access Journals (Sweden)

    Sumit Kaur Bhatia

    2017-08-01

    Full Text Available In this paper we have considered stage-structured fishery model in the presence of toxicity, which is diminishing due to the current excessive use of fishing efforts resulting in devastating consequences. The purpose of this study is to propose a bio-economic mathematical model by introducing taxes to the profit per unit biomass of the harvested fish of each species with the intention of controlling fishing efforts in the presence of toxicity. We obtained both boundary and interior equilibrium points along with the conditions ensuring their validity. Local stability for the interior equilibrium point has been found by the trace-determinant criterion and global stability has been analyzed through a suitable Lyapunov function. We have also obtained the optimal harvesting policy with the help of Pontryagin's maximum principle. Lastly, numerical simulation with the help of MATLAB have been done and thus, the results of the formulated model have been established.

  8. Rodent foraging is affected by indirect, but not by direct, cues of predation risk.

    Energy Technology Data Exchange (ETDEWEB)

    Orrock, John, L.; Danielson, Brent, J.; Brinkerhoff, R., Jory

    2004-01-01

    Behavioral Ecology Vol. 15 No. 3: 433 - 437 We used foraging trays to determine whether old field mice, Peromyscus polionotus , altered foraging in response to direct cues of predation risk (urine of native and nonnative predators) and indirect cues of predation risk (foraging microhabitat, precipitation, and moon illumination). The proportion of seeds remaining in each tray (a measure of the giving-up density [GUD]) was used to measure risk perceived by mice. Mice did not alter their GUD when presented with cues of native predators (bobcats, Lynx r ufus , and red foxes, Vulpes vulpes), recently introduced predators (coyotes, Canis latrans ), nonnative predators (ocelots, Leopardus pardalis ), a native herbivore (white-tailed deer, Odocoileus virginianus), or a water control. Rather, GUD was related to microhabitat: rodents removed more seeds from foraging trays sheltered beneath vegetative cover compared with exposed trays outside of cover. Rodents also removed more seeds during nights with precipitation and when moon illumination was low. Our results suggest that P. polionotus used indirect cues rather than direct cues to assess risk of vertebrate predation. Indirect cues may be more reliable than are direct scent cues for estimating risk from multiple vertebrate predators that present the most risk in open environments.

  9. Rapid acquisition of an alarm response by a neotropical primate to a newly introduced avian predator.

    Science.gov (United States)

    Gil-da-Costa, Ricardo; Palleroni, Alberto; Hauser, Marc D; Touchton, Janeene; Kelley, J Patrick

    2003-03-22

    Predation is an important selective pressure in natural ecosystems. Among non-human primates, relatively little is known about how predators hunt primate prey and how primates acquire adaptive responses to counteract predation. In this study we took advantage of the recent reintroduction of radio-tagged harpy eagles (Harpia harpyja) to Barro Colorado Island (BCI), Panama to explore how mantled howler monkeys (Alouatta palliata), one of their primary prey, acquire anti-predator defences. Based on the observation that harpies follow their prey prior to attack, and often call during this pursuit period, we broadcast harpy eagle calls to howlers on BCI as well as to a nearby control population with no harpy predation. Although harpies have been extinct from this area for 50-100 years, results indicate that BCI howlers rapidly acquired an adaptive anti-predator response to harpy calls, while showing no response to other avian vocalizations; howlers maintained this response several months after the removal of the eagles. These results not only show that non-human primates can rapidly acquire an alarm response to a newly introduced predator, but that they can detect and identify predators on the basis of acoustic cues alone. These findings have significant implications both for the role of learning mechanisms in the evolution of prey defence and for conservation strategies, suggesting that the use of 'probing' approaches, such as auditory playbacks, may highly enhance an a priori assessment of the impact of species reintroduction.

  10. Foraging mode affects the evolution of egg size in generalist predators embedded in complex food webs.

    Science.gov (United States)

    Verdeny-Vilalta, O; Fox, C W; Wise, D H; Moya-Laraño, J

    2015-06-01

    Ecological networks incorporate myriad biotic interactions that determine the selection pressures experienced by the embedded populations. We argue that within food webs, the negative scaling of abundance with body mass and foraging theory predict that the selective advantages of larger egg size should be smaller for sit-and-wait than active-hunting generalist predators, leading to the evolution of a difference in egg size between them. Because body mass usually scales negatively with predator abundance and constrains predation rate, slightly increasing egg mass should simultaneously allow offspring to feed on more prey and escape from more predators. However, the benefits of larger offspring would be relatively smaller for sit-and-wait predators because (i) due to their lower mobility, encounters with other predators are less common, and (ii) they usually employ a set of alternative hunting strategies that help to subdue relatively larger prey. On the other hand, for active predators, which need to confront prey as they find them, body-size differences may be more important in subduing prey. This difference in benefits should lead to the evolution of larger egg sizes in active-hunting relative to sit-and-wait predators. This prediction was confirmed by a phylogenetically controlled analysis of 268 spider species, supporting the view that the structure of ecological networks may serve to predict relevant selective pressures acting on key life history traits. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  11. Antipredator responses in Tetranychus urticae differ with predator specialization

    DEFF Research Database (Denmark)

    Jacobsen, Stine Kramer; Alexakis, I.; Sigsgaard, Lene

    2016-01-01

    The behavioural response of Tetranychus urticae to chemical cues from specialist predatory mites, Phytoseiulus persimilis, or generalist predatory bugs, Orius majusculus, on either bean or strawberry was studied in experimental arenas. Predators were placed on the leaf disc for 24 h and removed...... and control treatments. No interaction effect was found between plant species and prey fecundity, while significantly more eggs were laid on bean than on strawberry. Predator cues irrespective of predator specialization resulted in more prey dispersal than in the control. Findings emphasize the importance...

  12. Compensatory Feeding Following a Predator Removal Program : Detection and Mechanisms, 1982-1996 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, James H.

    2002-02-28

    Predator removal is one of the oldest management tools in existence, with evidence that ancient Greeks used a bounty reward for wolves over 3,000 years ago (Anonymous 1964). Efforts to control predators on fish have been documented in scientific journals for at least 60 years (Eschmeyer 1937; Lagler 1939; Foerster and Ricker 1941; Smith and Swingle 1941; Jeppson and Platts 1959), and has likely been attempted for much longer. Complete eradication of a target species from a body of water has rarely been the objective of predator removal programs, which instead have attempted to eliminate predators from specific areas, to reduce the density or standing stock of predators, or to kill the largest individuals in the population (Meronek et al. 1996). In evaluating management programs that remove only part of a predator population, the compensatory response(s) of the remaining predators must be considered. Some potential compensatory responses by remaining individuals include increased reproductive output, increased growth rate, or increased consumption of certain prey species (Jude et al. 1987). If compensation by predators that remain in the system following a removal effort occurs, it may reduce the effectiveness of the predator control program. Northern pike-minnow Ptychocheilus oregonensis (formerly called northern squawfish) consume juvenile salmon in rivers, lakes, and reservoirs in British Columbia, Washington, Idaho, Oregon, and California. Northern pikeminnow have been estimated to consume about 11% of all juvenile salmon that migrate through John Day Reservoir on the Columbia River (Rieman et al. 1991). Modeling studies suggested that removal of 20% of the northern pikeminnow population in John Day Reservoir would result in a 50% decrease in predation-related mortality of juvenile salmon migrating through this reach (Beamesderfer et al. 1991). Since the early 1940's, other programs have been implemented to remove northern pikeminnow, with hopes of

  13. Two-Spotted Ladybeetle Adalia bipunctata L. (Coleoptera: Coccinellidae): A Commercially Available Predator to Control Asian Citrus Psyllid Diaphorina citri (Hemiptera: Liviidae).

    Science.gov (United States)

    Khan, Azhar A; Qureshi, Jawwad A; Afzal, Muhammad; Stansly, Philip A

    2016-01-01

    The Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae) is an economically important pest of citrus because it serves as a vector of the causal pathogens of huanglongbing (HLB) also known as citrus greening disease. The increased use of insecticides for control of D. citri negatively impacts several natural enemies including some effective ladybeetle species which are not available commercially. The two-spotted ladybeetle, Adalia bipunctata (Coleoptera: Coccinellidae) is found in some crop and forest ecosystems of Asia, Europe and North America and available commercially. It is known to attack aphids and mealybugs but there are no published records of feeding on psyllids. We evaluated suitability and preference of A. bipunctata for nymphs of D. citri compared to corn leaf aphid Rhopalosiphum maidis (Hemiptera: Aphididae) a global pest of cereal crops and prey for many predaceous insects. We also compared development and reproduction of A. bipunctata on these two species with frozen eggs of the Mediterranean flour moth Ephestia kuehniella (Lepidoptera: Pyralidae) at 25°C. Initially, more D. citri than R. maidis nymphs were consumed in the no-choice tests although final consumption by larva and adult of A. bipunctata did not differ in the choice and no-choice tests. Larval development was prolonged by one day on D. citri compared to R. maidis nymphs but did not differ between either of these diets and E. kuehniella. Larval survival to adult averaged 93-100% and was not impacted by diet. Adult life span did not differ between diets although those on D. citri and R. maidis nymphs weighed less and produced fewer but more fertile eggs than on E. kuehniella eggs. Significant reduction of D. citri nymphs averaging 54% was observed in colonies caged with adult A. bipunctata on field planted citrus. R° (net reproductive rate) was least for beetles fed R. maidis, but otherwise there were no significant differences in demographic parameters. Successful

  14. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane.

    Science.gov (United States)

    Kind, Stefanie; Jeong, Weol Kyu; Schröder, Hartwig; Wittmann, Christoph

    2010-07-01

    In the present work the Gram-positive bacterium Corynebacterium glutamicum was engineered into an efficient, tailor-made production strain for diaminopentane (cadaverine), a highly attractive building block for bio-based polyamides. The engineering comprised expression of lysine decarboxylase (ldcC) from Escherichia coli, catalyzing the conversion of lysine into diaminopentane, and systems-wide metabolic engineering of central supporting pathways. Substantially re-designing the metabolism yielded superior strains with desirable properties such as (i) the release from unwanted feedback regulation at the level of aspartokinase and pyruvate carboxylase by introducing the point mutations lysC311 and pycA458, (ii) an optimized supply of the key precursor oxaloacetate by amplifying the anaplerotic enzyme, pyruvate carboxylase, and deleting phosphoenolpyruvate carboxykinase which otherwise removes oxaloacetate, (iii) enhanced biosynthetic flux via combined amplification of aspartokinase, dihydrodipicolinate reductase, diaminopimelate dehydrogenase and diaminopimelate decarboxylase, and (iv) attenuated flux into the threonine pathway competing with production by the leaky mutation hom59 in the homoserine dehydrogenase gene. Lysine decarboxylase proved to be a bottleneck for efficient production, since its in vitro activity and in vivo flux were closely correlated. To achieve an optimal strain having only stable genomic modifications, the combination of the strong constitutive C. glutamicum tuf promoter and optimized codon usage allowed efficient genome-based ldcC expression and resulted in a high diaminopentane yield of 200 mmol mol(-1). By supplementing the medium with 1 mgL(-1) pyridoxal, the cofactor of lysine decarboxylase, the yield was increased to 300 mmol mol(-1). In the production strain obtained, lysine secretion was almost completely abolished. Metabolic analysis, however, revealed substantial formation of an as yet unknown by-product. It was identified as an

  15. Effects of subsidized predators, resource variability, and human population density on desert tortoise populations in the Mojave Desert, USA

    Science.gov (United States)

    Esque, Todd C.; Nussear, Kenneth E.; Drake, K. Kristina; Walde, Andrew D.; Berry, Kristin H.; Averill-Murray, Roy C.; Woodman, A. Peter; Boarman, William I.; Medica, Phil A.; Mack, Jeremy S.; Heaton, Jill S.

    2010-01-01

    Understanding predator–prey relationships can be pivotal in the conservation of species. For 2 decades, desert tortoise Gopherus agassizii populations have declined, yet quantitative evidence regarding the causes of declines is scarce. In 2005, Ft. Irwin National Training Center, California, USA, implemented a translocation project including 2 yr of baseline monitoring of desert tortoises. Unusually high predation on tortoises was observed after translocation occurred. We conducted a retrospective analysis of predation and found that translocation did not affect the probability of predation: translocated, resident, and control tortoises all had similar levels of predation. However, predation rates were higher near human population concentrations, at lower elevation sites, and for smaller tortoises and females. Furthermore, high mortality rates were not limited to the National Training Center. In 2008, elevated mortality (as high as 43%) occurred throughout the listed range of the desert tortoise. Although no temporal prey base data are available for analysis from any of the study sites, we hypothesize that low population levels of typical coyote Canis latrans prey (i.e. jackrabbits Lepus californicus and other small animals) due to drought conditions influenced high predation rates in previous years. Predation may have been exacerbated in areas with high levels of subsidized predators. Many historical reports of increased predation, and our observation of a range-wide pattern, may indicate that high predation rates are more common than generally considered and may impact recovery of the desert tortoise throughout its range.

  16. Mosquito responses to trait- and density-mediated interactions of predation.

    Science.gov (United States)

    Bellamy, Shawna K; Alto, Barry W

    2018-03-29

    Mosquito and predatory larvae often share the same habitat. Predators may influence mosquito prey populations through both lethal effect and non-lethal pathways. A series of experimental manipulations were used to distinguish between lethal (density-mediated interaction) and non-lethal (trait-mediated interaction) effects in a model system comprised of invasive prey mosquito, Aedes aegypti, and a predatory mosquito Toxorhynchites rutilus. Treatments with predators present or manipulations mimicking daily mortality (density reduction) reduced developmental time and recruitment to the adult stage. Daily records of adult survival of A. aegypti showed that exposure to predators during the juvenile stage shortened the lifespan of adults. This was also observed in treatments, where A. aegypti were replaced at the rate of consumption by T. rutilus. In contrast, numerical reductions in A. aegypti that mimicked daily rate of predation led to adults with the longest lifespan. These observations suggest strong effects of density and trait-mediated interactions in the influence of predators on mosquito biology relevant to their ability to transmit pathogens. These results have potentially important implications for disease control strategies. The primary approach to reduce risk of mosquito-borne diseases is through population reduction of the vectors. We show an unanticipated benefit of biological control by predation for the control of juvenile stages of mosquitoes. Specifically, mosquitoes that are exposed to predators but survive to adulthood will have compromised life expectancy, a key parameter in determining risk of disease transmission.

  17. Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population.

    Science.gov (United States)

    Rosenheim, Jay A; Wilhoit, Lawrence R; Armer, Christine A

    1993-12-01

    We evaluated the influence of intraguild predation among generalist insect predators on the suppression of an herbivore, the aphid Aphis gossypii, to test the appropriateness of the simple three trophic level model proposed by Hairston, Smith, and Slobodkin (1960). We manipulated components of the predator community, including three hemipteran predators and larvae of the predatory green lacewing Chrysoperla carnea, in field enclosure/exclosure experiments to address four questions: (1) Do generalist hemipteran predators feed on C. carnea? (2) Does intraguild predation (IGP) represent a substantial source of mortality for C. carnea? (3) Do predator species act in an independent, additive manner, or do significant interactions occur? (4) Can the experimental addition of some predators result in increased densities of aphids through a trophic cascade effect? Direct observations of predation in the field demonstrated that several generalist predators consume C. carnea and other carnivorous arthropods. Severely reduced survivorship of lacewing larvae in the presence of other predators showed that IGP was a major source of mortality. Decreased survival of lacewing larvae was primarily a result of predation rather than competition. IGP created significant interactions between the influences of lacewings and either Zelus renardii or Nabis predators on aphid population suppression. Despite the fact that the trophic web was too complex to delineate distinct trophic levels within the predatory arthropod community, some trophic links were sufficiently strong to produce cascades from higher-order carnivores to the level of herbivore population dynamics: experimental addition of either Z. renardii or Nabis predators generated sufficient lacewing larval mortality in one experiment to release aphid populations from regulation by lacewing predators. We conclude that intraguild predation in this system is wide-spread and has potentially important influences on the population

  18. Knowing your enemies: Integrating molecular and ecological methods to assess the impact of arthropod predators on crop pests.

    Science.gov (United States)

    Furlong, Michael J

    2015-02-01

    The importance of natural enemies as the foundation of integrated pest management (IPM) is widely accepted, but few studies conduct the manipulative field experiments necessary to directly quantify their impact on pest populations in this context. This is particularly true for predators. Studying arthropod predator-prey interactions is inherently difficult: prey items are often completely consumed, individual predator-prey interactions are ephemeral (rendering their detection difficult) and the typically fluid or soft-bodied meals cannot be easily identified visually within predator guts. Serological techniques have long been used in arthropod predator gut-contents analysis, and current enzyme linked immunosorbent assays (ELISA) are highly specific and sensitive. Recently, polymerase chain reaction (PCR) methods for gut-contents analysis have developed rapidly and they now dominate the diagnostic methods used for gut-contents analysis in field-based research. This work has identified trophic linkages within food webs, determined predator diet breadth and preference, demonstrated the importance of cannibalism and intraguild predation within and between certain taxa, and confirmed the benefits (predator persistence) and potential disadvantages (reduced feeding on pest species) of the availability of alternative nonpest prey. Despite considerable efforts to calibrate gut-contents assays, these methods remain qualitative. Available techniques for predator gut-contents analysis can provide rapid, accurate, cost-effective identification of predation events. As such, they perfectly compliment the ecological methods developed to directly assess predator impacts on prey populations but which are imperfect at identifying the key predators. These diagnostic methods for gut-contents analysis are underexploited in agricultural research and they are almost never applied in unison with the critical field experiments to measure predator impact. This paper stresses the need for a

  19. Empty seeds are not always bad: simultaneous effect of seed emptiness and masting on animal seed predation.

    Directory of Open Access Journals (Sweden)

    Ramón Perea

    Full Text Available Seed masting and production of empty seeds have often been considered independently as different strategies to reduce seed predation by animals. Here, we integrate both phenomena within the whole assemblage of seed predators (both pre and post-dispersal and in two contrasting microsites (open vs. sheltered to improve our understanding of the factors controlling seed predation in a wind-dispersed tree (Ulmus laevis. In years with larger crop sizes more avian seed predators were attracted with an increase in the proportion of full seeds predated on the ground. However, for abundant crops, the presence of empty seeds decreased the proportion of full seeds predated. Empty seeds remained for a very long period in the tree, making location of full seeds more difficult for pre-dispersal predators and expanding the overall seed drop period at a very low cost (in dry biomass and allocation of C, N and P. Parthenocarpy (non-fertilized seeds was the main cause of seed emptiness whereas seed abortion was produced in low quantity. These aborted seeds fell prematurely and, thus, could not work as deceptive seeds. A proportion of 50% empty seeds significantly reduced ground seed predation by 26%. However, a high rate of parthenocarpy (beyond 50% empty seeds did not significantly reduce seed predation in comparison to 50% empty seeds. We also found a high variability and unpredictability in the production of empty seeds, both at tree and population level, making predator deception more effective. Open areas were especially important to facilitate seed survival since rodents (the main post-dispersal predators consumed seeds mostly under shrub cover. In elm trees parthenocarpy is a common event that might work as an adaptive strategy to reduce seed predation. Masting per se did not apparently reduce the overall proportion of seeds predated in this wind-dispersed tree, but kept great numbers of seeds unconsumed.

  20. Empty seeds are not always bad: simultaneous effect of seed emptiness and masting on animal seed predation.

    Science.gov (United States)

    Perea, Ramón; Venturas, Martin; Gil, Luis

    2013-01-01

    Seed masting and production of empty seeds have often been considered independently as different strategies to reduce seed predation by animals. Here, we integrate both phenomena within the whole assemblage of seed predators (both pre and post-dispersal) and in two contrasting microsites (open vs. sheltered) to improve our understanding of the factors controlling seed predation in a wind-dispersed tree (Ulmus laevis). In years with larger crop sizes more avian seed predators were attracted with an increase in the proportion of full seeds predated on the ground. However, for abundant crops, the presence of empty seeds decreased the proportion of full seeds predated. Empty seeds remained for a very long period in the tree, making location of full seeds more difficult for pre-dispersal predators and expanding the overall seed drop period at a very low cost (in dry biomass and allocation of C, N and P). Parthenocarpy (non-fertilized seeds) was the main cause of seed emptiness whereas seed abortion was produced in low quantity. These aborted seeds fell prematurely and, thus, could not work as deceptive seeds. A proportion of 50% empty seeds significantly reduced ground seed predation by 26%. However, a high rate of parthenocarpy (beyond 50% empty seeds) did not significantly reduce seed predation in comparison to 50% empty seeds. We also found a high variability and unpredictability in the production of empty seeds, both at tree and population level, making predator deception more effective. Open areas were especially important to facilitate seed survival since rodents (the main post-dispersal predators) consumed seeds mostly under shrub cover. In elm trees parthenocarpy is a common event that might work as an adaptive strategy to reduce seed predation. Masting per se did not apparently reduce the overall proportion of seeds predated in this wind-dispersed tree, but kept great numbers of seeds unconsumed.

  1. Facing different predators: adaptiveness of behavioral and morphological traits under predation.

    Science.gov (United States)

    Heynen, Martina; Bunnefeld, Nils; Borcherding, Jost

    2017-06-01

    Predation is thought to be one of the main structuring forces in animal communities. However, selective predation is often measured on isolated traits in response to a single predatory species, but only rarely are selective forces on several traits quantified or even compared between different predators naturally occurring in the same system. In the present study, we therefore measured behavioral and morphological traits in young-of-the-year Eurasian perch Perca fluviatilis and compared their selective values in response to the 2 most common predators, adult perch and pike Esox lucius . Using mixed effects models and model averaging to analyze our data, we quantified and compared the selectivity of the 2 predators on the different morphological and behavioral traits. We found that selection on the behavioral traits was higher than on morphological traits and perch predators preyed overall more selectively than pike predators. Pike tended to positively select shallow bodied and nonvigilant individuals (i.e. individuals not performing predator inspection). In contrast, perch predators selected mainly for bolder juvenile perch (i.e. individuals spending more time in the open, more active), which was most important. Our results are to the best of our knowledge the first that analyzed behavioral and morphological adaptations of juvenile perch facing 2 different predation strategies. We found that relative specific predation intensity for the divergent traits differed between the predators, providing some additional ideas why juvenile perch display such a high degree of phenotypic plasticity.

  2. Landscape forest cover and edge effects on songbird nest predation vary by nest predator

    Science.gov (United States)

    W. Andrew Cox; Frank R. III Thompson; John. Faaborg

    2012-01-01

    Rates of nest predation for birds vary between and within species across multiple spatial scales, but we have a poor understanding of which predators drive such patterns. We video-monitored nests and identified predators at 120 nests of the Acadian Flycatcher (Empidonax virescens) and the Indigo Bunting (Passerina cyanea) at eight...

  3. Interactions between predation and disturbances shape prey communities.

    Science.gov (United States)

    Karakoç, Canan; Radchuk, Viktoriia; Harms, Hauke; Chatzinotas, Antonis

    2018-02-14

    Ecological disturbances are important drivers of biodiversity patterns. Many biodiversity studies rely on endpoint measurements instead of following the dynamics that lead to those outcomes and testing ecological drivers individually, often considering only a single trophic level. Manipulating multiple factors (biotic and abiotic) in controlled settings and measuring multiple descriptors of multi-trophic communities could enlighten our understanding of the context dependency of ecological disturbances. Using model microbial communities, we experimentally tested the effects of imposed disturbances (i.e. increased dilution simulating density-independent mortality as press or pulse disturbances coupled with resource deprivation) on bacterial abundance, diversity and community structure in the absence or presence of a protist predator. We monitored the communities immediately before and after imposing the disturbance and four days after resuming the pre-disturbance dilution regime to infer resistance and recovery properties. The results highlight that bacterial abundance, diversity and community composition were more affected by predation than by disturbance type, resource loss or the interaction of these factors. Predator abundance was strongly affected by the type of disturbance imposed, causing temporary relief of predation pressure. Importantly, prey community composition differed significantly at different phases, emphasizing that endpoint measurements are insufficient for understanding the recovery of communities.

  4. Effects of plant gross morphology on predator searching behaviour.

    Science.gov (United States)

    Reynolds, Paula G; Cuddington, Kim

    2012-06-01

    Plant morphology influences insect predators' abilities to capture prey and control pest populations. Several mechanisms for this effect of plants on predator foraging have been proposed. In particular, it is often claimed that increased complexity of plant structures may increase search time and reduce foraging success. Using time-lapse photography we recorded search paths, and compared the total path lengths, percentages of plants searched, and path tortuosity of adult multicolored Asian lady beetles (Harmonia axyridis Pallas) and green lacewing larvae (Chrysoperla carnea Stephens) foraging for pea aphids (Acyrthosiphon pisum Harris) on pea near-isolines (Pisum sativum L.) that differed in shape. We found that H. axyridis searched leafy morphologies less thoroughly than those with more branches, while C. carnea larvae search paths did not differ on any of the pea morphologies. In addition, the ability of H. axyridis to attach to plants and maneuver was increased on morphologies with many branches and edges, while C. carnea was able to attach to all morphologies. Both species, however, had significantly reduced predation success on inverted leaf surfaces. We conclude that undersides of leaves, far from the leaf margin, may serve as partial prey refugia. In addition, we find increased plant branching or an increase in other morphological features which provide predator attachment points may promote foraging success.

  5. Predation and landscape characteristics independently affect reef fish community organization.

    Science.gov (United States)

    Stier, Adrian C; Hanson, Katharine M; Holbrook, Sally J; Schmitt, Russell J; Brooks, Andrew J

    2014-05-01

    Trophic island biogeography theory predicts that the effects of predators on prey diversity are context dependent in heterogeneous landscapes. Specifically, models predict that the positive effect of habitat area on prey diversity should decline in the presence of predators, and that predators should modify the partitioning of alpha and beta diversity across patchy landscapes. However, experimental tests of the predicted context dependency in top-down control remain limited. Using a factorial field experiment we quantify the effects of a focal predatory fish species (grouper) and habitat characteristics (patch size, fragmentation) on the partitioning of diversity and assembly of coral reef fish communities. We found independent effects of groupers and patch characteristics on prey communities. Groupers reduced prey abundance by 50% and gamma diversity by 45%, with a disproportionate removal of rare species relative to common species (64% and 36% reduction, respectively; an oddity effect). Further, there was a 77% reduction in beta diversity. Null model analysis demonstrated that groupers increased the importance of stochastic community assembly relative to patches without groupers. With regard to patch size, larger patches contained more fishes, but a doubling of patch size led to a modest (36%) increase in prey abundance. Patch size had no effect on prey diversity; however, fragmented patches had 50% higher species richness and modified species composition relative to unfragmented patches. Our findings suggest two different pathways (i.e., habitat or predator shifts) by which natural and/or anthropogenic processes can drive variation in fish biodiversity and community assembly.

  6. Escape from predators and genetic variance in birds.

    Science.gov (United States)

    Jiang, Y; Møller, A P

    2017-11-01

    Predation is a common cause of death in numerous organisms, and a host of antipredator defences have evolved. Such defences often have a genetic background as shown by significant heritability and microevolutionary responses towards weaker defences in the absence of predators. Flight initiation distance (FID) is the distance at which an individual animal takes flight when approached by a human, and hence, it reflects the life-history compromise between risk of predation and the benefits of foraging. Here, we analysed FID in 128 species of birds in relation to three measures of genetic variation, band sharing coefficient for minisatellites, observed heterozygosity and inbreeding coefficient for microsatellites in order to test whether FID was positively correlated with genetic variation. We found consistently shorter FID for a given body size in the presence of high band sharing coefficients, low heterozygosity and high inbreeding coefficients in phylogenetic analyses after controlling statistically for potentially confounding variables. These findings imply that antipredator behaviour is related to genetic variance. We predict that many threatened species with low genetic variability will show reduced antipredator behaviour and that subsequent predator-induced reductions in abundance may contribute to unfavourable population trends for such species. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  7. Can selection on nest size from nest predation explain the latitudinal gradient in clutch size?

    Science.gov (United States)

    Biancucci, Luis; Martin, Thomas E

    2010-09-01

    1. Latitudinal variation in clutch sizes of birds is a well described, but poorly understood pattern. Many hypotheses have been proposed, but few have been experimentally tested, and none have been universally accepted by researchers. 2. The nest size hypothesis posits that higher nest predation in the tropics favours selection for smaller nests and thereby constrains clutch size by shrinking available space for eggs and/or nestlings in the nest. We tested this hypothesis with an experiment in a tropical forest and a comparative study between temperate and tropical field sites. 3. Specifically, we tested if: (i) predation increased with nest size; (ii) tropical birds had smaller nests controlled for body size; and (iii) clutch size was explained by nest size controlled for body size. 4. Experimental swapping of nests of different sizes showed that nest predation increased with nest size in the tropical site. Moreover, nest predation rates were higher in species with larger nests in both sites. However, nest size, corrected for body mass and phylogeny, did not differ between sites and was not related to clutch size between sites. 5. Hence, nest predation can exert selection on nest size as predicted by the hypothesis. Nest size increased with adult body mass, such that adult size might indirectly influence reproductive success through effects on nest size and nest predation risk. Ultimately, however, selection from nest predation on nest size does not explain the smaller clutch sizes typical of the tropics.

  8. Main predators of insect pests: screening and evaluation through comprehensive indices.

    Science.gov (United States)

    Yang, Tingbang; Liu, Jie; Yuan, Longyu; Zhang, Yang; Peng, Yu; Li, Daiqin; Chen, Jian

    2017-11-01

    Predatory natural enemies play key functional roles in integrated pest management. However, the screening and evaluation of the main predators of insect pests has seldom been reported in the field. Here, we employed comprehensive indices for evaluating the predation of a common pest (Ectropis obliqua) by nine common spider species in Chinese tea plantations. We established the relative dominance of the spider species and their phenological overlap with the pest species, and analyzed DNA from the nine spider species using targeted real-time quantitative polymerase chain reaction to identify the residual DNA of E. obliqua. The predation rates and predation numbers per predator were estimated by the positive rates of target fragments and the residual minimum number of E. obliqua in predators' guts, respectively. The results showed that only four spider species preyed on E. obliqua, and the order of potential of the spiders to control E. obliqua from greatest to smallest was Neoscona mellotteei, Xysticus ephippiatus, Evarcha albaria and Coleosoma octomaculatum by the Z-score method. The orb-weaving spider N. mellotteei has the maximum potential as a biological control agent of E. obliqua in an integrated pest management strategy. An approach of screening and evaluating main predators of insect pests through comprehensive indices was preliminarily established. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Does sex-selective predation stabilize or destabilize predator-prey dynamics?

    Directory of Open Access Journals (Sweden)

    David S Boukal

    2008-07-01

    Full Text Available Little is known about the impact of prey sexual dimorphism on predator-prey dynamics and the impact of sex-selective harvesting and trophy hunting on long-term stability of exploited populations.We review the quantitative evidence for sex-selective predation and study its long-term consequences using several simple predator-prey models. These models can be also interpreted in terms of feedback between harvesting effort and population size of the harvested species under open-access exploitation. Among the 81 predator-prey pairs found in the literature, male bias in predation is 2.3 times as common as female bias. We show that long-term effects of sex-selective predation depend on the interplay of predation bias and prey mating system. Predation on the 'less limiting' prey sex can yield a stable predator-prey equilibrium, while predation on the other sex usually destabilizes the dynamics and promotes population collapses. For prey mating systems that we consider, males are less limiting except for polyandry and polyandrogyny, and male-biased predation alone on such prey can stabilize otherwise unstable dynamics. On the contrary, our results suggest that female-biased predation on polygynous, polygynandrous or monogamous prey requires other stabilizing mechanisms to persist.Our modelling results suggest that the observed skew towards male-biased predation might reflect, in addition to sexual selection, the evolutionary history of predator-prey interactions. More focus on these phenomena can yield additional and interesting insights as to which mechanisms maintain the persistence of predator-prey pairs over ecological and evolutionary timescales. Our results can also have implications for long-term sustainability of harvesting and trophy hunting of sexually dimorphic species.

  10. Spatiotemporal analysis of predation by carabid beetles (Carabidae on nematode infected and uninfected slugs in the field.

    Directory of Open Access Journals (Sweden)

    Bjørn Arild Hatteland

    Full Text Available The dynamics of predation on parasites within prey has received relatively little attention despite the profound effects this is likely to have on both prey and parasite numbers and hence on biological control programmes where parasites are employed. The nematode Phasmarhabditis hermaphrodita is a commercially available biological agent against slugs. Predation on these slugs may, at the same time, result in intraguild predation on slug-parasitic nematodes. This study describes, for the first time, predation by carabid beetles on slugs and their nematode parasites on both spatial and temporal scales, using PCR-based methods. The highest nematode infection levels were found in the slugs Deroceras reticulatum and Arion silvaticus. Numbers of infected slugs decreased over time and no infected slugs were found four months after nematode application. The density of the most abundant slug, the invasive Arion vulgaris, was positively related to the activity-density of the carabid beetle, Carabus nemoralis. Predation on slugs was density and size related, with highest predation levels also on A. vulgaris. Predation on A. vulgaris decreased significantly in summer when these slugs were larger than one gram. Predation by C. nemoralis on slugs was opportunistic, without any preferences for specific species. Intraguild predation on the nematodes was low, suggesting that carabid beetles such as C. nemoralis probably do not have a significant impact on the success of biological control using P. hermaphrodita.

  11. Perceived risk of predation affects reproductive life-history traits in Gambusia holbrooki, but not in Heterandria formosa.

    Directory of Open Access Journals (Sweden)

    Shomen Mukherjee

    Full Text Available Key to predicting impacts of predation is understanding the mechanisms through which predators impact prey populations. While consumptive effects are well-known, non-consumptive predator effects (risk effects are increasingly being recognized as important. Studies of risk effects, however, have focused largely on how trade-offs between food and safety affect fitness. Less documented, and appreciated, is the potential for predator presence to directly suppress prey reproduction and affect life-history characteristics. For the first time, we tested the effects of visual predator cues on reproduction of two prey species with different reproductive modes, lecithotrophy (i.e. embryonic development primarily fueled by yolk and matrotrophy (i.e. energy for embryonic development directly supplied by the mother to the embryo through a vascular connection. Predation risk suppressed reproduction in the lecithotrophic prey (Gambusia holbrokii but not the matrotroph (Heterandria formosa. Predator stress caused G. holbrooki to reduce clutch size by 43%, and to produce larger and heavier offspring compared to control females. H. formosa, however, did not show any such difference. In G. holbrooki we also found a significantly high percentage (14% of stillbirths in predator-exposed treatments compared to controls (2%. To the best of our knowledge, this is the first direct empirical evidence of predation stress affecting stillbirths in prey. Our results suggest that matrotrophy, superfetation (clutch overlap, or both decrease the sensitivity of mothers to environmental fluctuation in resource (food and stress (predation risk levels compared to lecithotrophy. These mechanisms should be considered both when modeling consequences of perceived risk of predation on prey-predator population dynamics and when seeking to understand the evolution of reproductive modes.

  12. Perceived risk of predation affects reproductive life-history traits in Gambusia holbrooki, but not in Heterandria formosa.

    Science.gov (United States)

    Mukherjee, Shomen; Heithaus, Michael R; Trexler, Joel C; Ray-Mukherjee, Jayanti; Vaudo, Jeremy

    2014-01-01

    Key to predicting impacts of predation is understanding the mechanisms through which predators impact prey populations. While consumptive effects are well-known, non-consumptive predator effects (risk effects) are increasingly being recognized as important. Studies of risk effects, however, have focused largely on how trade-offs between food and safety affect fitness. Less documented, and appreciated, is the potential for predator presence to directly suppress prey reproduction and affect life-history characteristics. For the first time, we tested the effects of visual predator cues on reproduction of two prey species with different reproductive modes, lecithotrophy (i.e. embryonic development primarily fueled by yolk) and matrotrophy (i.e. energy for embryonic development directly supplied by the mother to the embryo through a vascular connection). Predation risk suppressed reproduction in the lecithotrophic prey (Gambusia holbrokii) but not the matrotroph (Heterandria formosa). Predator stress caused G. holbrooki to reduce clutch size by 43%, and to produce larger and heavier offspring compared to control females. H. formosa, however, did not show any such difference. In G. holbrooki we also found a significantly high percentage (14%) of stillbirths in predator-exposed treatments compared to controls (2%). To the best of our knowledge, this is the first direct empirical evidence of predation stress affecting stillbirths in prey. Our results suggest that matrotrophy, superfetation (clutch overlap), or both decrease the sensitivity of mothers to environmental fluctuation in resource (food) and stress (predation risk) levels compared to lecithotrophy. These mechanisms should be considered both when modeling consequences of perceived risk of predation on prey-predator population dynamics and when seeking to understand the evolution of reproductive modes.

  13. Study on screening of anti-predator rhizosphere bacterium against Caenorhabditis elegans and its anti predation mechanism

    Directory of Open Access Journals (Sweden)

    HE Qingling

    2016-08-01

    Full Text Available Althoughmicrobial fertilizer is multi-effect,environmental friendly and long-term efficient,its practical application effect is but decreased for being prey by the other creators living in soil frequently.Many bacterium have developed their mechanisms that expel or kill worms to defend themselves from predators.Screening of anti-predator rhizosphere bacterium helps us to find out competitive plant growth promoting rhizobacteria(PGPR.Using Caenorhabditis elegans as sample,this study roughly observed two strains of biocontrol:Pseudomonas aurantiaca JD37 and Pseudomonas fluorescens P13.Using Escherichia coli OP50 as control group,we find the preference order of worms,from highest to lowest,is P13,OP50 and JD37.In slow killing assay,the death rate of worms for JD37 and P13 are 26.12% and 18.66% respectively.The activity and reproduction rate of C.elegans decrease when it is fed on JD37.The results of chemical and micro-biological study show that JD37 cannot produce any currently studied second metabolites which kill worms,while P13 can produce Hydrogen cyanide (HCN.All these results show that JD37 has the ability of anti-predator,and is more competitive under predation pressure,which suggests its broad application prospect as microbial fertilizer.

  14. Acidification and warming affect both a calcifying predator and prey, but not their interaction

    DEFF Research Database (Denmark)

    Landes, Anja; Zimmer, Martin

    2012-01-01

    Carcinus maenas and periwinkles Littorina littorea under conditions that mimicked either ambient conditions (control) or warming and acidification, both separately and in combination, for 5 mo. After 5 mo, the predators, prey and predator-prey interactions were screened for changes in response....... On the community level, however, we found no evidence that predator-prey interactions will change in the future. Further experiments exploring the impacts of warming and acidification on key ecological interactions are needed instead of basing predictions of ecosystem change solely on species-specific responses...

  15. Modeling predator habitat to enhance reintroduction planning

    Science.gov (United States)

    Shiloh M. Halsey; William J. Zielinski; Robert M. Scheller

    2015-01-01

    Context The success of species reintroduction often depends on predation risk and spatial estimates of predator habitat. The fisher (Pekania pennanti) is a species of conservation concern and populations in the western United States have declined substantially in the last century. Reintroduction plans are underway, but the ability...

  16. Predators Exacerbate Competitive Interactions and Dominance Hierarchies between Two Coral Reef Fishes.

    Science.gov (United States)

    Hall, April; Kingsford, Michael

    2016-01-01

    Predation and competition are critical processes influencing the ecology of organisms, and can play an integral role in shaping coral reef fish communities. This study compared the relative and interacting effects of competition and predation on two competing species of coral reef fish, Pomacentrus amboinensis and P. moluccensis (Pomacentridae), using a multifactorial experiment. Fish were subjected to the sight and smell of a known predator (Pseudochromis fuscus), the presence of the heterospecific competitor (i.e., P. amboinensis vs. P. moluccensis), or a combination of the two for a period of 19 days. The sub-lethal effects of predator/competitor treatments were compared with controls; a combination of otolith microstructure analysis and observations were used to determine otolith growth patterns and behaviour. We predicted that the stress of competition and/or predation would result in strong sub-lethal impacts, and act synergistically on growth and behavioural patterns. We found strong evidence to support this prediction, but only for P. amboinensis, which suffered reductions in growth in both predator and competitor treatments, with the largest reductions occurring when subjected to both predation and competition concurrently. There was strong evidence of asymmetrical competition between the two damselfish species, with P. moluccensis as the dominant competitor, displaying strong aggressive behaviour towards P. amboinensis. Growth reductions for P. amboinensis in predator/competitor treatments appeared to come about primarily due to increases in shelter seeking behaviour, which significantly reduced the foraging rates of individuals compared with controls. These data highlight the importance of predator/competitor synergisms in influencing key behaviours and demographic parameters for juvenile coral reef fishes.

  17. Predators Exacerbate Competitive Interactions and Dominance Hierarchies between Two Coral Reef Fishes.

    Directory of Open Access Journals (Sweden)

    April Hall

    Full Text Available Predation and competition are critical processes influencing the ecology of organisms, and can play an integral role in shaping coral reef fish communities. This study compared the relative and interacting effects of competition and predation on two competing species of coral reef fish, Pomacentrus amboinensis and P. moluccensis (Pomacentridae, using a multifactorial experiment. Fish were subjected to the sight and smell of a known predator (Pseudochromis fuscus, the presence of the heterospecific competitor (i.e., P. amboinensis vs. P. moluccensis, or a combination of the two for a period of 19 days. The sub-lethal effects of predator/competitor treatments were compared with controls; a combination of otolith microstructure analysis and observations were used to determine otolith growth patterns and behaviour. We predicted that the stress of competition and/or predation would result in strong sub-lethal impacts, and act synergistically on growth and behavioural patterns. We found strong evidence to support this prediction, but only for P. amboinensis, which suffered reductions in growth in both predator and competitor treatments, with the largest reductions occurring when subjected to both predation and competition concurrently. There was strong evidence of asymmetrical competition between the two damselfish species, with P. moluccensis as the dominant competitor, displaying strong aggressive behaviour towards P. amboinensis. Growth reductions for P. amboinensis in predator/competitor treatments appeared to come about primarily due to increases in shelter seeking behaviour, which significantly reduced the foraging rates of individuals compared with controls. These data highlight the importance of predator/competitor synergisms in influencing key behaviours and demographic parameters for juvenile coral reef fishes.

  18. Predation on dormice in Italy

    Directory of Open Access Journals (Sweden)

    Dino Scaravelli

    1995-05-01

    Full Text Available Abstract The authors analyse available data on the impact of predators on Dormouse populations in Italy. Dormice are found in the diet of 2 snakes (Vipera berus and V. aspis, 2 diurnal birds of prey (Buteo buteo and Aquila chrysaetos, 6 owls (Tyto alba, Strix aluco, Asio otus, Athene noctua, Bubo bubo and Glaucidium passerinum and 9 mammals (Rattus rattus, Ursus arctos, Canis lupus, Vulpes vulpes, Martes martes, M. foina, Meles meles, Felis silvestris and Sus scrofa in a variable percentage of the prey taken. Only Dryomys nitedula was never encountered as a prey item. The most common prey is Muscardinus avellanarius. There are significative regional differences in predation between bioclimatic areas of the Italian peninsula. The contribution of studies on predation to knowledge of Myoxid distribution is discussed. Riassunto Predazione di Mioxidi in Italia - Sono analizzati i dati pubblicati sull'impatto dei predatori sulle popolazioni di Myoxidae in Italia. Myoxidae sono stati riscontrati nelle diete di 2 serpenti (Vipera berus e V. aspis, 2 rapaci diurni (Buteo buteo e Aquila chrysaetos, 6 notturni (Tyto alba, Strix aluco, Asio otus, Athene noctua, Bubo bubo e Glaucidium passerinum e 9 mammiferi (Rattus rattus, Ursus arctos, Canis lupus, Vulpes vulpes, Martes martes, M foina, Meles meles, Felis silvestris e Sus scrofa in percentuale variabile nella comunità di prede. Solo Dryomys nitedula non è mai stato incontrato come preda. La specie piu comunemente predata risulta Muscardinus avellanarius. Sono discusse le

  19. Drosophila increase exploration after visually detecting predators.

    Directory of Open Access Journals (Sweden)

    Miguel de la Flor

    Full Text Available Novel stimuli elicit behaviors that are collectively known as specific exploration. These behaviors allow the animal to become more familiar with the novel objects within its environment. Specific exploration is frequently suppressed by defensive reactions to predator cues. Herein, we examine if this suppression occurs in Drosophila melanogaster by measuring the response of these flies to wild harvested predators. The flies used in our experiments have been cultured and had not lived under predator threat for multiple decades. In a circular arena with centrally-caged predators, wild type Drosophila actively avoided the pantropical jumping spider, Plexippus paykulli, and the Texas unicorn mantis, Phyllovates chlorophaena, indicating an innate defensive reaction to these predators. Interestingly, wild type Drosophila males also avoided a centrally-caged mock spider, and the avoidance of the mock spider became exaggerated when it was made to move within the cage. Visually impaired Drosophila failed to detect and avoid the Plexippus paykulli and the moving mock spider, while the broadly anosmic orco2 mutants were fully capable of detecting and avoiding Plexippus paykulli, indicating that these flies principally relied upon vison to perceive the predator stimuli. During early exploration of the arena, exploratory activity increased in the presence of Plexippus paykulli and the moving mock spider. The elevated activity induced by Plexippus paykulli disappeared after the fly had finished exploring, suggesting the flies were capable of habituating the predator cues. Taken together, these results indicate that despite being isolated from predators for decades Drosophila will visually detect these predators, retain innate defensive behaviors, respond by increasing exploratory activity in the arena rather than suppressing activity, and may habituate to normal predator cues.

  20. Maternal steroids in egg yolk as a pathway to translate predation risk to offspring : Experiments with great tits

    NARCIS (Netherlands)

    Coslovsky, Michael; Groothuis, Ton; de Vries, Bonnie; Richner, Heinz

    2012-01-01

    Exposure of mothers to risk of predation can induce phenotypic changes in offspring as shown in several species. We previously found that cross-fostered great tit (Parus major) chicks of females exposed to increased predation risk were smaller and lighter, but had faster wing growth than control

  1. Effects of osmotic stress on predation behaviour of Asterias rubens L.

    Science.gov (United States)

    Agüera, Antonio; Schellekens, Tim; Jansen, Jeroen M.; Smaal, Aad C.

    2015-05-01

    Environmental stress plays an important role in determining ecosystem functioning and structure. In estuarine areas both tidal and seasonal salinity changes may cause osmotic stress on predators, affecting their behaviour and survival. The interaction between these predators and their prey may affect performance, thus influencing predator impact on prey populations. The common starfish, Asterias rubens, inhabits estuarine areas, such as the Dutch Wadden Sea, that exhibit large seasonal variation in salinity (10-32 PSU). In those areas A. rubens exerts top down control on its prey, thus representing an important shellfish predator. This predation may impact on cultured and natural shellfish populations. However, the effects of osmotic stress on A. rubens performance may influence its effect on prey. Although the effect of salinity in A. rubens survival has been extensively studied, the impact on its predation behaviour and acclimation capacity remains unclear. In this study, we analyse the performance of A. rubens preying on mussels (Mytilus edulis) after a salinity decrease and monitor its acclimation capacity over a period of 22 days. Our experiments demonstrated that salinity affected performance by reducing feeding activity and altering size prey selection. Moreover, as acclimation occurred, A. rubens predation performance improved in all sub-lethal treatments. We conclude that osmotic stress caused by decreasing salinity potentially influences A. rubens distribution, abundance, and potential impact on prey populations. However the magnitude of the change in salinity (from 31 to a minimum of 10 PSU) and its timescale (3 weeks) mediate this effect.

  2. Pest management of a prey-predator model with sexual favoritism.

    Science.gov (United States)

    Pei, Yongzhen; Yang, Yong; Li, Changguo; Chen, Lansun

    2009-06-01

    Although sex of prey is an important factor for the risk of predating, few articles consider the consequences of sexual favoritism and the corresponding effects on the impulsive predator-prey dynamics and its utility in biological control. This paper investigates the pest management strategy of a prey-predator system model with sexual favoritism. An impulsive differential equation which models the process of periodically releasing natural enemies and spraying pesticides at different fixed time for pest control is proposed and investigated. It is proved that the pest-eradication periodic solution is globally asymptotically stable under the assumption that the release amount of the predator is greater than some critical value. Permanent conditions are established under the assumption that the release amount of the predator is less than another critical value. In particular, two single control strategies are proposed. Furthermore, we compare three pest control strategies and find that if we choose narrow-spectrum pesticides that targeted to a specific pest's life cycle to kill the pest, then the combined strategy is preferable. Finally, the corresponding system with no sexual favoritism is investigated. The results indicate that we can release fewer amount of the predators to eliminate the preys with sexual favoritism than without and any strong sexual favoritism will drive the pest towards extinction. In view of the biological meaning, the sexual favoritism plays a more active role in suppressing insect pests.

  3. Short-term exposure to predation affects body elemental composition, climbing speed and survival ability in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Indrikis Krams

    2016-08-01

    Full Text Available Factors such as temperature, habitat, larval density, food availability and food quality substantially affect organismal development. In addition, risk of predation has a complex impact on the behavioural and morphological life history responses of prey. Responses to predation risk seem to be mediated by physiological stress, which is an adaptation for maintaining homeostasis and improving survivorship during life-threatening situations. We tested whether predator exposure during the larval phase of development has any influence on body elemental composition, energy reserves, body size, climbing speed and survival ability of adult Drosophila melanogaster. Fruit fly larvae were exposed to predation by jumping spiders (Phidippus apacheanus, and the percentage of carbon (C and nitrogen (N content, extracted lipids, escape response and survival were measured from predator-exposed and control adult flies. The results revealed predation as an important determinant of adult phenotype formation and survival ability. D. melanogaster reared together with spiders had a higher concentration of body N (but equal body C, a lower body mass and lipid reserves, a higher climbing speed and improved adult survival ability. The results suggest that the potential of predators to affect the development and the adult phenotype of D. melanogaster is high enough to use predators as a more natural stimulus in laboratory experiments when testing, for example, fruit fly memory and learning ability, or when comparing natural populations living under different predation pressures.

  4. Freshwater pearl mussels show plasticity of responses to different predation risks but also show consistent individual differences in responsiveness.

    Science.gov (United States)

    Wilson, Conor D; Arnott, Gareth; Elwood, Robert W

    2012-03-01

    Animals often show behavioural plasticity with respect to predation risk but also show behavioural syndromes in terms of consistency of responses to different stimuli. We examine these features in the freshwater pearl mussel. These bivalves often aggregate presumably to reduce predation risk to each individual. Predation risk, however, will be higher in the presence of predator cues. Here we use dimming light, vibration and touch as novel stimuli to examine the trade-off between motivation to feed and motivation to avoid predation. We present two experiments that each use three sequential novel stimuli to cause the mussels to close their valves and hence cease feeding. We find that mussels within a group showed shorter closure times than solitary mussels, consistent with decreased vulnerability to predation in group-living individuals. Mussels exposed to the odour of a predatory crayfish showed longer closures than control mussels, highlighting the predator assessment abilities of this species. However, individuals showed significant consistency in their closure responses across the trial series, in line with behavioural syndrome theory. Our results show that bivalves trade-off feeding and predator avoidance according to predation risk but the degree to which this is achieved is constrained by behavioural consistency. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Predation of the newly invasive pest Megacopta cribraria (Hemiptera: Plataspidae) in soybean habitats adjacent to cotton by a complex of predators.

    Science.gov (United States)

    Greenstone, M H; Tillman, P G; Hu, J S

    2014-06-01

    The kudzu bug, Megacopta cribraria (F.) (Hemiptera: Plataspidae),is a newly invasive exotic insect found primarily on kudzu, but also on soybean, in the southeastern United States. We used molecular gut-content analysis to document predation on this pest by insects and spiders in soybean, and to detect remains of crop-specific alternative prey in predators' guts as markers of predator migration between soybean and adjacent cotton. M. cribraria was found exclusively on soybean. Eight native generalist predators over both crops screened positive by specific PCR for DNA of the pest: Geocoris punctipes (Say), Geocoris uliginosus (Say), Orius insidiosus (Say), Podisus maculicentris (Say), Hippodamia convergens Guérin-Méneville, Zelus renardii (Kolenati), Oxyopes salticus Hentz, and Peucetia viridans (Hentz); a ninth predator, the exotic Solenopsis invicta Buren, also screened positive for M. cribraria DNA. P. viridans was the only arthropod that tested positive for DNA of this invasive pest in only one crop, cotton. Two plant-feeding pentatomid species, Piezodorus guildinii (Westwood) and Thyanta custator (F.), were found exclusively on soybean, and another, Euschistus tristigmus (Say), was specific to cotton in the context of this study. Detection of predation on a combination of M. cribraria and P. guildinii and T. custator in cotton and M. cribraria and E. tristigmus in soybean demonstrated that these predators dispersed between crops. These results strongly support the use of soybean habitats adjacent to cotton as part of a conservation biological control strategy against M. cribraria. This is the first report documenting predation on this exotic pest in the field via molecular gut-content analysis.

  6. Landscape-scale pest suppression is mediated by timing of predator arrival.

    Science.gov (United States)

    Costamagna, Alejandro C; Venables, William N; Schellhorn, Nancy A

    2015-06-01

    There is increasing evidence that biological control of agricultural pests is affected by the landscape context, although the mechanisms behind this pattern have received little attention. Ecological theory predicts that one key mechanism mediating successful pest suppression is early predator immigration to agricultural fields. However, the importance of this population process under different landscape contexts remains unknown. Here, we elucidate the relative importance of landscape context and timing of predator immigration on aphid suppression by manipulating exposure to predation in agroecosystems located across a gradient of landscape complexity in a subtropical horticultural region in Australia. Aphid suppression varied with landscape context, from populations escaping control to almost complete pest suppression. In general, we found higher aphid suppression when predators were allowed immediate and continuous access to aphids than when predators were delayed or excluded for a week, but responses varied in each landscape. Contrary to previous reports from temperate agricultural landscapes, aphid suppression was neutral or negatively associated with natural and seminatural vegetation, whereas aphid suppression was positively associated with landscapes with a higher proportion of alfalfa. When landscapes were classified according to their levels of complexity, we showed that early predation resulted in similar levels of pest suppression in simplified landscapes (i.e., with low proportions of alfalfa and habitat diversity) as late predation in complex landscapes (i.e., with high proportions of alfalfa and habitat diversity). Our data show that timing of predator arrival to agricultural fields is as important as landscape complexity for mediating pest control in agroecosystems. Furthermore, our results suggest that key distributions of suitable habitats that facilitate natural enemy movement can enhance biological control in simplified landscapes.

  7. [Informative predation: Towards a new species concept].

    Science.gov (United States)

    Lherminier, Philippe

    2018-03-29

    evolution. According to the phyletic model, each species is a lineage passively isolated by external circumstances; on the contrary, in the sexual model each species is actively produced by an internal process of adjustment between replicative costs and informative gains. Each species develops a solution of the equation that matches material-energy expenditures with informative gains. A species concept based on a lasting relationship between these two quantities or on the limits of certain values or their equilibrium is therefore legitimate. It is this equilibrium that all couples resolve, without our formulation being as clearly as biology desires and as physics demands. Energy expenditures and informative gains in sexuality are almost impossible to measure, yet observation and experience allow an approximate ranking of the energy/information ratio. For example, endogamy is more economical, but less diversifying than exogamy, polymorphism increases information, the reinforcement of sexual isolation limits the rate of unproductive fertilization, between neighboring species hybridization allows certain genetic contributions, etc. A closed species evolves naturally towards another just as closed. On the contrary, the artificial transfer of DNA opens the species. The natural boundaries that isolate the species are easily trespassed as energy costs and constraints of sexual recognition are easily controlled; and the perspectives of manipulations are visible, whereas natural selection never anticipates and thus works blindly. Informative, artificially directed predation stimulates the evolution of species. Copyright © 2018. Published by Elsevier Masson SAS.

  8. Bald eagle predation on common loon egg

    Science.gov (United States)

    DeStefano, Stephen; McCarthy, Kyle P.; Laskowski, Tom

    2010-01-01

    The Common Loon (Gavia immer) must defend against many potential egg predators during incubation, including corvids, Herring Gulls (Larus argentatus), raccoons (Procyon lotor), striped skunk (Mephitis mephitis), fisher (Martes pennanti), and mink (Neovison vison) (McIntyre 1988, Evers 2004, McCann et al. 2005). Bald Eagles (Haliaeetus leucocephalus) have been documented as predators of both adult Common Loons and their chicks (Vliestra and Paruk 1997, Paruk et al. 1999, Erlandson et al. 2007, Piper et al. 2008). In Wisconsin, where nesting Bald Eagles are abundant (>1200 nesting pairs, >1 young/pair/year), field biologists observed four instances of eagle predation of eggs in loon nests during the period 2002–2004 (M. Meyer pers. comm.). In addition, four cases of eagle predation of incubating adult loons were inferred from evidence found at the loon nest (dozens of plucked adult loon feathers, no carcass remains) and/or loon leg, neck, and skull bones beneath two active eagle nests, including leg bones containing the bands of the nearby (adult loon. However, although loon egg predation has been associated with Bald Eagles, predation events have yet to be described in peer-reviewed literature. Here we describe a photographic observation of predation on a Common Loon egg by an immature Bald Eagle as captured by a nest surveillance video camera on Lake Umbagog, a large lake (32 km2) at Umbagog National Wildlife Refuge (UNWR) in Maine.

  9. The increased risk of predation enhances cooperation

    Science.gov (United States)

    Krams, Indrikis; Bērziņš, Arnis; Krama, Tatjana; Wheatcroft, David; Igaune, Kristīne; Rantala, Markus J.

    2010-01-01

    Theory predicts that animals in adverse conditions can decrease individual risks and increase long-term benefits by cooperating with neighbours. However, some empirical studies suggest that animals often focus on short-term benefits, which can reduce the likelihood that they will cooperate with others. In this experimental study, we tested between these two alternatives by evaluating whether increased predation risk (as a correlate of environmental adversity) enhances or diminishes the occurrence of cooperation in mobbing, a common anti-predator behaviour, among breeding pied flycatchers Ficedula hypoleuca. We tested whether birds would join their mobbing neighbours more often and harass a stuffed predator placed near their neighbours' nests more intensely in areas with a higher perceived risk of predation. Our results show that birds attended mobs initiated by their neighbours more often, approached the stuffed predator significantly more closely, and mobbed it at a higher intensity in areas where the perceived risk of predation was experimentally increased. In such high-risk areas, birds also were more often involved in between-pair cooperation. This study demonstrates the positive impact of predation risk on cooperation in breeding songbirds, which might help in explaining the emergence and evolution of cooperation. PMID:19846454

  10. Do Père David's deer lose memories of their ancestral predators?

    Science.gov (United States)

    Li, Chunwang; Yang, Xiaobo; Ding, Yuhua; Zhang, Linyuan; Fang, Hongxia; Tang, Songhua; Jiang, Zhigang

    2011-01-01

    Whether prey retains antipredator behavior after a long period of predator relaxation is an important question in predator-prey evolution. Père David's deer have been raised in enclosures for more than 1200 years and this isolation provides an opportunity to study whether Père David's deer still respond to the cues of their ancestral predators or to novel predators. We played back the sounds of crows (familiar sound) and domestic dogs (familiar non-predators), of tigers and wolves (ancestral predators), and of lions (potential naïve predator) to Père David's deer in paddocks, and blank sounds to the control group, and videoed the behavior of the deer during the experiment. We also showed life-size photo models of dog, leopard, bear, tiger, wolf, and lion to the deer and video taped their responses after seeing these models. Père David's deer stared at and approached the hidden loudspeaker when they heard the roars of tiger or lion. The deer listened to tiger roars longer, approached to tiger roars more and spent more time staring at the tiger model. The stags were also found to forage less in the trials of tiger roars than that of other sound playbacks. Additionally, it took longer for the deer to restore their normal behavior after they heard tiger roars, which was longer than that after the trial of other sound playbacks. Moreover, the deer were only found to walk away after hearing the sounds of tiger and wolf. Therefore, the tiger was probably the main predator for Père David's deer in ancient time. Our study implies that Père David's deer still retain the memories of the acoustic and visual cues of their ancestral predators in spite of the long term isolation from natural habitat.

  11. Weed seed predation by granivorous carabids as influenced by carnivorous carabids

    Directory of Open Access Journals (Sweden)

    de Mol, Friederike

    2014-02-01

    Full Text Available Weed seed predation is influenced for both biological and abiotic factors. Knowledge about these factors is necessary to optimize seed predation as a biological weed control measure. Here, we asked whether carnivorous carabid beetles can affect the seed predation. Additionally, the effect of weather on seed predation rate was investigated. For this purpose, 12, 1m² enclosures were installed in a field (block design with four treatments and three replications in northeastern Germany over a period of 23 days. Treatments in the enclosures were 1 without carabids, 2 with a natural density and species composition of carabids, 3 with granivorous carabid beetles (Pseudoophonus rufipes, Harpulus affinis, and 4 as 3 but additionally with carnivorous carabids (Pterostichus melanarius, Poecilus cupreus Seed predation rate was determined daily using seed cards with Poa annua and Stellaria media seeds. Temperature, relative air humidity and daily precipitation were measured as covariables. In the treatment with granivorous carabids seed predation rate was 54.3 (P. annua resp. 14.3 (S. media seeds per enclosure and day. In the treatment with granivorous and carnivorous carabids, seed predation rate was significantly lower for P. annua (46.6 seeds per enclosure and day, paired Wilcoxon-Test, p = 0.04 and equally high for S. media (14.4 seeds per enclosure and day. In enclosures containing non-manipulated carabid densities 9.1 seeds of P. annua and 7.2 seeds of S. media were lost per enclosure and per day, which is significantly higher than from enclosures that were void of carabids. The minimum night temperature was the only weather variable that significantly influenced seed predation rate. This work contributes to a better understanding of the factors influencing seed predation rates in the field.

  12. Do Père David's deer lose memories of their ancestral predators?

    Directory of Open Access Journals (Sweden)

    Chunwang Li

    Full Text Available Whether prey retains antipredator behavior after a long period of predator relaxation is an important question in predator-prey evolution. Père David's deer have been raised in enclosures for more than 1200 years and this isolation provides an opportunity to study whether Père David's deer still respond to the cues of their ancestral predators or to novel predators. We played back the sounds of crows (familiar sound and domestic dogs (familiar non-predators, of tigers and wolves (ancestral predators, and of lions (potential naïve predator to Père David's deer in paddocks, and blank sounds to the control group, and videoed the behavior of the deer during the experiment. We also showed life-size photo models of dog, leopard, bear, tiger, wolf, and lion to the deer and video taped their responses after seeing these models. Père David's deer stared at and approached the hidden loudspeaker when they heard the roars of tiger or lion. The deer listened to tiger roars longer, approached to tiger roars more and spent more time staring at the tiger model. The stags were also found to forage less in the trials of tiger roars than that of other sound playbacks. Additionally, it took longer for the deer to restore their normal behavior after they heard tiger roars, which was longer than that after the trial of other sound playbacks. Moreover, the deer were only found to walk away after hearing the sounds of tiger and wolf. Therefore, the tiger was probably the main predator for Père David's deer in ancient time. Our study implies that Père David's deer still retain the memories of the acoustic and visual cues of their ancestral predators in spite of the long term isolation from natural habitat.

  13. The mind of the sexual predator.

    Science.gov (United States)

    Palermo, George B

    2007-09-01

    This review reports recent articles in the criminological literature that may be of help in understanding the psychodynamics of sexual predators in the hope of better defining them and preventing recidivistic behavior. Recent literature presents the motivations behind sexual offending, attempting to explain in a psychodynamic way the complex problem of the aberrant sexual drives of the sexual predator. Recent civil commitment laws and their implications are touched upon. The literature presented will enable the criminology practitioner to reach a more holistic understanding of the sexual predator and better detection of them.

  14. Quantifying system-wide financial costs and benefits of PV in South Africa

    CSIR Research Space (South Africa)

    Bischof-Niemz, T

    2015-09-01

    Full Text Available The South African power system is currently under severe constraints. Controlled load shedding occurred several times in 2014. Diesel-fired gas turbines, which are meant to be the barely-ever-used “safety-net” of the power system, ran at more than...

  15. Adult predation risk drives shifts in parental care strategies: a long-term study.

    Science.gov (United States)

    Jaatinen, Kim; Ost, Markus; Lehikoinen, Aleksi

    2011-01-01

    1. Grouping provides antipredatory benefits, and therefore aggregation tendencies increase under heightened predation risk. In socially breeding groups, however, conflicts over reproductive shares or safety tend to disintegrate groups. Group formation thereby involves a balance between the antipredatory benefits of aggregation and the destabilizing effect of reproductive conflict. 2. We study the grouping behaviour of a facultatively social precocial sea duck with uniparental female care, the eider (Somateria mollissima Linnaeus). Females tend their young solitarily or in groups of 2-5 females. Here, we focus on the effect predation on adults has on group-formation decisions of brood-caring females. 3. By modifying an existing bidding game over care, we model the effects of predation risk on the width of the window of selfishness, which delimits the reproductive sharing allowing cooperation within brood-rearing coalitions, and generate predictions about the relative frequencies of solitary versus cooperative parental care modes. Furthermore, we model the dilution effect as a function of female group size and predation risk. 4. The window of selfishness widens with increasing predation risk, and the dilution of predation risk increases with both female group size and increasing predation risk, yielding the following predictions: (i) cooperative brood care becomes more prevalent and, conversely, solitary brood care less prevalent under heightened predation risk and (ii) group sizes increase concomitantly. 5. We tested these predictions using 13 years of data on female grouping decisions and annual predation rates, while controlling for the potentially confounding effect of female body condition. 6. Our data supported both predictions, where heightened predation risk of nesting females, but not changes in their condition, increased the relative frequency of cooperative brood care. Increased female nesting mortality also resulted in larger groups of cooperative females

  16. Quantifying predation pressure along an urbanisation gradient in Denmark using artificial caterpillars

    DEFF Research Database (Denmark)

    Ferrante, Marco; Lo Cacciato, Alessandro; Lövei, Gabor L

    2014-01-01

    Urbanisation results in a marked modification of habitats and influences several ecological processes, some of which give rise to beneficial ecological services. Natural pest control, the effect of predators on prey is one of such services. We quantified changes in the incidence of predation...... with increasing levels of urbanisation using artificial caterpillars made of green plasticine. Potential predators can be identified by the "attack marks" they leave on these artificial caterpillars. We conducted this study from May to October 2010 around the city of Sorø (Zealand, Denmark), in forests along...... of these to carabids, the most common group of ground-active arthropods. Chewing insects exerted the greatest predation pressure in the original forest (52.1%), with lower values recorded in the suburban (10.1%) and urban (16.4%) forest fragments. Ants were responsible for only 4.7% of the attacks in forest, 11...

  17. A Recovery-Oriented Approach to Dependable Services: Repairing Past Errors with System-Wide Undo

    Science.gov (United States)

    2003-12-01

    An alternate approach taken by some replicated file systems designed for weakly-connected oper- ation, like Bayou [126] and IceCube [60], is to resolve... IceCube optimistic replication system, although in that case they are used for log merging and reorder- ing rather than execution control [93]. Our...manage con- sistency in weakly-connected, optimistically-replicated storage systems such as Bayou [126], IceCube [60], and Coda [109]. The similarity is

  18. A predator-prey system with stage-structure for predator and nonlocal delay

    DEFF Research Database (Denmark)

    Lin, Z.G.; Pedersen, Michael; Zhang, Lai

    2010-01-01

    This paper deals with the behavior of solutions to the reaction-diffusion system under homogeneous Neumann boundary condition, which describes a prey-predator model with nonlocal delay. Sufficient conditions for the global stability of each equilibrium are derived by the Lyapunov functional...... and the results show that the introduction of stage-structure into predator positively affects the coexistence of prey and predator. Numerical simulations are performed to illustrate the results....

  19. Predation risk of artificial ground nests in managed floodplain meadows

    Science.gov (United States)

    Arbeiter, Susanne; Franke, Elisabeth

    2018-01-01

    Nest predation highly determines the reproductive success in birds. In agricultural grasslands, vegetation characteristics and management practices influences the predation risk of ground breeders. Little is known so far on the predation pressure on non-passerine nests in tall swards. Investigations on the interaction of land use with nesting site conditions and the habitat selection of nest predators are crucial to develop effective conservation measures for grassland birds. In this study, we used artificial nests baited with quail and plasticine eggs to identify potential predators of ground nests in floodplain meadows and related predation risk to vegetation structure and grassland management. Mean daily predation rate was 0.01 (±0.012) after an exposure duration of 21 days. 70% of all observed nest predations were caused by mammals (Red Fox and mustelids) and 17.5% by avian predators (corvids). Nest sites close to the meadow edge and those providing low forb cover were faced with a higher daily predation risk. Predation risk also increased later in the season. Land use in the preceding year had a significant effect on predation risk, showing higher predation rates on unmanaged sites than on mown sites. Unused meadows probably attract mammalian predators, because they provide a high abundance of small rodents and a more favourable vegetation structure for foraging, increasing also the risk of incidental nest predations. Although mowing operation is a major threat to ground-nesting birds, our results suggest that an annual removal of vegetation may reduce predation risk in the subsequent year.

  20. The effect of fish predation on benthic macroinvertebrates in a ...

    African Journals Online (AJOL)

    ... because the macroinvertebrate community structure in this temporary habitat was found to be influenced by the assemblages of both vertebrate and invertebrate predators, rather than by a single keystone predator. Keywords: biomanipulation, invertebrate predators, predation impacts, species assemblages, taxa richness, ...

  1. Effects of Predation by Protists on Prokaryotic Community Function, Structure, and Diversity in Anaerobic Granular Sludge

    Science.gov (United States)

    Hirakata, Yuga; Oshiki, Mamoru; Kuroda, Kyohei; Hatamoto, Masashi; Kubota, Kengo; Yamaguchi, Takashi; Harada, Hideki; Araki, Nobuo

    2016-01-01

    Predation by protists is top-down pressure that regulates prokaryotic abundance, community function, structure, and diversity in natural and artificial ecosystems. Although the effects of predation by protists have been studied in aerobic ecosystems, they are poorly understood in anoxic environments. We herein studied the influence of predation by Metopus and Caenomorpha ciliates—ciliates frequently found in anoxic ecosystems—on prokaryotic community function, structure, and diversity. Metopus and Caenomorpha ciliates were cocultivated with prokaryotic assemblages (i.e., anaerobic granular sludge) in an up-flow anaerobic sludge blanket (UASB) reactor for 171 d. Predation by these ciliates increased the methanogenic activities of granular sludge, which constituted 155% of those found in a UASB reactor without the ciliates (i.e., control reactor). Sequencing of 16S rRNA gene amplicons using Illumina MiSeq revealed that the prokaryotic community in the UASB reactor with the ciliates was more diverse than that in the control reactor; 2,885–3,190 and 2,387–2,426 operational taxonomic units (>97% sequence similarities), respectively. The effects of predation by protists in anaerobic engineered systems have mostly been overlooked, and our results show that the influence of predation by protists needs to be examined and considered in the future for a better understanding of prokaryotic community structure and function. PMID:27431197

  2. Invasive rats strengthen predation pressure on bird eggs in a South Pacific island rainforest.

    Science.gov (United States)

    Duron, Quiterie; Bourguet, Edouard; De Meringo, Hélène; Millon, Alexandre; Vidal, Eric

    2017-12-01

    Invasive rats ( Rattus spp.) are known to have pervasive impacts on island birds, particularly on their nesting success. To conserve or restore bird populations, numerous invasive rat control or eradication projects are undertaken on islands worldwide. However, such projects represent a huge investment and the decision-making process requires proper assessment of rat impacts. Here, we assessed the influence of two sympatric invasive rats ( Rattus rattus and R. exulans ) on native bird eggs in a New Caledonian rainforest, using artificial bird-nest monitoring. A total of 178 artificial nests containing two eggs of three different sizes were placed either on the ground or 1.5 m high and monitored at the start of the birds' breeding season. Overall, 12.4% of the nests were depredated during the first 7 days. At site 1, where nests were monitored during 16 days, 41.8% of the nests were depredated. The main predator was the native crow Corvus moneduloides , responsible for 62.9% of the overall predation events. Rats were responsible for only 22.9% of the events, and ate only small and medium eggs at both heights. Our experiment suggests that in New Caledonia, predation pressure by rats strengthens overall bird-nest predation, adding to that by native predators. Experimental rat control operations may allow reduced predation pressure on nests as well as the recording of biodiversity responses after rat population reduction.

  3. Ants, rodents and seed predation in Proteaceae

    African Journals Online (AJOL)

    . Saasveld Forestry Research Centre, George. Many species of Cape Proteaceae have seeds dispersed by ants. Ants may reduce seed predation by rapidly transporting and burying seeds in their nests. Three field experiments using ant and ...

  4. Biodiversity effects of the predation gauntlet

    Science.gov (United States)

    Stier, Adrian C.; Stallings, Christopher D.; Samhouri, Jameal F.; Albins, Mark A.; Almany, Glenn R.

    2017-06-01

    The ubiquity of trophic downgrading has led to interest in the consequences of mesopredator release on prey communities and ecosystems. This issue is of particular concern for reef-fish communities, where predation is a key process driving ecological and evolutionary dynamics. Here, we synthesize existing experiments that have isolated the effects of mesopredators to quantify the role of predation in driving changes in the abundance and biodiversity of recently settled reef fishes. On average, predators reduced prey abundance through generalist foraging behavior, which, through a statistical sampling artifact, caused a reduction in alpha diversity and an increase in beta diversity. Thus, the synthesized experiments provide evidence that predation reduces overall abundance within prey communities, but—after accounting for sampling effects—does not cause disproportionate effects on biodiversity.

  5. Apex Predators Program Sportfishing Tournament Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Apex Predators Program staff have collected shark sportfishing tournamant data from the Northeast US since the 1960's. These tournaments offer a unique opportunity...

  6. Apex Predators Program Age and Growth Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Apex Predators Program staff have collected vertebral centra from sportfishing tournaments, cruises, commercial fishermen and strandings in the Northeast US since...

  7. The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics.

    Science.gov (United States)

    Cortez, Michael H; Patel, Swati

    2017-07-01

    This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.

  8. Behavioural adjustment in response to increased predation risk: a study in three duck species.

    Directory of Open Access Journals (Sweden)

    Cédric Zimmer

    Full Text Available Predation directly triggers behavioural decisions designed to increase immediate survival. However, these behavioural modifications can have long term costs. There is therefore a trade-off between antipredator behaviours and other activities. This trade-off is generally considered between vigilance and only one other behaviour, thus neglecting potential compensations. In this study, we considered the effect of an increase in predation risk on the diurnal time-budget of three captive duck species during the wintering period. We artificially increased predation risk by disturbing two groups of 14 mallard and teals at different frequencies, and one group of 14 tufted ducks with a radio-controlled stressor. We recorded foraging, vigilance, preening and sleeping durations the week before, during and after disturbance sessions. Disturbed groups were compared to an undisturbed control group. We showed that in all three species, the increase in predation risk resulted in a decrease in foraging and preening and led to an increase in sleeping. It is worth noting that contrary to common observations, vigilance did not increase. However, ducks are known to be vigilant while sleeping. This complex behavioural adjustment therefore seems to be optimal as it may allow ducks to reduce their predation risk. Our results highlight the fact that it is necessary to encompass the whole individual time-budget when studying behavioural modifications under predation risk. Finally, we propose that studies of behavioural time-budget changes under predation risk should be included in the more general framework of the starvation-predation risk trade-off.

  9. Threat-Sensitive Behavioral Responses to Concentrations of Water-Borne Cues from Predation

    Science.gov (United States)

    Kesavaraju, Banugopan; Damal, Kavitha; Juliano, Steven A.

    2007-01-01

    Aquatic organisms often detect predators via water-borne chemical cues, and respond by showing reduced activity. Prey responses may be correlated with the concentration of predation cues, which would result in graded antipredator behavioral responses that adjust potentially costly behavioral changes to levels that are commensurate with the risk of predation. Larvae of the predatory mosquito Toxorhynchites rutilus prey upon other container-dwelling insects, including larvae of the mosquito Ochlerotatus triseriatus. Previous work has established that O. triseriatus reduce movement, foraging, and time below the surface, and increase the frequency of resting at the surface, in the presence of water-borne cues from predation by T. rutilus. We tested whether these responses by O. triseriatus are threat sensitive by recording behavior of fourth instar larvae in two runs of an experiment in which we created a series of concentrations (100, 10, 1, 0.1, and 0.01% and 100, 70, 40, 20, and 10%) of water that had held either O. triseriatus larvae alone (control) or a T. rutilus larva feeding on O. triseriatus (predation). We also tested whether associated effects on time spent feeding are threat sensitive by determining whether frequencies of filtering or browsing are also related to concentration of cues. The frequencies of resting and surface declined, whereas frequency of filtering (but not browsing) increased more rapidly with a decrease in concentration of predation cues compared with control cues. Thus, O. triseriatus shows a threat sensitive behavioral response to water-borne cues from this predator, adjusting its degree of behavioral response to the apparent risk of predation. PMID:17440601

  10. Unforeseen effects of supplementary feeding: ungulate baiting sites as hotspots for ground-nest predation.

    Directory of Open Access Journals (Sweden)

    Nuria Selva

    Full Text Available Despite the ubiquity and magnitude of food provision to wildlife, our understanding of its ecological effects and conservation implications is very limited. Supplementary feeding of ungulates, still one of the main paradigms of game management in Europe, occurs in natural areas on an enormous scale. We investigated the indirect effects of this practice on nest predation risk in the Polish Eastern Carpathians (Bieszczady Mountains. We hypothesized that the predators attracted to ungulate baiting sites would also forage for alternative prey nearby, increasing the nest predation risk for ground-nesting birds in the vicinity. We conducted a paired experiment by placing artificial nests (N=120 in feeding and control sites (N=12 at different distances from the ungulate feeding site. We also documented the use of three ungulate feeding sites by potential nest predators with automatic cameras. The proportion of depredated nests was 30% higher in the vicinity of feeding sites than at control sites (65%± 31.5 vs 35%± 32.1. The probability of a nest being depredated significantly increased with time and at shorter distances from the feeding site. We predicted that the area within 1-km distance from the feeding site would have a high risk (>0.5 of nest predation. We recorded 13 species of potential ground-nest predators at ungulate baiting sites. Most frequent were Eurasian jays Garrulus glandarius, mice and voles Muroidea, ravens Corvus corax, brown bears Ursus arctos, and wild boar Sus scrofa. Nest predators made most use of supplementary feeding sites (82% pictures with predators vs 8% with ungulates, the target group. Our study alerts of the impacts of ungulate feeding on alternative prey; this is of special concern when affecting protected species. We urge for a sensible management of ungulate feeding, which considers potential indirect effects on other species and the spatial and temporal components of food provision.

  11. Edge effect on post-dispersal artificial seed predation in the southeastern Amazonia, Brazil.

    Science.gov (United States)

    Penido, G; Ribeiro, V; Fortunato, D S

    2015-05-01

    This paper evaluates the post-dispersal artificial seed predation rates in two areas of the southeastern Amazon forest-savanna boundary, central Brazil. We conducted the survey in a disturbance regime controlled research site to verify if exists an edge effect in these rates and if the disturbance (in this case annual fire and no fire) affects seed predation. We placed 800 peanuts seeds in each area at regular distance intervals from the fragment`s edge. Data were analyzed by a likelihood ratio model selection in generalized linear models (GLM). The complete model (with effects from edge distance and site and its interaction) was significative (F3=4.43; p=0.005). Seeds had a larger predation rates in fragment's interior in both areas, but in the controlled area (no disturbance) this effect was less linear. This suggests an edge effect for post-dispersal seed predation, and that disturbances might alter these effects. Even if we exclude the site effect (grouping both areas together) there is still a strong edge effect on seed predation rates (F3=32.679; p>0.001). We did not verify predator's species in this study; however, the presence of several species of ants was extremely common in the seeds. The detection of an edge effect in only a short survey time suggests that there is heterogeneity in predation rates and that this variation might affect plant recruitment in fragmented areas of the Amazon forest. Henceforth, this seed predation should be taken in consideration in reforestation projects, where the main source of plants species is from seed distribution.

  12. Interference in the tundra predator guild studied using local ecological knowledge.

    Science.gov (United States)

    Ehrich, Dorothee; Strømeng, Marita A; Killengreen, Siw T

    2016-04-01

    The decline or recolonization of apex predators such as wolves and lynx, often driven by management decisions, and the expansion of smaller generalist predators such as red foxes, can have important ecosystem impacts. The mesopredator release hypothesis proposes that apex predators control medium-sized predator populations through competition and/or intraguild predation. The decline of apex predators thus leads to an increase in mesopredators, possibly with a negative impact on prey populations. Information about the abundance of mammalian tundra predators, wolf (Canis lupus), wolverine (Gulo gulo), lynx (Lynx lynx), red fox (Vulpes vulpes) and arctic fox (Vulpes lagopus) was collected from local active outdoors people during semi-structured interviews in 14 low arctic or sub-arctic settlements in western Eurasia. The perceived abundance of red fox decreased with higher wolf abundance and in more arctic areas, but the negative effect of wolves decreased in more arctic and therefore less productive ecosystems. The perceived abundance of arctic fox increased towards the arctic and in areas with colder winters. Although there was a negative correlation between the two fox species, red fox was not included in the model for perceived arctic fox abundance, which received most support. Our results support the mesopredator release hypothesis regarding the expansion of red foxes in subarctic areas and indicate that top-down control by apex predators is weaker in less productive and more arctic ecosystems. We showed that local ecological knowledge is a valuable source of information about large-scale processes, which are difficult to study through direct biological investigations.

  13. Intraguild predation in raptor assemblages: A review

    OpenAIRE

    Sergio, Fabrizio; Hiraldo, F.

    2008-01-01

    Intraguild predation, the killing of species that use similar resources, has been largely overlooked in raptor investigations. To help fill this gap in knowledge, we conducted a literature review, focusing on studies that tested the behavioural and demographic impact of intraguild predation on individuals, populations, and assemblages of diurnal and nocturnal raptorial species. Overall, data were available for 39 empirical and experimental studies on 63 populations belonging to 11 killer spec...

  14. Hypothalamic Circuits for Predation and Evasion.

    Science.gov (United States)

    Li, Yi; Zeng, Jiawei; Zhang, Juen; Yue, Chenyu; Zhong, Weixin; Liu, Zhixiang; Feng, Qiru; Luo, Minmin

    2018-02-21

    The interactions between predator and prey represent some of the most dramatic events in nature and constitute a matter of life and death for both sides. The hypothalamus has been implicated in driving predation and evasion; however, the exact hypothalamic neural circuits underlying these behaviors remain poorly defined. Here, we demonstrate that inhibitory and excitatory projections from the mouse lateral hypothalamus (LH) to the periaqueductal gray (PAG) in the midbrain drive, respectively, predation and evasion. LH GABA neurons were activated during predation. Optogenetically stimulating PAG-projecting LH GABA neurons drove strong predatory attack, and inhibiting these cells reversibly blocked predation. In contrast, LH glutamate neurons were activated during evasion. Stimulating PAG-projecting LH glutamate neurons drove evasion and inhibiting them impeded predictive evasion. Therefore, the seemingly opposite behaviors of predation and evasion are tightly regulated by two dissociable modular command systems within a single neural projection from the LH to the PAG. VIDEO ABSTRACT. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators.

    Directory of Open Access Journals (Sweden)

    Christina L Mogren

    Full Text Available The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae and Tidarren haemorrhoidale (Araneae: Theridiidae and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l(-1 arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g(-1 of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142-290 ng g(-1. Buenoa scimitra accumulated 5120±406 ng g(-1 of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l(-1 arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies.

  16. Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators

    Science.gov (United States)

    Mogren, Christina L.; Walton, William E.; Parker, David R.; Trumble, John T.

    2013-01-01

    The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l−1 arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g−1 of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142–290 ng g−1). Buenoa scimitra accumulated 5120±406 ng g−1 of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l−1 arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies. PMID:23826344

  17. Shifts in intertidal zonation and refuge use by prey after mass mortalities of two predators.

    Science.gov (United States)

    Gravem, Sarah A; Morgan, Steven G

    2017-04-01

    Recent mass mortalities of two predatory sea star species provided an unprecedented opportunity to test the effect of predators on rocky intertidal prey. Mass mortalities provide insight that manipulative experiments cannot because they alter ecosystems on a larger scale, for longer time periods, and remove both organisms and their cues from the environment. We examined shifts in population size structure, vertical zonation, and use of emersed refuge habitats outside tidepools by the abundant herbivorous black turban snail Tegula funebralis, both before and after the successive mortalities of two predatory sea stars. The small cryptic predator Leptasterias spp. suffered a localized but extreme mortality event in November 2010, followed by two mass mortalities of the keystone predator Pisaster ochraceus in August 2011 and autumn 2013. After the local extinction of Leptasterias, the population size of Tegula more than doubled. Also, since Leptasterias primarily inhabited only mid to low intertidal tidepools at this site, small and medium sized snails (which are preferred by Leptasterias) shifted lower in the intertidal and into tidepools after the mortality of Leptasterias. After the mortality of Pisaster in August 2011, large snails did not shift lower in the intertidal zone despite being preferred by Pisaster. Small and medium sized snails became denser in the higher zone and outside tidepools, which was not likely due to Pisaster mortality. Previous studies concluded that Pisaster maintained vertical size gradients of snails, but our data implicate the overlooked predator Leptasterias as the primary cause. This natural experiment indicated that (1) predators exert top-down control over prey population sizes and lower limits, (2) vertical zonation of prey are dynamic and controlled in part by prey behavior, and (3) predators exert the strongest effects on more vulnerable individuals, which typically inhabit stressful habitats higher on the shore or outside

  18. Intraguild predation on the whitefly parasitoid Eretmocerus eremicus by the generalist predator Geocoris punctipes: a behavioral approach.

    Science.gov (United States)

    Velasco-Hernández, María Concepción; Ramirez-Romero, Ricardo; Cicero, Lizette; Michel-Rios, Claudia; Desneux, Nicolas

    2013-01-01

    Intraguild predation (IGP) takes place when natural enemies that use similar resources attack each other. The impact of IGP on biological control can be significant if the survival of natural enemy species is disrupted. In the present study, we assessed whether Geocoris punctipes (Hemiptera: Lygaeidae) engages in IGP on Eretmocerus eremicus (Hymenoptera: Aphelinidae) while developing on whitefly nymphs of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). In choice and non-choice tests, we exposed G. punctipes to parasitized and non-parasitized whitefly nymphs. We found that G. punctipes does practice IGP on E. eremicus. However, choice tests assessing G. punctipes consumption revealed a significant preference for non-parasitized T. vaporariorum nymphs. Subsequently, we investigated whether E. eremicus females modify their foraging behavior when exposed to conditions involving IGP risk. To assess this, we analyzed wasp foraging behavior under the following treatments: i) whitefly nymphs only (control = C), ii) whitefly nymphs previously exposed to a predator ( = PEP) and, iii) whitefly nymphs and presence of a predator ( = PP). In non-choice tests we found that E. eremicus did not significantly modify its number of attacks, attack duration, oviposition duration, or behavior sequences. However, E. eremicus oviposited significantly more eggs in the PEP treatment. In the PP treatment, G. punctipes also preyed upon adult E. eremicus wasps, significantly reducing their number of ovipositions and residence time. When the wasps were studied under choice tests, in which they were exposed simultaneously to all three treatments, the number of attacks and frequency of selection were similar under all treatments. These results indicate that under IGP risk, E. eremicus maintains several behavioral traits, but can also increase its number of ovipositions in the presence of IG-predator cues. We discuss these findings in the context of population dynamics and

  19. Mutual interference between adult females of Galendromus flumenis (Acari: Phytoseiidae) feeding on eggs of Banks grass mite decreases predation efficiency and increases emigration rate

    DEFF Research Database (Denmark)

    Ganjisaffar, Fatemeh; Nachman, Gøsta Støger; Perring, Thomas M.

    2017-01-01

    The Banks grass mite, Oligonychus pratensis (Banks) (Acari: Tetranychidae) causes significant damage to dates in California (USA), if not controlled. Studies are underway to develop biological control strategies against this pest in dates using the predatory mite Galendromus flumenis (Chant) (Acari...... predator density due to mutual interference. Analysis of emigration data considering the arena size and predator numbers showed that the emigration rate of G. flumenis was higher from small arenas, and increased with increasing predator numbers. When emigration data were analyzed using prey and predator...

  20. Ultraviolet reflection enhances the risk of predation in a vertebrate

    Directory of Open Access Journals (Sweden)

    Ricarda MODARRESSIE, Ingolf P. RICK, Theo C. M. BAKKER

    2013-04-01

    Full Text Available Many animals are sensitive to ultraviolet light and also possess UV-reflective regions on their body surface. Individuals reflecting UV have been shown to be preferred during social interactions such as mate choice or shoaling decisions. However, whether those body UV-reflections enhance also the conspicuousness to UV-sensitive predators and therefore entail costs for its bearer is less well documented. Two size-matched three-spined sticklebacks Gasterosteus aculeatus, one enclosed in a UV-transmitting (UV+ and another in a UV-blocking (UV- chamber, were simultaneously presented to individual brown trout Salmo trutta. “yearlings”. Brown trout of this age are sensitive to the UV part of the electromagnetic spectrum and are natural predators of three-spined sticklebacks. The stickleback that was attacked first as well as the subsequent number of attacks was recorded. Sticklebacks enclosed in the UV-transmitting chamber were attacked first significantly more often compared to sticklebacks enclosed in the UV-blocking chamber. Control experiments using neutral density filters revealed that this was more likely due to UV having an influence on hue perception rather than brightness discrimination. The difference in attack probability corresponded to the difference in chromatic contrasts between sticklebacks and the experimental background calculated for both the UV+ and UV- conditions in a physiological model of trout colour vision. UV reflections seem to be costly by enhancing the risk of predation due to an increased conspicuousness of prey. This is the first study in a vertebrate, to our knowledge, demonstrating direct predation risk due to UV wavelengths [Current Zoology 59 (2: 151-159, 2013].

  1. The behavioural effects of predator-induced stress responses in the cricket (Gryllus texensis): the upside of the stress response.

    Science.gov (United States)

    Adamo, Shelley A; Kovalko, Ilya; Mosher, Brianna

    2013-12-15

    Predator-induced stress responses are thought to reduce an animal's risk of being eaten. Therefore, these stress responses should enhance anti-predator behaviour. We found that individual insects (the cricket Gryllus texensis) show reliable behavioural responses (i.e. behavioural types) in a plus-shaped maze. An individual's behaviour in the plus maze remained consistent for at least 1/2 of its adult life. However, after exposure to a model predator, both male and female crickets showed a reduced period of immobility and an increased amount of time spent under shelter compared with controls. These changes could be mimicked by injections of the insect stress neurohormone octopamine. These behavioural changes probably aid crickets in evading predators. Exposure to a model predator increased the ability of crickets to escape a live predator (a bearded dragon, Pogona vitticeps). An injection of octopamine had the same effect, showing that stress hormones can reduce predation. Using crickets to study the fitness consequences of predator-induced stress responses will help integrate ecological and biomedical concepts of 'stress'.

  2. Predation, metabolic priming and early life-history rearing environment affect the swimming capabilities of growth hormone transgenic rainbow trout.

    Science.gov (United States)

    Crossin, Glenn T; Devlin, Robert H

    2017-08-01

    The period of first feeding, when young salmonid fishes emerge from natal stream beds, is one fraught with predation risk. Experiments conducted in semi-natural stream mesocosms have shown that growth hormone transgenic salmonids are at greater risk of predation than their non-transgenic siblings, due partly to the higher metabolic demands associated with transgenesis, which force risky foraging behaviours. This raises questions as to whether there are differences in the swim-performance of transgenic and non-transgenic fishes surviving predation experiments. We tested this hypothesis in wild-origin rainbow trout ( Oncorhynchus mykiss ) that were reared from first feeding in semi-natural stream mesocosms characterized by complex hydrodynamics, the presence of predators and oligotrophic conditions. Using an open-flume raceway, we swam fish and measured their capacity for burst-swimming against a sustained flow. We found a significant genotype effect on burst-performance, with transgenic fish sustaining performance longer than their wild-type siblings, both in predator and predator-free stream segments. Importantly, this effect occurred before differences in growth were discernable. We also found that mesocosm-reared fish had greater burst-performance than fish reared in the controlled hatchery environment, despite the latter being unexposed to predators and having abundant food. Our results suggest a potential interaction between predation and metabolic priming, which leads to greater burst capacity in transgenic trout. © 2017 The Author(s).

  3. Who are the important predators of sea turtle nests at Wreck Rock beach?

    Science.gov (United States)

    Lei, Juan; Booth, David T

    2017-01-01

    Excessive sea turtle nest predation is a problem for conservation management of sea turtle populations. This study assessed predation on nests of the endangered loggerhead sea turtle ( Caretta caretta ) at Wreck Rock beach adjacent to Deepwater National Park in Southeast Queensland, Australia after a control program for feral foxes was instigated. The presence of predators on the nesting dune was evaluated by tracking plots (2 × 1 m) every 100 m along the dune front. There were 21 (2014-2015) and 41 (2015-2016) plots established along the dune, and these were monitored for predator tracks daily over three consecutive months in both nesting seasons. Predator activities at nests were also recorded by the presence of tracks on top of nests until hatchlings emerged. In addition, camera traps were set to record the predator activity around selected nests. The tracks of the fox ( Vulpes vulpes ) and goanna ( Varanus spp ) were found on tracking plots. Tracking plots, nest tracks and camera traps indicated goanna abundance varied strongly between years. Goannas were widely distributed along the beach and had a Passive Activity Index (PAI) (0.31 in 2014-2015 and 0.16 in 2015-2016) approximately seven times higher than that of foxes (PAI 0.04 in 2014-2015 and 0.02 in 2015-2016). Five hundred and twenty goanna nest visitation events were recorded by tracks but no fox tracks were found at turtle nests. Camera trap data indicated that yellow-spotted goannas ( Varanus panoptes ) appeared at loggerhead turtle nests more frequently than lace monitors ( V. varius ) did, and further that lace monitors only predated nests previously opened by yellow-spotted goannas. No foxes were recorded at nests with camera traps. This study suggests that large male yellow-spotted goannas are the major predator of sea turtle nests at the Wreck Rock beach nesting aggregation and that goanna activity varies between years.

  4. Pastoralist-predator interaction at the roof of the world: Conflict dynamics and implications for conservation

    Directory of Open Access Journals (Sweden)

    Jaffar Ud. Din

    2017-06-01

    Full Text Available Pastoralism and predation are two major concomitantly known facts and matters of concern for conservation biologists worldwide. Pastoralist-predator conflict constitutes a major social-ecological concern in the Pamir mountain range encompassing Afghanistan, Pakistan, and Tajikistan, and affects community attitudes and tolerance toward carnivores. Very few studies have been conducted to understand the dynamics of livestock predation by large carnivores like snow leopards (Panthera uncia and wolves (Canis lupus, owing to the region's remoteness and inaccessibility. This study attempts to assess the intensity of livestock predation (and resulting perceptions by snow leopards and wolves across the Afghani, Pakistani, and Tajik Pamir range during the period January 2008-June 2012. The study found that livestock mortality due to disease is the most serious threat to livestock (an average 3.5 animal heads per household per year and ultimately to the rural economy (an average of US$352 per household per year as compared to predation (1.78 animal heads per household per year, US$191 in the three study sites. Overall, 1419 (315 per year heads of livestock were reportedly killed by snow leopards (47% and wolves (53% in the study sites. People with comparatively smaller landholdings and limited earning options, other than livestock rearing, expressed negative attitudes toward both wolves and snow leopards and vice versa. Education was found to be an effective solution to dilute people's hatred for predators. Low public tolerance of the wolf and snow leopard in general explained the magnitude of the threat facing predators in the Pamirs. This will likely continue unless tangible and informed conservation measures like disease control and predation compensation programs are taken among others.

  5. Non-pest prey do not disrupt aphid predation by a web-building spider.

    Science.gov (United States)

    Welch, K D; Whitney, T D; Harwood, J D

    2016-02-01

    A generalist predator's ability to contribute to biological control is influenced by the decisions it makes during foraging. Predators often use flexible foraging tactics, which allows them to pursue specific types of prey at the cost of reducing the likelihood of capturing other types of prey. When a pest insect has low nutritional quality or palatability for a predator, the predator is likely to reject that prey in favour of pursuing alternative, non-pest prey. This is often thought to limit the effectiveness of generalist predators in consuming aphids, which are of low nutritional quality for many generalist predators. Here, we report behavioural assays that test the hypothesis that the generalist predator, Grammonota inornata (Araneae: Linyphiidae), preferentially forages for a non-pest prey with high nutritional quality (springtails), and rejects a pest prey with low nutritional quality (aphids). In no-choice assays, molecular gut-content analysis revealed that spiders continued to feed on the low-quality aphids at high rates, even when high-quality springtails were readily available. When provided a choice between aphids and springtails in two-way choice tests, spiders did not show the expected preference for springtails. Decision-making by spiders during foraging therefore appears to be sub-optimal, possibly because of attraction to the less frequently encountered of two preys as part of a dietary diversification strategy. These results indicate that behavioural preferences alone do not necessarily compromise the pest-suppression capacity of natural enemies: even nutritionally sub-optimal pest prey can potentially be subject to predation and suppression by natural enemies.

  6. Protozoan predation in soil slurries compromises determination of contaminant mineralization potential

    International Nuclear Information System (INIS)

    Badawi, Nora; Johnsen, Anders R.; Brandt, Kristian K.; Sørensen, Jan; Aamand, Jens

    2012-01-01

    Soil suspensions (slurries) are commonly used to estimate the potential of soil microbial communities to mineralize organic contaminants. The preparation of soil slurries disrupts soil structure, however, potentially affecting both the bacterial populations and their protozoan predators. We studied the importance of this “slurry effect” on mineralization of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA, 14 C-labelled), focussing on the effects of protozoan predation. Mineralization of MCPA was studied in “intact” soil and soil slurries differing in soil:water ratio, both in the presence and absence of the protozoan activity inhibitor cycloheximide. Protozoan predation inhibited mineralization in dense slurry of subsoil (soil:water ratio 1:3), but only in the most dilute slurry of topsoil (soil:water ratio 1:100). Our results demonstrate that protozoan predation in soil slurries may compromise quantification of contaminant mineralization potential, especially when the initial density of degrader bacteria is low and their growth is controlled by predation during the incubation period. - Highlights: ► We studied the protozoan impact on MCPA mineralization in soil slurries. ► Cycloheximide was used as protozoan inhibitor. ► Protozoa inhibited MCPA mineralization in dilute topsoil slurry and subsoil slurry. ► Mineralization potentials may be underestimated when using soil slurries. - Protozoan predation may strongly bias the quantification of mineralization potential when performed in soil slurries, especially when the initial density of degrader bacteria is low such as in subsoil or very dilute topsoil slurries.

  7. Predation's role in repeated phenotypic and genetic divergence of armor in threespine stickleback.

    Science.gov (United States)

    Marchinko, Kerry B

    2009-01-01

    Predator-driven divergent selection may cause differentiation in defensive armor in threespine stickleback: (1) predatory fish and birds favor robust armor, whereas (2) predaceous aquatic insects favor armor reduction. Although (1) is well established, no direct experimental evidence exists for (2). I examined the phenotypic and genetic consequences of insect predation using F(2) families from crosses between freshwater and marine stickleback populations. I measured selection on body size, and size-adjusted spine (dorsal and pelvic) and pelvic girdle length, by splitting juvenile F(2) families between control and insect predation treatments, set in pond enclosures. I also examined the effect of insect predation on Ectodysplasin (Eda), a gene physically linked to quantitative trait loci for lateral plate number, spine length, and body shape. Insect predation resulted in: (1) significant selection for larger juvenile size, and shorter dorsal spine and pelvic girdle length, (2) higher mortality of individuals missing the pelvic girdle, and (3) selection in favor of the low armor Eda allele. Predatory insects favor less stickleback armor, likely contributing to the widespread reduction of armor in freshwater populations. Because size strongly influences mate choice, predator-driven divergent selection on size may play a substantial role in byproduct reproductive isolation and speciation in threespine stickleback.

  8. Elevated CO2 affects predator-prey interactions through altered performance.

    Directory of Open Access Journals (Sweden)

    Bridie J M Allan

    Full Text Available Recent research has shown that exposure to elevated carbon dioxide (CO2 affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm or a present-day control (440 µatm interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2.

  9. Pyomelanin produced by Vibrio cholerae confers resistance to predation by Acanthamoeba castellanii

    Science.gov (United States)

    Noorian, Parisa; Hu, Jie; Chen, Zhiliang; Kjelleberg, Staffan; Wilkins, Marc R; Sun, Shuyang

    2017-01-01

    Abstract Protozoan predation is one of the main environmental factors constraining bacterial growth in aquatic environments, and thus has led to the evolution of a number of defence mechanisms that protect bacteria from predation. These mechanisms may also function as virulence factors in infection of animal and human hosts. Whole transcriptome shotgun sequencing of Vibrio cholerae biofilms during predation by the amoebae, Acanthamoeba castellanii, revealed that 131 transcripts were significantly differentially regulated when compared to the non-grazed control. Differentially regulated transcripts included those involved in biosynthetic and metabolic pathways. The transcripts of genes involved in tyrosine metabolism were down-regulated in the grazed population, which indicates that the tyrosine metabolic regulon may have a role in the response of V. cholerae biofilms to A. castellanii predation. Homogentisate 1, 2-dioxygenase (HGA) is the main intermediate of the normal L-tyrosine catabolic pathway which is known to auto-oxidize, leading to the formation of the pigment, pyomelanin. Indeed, a pigmented mutant, disrupted in hmgA, was more resistant to amoebae predation than the wild type. Increased grazing resistance was correlated with increased production of pyomelanin and thus reactive oxygen species (ROS), suggesting that ROS production is a defensive mechanism used by bacterial biofilms against predation by amoebae A. castellanii. PMID:29095994

  10. Do Predation Rates on Artificial Nests Accurately Reflect Predation Rates on Natural Bird Nests?

    Science.gov (United States)

    David I. King; Richard M. DeGraaf; Curtice R. Griffin; Thomas J. Maier

    1999-01-01

    Artificial nests are widely used in avian field studies. However, it is unclear how well predation rates on artificial nests reflect predation rates on natural nests. Therefore, we compared survival rates of artificial nests (unused natural nests baited with House Sparrow eggs) with survival rates of active bird nests in the same habitat at the same sites. Survival...

  11. Coexistence of predator and prey in intraguild predation systems with ontogenetic niche shifts

    NARCIS (Netherlands)

    Hin, V.; Schellekens, T.; Persson, L.; de Roos, A.M.

    2011-01-01

    In basic intraguild predation (IGP) systems, predators and prey also compete for a shared resource. Theory predicts that persistence of these systems is possible when intraguild prey is su- perior in competition and productivity is not too high. IGP often results from ontogenetic niche shifts, in

  12. Coexistence of Predator and Prey in Intraguild Predation systems with Ontogenetic Niche Shifts

    NARCIS (Netherlands)

    Hin, V.; Schellekens, T.; Persson, L.; Roos, A.M.

    2011-01-01

    In basic intraguild predation (IGP) systems, predators and prey also compete for a shared resource. Theory predicts that persistence of these systems is possible when intraguild prey is superior in competition and productivity is not too high. IGP often results from ontogenetic niche shifts, in

  13. Sea urchins, their predators and prey in SW Portugal

    Directory of Open Access Journals (Sweden)

    Nuno Mamede

    2014-06-01

    Full Text Available Sea urchins play a key role structuring benthic communities of rocky shores through an intense herbivory. The most abundant sea urchin species on shallow rocky subtidal habitats of the SW coast of Portugal is Paracentrotus lividus (Echinodermata: Echinoidea. It is considered a key species in various locations throughout its geographical distribution by affecting the structure of macroalgae communities and may cause the abrupt transformation of habitats dominated by foliose algae to habitats dominated by encrusting algae - the urchin barrens. The removal of P. lividus predators by recreational and commercial fishing is considered a major cause of this phenomenon by affecting the trophic relationships between predators, sea urchins and algae communities. Marine protected areas (MPAs usually lead to the recovery of important predator species that control sea urchin populations and restore habitats dominated by foliose macroalgae. Therefore, MPAs provide a good opportunity to test cascading effects and indirect impacts of fishing at the ecosystem level. The ecological role of P. lividus was studied on rocky subtidal habitats of the SW coast of Portugal (Alentejo considering three trophic levels: population of P. lividus, their predators (fish and shellfish and their prey (macroalgae communities. Several studies were conducted: (1 a non-destructive observational study on the abundance and distribution patterns of P. lividus, their predators and preys, comparing areas with different protection; (2 a manipulative in situ study with cages to assess the role of P. lividus as an herbivore and the influence of predation; (3 a descriptive study of P. lividus predators based on underwater filming; (4 and a study of human perception on these trophic relationships and other issues on sea urchin ecology and fishery, based on surveys made to fishermen and divers. Subtidal studies were performed with SCUBA diving at 3-12 m deep. Results indicate that in the

  14. Impact of insecticide exposure on the predation activity of the European earwig Forficula auricularia.

    Science.gov (United States)

    Malagnoux, Laure; Capowiez, Yvan; Rault, Magali

    2015-09-01

    The European earwig Forficula auricularia is an effective predator in apple orchards. It is therefore crucial to study whether insecticides affect this natural pest control agent. Predation activity, i.e., the number of aphids eaten in 24 h, was determined under laboratory conditions after exposure of fourth-instar nymphs and adult earwigs to widely used insecticides (acetamiprid, chlorpyrifos-ethyl, deltamethrin, and spinosad), which were applied at the normal application rates. Inhibition of acetylcholinesterase and carboxylesterase activities were also measured as indicators of pesticide exposure. Predation activity decreased significantly in nymphs exposed to spinosad (62%) and chlorpyrifos-ethyl (98%) compared with controls. A similar response was found for both esterase activities. Spinosad had a stronger effect on AChE (-33%) whereas chlorpyrifos-ethyl affected CbE activity preferentially (-59%). Spinosad (20% of controls), acetamiprid (28%), and chlorpyrifos-ethyl (66%) also significantly decreased the predation behavior of adult male but not female (5 to 40%) earwigs. Adult AChE and CbE activities were also significantly reduced (28 to 67% of controls) in pesticide-exposed earwigs. Our results suggest that earwigs should be included in the environmental risk assessment framework for authorization of newly marketed plant protection products. Their predation behavior appears to be a sensitive and complementary biomarker.

  15. Modelling exposure of mammalian predators to anticoagulant rodenticide

    Directory of Open Access Journals (Sweden)

    Christopher John Topping

    2016-12-01

    Full Text Available Anticoagulant rodenticides (AR are a widespread and effective method of rodent control but there is concern about the impact these may have on non-target organisms, in particular secondary poisoning of rodent predators. Incidence and concentration of AR in free-living predators in Denmark is very high. We postulate that this is caused by widespread exposure due to widespread use of AR in Denmark in and around buildings. To investigate this theory a spatio-temporal model of AR use and mammalian predator distribution was created. This model was supported by data from an experimental study of mice as vectors of AR, and was used to evaluate likely impacts of restrictions imposed on AR use in Denmark banning the use of rodenticides for plant protection in woodlands and tree-crops. The model uses input based on frequencies and timings of baiting for rodent control for urban, rural and woodland locations and creates an exposure map based on spatio-temporal modelling of movement of mice-vectored AR (based on Apodemus flavicollis. Simulated predator territories are super-imposed over this exposure map to create an exposure index. Predictions from the model concur with field studies of AR prevalence both before and after the change in AR use. In most cases incidence of exposure to AR is predicted to be greater than 90%, although cessation of use in woodlots and Christmas tree plantations should reduce mean exposure concentrations. Model results suggest that the driver of high AR incidence in non-target small mammal predators is likely to be the pattern of use and not the distance AR is vectored. Reducing baiting frequency by 75% had different effects depending on the landscape simulated, but having a maximum of 12% reduction in exposure incidence, and in one landscape a maximum reduction of <2%. We discuss sources of uncertainty in the model and directions for future development of predictive models for environmental impact assessment of rodenticides. The

  16. Putting prey and predator into the CO2 equation--qualitative and quantitative effects of ocean acidification on predator-prey interactions.

    Science.gov (United States)

    Ferrari, Maud C O; McCormick, Mark I; Munday, Philip L; Meekan, Mark G; Dixson, Danielle L; Lonnstedt, Öona; Chivers, Douglas P

    2011-11-01

    Little is known about the impact of ocean acidification on predator-prey dynamics. Herein, we examined the effect of carbon dioxide (CO(2)) on both prey and predator by letting one predatory reef fish interact for 24 h with eight small or large juvenile damselfishes from four congeneric species. Both prey and predator were exposed to control or elevated levels of CO(2). Mortality rate and predator selectivity were compared across CO(2) treatments, prey size and species. Small juveniles of all species sustained greater mortality at high CO(2) levels, while large recruits were not affected. For large prey, the pattern of prey selectivity by predators was reversed under elevated CO(2). Our results demonstrate both quantitative and qualitative consumptive effects of CO(2) on small and larger damselfish recruits respectively, resulting from CO(2)-induced behavioural changes likely mediated by impaired neurological function. This study highlights the complexity of predicting the effects of climate change on coral reef ecosystems. © 2011 Blackwell Publishing Ltd/CNRS.

  17. Predator diversity reduces habitat colonization by mosquitoes and midges.

    Science.gov (United States)

    Staats, Ethan G; Agosta, Salvatore J; Vonesh, James R

    2016-12-01

    Changes in predator diversity via extinction and invasion are increasingly widespread and can have important ecological and socio-economic consequences. Anticipating and managing these consequences requires understanding how predators shape ecological communities. Previous predator biodiversity research has focused on post-colonization processes. However, predators can also shape communities by altering patterns of prey habitat selection during colonization. The sensitivity of this non-consumptive top down mechanism to changes in predator diversity is largely unexamined. To address this gap, we examined patterns of dipteran oviposition habitat selection in experimental aquatic habitats in response to varied predator species richness while holding predator abundance constant. Caged predators were used in order to disentangle behavioural oviposition responses to predator cues from potential post-oviposition consumption of eggs and larvae. We hypothesized that because increases in predator richness often result in greater prey mortality than would be predicted from independent effects of predators, prey should avoid predator-rich habitats during colonization. Consistent with this hypothesis, predator-rich habitats received 48% fewer dipteran eggs than predicted, including 60% fewer mosquito eggs and 38% fewer midge eggs. Our findings highlight the potentially important links between predator biodiversity, prey habitat selection and the ecosystem service of pest regulation. © 2016 The Author(s).

  18. Invasion and predation in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    Judith S. WEIS

    2011-10-01

    Full Text Available This article reviews biological invasions in which predation (or its absence plays a major role in the success of the invader. Examples are described in which the invader out-competes native species for the same food, and cases in which the invader consumes valued native species. In many instances, better predator avoidance by the invasive species or the absence of predators in the new habitat contributes to the success of the invaders; in other cases native or introduced predators appear to be able to keep the invasive species in check. A relatively new management approach in the US is the idea of adding another trophic level – to have humans act as the predators and consume the invasive species. This approach is being utilized in Florida and throughout the Caribbean against the lionfish, but could be extended to other fishes, as well as to various invasive crustaceans and mollusks. This idea is controversial, and current regulations prohibiting the possession of individuals of the invasive species (e.g., mitten crabs or snakefish would preclude the development of a fishery for them [Current Zoology 57 (5: 613–624, 2011].

  19. Modelling predation by transient leopard seals for an ecosystem-based management of Southern Ocean fisheries

    Science.gov (United States)

    Forcada, J.; Royle, J. Andrew; Staniland, I.J.

    2009-01-01

    Correctly quantifying the impacts of rare apex marine predators is essential to ecosystem-based approaches to fisheries management, where harvesting must be sustainable for targeted species and their dependent predators. This requires modelling the uncertainty in such processes as predator life history, seasonal abundance and movement, size-based predation, energetic requirements, and prey vulnerability. We combined these uncertainties to evaluate the predatory impact of transient leopard seals on a community of mesopredators (seals and penguins) and their prey at South Georgia, and assess the implications for an ecosystem-based management. The mesopredators are highly dependent on Antarctic krill and icefish, which are targeted by regional fisheries. We used a state-space formulation to combine (1) a mark-recapture open-population model and individual identification data to assess seasonally variable leopard seal arrival and departure dates, numbers, and residency times; (2) a size-based bioenergetic model; and (3) a size-based prey choice model from a diet analysis. Our models indicated that prey choice and consumption reflected seasonal changes in leopard seal population size and structure, size-selective predation and prey vulnerability. A population of 104 (90?125) leopard seals, of which 64% were juveniles, consumed less than 2% of the Antarctic fur seal pup production of the area (50% of total ingested energy, IE), but ca. 12?16% of the local gentoo penguin population (20% IE). Antarctic krill (28% IE) were the only observed food of leopard seal pups and supplemented the diet of older individuals. Direct impacts on krill and fish were negligible, but the ?escapement? due to leopard seal predation on fur seal pups and penguins could be significant for the mackerel icefish fishery at South Georgia. These results suggest that: (1) rare apex predators like leopard seals may control, and may depend on, populations of mesopredators dependent on prey species

  20. Additive effects of vertebrate predators on insects in a Puerto Rican coffee plantation.

    Science.gov (United States)

    Borkhataria, Rena R; Collazo, Jaime A; Groom, Martha J

    2006-04-01

    A variety of studies have established the value of shaded coffee plantations as habitat for birds. While the value of birds as biological controls in coffee has received some attention, the interactions between birds and other predators of insects have not been tested. We used exclosures to examine the effects of vertebrate predators on the arthropods associated with coffee, in particular the coffee leafminer (Leucoptera coffeella) and the flatid planthopper Petrusa epilepsis, in a shaded coffee plantation in Puerto Rico. We used a 2 x 2 factorial design with four treatments: exclusion of birds, lizards, birds and lizards, and control (no exclusion). Abundance of insects > 5 mm increased when birds or both birds and lizards were removed. Birds and lizards had an additive effect for insects Coffee leafminers showed a weak response to removal of predators while planthopper abundance increased significantly in the absence of avian predators. Arthropod predators and parasitoids did not differ significantly between treatments. Our findings suggest that vertebrate insectivores have an additive effect on insects in coffee and may help control abundances of some coffee pests. Equally important, we present evidence suggesting that they do not interfere with other known natural enemies of coffee pests.

  1. Evidence of leopard predation on bonobos (Pan paniscus).

    Science.gov (United States)

    D'Amour, Danielle E; Hohmann, Gottfried; Fruth, Barbara

    2006-01-01

    Current models of social organization assume that predation is one of the major forces that promotes group living in diurnal primates. As large body size renders some protection against predators, gregariousness of great apes and other large primate species is usually related to other parameters. The low frequency of observed cases of nonhuman predation on great apes seems to support this assumption. However, recent efforts to study potential predator species have increasingly accumulated direct and indirect evidence of predation by leopards (Panthera pardus) on chimpanzees and gorillas. The following report provides the first evidence of predation by a leopard on bonobos (Pan paniscus). Copyright 2006 S. Karger AG, Basel.

  2. Edge effect on post-dispersal artificial seed predation in the southeastern Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    G. Penido

    Full Text Available This paper evaluates the post-dispersal artificial seed predation rates in two areas of the southeastern Amazon forest-savanna boundary, central Brazil. We conducted the survey in a disturbance regime controlled research site to verify if exists an edge effect in these rates and if the disturbance (in this case annual fire and no fire affects seed predation. We placed 800 peanuts seeds in each area at regular distance intervals from the fragment`s edge. Data were analyzed by a likelihood ratio model selection in generalized linear models (GLM. The complete model (with effects from edge distance and site and its interaction was significative (F3=4.43; p=0.005. Seeds had a larger predation rates in fragment’s interior in both areas, but in the controlled area (no disturbance this effect was less linear. This suggests an edge effect for post-dispersal seed predation, and that disturbances might alter these effects. Even if we exclude the site effect (grouping both areas together there is still a strong edge effect on seed predation rates (F3=32.679; p>0.001. We did not verify predator’s species in this study; however, the presence of several species of ants was extremely common in the seeds. The detection of an edge effect in only a short survey time suggests that there is heterogeneity in predation rates and that this variation might affect plant recruitment in fragmented areas of the Amazon forest. Henceforth, this seed predation should be taken in consideration in reforestation projects, where the main source of plants species is from seed distribution.

  3. From plants to birds: higher avian predation rates in trees responding to insect herbivory.

    Directory of Open Access Journals (Sweden)

    Elina Mäntylä

    Full Text Available BACKGROUND: An understanding of the evolution of potential signals from plants to the predators of their herbivores may provide exciting examples of co-evolution among multiple trophic levels. Understanding the mechanism behind the attraction of predators to plants is crucial to conclusions about co-evolution. For example, insectivorous birds are attracted to herbivore-damaged trees without seeing the herbivores or the defoliated parts, but it is not known whether birds use cues from herbivore-damaged plants with a specific adaptation of plants for this purpose. METHODOLOGY: We examined whether signals from damaged trees attract avian predators in the wild and whether birds could use volatile organic compound (VOC emissions or net photosynthesis of leaves as cues to detect herbivore-rich trees. We conducted a field experiment with mountain birches (Betula pubescens ssp. czerepanovii, their main herbivore (Epirrita autumnata and insectivorous birds. Half of the trees had herbivore larvae defoliating trees hidden inside branch bags and half had empty bags as controls. We measured predation rate of birds towards artificial larvae on tree branches, and VOC emissions and net photosynthesis of leaves. PRINCIPAL FINDINGS AND SIGNIFICANCE: The predation rate was higher in the herbivore trees than in the control trees. This confirms that birds use cues from trees to locate insect-rich trees in the wild. The herbivore trees had decreased photosynthesis and elevated emissions of many VOCs, which suggests that birds could use either one, or both, as cues. There was, however, large variation in how the VOC emission correlated with predation rate. Emissions of (E-DMNT [(E-4,8-dimethyl-1,3,7-nonatriene], beta-ocimene and linalool were positively correlated with predation rate, while those of highly inducible green leaf volatiles were not. These three VOCs are also involved in the attraction of insect parasitoids and predatory mites to herbivore-damaged plants

  4. Field experiments on responses of a freshwater, benthic macroinvertebrate community to vertebrate predators

    International Nuclear Information System (INIS)

    Thorp, J.H.; Bergey, E.A.

    1981-01-01

    The seasonal importance of vertebrate predators in potentially regulating the abundance and diversity of the benthic macroinvertebrates in the littoral zone of a soft-bottom reservoir that receives thermal effluent from a nuclear production reactor was examined. Thirty-six predator (fish and turtle) exclusion cages (4 m 2 ) were placed in shallow water at six locations along a thermal gradient in Par Pond, a 1100-ha cooling reservoir on the Savannah River Plant near Aiken, South Carolina, USA. An additional 36 control plots (4 m 2 ) were also set up. Cages were in place during three, 3-mo test periods beginning in September 1977. Estimates of benthic density, taxon richness, and distribution within functional groups (defined by feeding mechanism) were calculated for each test period. Effects of temperature on predator-prey relationships were also determined. Experimental results of this study suggest that vertebrate predation was not the fundamental parameter organizing the benthic macroinvertebrate community in the littoral zone of this reservoir. Neither taxon richness nor density of total macroinvertebrates was conclusively related to predator treatment. Relationships between predator treatment and community response (changes in density and taxon richness) were generally unaffected by either plot locality, temperature fluctuations from thermal effluent, or seasonal changes. When data from caged and control plots were pooled, however, both location and water temperature individually had direct impacts on the benthic community. From these results and other field studies it is hypothesized that individual species of keystone benthic predators do not occur in the littoral zone of freshwater lentic environments with soft bottoms

  5. Minimizing predation risk in a landscape of multiple predators: effects on the spatial distribution of African ungulates.

    Science.gov (United States)

    Thaker, Maria; Vanak, Abi T; Owen, Cailey R; Ogden, Monika B; Niemann, Sophie M; Slotow, Rob

    2011-02-01

    Studies that focus on single predator-prey interactions can be inadequate for understanding antipredator responses in multi-predator systems. Yet there is still a general lack of information about the strategies of prey to minimize predation risk from multiple predators at the landscape level. Here we examined the distribution of seven African ungulate species in the fenced Karongwe Game Reserve (KGR), South Africa, as a function of predation risk from all large carnivore species (lion, leopard, cheetah, African wild dog, and spotted hyena). Using observed kill data, we generated ungulate-specific predictions of relative predation risk and of riskiness of habitats. To determine how ungulates minimize predation risk at the landscape level, we explicitly tested five hypotheses consisting of strategies that reduce the probability of encountering predators, and the probability of being killed. All ungulate species avoided risky habitats, and most selected safer habitats, thus reducing their probability of being killed. To reduce the probability of encountering predators, most of the smaller prey species (impala, warthog, waterbuck, kudu) avoided the space use of all predators, while the larger species (wildebeest, zebra, giraffe) only avoided areas where lion and leopard space use were high. The strength of avoidance for the space use of predators generally did not correspond to the relative predation threat from those predators. Instead, ungulates used a simpler behavioral rule of avoiding the activity areas of sit-and-pursue predators (lion and leopard), but not those of cursorial predators (cheetah and African wild dog). In general, selection and avoidance of habitats was stronger than avoidance of the predator activity areas. We expect similar decision rules to drive the distribution pattern of ungulates in other African savannas and in other multi-predator systems, especially where predators differ in their hunting modes.

  6. Tadpoles balance foraging and predator avoidance: Effects of predation, pond drying, and hunger

    Science.gov (United States)

    Bridges, C.M.

    2002-01-01

    Organisms are predicted to make trade-offs when foraging and predator avoidance behaviors present conflicting demands. Balancing conflicting demands is important to larval amphibians because adult fitness can be strongly influenced by size at metamorphosis and duration of the larval period. Larvae in temporary ponds must maximize growth within a short time period to achieve metamorphosis before ponds dry, while simultaneously avoiding predators. To determine whether tadpoles trade off between conflicting demands, I examined tadpole (Pseudacris triseriata) activity and microhabitat use in the presence of red-spotted newts (Notopthalmus viridescens) under varying conditions of pond drying and hunger. Tadpoles significantly decreased activity and increased refuge use when predators were present. The proportion of active time tadpoles spent feeding was significantly greater in predator treatments, suggesting tadpoles adaptively balance the conflicting demands of foraging and predator avoidance without making apparent trade-offs. Tadpoles responded to simulated drying conditions by accelerating development. Pond drying did not modify microhabitat use or activity in the presence of predators, suggesting tadpoles perceived predation and hunger as greater immediate threats than desiccation, and did not take more risks.

  7. Predator diversity effects in an exotic freshwater food web.

    Science.gov (United States)

    Naddafi, Rahmat; Rudstam, Lars G

    2013-01-01

    Cascading trophic interactions are often defined as the indirect effects of a predator on primary producers through the effect of the predator on herbivores. These effects can be both direct through removal of herbivores [density-mediated indirect interactions (DMIIs)] or indirect through changes in the behavior of the herbivores [trait-mediated indirect interactions (TMIIs)]. How the relative importance of these two indirect interactions varies with predator diversity remains poorly understood. We tested the effect of predator diversity on both TMIIs and DMIIs on phytoplankton using two competitive invasive dreissenid mussel species (zebra mussel and quagga mussel) as the herbivores and combinations of one, two or all three species of the predators pumpkinseed sunfish, round goby, and rusty crayfish. Predators had either direct access to mussels and induced both TMII and DMII, or no direct access and induced only TMII through the presence of risk cues. In both sets of treatments, the predators induced a trophic cascade which resulted in more phytoplankton remaining with predators present than with only mussels present. The trophic cascade was weaker in three-predator and two-predator treatments than in one-predator treatments when predators had direct access to dreissenids (DMIIs and TMIIs). Crayfish had higher cascading effects on phytoplankton than both pumpkinseed and round goby. Increased predator diversity decreased the strength of DMIIs but had no effect on the strength of TMIIs. The strength of TMIIs was higher with zebra than quagga mussels. Our study suggests that inter-specific interference among predators in multi-species treatments weakens the consumptive cascading effects of predation on lower trophic levels whereas the importance of predator diversity on trait mediated effects depends on predator identity.

  8. Predator diversity effects in an exotic freshwater food web.

    Directory of Open Access Journals (Sweden)

    Rahmat Naddafi

    Full Text Available Cascading trophic interactions are often defined as the indirect effects of a predator on primary producers through the effect of the predator on herbivores. These effects can be both direct through removal of herbivores [density-mediated indirect interactions (DMIIs] or indirect through changes in the behavior of the herbivores [trait-mediated indirect interactions (TMIIs]. How the relative importance of these two indirect interactions varies with predator diversity remains poorly understood. We tested the effect of predator diversity on both TMIIs and DMIIs on phytoplankton using two competitive invasive dreissenid mussel species (zebra mussel and quagga mussel as the herbivores and combinations of one, two or all three species of the predators pumpkinseed sunfish, round goby, and rusty crayfish. Predators had either direct access to mussels and induced both TMII and DMII, or no direct access and induced only TMII through the presence of risk cues. In both sets of treatments, the predators induced a trophic cascade which resulted in more phytoplankton remaining with predators present than with only mussels present. The trophic cascade was weaker in three-predator and two-predator treatments than in one-predator treatments when predators had direct access to dreissenids (DMIIs and TMIIs. Crayfish had higher cascading effects on phytoplankton than both pumpkinseed and round goby. Increased predator diversity decreased the strength of DMIIs but had no effect on the strength of TMIIs. The strength of TMIIs was higher with zebra than quagga mussels. Our study suggests that inter-specific interference among predators in multi-species treatments weakens the consumptive cascading effects of predation on lower trophic levels whereas the importance of predator diversity on trait mediated effects depends on predator identity.

  9. PREDATOR IDENTITY AND ADDITIVE EFFECTS IN A TREEHOLE COMMUNITY

    Science.gov (United States)

    Griswold, Marcus W.; Lounibos, L. Philip

    2007-01-01

    Multiple predator species can interact as well as strongly affect lower trophic levels, resulting in complex, nonadditive effects on prey populations and community structure. Studies of aquatic systems have shown that interactive effects of predators on prey are not necessarily predictable from the direct effects of each species alone. To test for complex interactions, the individual and combined effects of a top and intermediate predator on larvae of native and invasive mosquito prey were examined in artificial analogues of water-filled treeholes. The combined effects of the two predators were accurately predicted from single predator treatments by a multiplicative risk model, indicating additivity. Overall survivorship of both prey species decreased greatly in the presence of the top predator Toxorhynchites rutilus. By itself, the intermediate predator Corethrella appendiculata increased survivorship of the native prey species Ochlerotatus triseriatus and decreased survivorship of the invasive prey species Aedes albopictus relative to treatments without predators. Intraguild predation did not occur until alternative prey numbers had been reduced by approximately one-half. Owing to changes in size structure accompanying its growth, T. rutilus consumed more prey as time progressed, whereas C. appendiculata consumed less. The intermediate predator, C. appendiculata, changed species composition by preferentially consuming A. albopictus, while the top predator, T. rutilus, reduced prey density, regardless of species. Although species interactions were in most cases predicted from pairwise interactions, risk reduction from predator interference occurred when C. appendiculata densities were increased and when the predators were similarly sized. PMID:16676542

  10. Predator-prey encounters in turbulent waters

    DEFF Research Database (Denmark)

    Mann, J.; Ott, Søren; Pécseli, H.L.

    2002-01-01

    With reference to studies of predator-prey encounters in turbulent waters, we demonstrate the feasibility of an experimental method for investigations of particle fluxes to an absorbing surface in turbulent flows. A laboratory experiment is carried out, where an approximately homogeneous and isot......With reference to studies of predator-prey encounters in turbulent waters, we demonstrate the feasibility of an experimental method for investigations of particle fluxes to an absorbing surface in turbulent flows. A laboratory experiment is carried out, where an approximately homogeneous...

  11. Predation on Daphnia pulex by Lepidurus arcticus

    DEFF Research Database (Denmark)

    Christoffersen, Kirsten Seestern

    2001-01-01

    effects on the predation rates. There was, however, a clear difference in feeding activity between size groups, the rates of larger Lepidurus (> 12.5 mm) being two to three times greater than that of smaller specimens (8–10 mm). For both size classes, the predation rates rose with increasing prey......Abstract The tadpole shrimp Lepidurus arcticus frequently occurs in Greenland ponds and shallow lakes with a soft bottom. Literature describes it as mainly a scavenger, feeding on the sediment. Previous observations of its behaviour suggest, however, that large specimens can catch Daphnia pulex...

  12. Coexistence with predators (Coexistencia con depredadores)

    Science.gov (United States)

    Bill MacDonald; Mac Donaldson; Caren Cowan

    2006-01-01

    We have asked Caren to join us, too, so we get at least three perspectives, because I don’t think there is one particular philosophy with predators that anybody can say works in every case. If you were to ask me what my predator program is, I would say I don’t really have one. That wasn’t always the case. When I was young, I took great delight in sitting for hours with...

  13. Risky behaviors: effects of Toxorhynchites splendens (Diptera: Culicidae) predator on the behavior of three mosquito species.

    Science.gov (United States)

    Zuharah, Wan Fatma; Fadzly, Nik; Yusof, Nur Aishah; Dieng, Hamady

    2015-01-01

    Viable biocontrol agents for mosquito control are quite rare, therefore improving the efficacy of existing biological agents is an important study. We need to have a better understanding of the predation-risk behavioral responses toward prey. This research examined prey choices by Toxorhynchites splendens by monitoring the behavioral responses of Aedes aegypti, Aedes albopictus, and Anopheles sinensis larvae when exposed to the predator. The results show that Tx. splendens prefers to consume Ae. aegypti larvae. The larvae exhibited different behavioral responses when Tx. splendens was present which suggest vulnerability in the presence of predators. "Thrashing" and "browsing" activities were greater in Ae. aegypti larvae. Such active and risky movements could cause vulnerability for the Ae. aegypti larvae due to increasing of water disturbance. In contrast, Ae. albopictus and An. sinensis larvae exhibited passive, low-risk behaviors, spending most of the time on the "wall" position near the edges of the container. We postulated that Ae. aegypti has less ability to perceive cues from predation and could not successfully alter its behavior to reduce risk of predation risk compared with Ae. albopictus and An. sinensis. Our results suggest that Tx. splendens is a suitable biocontrol agent in controlling dengue hemorrhagic vector, Ae. aegypti. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  14. The concentration of fear: mice's behavioural and physiological stress responses to different degrees of predation risk

    Science.gov (United States)

    Sánchez-González, Beatriz; Planillo, Aimara; Navarro-Castilla, Álvaro; Barja, Isabel

    2018-02-01

    Predation is an unavoidable and dangerous fact in the lifetime of prey animals and some sign of the proximity of a predator may be enough to trigger a response in the prey. We investigated whether different degrees of predation risk by red foxes ( Vulpes vulpes) evoke behavioural and physiological stress responses in wood mice ( Apodemus sylvaticus) . We examined the variation in mice responses due to individual factors (sex and reproductive status) and related them to the concentration of the volatile compounds from fox faeces over time. In our experiment, we introduced predation cues into four plots, each subjected to a different concentration treatment (0, 10, 50 and 100% concentration of fresh faeces of red fox), based on the following outline: initial odourless phase 0, phase1 in which predation treatment was renewed daily, and phase 2 in which we renewed the treatment only on the first day. Wood mice were live trapped during all three phases and the physiological response was measured non-invasively by analysing faecal corticosterone metabolites (FCM) in freshly collected faeces. Data were analysed by Generalized Linear Mixed Models. Overall, males were trapped less often than females, and reproductively active individuals from both sexes avoided traps more than non-reproductively active individuals, especially in medium- and high- concentration plots. Variations in FCM concentrations were explained by plot, the interaction between plot and treatment phase, and the interaction between the treatment phase and the reproductive status. During phase 1, we detected a significant rise in FCM levels that increased with predator faecal odour concentration. Additionally, reproductively active individuals showed a strong physiological response during both phases 1 and 2 in all plots, except the control plot. Our results indicated that wood mice are able to discriminate different degrees of predation risk, which allows them to trigger gradual changes in their

  15. Scymnus camptodromus (Coleoptera: Coccinellidae) Larval Development and Predation of Hemlock Woolly Adelgid (Hemiptera: Adelgidae).

    Science.gov (United States)

    Limbu, Samita; Keena, Melody A; Long, David; Ostiguy, Nancy; Hoover, Kelli

    2015-02-01

    Development time and prey consumption of Scymnus (Neopullus) camptodromus Yu and Liu (Coleoptera: Coccinellidae) larvae by instar, strain, and temperature were evaluated. S. camptodromus, a specialist predator of hemlock woolly adelgid Adelges tsugae (Annand) (Hemiptera: Adelgidae), was brought to the United States from China as a potential biological control agent for A. tsugae. This beetle has been approved for removal from quarantine but has not yet been field released. We observed that temperature had significant effects on the predator's life history. The larvae tended to develop faster and consume more eggs of A. tsugae per day as rearing temperature increased. Mean egg consumption per day of A. tsugae was less at 15°C than at 20°C. However, as larvae took longer to develop at the lower temperature, the total number of eggs consumed per instar during larval development did not differ significantly between the two temperatures. The lower temperature threshold for predator larval development was estimated to be 5°C, which closely matches the developmental threshold of A. tsugae progrediens. Accumulated degree-days for 50% of the predator neonates to reach adulthood was estimated to be 424. Although temperature had a significant effect on larval development and predation, it did not impact survival, size, or sex ratio of the predator at 15 and 20°C. Furthermore, no remarkable distinctions were observed among different geographical populations of the predator. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. What cues do ungulates use to assess predation risk in dense temperate forests?

    Science.gov (United States)

    Kuijper, Dries P J; Verwijmeren, Mart; Churski, Marcin; Zbyryt, Adam; Schmidt, Krzysztof; Jędrzejewska, Bogumiła; Smit, Chris

    2014-01-01

    Anti-predator responses by ungulates can be based on habitat features or on the near-imminent threat of predators. In dense forest, cues that ungulates use to assess predation risk likely differ from half-open landscapes, as scent relative to sight is predicted to be more important. We studied, in the Białowieża Primeval Forest (Poland), whether perceived predation risk in red deer (Cervus elaphus) and wild boar (Sus scrofa) is related to habitat visibility or olfactory cues of a predator. We used camera traps in two different set-ups to record undisturbed ungulate behavior and fresh wolf (Canis lupus) scats as olfactory cue. Habitat visibility at fixed locations in deciduous old growth forest affected neither vigilance levels nor visitation rate and cumulative visitation time of both ungulate species. However, red deer showed a more than two-fold increase of vigilance level from 22% of the time present on control plots to 46% on experimental plots containing one wolf scat. Higher vigilance came at the expense of time spent foraging, which decreased from 32% to 12% while exposed to the wolf scat. These behavioral changes were most pronounced during the first week of the experiment but continuous monitoring of the plots suggested that they might last for several weeks. Wild boar did not show behavioral responses indicating higher perceived predation risk. Visitation rate and cumulative visitation time were not affected by the presence of a wolf scat in both ungulate species. The current study showed that perceived predation risk in red deer and wild boar is not related to habitat visibility in a dense forest ecosystem. However, olfactory cues of wolves affected foraging behavior of their preferred prey species red deer. We showed that odor of wolves in an ecologically equivalent dose is sufficient to create fine-scale risk factors for red deer.

  17. What cues do ungulates use to assess predation risk in dense temperate forests?

    Directory of Open Access Journals (Sweden)

    Dries P J Kuijper

    Full Text Available Anti-predator responses by ungulates can be based on habitat features or on the near-imminent threat of predators. In dense forest, cues that ungulates use to assess predation risk likely differ from half-open landscapes, as scent relative to sight is predicted to be more important. We studied, in the Białowieża Primeval Forest (Poland, whether perceived predation risk in red deer (Cervus elaphus and wild boar (Sus scrofa is related to habitat visibility or olfactory cues of a predator. We used camera traps in two different set-ups to record undisturbed ungulate behavior and fresh wolf (Canis lupus scats as olfactory cue. Habitat visibility at fixed locations in deciduous old growth forest affected neither vigilance levels nor visitation rate and cumulative visitation time of both ungulate species. However, red deer showed a more than two-fold increase of vigilance level from 22% of the time present on control plots to 46% on experimental plots containing one wolf scat. Higher vigilance came at the expense of time spent foraging, which decreased from 32% to 12% while exposed to the wolf scat. These behavioral changes were most pronounced during the first week of the experiment but continuous monitoring of the plots suggested that they might last for several weeks. Wild boar did not show behavioral responses indicating higher perceived predation risk. Visitation rate and cumulative visitation time were not affected by the presence of a wolf scat in both ungulate species. The current study showed that perceived predation risk in red deer and wild boar is not related to habitat visibility in a dense forest ecosystem. However, olfactory cues of wolves affected foraging behavior of their preferred prey species red deer. We showed that odor of wolves in an ecologically equivalent dose is sufficient to create fine-scale risk factors for red deer.

  18. Multi-species generalist predation on the stochastic harvested clam Tivela mactroides (Mollusca, Bivalvia)

    Science.gov (United States)

    Turra, Alexander; Fernandez, Wellington S.; Bessa, Eduardo; Santos, Flavia B.; Denadai, Márcia R.

    2015-12-01

    Top-down control is an important force modulating the abundance of prey and structuring marine communities. The harvested trigonal clam Tivela mactroides is hypothesized to be part of the diet of a variety of marine organisms, with its stock influencing predator abundance and being influenced by them. Here we analyzed the diet of potential predators of T. mactroides in Caraguatatuba Bay, northern coast of São Paulo State, Brazil, to identify the main consumers of this marine resource, and also to address the importance of this clam in the diet of each predator. Samples were taken year-round by trawls; all specimens collected were identified and measured and the food items identified and quantified. Twenty-one species consumed T. mactroides, whose importance in the diet varied greatly in both the volume ingested and the frequency of occurrence (pompano Trachinotus carolinus > blue crab Callinectes danae > starfish Astropecten marginatus). Top-down influence on T. mactroides was also dependent on the abundance of consumers (yellow catfish Cathorops spixii > rake stardrum Stellifer rastrifer > barred grunt Conodon nobilis > A. marginatus). Considering the mean volume ingested, the frequency of occurrence of T. mactroides in the diet, and the relative abundance of consumers, the predators that most influenced T. mactroides were T. carolinus, A. marginatus, and C. danae, in decreasing order. Large numbers of small-sized individuals of T. mactroides (<10 mm) were generally preyed upon by A. marginatus, which may have a stronger effect on clam abundance in comparison to C. danae and T. carolinus, which preyed upon larger clams. In conclusion, the results of this study indicate that predators' consumption of T. mactroides in Caraguatatuba Bay can influence its stocks, mainly due to the type and/or abundance of predator species, the volume and number of individuals of T. mactroides preyed upon, and the temporal variations in the abundance of predators.

  19. Are single odorous components of a predator sufficient to elicit defensive behaviors in prey species?

    Directory of Open Access Journals (Sweden)

    Raimund eApfelbach

    2015-07-01

    Full Text Available When exposed to the odor of a sympatric predator, prey animals typically display escape or defensive responses. These phenomena have been well-documented, especially in rodents, when exposed to the odor of a cat, ferret or fox. As a result of these experiments new discussions center on the following questions: 1 is a single volatile compound such as a major or a minor mixture constituent in urine or feces, emitted by the predator sufficient to cause defensive reactions in a potential prey species or 2 is a whole array of odors required to elicit a response and 3 will the relative size or escapability of the prey as compared to the predator influence responsiveness. Most predator-prey studies on this topic have been performed in the laboratory or under semi-natural conditions. Field studies could help to find answers to these questions. Australian mammals are completely naïve towards the introduced placental carnivores. That offers ideal opportunities to analyze in the field the responses of potential prey species to unknown predator odors. During the last decades researchers have accumulated an enormous amount of data exploring the effects of eutherian predator odors on native marsupial mammals. In this review, we will give a survey about the development of olfactory research, chemical signals and their influence on the behavior and - in some cases - physiology of prey species. In addition, we report on the effects of predator odor experiments performed under natural conditions in Australia. When studying all these literature we learned that data gained under controlled laboratory conditions elucidate the role of individual odors on brain structures and ultimately on a comparatively narrow range behaviors. In contrast to single odors odor arrays mimic much more the situation prey animals are confronted to in nature. Therefore, a broad range of methodology — from chemistry to ecology including anatomy, physiology and behavior — is needed to

  20. Instream cover and shade mediate avian predation on trout in semi-natural streams

    Science.gov (United States)

    Penaluna, Brooke E.; Dunham, Jason B.; Noakes, David L. G.

    2015-01-01

    Piscivory by birds can be significant, particularly on fish in small streams and during seasonal low flow when available cover from predators can be limited. Yet, how varying amounts of cover may change the extent of predation mortality from avian predators on fish is not clear. We evaluated size-selective survival of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in replicated semi-natural stream sections. These sections provided high (0.01 m2 of cover per m2 of stream) or low (0.002 m2 of cover per m2 of stream) levels of instream cover available to trout and were closed to emigration. Each fish was individually tagged, allowing us to track retention of individuals during the course of the 36-day experiment, which we attributed to survival from predators, because fish had no other way to leave the streams. Although other avian predators may have been active in our system and not detected, the only predator observed was the belted kingfisher Megaceryle alcyon, which is known to prey heavily on fish. In both treatments, trout >20.4 cm were not preyed upon indicating an increased ability to prey upon on smaller individuals. Increased availability of cover improved survival of trout by 12% in high relative to low cover stream sections. Trout also survived better in stream sections with greater shade, a factor we could not control in our system. Collectively, these findings indicate that instream cover and shade from avian predators can play an important role in driving survival of fish in small streams or during periods of low flow.

  1. Predation of Myrmeleon obscurus (Navas, 1912) (neuroptera ...

    African Journals Online (AJOL)

    ... removal of mandibles and abandonment of remains of the prey. Maximizing predation is a strategy for these seasonal insects to store energy that might help them to survive during the unfavourable rainy season. © 2010 International Formulae Group. All rights reserved. Keywords: Ant lion larvae, Cameroon, mandibles, ...

  2. Climate change and marine top predators

    DEFF Research Database (Denmark)

    Climate change affects all components of marine ecosystems. For endothermic top predators, i.e. seabirds and marine mammals, these impacts are often complex and mediated through trophic relationships. In this Research Topic, leading researchers attempt to identify patterns of change among seabirds...... and marine mammals, and the mechanisms through which climate change drives these changes....

  3. Sexually Violent Predators and Civil Commitment Laws

    Science.gov (United States)

    Beyer Kendall, Wanda D.; Cheung, Monit

    2004-01-01

    This article analyzes the civil commitment models for treating sexually violent predators (SVPs) and analyzes recent civil commitment laws. SVPs are commonly defined as sex offenders who are particularly predatory and repetitive in their sexually violent behavior. Data from policy literature, a survey to all states, and a review of law review…

  4. Cumulative human impacts on marine predators

    DEFF Research Database (Denmark)

    Maxwell, Sara M; Hazen, Elliott L; Bograd, Steven J

    2013-01-01

    Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact...

  5. Habitat stability, predation risk and 'memory syndromes'.

    Science.gov (United States)

    Dalesman, S; Rendle, A; Dall, S R X

    2015-05-27

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits ('memory syndrome') related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population.

  6. What regulates crab predation on mangrove propagules?

    Science.gov (United States)

    Van Nedervelde, Fleur; Cannicci, Stefano; Koedam, Nico; Bosire, Jared; Dahdouh-Guebas, Farid

    2015-02-01

    Crabs play a major role in some ecosystems. To increase our knowledge about the factors that influence crab predation on propagules in mangrove forests, we performed experiments in Gazi Bay, Kenya in July 2009. We tested whether: (1) crab density influences propagule predation rate; (2) crab size influences food competition and predation rate; (3) crabs depredate at different rates according to propagule and canopy cover species; (4) vegetation density is correlated with crab density; (5) food preferences of herbivorous crabs are determined by size, shape and nutritional value. We found that (1) propagule predation rate was positively correlated to crab density. (2) Crab competitive abilities were unrelated to their size. (3) Avicennia marina propagules were consumed more quickly than Ceriops tagal except under C. tagal canopies. (4) Crab density was negatively correlated with the density of A. marina trees and pneumatophores. (5) Crabs prefer small items with a lower C:N ratio. Vegetation density influences crab density, and crab density affects propagule availability and hence vegetation recruitment rate. Consequently, the mutual relationships between vegetation and crab populations could be important for forest restoration success and management.

  7. Pastoral Herding Strategies and Governmental Management Objectives: Predation Compensation as a Risk Buffering Strategy in the Saami Reindeer Husbandry.

    Science.gov (United States)

    Næss, Marius Warg; Bårdsen, Bård-Jørgen; Pedersen, Elisabeth; Tveraa, Torkild

    2011-08-01

    Previously it has been found that an important risk buffering strategy in the Saami reindeer husbandry in Norway is the accumulation of large herds of reindeer as this increases long-term household viability. Nevertheless, few studies have investigated how official policies, such as economic compensation for livestock losses, can influence pastoral strategies. This study investigated the effect of received predation compensation on individual husbandry units' future herd size. The main finding in this study is that predation compensation had a positive effect on husbandry units' future herd size. The effect of predation compensation, however, was nonlinear in some years, indicating that predation compensation had a positive effect on future herd size only up to a certain threshold whereby adding additional predation compensation had little effect on future herd size. More importantly, the effect of predation compensation was positive after controlling for reindeer density, indicating that for a given reindeer density husbandry units receiving more predation compensation performed better (measured as the size of future herds) compared to husbandry units receiving less compensation.

  8. Arthropod but not bird predation in ethiopian homegardens is higher in tree-poor than in tree-rich landscapes.

    Directory of Open Access Journals (Sweden)

    Debissa Lemessa

    Full Text Available Bird and arthropod predation is often associated with natural pest control in agricultural landscapes, but the rates of predation may vary with the amount of tree cover or other environmental factors. We examined bird and arthropod predation in three tree-rich and three tree-poor landscapes across southwestern Ethiopia. Within each landscape we selected three tree-rich and three tree-poor homegardens in which we recorded the number of tree species and tree stems within 100 × 100 m surrounding the central house. To estimate predation rates, we attached plasticine caterpillars on leaves of two coffee and two avocado shrubs in each homegarden, and recorded the number of attacked caterpillars for 7-9 consecutive weeks. The overall mean daily predation rate was 1.45% for birds and 1.60% for arthropods. The rates of arthropod predation varied among landscapes and were higher in tree-poor landscapes. There was no such difference for birds. Within landscapes, predation rates from birds and arthropods did not vary between tree-rich and tree-poor homegardens in either tree-rich or tree-poor landscapes. The most surprising result was the lack of response by birds to tree cover at either spatial scale. Our results suggest that in tree-poor landscapes there are still enough non-crop habitats to support predatory arthropods and birds to deliver strong top-down effect on crop pests.

  9. Bird's nesting success and eggs predation within Arusa National ...

    African Journals Online (AJOL)

    Nesting success and eggs predation is among the factors that affect the population dynamics of bird species. The study was carried out to determine predation impact on selected bird species population in Arusha National Park, Arusha, Tanzania. Specifically the study assessed the potential predators to ground (Scaly ...

  10. Avian nestling predation by endangered Mount Graham red squirrel

    Science.gov (United States)

    Claire A. Zugmeyer; John L. Koprowski

    2007-01-01

    Studies using artificial nests or remote cameras have documented avian predation by red squirrels (Tamiasciurus hudsonicus). Although several direct observations of avian predation events are known in the northern range of the red squirrel distribution, no accounts have been reported in the southern portion. We observed predation upon a hermit thrush...

  11. Spider mite web mediates anti-predator behaviour

    NARCIS (Netherlands)

    Lemos, F.; de Almeida Sarmento, R.; Pallini, A.; Rosa Dias, C.; Sabelis, M.W.; Janssen, A.

    2010-01-01

    Herbivores suffer significant mortality from predation and are therefore subject to natural selection on traits promoting predator avoidance and resistance. They can employ an array of strategies to reduce predation, for example through changes in behaviour, morphology and life history. So far, the

  12. Selective predation and prey class behaviour as possible ...

    African Journals Online (AJOL)

    To test these mechanisms, a study was conducted on Samara Private Game Reserve to investigate the potential impact cheetah (Acinonyx jubatus) predation has had on the kudu (Tragelaphus strepciseros) population. Kudu age and sex data were collected across both predator-present and predator-absent sections using ...

  13. Experimental evidence for innate predator recognition in the Seychelles warbler

    NARCIS (Netherlands)

    Veen, Thor; Richardson, David S.; Blaakmeer, Karen; Komdeur, Jan

    2000-01-01

    Nest predation is a major determinant of fitness in birds and costly nest defence behaviours have evolved in order to reduce nest predation. Some avian studies have suggested that predator recognition is innate whereas others hate stressed the importance: of learning. However, none of these studies

  14. Determining sensitive stages for learning to detect predators in ...

    Indian Academy of Sciences (India)

    2014-07-10

    Jul 10, 2014 ... Successful survival and reproduction of prey organisms depend on their ability to detect their potential predators accurately and respond effectively with suitable defences. Predator detection can be innate or can be acquired through learning. We studied prey–predator interactions in the larval bronzed frogs ...

  15. A minimal model of predator-swarm interactions.

    Science.gov (United States)

    Chen, Yuxin; Kolokolnikov, Theodore

    2014-05-06

    We propose a minimal model of predator-swarm interactions which captures many of the essential dynamics observed in nature. Different outcomes are observed depending on the predator strength. For a 'weak' predator, the swarm is able to escape the predator completely. As the strength is increased, the predator is able to catch up with the swarm as a whole, but the individual prey is able to escape by 'confusing' the predator: the prey forms a ring with the predator at the centre. For higher predator strength, complex chasing dynamics are observed which can become chaotic. For even higher strength, the predator is able to successfully capture the prey. Our model is simple enough to be amenable to a full mathematical analysis, which is used to predict the shape of the swarm as well as the resulting predator-prey dynamics as a function of model parameters. We show that, as the predator strength is increased, there is a transition (owing to a Hopf bifurcation) from confusion state to chasing dynamics, and we compute the threshold analytically. Our analysis indicates that the swarming behaviour is not helpful in avoiding the predator, suggesting that there are other reasons why the species may swarm. The complex shape of the swarm in our model during the chasing dynamics is similar to the shape of a flock of sheep avoiding a shepherd.

  16. Determining sensitive stages for learning to detect predators in ...

    Indian Academy of Sciences (India)

    We studied prey–predator interactions in the larval bronzed frogs (Sylvirana temporalis), which have the innate ability to detect certain predators. We conducted a series of experiments to determine if the larval S. temporalis rely solely on innate predator detection mechanisms or can also learn to use more specific cues such ...

  17. Ontogenetic diet shifts promote predator-mediated coexistence

    NARCIS (Netherlands)

    Wollrab, S.; de Roos, A.M.; Diehl, S.

    2013-01-01

    It is widely believed that predation moderates interspecific competition and promotes prey diversity. Still, in models of two prey sharing a resource and a predator, predator-mediated coexistence occurs only over narrow ranges of resource productivity. These models have so far ignored the widespread

  18. Coexistence for an Almost Periodic Predator-Prey Model with Intermittent Predation Driven by Discontinuous Prey Dispersal

    Directory of Open Access Journals (Sweden)

    Yantao Luo

    2017-01-01

    Full Text Available An almost periodic predator-prey model with intermittent predation and prey discontinuous dispersal is studied in this paper, which differs from the classical continuous and impulsive dispersal predator-prey models. The intermittent predation behavior of the predator species only happens in the channels between two patches where the discontinuous migration movement of the prey species occurs. Using analytic approaches and comparison theorems of the impulsive differential equations, sufficient criteria on the boundedness, permanence, and coexistence for this system are established. Finally, numerical simulations demonstrate that, for an intermittent predator-prey model, both the intermittent predation and intrinsic growth rates of the prey and predator species can greatly impact the permanence, extinction, and coexistence of the population.

  19. Dynamics of a Diffusive Predator-Prey Model with Allee Effect on Predator

    Directory of Open Access Journals (Sweden)

    Xiaoqin Wang

    2013-01-01

    Full Text Available The reaction-diffusion Holling-Tanner prey-predator model considering the Allee effect on predator, under zero-flux boundary conditions, is discussed. Some properties of the solutions, such as dissipation and persistence, are obtained. Local and global stability of the positive equilibrium and Turing instability are studied. With the help of the numerical simulations, the rich Turing patterns, including holes, stripes, and spots patterns, are obtained.

  20. Predator odours attract other predators, creating an olfactory web of information.

    Science.gov (United States)

    Banks, Peter B; Daly, Andrew; Bytheway, Jenna P

    2016-05-01

    Many studies have reported the aversive reactions of prey towards a predator's odour signals (e.g. urine marks), a behaviour widely thought to reduce the risk of predation by the predator. However, because odour signals persist in the environment, they are vulnerable to exploitation and eavesdropping by predators, prey and conspecifics. As such, scent patches created by one species might attract other species interested in information about their enemies. We studied this phenomenon by examining red fox investigation of odours from conspecifics and competing species in order to understand what prey are responding to when avoiding the odours of a predator. Surprisingly, foxes showed limited interest in conspecific odours but were highly interested in the odours of their competitors (wild dogs and feral cats), suggesting that odours are likely to play an important role in mediating competitive interactions. Importantly, our results identify that simple, dyadic interpretations of prey responses to a predator odour (i.e. cat odour = risk of cat encounter = fear of cats) can no longer be assumed in ecological or psychology research. Instead, interactions mediated by olfactory cues are more complex than previously thought and are likely to form a complicated olfactory web of interactions. © 2016 The Author(s).

  1. Predation of Five Generalist Predators on Brown Planthopper (Nilaparvata lugens Stål

    Directory of Open Access Journals (Sweden)

    Sri Karindah

    2015-09-01

    Full Text Available Two generalist predators of brown planthopper,Metioche vittaticollis and Anaxipha longipennis (Gryllidae have not been much studied in Indonesia. This research was conducted to study and compare the predatory ability of M. vittaticollis, A. longipennis (Gryllidae and three coleopterans, Paederus fuscipes (Staphylinidae, Ophionea sp. (Carabidae,and Micraspis sp. (Coccinellidae against brown planthopper (fourth and fifth instars under laboratory condition. In total, 20 nymphs of N. lugens were exposed for 2 hour to each predator for 5 consecutive days. Prey consumptions by the predatory crickets, M. vittaticollis and A. longipennis were greater than the other predators and followed by A. longipennis, Micraspis sp., P. fuscipes, and Ophionea sp. respectively. Consumption rates of M. vittaticolis and A. longipenis were also higher than other predators. Micraspis sp was more active on predation in the morning,while M. vittaticollis, A. longipennis, P. fuscipes, and Ophionea sp. were more active both in the morning and the night but not in the afternoon. However, all five species of predators were not so active in preying during the afternoon. In conclusion, a major effort should be extended to conserve these predatory crickets especially M. vittaticollis and A. longipennis.

  2. Color plumage polymorphism and predator mimicry in brood parasites.

    Science.gov (United States)

    Trnka, Alfréd; Grim, Tomáš

    2013-05-10

    Plumage polymorphism may evolve during coevolution between brood parasites and their hosts if rare morph(s), by contravening host search image, evade host recognition systems better than common variant(s). Females of the parasitic common cuckoo (Cuculus canorus) are a classic example of discrete color polymorphism: gray females supposedly mimic the sparrowhawk (Accipiter nisus), while rufous females are believed to mimic the kestrel (Falco tinnunculus). Despite many studies on host responses to adult cuckoos comprehensive tests of the "hawk mimicry" and "kestrel mimicry" hypotheses are lacking so far. We tested these hypotheses by examining host responses to stuffed dummies of the sparrowhawk, kestrel, cuckoo and the innocuous turtle dove (Streptopelia turtur) as a control at the nest. Our experimental data from an aggressive cuckoo host, the great reed warbler (Acrocephalus arundinaceus), showed low effectiveness of cuckoo-predator mimicry against more aggressive hosts regardless of the type of model and the degree of perfection of the mimic. Specifically, warblers discriminated gray cuckoos from sparrowhawks but did not discriminate rufous cuckoos from kestrels. However, both gray and rufous cuckoos were attacked vigorously and much more than control doves. The ratio of aggression to gray vs. rufous cuckoo was very similar to the ratio between frequencies of gray vs. rufous cuckoo morphs in our study population. Overall, our data combined with previous results from other localities suggest polymorphism dynamics are not strongly affected by local predator model frequencies. Instead, hosts responses and discrimination abilities are proportional, other things being equal, to the frequency with which hosts encounter various cuckoo morphs near their nests. This suggests that female cuckoo polymorphism is a counter-adaptation to thwart a specific host adaptation, namely an ability to not be fooled by predator mimicry. We hypothesize the dangerousness of a particular

  3. Coral reef fish predator maintains olfactory acuity in degraded coral habitats.

    Science.gov (United States)

    Natt, Michael; Lönnstedt, Oona M; McCormick, Mark I

    2017-01-01

    Coral reefs around the world are rapidly degrading due to a range of environmental stressors. Habitat degradation modifies the sensory landscape within which predator-prey interactions occur, with implications for olfactory-mediated behaviours. Predator naïve settlement-stage damselfish rely on conspecific damage-released odours (i.e., alarm odours) to inform risk assessments. Yet, species such as the Ambon damselfish, Pomacentrus amboinensis, become unable to respond appropriately to these cues when living in dead-degraded coral habitats, leading to increased mortality through loss of vigilance. Reef fish predators also rely on odours from damaged prey to locate, assess prey quality and engage in prey-stealing, but it is unknown whether their responses are also modified by the change to dead-degraded coral habitats. Implications for prey clearly depend on how their predatory counterparts are affected, therefore the present study tested whether olfactory-mediated foraging responses in the dusky dottyback, Pseudochromis fuscus, a common predator of P. amboinensis, were similarly affected by coral degradation. A y-maze was used to measure the ability of Ps. fuscus to detect and move towards odours, against different background water sources. Ps. fuscus were exposed to damage-released odours from juvenile P. amboinensis, or a control cue of seawater, against a background of seawater treated with either healthy or dead-degraded hard coral. Predators exhibited an increased time allocation to the chambers of y-mazes injected with damage-released odours, with comparable levels of response in both healthy and dead-degraded coral treated waters. In control treatments, where damage-released odours were replaced with a control seawater cue, fish showed no increased preference for either chamber of the y-maze. Our results suggest that olfactory-mediated foraging behaviours may persist in Ps. fuscus within dead-degraded coral habitats. Ps. fuscus may consequently gain a

  4. Information theory and robotics meet to study predator-prey interactions

    Science.gov (United States)

    Neri, Daniele; Ruberto, Tommaso; Cord-Cruz, Gabrielle; Porfiri, Maurizio

    2017-07-01

    Transfer entropy holds promise to advance our understanding of animal behavior, by affording the identification of causal relationships that underlie animal interactions. A critical step toward the reliable implementation of this powerful information-theoretic concept entails the design of experiments in which causal relationships could be systematically controlled. Here, we put forward a robotics-based experimental approach to test the validity of transfer entropy in the study of predator-prey interactions. We investigate the behavioral response of zebrafish to a fear-evoking robotic stimulus, designed after the morpho-physiology of the red tiger oscar and actuated along preprogrammed trajectories. From the time series of the positions of the zebrafish and the robotic stimulus, we demonstrate that transfer entropy correctly identifies the influence of the stimulus on the focal subject. Building on this evidence, we apply transfer entropy to study the interactions between zebrafish and a live red tiger oscar. The analysis of transfer entropy reveals a change in the direction of the information flow, suggesting a mutual influence between the predator and the prey, where the predator adapts its strategy as a function of the movement of the prey, which, in turn, adjusts its escape as a function of the predator motion. Through the integration of information theory and robotics, this study posits a new approach to study predator-prey interactions in freshwater fish.

  5. Lethal and behavioral effects of pesticides on the insect predator Macrolophus pygmaeus.

    Science.gov (United States)

    Martinou, A F; Seraphides, N; Stavrinides, M C

    2014-02-01

    Macrolophus pygmaeus (Hemiptera: Miridae) is a common generalist predator in Mediterranean agro-ecosystems. We evaluated the lethal effects of six insecticides and a fungicide on M. pygmaeus nymphs exposed to the pesticides through three routes of exposure: direct, residual and oral. Chlorantraniliprole and emamectin-benzoate caused less than 25% mortality to M. pygmaeus and were classified as harmless according to the International Organization for Biological Control rating scheme. In contrast, thiacloprid and metaflumizone caused 100% and 80% mortality, respectively, and were classified as harmful. Indoxacarb and spinosad resulted in close to 30% mortality to the predator, and were classified as slightly harmful, while the fungicide copper hydroxide caused 58% mortality and was rated as moderately harmful. Chlorantraniliprole and thiacloprid were selected for further sublethal testing by exposing M. pygmaeus to two routes of pesticide intake: pesticide residues and feeding on sprayed food. Thiacloprid led to an increase in resting and preening time of the predator, and a decrease in plant feeding. Chlorantraniliprole resulted in a decrease in plant feeding, but no other behaviors were affected. In addition, thiacloprid significantly reduced the predation rate of M. pygmaeus, whereas chlorantraniliprole had no significant effect on predation rate. The results of the study suggest that thiacloprid is not compatible with M. pygmaeus, while further research needs to be carried out for metaflumizone and copper hydroxide. All other products seem to be relatively compatible with M. pygmaeus, though studies on their sublethal effects will shed more light into their safety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effects of Sublethal Concentrations of Insecticides on the Functional Response of Two Mirid Generalist Predators.

    Directory of Open Access Journals (Sweden)

    Angeliki F Martinou

    Full Text Available The use of agrochemicals particularly pesticides, can hamper the effectiveness of natural enemies, causing disruption in the ecosystem service of biological control. In the current study, the effects of the insecticides thiacloprid and chlorantraniliprole on the functional response curves were assessed for two mirid predator nymphs, Macrolophus pygmaeus Rambur and Nesidiocoris tenuis Reuter. In the absence of insecticides, both predators exhibited a type II functional response when feeding on eggs of the moth Ephestia kuehniella. N. tenuis seems to be a more efficient predator than M. pygmaeus, as model estimated handling time was significantly lower for the former than for the latter. Residual exposure of M. pygmaeus to sublethal concentrations of either insecticide was associated with a change in the asymptote but not the type of the functional response curve. Thiacloprid seems to be the least compatible with M. pygmaeus, as it led to both a significant reduction of the attack rate and an increase in handling time. In contrast, chlorantraniliprole exposure significantly increased the handling time, but not the attack rate of the predator. Residual exposure of N. tenuis to sublethal concentrations of either insecticide did not have a significant effect on the type nor the parameters of the functional response model. The results show that pesticide residues that do not have lethal effects on beneficial arthropods can reduce prey consumption depending on predator species and on likely risks associated with toxicity.

  7. Effects of Sublethal Concentrations of Insecticides on the Functional Response of Two Mirid Generalist Predators.

    Science.gov (United States)

    Martinou, Angeliki F; Stavrinides, Menelaos C

    2015-01-01

    The use of agrochemicals particularly pesticides, can hamper the effectiveness of natural enemies, causing disruption in the ecosystem service of biological control. In the current study, the effects of the insecticides thiacloprid and chlorantraniliprole on the functional response curves were assessed for two mirid predator nymphs, Macrolophus pygmaeus Rambur and Nesidiocoris tenuis Reuter. In the absence of insecticides, both predators exhibited a type II functional response when feeding on eggs of the moth Ephestia kuehniella. N. tenuis seems to be a more efficient predator than M. pygmaeus, as model estimated handling time was significantly lower for the former than for the latter. Residual exposure of M. pygmaeus to sublethal concentrations of either insecticide was associated with a change in the asymptote but not the type of the functional response curve. Thiacloprid seems to be the least compatible with M. pygmaeus, as it led to both a significant reduction of the attack rate and an increase in handling time. In contrast, chlorantraniliprole exposure significantly increased the handling time, but not the attack rate of the predator. Residual exposure of N. tenuis to sublethal concentrations of either insecticide did not have a significant effect on the type nor the parameters of the functional response model. The results show that pesticide residues that do not have lethal effects on beneficial arthropods can reduce prey consumption depending on predator species and on likely risks associated with toxicity.

  8. Molecular analysis of predation by carabid beetles (Carabidae) on the invasive Iberian slug Arion lusitanicus.

    Science.gov (United States)

    Hatteland, B A; Symondson, W O C; King, R A; Skage, M; Schander, C; Solhøy, T

    2011-12-01

    The invasive Iberian slug, Arion lusitanicus, is spreading through Europe and poses a major threat to horticulture and agriculture. Natural enemies, capable of killing A. lusitanicus, may be important to our understanding of its population dynamics in recently invaded regions. We used polymerase chain reaction (PCR) to study predation on A. lusitanicus by carabid beetles in the field. A first multiplex PCR was developed, incorporating species-specific primers, and optimised in order to amplify parts of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of large Arion slugs, including A. lusitanicus from the gut contents of the predators. A second multiplex PCR, targeting 12S rRNA mtDNA, detected predation on smaller Arion species and the field slug Deroceras reticulatum. Feeding trials were conducted to measure the effects of digestion time on amplicon detectability. The median detection times (the time at which 50% of samples tested positive) for A. lusitanicus and D. reticulatum DNA in the foreguts of Carabus nemoralis were 22 h and 20 h, respectively. Beetle activity-densities were monitored using pitfall traps, and slug densities were estimated using quadrats. Predation rates on slugs in the field by C. nemoralis in spring ranged from 16-39% (beetles positive for slug DNA) and were density dependent, with numbers of beetles testing positive being positively correlated with densities of the respective slug species. Carabus nemoralis was shown to be a potentially important predator of the alien A. lusitanicus in spring and may contribute to conservation biological control.

  9. Foraging behavior and prey interactions by a guild of predators on various lifestages of Bemisia tabaci

    Directory of Open Access Journals (Sweden)

    James R. Hagler

    2004-01-01

    Full Text Available The sweetpotato whitefly, Bemisia tabaci (Gennadius is fed on by a wide variety of generalist predators, but there is little information on these predator-prey interactions. A laboratory investigation was conducted to quantify the foraging behavior of the adults of five common whitefly predators presented with a surfeit of whitefly eggs, nymphs, and adults. The beetles, Hippodamia convergens Guérin-Méneville and Collops vittatus (Say fed mostly on whitefly eggs, but readily and rapidly preyed on all of the whitefly lifestages. The true bugs, Geocoris punctipes (Say and Orius tristicolor (Say preyed almost exclusively on adult whiteflies, while Lygus hesperus Knight preyed almost exclusively on nymphs. The true bugs had much longer prey handling times than the beetles and spent much more of their time feeding (35-42% than the beetles (6-7%. These results indicate that generalist predators vary significantly in their interaction with this host, and that foraging behavior should be considered during development of a predator-based biological control program for B. tabaci.

  10. Imidacloprid alters foraging and decreases bee avoidance of predators.

    Directory of Open Access Journals (Sweden)

    Ken Tan

    Full Text Available Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 µg/L (34 ppb imidacloprid, honey bees (Apis cerana showed no aversion to a feeder with a hornet predator, and 1.8 fold more bees chose the dangerous feeder as compared to control bees. Control bees exhibited significant predator avoidance. We also give the first evidence that foraging by A. cerana workers can be inhibited by sublethal concentrations of the pesticide, imidacloprid, which is widely used in Asia. Compared to bees collecting uncontaminated nectar, 23% fewer foragers returned to collect the nectar with 40 µg/L imidacloprid. Bees that did return respectively collected 46% and 63% less nectar containing 20 µg/L and 40 µg/L imidacloprid. These results suggest that the effects of neonicotinoids on honey bee decision-making and other advanced cognitive functions should be explored. Moreover, research should extend beyond the classic model, the European honey bee (A. mellifera, to other important bee species.

  11. Imidacloprid Alters Foraging and Decreases Bee Avoidance of Predators

    Science.gov (United States)

    Tan, Ken; Chen, Weiwen; Dong, Shihao; Liu, Xiwen; Wang, Yuchong; Nieh, James C.

    2014-01-01

    Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 µg/L (34 ppb) imidacloprid, honey bees (Apis cerana) showed no aversion to a feeder with a hornet predator, and 1.8 fold more bees chose the dangerous feeder as compared to control bees. Control bees exhibited significant predator avoidance. We also give the first evidence that foraging by A. cerana workers can be inhibited by sublethal concentrations of the pesticide, imidacloprid, which is widely used in Asia. Compared to bees collecting uncontaminated nectar, 23% fewer foragers returned to collect the nectar with 40 µg/L imidacloprid. Bees that did return respectively collected 46% and 63% less nectar containing 20 µg/L and 40 µg/L imidacloprid. These results suggest that the effects of neonicotinoids on honey bee decision-making and other advanced cognitive functions should be explored. Moreover, research should extend beyond the classic model, the European honey bee (A. mellifera), to other important bee species. PMID:25025334

  12. Water quality data collected by the the National Estuarine Research Reserve System's System-wide Monitoring Program (NERRS SWMP), 1996 - 1998 (NODC Accession 0000789)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Estuarine Research Reserve System's System-wide Monitoring Program (NERRS SWMP) collected water quality data in 22 reserves in the United States and...

  13. The System-Wide Approach to Import Allocation: The Cases of Japanese Import Demand for Citrus Juices and United Kingdom Import Demand for Fresh Apples

    OpenAIRE

    Seale, James L., Jr.; Lee, Jonq-Ying; Aviphant, Pattana

    1990-01-01

    The system-wide approach is used to develop an import allocation model based on blockwise dependence. The import demand system is parameterized using the absolute version of the Rotterdam model. Two empirical examples are given to illustrate the approach.

  14. Water quality, meteorological, and nutrient data collected by the the National Estuarine Research Reserve System's System-wide Monitoring Program (NERRS SWMP), 1994 - 2005 (NODC Accession 0019215)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Estuarine Research Reserve System's System-wide Monitoring Program (NERRS SWMP) collected water quality, meteorological, and nutrient data in 25...

  15. Uncovering ultrastructural defences in Daphnia magna--an interdisciplinary approach to assess the predator-induced fortification of the carapace.

    Directory of Open Access Journals (Sweden)

    Max Rabus

    Full Text Available The development of structural defences, such as the fortification of shells or exoskeletons, is a widespread strategy to reduce predator attack efficiency. In unpredictable environments these defences may be more pronounced in the presence of a predator. The cladoceran Daphnia magna (Crustacea: Branchiopoda: Cladocera has been shown to develop a bulky morphotype as an effective inducible morphological defence against the predatory tadpole shrimp Triops cancriformis (Crustacea: Branchiopoda: Notostraca. Mediated by kairomones, the daphnids express an increased body length, width and an elongated tail spine. Here we examined whether these large scale morphological defences are accompanied by additional ultrastructural defences, i.e. a fortification of the exoskeleton. We employed atomic force microscopy (AFM based nanoindentation experiments to assess the cuticle hardness along with tapping mode AFM imaging to visualise the surface morphology for predator exposed and non-predator exposed daphnids. We used semi-thin sections of the carapace to measure the cuticle thickness, and finally, we used fluorescence microscopy to analyse the diameter of the pillars connecting the two carapace layers. We found that D. magna indeed expresses ultrastructural defences against Triops predation. The cuticle in predator exposed individuals is approximately five times harder and two times thicker than in control daphnids. Moreover, the pillar diameter is significantly increased in predator exposed daphnids. These predator-cue induced changes in the carapace architecture should provide effective protection against being crushed by the predator's mouthparts and may add to the protective effect of bulkiness. This study highlights the potential of interdisciplinary studies to uncover new and relevant aspects even in extensively studied fields of research.

  16. The dynamics of a food web consisting of two preys and a harvesting predator

    International Nuclear Information System (INIS)

    Gakkhar, Sunita; Singh, Brahampal

    2007-01-01

    This paper investigates the dynamical behavior of an exploited system consisting of two preys and a predator which is being harvested. The existence of biological, economic and optimum equilibrium of the system is examined. The local and global stability analysis of the model has been carried out. The optimal harvesting policy for harvesting the predator species is studied. The bifurcation diagram is drawn for biologically feasible choice of parameters and the harvest parameter is chosen in the range for which optimum equilibrium also exist. It is observed that harvesting can control the chaos

  17. Climate change effects on predator-prey interactions.

    Science.gov (United States)

    Laws, Angela N

    2017-10-01

    Predator-prey interactions can be very important to community structure and function. A growing body of research demonstrates how climate change can modify these species interactions. Climate change can modify predator-prey interactions by affecting species characteristics, and by modifying consumptive and/or non-consumptive predator effects. Current work examines how climate change and predation risk can combine to influence herbivore stoichiometry and feeding ecology. Other recent advances show how climate change can affect chemical signaling of plants and insects, as well as how pollution and other components of the environmental context can modify predator-prey interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Anthropogenic noise compromises the anti-predator behaviour of the European seabass, Dicentrarchus labrax (L.).

    Science.gov (United States)

    Spiga, Ilaria; Aldred, Nicholas; Caldwell, Gary S

    2017-09-15

    Anthropogenic noise is a significant pollutant of the world's oceans, affecting behavioural and physiological traits in a range of species, including anti-predator behaviours. Using the open field test, we investigated the effects of recordings of piling and drilling noise on the anti-predator behaviour of captive juvenile European seabass in response to a visual stimulus (a predatory mimic). The impulsive nature of piling noise triggered a reflexive startle response, which contrasted the behaviour elicited by the continuous drilling noise. When presented with the predatory mimic, fish exposed to both piling and drilling noise explored the experimental arena more extensively than control fish exposed to ambient noise. Fish under drilling and piling conditions also exhibited reduced predator inspection behaviour. Piling and drilling noise induced stress as measured by ventilation rate. This study provides further evidence that the behaviour and physiology of European seabass is significantly affected by exposure to elevated noise levels. Copyright © 2017. Published by Elsevier Ltd.

  19. Short-term effects of avian predation variation on population size and local survival of the multimammate rat, Mastomys natalensis (Rodentia, Muridae)

    DEFF Research Database (Denmark)

    Gulck, T. van; Stocks, R.; Verhagen, Ron

    1998-01-01

    The influence of avian predation on population size and local survival of Mastomys natalensis rats in Tanzania was studied in a capture-recapture study over a six month period on experimental fields with decreased, controlled and increased predation pressure. Bird observations indicated that the ......The influence of avian predation on population size and local survival of Mastomys natalensis rats in Tanzania was studied in a capture-recapture study over a six month period on experimental fields with decreased, controlled and increased predation pressure. Bird observations indicated...... that the placement of perches increased local hunting activity of at least the Black Shouldered Kite but there were no obvious effects on rodent population size or survival. In a single field where avian predation was prevented by covering the field with a net, an increase in survival was observed. The opposite...

  20. Effects of a Synthetic Predator Odor (TMT) on Freezing, Analgesia, Stereotypy, and Spatial Memory.

    Science.gov (United States)

    Williams, Jon L.; Baez, Catherine; Hladky, Katherine J.; Camacho, Cheri A.

    2005-01-01

    Exposing rats to the predator odor of trimethylthiazoline (TMT), obtained from the red fox, was compared to exposure to the novel control odor of citronella. In Experiment 1, TMT produced defensive freezing and an analgesic reaction that was reversed by an opiate antagonist. In Experiment 2, TMT augmented response stereotypy induced by an…

  1. Quantifying movement of the predator carabid beetle Pterostichus melanarius in arable land

    NARCIS (Netherlands)

    Allema, A.B.; Rossing, W.A.H.; Werf, van der W.; Hemerik, L.; Groot, J.C.J.; Steingröver, E.G.; Lenteren, van J.C.

    2014-01-01

    Current knowledge on entomophagous arthropod distribution and movement patterns, in particular for soil-dwelling predators, is insufficient to provide advice on how a production landscape should be re-arranged to maximally benefit from biological pest control. Movement has mainly been measured in

  2. Alcohol impairs predation risk response and communication in zebrafish.

    Directory of Open Access Journals (Sweden)

    Thiago Acosta Oliveira

    Full Text Available The effects of ethanol exposure on Danio rerio have been studied from the perspectives of developmental biology and behavior. However, little is known about the effects of ethanol on the prey-predator relationship and chemical communication of predation risk. Here, we showed that visual contact with a predator triggers stress axis activation in zebrafish. We also observed a typical stress response in zebrafish receiving water from these conspecifics, indicating that these fish chemically communicate predation risk. Our work is the first to demonstrate how alcohol effects this prey-predator interaction. We showed for the first time that alcohol exposure completely blocks stress axis activation in both fish seeing the predator and in fish that come in indirect contact with a predator by receiving water from these conspecifics. Together with other research results and with the translational relevance of this fish species, our data points to zebrafish as a promising animal model to study human alcoholism.

  3. Biological control of an acarine pest by single and multiple natural enemies

    NARCIS (Netherlands)

    Cakmak, I.; Janssen, A.; Sabelis, M.W.; Baspinar, H.

    2009-01-01

    When multiple predator species are introduced to control a single prey species, predator species may act synergistically if the rate of mortality of the prey exceeds the rate of mortality from all single predator species combined. Alternatively, the release of multiple predator species may yield a

  4. Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey.

    Directory of Open Access Journals (Sweden)

    Tyler E Schartel

    Full Text Available Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable and maple seeds (Acer saccharum; less profitable. We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1 mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2 consumption of both incidental prey would be high near feeders providing less-preferred food and, 3 consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty feeder. Feeders with highly preferred food (sunflower seeds created localized refuges for incidental prey at intermediate distances (15 to 25m from the feeder. Feeders with less-preferred food (corn generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference.

  5. Quantifying the impact of woodpecker predation on population dynamics of the emerald ash borer (Agrilus planipennis).

    Science.gov (United States)

    Jennings, David E; Gould, Juli R; Vandenberg, John D; Duan, Jian J; Shrewsbury, Paula M

    2013-01-01

    The emerald ash borer (EAB), Agrilus planipennis, is an invasive beetle that has killed millions of ash trees (Fraxinus spp.) since it was accidentally introduced to North America in the 1990s. Understanding how predators such as woodpeckers (Picidae) affect the population dynamics of EAB should enable us to more effectively manage the spread of this beetle, and toward this end we combined two experimental approaches to elucidate the relative importance of woodpecker predation on EAB populations. First, we examined wild populations of EAB in ash trees in New York, with each tree having a section screened to exclude woodpeckers. Second, we established experimental cohorts of EAB in ash trees in Maryland, and the cohorts on half of these trees were caged to exclude woodpeckers. The following spring these trees were debarked and the fates of the EAB larvae were determined. We found that trees from which woodpeckers were excluded consistently had significantly lower levels of predation, and that woodpecker predation comprised a greater source of mortality at sites with a more established wild infestation of EAB. Additionally, there was a considerable difference between New York and Maryland in the effect that woodpecker predation had on EAB population growth, suggesting that predation alone may not be a substantial factor in controlling EAB. In our experimental cohorts we also observed that trees from which woodpeckers were excluded had a significantly higher level of parasitism. The lower level of parasitism on EAB larvae found when exposed to woodpeckers has implications for EAB biological control, suggesting that it might be prudent to exclude woodpeckers from trees when attempting to establish parasitoid populations. Future studies may include utilizing EAB larval cohorts with a range of densities to explore the functional response of woodpeckers.

  6. Habituation of adult sea lamprey repeatedly exposed to damage-released alarm and predator cues

    Science.gov (United States)

    Imre, Istvan; Di Rocco, Richard T.; Brown, Grant E.; Johnson, Nicholas

    2016-01-01

    Predation is an unforgiving selective pressure affecting the life history, morphology and behaviour of prey organisms. Selection should favour organisms that have the ability to correctly assess the information content of alarm cues. This study investigated whether adult sea lamprey Petromyzon marinus habituate to conspecific damage-released alarm cues (fresh and decayed sea lamprey extract), a heterospecific damage-released alarm cue (white sucker Catostomus commersoniiextract), predator cues (Northern water snake Nerodia sipedon washing, human saliva and 2-phenylethylamine hydrochloride (PEA HCl)) and a conspecific damage-released alarm cue and predator cue combination (fresh sea lamprey extract and human saliva) after they were pre-exposed 4 times or 8 times, respectively, to a given stimulus the previous night. Consistent with our prediction, adult sea lamprey maintained an avoidance response to conspecific damage-released alarm cues (fresh and decayed sea lamprey extract), a predator cue presented at high relative concentration (PEA HCl) and a conspecific damage-released alarm cue and predator cue combination (fresh sea lamprey extract plus human saliva), irrespective of previous exposure level. As expected, adult sea lamprey habituated to a sympatric heterospecific damage-released alarm cue (white sucker extract) and a predator cue presented at lower relative concentration (human saliva). Adult sea lamprey did not show any avoidance of the Northern water snake washing and the Amazon sailfin catfish extract (heterospecific control). This study suggests that conspecific damage-released alarm cues and PEA HCl present the best options as natural repellents in an integrated management program aimed at controlling the abundance of sea lamprey in the Laurentian Great Lakes.

  7. Predators vs. alien: differential biotic resistance to an invasive species by two resident predators

    Directory of Open Access Journals (Sweden)

    Calum MacNeil

    2013-10-01

    Full Text Available The success of invading species can be restricted by interspecific interactions such as competition and predation (i.e. biotic resistance from resident species, which may be natives or previous invaders. Whilst there are myriad examples of resident species preying on invaders, simply showing that such an interaction exists does not demonstrate that predation limits invader establishment, abundance or spread. Support for this conclusion requires evidence of negative associations between invaders and resident predators in the field and, further, that the predator-prey interaction is likely to strongly regulate or potentially de-stabilise the introduced prey population. Moreover, it must be considered that different resident predator species may have different abilities to restrict invaders. In this study, we show from analysis of field data that two European predatory freshwater amphipods, Gammarus pulex and G. duebeni celticus, have strong negative field associations with their prey, the invasive North American amphipod Crangonyx pseudogracilis. This negative field association is significantly stronger with G. pulex, a previous and now resident invader in the study sites, than with the native G. d. celticus. These field patterns were consistent with our experimental findings that both resident predators display potentially population de-stabilising Type II functional responses towards the invasive prey, with a significantly greater magnitude of response exhibited by G. pulex than by G. d. celticus. Further, these Type II functional responses were consistent across homo- and heterogeneous environments, contrary to the expectation that heterogeneity facilitates more stabilising Type III functional responses through the provision of prey refugia. Our experimental approach confirms correlative field surveys and thus supports the hypothesis that resident predatory invertebrates are differentially limiting the distribution and abundance of an

  8. A System-Wide Approach to Identify the Mechanisms of Barnacle Attachment: Toward the Discovery of New Antifouling Compounds

    KAUST Repository

    Al-Aqeel, Sarah

    2015-11-01

    Biofouling is a significant economic problem, particularly for marine and offshore oil industries. The acorn barnacle (Amphibalanus (Balanus) amphitrite) is the main biofouling organism in marine environments. Environmental conditions, the physiology of the biofouling organism, the surrounding microbial community, and the properties of the substratum can all influence the attachment of biofouling organisms to substrates. My dissertation investigated the biological processes involved in B. amphitrite development and attachment in the unique environment of the Red Sea, where the average water surface temperature is 34°C and the salinity reaches 41‰. I profiled the transcriptome and proteome of B. amphitrite at different life stages (nauplius II, nauplius VI, and cyprid) and identified 65,784 expressed contigs and 1387 expressed proteins by quantitative proteomics. During the planktonic stage, genes related to osmotic stress, salt stress, the hyperosmotic response, and the Wnt signaling pathway were strongly up-regulated, hereas genes related to the MAPK pathway, lipid metabolism, and cuticle development were down-regulated. In the transition from the nauplius VI to cyprid stages, there was up-regulation of genes involved in blood coagulation, cuticle development, and eggshell formation, and down-regulation of genes in the nitric oxide pathway, which stimulates the swimming and feeding responses of marine invertebrates. This system-wide integrated approach elucidated the development and attachment pathways important in B. amphitrite. Enzymes and metabolites in these pathways are potential molecular targets for the development of new antifouling compounds.

  9. Waterborne amitrole affects the predator-prey relationship between common frog tadpoles (Rana temporaria) and larval spotted salamander (Salamandra salamandra).

    Science.gov (United States)

    Mandrillon, Anne-Lise; Saglio, Philippe

    2007-08-01

    Within their aquatic habitats, larval amphibians are often subjected to multiple natural and anthropic stressors. Among these, predation and waterborne pollution represent two types of stressing factor that frequently co-occur. In this connection, the present laboratory study was designed to investigate the effects of amitrole, a commonly used triazole herbicide, on the predator-prey relationship between common frog tadpoles (Rana temporaria) and larval spotted salamander (Salamandra salamandra). Tadpoles were exposed for 3 days to 0, 0.01, 0.1, 1, and 10 mg/L amitrole, either in the absence or in the presence of larval salamanders. Tadpole behavior (refuge use, movements) was monitored every day, and the predation efficiency was assessed at the end of the experiment by counting the number of surviving tadpoles. In the absence of the predator, amitrole-exposed tadpoles (at 0.01, 0.1, and 1 mg/L) increased their refuge use and decreased their rate of movements. In the presence of the predator, amitrole contamination did not affect tadpole behavior, except on the first day, where tadpoles exposed to 10 mg/L were found to be significantly more active than unexposed control tadpoles. Throughout the experiment, control tadpoles were the only group to show significant reductions of activity and visibility in response to the predator's presence. In contrast, tadpoles exposed to 0.01 and 0.1 mg/L amitrole increased their refuge use in response to the predator, whereas their rate of movements remained unaffected. Furthermore, exposures of tadpoles to the two highest amitrole concentrations (1 and 10 mg/L) resulted in the loss of both behavioral responses to the predator's presence. Interestingly, the lack of antipredator behavior in amitrole-exposed tadpoles did not enhance their vulnerability to predation by the larval salamander. Moreover, tadpoles exposed to the two highest herbicide concentrations showed a better survival than unexposed controls, indicating that

  10. Local adaptation in transgenerational responses to predators

    Science.gov (United States)

    Walsh, Matthew R.; Castoe, Todd; Holmes, Julian; Packer, Michelle; Biles, Kelsey; Walsh, Melissa; Munch, Stephan B.; Post, David M.

    2016-01-01

    Environmental signals can induce phenotypic changes that span multiple generations. Along with phenotypic responses that occur during development (i.e. ‘within-generation’ plasticity), such ‘transgenerational plasticity’ (TGP) has been documented in a diverse array of taxa spanning many environmental perturbations. New theory predicts that temporal stability is a key driver of the evolution of TGP. We tested this prediction using natural populations of zooplankton from lakes in Connecticut that span a large gradient in the temporal dynamics of predator-induced mortality. We reared more than 120 clones of Daphnia ambigua from nine lakes for multiple generations in the presence/absence of predator cues. We found that temporal variation in mortality selects for within-generation plasticity while consistently strong (or weak) mortality selects for increased TGP. Such results provide us the first evidence for local adaptation in TGP and argue that divergent ecological conditions select for phenotypic responses within and across generations. PMID:26817775

  11. Increased noise levels have different impacts on the anti-predator behaviour of two sympatric fish species.

    Directory of Open Access Journals (Sweden)

    Irene K Voellmy

    Full Text Available Animals must avoid predation to survive and reproduce, and there is increasing evidence that man-made (anthropogenic factors can influence predator-prey relationships. Anthropogenic noise has been shown to have a variety of effects on many species, but work investigating the impact on anti-predator behaviour is rare. In this laboratory study, we examined how additional noise (playback of field recordings of a ship passing through a harbour, compared with control conditions (playback of recordings from the same harbours without ship noise, affected responses to a visual predatory stimulus. We compared the anti-predator behaviour of two sympatric fish species, the three-spined stickleback (Gasterosteus aculeatus and the European minnow (Phoxinus phoxinus, which share similar feeding and predator ecologies, but differ in their body armour. Effects of additional-noise playbacks differed between species: sticklebacks responded significantly more quickly to the visual predatory stimulus during additional-noise playbacks than during control conditions, while minnows exhibited no significant change in their response latency. Our results suggest that elevated noise levels have the potential to affect anti-predator behaviour of different species in different ways. Future field-based experiments are needed to confirm whether this effect and the interspecific difference exist in relation to real-world noise sources, and to determine survival and population consequences.

  12. Operational Alignment in Predator Training Research

    Science.gov (United States)

    2014-04-21

    RESEARCH Noah P. Schill*, Leah J. Rowe†, Brian L. Gyovai‡, DeForest Q. Joralmon§, Andrew J. Schneck**, Darrin A. Woudstra†† The sixteen year old USAF...research environment. To provide targeted RPA training research solutions , the team has developed the Predator Research Integrated Networked Combat...Performance Wing, Warfighter Readiness Research Division. ‡ Lt Col Brian L. Gyovai, OHANG, 178th Operations Support Squadron. § Dr. DeForest Q

  13. Competing associations in six-species predator-prey models

    International Nuclear Information System (INIS)

    Szabo, Gyoergy

    2005-01-01

    We study a set of six-species ecological models where each species has two predators and two prey. On a square lattice the time evolution is governed by iterated invasions between the neighbouring predator-prey pairs chosen at random and by a site exchange with a probability X s between the neutral pairs. These models involve the possibility of spontaneous formation of different defensive alliances whose members protect each other from the external invaders. The Monte Carlo simulations show a surprisingly rich variety of the stable spatial distributions of species and subsequent phase transitions when tuning the control parameter X s . These very simple models are able to demonstrate that the competition between these associations influences their composition. Sometimes the dominant association is developed via a domain growth. In other cases larger and larger invasion processes precede the prevalence of one of the stable associations. Under some conditions the survival of all the species can be maintained by the cyclic dominance occurring between these associations

  14. Prey-predator dynamics with prey refuge providing additional food to predator

    International Nuclear Information System (INIS)

    Ghosh, Joydev; Sahoo, Banshidhar; Poria, Swarup

    2017-01-01

    Highlights: • The effects of interplay between prey refugia and additional food are reported. • Hopf bifurcation conditions are derived analytically. • Existence of unique limit cycle is shown analytically. • Predator extinction may be possible at very high prey refuge ecological systems. - Abstract: The impacts of additional food for predator on the dynamics of a prey-predator model with prey refuge are investigated. The equilibrium points and their stability behaviours are determined. Hopf bifurcation conditions are derived analytically. Most significantly, existence conditions for unique stable limit cycle in the phase plane are shown analytically. The analytical results are in well agreement with the numerical simulation results. Effects of variation of refuge level as well as the variation of quality and quantity of additional food on the dynamics are reported with the help of bifurcation diagrams. It is found that high quality and high quantity of additional food supports oscillatory coexistence of species. It is observed that predator extinction possibility in high prey refuge ecological systems may be removed by supplying additional food to predator population. The reported theoretical results may be useful to conservation biologist for species conservation in real world ecological systems.

  15. Demographic consequences of predators on prey: trait and density mediated effects on mosquito larvae in containers.

    Directory of Open Access Journals (Sweden)

    Barry W Alto

    Full Text Available Predators may affect prey population growth and community diversity through density mediated lethal and trait mediated non-lethal effects that influence phenotypic traits of prey. We tested experimentally the roles of thinning the density of prey (lethality in the absence of predator cues and density and trait mediated effects (lethality + intimidation of predatory midge Corethrella appendiculata on competing native and invasive mosquito prey. Predator-mediated reductions in prey and density reductions in the absence of C. appendiculata resulted in lower percent survivorship to adulthood and estimates of the finite rate of increase (λ' for invasive mosquito Aedes albopictus relative to that of controls. In most instances, thinning the density of prey in the absence, but not in the presence, of C. appendiculata cues resulted in lower survivorship to adulthood and λ' for native mosquito Aedes triseriatus relative to that of controls. Together, these results suggested trait mediated effects of C. appendiculata specific to each species of mosquito prey. Release from intraspecific competition attributable to density reductions in the absence, but not in the presence, of C. appendiculata enhanced growth and lengthened adult lifespan relative to that of controls for A. albopictus but not A. triseriatus. These results show the importance of predator-mediated density and trait mediated effects on phenotypic traits and populations of invasive and native mosquitoes. Species-specific differences in the phenotypic responses of prey may be due, in part, to longer evolutionary history of C. appendiculata with A. triseriatus than A. albopictus.

  16. Refuge-mediated predator-prey dynamics and biomass pyramids.

    Science.gov (United States)

    Wang, Hao; Thanarajah, Silogini; Gaudreau, Philippe

    2017-12-27

    Refuge can greatly influence predator-prey dynamics by movements between the interior and the exterior of a refuge. The presence of refuge for prey decreases predation risk and can have important impacts on the sustainability of a predator-prey system. The principal purpose of this paper is to formulate and analyze a refuge-mediated predator-prey model when the refuge is available to protect a portion of prey from predation. We study the effect of the refuge size on the biomass ratio and extend our refuge model to incorporate fishing and predator migration separately. Our study suggests that decreasing the refuge size, increasing the predator fishing, and increasing the predator emigration stabilizes the system. Here, we investigate the dependence of Hopf bifurcation on refuge size in the presence of fishing or predator migration. Moreover, we discuss their effects on the biomass pyramid and establish a condition for the emergence of an inverted biomass pyramid. We perform numerical test and sensitivity analysis to check the robustness of our results and the relative importance of all parameters. We find that high fishing pressure may destroy the inverted biomass pyramid and thus decrease the resilience of reef ecosystems. In addition, increasing the emigration rate or decreasing the immigration rate decreases the predator-prey biomass ratio. An inverted biomass pyramid can occur in the presence of a stable limit cycle. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Taphonomy for taxonomists: Implications of predation in small mammal studies

    Science.gov (United States)

    Fernández-Jalvo, Yolanda; Andrews, Peter; Denys, Christiane; Sesé, Carmen; Stoetzel, Emmanuelle; Marin-Monfort, Dolores; Pesquero, Dolores

    2016-05-01

    Predation is one of the most recurrent sources of bone accumulations. The influence of predation is widely studied for large mammal sites where humans, acting as predators, produce bone accumulations similar to carnivore accumulations. Similarly, small mammal fossil sites are mainly occupation levels of predators (nests or dens). In both cases, investigations of past events can be compared with present day equivalents or proxies. Chewing marks are sometimes present on large mammal predator accumulations, but digestion traits are the most direct indication of predation, and evidence for this is always present in small mammal (prey) fossil assemblages. Digestion grades and frequency indicates predator type and this is well established since the publication of Andrews (1990). The identification of the predator provides invaluable information for accurate interpretation of the palaeoenvironment. Traditionally, palaeoenvironmental interpretations are obtained from the taxonomic species identified in the site, but rather than providing direct interpretations of the surrounding palaeoenvironment, this procedure actually describes the dietary preferences of the predators and the type of occupation (nests, marking territory, dens, etc). This paper reviews the identification of traits produced by predators on arvicolins, murins and soricids using a method that may be used equally by taxonomists and taphonomists. It aims to provide the "tools" for taxonomists to identify the predator based on their methodology, which is examining the occlusal surfaces of teeth rather than their lateral aspects. This will greatly benefit both the work of taphonomists and taxonomists to recognize signs of predation and the improvement of subsequent palaeoecological interpretations of past organisms and sites by identifying both the prey and the predator.

  18. Olfactory systems and neural circuits that modulate predator odor fear

    Directory of Open Access Journals (Sweden)

    Lorey K. Takahashi

    2014-03-01

    Full Text Available When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS and accessory olfactory systems (AOS detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray, paraventricular nucleus of the hypothalamus, and the medial amygdala appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal stress hormone secretion. The medial amygdala also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus appear prominently involve in predator odor fear behavior. The basolateral amygdala, medial hypothalamic nuclei, and medial prefrontal cortex are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate

  19. Olfactory systems and neural circuits that modulate predator odor fear.

    Science.gov (United States)

    Takahashi, Lorey K

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator

  20. Local predation pressure predicts the strength of mobbing responses in tropical birds

    Directory of Open Access Journals (Sweden)

    Luis SANDOVAL, David R. WILSON

    2012-10-01

    Full Text Available Many birds join cooperative mobbing aggregations and collectively harass predators. Individuals participating in these ephemeral associations benefit by deterring the predator, but also incur energetic costs and increased risk of predation. Explaining the evolution of mobbing is challenging because individuals could prevail by selfishly seeking safety while allowing others to mob. An important step in understanding the evolution of mobbing is to identify factors affecting its expression. The ecological constraints model suggests that animals are more likely to cooperate under adverse environmental conditions, such as when local predation pressure is high. We tested this prediction by comparing the mobbing responses of several species of birds to the local abundance of their primary predator, the ferruginous pygmy-owl Glaucidium brasilianum. We used acoustic playback to elicit mobbing responses in environments where owls were common, uncommon, or rare. Stimuli were either the song of a ferruginous pygmy-owl or the mobbing calls of three of the owl’s common prey species. During each playback, we characterized mobbing responses by noting the number of species and individuals that approached the loudspeaker, as well as the closest approach by any bird. Mobbing responses to both stimuli were strong in locations where Ferruginous Pygmy-owls were common, intermediate where owls were uncommon, and weak where they were rare. This pattern persisted even after controlling for differences in species richness and composition among the three environments. Results support the ecological constraints model and provide strong evidence that intense predation pressure increases the expression of cooperative mobbing in tropical birds [Current Zoology 58 (5: 781-790, 2012].

  1. A predator-2 prey fast-slow dynamical system for rapid predator evolution

    DEFF Research Database (Denmark)

    Piltz, Sofia Helena; Veerman, Frits; Maini, Philip K.

    2017-01-01

    extremes at which the predator's diet is composed solely of one prey correspond to two branches of the three-branch critical manifold of the fast slow system. By calculating the points at which there is a fast transition between these two feeding choices (i.e., branches of the critical manifold), we prove......We consider adaptive change of diet of a predator population that switches its feeding between two prey populations. We develop a novel 1 fast-3 slow dynamical system to describe the dynamics of the three populations amidst continuous but rapid evolution of the predator's diet choice. The two...... that the system has a two-parameter family of periodic orbits for sufficiently large separation of the time scales between the evolutionary and ecological dynamics. Using numerical simulations, we show that these periodic orbits exist, and that their phase difference and oscillation patterns persist, when...

  2. Significance of Selective Predation and Development of Prey Protection Measures for Juvenile Salmonids in the Columbia and Snake River Reservoirs: Annual Progress Report, February 1991-February 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Poe, Thomas P.

    1992-12-31

    This document is the 1991 annual report of progress for the Bonneville Power Administration (BPA) research Project conducted by the US Fish and Wildlife Service (FWS). Our approach was to present the progress achieved during 1991 in a series of separate reports for each major project task. Each report is prepared in the format of a scientific paper and is able to stand alone, whatever the state of progress or completion. This project has two major goals. One is to understand the significance of selective predation and prey vulnerability by determining if substandard juvenile salmonids (dead, injured, stressed, diseased, or naive) are more vulnerable to predation by northern squawfish, than standard or normal juvenile salmonids. The second goal is to develop and test prey protection measures to control predation on juvenile salmonids by reducing predator-smolt encounters or predator capture efficiency.

  3. Predation on exotic zebra mussels by native fishes: Effects on predator and prey

    Science.gov (United States)

    Magoulick, D.D.; Lewis, L.C.

    2002-01-01

    1. Exotic zebra mussels, Dreissena polymorpha, occur in southern U.S. waterways in high densities, but little is known about the interaction between native fish predators and zebra mussels. Previous studies have suggested that exotic zebra mussels are low profitability prey items and native vertebrate predators are unlikely to reduce zebra mussel densities. We tested these hypotheses by observing prey use of fishes, determining energy content of primary prey species of fishes, and conducting predator exclusion experiments in Lake Dardanelle, Arkansas. 2. Zebra mussels were the primary prey eaten by 52.9% of blue catfish, Ictalurus furcatus; 48.2% of freshwater drum, Aplodinotus grunniens; and 100% of adult redear sunfish, Lepomis microlophus. Blue catfish showed distinct seasonal prey shifts, feeding on zebra mussels in summer and shad, Dorosoma spp., during winter. Energy content (joules g-1) of blue catfish prey (threadfin shad, Dorosoma petenense; gizzard shad, D. cepedianum; zebra mussels; and asiatic clams, Corbicula fluminea) showed a significant species by season interaction, but shad were always significantly greater in energy content than bivalves examined as either ash-free dry mass or whole organism dry mass. Fish predators significantly reduced densities of large zebra mussels (>5 mm length) colonising clay tiles in the summers of 1997 and 1998, but predation effects on small zebra mussels (???5 mm length) were less clear. 3. Freshwater drum and redear sunfish process bivalve prey by crushing shells and obtain low amounts of higher-energy food (only the flesh), whereas blue catfish lack a shell-crushing apparatus and ingest large amounts of low-energy food per unit time (bivalves with their shells). Blue catfish appeared to select the abundant zebra mussel over the more energetically rich shad during summer, then shifted to shad during winter when shad experienced temperature-dependent stress and mortality. Native fish predators can suppress adult zebra

  4. Resilience of predators to fishing pressure on coral patch reefs

    Science.gov (United States)

    Schroeder, R.E.; Parrish, J.D.

    2005-01-01

    Numbers and biomass of piscivorous fish and their predation on other fish may often be high in undisturbed coral reef communities. The effects of such predation have sometimes been studied by removal of piscivores (either experimentally or by fishermen). Such perturbations have usually involved removal of large, highly vulnerable, mobile piscivores that are often actively sought in fisheries. The effects of fishing on smaller, demersal, semi-resident piscivores have been little studied. We studied such effects on the fish communities of patch reefs at Midway atoll by experimentally removing major resident, demersal, piscivorous fishes. First, four control reefs and four experimental reefs were selected, their dimensions and habitats mapped, and their visible fish communities censused repeatedly over 1 year. Census of all control and experimental reefs was continued for the following 39 months, during which known piscivores were collected repeatedly by hand spearing. Records were kept of catch and effort to calculate CPUE as an index of predator density. Spearfishing on the experimental reefs removed 2504 piscivorous fish from 12 families and 43 taxa (mostly species). The species richness of the catch did not show an overall change over the duration of the experiment. Spearman rank correlation analysis showed some unexpected positive correlations for density in numbers and biomass of major fished piscivorous groups (especially lizardfish) over the experiment. Only two relatively minor fished piscivorous taxa declined in abundance over the experiment, while the overall abundance of piscivores increased. Visual censuses of fish on the experimental reefs also failed to show reduction of total piscivores over the full experimental period. No significant trend in the abundance of lizardfish censused over the full period was apparent on any of the control reefs. The high resilience of piscivores on these experimental reefs to relatively intense fishing pressure could

  5. Host Range Specificity of Scymnus camptodromus (Coleoptera: Coccinellidae), A Predator of Hemlock Woolly Adelgid (Hemiptera: Adelgidae).

    Science.gov (United States)

    Limbu, Samita; Cassidy, Katie; Keena, Melody; Tobin, Patrick; Hoover, Kelli

    2016-02-01

    Scymnus (Neopullus) camptodromus Yu and Liu (Coleoptera: Coccinellidae) was brought to the United States from China as a potential biological control agent for hemlock woolly adelgid (Adelges tsugae Annand) (Hemiptera: Adelgidae). Scymnus camptodromus phenology is closely synchronized with that of A. tsugae and has several characteristics of a promising biological control agent. As a prerequisite to field release, S. camptodromus was evaluated for potential nontarget impacts. In host range studies, the predator was given the choice of sympatric adelgid and nonadelgid prey items. Nontarget testing showed that S. camptodromus will feed to some degree on other adelgid species, but highly prefers A. tsugae. We also evaluated larval development of S. camptodromus on pine bark adelgid (Pineus strobi (Hartig)) (Hemiptera: Adelgidae) and larch adelgid (Adelges laricis Vallot) (Hemiptera: Adelgidae); a small proportion of predator larvae was able to develop to adulthood on P. strobi or A. laricis alone. Scymnus camptodromus showed no interest in feeding on woolly alder aphid (Paraprociphilus tessellatus Fitch) (Hemiptera: Aphididae) or woolly apple aphid (Eriosoma lanigerum (Hausmann)) (Hemiptera: Aphididae), and minimal interest in cotton aphid (Aphis gossypii Glover) (Hemiptera: Aphididae) in choice and no-choice experiments. Scymnus camptodromus females did not oviposit on any host material other than A. tsugae-infested hemlock. Under the circumstances of the study, S. camptodromus appears to be a specific predator of A. tsugae, with minimal risk to nontarget species. Although the predator can develop on P. strobi, the likelihood that S. camptodromus would oviposit on pine hosts of this adelgid is small.

  6. Transgenic Cry1Ab rice does not impact ecological fitness and predation of a generalist spider.

    Directory of Open Access Journals (Sweden)

    Jun-Ce Tian

    Full Text Available BACKGROUND: The commercial release of rice genetically engineered to express a Cry1Ab protein from Bacillus thuringiensis (Bt for control of Lepidoptera in China is a subject of debate. One major point of the debate has focused on the ecological safety of Bt rice on nontarget organisms, especially predators and parasitoids that help control populations of insect pests. METHODOLOGY/PRINCIPAL FINDINGS: A tritrophic bioassay was conducted to evaluate the potential impact of Cry1Ab-expressing rice on fitness parameters of a predaceous ground spider (Pardosa pseudoannulata (Bösenberg et Strand that had fed on Bt rice-fed brown planthopper (Nilaparvata lugens (Stål nymphs. Survival, development time and fecundity of this spider were not different when they were fed with Bt rice-fed or non-Bt rice-fed prey. Furthermore, ELISA and PCR gut assays, as well as a functional response trial, indicated that predation by P. pseudoannulata was not significantly different in Bt rice or non-Bt rice fields. CONCLUSIONS/SIGNIFICANCE: The transgenic Cry1Ab rice lines tested in this study had no adverse effects on the survival, developmental time and fecundity of P. pseudoannulata in the laboratory or on predation under field conditions. This suggests that this important predator would not be harmed if transgenic Cry1Ab rice were commercialized.

  7. Effects of a glyphosate-based herbicide and predation threat on the behaviour of agile frog tadpoles.

    Science.gov (United States)

    Mikó, Zsanett; Ujszegi, János; Gál, Zoltán; Hettyey, Attila

    2017-06-01

    The widespread application of pesticides emphasises the importance of understanding the impacts of these chemicals on natural communities. The most commonly applied broad-spectrum herbicides in the world are glyphosate-based herbicides, which have been suggested to induce significant behavioural changes in non-target organisms even at low environmental concentrations. To scrutinize the behavioural effects of herbicide-exposure we exposed agile frog (Rana dalmatina) tadpoles in an outdoor mesocosm experiment to three concentrations of a glyphosate-based herbicide (0, 2 and 6.5mg acid equivalent (a.e.) / L). To assess whether anti-predator behaviour is affected by the pesticide, we combined all levels of herbicide-exposure with three predator treatments (no predator, caged Aeshna cyanea dragonfly larvae or Lissotriton vulgaris newt adults) in a full factorial design. We observed hiding, activity, proximity to the predator cage and vertical position of tadpoles. We found that at the higher herbicide concentration tadpoles decreased their activity and more tadpoles were hiding, and at least at the lower concentration their vertical position was closer to the water surface than in tadpoles of the control treatment. Tadpoles also decreased their activity in the presence of dragonfly larvae, but did not hide more in response to either predator, nor did tadpoles avoid predators spatially. Further, exposure to the herbicide did not significantly influence behavioural responses to predation threat. Our study documents a definite influence of glyphosate-based herbicides on the behaviour of agile frog tadpoles and indicates that some of these changes are similar to those induced by dangerous predators. This may suggest that the underlying physiological mechanisms or the adaptive value of behavioural changes may similar. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Nest site selection by Kentish plover suggests a trade-off between nest-crypsis and predator detection strategies.

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Gómez-Serrano

    Full Text Available Predation is one of the main causes of adult mortality and breeding failure for ground-nesting birds. Micro-habitat structure around nests plays a critical role in minimizing predation risk. Plovers nest in sites with little vegetation cover to maximize the incubating adult visibility, but many studies suggest a trade-off between nest-crypsis and predator detection strategies. However, this trade-off has not been explored in detail because methods used so far do not allow estimating the visibility with regards to critical factors such as slope or plant permeability to vision. Here, we tested the hypothesis that Kentish plovers select exposed sites according to a predator detection strategy, and the hypothesis that more concealed nests survive longer according to a crypsis strategy. To this end, we obtained an accurate estimation of the incubating adult's field of vision through a custom built inverted periscope. Our results showed that plovers selected nest sites with higher visibility than control points randomly selected with regards to humans and dogs, although nests located in sites with higher vegetation cover survived longer. In addition, the flushing distance (i.e., the distance at which incubating adults leave the nest when they detect a potential predator decreased with vegetation cover. Consequently, the advantages of concealing the nest were limited by the ability to detect predators, thus indirectly supporting the existence of the trade-off between crypsis and predator detection. Finally, human disturbance also constrained nest choice, forcing plovers to move to inland sites that were less suitable because of higher vegetation cover, and modulated flushing behavior, since plovers that were habituated to humans left their nests closer to potential predators. This constraint on the width of suitable breeding habitat is particularly relevant for the conservation of Kentish Plover in sand beaches, especially under the current context of

  9. Effects of carbaryl-bran bait on trap catch and seed predation by ground beetles (Coleoptera: Carabidae).

    Science.gov (United States)

    Fielding, Dennis J; DeFoliart, Linda S; Hagerty, Aaron M

    2013-04-01

    Carbaryl-bran bait is effective against grasshoppers without many impacts on nontarget organisms, but ground beetles (Coleoptera: Carabidae) may be susceptible to these baits. Carabids are beneficial in agricultural settings as predators of insect pests and weed seeds. Carabid species and their consumption of weed seeds have not been previously studied in agricultural settings in Alaska. This study examined the effect of grasshopper bran bait on carabid activity-density, as measured by pitfall trap catches, and subsequent predation by invertebrates of seeds of three species of weed. Data were collected in fallow fields in agricultural landscape in the interior of Alaska, near Delta Junction, in 2008 and 2010. Bait applications reduced ground beetle activity-density by over half in each of 2 yr of bait applications. Seed predation was generally low overall (1-10%/wk) and not strongly affected by the bait application, but predation of lambsquarters (Chenopodium album L.) seed was lower on treated plots in 1 yr (340 seeds recovered versus 317 seeds, on treated versus untreated plots, respectively). Predation of dandelion (Taraxacum officinale G. H. Weber ex Wiggers) seeds was correlated with ground beetle activity-density in 1 yr, and predation of dragonhead mint (Dracocephalum parvifolium Nutt.) seed in the other year. We conclude that applications of carbaryl-bran bait for control of grasshoppers will have only a small, temporary effect on weed seed populations in high-latitude agricultural ecosystems.

  10. Nest predation research: Recent findings and future perspectives

    Science.gov (United States)

    Chalfoun, Anna D.; Ibanez-Alamo, J. D.; Magrath, R. D.; Schmidt, Kenneth A.; Thomson, R. L.; Oteyza, Juan C.; Haff, T. M.; Martin, T.E.

    2016-01-01

    Nest predation is a key source of selection for birds that has attracted increasing attention from ornithologists. The inclusion of new concepts applicable to nest predation that stem from social information, eavesdropping or physiology has expanded our knowledge considerably. Recent methodological advancements now allow focus on all three players within nest predation interactions: adults, offspring and predators. Indeed, the study of nest predation now forms a vital part of avian research in several fields, including animal behaviour, population ecology, evolution and conservation biology. However, within nest predation research there are important aspects that require further development, such as the comparison between ecological and evolutionary antipredator responses, and the role of anthropogenic change. We hope this review of recent findings and the presentation of new research avenues will encourage researchers to study this important and interesting selective pressure, and ultimately will help us to better understand the biology of birds.

  11. The risk of predation favors cooperation among breeding prey

    Science.gov (United States)

    Krama, Tatjana; Berzins, Arnis; Rantala, Markus J

    2010-01-01

    Empirical studies have shown that animals often focus on short-term benefits under conditions of predation risk, which reduces the likelihood that they will cooperate with others. However, some theoretical studies predict that animals in adverse conditions should not avoid cooperation with their neighbors since it may decrease individual risks and increase long-term benefits of reciprocal help. We experimentally tested these two alternatives to find out whether increased predation risk enhances or diminishes the occurrence of cooperation in mobbing, a common anti-predator behavior, among breeding pied flycatchers, Ficedula hypoleuca. Our results show that birds attended mobs initiated by their neighbors more often, approached the stuffed predator significantly more closely, and mobbed it at a higher intensity in areas where the perceived risk of predation was experimentally increased. This study demonstrates a positive impact of predation risk on cooperation in breeding songbirds, which might help to explain the emergence and evolution of cooperation. PMID:20714404

  12. A multidimensional framework for studying social predation strategies.

    Science.gov (United States)

    Lang, Stephen D J; Farine, Damien R

    2017-09-01

    Social predation-the act of hunting and feeding with others-is one of the most successful life-history traits in the animal kingdom. Although many predators hunt and feed together, a diversity of mechanisms exist by which individuals forage socially. However, a comprehensive framework capturing this diversity is lacking, preventing us from better understanding cooperative forms of predation, and how such behaviours have evolved and been maintained over time. We outline a framework of social predation that describes five key behavioural dimensions: sociality, communication, specialization, resource sharing, and dependence. By reviewing examples of social predation, we demonstrate the strength of a multidimensional approach, highlighting key commonalities and differences among species, and informative cross-dimensional correlations. These patterns highlight different potential evolutionary pathways and end-points across a multidimensional social predation spectrum.

  13. Linking system-wide impacts of RNA polymerase mutations to the fitness cost of rifampin resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Qi, Qin; Preston, Gail M; MacLean, R Craig

    2014-12-09

    Fitness costs play a key role in the evolutionary dynamics of antibiotic resistance in bacteria by generating selection against resistance in the absence of antibiotics. Although the genetic basis of antibiotic resistance is well understood, the precise molecular mechanisms linking the genetic basis of resistance to its fitness cost remain poorly characterized. Here, we examine how the system-wide impacts of mutations in the RNA polymerase (RNAP) gene rpoB shape the fitness cost of rifampin resistance in Pseudomonas aeruginosa. Rifampin resistance mutations reduce transcriptional efficiency, and this explains 76% of the variation in fitness among rpoB mutants. The pleiotropic consequence of rpoB mutations is that mutants show altered relative transcript levels of essential genes. We find no evidence that global transcriptional responses have an impact on the fitness cost of rifampin resistance as revealed by transcriptome sequencing (RNA-Seq). Global changes in the transcriptional profiles of rpoB mutants compared to the transcriptional profile of the rifampin-sensitive ancestral strain are subtle, demonstrating that the transcriptional regulatory network of P. aeruginosa is robust to the decreased transcriptional efficiency associated with rpoB mutations. On a smaller scale, we find that rifampin resistance mutations increase the expression of RNAP due to decreased termination at an attenuator upstream from rpoB, and we argue that this helps to minimize the cost of rifampin resistance by buffering against reduced RNAP activity. In summary, our study shows that it is possible to dissect the molecular mechanisms underpinning variation in the cost of rifampin resistance and highlights the importance of genome-wide buffering of relative transcript levels in providing robustness against resistance mutations. Antibiotic resistance mutations carry fitness costs. Relative to the characteristics of their antibiotic-sensitive ancestors, resistant mutants show reduced growth

  14. Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells

    Science.gov (United States)

    Yi, Tingfang; Zhai, Bo; Yu, Yonghao; Kiyotsugu, Yoshikawa; Raschle, Thomas; Etzkorn, Manuel; Seo, Hee-Chan; Nagiec, Michal; Luna, Rafael E.; Reinherz, Ellis L.; Blenis, John; Gygi, Steven P.; Wagner, Gerhard

    2014-01-01

    Breast cancer is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.7 million new cases and 522,000 deaths around the world in 2012 alone. Cancer stem cells (CSCs) are essential for tumor reoccurrence and metastasis which is the major source of cancer lethality. G protein-coupled receptor chemokine (C-X-C motif) receptor 4 (CXCR4) is critical for tumor metastasis. However, stromal cell-derived factor 1 (SDF-1)/CXCR4–mediated signaling pathways in breast CSCs are largely unknown. Using isotope reductive dimethylation and large-scale MS-based quantitative phosphoproteome analysis, we examined protein phosphorylation induced by SDF-1/CXCR4 signaling in breast CSCs. We quantified more than 11,000 phosphorylation sites in 2,500 phosphoproteins. Of these phosphosites, 87% were statistically unchanged in abundance in response to SDF-1/CXCR4 stimulation. In contrast, 545 phosphosites in 266 phosphoproteins were significantly increased, whereas 113 phosphosites in 74 phosphoproteins were significantly decreased. SDF-1/CXCR4 increases phosphorylation in 60 cell migration- and invasion-related proteins, of them 43 (>70%) phosphoproteins are unrecognized. In addition, SDF-1/CXCR4 upregulates the phosphorylation of 44 previously uncharacterized kinases, 8 phosphatases, and 1 endogenous phosphatase inhibitor. Using computational approaches, we performed system-based analyses examining SDF-1/CXCR4–mediated phosphoproteome, including construction of kinase–substrate network and feedback regulation loops downstream of SDF-1/CXCR4 signaling in breast CSCs. We identified a previously unidentified SDF-1/CXCR4-PKA-MAP2K2-ERK signaling pathway and demonstrated the feedback regulation on MEK, ERK1/2, δ-catenin, and PPP1Cα in SDF-1/CXCR4 signaling in breast CSCs. This study gives a system-wide view of phosphorylation events downstream of SDF-1/CXCR4 signaling in breast CSCs, providing a resource for the study of CSC-targeted cancer therapy. PMID

  15. Parasitoids and dipteran predators exploit volatiles from microbial symbionts to locate bark beetles.

    Science.gov (United States)

    Boone, Celia K; Six, Diana L; Zheng, Yanbing; Raffa, Kenneth F

    2008-02-01

    Host location by parasitoids and dipteran predators of bark beetles is poorly understood. Unlike coleopteran predators that locate prey by orienting to prey pheromones, wasps and flies often attack life stages not present until after pheromone production ceases. Bark beetles have important microbial symbionts, which could provide sources of cues. We tested host trees, trees colonized by beetles and symbionts, and trees colonized by symbionts alone for attractiveness to hymenopteran parasitoids and dipteran predators. Field studies were conducted with Ips pini in Montana. Three pteromalid wasps were predominant. All were associated with the second and third instars of I. pini. Heydenia unica was more attracted to logs colonized by either I. pini or the fungus Ophiostoma ips than logs alone or blank controls (screen with no log). Rhopalicus pulchripennis was more attracted to logs colonized by I. pini than logs alone or blank controls. Dibrachys cavus was attracted to logs but did not distinguish whether or not they were colonized. Two dolichopodid predators were predominant. A Medetera species was more attracted to colonized than uncolonized logs and more attracted to logs than blank controls. It was also more attracted to logs colonized with the yeast Pichia scolyti than uncolonized logs, but attraction was less consistent. An unidentified dolichopodid was more attracted to logs colonized with I. pini, O. ips, and the bacteria Burkholderia sp., than to uncolonized logs. It was also attracted to uncolonized logs. Its responses were less consistent and pronounced than H. unica. These results suggest some parasitoids and dipteran predators exploit microbial symbionts of bark beetles to locate hosts. Overall, specialists showed strong attraction to fungal cues, whereas generalists were more attracted by plant volatiles. These results also show how microbial symbionts can have conflicting effects on host fitness.

  16. Alien mink predation induces prolonged declines in archipelago amphibians

    OpenAIRE

    Ahola, Markus; Nordström, Mikael; Banks, Peter B; Laanetu, Nikolai; Korpimäki, Erkki

    2006-01-01

    Amphibians are undergoing enigmatic global declines variously attributed to a complex web of anthropogenic forces. Alien predators pose a fundamental threat to biodiversity generally that is predicted to be most acute in island ecosystems. While amphibian eggs and tadpoles are vulnerable to aquatic predators, the effect of predators on adult, reproducing frogs, which most influence amphibian population processes, is unknown. Here, we report on the responses of amphibian populations in the out...

  17. Weed seed predation in organic and conventional fields

    DEFF Research Database (Denmark)

    Navntoft, Søren; Wratten, S.D.; Kristensen, Kristian

    2009-01-01

    edges. Overall, there was no consistent effect of distance from the field edge. Vegetation had a significant influence on the predation rates, with maximum rates at a medium-dense plant cover. Based on the video images, birds were the most important seed predators. The higher weed seed predation rate...... in the organic fields indicates that there may be an economic advantage associated with the well-established trend that bird populations are generally higher in organic agricultural situations....

  18. A self-organized system of smart preys and predators

    Energy Technology Data Exchange (ETDEWEB)

    Rozenfeld, Alejandro F. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP, CONICET, Suc. 4, C.C. 16 (1900) La Plata (Argentina); Albano, Ezequiel V. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP, CONICET, Suc. 4, C.C. 16 (1900) La Plata (Argentina)]. E-mail: ealbano@inifta.unlp.edu.ar

    2004-11-22

    Based on the fact that, a standard prey-predator model (SPPM), exhibits irreversible phase transitions, belonging to the universality class of directed percolation (DP), between prey-predator coexistence and predator extinction [Phys. Lett. A 280 (2001) 45], a self-organized prey-predator model (SOPPM) is formulated and studied by means of extensive Monte Carlo simulations. The SOPPM is achieved defining the parameters of the SPPM as functions of the density of species. It is shown that the SOPPM self-organizes into an active state close the absorbing phase of the SPPM, and consequently their avalanche exponents also belong to the universality class of DP.

  19. Chaotic population dynamics and biology of the top-predator

    International Nuclear Information System (INIS)

    Rai, Vikas; Upadhyay, Ranjit Kumar

    2004-01-01

    We study how the dynamics of a food chain depends on the biology of the top-predator. We consider two model food chains with specialist and generalist top-predators. Both types of food chains display same type of chaotic behavior, short-term recurrent chaos; but the generating mechanisms are drastically different. Food chains with specialist top-predators are dictated by exogenous stochastic factors. On the contrary, the dynamics of those with the generalist top-predator is governed by deterministic changes in system parameters. The study also suggests that robust chaos would be a rarity

  20. Testing predator-driven evolution with Paleozoic crinoid arm regeneration.

    Science.gov (United States)

    Baumiller, Tomasz K; Gahn, Forest J

    2004-09-03

    Regenerating arms of crinoids represent direct evidence of nonlethal attacks by predators and provide an opportunity for exploring the importance of predation through geologic time. Analysis of 11 Paleozoic crinoid Lagerstätten revealed a significant increase in arm regeneration during the Siluro-Devonian. During this interval, referred to as the Middle Paleozoic Marine Revolution, the diversity of shell-crushing predators increased, and antipredatory morphologies among invertebrate prey, such as crinoids, became more common. Crinoid arm regeneration data suggest an increase in nonlethal attacks at this time and represent a causal link between those patterns, which implies an important role for predator-driven evolution.

  1. Discriminative predation: Simultaneous and sequential encounter experiments

    Directory of Open Access Journals (Sweden)

    C. D. BEATTY, D.W.FRANKS

    2012-08-01

    Full Text Available There are many situations in which the ability of animals to distinguish between two similar looking objects can have significant selective consequences. For example, the objects that require discrimination may be edible versus defended prey, predators versus non-predators, or mates of varying quality. Working from the premise that there are situations in which discrimination may be more or less successful, we hypothesized that individuals find it more difficult to distinguish between stimuli when they encounter them sequentially rather than simultaneously. Our study has wide biological and psychological implications from the perspective of signal perception, signal evolution, and discrimination, and could apply to any system where individuals are making relative judgments or choices between two or more stimuli or signals. While this is a general principle that might seem intuitive, it has not been experimentally tested in this context, and is often not considered in the design of models or experiments, or in the interpretation of a wide range of studies. Our study is different from previous studies in psychology in that a the level of similarity of stimuli are gradually varied to obtain selection gradients, and b we discuss the implications of our study for specific areas in ecology, such as the level of perfection of mimicry in predator-prey systems. Our experiments provide evidence that it is indeed more difficult to distinguish between stimuli – and to learn to distinguish between stimuli – when they are encountered sequentially rather than simultaneously, even if the intervening time interval is short [Current Zoology 58 (4: 649–657, 2012].

  2. Keystone predation and molecules of keystone significance.

    Science.gov (United States)

    Zimmer, Richard K; Ferrier, Graham A; Kim, Steven J; Ogorzalek Loo, Rachel R; Zimmer, Cheryl Ann; Loo, Joseph A

    2017-06-01

    Keystone species structure ecological communities and are major determinants of biodiversity. A synthesis of research on keystone species is nonetheless missing a critical component - the sensory mechanisms for behavioral interactions that determine population- and community-wide attributes. Here, we establish the chemosensory basis for keystone predation by sea stars (Pisaster ochraceus) on mussels. This consumer-resource interaction is prototypic of top-down driven trophic cascades. Each mussel species (Mytilus californianus and M. galloprovincialis) secretes a glycoprotein orthologue (29.6 and 28.1 kDa, respectively) that acts, singularly, to evoke the sea star predatory response. The orthologues (named "KEYSTONEin") are localized in the epidermis, extrapallial fluid, and organic shell coating (periostracum) of live, intact mussels. Thus, KEYSTONEin contacts chemosensory receptors on tube feet as sea stars crawl over rocky surfaces in search of prey. The complete nucleotide sequences reveal that KEYSTONEin shares 87% (M. californianus) or 98% (M. galloprovincialis) homology with a calcium-binding protein in the shell matrix of a closely related congener, M. edulis. All three molecules cluster tightly within the Complement Component 1 Domain Containing (C1qDC) protein family; each exhibits a large globular domain, low complexity region(s), coiled coil, and at least four of five histidine-aspartic acid tandem motifs. Collective results support the hypothesis that KEYSTONEin evolved ancestrally in immunological, and later, in biomineralization roles. More recently, the substance has become exploited by sea stars as a contact cue for prey recognition. As the first identified compound to evoke keystone predation, KEYSTONEin provides valuable sensory information, promotes biodiversity, and shapes community structure and function. Without this molecule, there would be no predation by sea stars on mussels. © 2017 by the Ecological Society of America.

  3. Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities.

    Science.gov (United States)

    Ferrari, Maud C O; Munday, Philip L; Rummer, Jodie L; McCormick, Mark I; Corkill, Katherine; Watson, Sue-Ann; Allan, Bridie J M; Meekan, Mark G; Chivers, Douglas P

    2015-05-01

    Ocean warming and acidification are serious threats to marine life. While each stressor alone has been studied in detail, their combined effects on the outcome of ecological interactions are poorly understood. We measured predation rates and predator selectivity of two closely related species of damselfish exposed to a predatory dottyback. We found temperature and CO2 interacted synergistically on overall predation rate, but antagonistically on predator selectivity. Notably, elevated CO2 or temperature alone reversed predator selectivity, but the interaction between the two stressors cancelled selectivity. Routine metabolic rates of the two prey showed strong species differences in tolerance to CO2 and not temperature, but these differences did not correlate with recorded mortality. This highlights the difficulty of linking species-level physiological tolerance to resulting ecological outcomes. This study is the first to document both synergistic and antagonistic effects of elevated CO2 and temperature on a crucial ecological process like predator-prey dynamics. © 2014 John Wiley & Sons Ltd.

  4. Generalist predator Stratiolaelaps scimitus hampers establishment of the bulb scale mite predator Neoseiulus barkeri in Hippeastrum

    NARCIS (Netherlands)

    Messelink, G.J.; Holstein, van R.

    2011-01-01

    In this study we investigate the hypothesis that presence of the generalist
    soil-dwelling predatory mite Stratiolaelaps scimitus (Womersley)
    results in lower densities of the phytoseiid soil-dwelling predator
    Neoseiulus barkeri Hughes in Hippeastrum (amaryllis). If true, this
    may

  5. Parental investment decisions in response to ambient nest-predation risk versus actual predation on the prior nest

    Science.gov (United States)

    Chalfoun, A.D.; Martin, T.E.

    2010-01-01

    Theory predicts that parents should invest less in dependent offspring with lower reproductive value, such as those with a high risk of predation. Moreover, high predation risk can favor reduced parental activity when such activity attracts nest predators. Yet, the ability of parents to assess ambient nest-predation risk and respond adaptively remains unclear, especially where nest-predator assemblages are diverse and potentially difficult to assess. We tested whether variation in parental investment by a multi-brooded songbird (Brewer's Sparrow, Spizella breweri) in an environment (sagebrush steppe) with diverse predators was predicted by ambient nest-predation risk or direct experience with nest predation. Variation among eight sites in ambient nest-predation risk, assayed by daily probabilities of nest predation, was largely uncorrelated across four years. In this system risk may therefore be unpredictable, and aspects of parental investment (clutch size, egg mass, incubation rhythms, nestling-feeding rates) were not related to ambient risk. Moreover, investment at first nests that were successful did not differ from that at nests that were depredated, suggesting parents could not assess and respond to territorylevel nest-predation risk. However, parents whose nests were depredated reduced clutch sizes and activity at nests attempted later in the season by increasing the length of incubation shifts (on-bouts) and recesses (off-bouts) and decreasing trips to feed nestlings. In this unpredictable environment parent birds may therefore lack sufficient cues of ambient risk on which to base their investment decisions and instead rely on direct experience with nest predation to inform at least some of their decisions. ?? 2010 The Cooper Ornithological Society.

  6. Black sea urchins evaluate predation risk using chemical signals from a predator and injured con- and heterospecific prey

    OpenAIRE

    Morishita, Vanessa Rimoli [UNESP; Barreto, Rodrigo Egydio [UNESP

    2011-01-01

    The traits related to foraging and eating are crucial to our understanding of food webs. The use of signals to detect predators has strong relevance for prey survival. The black sea urchin Echinometra lucunter cohabits with the green sea urchin Lytechinus variegatus and a generalist echinivorous predator, the cushion sea star Oreaster reticulatus. Because black sea urchins evolved under the same predation pressure as green sea urchins and, consequently, were exposed to the same sensory cues, ...

  7. Food use is affected by the experience of nest predation: implications for indirect predator effects on clutch size.

    Science.gov (United States)

    Zanette, Liana Y; Hobson, Keith A; Clinchy, Michael; Travers, Marc; Williams, Tony D

    2013-08-01

    Indirect predator effects on prey demography include any effect not attributable to direct killing and can be mediated by perceived predation risk. Though perceived predation risk clearly affects foraging, few studies have yet demonstrated that it can chronically alter food intake to an extent that affects demography. Recent studies have used stable isotopes to gauge such chronic effects. We previously reported an indirect predator effect on the size of subsequent clutches laid by song sparrows (Melospiza melodia). Females that experienced frequent experimental nest predation laid smaller clutches and were in poorer physiological condition compared to females not subject to nest predation. Every female was provided with unlimited supplemental food that had a distinctive (13)C signature. Here, we report that frequent nest predation females had lower blood δ(13)C values, suggesting that the experience of nest predation caused them to eat less supplemental food. Females that ate less food gained less fat and were in poorer physiological condition, consistent with the effect on food use contributing to the indirect predator effect on clutch size. Tissue δ(15)N values corroborated that clutch size was not likely constrained by endogenous resources. Finally, we report that the process of egg production evidently affects egg δ(13)C values, and this may mask the source of nutrients to eggs. Our results indicate that perceived predation risk may impose food limitation on prey even where food is unlimited and such predator-induced food limitation ought to be added to direct killing when considering the total effect of predators on prey numbers.

  8. Evaluation of Mesocyclops aspericornis (Cyclopoida:Cyclopidae) and Toxorhynchites speciosus as integrated predators of mosquitoes in tire habitats in Queensland.

    Science.gov (United States)

    Brown, M D; Hendrikz, J K; Greenwood, J G; Kay, B H

    1996-09-01

    This study addressed biological control of peridomestic Aedes notoscriptus, known to be a highly effective colonizer of tire habitats and a possible vector of Ross River virus. A laboratory trial of the compatibility of the predators Mesocyclops aspericornis and Toxorhynchites speciosus in small container habitats showed that 4th-instar Tx. speciosus did not significantly affect M. aspericornis mortality. Introduced M. aspericornis and naturally occurring Tx. speciosus were found to form a compatible predator pair for reduction of larval Ae. notoscriptus and Culex quinquefasciatus populations in tire habitats. Over 22 months of field survey, 97% of tires without predators contained mosquito larvae, at a median density of 43 larvae/liter. By comparison, 51% of tires containing both predator species held mosquito larvae at a median density of 4 larvae/liter. Predation by Tx. speciosus persisted for the duration of the study. The inability of the Lake Kurwongbah strain of M. aspericornis to tolerate temperatures of < or = 10 degrees C, which are prevalent in Brisbane during winter, resulted in a failure to deliver persistent reduction of mosquitoes in tires. The temperature-dependent population characteristics of M. aspericornis emphasize the long-recognized importance of matching a biological control candidate's physiological requirements to the environment in which control is sought.

  9. Predators on private land: broad-scale socioeconomic interactions influence large predator management

    Directory of Open Access Journals (Sweden)

    Hayley S. Clements

    2016-06-01

    Full Text Available The proliferation of private land conservation areas (PLCAs is placing increasing pressure on conservation authorities to effectively regulate their ecological management. Many PLCAs depend on tourism for income, and charismatic large mammal species are considered important for attracting international visitors. Broad-scale socioeconomic factors therefore have the potential to drive fine-scale ecological management, creating a systemic scale mismatch that can reduce long-term sustainability in cases where economic and conservation objectives are not perfectly aligned. We assessed the socioeconomic drivers and outcomes of large predator management on 71 PLCAs in South Africa. Owners of PLCAs that are stocking free-roaming large predators identified revenue generation as influencing most or all of their management decisions, and rated profit generation as a more important objective than did the owners of PLCAs that did not stock large predators. Ecotourism revenue increased with increasing lion (Panthera leo density, which created a potential economic incentive for stocking lion at high densities. Despite this potential mismatch between economic and ecological objectives, lion densities were sustainable relative to available prey. Regional-scale policy guidelines for free-roaming lion management were ecologically sound. By contrast, policy guidelines underestimated the area required to sustain cheetah (Acinonyx jubatus, which occurred at unsustainable densities relative to available prey. Evidence of predator overstocking included predator diet supplementation and frequent reintroduction of game. We conclude that effective facilitation of conservation on private land requires consideration of the strong and not necessarily beneficial multiscale socioeconomic factors that influence private land management.

  10. Extinction and Permanence of a General Predator-Prey System with Impulsive Perturbations

    Directory of Open Access Journals (Sweden)

    Xianning Liu

    2012-01-01

    Full Text Available A general predator-prey system is studied in a scheme where there is periodic impulsive perturbations. This scheme has the potential to protect the predator from extinction but under some conditions may also serve to lead to extinction of the prey. Conditions for extinction and permanence are obtained via the comparison methods involving monotone theory of impulsive systems and multiple Liapunov functions, which establish explicit bounds on solutions. The existence of a positive periodic solution is also studied by the bifurcation theory. Application is given to a Lotka-Volterra predator-prey system with periodic impulsive immigration of the predator. It is shown that the results are quite different from the corresponding system without impulsive immigration, where extinction of the prey can never be achieved. The prey will be extinct or permanent independent of whether the system without impulsive effect immigration is permanent or not. The model and its results suggest an approach of pest control which proves more effective than the classical one.

  11. Honey Bees Modulate Their Olfactory Learning in the Presence of Hornet Predators and Alarm Component.

    Directory of Open Access Journals (Sweden)

    Zhengwei Wang

    Full Text Available In Southeast Asia the native honey bee species Apis cerana is often attacked by hornets (Vespa velutina, mainly in the period from April to November. During the co-evolution of these two species honey bees have developed several strategies to defend themselves such as learning the odors of hornets and releasing alarm components to inform other mates. However, so far little is known about whether and how honey bees modulate their olfactory learning in the presence of the hornet predator and alarm components of honey bee itself. In the present study, we test for associative olfactory learning of A. cerana in the presence of predator odors, the alarm pheromone component isopentyl acetate (IPA, or a floral odor (hexanal as a control. The results show that bees can detect live hornet odors, that there is almost no association between the innately aversive hornet odor and the appetitive stimulus sucrose, and that IPA is less well associated with an appetitive stimulus when compared with a floral odor. In order to imitate natural conditions, e.g. when bees are foraging on flowers and a predator shows up, or alarm pheromone is released by a captured mate, we tested combinations of the hornet odor and floral odor, or IPA and floral odor. Both of these combinations led to reduced learning scores. This study aims to contribute to a better understanding of the prey-predator system between A. cerana and V. velutina.

  12. Visual illusions in predator-prey interactions: birds find moving patterned prey harder to catch.

    Science.gov (United States)

    Hämäläinen, Liisa; Valkonen, Janne; Mappes, Johanna; Rojas, Bibiana

    2015-09-01

    Several antipredator strategies are related to prey colouration. Some colour patterns can create visual illusions during movement (such as motion dazzle), making it difficult for a predator to capture moving prey successfully. Experimental evidence about motion dazzle, however, is still very scarce and comes only from studies using human predators capturing moving prey items in computer games. We tested a motion dazzle effect using for the first time natural predators (wild great tits, Parus major). We used artificial prey items bearing three different colour patterns: uniform brown (control), black with elongated yellow pattern and black with interrupted yellow pattern. The last two resembled colour patterns of the aposematic, polymorphic dart-poison frog Dendrobates tinctorius. We specifically tested whether an elongated colour pattern could create visual illusions when combined with straight movement. Our results, however, do not support this hypothesis. We found no differences in the number of successful attacks towards prey items with different patterns (elongated/interrupted) moving linearly. Nevertheless, both prey types were significantly more difficult to catch compared to the uniform brown prey, indicating that both colour patterns could provide some benefit for a moving individual. Surprisingly, no effect of background (complex vs. plain) was found. This is the first experiment with moving prey showing that some colour patterns can affect avian predators' ability to capture moving prey, but the mechanisms lowering the capture rate are still poorly understood.

  13. Detecting aphid predation by earwigs in organic citrus orchards using molecular markers.

    Science.gov (United States)

    Romeu-Dalmau, C; Piñol, J; Agustí, N

    2012-10-01

    Aphids (Hemiptera: Aphidoidea) can damage citrus trees via direct damage to leaves and flowers or via the indirect transmission of viruses. Predators such as the European earwig, Forficula auricularia Linnaeus (Dermaptera: Forficulidae), may assist in keeping aphid populations under control in citrus orchards. Group-specific primers were developed to detect aphid DNA in earwigs, in order to determine earwig predation rates in aphids in Mediterranean organic citrus trees. These primers were designed in accordance with the alignment of comparable sequences of aphids and earwigs, and they amplified a 224 bp fragment of the mitochondrial cytochrome c oxidase subunit I (COI) region. Following the consumption of three to five Aphis spiraecola Patch, aphid DNA was still detectable in 50% of earwigs one day after the ingestion. When predation was evaluated in the field, aphid DNA was detected in earwigs in May, June and July but not in April and August. The most interesting result is that of May, when aphid abundance was very low but 30% of the earwigs tested positive for aphid DNA. This finding suggests that earwigs are important aphid predators in citrus orchards, as they probably alter aphid dynamics as a result of early seasonal pressure on this pest.

  14. Stacked Bt maize and arthropod predators: exposure to insecticidal Cry proteins and potential hazards.

    Science.gov (United States)

    Svobodová, Zdeňka; Shu, Yinghua; Skoková Habuštová, Oxana; Romeis, Jörg; Meissle, Michael

    2017-07-26

    Genetically engineered (GE) crops with stacked insecticidal traits expose arthropods to multiple Cry proteins from Bacillus thuringiensis (Bt). One concern is that the different Cry proteins may interact and lead to unexpected adverse effects on non-target species. Bi- and tri-trophic experiments with SmartStax maize, herbivorous spider mites ( Tetranychus urticae ), aphids ( Rhopalosiphum padi ), predatory spiders ( Phylloneta impressa ), ladybeetles ( Harmonia axyridis ) and lacewings ( Chrysoperla carnea ) were conducted. Cry1A.105, Cry1F, Cry3Bb1 and Cry34Ab1 moved in a similar pattern through the arthropod food chain. By contrast, Cry2Ab2 had highest concentrations in maize leaves, but lowest in pollen, and lowest acquisition rates by herbivores and predators. While spider mites contained Cry protein concentrations exceeding the values in leaves (except Cry2Ab2), aphids contained only traces of some Cry protein. Predators contained lower concentrations than their food. Among the different predators, ladybeetle larvae showed higher concentrations than lacewing larvae and juvenile spiders. Acute effects of SmartStax maize on predator survival, development and weight were not observed. The study thus provides evidence that the different Cry proteins do not interact in a way that poses a risk to the investigated non-target species under controlled laboratory conditions. © 2017 The Author(s).

  15. Behavioral consequences of predator stress in the rat elevated T-maze.

    Science.gov (United States)

    Bulos, Erika Mondin; Pobbe, Roger Luis Henschel; Zangrossi, Helio

    2015-07-01

    Analyses of the behavioral reactions of rodents to predators have greatly contributed to the understanding of defense-related human psychopathologies such as anxiety and panic.We here investigated the behavioral consequences of exposing male Wistar rats to a live cat using the elevated T-maze test of anxiety. This test allows the measurement of two defensive responses: inhibitory avoidance and escape, which in terms of pathology have been associated with generalized anxiety and panic disorders, respectively. For comparative reasons, the effects of exposure to the cat were also assessed in the elevated plus-maze. The results showed that a 5-min exposure to the cat selectively facilitated inhibitory avoidance acquisition, an anxiogenic effect, without affecting escape expression in the elevated T-maze. This was seen immediately but not 30 min after contact with the predator. This short-lived anxiogenic effect was also detected in the elevated plus-maze. Previous administration of the benzodiazepine anxiolytic diazepam (2 mg/kg) decreased the immediate avoidance response to the predator and the neophobic reaction to a dummy cat used as a control stimulus. The drug also impaired inhibitory avoidance acquisition in the elevated T-maze, indicating an anxiolytic effect, without affecting escape performance. The results indicate that the state of anxiety evoked during contact with the predator generalizes to both elevated plus- and T-mazes, impacting on defensive responses associated with generalized anxiety disorder.

  16. KELIMPAHAN POPULASI, PREFERENSI DAN KARAKTER KEBUGARAN MENOCHILUS SEXMACULATUS (COLEOPTERA: COCCINELLIDAE PREDATOR KUTUDAUN PADA PERTANAMAN CABAI

    Directory of Open Access Journals (Sweden)

    Novri Nelly

    2013-09-01

    Full Text Available This predator is efective to control population of aphids, so the aim of research was to study the field population abundance, predator preference to this prey, and fitness character of M. sexmaculatus as predator. The population fluctuation was observed at conventional and organic farming. The preference test was conducted by choice and no choice test for some types of prey. Fitness test was performed by studying its prey, the number of eggs produced and number of eggs hatched. The results showed that M. sexmaculatus population abundance was fluctuated, the abundance higher in chili cultivated conventionaly than cultivated in organic farming.  But in conventional farming  decreased with increasing age of chili. Preference test showed that almost all species of  aphids preferred by M. sexmaculatus.  Some prey species  found were  aphids, thrips and Neotoxoptera. Predator  fitness levels showed by the longevity of females ranged  9-10 days. Oviposition period  was on average five days, while the post-oviposition was two days. The number of eggs produced ranged  100-200 eggs with an average of 135.3 eggs.

  17. Impacts of the antidepressant fluoxetine on the anti-predator behaviours of wild guppies (Poecilia reticulata).

    Science.gov (United States)

    Saaristo, Minna; McLennan, Alisha; Johnstone, Christopher P; Clarke, Bradley O; Wong, Bob B M

    2017-02-01

    Chemical pollution from pharmaceuticals is increasingly recognised as a major threat to aquatic communities. One compound of great concern is fluoxetine, which is one of the most widely prescribed psychoactive drugs in the world and frequently detected in the environment. The aim of this study was to investigate the effects of 28-d fluoxetine exposure at two environmentally relevant levels (measured concentrations: 4ng/L and 16ng/L) on anti-predator behaviour in wild guppies (Poecilia reticulata). This was achieved by subjecting fluoxetine-exposed and unexposed guppies to a simulated bird strike and recording their subsequent behavioural responses. We found that exposure to fluoxetine affected the anti-predator behaviour of guppies, with exposed fish remaining stationary for longer (i.e. 'freezing' behaviour) after the simulated strike and also spending more time under plant cover. By contrast, control fish were significantly more active and explored the tank more, as indicated by the distance covered per minute over the period fish spent swimming. Furthermore, behavioural shifts were sex-dependent, with evidence of a non-monotonic dose-response among the fluoxetine-exposed fish. This is one of the first studies to show that exposure to environmentally relevant concentrations of fluoxetine can alter the anti-predator behaviour of adult fish. In addition to the obvious repercussions for survival, impaired anti-predator behaviour can have direct impacts on fitness and influence the overall population dynamics of species. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Fish ladders: safe fish passage or hotspot for predation?

    Directory of Open Access Journals (Sweden)

    Angelo Antonio Agostinho

    Full Text Available Fish ladders are a strategy for conserving biodiversity, as they can provide connectivity between fragmented habitats and reduce predation on shoals that accumulate immediately below dams. Although the impact of predation downstream of reservoirs has been investigated, especially in juvenile salmonids during their downstream movements, nothing is known about predation on Neotropical fish in the attraction and containment areas commonly found in translocation facilities. This study analysed predation in a fish passage system at the Lajeado Dam on the Tocantins River in Brazil. The abundance, distribution, and the permanence (time spent of large predatory fish along the ladder, the injuries imposed by piranhas during passage and the presence of other vertebrate predators were investigated. From December 2002 to October 2003, sampling was conducted in four regions (downstream, along the ladder, in the forebay, and upstream of the reservoir using gillnets, cast nets and counts or visual observations. The captured fish were tagged with thread and beads, and any mutilations were registered. Fish, birds and dolphins were the main predator groups observed, with a predominance of the first two groups. The entrance to the ladder, in the downstream region, was the area with the highest number of large predators and was the only region with relevant non-fish vertebrates. The main predatory fish species were Rhaphiodon vulpinus, Hydrolycus armatus, and Serrasalmus rhombeus. Tagged individuals were detected predating along the ladder for up to 90 days. Mutilations caused by Serrasalmus attacks were noted in 36% of species and 4% of individuals at the top of the ladder. Our results suggested that the high density of fish in the restricted ladder environment, which is associated with injuries suffered along the ladder course and the presence of multiple predator groups with different predation strategies, transformed the fish corridor into a hotspot for

  19. Predators and predation rates of skylark Alauda arvensis and woodlark Lullula arborea nests in a semi-natural area in the Netherlands

    NARCIS (Netherlands)

    Praus, Libor; Hegemann, Arne; Tieleman, B. Irene; Weidinger, Karel

    2014-01-01

    Predation is a major cause of breeding failure in bird species with open nests. Although many studies have investigated nest predation rates, direct identification of nest predators is sporadic, especially in (semi-)natural habitats. We quantified nest success and identified nest predators in a

  20. Anti-predator behaviour of Sahamalaza sportive lemurs, Lepilemur sahamalazensis, at diurnal sleeping sites

    NARCIS (Netherlands)

    Seiler, M.; Schwitzer, C.; Holderied, M.

    2013-01-01

    In response to predation pressure by raptors, snakes, and carnivores, primates employ anti-predator behaviours such as avoiding areas of high predation risk, cryptic behaviour and camouflage, vigilance and group formation (including mixedspecies associations), and eavesdropping on other species’

  1. Predator escape tactics in birds : linking ecology and aerodynamics

    NARCIS (Netherlands)

    van den Hout, Piet J.; Mathot, Kimberley J.; Maas, Leo R. M.; Piersma, Theunis

    2010-01-01

    In most birds, flight is the most important means of escape from predators. Impaired flight abilities due to increased wing loading may increase vulnerability to predation. To compensate for an increase in wing loading, birds are able to independently decrease body mass (BM) or increase pectoral

  2. Reproductive responses of an apex predator to changing climatic conditions

    Science.gov (United States)

    Susan Rebecca. Salafsky

    2015-01-01

    Apex predators are ideal subjects for evaluating the effects of changing climatic conditions on the productivity of forested landscapes, because the quality of their breeding habitat depends primarily on the availability of resources at lower trophic levels. Identifying the environmental factors that influence the reproductive output of apex predators can, therefore,...

  3. Intraguild predation and partial consumption of blue sharks Prionace ...

    African Journals Online (AJOL)

    The top-down effects of predators on ecosystem structure and dynamics have been studied increasingly. However, the nature and consequence of trophic interactions between upper-trophic-level predators have received considerably less attention. This is especially the case in marine systems due to the inherent ...

  4. Alarm calls of Bronze Mannikins communicate predator size to ...

    African Journals Online (AJOL)

    These groups were exposed to latex terrestrial snakes and mounted aerial raptors, and their alarm calls and predator response behaviours recorded. The Bronze Mannikins were able to discriminate between predators of different sizes, and increased their calling rate and decreased the end frequency of the alarm call in ...

  5. Geographic variation in avian clutch size and nest predation risk ...

    African Journals Online (AJOL)

    Geographic variation in avian clutch size is thought to be related to the variation in nest predation rate and food availability. We studied predation on artificial ground nests along a large-scale geographic gradient in South Africa characterised by increasing productivity from the deserts in the west to humid savannas in the ...

  6. Dynamics of predator-prey models with refuge, harvesting and ...

    African Journals Online (AJOL)

    The dynamics of predator-prey models with different prey harvesting functions and prey refuge is studied. This study includes a three-dimensional model to account for the dispersal of prey to a habitat where it is unavailable to the predator. Besides local stability analysis, one central question is how harvesting, refuge and ...

  7. Simulating predator attacks on schools : Evolving composite tactics

    NARCIS (Netherlands)

    Demsar, Jure; Hemelrijk, Charlotte K.; Hildenbrandt, Hanno; Bajec, Iztok Lebar

    2015-01-01

    One hypothesis about the origins and evolution of coordinated animal movements is that they may serve as a defensive mechanism against predation. Earlier studies of the possible evolution of coordinated movement in prey concentrated on predators with simple attack tactics. Numerous studies, however,

  8. Effects of larval density and predation by Toxorhynchites amboinensis on Aedes polynesiensis (Diptera: Culicidae) developing in coconuts.

    Science.gov (United States)

    Mercer, David R; Wettach, George R; Smith, Julie L

    2005-12-01

    Organisms manipulated as biological control agents of disease vectors should tolerate ranges of developmental conditions exploited by their target species. Furthermore, they should reduce numbers of host-seeking vector adults without providing fitness benefits to larval survivors developing among fewer competitors. We studied electrochemistry in rat-chewed coconuts, an important developmental habitat used by Aedes polynesiensis, a vector of lymphatic filariasis. We also studied the effects of larval density and predation by the mosquito Toxorhynchites amboinensis as predators of Ae. polynesiensis. The predators significantly reduced survival rates of Ae. polynesiensis and numbers of males and females developing in coconut husks. Adults from cohorts of Ae. polynesiensis exposed to predators emerged at the same time and were equal in size to adults emerging from predator-free cohorts. No differences were detected in the numbers or sizes of Ae. polynesiensis reaching adulthood among the densities tested. At least for this common natural habitat, Tx. amboinensis gave a good level of biological control of the vector Ae. polynesiensis.

  9. Role of syrphid larvae and other predators in suppressing aphid infestations in organic lettuce on California's Central Coast.

    Science.gov (United States)

    Smith, Hugh A; Chaney, William E; Bensen, Tiffany A

    2008-10-01

    Organic lettuce, Lactuca sativa L., growers on the Central Coast of California rely on conservation biological control to manage Nasonovia ribisnigri Mosley (Hemiptera: Aphididae) and other aphid pests of lettuce. In 2006, we carried out five replicated field trials to determine the importance of syrphid larvae in the suppression of N. ribisnigri and other aphids infesting organic romaine lettuce. We used Entrust, a spinosad-based insecticide approved for use on organic farms, to suppress syrphid larvae in aphid-infested romaine. Romaine treated with Entrust was unmarketable at harvest because of aphid infestation, whereas insecticide-free romaine was marketable. Syrphid larvae composed 85% or more of total predators in most trials, and they were the only predators consistently recovered from romaine that was infested with aphids early and largely aphid-free by harvest. The species mix of nonsyrphid predators varied from site to site. Applications of Entrust suppressed nonsyrphid predators in two trials, and so was an imperfect tool for selectively suppressing syrphid larvae. The relative importance of syrphid larvae and other predators in the conservation biological control of aphids in organic romaine is discussed. We conclude that syrphid larvae are primarily responsible for the suppression of aphids in organic romaine on California's Central Coast.

  10. What Explains Forest Grouse Mortality: Predation Impacts of Raptors, Vole Abundance, or Weather Conditions?

    OpenAIRE

    Risto Tornberg; Vitali Reif; Erkki Korpimäki

    2012-01-01

    We investigated predation rates of black grouse chicks during 1985–2007 in two localities in western Finland in light of three predation hypothesis: The Alternative Prey Hypothesis (APH) stating that vole-eating generalist predators cause a collapse in grouse reproduction after voles’ decline, the Main Prey Hypothesis (MPH), where grouse specialised predators by a lagged response cause an inversely density dependent predation for prey and the Predation Facilitation Hypothesis (PFH), where gen...

  11. Escaping peril: perceived predation risk affects migratory propensity

    DEFF Research Database (Denmark)

    Hulthén, Kaj; Chapman, Ben B.; Nilsson, P. Anders

    2015-01-01

    Although migratory plasticity is increasingly documented, the ecological drivers of plasticity are not well understood. Predation risk can influence migratory dynamics, but whether seasonal migrants can adjust their migratory behaviour according to perceived risk is unknown. We used electronic tags...... to record the migration of individual roach (Rutilus rutilus), a partially migratory fish, in the wild following exposure to manipulation of direct (predator presence/absence) and indirect (high/low roach density) perceived predation risk in experimental mesocosms. Following exposure, we released fish...... in their lake summer habitat and monitored individual migration to connected streams over an entire season. Individuals exposed to increased perceived direct predation risk (i.e. a live predator) showed a higher migratory propensity but no change in migratory timing, while indirect risk (i.e. roach density...

  12. Gregarious nesting - An anti-predator response in laying hens

    DEFF Research Database (Denmark)

    Riber, Anja Brinch

    2012-01-01

    Gregarious nesting can be defined as a behaviour that occurs when a laying hen (Gallus gallus domesticus) given the choice between an occupied and an unoccupied nest site chooses the occupied nest site. It occurs frequently in flocks of laying hens kept under commercial conditions, contrasting...... the behaviour displayed by feral hens that isolate themselves from the flock during nesting activities. What motivates laying hens to perform gregarious nesting is unknown. One possibility is that gregarious nesting is an anti-predator response to the risk of nest predation emerging from behavioural flexibility....... Nesting and spacing behaviour were video recorded for 5 days in each of three distinct periods; (a) pre-predator; a pre-exposure period, (b) predator; a period with daily exposure to a simulated attack by a lifelike flying model of a hooded crow (Corvus cornix, a potential egg-predator), and (c) post...

  13. A predation cost to bold fish in the wild

    DEFF Research Database (Denmark)

    Hulthén, Kaj; Chapman, Ben; Nilsson, Anders P.

    2017-01-01

    Studies of predator-mediated selection on behaviour are critical for our understanding of the evolution and maintenance of behavioural diversity in natural populations. Consistent individual differences in prey behaviour, especially in the propensity to take risks ("boldness"), are widespread...... in the animal kingdom. Theory predicts that individual behavioural types differ in a cost-benefit trade-off where bolder individuals benefit from greater access to resources while paying higher predation-risk costs. However, explicitly linking predation events to individual behaviour under natural conditions...... evidence of behavioural type-dependent predation vulnerability in the wild, i.e. that there is a predation cost to boldness, which is critical for our understanding of the evolution and maintenance of behavioural diversity in natural populations....

  14. Invasive predator tips the balance of symmetrical competition between native coral-reef fishes.

    Science.gov (United States)

    Kindinger, Tye L

    2018-02-28

    The importance of competition and predation in structuring ecological communities is typically examined separately such that interactions between these processes are seldom understood. By causing large reductions in native prey, invasive predators may modify native species interactions. I conducted a manipulative field experiment in The Bahamas to investigate the possibility that the invasive Pacific red lionfish (Pterois volitans) alters competition between planktivorous fairy and blackcap basslets (Gramma loreto and Gramma melacara, respectively). Competition between these coral-reef fishes is known to have symmetrical effects on the juveniles of both species, whereby the feeding positions under reef ledges and growth rates of these individuals are hindered. Following baseline censuses of local populations of competing basslets, I simultaneously manipulated the abundance of lionfish on entire reefs, and the abundance of basslets in local populations under isolated ledges within each reef, resulting in three treatments: unmanipulated control populations of both basslets, reduced abundance of fairy basslet, and reduced abundance of blackcap basslet. For eight weeks, I measured the change in biomass and feeding position of 2-5 cm size classes of each basslet species and calculated the growth rates of ~2 cm individuals using a standard mark-and-recapture method. Experimental populations were filmed at dusk using automated video cameras to quantify the behavior of lionfish overlapping with basslets. Video playback revealed lionfish hunted across all ledge positions, regardless of which basslet species were present, yet lionfish differentially reduced the biomass of only juvenile (2 cm) fairy basslet. Predation reduced the effects of interspecific competition on juvenile blackcap basslet as evidenced by corresponding shifts in feeding position toward coveted front edges of ledges and increases in growth rates that were comparable to the response of these fish in

  15. Top predator absence enhances leaf breakdown in an intermittent stream.

    Science.gov (United States)

    Rodríguez-Lozano, Pablo; Rieradevall, Maria; Prat, Narcís

    2016-12-01

    Current biodiversity loss is characterized by the extinction of top predators, but small-bodied freshwater fish are often overlooked in research and conservation management even when threatened because they usually lack commercial value. Therefore, the ecosystem impacts of their possible loss remain mostly unknown. We assessed whether the presence/absence of an endangered predatory fish (Barbus meridionalis (A. Risso, 1827)) in an intermittent stream affects leaf fungal biomass and leaf quality (i.e. leaf carbon:nitrogen ratio and leaf toughness), macroinvertebrate assemblages colonizing leaf packs, and leaf breakdown rates. We conducted a leaf bag experiment comparing a control reach with a population of B. meridionalis with an adjacent upstream fishless reach. In the fishless reach, leaf fungal biomass and microbially mediated breakdown rate were lower compared to the control reach. This was probably caused by the lack of the bottom-up stimulation through nutrient recycling by fish. Shredders and scrapers were found at higher abundance and biomass in the fishless compared to the control reach, and the whole macroinvertebrate community composition changed with fish absence. Consequently, macroinvertebrate mediated leaf breakdown was faster in the fishless than in the control reach, not only compensating for the lower microbially mediated leaf breakdown in the fishless reach, but accelerating the overall leaf breakdown rate. Our study contributes to understand the potential cascading effects produced by the extirpation of endangered small-bodied fish. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Bored to Death: Community-Wide Effect of Predation on a Foundation Species in a Low-Disturbance Arctic Subtidal System.

    Directory of Open Access Journals (Sweden)

    Eugeniy Yakovis

    Full Text Available The strength of top-down control by consumers is predicted to decrease with latitude, but most data confirming this assumption come from latitudes <60°, while empirical studies of predation in sub-arctic and arctic marine habitats are few. A barnacle Balanus crenatus is a native foundation species in the shallow subtidal of the White Sea (65° N, hosting a diverse (250+ species assemblage of macrobenthic organisms. On mixed sediments live barnacles share primary substrates (shells and gravel with numerous empty barnacle tests, 7% of which had drill holes of an unidentified origin. We manipulated the densities of (i adult muricid whelks Boreotrophon clathratus (of previously unknown feeding habits, to check if they prey on barnacles, (ii other predators to reveal their effect on juvenile Boreotrophon, and (iii empty tests to assess the community-wide effect of predation on barnacles. The abundance of drilled empty tests in the field correlated with that of Boreotrophon. A year-long caging experiment clearly confirmed predation, showing the highest barnacle mortality and proportion of drilled tests in whelk enclosures, and the lowest--in predator exclosure treatments. Boreotrophon preferred the barnacles attached to conspecifics to those from primary substrates. Because of its scarcity Boreotrophon had a minor direct effect on barnacle abundance in the field. Yet, initially defaunated empty tests and live barnacles developed markedly different macrobenthic assemblages, suggesting a strong indirect effect of the predation. Juvenile Boreotrophon were 5-6 times less abundant in open and partial cages than in exclosures and enclosures, which indicates that the recruitment and, consequently, the abundance of Boreotrophon and its predation on Balanus are top-down controlled by apex predators. In contrast, in tropical and temperate intertidal the predation on barnacles is stronger and primarily limited by environmental stress and prey availability.

  17. Squidpops: A Simple Tool to Crowdsource a Global Map of Marine Predation Intensity.

    Directory of Open Access Journals (Sweden)

    J Emmett Duffy

    Full Text Available We present a simple, standardized assay, the squidpop, for measuring the relative feeding intensity of generalist predators in aquatic systems. The assay consists of a 1.3-cm diameter disk of dried squid mantle tethered to a rod, which is either inserted in the sediment in soft-bottom habitats or secured to existing structure. Each replicate squidpop is scored as present or absent after 1 and 24 hours, and the data for analysis are proportions of replicate units consumed at each time. Tests in several habitats of the temperate southeastern USA (Virginia and North Carolina and tropical Central America (Belize confirmed the assay's utility for measuring variation in predation intensity among habitats, among seasons, and along environmental gradients. In Belize, predation intensity varied strongly among habitats, with reef > seagrass = mangrove > unvegetated bare sand. Quantitative visual surveys confirmed that assayed feeding intensity increased with abundance and species richness of fishes across sites, with fish abundance and richness explaining up to 45% and 70% of the variation in bait loss respectively. In the southeastern USA, predation intensity varied seasonally, being highest during summer and declining in late autumn. Deployments in marsh habitats generally revealed a decline in mean predation intensity from fully marine to tidal freshwater sites. The simplicity, economy, and standardization of the squidpop assay should facilitate engagement of scientists and citizens alike, with the goal of constructing high-resolution maps of how top-down control varies through space and time in aquatic ecosystems, and addressing a broad array of long-standing hypotheses in macro- and community ecology.

  18. The behavioural response of adult Petromyzon marinus to damage-released alarm and predator cues

    Science.gov (United States)

    Imre, István; Di Rocco, Richard; Belanger, Cowan; Brown, Grant; Johnson, Nicholas S.

    2014-01-01

    Using semi-natural enclosures, this study investigated (1) whether adult sea lamprey Petromyzon marinus show avoidance of damage-released conspecific cues, damage-released heterospecific cues and predator cues and (2) whether this is a general response to injured heterospecific fishes or a specific response to injured P. marinus. Ten replicate groups of 10 adult P. marinus, separated by sex, were exposed to one of the following nine stimuli: deionized water (control), extracts prepared from adult P. marinus, decayed adult P. marinus (conspecific stimuli), sympatric white sucker Catostomus commersonii, Amazon sailfin catfish Pterygoplichthys pardalis (heterospecific stimuli), 2-phenylethylamine (PEA HCl) solution, northern water snake Nerodia sipedon washing, human saliva (predator cues) and an adult P. marinus extract and human saliva combination (a damage-released conspecific cue and a predator cue). Adult P. marinus showed a significant avoidance response to the adult P. marinus extract as well as to C. commersonii, human saliva, PEA and the adult P. marinus extract and human saliva combination. For mobile P. marinus, the N. sipedon washing induced behaviour consistent with predator inspection. Exposure to the P. pardalis extract did not induce a significant avoidance response during the stimulus release period. Mobile adult female P. marinus showed a stronger avoidance behaviour than mobile adult male P. marinus in response to the adult P. marinus extract and the adult P. marinus extract and human saliva combination. The findings support the continued investigation of natural damage-released alarm cue and predator-based repellents for the behavioural manipulation of P. marinus populations in the Laurentian Great Lakes.

  19. Effects of rodent species, seed species, and predator cues on seed fate

    Science.gov (United States)

    Sivy, Kelly J.; Ostoja, Steven M.; Schupp, Eugene W.; Durham, Susan

    2011-01-01

    Seed selection, removal and subsequent management by granivorous animals is thought to be a complex interaction of factors including qualities of the seeds themselves (e.g., seed size, nutritional quality) and features of the local habitat (e.g. perceived predator risk). At the same time, differential seed selection and dispersal is thought to have profound effects on seed fate and potentially vegetation dynamics. In a feeding arena, we tested whether rodent species, seed species, and indirect and direct predation cues influence seed selection and handling behaviors (e.g., scatter hoarding versus larder hoarding) of two heteromyid rodents, Ord's kangaroo rat (Dipodomys ordii) and the Great Basin pocket mouse (Perognathus parvus). The indirect cue was shrub cover, a feature of the environment. Direct cues, presented individually, were (1) control, (2) coyote (Canis latrans) vocalization, (3) coyote scent, (4) red fox (Vulpes vulpes) scent, or (5) short-eared owl (Asio flammeus) vocalization. We offered seeds of three sizes: two native grasses, Indian ricegrass (Achnatherum hymenoides) and bluebunch wheatgrass (Pseudoroegneria spicata), and the non-native cereal rye (Secale cereale), each in separate trays. Kangaroo rats preferentially harvested Indian ricegrass while pocket mice predominately harvested Indian ricegrass and cereal rye. Pocket mice were more likely to scatter hoard preferred seeds, whereas kangaroo rats mostly consumed and/or larder hoarded preferred seeds. No predator cue significantly affected seed preferences. However, both species altered seed handling behavior in response to direct predation cues by leaving more seeds available in the seed pool, though they responded to different predator cues. If these results translate to natural dynamics on the landscape, the two rodents are expected to have different impacts on seed survival and plant recruitment via their different seed selection and seed handling behaviors.

  20. Effects of rodent species, seed species, and predator cues on seed fate

    Science.gov (United States)

    Sivy, Kelly J.; Ostoja, Steven M.; Schupp, Eugene W.; Durham, Susan

    2011-07-01

    Seed selection, removal and subsequent management by granivorous animals is thought to be a complex interaction of factors including qualities of the seeds themselves (e.g., seed size, nutritional quality) and features of the local habitat (e.g. perceived predator risk). At the same time, differential seed selection and dispersal is thought to have profound effects on seed fate and potentially vegetation dynamics. In a feeding arena, we tested whether rodent species, seed species, and indirect and direct predation cues influence seed selection and handling behaviors (e.g., scatter hoarding versus larder hoarding) of two heteromyid rodents, Ord's kangaroo rat ( Dipodomys ordii) and the Great Basin pocket mouse ( Perognathus parvus). The indirect cue was shrub cover, a feature of the environment. Direct cues, presented individually, were (1) control, (2) coyote ( Canis latrans) vocalization, (3) coyote scent, (4) red fox ( Vulpes vulpes) scent, or (5) short-eared owl ( Asio flammeus) vocalization. We offered seeds of three sizes: two native grasses, Indian ricegrass ( Achnatherum hymenoides) and bluebunch wheatgrass ( Pseudoroegneria spicata), and the non-native cereal rye ( Secale cereale), each in separate trays. Kangaroo rats preferentially harvested Indian ricegrass while pocket mice predominately harvested Indian ricegrass and cereal rye. Pocket mice were more likely to scatter hoard preferred seeds, whereas kangaroo rats mostly consumed and/or larder hoarded preferred seeds. No predator cue significantly affected seed preferences. However, both species altered seed handling behavior in response to direct predation cues by leaving more seeds available in the seed pool, though they responded to different predator cues. If these results translate to natural dynamics on the landscape, the two rodents are expected to have different impacts on seed survival and plant recruitment via their different seed selection and seed handling behaviors.

  1. Predatory interactions between prey affect patch selection by predators.

    Science.gov (United States)

    Choh, Yasuyuki; Sabelis, Maurice W; Janssen, Arne

    2017-01-01

    When predators can use several prey species as food sources, they are known to select prey according to foraging efficiency and food quality. However, interactions between the prey species may also affect prey choice, and this has received limited attention. The effect of one such interaction, intraguild predation between prey, on patch selection by predators was studied here. The predatory mite Neoseiulus californicus preys on young larvae of the western flower thrips Frankliniella occidentalis and on all stages of the two-spotted spider mite Tetranychus urticae . The two prey species co-occur on several plant species, on which they compete for resources, and western flower thrips feed on eggs of the spider mites. A further complicating factor is that the thrips can also feed on the eggs of the predator. We found that performance of the predatory mite was highest on patches with spider mites, intermediate on patches with spider mites plus thrips larvae and lowest on patches with thrips larvae alone. Patch selection and oviposition preference of predators matched performance: predators preferred patches with spider mites over patches with spider mites plus thrips. Patches with thrips only were not significantly more attractive than empty patches. We also investigated the cues involved in patch selection and found that the attractiveness of patches with spider mites was significantly reduced by the presence of cues associated with killed spider mite eggs. This explains the reduced attractiveness of patches with both prey. Our results point at the importance of predatory interactions among prey species for patch selection by predators. Patch selection by predators is known to be affected by factors such as prey quality, the presence of competitors and predators, but little is known on the effects of interactions among prey species present on patch selection. In this paper, we show that patch selection by a predator is affected by such interactions, specifically by

  2. Natural selection by pulsed predation: survival of the thickest.

    Science.gov (United States)

    Bijleveld, Aller I; Twietmeyer, Sönke; Piechocki, Julia; van Gils, Jan A; Piersma, Theunis

    2015-07-01

    Selective predation can lead to natural selection in prey populations and may alleviate competition among surviving individuals. The processes of selection and competition can have substantial effects on prey population dynamics, but are rarely studied simultaneously. Moreover, field studies of predator-induced short-term selection pressures on prey populations are scarce. Here we report measurements of density dependence in body composition in a bivalve prey (edible cockle, Cerastoderma edule) during bouts of intense predation by an avian predator (Red Knot, Calidris canutus). We measured densities, patchiness, morphology, and body composition (shell and flesh mass) of cockles in a quasi-experimental setting, i.e., before and after predation in three similar plots of 1 ha each, two of which experienced predation, and one of which remained unvisited in the course of the short study period and served as a reference. An individual's shell and flesh mass declined with cockle density (negative density dependence). Before predation, cockles were patchily distributed. After predation, during which densities were reduced by 78% (from 232 to 50 cockles/m2), the patchiness was substantially reduced, i.e., the spatial distribution was homogenized. Red Knots selected juvenile cockles with an average length of 6.9 ± 1.0 mm (mean ± SD). Cockles surviving predation had heavier shells than before predation (an increase of 21.5 percentage points), but similar flesh masses. By contrast, in the reference plot shell mass did not differ statistically between initial and final sampling occasions, while flesh mass was larger (an increase of 13.2 percentage points). In this field study, we show that Red Knots imposed a strong selection pressure on cockles to grow fast with thick shells and little flesh mass, with selection gradients among the highest reported in the literature.

  3. Assessing ant seed predation in threatened plants: a case study

    Science.gov (United States)

    Albert, María José; Escudero, Adrián; Iriondo, José María

    2005-11-01

    Erodium paularense is a threatened plant species that is subject to seed predation by the granivorous ant Messor capitatus. In this paper we assessed the intensity and pattern of ant seed predation and looked for possible adaptive strategies at the seed and plant levels to cope with this predation. Seed predation was estimated in 1997 and 1998 at the population level by comparing total seed production and ant consumption, assessed by counting seed hulls in refuse piles. According to this method, ant seed predation ranged between 18% and 28%. A more detailed and direct assessment conducted in 1997 raised this estimate to 43%. In this assessment spatial and temporal patterns of seed predation by ants were studied by mapping all nest entrances in the studied area and marking the mature fruits of 109 reproductive plants with a specific colour code throughout the seed dispersal period. Intact fruit coats were later recovered from the refuse piles, and their mother plants and time of dispersal were identified. Seeds dispersed at the end of the dispersal period had a greater probability of escaping from ant seed predation. Similarly, in plants with late dispersal a greater percentage of seeds escaped from ant predation. Optimum dispersal time coincided with the maximum activity of granivorous ants because, at this time, ants focused their harvest on other plant species of the community. It was also observed that within-individual seed dispersal asynchrony minimised seed predation. From a conservation perspective, results show that the granivorous ant-plant interaction cannot be assessed in isolation and that the intensity of its effects basically depends on the seed dispersal pattern of the other members of the plant community. Furthermore, this threat must be assessed by considering the overall situation of the target population. Thus, in E. paularense, the strong limitation of safe-sites for seedling establishment reduces the importance of seed predation.

  4. Optimal-foraging predator favors commensalistic Batesian mimicry.

    Directory of Open Access Journals (Sweden)

    Atsushi Honma

    Full Text Available BACKGROUND: Mimicry, in which one prey species (the Mimic imitates the aposematic signals of another prey (the Model to deceive their predators, has attracted the general interest of evolutionary biologists. Predator psychology, especially how the predator learns and forgets, has recently been recognized as an important factor in a predator-prey system. This idea is supported by both theoretical and experimental evidence, but is also the source of a good deal of controversy because of its novel prediction that in a Model/Mimic relationship even a moderately unpalatable Mimic increases the risk of the Model (quasi-Batesian mimicry. METHODOLOGY/PRINCIPAL FINDINGS: We developed a psychology-based Monte Carlo model simulation of mimicry that incorporates a "Pavlovian" predator that practices an optimal foraging strategy, and examined how various ecological and psychological factors affect the relationships between a Model prey species and its Mimic. The behavior of the predator in our model is consistent with that reported by experimental studies, but our simulation's predictions differed markedly from those of previous models of mimicry because a more abundant Mimic did not increase the predation risk of the Model when alternative prey were abundant. Moreover, a quasi-Batesian relationship emerges only when no or very few alternative prey items were available. Therefore, the availability of alternative prey rather than the precise method of predator learning critically determines the relationship between Model and Mimic. Moreover, the predation risk to the Model and Mimic is determined by the absolute density of the Model rather than by its density relative to that of the Mimic. CONCLUSIONS/SIGNIFICANCE: Although these predictions are counterintuitive, they can explain various kinds of data that have been offered in support of competitive theories. Our model results suggest that to understand mimicry in nature it is important to consider the likely

  5. Stability and bifurcation analysis of three-species predator-prey model with non-monotonic delayed predator response

    Science.gov (United States)

    Balilo, Aldrin T.; Collera, Juancho A.

    2018-03-01

    In this paper, we consider delayed three-species predator-prey model with non-monotonic functional response where two predator populations feed on a single prey population. Response function in both predator populations includes a time delay which represents the gestation period of the predator populations. We call a positive equlibrium solution of the form E*S=(x*,y*,y*) as a symmetric equilibrium. The goal of this paper is to determine the effect of the difference in gestation periods of predator populations to the local dynamics of symmetric equilibria. Our results include conditions on the existence of equilibrium solutions, and stability and bifurcations of symmetric equilibria as the gestation periods of predator populations are varied. A numerical bifurcation analysis tool is also used to illustrate our results. Stability switch occurs at a Hopf bifurcation. Moreover, a branch of stable periodic solutions, obtained using numerical continuation, emerges from the Hopf bifurcation. This shows that the predator population with longer gestation period oscillates higher than the predator population with shorter gestation period.

  6. Simulation Analyses of Behaviours of Spatially Extended Predator-Prey Systems with Random Fluctuations

    Directory of Open Access Journals (Sweden)

    ISHIKAWA, M.

    2008-04-01

    Full Text Available We often observe some kind or another of random fluctuations in physical, chemical and social phenomena to a greater or lesser extent. The analysis of influence of such fluctuations on phenomena is very important as a basic problem in various fields including design and planning of controlled systems in control engineering and analysis of option pricing in economics. In this paper, focusing on biological communities, we study the influence of the random fluctuations on predator-prey systems with diffusion. Noting that interaction of phytoplankton and zooplankton is the basis of a food chain in the lake and the ocean, we consider the two-species predator-prey systems consists of phytoplankton and zooplankton. We analyze the influence of the random fluctuations on the spatio-temporal patterns generated by phytoplankton and zooplankton by the numerical simulations.

  7. Active predation by Greenland shark Somniosus microcephalus

    DEFF Research Database (Denmark)

    Nielsen, Julius; hedeholm, Rasmus; Simon, Malene

    2013-01-01

    Dansk Havforskermøde 2013 Julius Nielsen, Rasmus Hedeholm, Malene Simon og John Fleng Steffensen The Greenland shark is ubiquitous in the northern part of the North Atlantic ranging from eastern Canada to northwest Russia . Although knowledge is scarce it is believed to be abundant and potentially...... important part of the ecosystem. Whether Greenland sharks in general should be considered opportunistic scavengers or active predators is therefore important in understanding ecosystem dynamics. Due to its sluggish appearance and a maximum reported swimming speed of 74 cm per second scavenging seems...... the most likely feeding strategy. However, recent studies suggest that Greenland sharks in some areas feed actively upon seals . Feeding ecology is poorly described in Greenland waters. In this study we provide information on feeding habits of 29 sharks caught in Greenland waters in the summer 2012...

  8. Dynamics of a Stochastic Predator-Prey Model with Stage Structure for Predator and Holling Type II Functional Response

    Science.gov (United States)

    Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Alsaedi, Ahmed

    2018-01-01

    In this paper, we develop and study a stochastic predator-prey model with stage structure for predator and Holling type II functional response. First of all, by constructing a suitable stochastic Lyapunov function, we establish sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the positive solutions to the model. Then, we obtain sufficient conditions for extinction of the predator populations in two cases, that is, the first case is that the prey population survival and the predator populations extinction; the second case is that all the prey and predator populations extinction. The existence of a stationary distribution implies stochastic weak stability. Numerical simulations are carried out to demonstrate the analytical results.

  9. Anthocoris nemorum (Heteroptera: Anthocoridae) as predator of cabbage pests - voracity and prey preference

    DEFF Research Database (Denmark)

    Simonsen, Marie-Louise Rugholm; Enkegaard, Annie; Nordborg Bang, Camilla

    2010-01-01

    Laboratory experiments were performed with adult female Anthocoris nemorum (Linnaeus) (Heteroptera: Anthocoridae) at 20°C ± 1°C, L16:D8, 60–70% RH to determine voracity and preference on cabbage aphids (Brevicoryne brassicae L.) (Hemiptera: Aphididae), diamondback moth larvae (Plutella xylostella....... The results showed that A. nemorum is a voracious predator of B. brassicae, P. xylostella and F. occidentalis and can therefore be considered as a potential candidate for biological control in cabbage....

  10. Coral reef fish predator maintains olfactory acuity in degraded coral habitats.

    Directory of Open Access Journals (Sweden)

    Michael Natt

    Full Text Available Coral reefs around the world are rapidly degrading due to a range of environmental stressors. Habitat degradation modifies the sensory landscape within which predator-prey interactions occur, with implications for olfactory-mediated behaviours. Predator naïve settlement-stage damselfish rely on conspecific damage-released odours (i.e., alarm odours to inform risk assessments. Yet, species such as the Ambon damselfish, Pomacentrus amboinensis, become unable to respond appropriately to these cues when living in dead-degraded coral habitats, leading to increased mortality through loss of vigilance. Reef fish predators also rely on odours from damaged prey to locate, assess prey quality and engage in prey-stealing, but it is unknown whether their responses are also modified by the change to dead-degraded coral habitats. Implications for prey clearly depend on how their predatory counterparts are affected, therefore the present study tested whether olfactory-mediated foraging responses in the dusky dottyback, Pseudochromis fuscus, a common predator of P. amboinensis, were similarly affected by coral degradation. A y-maze was used to measure the ability of Ps. fuscus to detect and move towards odours, against different background water sources. Ps. fuscus were exposed to damage-released odours from juvenile P. amboinensis, or a control cue of seawater, against a background of seawater treated with either healthy or dead-degraded hard coral. Predators exhibited an increased time allocation to the chambers of y-mazes injected with damage-released odours, with comparable levels of response in both healthy and dead-degraded coral treated waters. In control treatments, where damage-released odours were replaced with a control seawater cue, fish showed no increased preference for either chamber of the y-maze. Our results suggest that olfactory-mediated foraging behaviours may persist in Ps. fuscus within dead-degraded coral habitats. Ps. fuscus may

  11. Estimation of predation by the larvae of Toxorhynchites splendens on the aquatic stages of Aedes aegypti.

    Science.gov (United States)

    Dominic Amalraj, D; Das, P K

    1998-03-01

    Predation by instars of Toxorhynchites splendens on aquatic stages of Aedes aegypti was studied by estimating functional response parameters such as attack rate (a') and handling time (Th) in the laboratory. The predator displayed typical type-II functional response, similar to that of most insect predators when presented with increasing densities of any given size class of prey. Second instar predator attacked prey significantly at higher rate than the other instars. Small prey were attacked at higher rate than the predation on larger prey. Except second instar predator, other instars showed significant reduction in a' with increase in Th. Foraging surface area did not influence the predation rate. Predation was high at high water temperature and this was more prominent in the second instar predator. However, prey handling time was independent of the water temperature. Modeling of the predation of mixed age populations of prey and the predator through this short-term functional response experiment is discussed.

  12. Specific and sensitive primers for the detection of predated olive fruit flies, Bactrocera oleae (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Esther Lantero

    2017-07-01

    Full Text Available Bactrocera oleae, the olive fruit fly, is a major pest of olive (Olea europaea L. trees worldwide. Its presence can cause important losses, with consequences for the economies of countries that produce and export table olives and olive oil. Efforts to control olive fruit fly populations have, however, been insufficient. Now more than ever, environmentally friendly alternatives need to be considered in potential control programs. Generalist predators could provide a way of managing this pest naturally. However, the identification of candidate predator species is essential if such a management system is to be introduced. The present paper describes a set of species-specific primers for detecting the presence of B. oleae DNA in the gut of predatory arthropods. All primers were tested for checking cross-reactive amplification of other fruit fly DNA and evaluated in heterospecific mixes of nucleic acids. All were found to be very sensitive for B. oleae. Subsequent feeding trials were conducted using one of the most abundant species of ground dwelling carabids in olive groves in south-eastern Madrid, Spain. These trials allowed determining that 253F-334R and 334F-253R primer pairs had the highest detection efficiency with an ID50 of around 78 h. These primers therefore provide a very useful tool for screening the gut contents of potential predators of B. oleae, and can thus reveal candidate species for the pest's biological control

  13. Behavioural response of adult sea lamprey (Petromyzon marinus) to predator and conspecific alarm cues: evidence of additive effects

    Science.gov (United States)

    Di Rocco, Richard T.; Imre, Istvan; Johnson, Nicholas; Brown, Grant B

    2016-01-01

    Sea lampreys Petromyzon marinus, an invasive pest in the Upper Great Lakes, avoid odours that represent danger in their habitat. These odours include conspecific alarm cues and predator cues, like 2-phenylethylamine hydrochloride (PEA HCl), which is found in the urine of mammalian predators. Whether conspecific alarm cues and predator cues function additively or synergistically when mixed together is unknown. The objectives of this experimental study were to determine if the avoidance response of sea lamprey to PEA HCl is proportional to the concentration delivered, and if the avoidance response to the combination of a predator cue (PEA HCl) and sea lamprey alarm cue is additive. To accomplish the first objective, groups of ten sea lampreys were placed in an artificial stream channel and presented with stepwise concentrations of PEA HCl ranging from 5 × 10−8 to 5 × 10−10 M and a deionized water control. Sea lampreys exhibited an increase in their avoidance behaviour in response to increasing concentrations of PEA HCl. To accomplish the second objective, sea lampreys were exposed to PEA HCl, conspecific alarm cue and a combination of the two. Sea lampreys responded to the combination of predator cue and conspecific alarm cue in an additive manner.

  14. Predation risk shapes social networks in fission-fusion populations.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kelley

    Full Text Available Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission and merging (fusion events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes in low-predation fish and over longer time scales (>1.5 hours in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems.

  15. Nonconsumptive predator-driven mortality causes natural selection on prey.

    Science.gov (United States)

    Siepielski, Adam M; Wang, Jason; Prince, Garrett

    2014-03-01

    Predators frequently exert natural selection through differential consumption of their prey. However, predators may also cause prey mortality through nonconsumptive effects, which could cause selection if different prey phenotypes are differentially susceptible to this nonconsumptive mortality. Here we present an experimental test of this hypothesis, which reveals that nonconsumptive mortality imposed by predatory dragonflies causes selection on their damselfly prey favoring increased activity levels. These results are consistent with other studies of predator-driven selection, however, they reveal that consumption alone is not the only mechanism by which predators can exert selection on prey. Uncovering this mechanism also suggests that prey defensive traits may represent adaptations to not only avoid being consumed, but also for dealing with other sources of mortality caused by predators. Demonstrating selection through both consumptive and nonconsumptive predator mortality provides us with insight into the diverse effects of predators as an evolutionary force. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  16. The role of predator selection on polymorphic aposematic poison frogs.

    Science.gov (United States)

    Noonan, Brice P; Comeault, Aaron A

    2009-02-23

    Demonstrations of interactions between diverse selective forces on bright coloration in defended species are rare. Recent work has suggested that not only do the bright colours of Neotropical poison frogs serve to deter predators, but they also play a role in sexual selection, with females preferring males similar to themselves. These studies report an interaction between the selective forces of mate choice and predation. However, evidence demonstrating phenotypic discrimination by potential predators on these polymorphic species is lacking. The possibility remains that visual (avian) predators possess an inherent avoidance of brightly coloured diurnal anurans and purifying selection against novel phenotypes within populations is due solely to non-random mating. Here, we examine the influence of predation on phenotypic variation in a polymorphic species of poison frog, Dendrobates tinctorius. Using clay models, we demonstrate a purifying role for predator selection, as brightly coloured novel forms are more likely to suffer an attack than both local aposematic and cryptic forms. Additionally, local aposematic forms are attacked, though infrequently, indicating ongoing testing/learning and a lack of innate avoidance. These results demonstrate predator-driven phenotypic purification within populations and suggest colour patterns of poison frogs may truly represent a 'magic trait'.

  17. Intraspecific competition, not predation, drives lizard tail loss on islands.

    Science.gov (United States)

    Itescu, Yuval; Schwarz, Rachel; Meiri, Shai; Pafilis, Panayiotis

    2017-01-01

    Tail autotomy is mainly considered an antipredator mechanism. Theory suggests that predation pressure relaxes on islands, subsequently reducing autotomy rates. Intraspecific aggression, which may also cause tail loss, probably intensifies on islands due to the higher abundance. We studied whether tail autotomy is mostly affected by predation pressure or by intraspecific competition. We further studied whether predator abundance or predator richness is more important in this context. To test our predictions, we examined multiple populations of two gecko species: Kotschy's gecko (Mediodactylus kotschyi; mainland and 41 islands) and the Mediterranean house gecko (Hemidactylus turcicus; mainland and 17 islands), and estimated their abundance together with five indices of predation. In both species, autotomy rates are higher on islands and decline with most predation indices, in contrast with common wisdom, and increase with gecko abundance. In M. kotschyi, tail-loss rates are higher on predator and viper-free islands, but increase with viper abundance. We suggest that autotomy is not simply, or maybe even mainly, an antipredatory mechanism. Rather, such defence mechanisms are a response to complex direct and indirect biotic interactions and perhaps, in the case of tail autotomy in insular populations, chiefly to intraspecific aggression. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  18. Reduced flocking by birds on islands with relaxed predation.

    Science.gov (United States)

    Beauchamp, Guy

    2004-05-22

    Adaptive hypotheses for the evolution of flocking in birds have usually focused on predation avoidance or foraging enhancement. It still remains unclear to what extent each factor has contributed to the evolution of flocking. If predation avoidance were the sole factor involved, flocking should not be prevalent when predation is relaxed. I examined flocking tendencies along with mean and maximum flock size in species living on islands where predation risk is either absent or negligible and then compared these results with matched counterparts on the mainland. The dataset consisted of 46 pairs of species from 22 different islands across the world. The tendency to flock was retained on islands in most species, but in pairs with dissimilar flocking tendencies, island species were less likely to flock. Mean and maximum flock size were smaller on islands than on the mainland. Potential confounding factors such as population density, nest predation, habitat type, food type and body mass failed to account for the results. The results suggest that predation is a significant factor in the evolution of flocking in birds. Nevertheless, predation and other factors, such as foraging enhancement, probably act together to maintain the trait in most species.

  19. Skate Bathyraja spp. egg predation in the eastern Bering Sea.

    Science.gov (United States)

    Hoff, G R

    2009-01-01

    Predation on skate eggs by snails was examined for three skate species at seven nursery sites in three regions (north, middle and south) of the eastern Bering Sea. Mean predation levels were 6.46% for the Alaska skate Bathyraja parmifera, 2.65% for the Aleutian skate Bathyraja aleutica and 22.25% for the Bering skate Bathyraja interrupta. Predation levels were significantly higher at the middle and north sites than the south sites for all species combined. Predation levels decreased with increasing egg-case densities at all nursery sites, and the highest predation levels occurred where egg-case densities were very low. Predated egg-case density increased with increasing snail densities across all nursery sites examined. The Oregon triton Fusitriton oregonensis was the most abundant snail species at all nursery sites and displayed ability to drill holes in the egg case of B. parmifera. Holes left by predatory snails in egg cases of B. parmifera were significantly larger, and of different shape at the middle site compared to the south site. Holes in B. parmifera were also significantly larger than those in egg cases of B. interrupta across all sites examined. Egg cases of B. aleutica possess surface spines that cover the egg case and may inhibit predation by snails at a greater rate than that of the B. parmifera and B. interrupta, which have a smoother egg-case surface.

  20. System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveals Substrate Specificity of Protein Acetyltransferases

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Heidi A [University of Wisconsin, Madison; Pelletier, Dale A [ORNL; Hurst, Gregory {Greg} B [ORNL; Escalante-Semerena, Jorge C [University of Wisconsin, Madison

    2012-01-01

    Background: Protein acetylation is widespread in prokaryotes. Results: Six new acyl-CoA synthetases whose activities are controlled by acetylation were identified, and their substrate preference established. A new protein acetyltransferase was also identified and its substrate specificity determined. Conclusion: Protein acetyltransferases acetylate a conserved lysine residue in protein substrates. Significance: The R. palustris Pat enzyme specifically acetylates AMP-forming acyl-CoA synthetases and regulates fatty acid metabolism.

  1. Nest Predation by Commensal Rodents in Urban Bushland Remnants.

    Directory of Open Access Journals (Sweden)

    Helen M Smith

    Full Text Available Exotic predators are a major threat to native wildlife in many parts of the world. Developing and implementing effective strategies to mitigate their effects requires robust quantitative data so that management can be evidence-based, yet in many ecosystems this is missing. Birds in particular have been severely impacted by exotic mammalian predators, and a plethora of studies on islands record predation of bird eggs, fledglings and adults by exotic species such as rodents, stoats and cats. By comparison, few studies have examined nest predation around mainland urban centres which often act as dispersal hubs, especially for commensal species such as rodents. Here, we experimentally examine nest predation rates in habitat patches with varying black rat (Rattus rattus densities in Sydney, Australia and test whether these exotic rats have the effects expected of exotic predators using effect size benchmarks. In the case where black rats have replaced native Rattus spp., we expected that black rats, being more arboreal than native Rattus spp., would be a significant source of predation on birds because they can readily access the arboreal niche where many birds nest. We tested this idea using above-ground artificial nests to represent those of typical small bird species such as the New Holland honeyeater (Phylidonyris novaehollandiae. We found that fewer eggs were depredated by rodents on sites where we removed black rats compared to unmanipulated sites, and that the effect size calculated from the total number of eggs surviving beyond the typical incubation period was similar to that expected for an exotic predator. Our results suggest that, although Australian birds have co-evolved with native Rattus species, in the case where black rats have replaced native Rattus species, exotic black rats appear to pose an additive source of predation on birds in remnant habitats, most likely due to their ability to climb more efficiently than their native

  2. Nest Predation by Commensal Rodents in Urban Bushland Remnants.

    Science.gov (United States)

    Smith, Helen M; Dickman, Chris R; Banks, Peter B

    2016-01-01

    Exotic predators are a major threat to native wildlife in many parts of the world. Developing and implementing effective strategies to mitigate their effects requires robust quantitative data so that management can be evidence-based, yet in many ecosystems this is missing. Birds in particular have been severely impacted by exotic mammalian predators, and a plethora of studies on islands record predation of bird eggs, fledglings and adults by exotic species such as rodents, stoats and cats. By comparison, few studies have examined nest predation around mainland urban centres which often act as dispersal hubs, especially for commensal species such as rodents. Here, we experimentally examine nest predation rates in habitat patches with varying black rat (Rattus rattus) densities in Sydney, Australia and test whether these exotic rats have the effects expected of exotic predators using effect size benchmarks. In the case where black rats have replaced native Rattus spp., we expected that black rats, being more arboreal than native Rattus spp., would be a significant source of predation on birds because they can readily access the arboreal niche where many birds nest. We tested this idea using above-ground artificial nests to represent those of typical small bird species such as the New Holland honeyeater (Phylidonyris novaehollandiae). We found that fewer eggs were depredated by rodents on sites where we removed black rats compared to unmanipulated sites, and that the effect size calculated from the total number of eggs surviving beyond the typical incubation period was similar to that expected for an exotic predator. Our results suggest that, although Australian birds have co-evolved with native Rattus species, in the case where black rats have replaced native Rattus species, exotic black rats appear to pose an additive source of predation on birds in remnant habitats, most likely due to their ability to climb more efficiently than their native counterparts

  3. Desert bighorn sheep lambing habitat: Parturition, nursery, and predation sites

    Science.gov (United States)

    Karsch, Rebekah C.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.

    2016-01-01

    Fitness of female ungulates is determined by neonate survival and lifetime reproductive success. Therefore, adult female ungulates should adopt behaviors and habitat selection patterns that enhance survival of neonates during parturition and lactation. Parturition site location may play an important role in neonatal mortality of desert bighorn sheep (Ovis canadensis mexicana) when lambs are especially vulnerable to predation, but parturition sites are rarely documented for this species. Our objectives were to assess environmental characteristics at desert bighorn parturition, lamb nursery, and predation sites and to assess differences in habitat characteristics between parturition sites and nursery group sites, and predation sites and nursery group sites. We used vaginal implant transmitters (VITs) to identify parturition sites and capture neonates. We then compared elevation, slope, terrain ruggedness, and visibility at parturition, nursery, and lamb predation sites with paired random sites and compared characteristics of parturition sites and lamb predation sites to those of nursery sites. When compared to random sites, odds of a site being a parturition site were highest at intermediate slopes and decreased with increasing female visibility. Odds of a site being a predation site increased with decreasing visibility. When compared to nursery group sites, odds of a site being a parturition site had a quadratic relationship with elevation and slope, with odds being highest at intermediate elevations and intermediate slopes. When we compared predation sites to nursery sites, odds of a site being a predation were highest at low elevation areas with high visibility and high elevation areas with low visibility likely because of differences in hunting strategies of coyote (Canis latrans) and puma (Puma concolor). Parturition sites were lower in elevation and slope than nursery sites. Understanding selection of parturition sites by adult females and how habitat

  4. Differential impacts of six insecticides on a mealybug and its coccinellid predator.

    Science.gov (United States)

    Barbosa, Paulo R R; Oliveira, Martin D; Barros, Eduardo M; Michaud, J P; Torres, Jorge B

    2018-01-01

    Broad-spectrum insecticides may disrupt biological control and cause pest resurgence due to their negative impacts on natural enemies. The preservation of sustainable pest control in agroecosystems requires parallel assessments of insecticide toxicity to target pests and their key natural enemies. In the present study, the leaf dipping method was used to evaluate the relative toxicity of six insecticides to the striped mealybug, Ferrisia dasylirii (Cockerell) (Hemiptera: Pseudococcidae) and its predator, Tenuisvalvae notata (Mulsant) (Coleoptera: Coccinellidae). Three neurotoxic insecticides, lambda-cyhalothrin, methidathion and thiamethoxam, caused complete mortality of both pest and predator when applied at their highest field rates. In contrast, lufenuron, pymetrozine and pyriproxyfen caused moderate mortality of third-instar mealybug nymphs, and exhibited low or no toxicity to either larvae or adults of the lady beetle. At field rates, lufenuron and pymetrozine had negligible effects on prey consumption, development or reproduction of T. notata, but adults failed to emerge from pupae when fourth instar larvae were exposed to pyriproxyfen. In addition, pyriproxyfen caused temporary sterility; T. notata females laid non-viable eggs for three days after exposure, but recovered egg fertility thereafter. Our results indicate that the three neurotoxic insecticides can potentially control F. dasylirii, but are hazardous to its natural predator. In contrast, lufenuron and pymetrozine appear compatible with T. notata, although they appear less effective against the mealybug. Although the acute toxicity of pyriproxyfen to T. notata was low, some pupal mortality and reduced egg fertility suggest that this material could impede the predator's numerical response to mealybug populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Does plant trait diversity reduce the ability of herbivores to defend against predators? The plant variability-gut acclimation hypothesis.

    Science.gov (United States)

    Wetzel, William C; Thaler, Jennifer S

    2016-04-01

    Variability in plant chemistry has long been believed to suppress populations of insect herbivores by constraining herbivore resource selection behavior in ways that make herbivores more vulnerable to predation. The focus on behavior, however, overlooks the pervasive physiological effects of plant variability on herbivores. Here we propose the plant variability-gut acclimation hypothesis, which posits that plant chemical variability constrains herbivore anti-predator defenses by frequently requiring herbivores to acclimate their guts to changing plant defenses and nutrients. Gut acclimation, including changes to morphology and detoxification enzymes, requires time and nutrients, and we argue these costs will constrain how and when herbivores can mount anti-predator defenses. A consequence of this hypothesis is stronger top-down control of herbivores in heterogeneous plant populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Vertebrate predator-prey interactions in a seasonal environment

    DEFF Research Database (Denmark)

    Schmidt, Niels Martin; Berg, Thomas B.; Forchhammer, Mads C.

    2008-01-01

    The High Arctic, with its low number of species, is characterised by a relatively simple ecosystem, and the vertebrate predator-prey interactions in the valley Zackenbergdalen in Northeast Greenland are centred around the collared lemming Dicrostonyx groenlandicus and its multiple predators....... In this chapter, we examine these interactions in a climatic context through the predator-lemming model developed for the more southerly Greenlandic site, Traill empty set (Gilg et al., 2003, Science 302, 866-868), parameterised by means of data from the BioBasis monitoring programme to reflect the situation...

  7. Does a Simple Cope's Rule Mechanism Overlook Predators?

    International Nuclear Information System (INIS)

    Penteriani, V.; Kenward, R.

    2007-01-01

    The Copes rule predicts a tendency for species to evolve towards an increase in size. Recently, it has been suggested that such a tendency is due to the fact that large body sizes provide a general increase in individual fitness. Here we highlight evidence that predator species do not always fit the large-size = high-fitness mechanism for Copes rule. Given the specific requirements of predators and the complexity of prey-predator relationships, any analysis that does not take into account all animal groups may overlook a significant portion of evolutive trends. Generalisations may not be possible regardless of taxa.

  8. Estimating cougar predation rates from GPS location clusters

    Science.gov (United States)

    Anderson, C.R.; Lindzey, F.G.

    2003-01-01

    We examined cougar (Puma concolor) predation from Global Positioning System (GPS) location clusters (???2 locations within 200 m on the same or consecutive nights) of 11 cougars during September-May, 1999-2001. Location success of GPS averaged 2.4-5.0 of 6 location attempts/night/cougar. We surveyed potential predation sites during summer-fall 2000 and summer 2001 to identify prey composition (n = 74; 3-388 days post predation) and record predation-site variables (n = 97; 3-270 days post predation). We developed a model to estimate probability that a cougar killed a large mammal from data collected at GPS location clusters where the probability of predation increased with number of nights (defined as locations at 2200, 0200, or 0500 hr) of cougar presence within a 200-m radius (P days/kill for subadult females (1-2.5 yr; n = 3, 90% CI: 6.3 to 9.9), 7.0 days/kill for adult females (n = 2, 90% CI: 5.8 to 10.8), 5.4 days/kill for family groups (females with young; n = 3, 90% CI: 4.5 to 8.4), 9.5 days/kill for a subadult male (1-2.5 yr; n = 1, 90% CI: 6.9 to 16.4), and 7.8 days/kill for adult males (n = 2, 90% CI: 6.8 to 10.7). We may have slightly overestimated cougar predation rates due to our inability to separate scavenging from predation. We detected 45 deer (Odocoileus spp.), 15 elk (Cervus elaphus), 6 pronghorn (Antilocapra americana), 2 livestock, 1 moose (Alces alces), and 6 small mammals at cougar predation sites. Comparisons between cougar sexes suggested that females selected mule deer and males selected elk (P nights on pronghorn carcasses, 3.4 nights on deer carcasses, and 6.0 nights on elk carcasses. Most cougar predation (81.7%) occurred between 1901-0500 hr and peaked from 2201-0200 hr (31.7%). Applying GPS technology to identify predation rates and prey selection will allow managers to efficiently estimate the ability of an area's prey base to sustain or be affected by cougar predation.

  9. Not So Fast: Swimming Behavior of Sailfish during Predator-Prey Interactions using High-Speed Video and Accelerometry.

    Science.gov (United States)

    Marras, Stefano; Noda, Takuji; Steffensen, John F; Svendsen, Morten B S; Krause, Jens; Wilson, Alexander D M; Kurvers, Ralf H J M; Herbert-Read, James; Boswell, Kevin M; Domenici, Paolo

    2015-10-01

    Billfishes are considered among the fastest swimmers in the oceans. Despite early estimates of extremely high speeds, more recent work showed that these predators (e.g., blue marlin) spend most of their time swimming slowly, rarely exceeding 2 m s(-1). Predator-prey interactions provide a context within which one may expect maximal speeds both by predators and prey. Beyond speed, however, an important component determining the outcome of predator-prey encounters is unsteady swimming (i.e., turning and accelerating). Although large predators are faster than their small prey, the latter show higher performance in unsteady swimming. To contrast the evading behaviors of their highly maneuverable prey, sailfish and other large aquatic predators possess morphological adaptations, such as elongated bills, which can be moved more rapidly than the whole body itself, facilitating capture of the prey. Therefore, it is an open question whether such supposedly very fast swimmers do use high-speed bursts when feeding on evasive prey, in addition to using their bill for slashing prey. Here, we measured the swimming behavior of sailfish by using high-frequency accelerometry and high-speed video observations during predator-prey interactions. These measurements allowed analyses of tail beat frequencies to estimate swimming speeds. Our results suggest that sailfish burst at speeds of about 7 m s(-1) and do not exceed swimming speeds of 10 m s(-1) during predator-prey interactions. These speeds are much lower than previous estimates. In addition, the oscillations of the bill during swimming with, and without, extension of the dorsal fin (i.e., the sail) were measured. We suggest that extension of the dorsal fin may allow sailfish to improve the control of the bill and minimize its yaw, hence preventing disturbance of the prey. Therefore, sailfish, like other large predators, may rely mainly on accuracy of movement and the use of the extensions of their bodies, rather than resorting

  10. A predator-prey model with a holling type I functional response including a predator mutual interference

    Science.gov (United States)

    Seo, G.; DeAngelis, D.L.

    2011-01-01

    The most widely used functional response in describing predator-prey relationships is the Holling type II functional response, where per capita predation is a smooth, increasing, and saturating function of prey density. Beddington and DeAngelis modified the Holling type II response to include interference of predators that increases with predator density. Here we introduce a predator-interference term into a Holling type I functional response. We explain the ecological rationale for the response and note that the phase plane configuration of the predator and prey isoclines differs greatly from that of the Beddington-DeAngelis response; for example, in having three possible interior equilibria rather than one. In fact, this new functional response seems to be quite unique. We used analytical and numerical methods to show that the resulting system shows a much richer dynamical behavior than the Beddington-DeAngelis response, or other typically used functional responses. For example, cyclic-fold, saddle-fold, homoclinic saddle connection, and multiple crossing bifurcations can all occur. We then use a smooth approximation to the Holling type I functional response with predator mutual interference to show that these dynamical properties do not result from the lack of smoothness, but rather from subtle differences in the functional responses. ?? 2011 Springer Science+Business Media, LLC.

  11. Adult survival of Delphastus catalinae (Coleoptera: Coccinellidae), a predator of whiteflies (Hemiptera: Aleyrodidae), on diets of whiteflies, honeydew and honey

    Science.gov (United States)

    Delphastus catalinae (Horn) (Coleoptera: Coccinellidae) is a predator that is commercially sold for the management of whiteflies. A study was conducted to assay the effect of selected diets on the survival of adult D. catlinae. Treatments of water (as a control), 10% honey, honeydew, and whiteflie...

  12. Development of a New Technique to Assess Susceptibility to Predation Resulting from Sublethal Stresses (Indirect Mortality)

    Energy Technology Data Exchange (ETDEWEB)

    Cada, G.F.

    2003-08-25

    from controls at 1-min post-exposure and for fathead minnows at 1- and 5-min post-exposure. The greatest effects occurred with exposure to the fish anesthetic; in fathead minnows all of the recorded measures were significantly different from controls at 1-min and 5-min post-exposure at the 100 mg/L dose. For striped shiners all recorded behavioral measures were significantly different from controls at 1-min at the 200 and 100 mg/L doses and for selected behavioral measures at 5-min. Turbulence also had significant effects on striped shiner startle responses following 20- and 30-min exposures for all behavioral measures at 1-min. The patterns suggest that any effects on startle response due to turbulence or low doses of anesthetic are short-lived, but can be evaluated using the escape behavior technique. The most useful indication of changes in escape behavior in these tests was the simple reaction/no reaction to the startle stimulus. The startle response occurred reliably among unstressed fish, and was frequently reduced or eliminated in fish exposed to turbulence or anesthesia. The other behavioral parameters observed were often altered by the sublethal stresses as well. A standard predator preference test was also conducted with largemouth bass as the predators and fathead minnows as prey. In this test design, groups of 10 unstressed fish (controls) and 10 stressed fish were put in a tank with a predator. The stressed fathead minnows were exposed to turbulence or fish anesthetic. The predator was allowed to eat half of the prey, and the data were evaluated to determine whether predators consumed greater proportions of stressed minnows than control minnows. The predation test indicated that exposure to MS-222 resulted in significant predation in fathead minnows, but exposure to turbulence did not. This pattern was the same as seen in fathead minnows using the startle response (escape behavior) test. For the sublethal stresses we applied, evaluation of changes in fish

  13. System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzae.

    Science.gov (United States)

    Tang, Wei; Ru, Yanyan; Hong, Li; Zhu, Qian; Zuo, Rongfang; Guo, Xianxian; Wang, Jingzhen; Zhang, Haifeng; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2015-04-01

    The basic leucine zipper (bZIP) domain-containing transcription factors (TFs) function as key regulators of cellular growth and differentiation in eukaryotic organisms including fungi. We have previously identified MoAp1 and MoAtf1 as bZIP TFs in Magnaporthe oryzae and demonstrated that they regulate the oxidative stress response and are critical in conidiogenesis and pathogenicity. Studies of bZIP proteins could provide a novel strategy for controlling rice blast, but a systematic examination of the bZIP proteins has not been carried out. Here, we identified 19 additional bZIP TFs and characterized their functions. We found that the majority of these TFs exhibit active functions, most notably, in conidiogenesis. We showed that MoHac1 regulates the endoplasmic reticulum stress response through a conserved unfolded protein response pathway, MoMetR controls amino acid metabolism to govern growth and differentiation, and MoBzip10 governs appressorium function and invasive hyphal growth. Moreover, MoBzip5 participates in appressorium formation through a pathway distinct from that MoBzip10, and MoMeaB appears to exert a regulatory role through nutrient uptake and nitrogen utilization. Collectively, our results provide insights into shared and specific functions associated with each of these TFs and link the regulatory roles to the fungal growth, conidiation, appressorium formation, host penetration and pathogenicity. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. The importance of pesticide exposure duration and mode on the foraging of an agricultural pest predator.

    Science.gov (United States)

    Brown, Caitlyn; Hanna, Chadwick J; Hanna, Catherine J B

    2015-02-01

    The striped lynx spider (Oxyopes salticus), is a natural predator of crop pests and therefore frequently encounters pesticides on its substrate and its prey. While pesticide exposure may negatively impact the lifespan of spiders, sublethal effects can also alter their normal behaviors. This study examined how prey capture was affected when spiders and their prey were exposed to bifenthrin and malathion. When spiders were continually exposed to bifenthrin residues, prey capture decreased over time, but mortality was not affected. Malathion exposed spiders, however, showed increased mortality, but their ability to catch prey was unaltered. When spiders encountered pesticide dosed prey, predation was unaffected, implying that spiders are unable to detect residues on prey. These results improve the understanding of how pesticides affect natural pest control and raise questions about the functional roles that spiders play when exposed to different chemicals.

  15. Herbivore physiological response to predation risk and implications for ecosystem nutrient dynamics.

    Science.gov (United States)

    Hawlena, Dror; Schmitz, Oswald J

    2010-08-31

    The process of nutrient transfer through an ecosystem is an important determinant of production, food-chain length, and species diversity. The general view is that the rate and efficiency of nutrient transfer up the food chain is constrained by herbivore-specific capacity to secure N-rich compounds for survival and production. Using feeding trials with artificial food, we show, however, that physiological stress-response of grasshopper herbivores to spider predation risk alters the nature of the nutrient constraint. Grasshoppers facing predation risk had higher metabolic rates than control grasshoppers. Elevated metabolism accordingly increased requirements for dietary digestible carbohydrate-C to fuel-heightened energy demands. Moreover, digestible carbohydrate-C comprises a small fraction of total plant tissue-C content, so nutrient transfer between plants and herbivores accordingly becomes more constrained by digestible plant C than by total plant C:N. This shift in herbivore diet to meet the altered nutrient requirement increased herbivore body C:N content, the C:N content of the plant community from which grasshoppers select their diet, and grasshopper fecal C:N content. Chronic predation risk thus alters the quality of animal and plant tissue that eventually enters the detrital pool to become decomposed. Our results demonstrate that herbivore physiology causes C:N requirements and nutrient intake to become flexible, thereby providing a mechanism to explain context dependence in the nature of trophic control over nutrient transfer in ecosystems.

  16. Predation on transmission stages reduces parasitism: sea anemones consume transmission stages of a barnacle parasite.

    Science.gov (United States)

    Fong, Caitlin R; Kuris, Armand M

    2017-06-01

    While parasites serve as prey, it is unclear how the spatial distribution of parasite predators provides transmission co