WorldWideScience

Sample records for system stabilizers based

  1. Response Based Emergency Control System for Power System Transient Stability

    Directory of Open Access Journals (Sweden)

    Huaiyuan Wang

    2015-11-01

    Full Text Available A transient stability control system for the electric power system composed of a prediction method and a control method is proposed based on trajectory information. This system, which is independent of system parameters and models, can detect the transient stability of the electric power system quickly and provide the control law when the system is unstable. Firstly, system instability is detected by the characteristic concave or convex shape of the trajectory. Secondly, the control method is proposed based on the analysis of the slope of the state plane trajectory when the power system is unstable. Two control objectives are provided according to the methods of acquiring the far end point: one is the minimal cost to restore the system to a stable state; the other one is the minimal cost to limit the maximum swing angle. The simulation indicates that the mentioned transient stability control system is efficient.

  2. Stability improvement of induction generator-based wind turbine systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Hu, Y.; Blaabjerg, Frede

    2007-01-01

    The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors...... affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated....... Simulation results have been presented and the effectiveness of the stability improvement methods has been discussed....

  3. Stability improvement of induction generator-based wind turbine systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Hu, Y.; Blaabjerg, Frede

    2007-01-01

    affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated......The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors...

  4. Power system stabilizers based on modern control techniques

    Energy Technology Data Exchange (ETDEWEB)

    Malik, O.P.; Chen, G.P.; Zhang, Y.; El-Metwally, K. [Calgary Univ., AB (Canada). Dept. of Electrical and Computer Engineering

    1994-12-31

    Developments in digital technology have made it feasible to develop and implement improved controllers based on sophisticated control techniques. Power system stabilizers based on adaptive control, fuzzy logic and artificial networks are being developed. Each of these control techniques possesses unique features and strengths. In this paper, the relative performance of power systems stabilizers based on adaptive control, fuzzy logic and neural network, both in simulation studies and real time tests on a physical model of a power system, is presented and compared to that of a fixed parameter conventional power system stabilizer. (author) 16 refs., 45 figs., 3 tabs.

  5. Analysis and assessment of STATCOM-based damping stabilizers for power system stability enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Abido, M.A. [Electrical Engineering Department, King Fahd University of Petroleum and Minerals, KFUPM Box Number 183, Dhahran 31261 (Saudi Arabia)

    2005-02-01

    Power system stability enhancement via STATCOM-based stabilizers is thoroughly investigated in this paper. This study presents a singular value decomposition (SVD)-based approach to assess and measure the controllability of the poorly damped electromechanical modes by STATCOM different control channels. The coordination among the proposed damping stabilizers and the STATCOM internal ac and dc voltage controllers has been taken into consideration. The design problem of STATCOM-based stabilizers is formulated as an optimization problem. For coordination purposes, a time domain-based multiobjective junction to improve the system stability as well as ac and dc voltage regulation is proposed. Then, a real-coded genetic algorithm (RCGA) is employed to search for optimal stabilizer parameters. This aims to enhance both rotor angle stability and voltage regulation of the power system. The proposed stabilizers are tested on a weakly connected power system with different disturbances and loading conditions. The nonlinear simulation results show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions. It is also observed that the proposed STATCOM-based damping stabilizers extend the critical clearing time (CCT) and enhance greatly the power system transient stability.

  6. Power System Transient Stability Based on Data Mining Theory

    Science.gov (United States)

    Cui, Zhen; Shi, Jia; Wu, Runsheng; Lu, Dan; Cui, Mingde

    2018-01-01

    In order to study the stability of power system, a power system transient stability based on data mining theory is designed. By introducing association rules analysis in data mining theory, an association classification method for transient stability assessment is presented. A mathematical model of transient stability assessment based on data mining technology is established. Meanwhile, combining rule reasoning with classification prediction, the method of association classification is proposed to perform transient stability assessment. The transient stability index is used to identify the samples that cannot be correctly classified in association classification. Then, according to the critical stability of each sample, the time domain simulation method is used to determine the state, so as to ensure the accuracy of the final results. The results show that this stability assessment system can improve the speed of operation under the premise that the analysis result is completely correct, and the improved algorithm can find out the inherent relation between the change of power system operation mode and the change of transient stability degree.

  7. Theoretical bases on thermal stability of layered metallic systems

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Rusakov, V.S.; Turkebaev, T.Eh.; Zhankadamova, A.M.; Ensebaeva, M.Z.

    2003-01-01

    The paper is dedicated to implementation of the theoretical bases for layered metallic systems thermal stabilization. The theory is based on the stabilization mechanism expense of the intermediate two-phase field formation. As parameters of calculated model are coefficients of mutual diffusion and inclusions sizes of generated phases in two-phase fields. The stabilization time dependence for beryllium-iron (Be (1.1 μm)-Fe(5.5 μm)) layered system from iron and beryllium diffusion coefficients, and inclusions sizes is shown as an example. Conclusion about possible mechanisms change at transition from microscopic consideration to the nano-crystal physics level is given

  8. Power system transient stability analysis based on branch potential characteristics

    Science.gov (United States)

    Han, Huan; Wang, Zengping

    2017-09-01

    Branch potential function is proposed based on the power system network preserving model. The concept of thermodynamics-entropy, is introduced to describe spatial distribution characteristics of the branch potential energy. Branch potential energy was analysed in time and space domain., with transient stability index proposed accordingly. The larger disturbance energy line fault injected to grid is, the larger branch energy entropy will be, and the more energy accumulated on key branches is, the more prone to lose stability the system will be. Simulation results on IEEE system proved its feasibility.

  9. Design of an adaptive neural network based power system stabilizer.

    Science.gov (United States)

    Liu, Wenxin; Venayagamoorthy, Ganesh K; Wunsch, Donald C

    2003-01-01

    Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation system in order to damp the low frequency power system oscillations. To overcome the drawbacks of conventional PSS (CPSS), numerous techniques have been proposed in the literature. Based on the analysis of existing techniques, this paper presents an indirect adaptive neural network based power system stabilizer (IDNC) design. The proposed IDNC consists of a neuro-controller, which is used to generate a supplementary control signal to the excitation system, and a neuro-identifier, which is used to model the dynamics of the power system and to adapt the neuro-controller parameters. The proposed method has the features of a simple structure, adaptivity and fast response. The proposed IDNC is evaluated on a single machine infinite bus power system under different operating conditions and disturbances to demonstrate its effectiveness and robustness.

  10. Passivity Based Stabilization of Non-minimum Phase Nonlinear Systems

    Czech Academy of Sciences Publication Activity Database

    Travieso-Torres, J.C.; Duarte-Mermoud, M.A.; Zagalak, Petr

    2009-01-01

    Roč. 45, č. 3 (2009), s. 417-426 ISSN 0023-5954 R&D Projects: GA ČR(CZ) GA102/07/1596 Institutional research plan: CEZ:AV0Z10750506 Keywords : nonlinear systems * stabilisation * passivity * state feedback Subject RIV: BC - Control Systems Theory Impact factor: 0.445, year: 2009 http://library.utia.cas.cz/separaty/2009/AS/zagalak-passivity based stabilization of non-minimum phase nonlinear systems.pdf

  11. Stabilization of Multiple Unstable Modes for Small-Scale Inverter-Based Power Systems with Impedance-Based Stability Analysis

    DEFF Research Database (Denmark)

    Yoon, Changwoo; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    This paper investigates the harmonic stability of small-scale inverter-based power systems. A holistic procedure to assess the contribution of each inverter to the system stability is proposed by means of using the impedancebased stability criterion. Multiple unstable modes can be identified step......-by-step coming from the interactions among inverters and passive networks. Compared to the conventional system stability analysis, the approach is easy to implement and avoids the effect of potential unstable system dynamics on the impedance ratio derived for the stability analysis. PSCAD/ EMTDC simulations...... of a Cigre LV network Benchmark system with multiple renewable energy sources are carried out. The results confirm the validity of the proposed approach....

  12. A MARTe based simulator for the JET Vertical Stabilization system

    Energy Technology Data Exchange (ETDEWEB)

    Bellizio, Teresa, E-mail: teresa.bellizio@unina.it [Associazione EURATOM-ENEA-CREATE, University di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); De Tommasi, Gianmaria; Risoli, Nicola; Albanese, Raffaele [Associazione EURATOM-ENEA-CREATE, University di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Neto, Andre [Associacao EURATOM/IST, Inst. de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior, Tecnico, P-1049-001 Lisboa (Portugal)

    2011-10-15

    Validation by means of simulation is a crucial step when developing real-time control systems. Modeling and simulation are an essential tool since the early design phase, when the control algorithms are designed and tested. This phase is commonly carried out in off-line environments such as Matlab and Simulink. A MARTe-based simulator has been recently developed to validate the new JET Vertical Stabilization (VS) system. MARTe is the multi-thread framework used at JET to deploy hard real-time control systems. This paper presents the software architecture of the MARTe-based simulator and it shows how this tool has been effectively used to evaluate the effects of Edge Localized Modes (ELMs) on the VS system. By using the simulator it is possible to analyze different plasma configurations, extrapolating the limit of the new vertical amplifier in terms of the energy of the largest rejectable ELM.

  13. Design of Power System Stabilizer Based on Sliding Mode Control Theory for Multi- Machine Power System

    OpenAIRE

    Hossein Shahinzadeh; Ladan Darougaran; Ebrahim Jalili Sani; Hamed Yavari; Mahdi Mozaffari Legha

    2012-01-01

    This paper present a new method for design of power system stabilizer (PSS) based on sliding mode control (SMC) technique. The control objective is to enhance stability and improve the dynamic response of the multi-machine power system. In order to test effectiveness of the proposed scheme, simulation will be carried out to analyze the small signal stability characteristics of the system about the steady state operating condition following the change in reference mechanic...

  14. Stability Analysis of Neural Networks-Based System Identification

    Directory of Open Access Journals (Sweden)

    Talel Korkobi

    2008-01-01

    Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.

  15. Immobilization, stabilization and patterning techniques for enzyme based sensor systems.

    Energy Technology Data Exchange (ETDEWEB)

    Flounders, A.W.; Carichner, S.C.; Singh, A.K.; Volponi, J.V.; Schoeniger, J.S.; Wally, K.

    1997-01-01

    Sandia National Laboratories has recently opened the Chemical and Radiation Detection Laboratory (CRDL) in Livermore CA to address the detection needs of a variety of government agencies (e.g., Department of Energy, Environmental Protection Agency, Department of Agriculture) as well as provide a fertile environment for the cooperative development of new industrial technologies. This laboratory consolidates a variety of existing chemical and radiation detection efforts and enables Sandia to expand into the novel area of biochemically based sensors. One aspect of this biosensor effort is further development and optimization of enzyme modified field effect transistors (EnFETs). Recent work has focused upon covalent attachment of enzymes to silicon dioxide and silicon nitride surfaces for EnFET fabrication. They are also investigating methods to pattern immobilized proteins; a critical component for development of array-based sensor systems. Novel enzyme stabilization procedures are key to patterning immobilized enzyme layers while maintaining enzyme activity. Results related to maximized enzyme loading, optimized enzyme activity and fluorescent imaging of patterned surfaces will be presented.

  16. Comparison of UPFC-Based Stabilizer and PSS Performances on Damping of Power System Oscillations

    OpenAIRE

    M. R. Meshkatoddini; M. Majidi; M. Sadeghierad; H. Lesani

    2009-01-01

    This paper establishes the linearized Phillips-Heffron model of a power system equipped with UPFC and demonstrates the application of the model in analyzing the damping effect of the UPFC and designing UPFC based stabilizer to improve power system oscillation stability. A comprehensive approach to the design of UPFC based stabilizer (power flow control, DC-voltage regulator and damping controller) is presented. In this case, the multi-machine power system with UPFC is studied and an example o...

  17. Power System Stability Improvement through the Coordination of TCPS-based Damping Controller and Power System Stabilizer

    Directory of Open Access Journals (Sweden)

    ALI, M. A. S.

    2017-11-01

    Full Text Available To guarantee the secure and reliable operations of power systems through the rapid damping of low-frequency electromechanical oscillations (LFEOs is the ultimate objective of this study. This paper presents a coordination of a flexible AC transmission system (FACTS device and power system stabilizer (PSS to meet this objective, and deals with the design of a damping controller based on a thyristor-controlled phase shifter (TCPS and a PSS. The proposed design is incorporated in the framework of a single-machine infinite-bus (SMIB power system. The effectiveness of the proposed design in damping power system oscillations is explored through eigenvalue analysis, time-domain simulations and damping torque contribution. A comparative study on different control schemes, such as with an SMIB including a PSS and an SMIB including a TCPS-based damping controller is also carried out. The obtained results prove the superior performance of the proposed design in improving the stability of the given power system. All the digital simulations are performed using MATLAB/ SIMULINK.

  18. Design of Power System Stabilizer based on Sliding Mode Control Theory for Multi- Machine Power System

    Directory of Open Access Journals (Sweden)

    Ghazanfar Shahgholian

    2010-01-01

    Full Text Available This paper presents a new method for designing of power system stabilizer (PSS based on sliding mode control (SMC technique. The control objective is to enhance stability and improve the dynamic response of the multi-machine power system. The mathematical model of the synchronous generator is first transformed into a form that facilitates the design of nonlinear control schemes. Then, a sliding mode controller is proposed. In order to test effectiveness of the proposed scheme, simulation will be carried out to analyze the small signal stability characteristics of the system about the steady state operating condition following the change in the parameters of the system and to the disturbances. For comparison, simulation of a conventional control PSS (lead-lag compensation type will be carried out. The main approach is to focus on the control performance which later is proven to have the degree of shorter reaching time and lower spike.

  19. Power System Stabilizer Design Based on a Particle Swarm Optimization Multiobjective Function Implemented Under Graphical Interface

    OpenAIRE

    Ghouraf Djamel Eddine

    2016-01-01

    Power system stability considered a necessary condition for normal functioning of an electrical network. The role of regulation and control systems is to ensure that stability by determining the essential elements that influence it. This paper proposes a Particle Swarm Optimization (PSO) based multiobjective function to tuning optimal parameters of Power System Stabilizer (PSS); this later is used as auxiliary to generator excitation system in order to damp electro mechanicals oscillations of...

  20. A Novel Fuzzy Logic Based Power System Stabilizer for a Multimachine System

    OpenAIRE

    Singh, Anup; Sen, Indraneel

    2003-01-01

    This paper describes the design of a Fuzzy logic based controller to counter the small signal oscillatory instability in power system. The stabilizing signal is computed in real time using suitable fuzzy membership functions depending upon the state of the generator on the speed-acceleration phase plane. The use of output membership function permits further fine tuning of the controller parameters for varied system configurations specially in multimachine environment. The efficacy of the p...

  1. Optimal placement of unified power flow controllers to improve dynamic voltage stability using power system variable based voltage stability indices.

    Science.gov (United States)

    Albatsh, Fadi M; Ahmad, Shameem; Mekhilef, Saad; Mokhlis, Hazlie; Hassan, M A

    2015-01-01

    This study examines a new approach to selecting the locations of unified power flow controllers (UPFCs) in power system networks based on a dynamic analysis of voltage stability. Power system voltage stability indices (VSIs) including the line stability index (LQP), the voltage collapse proximity indicator (VCPI), and the line stability index (Lmn) are employed to identify the most suitable locations in the system for UPFCs. In this study, the locations of the UPFCs are identified by dynamically varying the loads across all of the load buses to represent actual power system conditions. Simulations were conducted in a power system computer-aided design (PSCAD) software using the IEEE 14-bus and 39- bus benchmark power system models. The simulation results demonstrate the effectiveness of the proposed method. When the UPFCs are placed in the locations obtained with the new approach, the voltage stability improves. A comparison of the steady-state VSIs resulting from the UPFCs placed in the locations obtained with the new approach and with particle swarm optimization (PSO) and differential evolution (DE), which are static methods, is presented. In all cases, the UPFC locations given by the proposed approach result in better voltage stability than those obtained with the other approaches.

  2. Frequency scanning-based stability analysis method for grid-connected inverter system

    DEFF Research Database (Denmark)

    Wang, Yanbo; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    This paper proposes a frequency scanning-based impedance analysis for stability assessment of grid-connected inverter system, which is able to perform stability assessment without using system mathematical models and inherit the superior feature of impedance-based stability criterion with conside......This paper proposes a frequency scanning-based impedance analysis for stability assessment of grid-connected inverter system, which is able to perform stability assessment without using system mathematical models and inherit the superior feature of impedance-based stability criterion...... with consideration of the inverter nonlinearities. Small current disturbance is injected into grid-connected inverter system in a particular frequency range, and the impedance is computed according to the harmonic-frequency response using Fourier analysis, and then the stability is predicted on the basis...... of the impedance stability criterion. The stability issues of grid-connected inverters with grid-current feedback and the converter-current feedback are addressed using the proposed method. The results obtained from simulation and experiments validate the effectiveness of the method. The frequency scanning...

  3. Stability boundaries analysis of electric power system with DC transmission based on differential-algebraic equation system

    OpenAIRE

    Susuki, Yoshihiko; Hikihara Takashi; Chiang, HD

    2004-01-01

    This paper discusses stability boundaries in an electric power system with dc transmission based on a differential-algebraic equation (DAE) system. The DAE system is derived to analyze transient stability of the ac/dc power system: the differential equation represents the dynamics of the generator and the dc transmission, and the algebraic equation the active and reactive power relationship between the ac system and the dc transmission. In this paper complete characterization of stability bou...

  4. EHPS Handling Stability Analysis of Electric Bus Based on System Identification Method

    Science.gov (United States)

    Zhang, Ni; Liu, Hai-mei; Bei, Shao-yi; Li, Bo; Zhao, Jing-bo

    2017-09-01

    Electric hydraulic assist force steering system (EHPS system) is the steering system of electric bus, this paper presents a method of EHPS handling stability analysis based on system identification method according to the handling stability of EHPS system for electric bus. The simulation model of electro-hydraulic assist force steering system EHPS is established by using the software AMESim, and making a quantitative analysis on the characteristics of the electric assist force assisted steering system, the assist force response and stability. At the same time, we study the stability of vehicle, including hunting, transient response, return experiment, the results show that the HPS and EHPS by comparing the simulation: It improves the portability, road sense, transient response and return performance after loading the system, which verifiy the effectiveness of the control strategy that improves vehicle steering performance, and it provides the basis for the optimization of control methods in the future.

  5. Power system stabilizers based on distributed energy resources for damping of inter-area oscillations

    Directory of Open Access Journals (Sweden)

    Stefanov Predrag Č.

    2014-01-01

    Full Text Available This paper deals with inter-area power oscillations damping enhancement by distributed energy resources contained in typical micro grid. Main idea behind this work is to use distributed generation and distributed storage, such as battery energy storage to mimic conventional power system stabilizer, but with regulating active power output, rather than reactive power, as in standard power system stabilizer realization. The analysis of the small signal stability is established for four-machine, two-area system, with inverter based micro grids in each area. Dynamic simulation results are included in this work and they show that proposed controller provides additional damping effect to this test system.

  6. Genetic Algorithm Based Design of Fuzzy Logic Power System Stabilizers in Multimachine Power System

    OpenAIRE

    Manisha Dubey; Aalok Dubey

    2010-01-01

    This paper presents an approach for the design of fuzzy logic power system stabilizers using genetic algorithms. In the proposed fuzzy expert system, speed deviation and its derivative have been selected as fuzzy inputs. In this approach the parameters of the fuzzy logic controllers have been tuned using genetic algorithm. Incorporation of GA in the design of fuzzy logic power system stabilizer will add an intelligent dimension to the stabilizer and significantly reduces ...

  7. Eigenvalue-based harmonic stability analysis method in inverter-fed power systems

    OpenAIRE

    Wang, Yanbo; Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe

    2015-01-01

    This paper presents an eigenvalue-based harmonic stability analysis method for inverter-fed power systems. A full-order small-signal model for a droop-controlled Distributed Generation (DG) inverter is built first, including the time delay of digital control system, inner current and voltage control loops, and outer droop-based power control loop. Based on the inverter model, an overall small-signal model of a two-inverter-fed system is then established, and the eigenvalue-based stability ana...

  8. Power System Stabilizer Design Based on a Particle Swarm Optimization Multiobjective Function Implemented Under Graphical Interface

    Directory of Open Access Journals (Sweden)

    Ghouraf Djamel Eddine

    2016-05-01

    Full Text Available Power system stability considered a necessary condition for normal functioning of an electrical network. The role of regulation and control systems is to ensure that stability by determining the essential elements that influence it. This paper proposes a Particle Swarm Optimization (PSO based multiobjective function to tuning optimal parameters of Power System Stabilizer (PSS; this later is used as auxiliary to generator excitation system in order to damp electro mechanicals oscillations of the rotor and consequently improve Power system stability. The computer simulation results obtained by developed graphical user interface (GUI have proved the efficiency of PSS optimized by a Particle Swarm Optimization, in comparison with a conventional PSS, showing stable   system   responses   almost   insensitive   to   large parameter variations.Our present study was performed using a GUI realized under MATLAB in our work.

  9. Novel delay-partitioning stabilization approach for networked control system via Wirtinger-based inequalities.

    Science.gov (United States)

    Li, Zhichen; Bai, Yan; Huang, Congzhi; Cai, Yunfei

    2016-03-01

    This paper studies the problems of stability analysis and state feedback stabilization for networked control system. By developing a novel delay-partitioning approach, the information on both the range of network-induced delay and the maximum number of consecutive data packet dropouts can be taken into full consideration. Various augmented Lyapunov-Krasovskii functionals (LKFs) with triple-integral terms are constructed for the two delay subintervals. Moreover, the Wirtinger-based inequalities in combination with an improved reciprocal convexity are utilized to estimate the derivatives of LKFs more accurately. The proposed approaches have improved the stability conditions without increasing much computational complexity. Based on the obtained stability criterion, a stabilization controller design approach is also given. Finally, four numerical examples are presented to illustrate the effectiveness and outperformance of the proposed approaches. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  10. A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA

    Science.gov (United States)

    Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao

    2015-10-01

    Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.

  11. Stabilizing Parametric Region of Multiloop PID Controllers for Multivariable Systems Based on Equivalent Transfer Function

    Directory of Open Access Journals (Sweden)

    Xiaoli Luan

    2016-01-01

    Full Text Available The aim of this paper is to determine the stabilizing PID parametric region for multivariable systems. Firstly, a general equivalent transfer function parameterization method is proposed to construct the multiloop equivalent process for multivariable systems. Then, based on the equivalent single loops, a model-based method is presented to derive the stabilizing PID parametric region by using the generalized Hermite-Biehler theorem. By sweeping over the entire ranges of feasible proportional gains and determining the stabilizing regions in the space of integral and derivative gains, the complete set of stabilizing PID controllers can be determined. The robustness of the design procedure against the approximation in getting the SISO plants is analyzed. Finally, simulation of a practical model is carried out to illustrate the effectiveness of the proposed technique.

  12. Calculation and Simulation Study on Transient Stability of Power System Based on Matlab/Simulink

    Directory of Open Access Journals (Sweden)

    Shi Xiu Feng

    2016-01-01

    Full Text Available The stability of the power system is destroyed, will cause a large number of users power outage, even cause the collapse of the whole system, extremely serious consequences. Based on the analysis in single machine infinite system as an example, when at the f point two phase ground fault occurs, the fault lines on either side of the circuit breaker tripping resection at the same time,respectively by two kinds of calculation and simulation methods of system transient stability analysis, the conclusion are consistent. and the simulation analysis is superior to calculation analysis.

  13. Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement.

    Science.gov (United States)

    Ganjefar, Soheil; Tofighi, Morteza; Karami, Hamidreza

    2015-11-01

    In this study, we introduce an indirect adaptive fuzzy wavelet neural controller (IAFWNC) as a power system stabilizer to damp inter-area modes of oscillations in a multi-machine power system. Quantum computing is an efficient method for improving the computational efficiency of neural networks, so we developed an identifier based on a quantum neural network (QNN) to train the IAFWNC in the proposed scheme. All of the controller parameters are tuned online based on the Lyapunov stability theory to guarantee the closed-loop stability. A two-machine, two-area power system equipped with a static synchronous series compensator as a series flexible ac transmission system was used to demonstrate the effectiveness of the proposed controller. The simulation and experimental results demonstrated that the proposed IAFWNC scheme can achieve favorable control performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Eigenvalue-based harmonic stability analysis method in inverter-fed power systems

    DEFF Research Database (Denmark)

    Wang, Yanbo; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    This paper presents an eigenvalue-based harmonic stability analysis method for inverter-fed power systems. A full-order small-signal model for a droop-controlled Distributed Generation (DG) inverter is built first, including the time delay of digital control system, inner current and voltage...... control loops, and outer droop-based power control loop. Based on the inverter model, an overall small-signal model of a two-inverter-fed system is then established, and the eigenvalue-based stability analysis is subsequently performed to assess the influence of controller parameters on the harmonic...... resonance and instability in the power system. Eigenvalues associated with time delay of inverter and inner controller parameters is obtained, which shows the time delay has an important effect on harmonic instability of inverter-fed power systems. Simulation results are given for validating the proposed...

  15. Implementation of Power System Stabilizer Based on Conventional and Fuzzy Logic Controllers

    Directory of Open Access Journals (Sweden)

    Hanan Mikhael Habbi

    2018-03-01

    Full Text Available To damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. A suitable PSS model was selected considering the low frequencies oscillation in the inter-area mode based on conventional PSS and Fuzzy Logic Controller. Two types of (FIS Mamdani and suggeno were considered in this paper. The software of the methods was executed using MATLAB R2015a package.

  16. Stabilization of Networked Distributed Systems with Partial and Event-Based Couplings

    Directory of Open Access Journals (Sweden)

    Sufang Zhang

    2015-01-01

    Full Text Available The stabilization problem of networked distributed systems with partial and event-based couplings is investigated. The channels, which are used to transmit different levels of information of agents, are considered. The channel matrix is introduced to indicate the work state of the channels. An event condition is designed for each channel to govern the sampling instants of the channel. Since the event conditions are separately given for different channels, the sampling instants of channels are mutually independent. To stabilize the system, the state feedback controllers are implemented in the system. The control signals also suffer from the two communication constraints. The sufficient conditions in terms of linear matrix equalities are proposed to ensure the stabilization of the controlled system. Finally, a numerical example is given to demonstrate the advantage of our results.

  17. Power system stability enhancement employing controllers based on a versatile modeling

    Science.gov (United States)

    Chung, Chi Yung

    Rapid advances in power electronics have made it both practicable and economic to design powerful thyristor-controlled devices, such as Flexible AC Transmission Systems (FACTS), for stability enhancements. The discrepancies of existing modeling approaches have limited the feasibility of handling these devices or designing its damping controller. In this thesis, a versatile and generalized approach to model standard power system components is proposed. The more systematic and realistic representation, accompanied by the development of powerful eigenvalue-analysis techniques, facilitates the study of small signal stability (monotonic and oscillatory) of the power systems. In monotonic stability study, the effect of exciter and governor is critically reviewed based on the exploitation of eigenvalues, modal and sensitivity analyses over a wide range of operating conditions. In oscillatory stability study, a common FACTS device, the static var compensator (SVC), is used to improve system damping. This study reveals the inadequacy of many conventional methodologies in SVC design since they have ignored (or cannot handle) some important factors such as SVC mode instability and robustness of the power system. Two approaches, combined sensitivities and Hinfinity algorithms, are introduced to solve these limitations. Finally, an extended Hinfinity algorithm, which is applied to PSS design and successfully solves certain limitations of the existing H infinity based PSS design, is also presented. Although these studies are developed on selected controller devices or typical systems for convenience of discussion, extension to more complex systems can be dealt with in a similar way because of the versatility of the proposed modeling methodology.

  18. Modeling and Analysis of Harmonic Stability in an AC Power-Electronics-Based Power System

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Wu, Weimin

    2014-01-01

    This paper addresses the harmonic stability caused by the interactions among the wideband control of power converters and passive components in an AC power-electronicsbased power system. The impedance-based analytical approach is employed and expanded to a meshed and balanced threephase network...

  19. Site selection of active damper for stabilizing power electronics based power distribution system

    DEFF Research Database (Denmark)

    Yoon, Changwoo; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    Stability in the nowadays distribution power system is endangered by interaction problems that may arise from newly added power-electronics based power devices. Recently, a new concept to deal with this higher frequency instability, the active damper, has been proposed. The active damper is a power...... point when the system has many nodes. Therefore, this paper addresses the proper placement of an active damper in an unstable small-scale power distribution system. A time-domain model of the Cigre benchmark low-vltage network is used as a test field. The result shows the active damper location...... electronics based power device, which provides an adjustable damping capability to the power system where the voltage harmonic instability is measured. It can stabilize by adjusting the equivalent node impedance with its plug and play feature. This feature gives many degrees of freedom of its installation...

  20. Stability Analysis of a Microgrid System based on Inverter-Interfaced Distributed Generators

    Directory of Open Access Journals (Sweden)

    CUSIDO, J.

    2013-08-01

    Full Text Available This paper presents a phase-plane trajectory analysis and the appliance of Lyapunov's methodology to evaluate the stability limits of a small signal model of a Microgrid system. The work done is based on a non-linear tool and several computer simulations. The study indicates how to analyze a Microgrid system that is subjected to a severe transient disturbance by using its large signal model without the necessity of the small signal analysis as it is commonly applied.

  1. Design of a fuzzy-logic-control-based robust power system stabilizer

    Science.gov (United States)

    Zhao, Hui; Liu, Lu-yuan; Wang, Hong-jun; Yue, You-jun

    2008-10-01

    This paper presents a design procedure for a robust power system stabilizer(RPSS) based on fuzzy logic control techniques. Speed deviation of a synchronous generator and its derivative are chosen as the input signals of RPSS. A normalized sum-squared deviation(NSSD) index is used to design the RPSS and investigate the robustness of the RPSS for a multi-machine power system. Nonlinear simulation tests under different disturbances are given and their results are discussed.

  2. Multi-stage Fuzzy Power System Stabilizer Based on Modified Shuffled Frog Leaping Algorithm

    OpenAIRE

    Yousefi, Nasser

    2015-01-01

    This paper presents a new strategy based on Multi-stage Fuzzy (MSF) PID controller for damping Power System Stabilizer (PSS) in multi-machine environment using Modified Shuffled Frog Leaping (MSFL) algorithm. The proposed technique is a new meta-heuristic algorithm which is inspired by mating procedure of the honey bee. Actually, the mentioned algorithm is used recently in power systems which demonstrate the good reflex of this algorithm. Also, finding the parameters of PID controller in powe...

  3. Lyapunov-based Stability of Feedback Interconnections of Negative Imaginary Systems

    KAUST Repository

    Ghallab, Ahmed G.

    2017-10-19

    Feedback control systems using sensors and actuators such as piezoelectric sensors and actuators, micro-electro-mechanical systems (MEMS) sensors and opto-mechanical sensors, are allowing new advances in designing such high precision technologies. The negative imaginary control systems framework allows for robust control design for such high precision systems in the face of uncertainties due to unmodelled dynamics. The stability of the feedback interconnection of negative imaginary systems has been well established in the literature. However, the proofs of stability feedback interconnection which are used in some previous papers have a shortcoming due to a matrix inevitability issue. In this paper, we provide a new and correct Lyapunov-based proof of one such result and show that the result is still true.

  4. An offset tone based gain stabilization technique for mixed-signal RF measurement systems

    International Nuclear Information System (INIS)

    Joshi, Gopal; Motiwala, Paresh D.; Randale, G.D.; Singh, Pitamber; Agarwal, Vivek; Kumar, Girish

    2015-01-01

    This paper describes a gain stabilization technique for a RF signal measurement system. A sinusoidal signal of known amplitude, phase and close enough in frequency is added to the main, to be measured RF signal at the input of the analog section. The system stabilizes this offset tone in the digital domain, as it is sampled at the output of the analog section. This process generates a correction factor needed to stabilize the magnitude of the gain of the analog section for the main RF signal. With the help of a simple calibration procedure, the absolute amplitude of the main RF signal can be measured. The technique is especially suited for a system that processes signals around a single frequency, employs direct signal conversion into the digital domain, and processes subsequent steps in an FPGA. The inherent parallel signal processing in an FPGA-based implementation allows a real time stabilization of the gain. The effectiveness of the technique is derived from the fact, that the gain stabilization stamped to the main RF signal measurement branch requires only a few components in the system to be inherently stable. A test setup, along with experimental results is presented from the field of RF instrumentation for particle accelerators. Due to the availability of a phase synchronized RF reference signal in these systems, the measured phase difference between the main RF and the RF reference is also stabilized using this technique. A scheme of the signal processing is presented, where a moving average filter has been used to filter out not only the unwanted frequencies, but also to separate the main RF signal from the offset tone signal. This is achieved by a suitable choice of sampling and offset tone frequencies. The presented signal processing scheme is suitable to a variety of RF measurement applications

  5. An offset tone based gain stabilization technique for mixed-signal RF measurement systems

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Gopal, E-mail: gjos@barc.gov.in [BARC, Mumbai 400085 (India); Motiwala, Paresh D.; Randale, G.D.; Singh, Pitamber [BARC, Mumbai 400085 (India); Agarwal, Vivek; Kumar, Girish [IIT Bombay, Powai, Mumbai 400076 (India)

    2015-09-21

    This paper describes a gain stabilization technique for a RF signal measurement system. A sinusoidal signal of known amplitude, phase and close enough in frequency is added to the main, to be measured RF signal at the input of the analog section. The system stabilizes this offset tone in the digital domain, as it is sampled at the output of the analog section. This process generates a correction factor needed to stabilize the magnitude of the gain of the analog section for the main RF signal. With the help of a simple calibration procedure, the absolute amplitude of the main RF signal can be measured. The technique is especially suited for a system that processes signals around a single frequency, employs direct signal conversion into the digital domain, and processes subsequent steps in an FPGA. The inherent parallel signal processing in an FPGA-based implementation allows a real time stabilization of the gain. The effectiveness of the technique is derived from the fact, that the gain stabilization stamped to the main RF signal measurement branch requires only a few components in the system to be inherently stable. A test setup, along with experimental results is presented from the field of RF instrumentation for particle accelerators. Due to the availability of a phase synchronized RF reference signal in these systems, the measured phase difference between the main RF and the RF reference is also stabilized using this technique. A scheme of the signal processing is presented, where a moving average filter has been used to filter out not only the unwanted frequencies, but also to separate the main RF signal from the offset tone signal. This is achieved by a suitable choice of sampling and offset tone frequencies. The presented signal processing scheme is suitable to a variety of RF measurement applications.

  6. Design of Optimal Proportional Integral Derivative Based Power System Stabilizer Using Bat Algorithm

    Directory of Open Access Journals (Sweden)

    Dhanesh K. Sambariya

    2016-01-01

    Full Text Available The design of a proportional, derivative, and integral (PID based power system stabilizer (PSS is carried out using the bat algorithm (BA. The design of proposed PID controller is considered with an objective function based on square error minimization to enhance the small signal stability of nonlinear power system for a wide range of operating conditions. Three benchmark power system models as single-machine infinite-bus (SMIB power system, two-area four-machine ten-bus power system, and IEEE New England ten-machine thirty-nine-bus power system are considered to examine the effectiveness of the designed controller. The BA optimized PID based PSS (BA-PID-PSS controller is applied to these benchmark systems, and the performance is compared with controllers reported in literature. The robustness is tested by considering eight plant conditions of each system, representing the wide range of operating conditions. It includes unlike loading conditions and system configurations to establish the superior performance with BA-PID-PSS over-the-counter controllers.

  7. L2 -stability of haptic systems with projection-based force reflection.

    Science.gov (United States)

    Polushin, Ilia G; Hasan, Mir Zayed

    2014-01-01

    The problem of stability of haptic interaction with virtual objects is addressed, where the force reflection is implemented using the projection-based principle. A stability condition is derived that generalizes some previously known results to the case of projection-based force reflection. It demonstrates that, in this case, an additional design parameter is brought in that allows to increase the admissible stiffness of the virtual wall and decrease the update rate without changing the damping of the haptic device. A passivity based interpretation of the result is given in terms of interconnection of generalized passive systems where the excess of passivity of haptic device compensates the shortage of passivity of the virtual wall. In particular, it is shown that the projection-based force reflection allows to arbitrarily increase the excess of passivity of the haptic device without changing its physical damping.

  8. STATCOM's Effects on Stability Improvement of Induction Generator based Wind Turbine Systems

    DEFF Research Database (Denmark)

    Hu, Y; Chen, Zhe

    2009-01-01

    Large number of wind turbines are being installed and connected to power systems. In some countries or networks, the penetration level of wind power is significant high so as to affect the power system operation and control. Consequently, the stable operation of wind turbine systems is very impor...... important for power system stability. This paper studies the effect of STATCOM on stability improvement of a wind turbine system. The function of the STATCOM in improving the system stability has been demonstrated....

  9. An Evaluation of SMES Control Logics for Power System Stabilization Based on Analogue Simulation

    Science.gov (United States)

    Taguchi, Akira; Imayoshi, Tadakazu; Hayashi, Hidemi; Ishii, Toshinori

    Focusing on control that can be used to efficiently regulate SMES, unique control logics for power system stabilization were devised by combining the popularly used power deviation (ΔP) of a generator with the angular velocity deviation (Δω) of a generator or the phase correction. In the previous paper, we analyzed the performance and characteristics of the new control logics (ΔP + Δω control logic, ΔP + Δω + phase correction control logic) on both one-and multi-machine infinite-bus systems using the Y-method power system dynamics analysis program, and suggested that the new logics could improve the stability of power systems in comparison to the conventional ΔP control logic. For the next phase of research, we have evaluated the performance and characteristics of the control logics mentioned above based on analogue simulation. As a result, the logics have showed the same tendency as the case of the digital simulation and it have been confirmed that the logics, especially ΔP + Δω+ phase correction control logic, have the superior effect on the improvement of the stability of power system.

  10. Stability Analysis of DC Distribution Systems with Droop-Based Charge Sharing on Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Despoina I. Makrygiorgou

    2017-03-01

    Full Text Available Direct current (DC distribution systems and DC microgrids are becoming a reliable and efficient alternative energy system, compatible with the DC nature of most of the distributed energy resources (DERs, storage devices and loads. The challenging problem of redesigning an autonomous DC-grid system in view of using energy storage devices to balance the power produced and absorbed, by applying simple decentralized controllers on the electronic power interfaces, is investigated in this paper. To this end, a complete nonlinear DC-grid model has been deployed that includes different DC-DERs, two controlled parallel battery branches, and different varying DC loads. Since many loads in modern distribution systems are connected through power converters, both constant power loads and simple resistive loads are considered in parallel. Within this system, suitable cascaded controllers on the DC/DC power converter interfaces to the battery branches are proposed, in a manner that ensures stability and charge sharing between the two branches at the desired ratio. To achieve this task, inner-loop current controllers are combined with outer-loop voltage, droop-based controllers. The proportional-integral (PI inner-loop current controllers include damping terms and are fully independent from the system parameters. The controller scheme is incorporated into the system model and a globally valid nonlinear stability analysis is conducted; this differs from small-signal linear methods that are valid only for specific systems, usually via eigenvalue investigations. In the present study, under the virtual cost of applying advanced Lyapunov techniques on the entire nonlinear system, a rigorous analysis is formulated to prove stability and convergence to the desired operation, regardless of the particular system characteristics. The theoretical results are evaluated by detailed simulations, with the system performance being very satisfactory.

  11. Virtual velocity loop based on MEMS accelerometers for optical stabilization control system

    Science.gov (United States)

    Ren, Wei; Deng, Chao; Mao, Yao; Ren, Ge

    2017-08-01

    In the optical stabilization control system (OSCS) control system based on a charge-coupled device (CCD), stabilization performance of the line-of-sight is severely limited by the mechanical resonance and the low sampling rate of the CCD. An approach to improve the stabilization performance of the OSCS control system with load restriction based on three loops, including an acceleration loop, a virtual velocity loop, and a position loop, by using MEMS accelerometers and a CCD is proposed. The velocity signal is obtained by accelerators instead of gyro sensors. Its advantages are low power, low cost, small size, and wide measuring range. A detailed analysis is provided to show how to design the virtual velocity loop and correct virtual velocity loop drift. Experimental results show that the proposed multiloop feedback control method with virtual velocity loop in which the disturbance suppression performance is better than that of the dual loop control with only an acceleration loop and a position loop at low frequency.

  12. Stability analysis of grid-connected PV systems based on impedance frequency response

    OpenAIRE

    Rodríguez Villarreal, José Raúl; Biel Solé, Domingo; Guinjoan Gispert, Francisco

    2011-01-01

    The increase of distributed generation on electric networks has raised the concern of grid stability, among other issues. The PV generators connected to the grid have to deal with varying consumption and generation scenarios, however, this may affect the performance and stability of the generators themselves, as well as the grid. This document presents an analytical stability method to maintain the grid stability by adjusting the generator control parameters based on the ...

  13. The impact of loss sensitivity on a mobile phone supply chain system stability based on the chaos theory

    Science.gov (United States)

    Ma, Junhai; Xie, Lei

    2018-02-01

    This paper, based on the China's communications and the current situation of the mobile phone industry, focuses on the stability of a supply chain system that consists of one supplier and one bounded rational retailer. We explore the influence of the decision makers' loss sensitivity and decision adjustment speed on the stability of the supply chain. It is found that when the retailer is not sensitive to the loss or adjusts decisions cautiously, the system can be stable. The single-retailer model is extended to a multi-retailer one to study the influence of competition on the system stability. The results show that the market share of each retailer does not affect the system stability when it is fixed. The decision of each retailer does not affect that of any other retailer and the system stability. We present two decision adjustment rules (;bounded rationality expectation (BRE); and "adaptive exponential smoothing (AES)") and compare their performances on the system stability, and find that the AES rule does not affect the system stability, while the BRE rule will make the system stability be sensitive to the retailers' loss sensitivity and the decision adjustment speed. We also reveal the unstable system's negative impact on the retailers' decisions and profits, to emphasize the importance to maintain the system stability.

  14. Residue-based Coordinated Selection and Parameter Design of Multiple Power System Stabilizers (PSSs)

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Fang, Jiakun

    2013-01-01

    Residue method is a commonly used approach to design the parameters of a power system stabilizer (PSS). In this paper, a residue identification method is adopted to obtain the system residues for different input-output pairs, using the system identification toolbox in MATLAB with the measurement...... as the test system is built in DIgSIELNT PowerFactory 14.0, in which the proposed coordination method is validated by time domain simulations and modal analysis....... data from time domain simulations. Then a coordinated approach for multiple PSS selection and parameter design based on residue method is proposed and realized in MATLAB m-files. Particle swarm optimization (PSO) is adopted in the coordination process. The IEEE 39-bus New England system model...

  15. RMP model based optimization of power system stabilizers in multi-machine power system.

    Science.gov (United States)

    Baek, Seung-Mook; Park, Jung-Wook

    2009-01-01

    This paper describes the nonlinear parameter optimization of power system stabilizer (PSS) by using the reduced multivariate polynomial (RMP) algorithm with the one-shot property. The RMP model estimates the second-order partial derivatives of the Hessian matrix after identifying the trajectory sensitivities, which can be computed from the hybrid system modeling with a set of differential-algebraic-impulsive-switched (DAIS) structure for a power system. Then, any nonlinear controller in the power system can be optimized by achieving a desired performance measure, mathematically represented by an objective function (OF). In this paper, the output saturation limiter of the PSS, which is used to improve low-frequency oscillation damping performance during a large disturbance, is optimally tuned exploiting the Hessian estimated by the RMP model. Its performances are evaluated with several case studies on both single-machine infinite bus (SMIB) and multi-machine power system (MMPS) by time-domain simulation. In particular, all nonlinear parameters of multiple PSSs on IEEE benchmark two-area four-machine power system are optimized to be robust against various disturbances by using the weighted sum of the OFs.

  16. Robustness and cognition in stabilization problem of dynamical systems based on asymptotic methods

    Science.gov (United States)

    Dubovik, S. A.; Kabanov, A. A.

    2017-01-01

    The problem of synthesis of stabilizing systems based on principles of cognitive (logical-dynamic) control for mobile objects used under uncertain conditions is considered. This direction in control theory is based on the principles of guaranteeing robust synthesis focused on worst-case scenarios of the controlled process. The guaranteeing approach is able to provide functioning of the system with the required quality and reliability only at sufficiently low disturbances and in the absence of large deviations from some regular features of the controlled process. The main tool for the analysis of large deviations and prediction of critical states here is the action functional. After the forecast is built, the choice of anti-crisis control is the supervisory control problem that optimizes the control system in a normal mode and prevents escape of the controlled process in critical states. An essential aspect of the approach presented here is the presence of a two-level (logical-dynamic) control: the input data are used not only for generating of synthesized feedback (local robust synthesis) in advance (off-line), but also to make decisions about the current (on-line) quality of stabilization in the global sense. An example of using the presented approach for the problem of development of the ship tilting prediction system is considered.

  17. Neural-network-based adaptive UPFC for improving transient stability performance of power system.

    Science.gov (United States)

    Mishra, Sukumar

    2006-03-01

    This paper uses the recently proposed H(infinity)-learning method, for updating the parameter of the radial basis function neural network (RBFNN) used as a control scheme for the unified power flow controller (UPFC) to improve the transient stability performance of a multimachine power system. The RBFNN uses a single neuron architecture whose input is proportional to the difference in error and the updating of its parameters is carried via a proportional value of the error. Also, the coefficients of the difference of error, error, and auxiliary signal used for improving damping performance are depicted by a genetic algorithm. The performance of the newly designed controller is evaluated in a four-machine power system subjected to different types of disturbances. The newly designed single-neuron RBFNN-based UPFC exhibits better damping performance compared to the conventional PID as well as the extended Kalman filter (EKF) updating-based RBFNN scheme, making the unstable cases stable. Its simple architecture reduces the computational burden, thereby making it attractive for real-time implementation. Also, all the machines are being equipped with the conventional power system stabilizer (PSS) to study the coordinated effect of UPFC and PSS in the system.

  18. Stabilizing Planar Inverted Pendulum System Based on Fuzzy Nine-point Controller

    OpenAIRE

    Qi Qian; Liu Feng; Tang Yong-chuan; Yang Yang

    2013-01-01

    In order to stabilize planar inverted pendulum, after analyzing the physical characteristics of the planar inverted pendulum system, a pendulum nine-point controller and a car nine-point controller for X-axis and Y-axis were designed respectively. Then a fuzzy coordinator was designed using the fuzzy control theory based on the priority of those two controllers, and the priority level of the pendulum is higher than the car. Thus, the control tasks of each controller in each axis were harmoniz...

  19. Power System Stabilization Control Based on the Wide Area Phasor Measurement

    Science.gov (United States)

    Watanabe, Masayuki; Hashiguchi, Takuhei; Izumi, Takanori; Mitani, Yasunori

    This paper presents a method for tuning of power system stabilizers (PSS) for damping low-frequency oscillations in a multi-machine power system based on the wide area phasor measurement. The authors have developed a method for detecting inter-area low-frequency modes from the measured small oscillation associated with the load fluctuation by approximating oscillations as a coupled vibration model. In this paper, the coupled vibration model is extended for including the effect of PSSs. PSSs are tuned directly by using the extended model since the model includes parameters of PSSs. The advantage of this method is that steady state phasor fluctuations are available to tuning PSSs and assess the effect of the tuning control. In other words, a large disturbance like a line fault is not necessary since the stability of the major modes can be investigated directly by using eigenvalues of the extended model. The identification process does not require the information on the input to the system for perturbation. Some numerical analyses demonstrate the effectiveness of the method by using phasor dynamical data obtained by a power system simulation package.

  20. Stability of linear systems in second-order form based on structure preserving similarity transformations

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Pommer, Christian; Kliem, Wolfhard

    2015-01-01

    of the transformation parameters into a new system (I, B 1, C 1) with a symmetrizable matrix C 1. This procedure facilitates stability investigations. We also consider systems with a Hamiltonian spectrum which discloses marginal stability after a Jordan form preserving transformation.......This paper deals with two stability aspects of linear systems of the form Ix¨+Bx˙+Cx=0 given by the triple (I, B, C). A general transformation scheme is given for a structure and Jordan form preserving transformation of the triple. We investigate how a system can be transformed by suitable choices...

  1. Regional modeling approach for analyzing harmonic stability in radial power electronics based power system

    DEFF Research Database (Denmark)

    Yoon, Changwoo; Bai, Haofeng; Wang, Xiongfei

    2015-01-01

    -function creates an ambiguity of knowing the reason of instability and also there is no fixed way of choosing the sequence of the analysis. This paper suggests a method to perform a regional stability analysis in the distribution power system. The main idea is started from the simplest stability analysis entity...

  2. An active damper for stabilizing power electronics-based AC systems

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Liserre, Marco

    2013-01-01

    The mutual interactions between the parallel grid-connected converters coupled through the grid impedance tend to result in a number of stability and power quality challenges. To address them, this paper proposes an active damper concept based on a low-power, high-bandwidth power converter......-connected converters are carried out. The results validate the stabilizing performance of the active damper....

  3. Stability of dynamical systems

    CERN Document Server

    Liao, Xiaoxin; Yu, P 0

    2007-01-01

    The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems.ʺ Presents

  4. A temperature-dependent gain control system for improving the stability of Si-PM-based PET systems

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Satomi, Junkichi; Watabe, Tadashi; Imaizumi, Masao; Shimosegawa, Eku; Hatazawa, Jun; Watabe, Hiroshi; Kanai, Yasukazu

    2011-01-01

    The silicon-photomultiplier (Si-PM) is a promising photodetector for the development of new PET systems due to its small size, high gain and relatively low sensitivity to the static magnetic field. One drawback of the Si-PM is that it has significant temperature-dependent gain that poses a problem for the stability of the Si-PM-based PET system. To reduce this problem, we developed and tested a temperature-dependent gain control system for the Si-PM-based PET system. The system consists of a thermometer, analog-to-digital converter, personal computer, digital-to-analog converter and variable gain amplifiers in the weight summing board of the PET system. Temperature characteristics of the Si-PM array are measured and the calculated correction factor is sent to the variable gain amplifier. Without this correction, the temperature-dependent peak channel shifts of the block detector were -55% from 20 deg. C to 35 deg.C. With the correction, the peak channel variations were corrected within ±8%. The coincidence count rate of the Si-PM-based PET system was measured using a Na-22 point source while monitoring the room temperature. Without the correction, the count rate inversely changed with the room temperature by 10% for 1.5 deg. C temperature changes. With the correction, the count rate variation was reduced to within 3.7%. These results indicate that the developed temperature-dependent gain control system can contribute to improving the stability of Si-PM-based PET systems.

  5. A temperature-dependent gain control system for improving the stability of Si-PM-based PET systems

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Satomi, Junkichi [Kobe City College of Technology, Kobe (Japan); Watabe, Tadashi; Imaizumi, Masao; Shimosegawa, Eku; Hatazawa, Jun [Department of Nuclear Medicine and Tracer Kinetics, Osaka University, Graduate School of Medicine, Osaka (Japan); Watabe, Hiroshi; Kanai, Yasukazu, E-mail: s-yama@kobe-kosen.ac.jp [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka (Japan)

    2011-05-07

    The silicon-photomultiplier (Si-PM) is a promising photodetector for the development of new PET systems due to its small size, high gain and relatively low sensitivity to the static magnetic field. One drawback of the Si-PM is that it has significant temperature-dependent gain that poses a problem for the stability of the Si-PM-based PET system. To reduce this problem, we developed and tested a temperature-dependent gain control system for the Si-PM-based PET system. The system consists of a thermometer, analog-to-digital converter, personal computer, digital-to-analog converter and variable gain amplifiers in the weight summing board of the PET system. Temperature characteristics of the Si-PM array are measured and the calculated correction factor is sent to the variable gain amplifier. Without this correction, the temperature-dependent peak channel shifts of the block detector were -55% from 20 deg. C to 35 deg.C. With the correction, the peak channel variations were corrected within {+-}8%. The coincidence count rate of the Si-PM-based PET system was measured using a Na-22 point source while monitoring the room temperature. Without the correction, the count rate inversely changed with the room temperature by 10% for 1.5 deg. C temperature changes. With the correction, the count rate variation was reduced to within 3.7%. These results indicate that the developed temperature-dependent gain control system can contribute to improving the stability of Si-PM-based PET systems.

  6. Power system voltage stability and agent based distribution automation in smart grid

    Science.gov (United States)

    Nguyen, Cuong Phuc

    2011-12-01

    Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased inter-area power transfers, aging infrastructure, and old technologies, have caused many problems including voltage instability, widespread blackouts, slow control response, among others. These problems have created an urgent need to transform the present electric power system to a highly stable, reliable, efficient, and self-healing electric power system of the future, which has been termed "smart grid". This dissertation begins with an investigation of voltage stability in bulk transmission networks. A new continuation power flow tool for studying the impacts of generator merit order based dispatch on inter-area transfer capability and static voltage stability is presented. The load demands are represented by lumped load models on the transmission system. While this representation is acceptable in traditional power system analysis, it may not be valid in the future smart grid where the distribution system will be integrated with intelligent and quick control capabilities to mitigate voltage problems before they propagate into the entire system. Therefore, before analyzing the operation of the whole smart grid, it is important to understand the distribution system first. The second part of this dissertation presents a new platform for studying and testing emerging technologies in advanced Distribution Automation (DA) within smart grids. Due to the key benefits over the traditional centralized approach, namely flexible deployment, scalability, and avoidance of single-point-of-failure, a new distributed approach is employed to design and develop all elements of the platform. A multi-agent system (MAS), which has the three key characteristics of autonomy, local view, and decentralization, is selected to implement the advanced DA functions. The intelligent agents utilize a communication network for cooperation and

  7. Financial System Stability

    OpenAIRE

    Freund, Christian

    2017-01-01

    Three essays on financial system stability. The first paper explores the stability of core-periphery interbank networks in a static simulation framework. The results are then compared to a meanfield approximation. While this proves accurate in early rounds of default, precision of this approximation suffers as the simulation evolves. The second essay contributes to the empirical literature on real-world economic and financial networks. We explore the topology of the Spanish bank-firm credi...

  8. Predictor-based stabilization for chained form systems with input time delay

    Directory of Open Access Journals (Sweden)

    Mnif Faïçal

    2016-12-01

    Full Text Available This note addresses the stabilization problem of nonlinear chained-form systems with input time delay. We first employ the so-called σ-process transformation that renders the feedback system under a linear form. We introduce a particular transformation to convert the original system into a delay-free system. Finally, we apply a state feedback control, which guarantees a quasi-exponential stabilization to all the system states, which in turn converge exponentially to zero. Then we employ the so-called -type control to achieve a quasi-exponential stabilization of the subsequent system. A simulation example illustrated on the model of a wheeled mobile robot is provided to demonstrate the effectiveness of the proposed approach.

  9. Continuous uniformly finite time exact disturbance observer based control for fixed-time stabilization of nonlinear systems with mismatched disturbances.

    Science.gov (United States)

    Ni, Junkang; Liu, Chongxin; Liu, Hang

    2017-01-01

    This paper presents a continuous composite control scheme to achieve fixed-time stabilization for nonlinear systems with mismatched disturbances. The composite controller is constructed in two steps: First, uniformly finite time exact disturbance observers are proposed to estimate and compensate the disturbances. Then, based on adding a power integrator technique and fixed-time stability theory, continuous fixed-time stable state feedback controller and Lyapunov functions are constructed to achieve global fixed-time system stabilization. The proposed control method extends the existing fixed-time stable control results to high order nonlinear systems with mismatched disturbances and achieves global fixed-time system stabilization. Besides, the proposed control scheme improves the disturbance rejection performance and achieves performance recovery of nominal system. Simulation results are provided to show the effectiveness, the superiority and the applicability of the proposed control scheme.

  10. Optimal robust stabilizer design based on UPFC for interconnected power systems considering time delay

    Directory of Open Access Journals (Sweden)

    Koofigar Hamid Reza

    2017-09-01

    Full Text Available A robust auxiliary wide area damping controller is proposed for a unified power flow controller (UPFC. The mixed H2 / H∞ problem with regional pole placement, resolved by linear matrix inequality (LMI, is applied for controller design. Based on modal analysis, the optimal wide area input signals for the controller are selected. The time delay of input signals, due to electrical distance from the UPFC location is taken into account in the design procedure. The proposed controller is applied to a multi-machine interconnected power system from the IRAN power grid. It is shown that the both transient and dynamic stability are significantly improved despite different disturbances and loading conditions.

  11. Effectiveness of cement-based systems for stabilization and solidification of spent pot liner inorganic fraction.

    Science.gov (United States)

    Silveira, B I; Dantas, A E M; Blasques, J E M; Santos, R K P

    2003-03-17

    Approximately 7000 t of spent pot liner (SPL) wastes are generated annually from activities associated with Alumi;nio Brasileiro S.A. (ALBRAS) plant located at Barcarena, Pará state, Brazil. The inorganic fraction of SPL contains high level of toxic compounds like cyanide and fluoride; its safe disposal has been the subject of serious discussions in Brazil. This study evaluated the option of a cement-based stabilization/solidification system as an effective means for safe disposal of SPL inorganic fraction in the field. The studies were carried out with concrete hexagonal blocks manufactured with a constant mass of 10% (w/w) of waste, 20% (w/w) of cement, and varied percentages of water, coarse aggregate, sand, and additives. The concrete matrices porosity and compressive strength were controlled by using microsilica (MS) and superplaticizer (SP). The results showed an average pH values for the SPL inorganic fraction and fragmented blocks of 10.2 and 11.1, respectively. Mixing the waste with concrete ingredients the solidification/stabilization effectiveness for the leachable cyanides and fluorides were of 59.33 and 57.95%, respectively. The results showed that the water/cement (W/C) ratio reduction through superplasticizer addition improved the compressive strength and the required value of 35 MPa was reached with blocks manufactured with 10 and 15% (weight of cement) of microsilica, after 28 days of curing time. Copyright 2003 Elsevier Science B.V.

  12. A miniature frequency-stabilized VCSEL system emitting at 795 nm based on LTCC modules

    Science.gov (United States)

    Gruet, Florian; Vecchio, Fabrizio; Affolderbach, Christoph; Pétremand, Yves; de Rooij, Nico F.; Maeder, Thomas; Mileti, Gaetano

    2013-08-01

    We present a compact frequency-stabilized laser system locked to the Rubidium absorption line of a micro-fabricated reference cell. A printed circuit board (PCB) is used to carry all the components and part of the electronics, and low-temperature co-fired ceramic (LTCC) modules are used to temperature-stabilize the laser diode and the miniature Rubidium cell (cell inner dimensions: 5 mm diameter and 2 mm height). The measured frequency stability of the laser, in terms of Allan deviation, is ≤8×10-10 for integration times of 103-105s. The current overall dimensions of the system are 70×40×50 mm3, with good potential for realization of a frequency-stabilized laser module with few cm3 volume.

  13. Stability of position-based bilateral telemanipulation systems by damping injection

    NARCIS (Netherlands)

    Franken, M.C.J.; Misra, Sarthak; Stramigioli, Stefano

    2012-01-01

    In this paper two different approaches to guarantee stability of bilateral telemanipulation systems are discussed. Both approaches inject damping into the system to guarantee passivity of the interaction with the device in the presence of time delays in the communication channel. The first approach

  14. Coordination of Series and Shunt Flexible AC Transmission System Devices Based Voltage Source Converter for Improving Power System Stability

    OpenAIRE

    Prechanon Kumkratug

    2011-01-01

    Abstract: Problem statement: Static Synchronous Compensator (STATCOM) and Static Synchronous Series Compensator (SSSC) have been individually applied to improve stability of power system. Approach: This study presents the coordination of a STATCOM and SSSC for improving power system stability. The swing curves of the three phase faulted power system with various cases are tested and compared. Results: The swing curve of system without FACTS devices has undamped oscill...

  15. Design of Anti-Windup Compensator for Energy Storage-Based Damping Controller to Enhance Power System Stability

    DEFF Research Database (Denmark)

    Fang, Jiakun; Yao, Wei; Chen, Zhe

    2014-01-01

    The application of energy storage (ES) in power system is limited due to the high cost of the ES device, which exponentially increases with its capacity. This paper is to improve the saturation-dependent stability of the power system equipped with the energy storage based damping controller (ESDC...

  16. Wind Turbine Control Impact on Stability of Wind Farms Based on Real-Life Systems Analysis

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2012-01-01

    that wind farm components such as long HVAC cables and park transformers can introduce significant low-frequency series resonances seen form the wind turbine terminals which can affect wind turbine control system operation and overall wind farm stability. The same wind turbine converter control strategy...

  17. Stability analysis and compensation of network-induced delays in communication-based power system control: A survey.

    Science.gov (United States)

    Liu, Shichao; Liu, Peter Xiaoping; Wang, Xiaoyu

    2017-01-01

    This survey is to summarize and compare existing and recently emerging approaches for the analysis and compensation of the effects of network-induced delays on the stability and performance of communication-based power control systems. Several important communication-based power control systems are briefly introduced. The deterministic and stochastic methodologies of analyzing the impacts of network-induced delays on the stability of the communication-based power control systems are summarized and compared. A variety of control approaches are reviewed and compared for mitigating the effects of network-induced delays, depending on several design requirements, such as model dependence and design difficulty. The summary and comparison of these control approaches in this survey provide researchers and utilities valuable guidance for designing advanced communication-based power control systems in the future. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. New stability and stabilization for switched neutral control systems

    International Nuclear Information System (INIS)

    Xiong Lianglin; Zhong Shouming; Ye Mao; Wu Shiliang

    2009-01-01

    This paper concerns stability and stabilization issues for switched neutral systems and presents new classes of piecewise Lyapunov functionals and multiple Lyapunov functionals, based on which, two new switching rules are introduced to stabilize the neutral systems. One switching rule is designed from the solution of the so-called Lyapunov-Metzler linear matrix inequalities. The other is based on the determination of average dwell time computed from a new class of linear matrix inequalities (LMIs). And then, state-feedback control is derived for the switched neutral control system mainly based on the state switching rules. Finally, three examples are given to demonstrate the effectiveness of the proposed method.

  19. Stabilization of Neural-Network-Based Control Systems via Event-Triggered Control With Nonperiodic Sampled Data.

    Science.gov (United States)

    Hu, Songlin; Yue, Dong; Xie, Xiangpeng; Ma, Yong; Yin, Xiuxia

    2018-03-01

    This paper focuses on a problem of event-triggered stabilization for a class of nonuniformly sampled neural-network-based control systems (NNBCSs). First, a new event-triggered data transmission mechanism is designed based on the nonperiodic sampled data. Different from the previous works, the proposed triggering scheme enables the NNBCSs design to enjoy the advantages of both nonuniform and event-triggered sampling schemes. Second, under the nonperiodic event-triggered data transmission scheme, the nonperiodic sampled-data three-layer fully connected feedforward neural-network (TLFCFFNN)-based event-triggered controller is constructed, and the resulting closed-loop TLFCFFNN-based event-triggered control system is modeled as a state delay system based on time-delay system modeling approach. Then, the stability criteria for the closed-loop system is formulated using Lyapunov-Krasovskii functional approach. Third, the sufficient conditions for the codesign of the TLFCFFNN-based controller and triggering parameters are given in terms of solvability of matrix inequalities to guarantee the asymptotical stability of the closed-loop system and an upper bound on the given cost function while reducing the updates of the controller. Finally, three numerical examples are provided to illustrate the effectiveness and benefits of the proposed results.

  20. Optimum Design of Power System Stabilizer based on Improved Ant Colony Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Ruba AL-MulaHumadi

    2018-01-01

    Full Text Available This paper presents an improved technique on Ant Colony Optimization (ACO algorithm. The procedure is applied on Single Machine with Infinite Bus (SMIB system with power system stabilizer (PSS at three different loading regimes. The simulations are made by using MATLAB software. The results show that by using Improved Ant Colony Optimization (IACO the system will give better performance with less number of iterations as it compared with a previous modification on ACO. In addition, the probability of selecting the arc depends on the best ant performance and the evaporation rate.

  1. Design of a Stability Augmentation System for an Unmanned Helicopter Based on Adaptive Control Techniques

    Directory of Open Access Journals (Sweden)

    Shouzhao Sheng

    2015-09-01

    Full Text Available The task of control of unmanned helicopters is rather complicated in the presence of parametric uncertainties and measurement noises. This paper presents an adaptive model feedback control algorithm for an unmanned helicopter stability augmentation system. The proposed algorithm can achieve a guaranteed model reference tracking performance and speed up the convergence rates of adjustable parameters, even when the plant parameters vary rapidly. Moreover, the model feedback strategy in the algorithm further contributes to the improvement in the control quality of the stability augmentation system in the case of low signal to noise ratios, mainly because the model feedback path is noise free. The effectiveness and superiority of the proposed algorithm are demonstrated through a series of tests.

  2. Neural Network Based Finite-Time Stabilization for Discrete-Time Markov Jump Nonlinear Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2013-01-01

    Full Text Available This paper deals with the finite-time stabilization problem for discrete-time Markov jump nonlinear systems with time delays and norm-bounded exogenous disturbance. The nonlinearities in different jump modes are parameterized by neural networks. Subsequently, a linear difference inclusion state space representation for a class of neural networks is established. Based on this, sufficient conditions are derived in terms of linear matrix inequalities to guarantee stochastic finite-time boundedness and stochastic finite-time stabilization of the closed-loop system. A numerical example is illustrated to verify the efficiency of the proposed technique.

  3. Stability Analysis of Wireless Measurement and Control System Based on Dynamic Matrix

    Directory of Open Access Journals (Sweden)

    Yongxian SONG

    2014-01-01

    Full Text Available Focus on data packet loss and time delay problems in wireless greenhouse measurement and control system, and temperature and humidity were taken as the research objects, the model of temperature and humidity information transmission was set up by decoupling technology according to the characteristics of wireless greenhouse measurement and control system. According to related theory of exponential stability in network control system, the stability conditions judgment of temperature and humidity control model was established, the linear matrix inequality that time delay and packet loss should satisfy was obtained when wireless measurement and control system was stable operation. The feasibility analysis of linear matrix inequality (LMI was implemented Using LMI toolbox in MATLAB, and the critical values of time delay and packet loss rate were obtained when the system was stable operation. The wireless sensor network control system simulation model with time delay and packet loss was set up using TrueTime toolbox. The simulation results have shown that the system was in a stable state when time delay and packet loss rate obtained were less than the critical values in wireless greenhouse sensor network measurement and control system; With the increase of time delay and packet loss rate, and stable performance drops; When time delay and packet loss rate obtained were more than the critical values, the measurement and control system would be in a state of flux, and when it was serious, even can lead to collapse of the whole system. As a result, the critical values determination of time delay and packet loss rate provided a theoretical basis for establishing stable greenhouse wireless sensor network (WSN measurement and control system in practical application.

  4. Bagging system, soil stabilization mat, and tent frame for a lunar base

    Science.gov (United States)

    1990-01-01

    Georgia Tech's School of Textile and Fiber Engineering and School of Mechanical Engineering participated in four cooperative design efforts this year. Each of two interdisciplinary teams designed a system consisting of a lunar regolith bag and an apparatus for filling this bag. The third group designed a mat for stabilization of lunar soil during takeoff and landing, and a method for packaging and deploying this mat. Finally, the fourth group designed a sunlight diffusing tent to be used as a lunar worksite. Summaries of these projects are given.

  5. Micro-electro-mechanical-system (MEMS)-based fiber optic grating sensor for improving weapon stabilization and fire control

    Science.gov (United States)

    Zhang, Sean Z.; Xu, Guoda; Qui, Wei; Lin, Freddie S.; Testa, Robert C.; Mattice, Michael S.

    2000-06-01

    A MEMS-based fiber optic grating sensor (FOGS) for improving weapon stabilization and fire control has been investigated and developed. The technique overwrites two fiber Bragg gratings (FBGs) onto a polarization-preserving optical fiber core. A MEMS diaphragm is fabricated and integrated with the overlaid FBGs to enhance the performance and reliability of the sensor. A simulation model for the MEMS-FOGS was derived, and simulation results concerning load, angle, strain, and temperature were obtained. The fabricated MEMS diaphragm and the overlaid FBGs are packaged together and mounted on a specially designed cantilever beam system. User-friendly software for sensing system design and data analysis has been developed and can be used to control other sensing systems. The combined multifunctional sensitive. The fully developed sensing system is expected to find applications in fire control, weapon stabilization, and other areas where accurately sensing strain and temperature is critical.

  6. Study of toluene stability for an Organic Rankine Cycle (ORC) space-based power system

    Science.gov (United States)

    Havens, Vance; Ragaller, Dana

    1988-01-01

    The design, fabrication, assembly, and endurance operation of a dynamic test loop, built to evaluate the thermal stability of a proposed Organic Rankine Cycle (ORC) working fluid, is discussed. The test fluid, toluene, was circulated through a heater, simulated turbine, regenerator, condenser and pump to duplicate an actual ORC system. The maximum nominal fluid temperature, 750 F, was at the turbine simulator inlet. Samples of noncondensible gases and liquid toluene were taken periodically during the test. The samples were analyzed to identify the degradation products formed and the quantity of these products. From these data it was possible to determine the degradation rate of the working fluid and the generation rate of noncondensible gases. A further goal of this work was to relate the degradation observed in the dynamic operating loop to degradation obtained in isothermal capsule tests. This relationship was the basis for estimating the power loop degradation in the Space Station Organic Rankine Cycle system.

  7. Fuzzy stability and synchronization of hyperchaos systems

    International Nuclear Information System (INIS)

    Wang Junwei; Xiong Xiaohua; Zhao Meichun; Zhang Yanbin

    2008-01-01

    This paper studies stability and synchronization of hyperchaos systems via a fuzzy-model-based control design methodology. First, we utilize a Takagi-Sugeno fuzzy model to represent a hyperchaos system. Second, we design fuzzy-model-based controllers for stability and synchronization of the system, based on so-called 'parallel distributed compensation (PDC)'. Third, we reduce a question of stabilizing and synchronizing hyperchaos systems to linear matrix inequalities (LMI) so that convex programming techniques can solve these LMIs efficiently. Finally, the generalized Lorenz hyperchaos system is employed to illustrate the effectiveness of our designing controller

  8. Diagonal recurrent neural network based adaptive control of nonlinear dynamical systems using lyapunov stability criterion.

    Science.gov (United States)

    Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P

    2017-03-01

    In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Energy Management System Based on Fuzzy fractional order PID Controller for Transient Stability Improvement in Microgrids with Energy Storage

    DEFF Research Database (Denmark)

    Moafi, Milad; Marzband, Mousa; Savaghebi, Mehdi

    2016-01-01

    in the islanded Microgrid (MG). To increase performance for a wide range of power system operating conditions, an energy management systems (EMS) is proposed based on a fuzzy fractional order PID (FFOPID) controller. It is able to analyze and simulate the dynamic behavior in grid connected MGs. This controller...... combined with a PID-controller (termed as FLPID) and Fuzzy fractional order PID (termed as FFOPID) are implemented according to the characteristics and limitations of overloading and state of charge (SOC). The obtained results show good performance of FFOPID controllers by improving the transient stability...... following a fault that has caused the islanded operation. Simulation results have validated the effectiveness of FFOPID controllers in the system under several scenarios with superior stabilization and more robustness in comparison with the FLPID and PID controller....

  10. An Information Theory-Based Approach to Assessing the Sustainability and Stability of an Island System

    Science.gov (United States)

    It is well-documented that a sustainable system is based on environmental stewardship, economic viability and social equity. What is often overlooked is the need for continuity such that desirable system behavior is maintained with mechanisms in place that facilitate the ability ...

  11. Cyclodextrin-grafted barium titanate nanoparticles for improved dispersion and stabilization in water-based systems

    Science.gov (United States)

    Serra-Gómez, R.; Martinez-Tarifa, J. M.; González-Benito, J.; González-Gaitano, G.

    2016-01-01

    Ceramic nanoparticles with piezoelectric properties, such as BaTiO3 (BT), constitute a promising approach in the fields of nanocomposite materials and biomaterials. In the latter case, to be successful in their preparation, the drawback of their fast aggregation and practically null stability in water has to be overcome. The objective of this investigation has been the surface functionalization of BaTiO3 nanoparticles with cyclodextrins (CDs) as a way to break the aggregation and improve the stability of the nanoparticles in water solution, preventing and minimizing their fast precipitation. As a secondary goal, we have achieved extra-functionality of the nanoparticles, bestowed from the hydrophobic cavity of the macrocycle, which is able to lodge guest molecules that can form inclusion complexes with the oligosaccharide. The nanoparticle functionalization has been fully tracked and characterized, and the cytotoxicity of the modified nanoparticles with fibroblasts and pre-osteoblasts cell lines has been assessed with excellent results in a wide range of concentrations. The modified nanoparticles were found to be suitable for the easy preparation of nanocomposite hydrogels, via dispersion in hydrophilic polymers of typical use in biomedical applications (PEG, Pluronics, and PEO), and further processed in the form of films via water casting, showing very good results in terms of homogeneity in the dispersion of the filler. Likewise, as examples of application and with the aim of exploring a different range of nanocomposites, rhodamine B was included in the macrocycles as a model molecule, and films prepared from a thermoplastic matrix (EVA) via high-energy ball milling have been tested by impedance spectroscopy to discuss their dielectric properties, which indicated that even small modifications in the surface of the nanoparticles generate a different kind of interaction with the polymeric matrix. The CD-modified nanoparticles are thus suitable for easy preparation

  12. Cyclodextrin-grafted barium titanate nanoparticles for improved dispersion and stabilization in water-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Serra-Gómez, R. [Universidad de Navarra, Departamento de Química y Edafología (Spain); Martinez-Tarifa, J. M. [Universidad Carlos III de Madrid, Departamento de Ingeniería Eléctrica (Spain); González-Benito, J. [Universidad Carlos III de Madrid, Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, IQMAAB (Spain); González-Gaitano, G., E-mail: gaitano@unav.es [Universidad de Navarra, Departamento de Química y Edafología (Spain)

    2016-01-15

    Ceramic nanoparticles with piezoelectric properties, such as BaTiO{sub 3} (BT), constitute a promising approach in the fields of nanocomposite materials and biomaterials. In the latter case, to be successful in their preparation, the drawback of their fast aggregation and practically null stability in water has to be overcome. The objective of this investigation has been the surface functionalization of BaTiO{sub 3} nanoparticles with cyclodextrins (CDs) as a way to break the aggregation and improve the stability of the nanoparticles in water solution, preventing and minimizing their fast precipitation. As a secondary goal, we have achieved extra-functionality of the nanoparticles, bestowed from the hydrophobic cavity of the macrocycle, which is able to lodge guest molecules that can form inclusion complexes with the oligosaccharide. The nanoparticle functionalization has been fully tracked and characterized, and the cytotoxicity of the modified nanoparticles with fibroblasts and pre-osteoblasts cell lines has been assessed with excellent results in a wide range of concentrations. The modified nanoparticles were found to be suitable for the easy preparation of nanocomposite hydrogels, via dispersion in hydrophilic polymers of typical use in biomedical applications (PEG, Pluronics, and PEO), and further processed in the form of films via water casting, showing very good results in terms of homogeneity in the dispersion of the filler. Likewise, as examples of application and with the aim of exploring a different range of nanocomposites, rhodamine B was included in the macrocycles as a model molecule, and films prepared from a thermoplastic matrix (EVA) via high-energy ball milling have been tested by impedance spectroscopy to discuss their dielectric properties, which indicated that even small modifications in the surface of the nanoparticles generate a different kind of interaction with the polymeric matrix. The CD-modified nanoparticles are thus suitable for easy

  13. Stabilization of lead in an alkali-activated municipal solid waste incineration fly ash-Pyrophyllite-based system.

    Science.gov (United States)

    Shiota, Kenji; Nakamura, Takafumi; Takaoka, Masaki; Aminuddin, Siti Fatimah; Oshita, Kazuyuki; Fujimori, Takashi

    2017-10-01

    This work focuses on the stabilization and speciation of lead (Pb) in a composite solid produced from an alkali-activated municipal solid waste incineration fly ash (MSWIFA)-pyophyllite-based system. The solid product was synthesized after mixtures of raw materials (dehydrated pyrophyllite, MSWIFA, 14 mol/L aqueous sodium hydroxide, and sodium silicate solution) were cured at 105 °C for 24 h. The product could reduce the leaching of Pb and the Pb concentration in the leachate was 7.0 × 10 -3 using the Japanese leaching test and 9.7 × 10 -4  mg/L using toxicity characteristics leaching procedure method, which satisfied the respective test criteria and successfully stabilized Pb in this system. The solid product had a compressive strength of 2 MPa and consisted mainly of crystalline phases. Scanning electron microscopy with X-ray analysis and X-ray absorption fine structure suggested that Pb was present along with Al, Si, and O, and that the atomic environment around the Pb was similar to that of PbSiO 3 . These results suggest that the alkali-activated MSWIFA-pyrophyllite-based system could be used to stabilize Pb in MSWIFA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Improvement of the dynamic behavior of large-scale power systems by using robust power system stabilizers based on fuzzy logic

    Directory of Open Access Journals (Sweden)

    Miguel Ramirez-Gonzalez

    2015-01-01

    Full Text Available In this paper, the effect of fuzzy logic-based robust power system stabilizers on the improvement of the dynamics of a large-scale power system is investigated. The study is particularly focused on the Mexican Interconnected System and on adding damping to two critical inter-area system oscillation modes: The north-south mode and the western-peninsular mode. The fuzzy power system stabilizers (FPSSs applied here are based on a significantly reduced rule base, small number of tuning parameters, and simple control algorithm and architecture, which makes their design and implementation easier and suitable for practical applications. Non-linear time-domain simulations for a set of test cases and results from Prony Analysis verify the robustness of the designed FPSSs, as compared to conventional PSSs.

  15. TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability

    DEFF Research Database (Denmark)

    Yao, Wei; Fang, Jiakun; Zhao, Ping

    2013-01-01

    the characteristics of the conventional PID, but adjust the parameters of PID controller online using identified Jacobian information from RBFNN. Hence, it has strong adaptability to the variation of the system operating condition. The effectiveness of the proposed controller is tested on a two-machine five-bus power......In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have...... system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency...

  16. Impact Study of PMSG-Based Wind Power Penetration on Power System Transient Stability Using EEAC Theory

    Directory of Open Access Journals (Sweden)

    Zhongyi Liu

    2015-11-01

    Full Text Available Wind turbines with direct-driven permanent magnet synchronous generators (PMSGs are widely used in wind power generation. According to the dynamic characteristics of PMSGs, an impact analysis of PMSG-based wind power penetration on the transient stability of multi-machine power systems is carried out in this paper based on the theory of extended equal area criterion (EEAC. Considering the most severe PMSG integration situation, the changes in the system’s equivalent power-angle relationships after integrating PMSGs are studied in detail. The system’s equivalent mechanical input power and the fault period electrical output power curves are found to be mainly affected. The analysis demonstrates that the integration of PMSGs can cause either detrimental or beneficial effects on the system transient stability. It is determined by several factors, including the selection of the synchronous generators used to balance wind power, the reactive power control mode of PMSGs and the wind power penetration level. Two different simulation systems are also adopted to verify the analysis results.

  17. Lutein-enriched emulsion-based delivery systems: Influence of pH and temperature on physical and chemical stability.

    Science.gov (United States)

    Davidov-Pardo, Gabriel; Gumus, Cansu Ekin; McClements, David Julian

    2016-04-01

    Lutein may be utilized in foods as a natural pigment or nutraceutical ingredient to improve eye health. Nevertheless, its use is limited by its poor water-solubility and chemical instability. We evaluated the effect of storage temperature and pH on the physical and chemical stability of lutein-enriched emulsions prepared using caseinate. The emulsions (initial droplet diameter=232 nm) remained physically stable at all incubation temperatures (5-70 °C); however the chemical degradation of lutein increased with increasing temperature (activation energy=38 kJ/mol). Solution pH had a major impact on the physical stability of the emulsions, causing droplet aggregation at pH 4 and 5. Conversely, the chemical stability of lutein was largely independent of the pH, with only a slight decrease in degradation at pH 8. This work provides important information for the rational design of emulsion-based delivery systems for a lipophilic natural dye and nutraceutical. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Practical design of SMES controller for improving power system stability based on wide area synchronized phasor measurement

    Energy Technology Data Exchange (ETDEWEB)

    Dechanupaprittha, S.; Watanabe, M.; Mitani, Y. [Kyushu Inst. of Technology, Kitakyushu-shi, Fukuoka (Japan); Hongesombut, K. [Tokyo Electric Power Company, Tokyo (Japan); Ngamroo, I. [King Mongkut' s Inst. of Technhology, Ladkrabang (Thailand)

    2007-07-01

    Various load demands with abrupt changes adversely affects power system operations and control, which can lead to significant problems such as system frequency oscillations due to insufficient system damping. In interconnected power systems, a local frequency control is needed in a given area. In addition, fluctuations of tie-line power flow should be stabilized. Superconducting magnetic energy storage (SMES) can be used as an effective device to exchange electrical energy with a power system. Wide area monitoring of power systems based on multiple synchronized phasor measurements such as the phasor measurement unit (PMU) using the global positioning system (GPS) offers the possibility of data synchronization at a common time reference. With the GPS, oscillation modes can be detected from measured data by modeling measured data as a coupled vibration model (CVM). This paper presented a practical design of a SMES controller based on wide area synchronized phasor measurement. The CVM can be used to represents an estimated power system model that is used for tuning SMES controller parameters. In addition, it can be used to evaluate the performance and effectiveness of the designed controller in the power system. For the desired damping performance, the controller parameters were optimally tuned using a heuristic optimization method, called a TABU search algorithm. A simulation study was then conducted in order to show and confirm the effectiveness of the design method on a two-area four machine power system. The paper explained the controller design methodology and discussed the application to a two-area, four-machine power system. The simulation revealed that the proposed design method could be implemented in a practical manner. 11 refs., 3 tabs., 7 figs.

  19. Brief analysis of Jiangsu grid security and stability based on multi-infeed DC index in power system

    Science.gov (United States)

    Zhang, Wenjia; Wang, Quanquan; Ge, Yi; Huang, Junhui; Chen, Zhengfang

    2018-02-01

    The impact of Multi-infeed HVDC has gradually increased to security and stability operating in Jiangsu power grid. In this paper, an appraisal method of Multi-infeed HVDC power grid security and stability is raised with Multi-Infeed Effective Short Circuit Ratio, Multi-Infeed Interaction Factor and Commutation Failure Immunity Index. These indices are adopted in security and stability simulating calculation of Jiangsu Multi-infeed HVDC system. The simulation results indicate that Jiangsu power grid is operating with a strong DC system. It has high level of power grid security and stability, and meet the safety running requirements. Jinpin-Suzhou DC system is located in the receiving end with huge capacity, which is easily leading to commutation failure of the transmission line. In order to resolve this problem, dynamic reactive power compensation can be applied in power grid near Jinpin-Suzhou DC system. Simulation result shows this method is feasible to commutation failure.

  20. Model predictive controller-based multi-model control system for longitudinal stability of distributed drive electric vehicle.

    Science.gov (United States)

    Shi, Ke; Yuan, Xiaofang; Liu, Liang

    2018-01-01

    Distributed drive electric vehicle(DDEV) has been widely researched recently, its longitudinal stability is a very important research topic. Conventional wheel slip ratio control strategies are usually designed for one special operating mode and the optimal performance cannot be obtained as DDEV works under various operating modes. In this paper, a novel model predictive controller-based multi-model control system (MPC-MMCS) is proposed to solve the longitudinal stability problem of DDEV. Firstly, the operation state of DDEV is summarized as three kinds of typical operating modes. A submodel set is established to accurately represent the state value of the corresponding operating mode. Secondly, the matching degree between the state of actual DDEV and each submodel is analyzed. The matching degree is expressed as the weight coefficient and calculated by a modified recursive Bayes theorem. Thirdly, a nonlinear MPC is designed to achieve the optimal wheel slip ratio for each submodel. The optimal design of MPC is realized by parallel chaos optimization algorithm(PCOA)with computational accuracy and efficiency. Finally, the control output of MPC-MMCS is computed by the weighted output of each MPC to achieve smooth switching between operating modes. The proposed MPC-MMCS is evaluated on eight degrees of freedom(8DOF)DDEV model simulation platform and simulation results of different condition show the benefits of the proposed control system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. On formalism and stability of switched systems

    DEFF Research Database (Denmark)

    Leth, John-Josef; Wisniewski, Rafal

    2012-01-01

    In this paper, we formulate a uniform mathematical framework for studying switched systems with piecewise linear partitioned state space and state dependent switching. Based on known results from the theory of differential inclusions, we devise a Lyapunov stability theorem suitable for this class...... of switched systems. With this, we prove a Lyapunov stability theorem for piecewise linear switched systems by means of a concrete class of Lyapunov functions. Contrary to existing results on the subject, the stability theorems in this paper include Filippov (or relaxed) solutions and allow infinite switching...... in finite time. Finally, we show that for a class of piecewise linear switched systems, the inertia of the system is not sufficient to determine its stability. A number of examples are provided to illustrate the concepts discussed in this paper....

  2. EMTP based stability analysis of space station electric power system in a test bed environment

    Science.gov (United States)

    Dravid, Narayan V.; Kacpura, Thomas J.; Oconnor, Andrew M.

    1992-01-01

    The Space Station Freedom Electric Power System (EPS) will convert solar energy into electric energy and distribute the same using an 'all dc', Power Management and Distribution (PMAD) System. Power conditioning devices (dc to dc converters) are needed to interconnect parts of this system operating at different nominal voltage levels. Operation of such devices could generate under damped oscillations (instability) under certain conditions. Criteria for instability are examined and verified for a single device. Suggested extension of the criteria to a system operation is examined by using the EMTP model of the PMAD DC test bed. Wherever possible, data from the test bed is compared with the modeling results.

  3. Morocco; Financial System Stability Assessment

    OpenAIRE

    International Monetary Fund

    2003-01-01

    The Financial System Stability Assessment of Morocco reviews the reform program that is aimed at establishing a modern, market-oriented financial system that optimizes the mobilization of savings and the allocation of financial resources. It reviews the modernization of the banking sector and the development of competition within the sector, development of financial markets, and removal of constraints on financial system activity. It also provides reports on the Observance of Standards and Co...

  4. Stability analysis of spacecraft power systems

    Science.gov (United States)

    Halpin, S. M.; Grigsby, L. L.; Sheble, G. B.; Nelms, R. M.

    1990-01-01

    The problems in applying standard electric utility models, analyses, and algorithms to the study of the stability of spacecraft power conditioning and distribution systems are discussed. Both single-phase and three-phase systems are considered. Of particular concern are the load and generator models that are used in terrestrial power system studies, as well as the standard assumptions of load and topological balance that lead to the use of the positive sequence network. The standard assumptions regarding relative speeds of subsystem dynamic responses that are made in the classical transient stability algorithm, which forms the backbone of utility-based studies, are examined. The applicability of these assumptions to a spacecraft power system stability study is discussed in detail. In addition to the classical indirect method, the applicability of Liapunov's direct methods to the stability determination of spacecraft power systems is discussed. It is pointed out that while the proposed method uses a solution process similar to the classical algorithm, the models used for the sources, loads, and networks are, in general, more accurate. Some preliminary results are given for a linear-graph, state-variable-based modeling approach to the study of the stability of space-based power distribution networks.

  5. Stability analysis of nonlinear systems

    CERN Document Server

    Lakshmikantham, Vangipuram; Martynyuk, Anatoly A

    2015-01-01

    The book investigates stability theory in terms of two different measure, exhibiting the advantage of employing families of Lyapunov functions and treats the theory of a variety of inequalities, clearly bringing out the underlying theme. It also demonstrates manifestations of the general Lyapunov method, showing how this technique can be adapted to various apparently diverse nonlinear problems. Furthermore it discusses the application of theoretical results to several different models chosen from real world phenomena, furnishing data that is particularly relevant for practitioners. Stability Analysis of Nonlinear Systems is an invaluable single-sourse reference for industrial and applied mathematicians, statisticians, engineers, researchers in the applied sciences, and graduate students studying differential equations.

  6. The spectrin-based membrane skeleton stabilizes mouse megakaryocyte membrane systems and is essential for proplatelet and platelet formation

    Science.gov (United States)

    Patel-Hett, Sunita; Wang, Hongbei; Begonja, Antonija J.; Thon, Jonathan N.; Alden, Eva C.; Wandersee, Nancy J.; An, Xiuli; Mohandas, Narla; Hartwig, John H.

    2011-01-01

    Megakaryocytes generate platelets by remodeling their cytoplasm first into proplatelets and then into preplatelets, which undergo fission to generate platelets. Although the functions of microtubules and actin during platelet biogenesis have been defined, the role of the spectrin cytoskeleton is unknown. We investigated the function of the spectrin-based membrane skeleton in proplatelet and platelet production in murine megakaryocytes. Electron microscopy revealed that, like circulating platelets, proplatelets have a dense membrane skeleton, the main fibrous component of which is spectrin. Unlike other cells, megakaryocytes and their progeny express both erythroid and nonerythroid spectrins. Assembly of spectrin into tetramers is required for invaginated membrane system maturation and proplatelet extension, because expression of a spectrin tetramer–disrupting construct in megakaryocytes inhibits both processes. Incorporation of this spectrin-disrupting fragment into a novel permeabilized proplatelet system rapidly destabilizes proplatelets, causing blebbing and swelling. Spectrin tetramers also stabilize the “barbell shapes” of the penultimate stage in platelet production, because addition of the tetramer-disrupting construct converts these barbell shapes to spheres, demonstrating that membrane skeletal continuity maintains the elongated, pre-fission shape. The results of this study provide evidence for a role for spectrin in different steps of megakaryocyte development through its participation in the formation of invaginated membranes and in the maintenance of proplatelet structure. PMID:21566095

  7. Stability, rheology and thermal analysis of functionalized alumina- thermal oil-based nanofluids for advanced cooling systems

    International Nuclear Information System (INIS)

    Ilyas, Suhaib Umer; Pendyala, Rajashekhar; Narahari, Marneni; Susin, Lim

    2017-01-01

    Highlights: • Alumina nanoparticles are functionalized with oleic acid. • Functionalization of alumina nanoparticles gives better dispersion in thermal oil. • Thermophysical properties of nanofluids are experimentally measured. • TGA confirms the improvement in life of nanofluids. - Abstract: Thermal oils are widely used as cooling media in heat transfer processes. However, their potential has not been utilised exquisitely in many applications due to low thermal properties. Thermal oil-based nanofluids are prepared by dispersing functionalized alumina with varying concentrations of 0.5–3 wt.% to enhance thermal properties of oil for advanced cooling systems. The oleic acid coated alumina is prepared and then dispersed in the oil to overcome the aggregation of nanoparticles in base fluid. The surface characterizations of functionalized nanoparticles are performed using different analysis such as XRD, EDS, SEM, TEM and FTIR. Dispersion behaviour and agglomeration studies are conducted at natural and functionalized conditions using different analysis to ensure long-term stability of nanofluids. In addition, rheological behaviour of non-Newtonian nanofluids is studied at high shear rates (100–2000 s −1 ). Effective densities and enhancement in thermal conductivities are measured for different nanofluids concentrations. Specific heat capacity is measured using Differential Scanning Calorimetry. The correlations are developed for thermophysical properties of nanofluids. Thermogravimetric analysis is performed with respect to temperature and time to exploit the effect of the addition of nanoparticles on the degradation of nanofluids. Significant improvement in the thermal properties of oil is observed using highly stable functionalized alumina nano-additives.

  8. Modeling and simulation of adaptive Neuro-fuzzy based intelligent system for predictive stabilization in structured overlay networks

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2017-02-01

    Full Text Available Intelligent prediction of neighboring node (k well defined neighbors as specified by the dht protocol dynamism is helpful to improve the resilience and can reduce the overhead associated with topology maintenance of structured overlay networks. The dynamic behavior of overlay nodes depends on many factors such as underlying user’s online behavior, geographical position, time of the day, day of the week etc. as reported in many applications. We can exploit these characteristics for efficient maintenance of structured overlay networks by implementing an intelligent predictive framework for setting stabilization parameters appropriately. Considering the fact that human driven behavior usually goes beyond intermittent availability patterns, we use a hybrid Neuro-fuzzy based predictor to enhance the accuracy of the predictions. In this paper, we discuss our predictive stabilization approach, implement Neuro-fuzzy based prediction in MATLAB simulation and apply this predictive stabilization model in a chord based overlay network using OverSim as a simulation tool. The MATLAB simulation results present that the behavior of neighboring nodes is predictable to a large extent as indicated by the very small RMSE. The OverSim based simulation results also observe significant improvements in the performance of chord based overlay network in terms of lookup success ratio, lookup hop count and maintenance overhead as compared to periodic stabilization approach.

  9. An Adaptive Deadbeat Stabilizer for Power System Dynamic Stability

    OpenAIRE

    Rajkumar, V

    1989-01-01

    This paper discusses an adaptive deadbeat stabilizer to improve power system damping. The method involves normalized recursive least squares estimation to yield a reduced order state space model of the power system. This reduced order model is used to design the required deadbeat stabilizer recursively, along with an adaptive observer to estimate the unknown states.

  10. Improved physical and in vitro digestion stability of a polyelectrolyte delivery system based on layer-by-layer self-assembly alginate-chitosan-coated nanoliposomes.

    Science.gov (United States)

    Liu, Weilin; Liu, Jianhua; Liu, Wei; Li, Ti; Liu, Chengmei

    2013-05-01

    To improve lipid membrane stability and prevent leakage of encapsulated food ingredients, a polyelectrolyte delivery system (PDS) based on sodium alginate (AL) and chitosan (CH) coated on the surface of nanoliposomes (NLs) has been prepared and optimized using a layer-by-layer self-assembly deposition technique. Morphology and FTIR observation confirmed PDS has been successfully coated by polymers. Physical stability studies (pH and heat treatment) indicated that the outer-layer polymers could protect the core (NLs) from damage, and PDS showed more intact structure than NLs. Further enzymic digestion stability studies (particle size, surface charge, free fatty acid, and model functional component release) demonstrated that PDS could better resist lipolytic degradation and facilitate a lower level of encapsulated component release in simulated gastrointestinal conditions. This work suggested that deposition of polyelectrolyte on the surface of NLs can stabilize liposomal structure, and PDS could be developed as a formulation for delivering functional food ingredients in the gastrointestinal tract.

  11. Long term stability of power systems

    Energy Technology Data Exchange (ETDEWEB)

    Kundur, P.; Gao, B. [Powertech Labs. Inc., Surrey, BC (Canada)

    1994-12-31

    Power system long term stability is still a developing subject. In this paper we provide our perspectives and experiences related to long term stability. The paper begins with the description of the nature of the long term stability problem, followed by the discussion of issues related to the modeling and solution techniques of tools for long term stability analysis. Cases studies are presented to illustrate the voltage stability aspect and plant dynamics aspect of long term stability. (author) 20 refs., 11 figs.

  12. Estimating Vehicle Stability Region Based on Energy Function

    Directory of Open Access Journals (Sweden)

    Yu-guang Yan

    2015-01-01

    Full Text Available In order to improve the deficiency of vehicle stability region, according to vehicle nonlinear dynamic model, method of estimating vehicle spatial stability region was proposed. With Pacejka magic formula tire model, nonlinear 3DOF vehicle model was deduced and verified though vehicle test. Detailed detecting system and data processing were introduced. In addition, stability of the vehicle system was discussed using Hurwitz criterion. By establishing energy function for vehicle system, the vehicle’s stability region in 20 m/s was estimated based on Lyapunov theorem and vehicle system characteristics. Vehicle test in the same condition shows that the calculated stability region defined by Lyapunov and system stability theorem has good effect on characterized vehicle stability and it could be a valuable reference for vehicle stability evaluation.

  13. Stability analysis of distributed order fractional chen system.

    Science.gov (United States)

    Aminikhah, H; Refahi Sheikhani, A; Rezazadeh, H

    2013-01-01

    We first investigate sufficient and necessary conditions of stability of nonlinear distributed order fractional system and then we generalize the integer-order Chen system into the distributed order fractional domain. Based on the asymptotic stability theory of nonlinear distributed order fractional systems, the stability of distributed order fractional Chen system is discussed. In addition, we have found that chaos exists in the double fractional order Chen system. Numerical solutions are used to verify the analytical results.

  14. Stability Analysis of Distributed Order Fractional Chen System

    Science.gov (United States)

    Aminikhah, H.; Refahi Sheikhani, A.; Rezazadeh, H.

    2013-01-01

    We first investigate sufficient and necessary conditions of stability of nonlinear distributed order fractional system and then we generalize the integer-order Chen system into the distributed order fractional domain. Based on the asymptotic stability theory of nonlinear distributed order fractional systems, the stability of distributed order fractional Chen system is discussed. In addition, we have found that chaos exists in the double fractional order Chen system. Numerical solutions are used to verify the analytical results. PMID:24489508

  15. Post orthodontic treatment stability measurement in dentoskeletal class I malocclusion based on the objective grading system index

    Directory of Open Access Journals (Sweden)

    Bernard Anthony Pasaribu

    2011-03-01

    Full Text Available The purpose of this study was to examine the stability of orthodontic treatment results in dentoskeletal class I malocclusion treated with and without extraction of four premolars and to compare the stability of treatment result between those groups. Occlusal relationship after treatment and six-month post retention were measured on dental cast using The Objective Grading System Index at Orthodontic Specialist Clinic, Faculty of Dentistry Universitas Padjadjaran. The analytic descriptive study was carried out on 30 samples that comprised 14 samples were treated without extraction of four premolars and 16 samples were treated with extraction of four premolars. ABO Measuring Gauge was used to measure seven variables: tooth alignment, the height of the marginal ridges, buccolingual inclination, occlusal relationships, occlusal contacts, overjet, and interproximal tooth contacts. The results were statistically analyzed with the Wilcoxon rank test to test the difference of The Objective Grading System Index between posttreatment and postretension. Mann-Whitney U test was applied to determine the difference between the group with the extraction of four premolars and the group without extraction of four premolars. The level of significance was set at 0.05. The results of this study showed these following variables: tooth alignment, occlusal contacts, and overjet were unstable at the group with the extraction of four premolars, while only tooth alignment was found to be unstable in the group without extraction of the four premolars. Mann-Whitney U test did not show statistically significant difference in stability comparison test between the groups.

  16. Financial stability of banking system in China

    OpenAIRE

    Jiang, B

    2014-01-01

    This thesis aims at investigating the financial stability of China's banking system. Since the banking system is one of the most important financial intermediaries in the financial systems, the financial soundness of banks could secure the stability of the whole financial system. Two of the factors that may significantly increase imbalance of the banking system, and hence affect financial stability of an economy is the accumulated non-performing loans of banks and the macro-economic turbulenc...

  17. Stabilization of classic and quantum systems

    International Nuclear Information System (INIS)

    Buts, V.A.

    2012-01-01

    It is shown that the mechanism of quantum whirligig can be successfully used for stabilization of classical systems. In particular, the conditions for stabilization of charged particles and radiation fluxes in plasma are found.

  18. Stability problems for linear hyperbolic systems

    International Nuclear Information System (INIS)

    Eckhoff, K.S.

    1975-05-01

    The stability properties for the trivial solution of a general linear hyperbolic system of partial differential equations of the first order are studied. It is shown that results may be obtained by studying the stability properties of certain systems of ordinary differential equations which can be constructed from the hyperbolic system (the so-called transport equations). In some cases the associated stability problem for the transport equations can in fact be shown to be equivalent to the stability problem for the hyperbolic system, but in general the transport equations will only give the necessary conditions for stability. (Auth.)

  19. Stabilized imploding liner fusion systems

    International Nuclear Information System (INIS)

    Book, D.L.; Cooper, A.L.; Ford, R.; Gerber, K.A.; Hammer, D.A.; Jenkins, D.J.; Robson, A.E.; Turchi, P.J.

    1977-01-01

    A new concept in imploding liner plasma compression is described in which a liquid metal liner is imploded by pistons driven by high-pressure gas, and stability of the inner surface against Rayleigh-Taylor modes is achieved by rotation. The principle has been demonstrated by using a water liner to compress air. This 'captive liner' offers the possibility of stable, reversible implosion-expansion cycles in which the plasma energy is recovered into the driving system, leading to reactor cycles with low Q and, hence, small size. A new method of setting up closed-field confinement geometries inside a liner using a rotating electron beam is described. Plasma currents induced by the beam provide initial plasma heating and generate the containment geometry. Persistence of plasma currents 100 times longer than the beam duration has been observed. Development of these methods could lead to a very compact thermonuclear reactor operating in the manner of a reciprocating engine. (author)

  20. Absolute Stability of Discrete-Time Systems with Delay

    Directory of Open Access Journals (Sweden)

    Medina Rigoberto

    2008-01-01

    Full Text Available We investigate the stability of nonlinear nonautonomous discrete-time systems with delaying arguments, whose linear part has slowly varying coefficients, and the nonlinear part has linear majorants. Based on the "freezing" technique to discrete-time systems, we derive explicit conditions for the absolute stability of the zero solution of such systems.

  1. Stability investigation of quadratic systems with delay

    Directory of Open Access Journals (Sweden)

    Vladimir Davydov

    2000-01-01

    Full Text Available Systems of differential equations with quadratic right-hand sides with delay are considered in the paper. Compact matrix notation form is proposed for the systems of such type. Stability investigations are performed by Lyapunov's second method with functions of quadratic form. Stability conditions of quadratic systems with delay, uniformly by argument deviation, and with delay depending on the system's parameters are derived. A guaranteed radius of the ball of asymptotic stability region for zero solution is obtained.

  2. Power stability methods for parallel systems

    International Nuclear Information System (INIS)

    Wallach, Y.

    1988-01-01

    Parallel-Processing Systems are already commercially available. This paper shows that if one of them - the Alternating Sequential Parallel, or ASP system - is applied to network stability calculations it will lead to a higher speed of solution. The ASP system is first described and is then shown to be cheaper, more reliable and available than other parallel systems. Also, no deadlock need be feared and the speedup is normally very high. A number of ASP systems were already assembled (the SMS systems, Topps, DIRMU etc.). At present, an IBM Local Area Network is being modified so that it too can work in the ASP mode. Existing ASP systems were programmed in Fortran or assembly language. Since newer systems (e.g. DIRMU) are programmed in Modula-2, this language can be used. Stability analysis is based on solving nonlinear differential and algebraic equations. The algorithm for solving the nonlinear differential equations on ASP, is described and programmed in Modula-2. The speedup is computed and is shown to be almost optimal

  3. Stochastic stability properties of jump linear systems

    Science.gov (United States)

    Feng, Xiangbo; Loparo, Kenneth A.; Ji, Yuandong; Chizeck, Howard J.

    1992-01-01

    Jump linear systems are defined as a family of linear systems with randomly jumping parameters (usually governed by a Markov jump process) and are used to model systems subject to failures or changes in structure. The authors study stochastic stability properties in jump linear systems and the relationship among various moment and sample path stability properties. It is shown that all second moment stability properties are equivalent and are sufficient for almost sure sample path stability, and a testable necessary and sufficient condition for second moment stability is derived. The Lyapunov exponent method for the study of almost sure sample stability is discussed, and a theorem which characterizes the Lyapunov exponents of jump linear systems is presented.

  4. Optimal Coordinated Design of Multiple Damping Controllers Based on PSS and UPFC Device to Improve Dynamic Stability in the Power System

    Directory of Open Access Journals (Sweden)

    A. N. Hussain

    2013-01-01

    Full Text Available Unified Power Flow Controller (UPFC device is applied to control power flow in transmission lines. Supplementary damping controller can be installed on any control channel of the UPFC inputs to implement the task of Power Oscillation Damping (POD controller. In this paper, we have presented the simultaneous coordinated design of the multiple damping controllers between Power System Stabilizer (PSS and UPFC-based POD or between different multiple UPFC-based POD controllers without PSS in a single-machine infinite-bus power system in order to identify the design that provided the most effective damping performance. The parameters of the damping controllers are optimized utilizing a Chaotic Particle Swarm Optimization (CPSO algorithm based on eigenvalue objective function. The simulation results show that the coordinated design of the multiple damping controllers has high ability in damping oscillations compared to the individual damping controllers. Furthermore, the coordinated design of UPFC-based POD controllers demonstrates the superiority over the coordinated design of PSS and UPFC-based POD controllers for enhancing greatly the stability of the power system.

  5. Optimization of power system voltage stability

    Science.gov (United States)

    Stamp, Jason Edwin

    Contemporary power systems exist under heavy stress, caused by higher asset utilization in electric power transmission. As networks are operated nearer to their limits, new stability issues have arisen. One of the more destructive problems is voltage instability, where large areas of an electrical network may experience reduced voltages or collapse because of high reactive power demand. Voltage stability margins may be improved through the adjustment of the system operating position, which alters the power flow profile of the transmission network. Furthermore, the margins may be optimized through the application of nonlinear programming, if they are quantified using an index of voltage collapse proximity. This dissertation details the maximization of the eigenvalues of the reduced reactive power-voltage matrix, in an effort to increase voltage security. The nonlinear optimization was solved using four different techniques. First, a conventional optimal power flow was applied to the problem, which solved linear approximations of the original problem and maintained feasibility for the intermediate points. This method was augmented to include a quadratic model of the objective function. In addition, the feasibility requirement was relaxed to produce a third solution technique. Finally, the stability optimization problem was solved using a quadratic model without the feasibility requirement. Tests of all four methods were performed on three sample power systems. The systems included six, 14, and 118 bus examples. In all three cases, each of the four methods effected improvement in the stability margin, as measured by a variety of indicators. The infeasible linear solution provided the best results, based on runtime and the relative stability improvement. Also, the results showed that the additional quadratic approximation did not provide any measurable benefit to the procedure. Moreover, the methods that specified feasibility at each step were inferior compared to the

  6. Biomechanics of posterior dynamic stabilization systems.

    Science.gov (United States)

    Erbulut, D U; Zafarparandeh, I; Ozer, A F; Goel, V K

    2013-01-01

    Spinal rigid instrumentations have been used to fuse and stabilize spinal segments as a surgical treatment for various spinal disorders to date. This technology provides immediate stability after surgery until the natural fusion mass develops. At present, rigid fixation is the current gold standard in surgical treatment of chronic back pain spinal disorders. However, such systems have several drawbacks such as higher mechanical stress on the adjacent segment, leading to long-term degenerative changes and hypermobility that often necessitate additional fusion surgery. Dynamic stabilization systems have been suggested to address adjacent segment degeneration, which is considered to be a fusion-associated phenomenon. Dynamic stabilization systems are designed to preserve segmental stability, to keep the treated segment mobile, and to reduce or eliminate degenerative effects on adjacent segments. This paper aimed to describe the biomechanical aspect of dynamic stabilization systems as an alternative treatment to fusion for certain patients.

  7. Biomechanics of Posterior Dynamic Stabilization Systems

    Directory of Open Access Journals (Sweden)

    D. U. Erbulut

    2013-01-01

    Full Text Available Spinal rigid instrumentations have been used to fuse and stabilize spinal segments as a surgical treatment for various spinal disorders to date. This technology provides immediate stability after surgery until the natural fusion mass develops. At present, rigid fixation is the current gold standard in surgical treatment of chronic back pain spinal disorders. However, such systems have several drawbacks such as higher mechanical stress on the adjacent segment, leading to long-term degenerative changes and hypermobility that often necessitate additional fusion surgery. Dynamic stabilization systems have been suggested to address adjacent segment degeneration, which is considered to be a fusion-associated phenomenon. Dynamic stabilization systems are designed to preserve segmental stability, to keep the treated segment mobile, and to reduce or eliminate degenerative effects on adjacent segments. This paper aimed to describe the biomechanical aspect of dynamic stabilization systems as an alternative treatment to fusion for certain patients.

  8. Adaptive-Mesh-Refinement for hyperbolic systems of conservation laws based on a posteriori stabilized high order polynomial reconstructions

    Science.gov (United States)

    Semplice, Matteo; Loubère, Raphaël

    2018-02-01

    In this paper we propose a third order accurate finite volume scheme based on a posteriori limiting of polynomial reconstructions within an Adaptive-Mesh-Refinement (AMR) simulation code for hydrodynamics equations in 2D. The a posteriori limiting is based on the detection of problematic cells on a so-called candidate solution computed at each stage of a third order Runge-Kutta scheme. Such detection may include different properties, derived from physics, such as positivity, from numerics, such as a non-oscillatory behavior, or from computer requirements such as the absence of NaN's. Troubled cell values are discarded and re-computed starting again from the previous time-step using a more dissipative scheme but only locally, close to these cells. By locally decrementing the degree of the polynomial reconstructions from 2 to 0 we switch from a third-order to a first-order accurate but more stable scheme. The entropy indicator sensor is used to refine/coarsen the mesh. This sensor is also employed in an a posteriori manner because if some refinement is needed at the end of a time step, then the current time-step is recomputed with the refined mesh, but only locally, close to the new cells. We show on a large set of numerical tests that this a posteriori limiting procedure coupled with the entropy-based AMR technology can maintain not only optimal accuracy on smooth flows but also stability on discontinuous profiles such as shock waves, contacts, interfaces, etc. Moreover numerical evidences show that this approach is at least comparable in terms of accuracy and cost to a more classical CWENO approach within the same AMR context.

  9. Morpholinoethanesulfonic acid-based buffer system for improved detection limit and stability of the fluoride ion selective electrode

    International Nuclear Information System (INIS)

    Fouskaki, M.; Sotiropoulou, S.; Koci, M.; Chaniotakis, N.A.

    2002-01-01

    The zwitterionic morpholinoethanesulfonic acid (MES) is used as the basis for the development of a new total ionic strength adjustor buffer system for improving the analytical characteristics of fluoride sensor. Impedance analysis, atomic force microscopy (AFM) and dissolution studies of the LaF 3 crystal, together with the potential stability and sensor sensitivity over time have aided in the elucidation of the processes that take place at the surface of the LaF 3 crystal, that seem to determine the sensor behaviour. Even though AFM analysis shows that both buffers used (MES or acetate) cause a similar increase in surface roughness, the data from the other studies suggest that in the first case there is a reversible ion exchange process at the interface, while in the second case this process is irreversible, leading to fast poisoning of the crystal surface. The use of 0.5 M MES and NaCl buffer adjusted to pH 5.50 allows for the continuous operation of the sensor under flow injection analysis conditions for at least 5 days with sensitivity of 60 mV per decade [F - ], detection limit of 2.1x10 -7 M [F - ] and fast response time

  10. Evaluation of Colloidal Stability and Ecotoxicity of Metal-based Nanoparticles in the Aquatic and Terrestrial Systems

    Science.gov (United States)

    Pokhrel, Lok Raj

    Intrinsic to the many nano-enabled products are atomic-size multifunctional engineered nanomaterials, which upon release contaminate the environments, raising considerable health and safety concerns. This Ph.D. dissertation is designed to investigate (i) whether metals or oxide nanoparticles are more toxic than ions, and if MetPLATE(TM) bioassay is applicable as a rapid nanotoxicity screening tool; (ii) how variable water chemistry (dissolved organic carbon (DOC), pH, and hardness) and organic compounds (cysteine, humic acid, and trolox) modulate colloidal stability, ion release, and aquatic toxicity of silver nanoparticles (AgNP); and (iii) the developmental responses of crop plants exposed to Ag- or ZnO- (zinc oxide) nanoparticles. Results suggest that the MetPLATE can be considered a high-throughput screening tool for rapid nanotoxicity evaluation. Detectable changes in the colloidal diameter, surface charge, and plasmonic resonance revealed modulating effects of variable water chemistry and organic ligands on the particle stability, dissolution, and toxicity of AgNPs against Escherichia coli or Daphnia magna. Silver dissolution increased as a function of DOC concentrations but decreased with increasing hardness, pH, cysteine, or trolox levels. Notably, the dissociated Ag+ was inadequate to explain AgNP toxicity, and that the combined effect of AgNPs and dissolved Ag+ under each ligand treatment was lower than of AgNO 3. Significant attenuation by trolox signifies an oxidative stress-mediated AgNP toxicity; its inability to attenuate AgNO3 toxicity, however, negates oxidative stress as Ag+ toxicity mechanism, and that cysteine could effectively quench free Ag+ to alleviate AgNO 3 toxicity in D. magna. Surprisingly, DOC-AgNPs complex that apparently formed at higher DOC levels might have led daphnids filter-feed on aggregates, potentially elevating internal dose, and thus higher mortality. Maize root anatomy showed differential alterations upon exposure to Ag

  11. Stability and stabilization of linear systems with saturating actuators

    CERN Document Server

    Tarbouriech, Sophie; Gomes da Silva Jr, João Manoel; Queinnec, Isabelle

    2011-01-01

    Gives the reader an in-depth understanding of the phenomena caused by the more-or-less ubiquitous problem of actuator saturation. Proposes methods and algorithms designed to avoid, manage or overcome the effects of actuator saturation. Uses a state-space approach to ensure local and global stability of the systems considered. Compilation of fifteen years' worth of research results.

  12. Leader-Following Consensus Stability of Discrete-Time Linear Multiagent Systems with Observer-Based Protocols

    Directory of Open Access Journals (Sweden)

    Bingbing Xu

    2013-01-01

    Full Text Available We consider the leader-following consensus problem of discrete-time multiagent systems on a directed communication topology. Two types of distributed observer-based consensus protocols are considered to solve such a problem. The observers involved in the proposed protocols include full-order observer and reduced-order observer, which are used to reconstruct the state variables. Two algorithms are provided to construct the consensus protocols, which are based on the modified discrete-time algebraic Riccati equation and Sylvester equation. In light of graph and matrix theory, some consensus conditions are established. Finally, a numerical example is provided to illustrate the obtained result.

  13. Ajuste de Estabilizadores de Potencia en generadores utilizando el paquete Power Systems Analysis Toolbox PSAT; Setting of Power System Stabilizers based in PSAT free package calculations

    Directory of Open Access Journals (Sweden)

    Antonio A. Martínez García

    2015-04-01

    Full Text Available La regulación de la tensión es el modo más elemental de control de los Sistemas Eléctricos de Potencia que mejora la estabilidad y la estabilidad transitoria. La introducción de reguladores de tensión muy rápidos facilita la capacidad del sistema de generar acciones que conserven su estabilidad (incremento del torque sincronizante. No obstante, estos dispositivos disminuyen el amortiguamiento del sistema. La forma más económica de mejorar el amortiguamiento de las oscilaciones mecánicas de las unidades generadoras se logra con la adición de un control suplementario agregado en el sistema de excitación, que se conoce como estabilizador de potencia (PSS, por sus siglas en inglés Power System Stabilizer. En el presente trabajo se utilizan las posibilidades del paquete PSAT para seleccionar la mejor ubicación y ajustar PSS en un sistema longitudinal sencillo de dos áreas, similar al caso del Sistema Eléctrico de la República de Cuba. Normally, voltage regulation is the primary mode of control, which improves voltage and transient stability. The introduction of generator´s fast voltage regulators improves Electrical Power Systems ability to generate synchronizing torque to maintain stability. These control devices have a negative effect in damping system oscillations. Supplementary control in generator’s voltage regulators (PSS is the most economic solution to improve system damping. This supplementary control is obtained using power system dampers. PSAT abilities are used in order to obtain setting of this supplementary control in a simple longitudinal two areas system, similar to Cuban Electric Power System.

  14. A Lyapunov based nonlinear control scheme for stabilizing a basic compression system using a close-coupled control valve

    Science.gov (United States)

    Simon, J. S.; Valavani, L.

    1991-01-01

    The use of a closed-loop control to allow surge-free operation of a compression system beyond its uncontrolled surge line is addressed. In contrast to previous analyses which used a linearized model, the approach described directly addresses the nonlinear nature of the compressor characteristic using a Liapunov-based control law design formulation. The proposed approach is fairly generic and should be of interest for gas turbine engines as well as other applications.

  15. Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems with Jumps

    Directory of Open Access Journals (Sweden)

    Minsong Zhang

    2014-01-01

    Full Text Available This paper investigates the problems of finite-time stability and finite-time stabilization for nonlinear quadratic systems with jumps. The jump time sequences here are assumed to satisfy some given constraints. Based on Lyapunov function and a particular presentation of the quadratic terms, sufficient conditions for finite-time stability and finite-time stabilization are developed to a set containing bilinear matrix inequalities (BLIMs and linear matrix inequalities (LMIs. Numerical examples are given to illustrate the effectiveness of the proposed methodology.

  16. Fuzzy Logic Controller Based on Observed Signals and a Genetic Algorithm Application with STATCOM for Power System Stabilization

    Science.gov (United States)

    Hongesombut, Komsan; Mitani, Yasunori; Tsuji, Kiichiro

    Fuzzy logic control has been applied to various applications in power systems. Its control rules and membership functions are typically obtained by trial and error methods or experience knowledge. Proposed here is the application of a micro-genetic algorithm (micro-GA) to simultaneously design optimal membership functions and control rules for STATCOM. First, we propose a simple approach to extract membership functions and fuzzy logic control rules based on observed signals. Then a proposed GA will be applied to optimize membership functions and its control rules. To validate the effectiveness of the proposed approach, several simulation studies have been performed on a multimachine power system. Simulation results show that the proposed fuzzy logic controller with STATCOM can effectively and robustly enhance the damping of oscillations.

  17. Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode

    Czech Academy of Sciences Publication Activity Database

    Řeřucha, Šimon; Yacoot, A.; Pham, Minh Tuan; Čížek, Martin; Hucl, Václav; Lazar, Josef; Číp, Ondřej

    2017-01-01

    Roč. 28, č. 4 (2017), s. 1-11, č. článku 045204. ISSN 0957-0233 R&D Projects: GA ČR GB14-36681G; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA TA ČR TE01020233 Institutional support: RVO:68081731 Keywords : optical metrology * DBR laser diode * frequency stabilization * laser interferometry * dimensional metrology * iodine stabilization * displacement measurement Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.585, year: 2016

  18. Solving the stability-accuracy-diversity dilemma of recommender systems

    Science.gov (United States)

    Hou, Lei; Liu, Kecheng; Liu, Jianguo; Zhang, Runtong

    2017-02-01

    Recommender systems are of great significance in predicting the potential interesting items based on the target user's historical selections. However, the recommendation list for a specific user has been found changing vastly when the system changes, due to the unstable quantification of item similarities, which is defined as the recommendation stability problem. To improve the similarity stability and recommendation stability is crucial for the user experience enhancement and the better understanding of user interests. While the stability as well as accuracy of recommendation could be guaranteed by recommending only popular items, studies have been addressing the necessity of diversity which requires the system to recommend unpopular items. By ranking the similarities in terms of stability and considering only the most stable ones, we present a top- n-stability method based on the Heat Conduction algorithm (denoted as TNS-HC henceforth) for solving the stability-accuracy-diversity dilemma. Experiments on four benchmark data sets indicate that the TNS-HC algorithm could significantly improve the recommendation stability and accuracy simultaneously and still retain the high-diversity nature of the Heat Conduction algorithm. Furthermore, we compare the performance of the TNS-HC algorithm with a number of benchmark recommendation algorithms. The result suggests that the TNS-HC algorithm is more efficient in solving the stability-accuracy-diversity triple dilemma of recommender systems.

  19. Stability of digital feedback control systems

    Directory of Open Access Journals (Sweden)

    Larkin Eugene

    2018-01-01

    Lag time characteristics are used for investigation of stability of linear systems. Digital PID controller is divided onto linear part, which is realized with a soft and pure lag unit, which is realized with both hardware and software. With use notions amplitude and phase margins, condition for stability of system functioning are obtained. Theoretical results are confirm with computer experiment carried out on the third-order system.

  20. Some results on stability of difference systems

    Directory of Open Access Journals (Sweden)

    Xiao-Song Yang

    2002-01-01

    Full Text Available This paper presents some new results on existence and stability of equilibrium or periodic points for difference systems. First sufficient conditions of existence of asymptotically stable equilibrium point as well as the asymptotic stability of given equilibrium point are given for second order or delay difference systems. Then some similar results on existence of asymptotically stable periodic (equilibrium points to general difference systems are presented.

  1. MHD stability analysis of helical system plasmas

    International Nuclear Information System (INIS)

    Nakamura, Yuji

    2000-01-01

    Several topics of the MHD stability studies in helical system plasmas are reviewed with respect to the linear and ideal modes mainly. Difference of the method of the MHD stability analysis in helical system plasmas from that in tokamak plasmas is emphasized. Lack of the cyclic (symmetric) coordinate makes an analysis more difficult. Recent topic about TAE modes in a helical system is also described briefly. (author)

  2. A Series Active Damper with Closed-loop Control for Stabilizing Single-phase Power-Electronics-Based Power System

    DEFF Research Database (Denmark)

    Lu, Dapeng; Wang, Xiongfei; Bai, Haofeng

    2016-01-01

    Active damper is a promising solution to address the stability issues caused by the interaction between the parallel grid-connected converters, which are the results from the coupled grid impedance. To futher improve that, this paper proposes a series active damper that using a virtual damping...

  3. Boundary feedback stabilization of distributed parameter systems

    DEFF Research Database (Denmark)

    Pedersen, Michael

    1988-01-01

    The author introduces the method of pseudo-differential stabilization. He notes that the theory of pseudo-differential boundary operators is a fruitful approach to problems arising in control and stabilization theory of distributed-parameter systems. The basic pseudo-differential calculus can...

  4. The Nature of Stability in Replicating Systems

    Directory of Open Access Journals (Sweden)

    Addy Pross

    2011-02-01

    Full Text Available We review the concept of dynamic kinetic stability, a type of stability associated specifically with replicating entities, and show how it differs from the well-known and established (static kinetic and thermodynamic stabilities associated with regular chemical systems. In the process we demonstrate how the concept can help bridge the conceptual chasm that continues to separate the physical and biological sciences by relating the nature of stability in the animate and inanimate worlds, and by providing additional insights into the physicochemical nature of abiogenesis.

  5. Stability analysis of Centurion electric power system

    Energy Technology Data Exchange (ETDEWEB)

    Galu, Y.; Munda, J.L.; Jimoh, A.A. [Tshwane Univ. of Technology, Pretoria (South Africa)

    2008-07-01

    A Centurion electric power system was simulated. Data from a section of the Tshwane Municipality network in South Africa were used to evaluate the use of a power system stabilizer (PSS) and a flexible AC transmission system (FACTS) controller and a thyristor controlled series compensator (TCSC). The single-machine infinite bus (SMIB) power system model was used to validate the effectiveness of the systems under various disturbance scenarios. The system's synchronous generator was characterized as a higher order model. Thevenin's equivalent of the transmission network was used to reduce the single-machine infinite bus power system in relation to the reactance of the transformer, transmission line per circuit, and the impedance of the receiving end system. Three-phase faults were applied at the generator terminal busbar in order to evaluate the model's performance. The study demonstrated that use of the PSS and TCSC-based controllers provide an improved response in terms of both overshoot and settling time. 17 refs., 10 figs.

  6. DESIGN POWER SYSTEM STABILIZER MENGGUNAKAN FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Ivo Salvador Soares Miranda

    2014-10-01

    Full Text Available Stabiltas merupakan kemampuan sistem untuk menjaga kondisi operasi  seimbang dan kembali kekondisi operasi normal ketika terjadi gangguan. Penerapan power system stabilizer pada sistem tenaga mampu memberikan sinyal respon yang cepat atas berbagai kondisi gangguan dan mengupayakan tidak meluasnya jangkauan gangguan. Dalam mendesign power system stabilizer menggunakan robust fuzzy logic, menggunakan satu sinyal input yaitu kecepatan deviasi rotor. Hasil simulasinya dibandingkan dengan metode fuzzy logic dan kovensional. Studi simulasi menunjukan, design power system stabilizer menggunakan robust fuzzy logic memiliki nilai sinyal peak time dan settling time relatif kecil dibandingkan dengan metode fuzzy logic dan konvensional.

  7. A preliminary assessment of financial stability, efficiency, health systems and health outcomes using performance-based contracts in Belize.

    Science.gov (United States)

    Bowser, Diana M; Figueroa, Ramon; Natiq, Laila; Okunogbe, Adeyemi

    2013-01-01

    Over the last 10 years, Belize has implemented a National Health Insurance (NHI) program that uses performance-based contracts with both public and private facilities to improve financial sustainability, efficiency and service provision. Data were collected at the facility, district and national levels in order to assess trends in financial sustainability, efficiency payments, year-end bonuses and health system and health outcomes. A difference-in-difference approach was used to assess the difference in technical efficiency between private and public facilities. The results show that per capita spending on services provided by the NHI program has decreased over the period 2006-2009 from BZ$177 to BZ$136. The private sector has achieved higher levels of technical efficiency, but lower percentages of efficiency and year-end bonus payments. Districts with contracts through the NHI program showed greater improvements in facility births, nurse density, reducing maternal mortality, diabetes deaths and morbidity from bronchitis, emphysema and asthma than districts without contracts over the period 2006-2010. This preliminary assessment of Belize's pay-for-performance system provides some positive results, however further research is needed to use the lessons learned from Belize to implement similar reforms in other systems.

  8. Stability and boundary stabilization of 1-D hyperbolic systems

    CERN Document Server

    Bastin, Georges

    2016-01-01

    This monograph explores the modeling of conservation and balance laws of one-dimensional hyperbolic systems using partial differential equations. It presents typical examples of hyperbolic systems for a wide range of physical engineering applications, allowing readers to understand the concepts in whichever setting is most familiar to them. With these examples, it also illustrates how control boundary conditions may be defined for the most commonly used control devices. The authors begin with the simple case of systems of two linear conservation laws and then consider the stability of systems under more general boundary conditions that may be differential, nonlinear, or switching. They then extend their discussion to the case of nonlinear conservation laws and demonstrate the use of Lyapunov functions in this type of analysis. Systems of balance laws are considered next, starting with the linear variety before they move on to more general cases of nonlinear ones. They go on to show how the problem of boundary...

  9. Dynamic Analysis of Power System Voltage Stability.

    Science.gov (United States)

    Gebreselassie, Assefa

    This thesis investigates the effects of loads and voltage regulators on the dynamic voltage stability of power systems. The analysis focuses on the interactions of machine flux dynamics with loads and voltage control devices. The results are based on eigenvalue analysis of the linearized models and time simulation of the nonlinear models, using models from the Power System Toolbox, a Matlab -based package for the simulation and small signal analysis of nonlinear power systems. The voltage stability analysis results are developed using a single machine single load system with typical machine and network parameters and the NPCC 10-machine system. Dynamic models for generators, exciters and loads are used. The generator is modeled with a pair of poles and one damper circuit in both the d-axis and the q-axis. Saturation effects are included in the model. The IEEE Type DC1 DC commutator exciter model is used for all the exciters. Five different types of loads: constant impedance, constant current, constant power, a first order induction motor model (slip model) and a third order induction motor model (slip-flux model) are considered. The modes of instability and the stability limits of the different representation of loads are examined for two different operating modes of the exciters. The first, when all the exciters are on automatic control and the second when some exciters are on manual control. Modal participation factors are used to determine the characteristics of the critical modes. The characteristics of the unstable modes are verified by performing time simulation of the nonlinear models. Oscillatory and non-oscillatory instabilities are experienced by load buses when all the exciters are on automatic control and some exciters are on manual control respectively, for loads which are predominantly constant power and induction motors. It is concluded that the mode of instability does not depend on the type of loads but on the operating condition of the exciters

  10. Micro-electro-mechanical system (MEMS)-based fiber optic sensor and sensor network for improving weapon stabilization and fire control

    Science.gov (United States)

    Zhang, Sean Z.; Xu, Guoda; Qiu, Wei; Lin, Freddie S.; Testa, Robert C.; Mattice, Michael S.

    2000-08-01

    A MicroElectroMechanical Systems (MEMS)-based fiber optic sensor and sensor network for improving weapon stabilization and fire control have been developed. Fabrication involves overwriting two fiber Bragg gratings (FBGs) onto a polarization-preserving optical fiber core. A MEMS diaphragm is fabricated and integrated with the overlaid FBGs to enhance the performance and reliability of the sensor. A simulation model for the MEMS fiber optic sensor and sensor network has been derived, and simulation results concerning load, angle, strain, and temperature have been obtained. The fabricated MEMS diaphragm and the overlaid FBGs have been packaged together on the basis of simulation results and mounted on a specially designed cantilever system. The combined multifunctional MEMS fiber optic sensor and sensor network is cost-effective, fast, rugged enough to operate in harsh environmental conditions, compact, and highly sensitive.

  11. Review of Power System Stability with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  12. Stability and Stabilization of Networked Control System with Forward and Backward Random Time Delays

    Directory of Open Access Journals (Sweden)

    Ye-Guo Sun

    2012-01-01

    Full Text Available This paper deals with the problem of stabilization for a class of networked control systems (NCSs with random time delay via the state feedback control. Both sensor-to-controller and controller-to-actuator delays are modeled as Markov processes, and the resulting closed-loop system is modeled as a Markovian jump linear system (MJLS. Based on Lyapunov stability theorem combined with Razumikhin-based technique, a new delay-dependent stochastic stability criterion in terms of bilinear matrix inequalities (BMIs for the system is derived. A state feedback controller that makes the closed-loop system stochastically stable is designed, which can be solved by the proposed algorithm. Simulations are included to demonstrate the theoretical result.

  13. Solar Dynamic Power System Stability Analysis and Control

    Science.gov (United States)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  14. Reduction and temporary stabilization of Tile C pelvic ring injuries using a posteriorly based external fixation system.

    Science.gov (United States)

    Martin, Murphy P; Rojas, David; Mauffrey, Cyril

    2017-12-05

    Tile C pelvic ring injuries are challenging to manage even in the most experienced hands. The majority of such injuries can be managed using percutaneous reduction techniques, and the posterior ring can be stabilized using percutaneous transiliac-transsacral screw fixation. However, a subgroup of patients present with inadequate bony corridors, significant sacral zone 2 comminution or significant lateral/vertical displacement of the hemipelvis through a complete sacral fracture. Percutaneous strategies in such circumstances can be dangerous. Those patients may benefit from prone positioning and open reduction of the sacral fracture with fixation through tension band plating or lumbo-pelvic fixation. Soft tissue handling is critical, and direct reduction techniques around the sacrum can be difficult due to the complex anatomy and the fragile nature of the sacrum making clamp placement and tightening a challenge. In this paper, we propose a mini-invasive technique of indirect reduction and temporary stabilization, which is soft tissue friendly and permits maintenance of reduction during definitive fixation surgical.

  15. New stability conditions for nonlinear time varying delay systems

    Science.gov (United States)

    Elmadssia, S.; Saadaoui, K.; Benrejeb, M.

    2016-07-01

    In this paper, new practical stability conditions for a class of nonlinear time varying delay systems are proposed. The study is based on the use of a specific state space description, known as the Benrejeb characteristic arrow form matrix, and aggregation techniques to obtain delay-dependent stability conditions. Application of this method to delayed Lurie-Postnikov nonlinear systems is given. Illustrative examples are presented to show the effectiveness of the proposed approach.

  16. On Stabilization of Nonautonomous Nonlinear Systems

    International Nuclear Information System (INIS)

    Bogdanov, A. Yu.

    2008-01-01

    The procedures to obtain the sufficient conditions of asymptotic stability for nonlinear nonstationary continuous-time systems are discussed. We consider different types of the following general controlled system: x = X(t,x,u) = F(t,x)+B(t,x)u, x(t 0 ) = x 0 . (*) The basis of investigation is limiting equations, limiting Lyapunov functions, etc. The improved concept of observability of the pair of functional matrices is presented. By these results the problem of synthesis of asymptotically stable control nonlinear nonautonomous systems (with linear parts) involving the quadratic time-dependent Lyapunov functions is solved as well as stabilizing a given unstable system with nonlinear control law.

  17. Computation of robustly stabilizing PID controllers for interval systems.

    Science.gov (United States)

    Matušů, Radek; Prokop, Roman

    2016-01-01

    The paper is focused on the computation of all possible robustly stabilizing Proportional-Integral-Derivative (PID) controllers for plants with interval uncertainty. The main idea of the proposed method is based on Tan's (et al.) technique for calculation of (nominally) stabilizing PI and PID controllers or robustly stabilizing PI controllers by means of plotting the stability boundary locus in either P-I plane or P-I-D space. Refinement of the existing method by consideration of 16 segment plants instead of 16 Kharitonov plants provides an elegant and efficient tool for finding all robustly stabilizing PID controllers for an interval system. The validity and relatively effortless application of presented theoretical concepts are demonstrated through a computation and simulation example in which the uncertain mathematical model of an experimental oblique wing aircraft is robustly stabilized.

  18. System and method for determining stability of a neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2011-01-01

    Disclosed are methods, systems, and computer-readable media for determining stability of a neural system. The method includes tracking a function world line of an N element neural system within at least one behavioral space, determining whether the tracking function world line is approaching a psychological stability surface, and implementing a quantitative solution that corrects instability if the tracked function world line is approaching the psychological stability surface.

  19. Multi-Objective Sliding Mode Control on Vehicle Cornering Stability with Variable Gear Ratio Actuator-Based Active Front Steering Systems

    Science.gov (United States)

    Ma, Xinbo; Wong, Pak Kin; Zhao, Jing; Xie, Zhengchao

    2016-01-01

    Active front steering (AFS) is an emerging technology to improve the vehicle cornering stability by introducing an additional small steering angle to the driver’s input. This paper proposes an AFS system with a variable gear ratio steering (VGRS) actuator which is controlled by using the sliding mode control (SMC) strategy to improve the cornering stability of vehicles. In the design of an AFS system, different sensors are considered to measure the vehicle state, and the mechanism of the AFS system is also modelled in detail. Moreover, in order to improve the cornering stability of vehicles, two dependent objectives, namely sideslip angle and yaw rate, are considered together in the design of SMC strategy. By evaluating the cornering performance, Sine with Dwell and accident avoidance tests are conducted, and the simulation results indicate that the proposed SMC strategy is capable of improving the cornering stability of vehicles in practice. PMID:28036037

  20. Simplified Stability Criteria for Delayed Neutral Systems

    Directory of Open Access Journals (Sweden)

    Xinghua Zhang

    2014-01-01

    Full Text Available For a class of linear time-invariant neutral systems with neutral and discrete constant delays, several existing asymptotic stability criteria in the form of linear matrix inequalities (LMIs are simplified by using matrix analysis techniques. Compared with the original stability criteria, the simplified ones include fewer LMI variables, which can obviously reduce computational complexity. Simultaneously, it is theoretically shown that the simplified stability criteria and original ones are equivalent; that is, they have the same conservativeness. Finally, a numerical example is employed to verify the theoretic results investigated in this paper.

  1. Robust design of decentralized power system stabilizers using meta-heuristic optimization techniques for multimachine systems

    Directory of Open Access Journals (Sweden)

    Jeevanandham Arumugam

    2009-01-01

    Full Text Available In this paper a classical lead-lag power system stabilizer is used for demonstration. The stabilizer parameters are selected in such a manner to damp the rotor oscillations. The problem of selecting the stabilizer parameters is converted to a simple optimization problem with an eigen value based objective function and it is proposed to employ simulated annealing and particle swarm optimization for solving the optimization problem. The objective function allows the selection of the stabilizer parameters to optimally place the closed-loop eigen values in the left hand side of the complex s-plane. The single machine connected to infinite bus system and 10-machine 39-bus system are considered for this study. The effectiveness of the stabilizer tuned using the best technique, in enhancing the stability of power system. Stability is confirmed through eigen value analysis and simulation results and suitable heuristic technique will be selected for the best performance of the system.

  2. Robust design of decentralized power system stabilizers using meta-heuristic optimization techniques for multimachine systems

    OpenAIRE

    Jeevanandham Arumugam; Thanushkodi Gowder Keppana

    2009-01-01

    In this paper a classical lead-lag power system stabilizer is used for demonstration. The stabilizer parameters are selected in such a manner to damp the rotor oscillations. The problem of selecting the stabilizer parameters is converted to a simple optimization problem with an eigen value based objective function and it is proposed to employ simulated annealing and particle swarm optimization for solving the optimization problem. The objective function allows the selection of the stabilizer ...

  3. Stability of spherical gravitating collisionless systems

    Energy Technology Data Exchange (ETDEWEB)

    Polyachenko, V.L.

    1988-03-01

    A unified method that uses a procedure, established in the paper, for reducing the problem of the stability of a spherical system to the analogous problem of perturbations of the simplest form in a corresponding cylindrical system provides the framework for investigating the stability of collisionless star clusters with different types of anisotropy of the velocity distribution. For spherical systems embedded in a massive halo or possessing a large central mass, equations - in the simplest case integral equations - for the eigenfunctions and eigenfrequencies of the oscillations are derived.

  4. Uruguay; Financial System Stability Assessment

    OpenAIRE

    International Monetary Fund

    2013-01-01

    The buffers built in the aftermath of Uruguay’s 2002 banking crisis have shielded the financial sector from the effects of the global financial turmoil. Growth has been robust and the outlook continues to be favorable. However, inflation persists but capital inflows have improved, and policy measures have been taken in response. Uruguay exhibits no obvious signs of near-term domestic macrofinancial vulnerability. The external risks to the economy and the financial system come from a fragile g...

  5. Stability of the Kepler-11 system and its origin

    Energy Technology Data Exchange (ETDEWEB)

    Mahajan, Nikhil; Wu, Yanqin [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada)

    2014-11-01

    A significant fraction of Kepler systems are closely packed, largely coplanar, and circular. We study the stability of a six-planet system, Kepler-11, to gain insights on the dynamics and formation history of such systems. Using a technique called 'frequency maps' as fast indicators of long-term stability, we explore the stability of the Kepler-11 system by analyzing the neighborhood space around its orbital parameters. Frequency maps provide a visual representation of chaos and stability, and their dependence on orbital parameters. We find that the current system is stable, but lies within a few percent of several dynamically dangerous two-body mean-motion resonances. Planet eccentricities are restricted below a small value, ∼0.04, for long-term stability, but planet masses can be more than twice their reported values (thus allowing for the possibility of mass loss by past photoevaporation). Based on our frequency maps, we speculate on the origin of instability in closely packed systems. We then proceed to investigate how the system could have been assembled. The stability constraints on Kepler-11 (mainly eccentricity constraints) suggest that if the system were assembled in situ, a dissipation mechanism must have been at work to neutralize the eccentricity excitation. On the other hand, if migration was responsible for assembling the planets, there has to be little differential migration among the planets to avoid them either getting trapped into mean motion resonances, or crashing into each other.

  6. Synthesized dynamic modeling and stability analysis of novel HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Xu Sun; Li Kong [Inst. of Electrical Engineering, CAS, BJ (China)

    2008-07-01

    At the present time, many projects large offshore wind power fields connecting to the grid adopt the novel HVDC technology. Voltage source converter structure and PWM modulation technology are used in the system and active power and reactive power can be controlled respectively, so it can ensure the excellent performance of the projects. It is very necessary to build its detailed dynamic model and analyze its stability to be the base for further research. In this paper, firstly, the switch function model is established as the base of further analysis. Secondly, the steady model, small signal model and high frequency dynamic model of novel HVDC based on state space average method are established respectively. Thirdly, the stability of the whole system is analyzed on the base of above models of the novel HVDC. Finally, the whole system is validated practically by simulation analysis to prove the validity of model and stability analysis. (orig.)

  7. Adaptive GSA-based optimal tuning of PI controlled servo systems with reduced process parametric sensitivity, robust stability and controller robustness.

    Science.gov (United States)

    Precup, Radu-Emil; David, Radu-Codrut; Petriu, Emil M; Radac, Mircea-Bogdan; Preitl, Stefan

    2014-11-01

    This paper suggests a new generation of optimal PI controllers for a class of servo systems characterized by saturation and dead zone static nonlinearities and second-order models with an integral component. The objective functions are expressed as the integral of time multiplied by absolute error plus the weighted sum of the integrals of output sensitivity functions of the state sensitivity models with respect to two process parametric variations. The PI controller tuning conditions applied to a simplified linear process model involve a single design parameter specific to the extended symmetrical optimum (ESO) method which offers the desired tradeoff to several control system performance indices. An original back-calculation and tracking anti-windup scheme is proposed in order to prevent the integrator wind-up and to compensate for the dead zone nonlinearity of the process. The minimization of the objective functions is carried out in the framework of optimization problems with inequality constraints which guarantee the robust stability with respect to the process parametric variations and the controller robustness. An adaptive gravitational search algorithm (GSA) solves the optimization problems focused on the optimal tuning of the design parameter specific to the ESO method and of the anti-windup tracking gain. A tuning method for PI controllers is proposed as an efficient approach to the design of resilient control systems. The tuning method and the PI controllers are experimentally validated by the adaptive GSA-based tuning of PI controllers for the angular position control of a laboratory servo system.

  8. Stability Analysis for a Multi-Camera Photogrammetric System

    Directory of Open Access Journals (Sweden)

    Ayman Habib

    2014-08-01

    Full Text Available Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction.

  9. Estimation of multiply digital process control system extractive distillation stability

    Directory of Open Access Journals (Sweden)

    V. S. Kudryashov

    2016-01-01

    Full Text Available An approach to stability analysis of digital control systems associated non-stationary object on the example of the rectification process. Object modeling with cross-connections and the control scheme of the described system, discrete transfer functions in the shift operators. The equations of connection for each output of the closed-loop system. To solve this problem developed an algorithm for estimating the margin of stability of multivariable digital control systems based on the discrete root criterion, comprising the following main stages: obtaining of the characteristic polynomial of the closed-loop system for each output; computation of eigenvalues of the system matrix in the state space to determine roots of the characteristic equation and the stability of the system; determination of the stability and margin of stability by the deviation of maximum module of the root from the boundary of the high variability. To obtain the characteristic polynomial of a as discrete models of controllers and channels of IP object-use the transfer function of the first order with transport delay. The simulation was performed at different parameters of the control object, which is characterized by a stable and an unstable state of the system. VA-den analysis of the numerical values of the roots and character of their location on the complex plane, which to you-water that the system is stable or unstable. To confirm the obtained results were calculated and presented dynamic characteristics of the closed-loop system under different conditions, which confirm the initial assessment, the root criterion. To determine the factor stability of multivariable digital systems is proposed to use the deviation of the maximum root of the characteristic equation from the stability boundary. The obtained results apply to the class of symmetric multivariable control objects. The approach to assessing the sustainability of multivariable system regulation can be effectively

  10. Frequency stability improvement of micro hydro power system using hybrid SMES and CES based on Cuckoo search algorithm

    Directory of Open Access Journals (Sweden)

    Muhammad Ruswandi Djalal

    2017-12-01

    Full Text Available Micro hydro has been chosen because it has advantages both economically, technically and as well as in terms of environmental friendliness. Micro hydro is suitable to be used in areas that difficult to be reached by the grid. Problems that often occur in the micro hydro system are not the constant rotation of the generator that caused by a change in load demand of the consumer. Thus causing frequency fluctuations in the system that can lead to damage both in the plant and in terms of consumer electrical appliances. The appropriate control technology should be taken to support the optimum performance of micro hydro. Therefore, this study will discuss a strategy of load frequency control by using Energy Storage. Superconducting magnetic energy storage (SMES and capacitor energy storage (CES are devices that can store energy in the form of a fast magnetic field in the superconducting coil. For the optimum performance, it is necessary to get the optimum tuning of SMES and CES parameters. The artificial intelligence methods, Cuckoo Search Algorithm (CSA are used to obtain the optimum parameters in the micro hydro system. The simulation results show that the application of the CSA that use to tune the parameters of hybrid SMES-CES-PID can reduce overshoot oscillation of frequency response in micro hydro power plant.

  11. Metelitsyn's inequality and stability criteria for mechanical systems

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Seyranian, A. P.

    2004-01-01

    . Metelitsyn's theorems based on his inequality as well as critical comments in the literature on these theorems are analysed. Practical sufficient stability criteria are obtained in terms of extreme eigenvalues of the system matrices. This analysis is of special value for rotor systems in a complex setting...... which is demonstrated by three examples. (C) 2004 Elsevier Ltd. All rights reserved....

  12. On stability of fixed points and chaos in fractional systems

    Science.gov (United States)

    Edelman, Mark

    2018-02-01

    In this paper, we propose a method to calculate asymptotically period two sinks and define the range of stability of fixed points for a variety of discrete fractional systems of the order 0 logistic maps. Based on our analysis, we make a conjecture that chaos is impossible in the corresponding continuous fractional systems.

  13. Stability of fruit bases and chocolate fillings

    Directory of Open Access Journals (Sweden)

    Joice Natali Miquelim

    2011-03-01

    Full Text Available Syrups with high sugar content and dehydrated fruits in its composition can be added to chocolate fillings to reduce the need of artificial flavor and dyes attributing a natural appeal to the product. Fruit bases were produced with lyophilized strawberry, passion fruit, and sliced orange peel. Rheological dynamic oscillatory tests were applied to determine the products stability and tendency of shelf life. Values of G´ G´´ were found for orange flavor during the 90 days of storage. It was observed that shear stress values did not vary significantly suggesting product stability during the studied period. For all fillings, it was found a behavior similar to the fruit base indicating that it has great influence on the filling behavior and its stability. The use of a sugar matrix in fillings provided good shelf life for the fruit base, which could be kept under room temperature conditions for a period as long as one year. The good stability and storage conditions allow the use of fruit base for handmade products as well as for industrialized products.

  14. Power system stabilizer control for wind power to enhance power system stability

    OpenAIRE

    Domínguez García, José Luís; Gomis Bellmunt, Oriol; Bianchi, Fernando Daniel; Sumper, Andreas

    2011-01-01

    The paper presents a small signal stability analysis for power systems with wind farm interaction. Power systems have damping oscillation modes that can be excited by disturbance or fault in the grid. The power converters of the wind farms can be used to reduce these oscillations and make the system more stable. These ideas are explored to design a power system stabilized (PSS) for a network with conventional generators and a wind farm in order to increase the damping of the oscillation...

  15. Decentralized linear quadratic power system stabilizers for multi ...

    Indian Academy of Sciences (India)

    Power system stabilizer; linear quadratic regulator; small-signal stability; transient stability. Abstract. Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state ...

  16. Statistics, Formation and Stability of Exoplanetary Systems

    Science.gov (United States)

    Silburt, Ari

    Over the past two decades scientists have detected thousands of exoplanets, and their collective properties are now emerging. This thesis contributes to the exoplanet field by analyzing the statistics, formation and stability of exoplanetary systems. The first part of this thesis conducts a statistical reconstruction of the radius and period distributions of Kepler planets. Accounting for observation and detection biases, as well as measurement errors, we calculate the occurrence of planetary systems, including the prevalence of Earth-like planets. This calculation is compared to related works, finding both similarities and differences. Second, the formation of Kepler planets near mean motion resonance (MMR) is investigated. In particular, 27 Kepler systems near 2:1 MMR are analyzed to determine whether tides are a viable mechanism for transporting Kepler planets from MMR. We find that tides alone cannot transport near-resonant planets from exact 2:1 MMR to their observed locations, and other mechanisms must be invoked to explain their formation. Third, a new hybrid integrator HERMES is presented, which is capable of simulating N-bodies undergoing close encounters. HERMES is specifically designed for planets embedded in planetesimal disks, and includes an adaptive routine for optimizing the close encounter boundary to help maintain accuracy. We find the performance of HERMES comparable to other popular hybrid integrators. Fourth, the longterm stability of planetary systems is investigated using machine learning techniques. Typical studies of longterm stability require thousands of realizations to acquire statistically rigorous results, which can take weeks or months to perform. Here we find that a trained machine is capable of quickly and accurately classifying longterm planet stability. Finally, the planetary system HD155358, consisting of two Jovian-sized planets near 2:1 MMR, is investigated using previously collected radial velocity data. New orbital parameters

  17. Self-Stabilization in Membrane Systems

    Directory of Open Access Journals (Sweden)

    Artiom Alhazov

    2012-07-01

    Full Text Available In this paper we study a notion of self-stabilization, inspired from biology and engineering. Multiple variants of formalization of this notion are considered, and we discuss how such properties affect the computational power of multiset rewriting systems.

  18. Exponential Stability of Stochastic Nonlinear Dynamical Price System with Delay

    Directory of Open Access Journals (Sweden)

    Wenli Zhu

    2013-01-01

    Full Text Available Based on Lyapunov stability theory, Itô formula, stochastic analysis, and matrix theory, we study the exponential stability of the stochastic nonlinear dynamical price system. Using Taylor's theorem, the stochastic nonlinear system with delay is reduced to an n-dimensional semilinear stochastic differential equation with delay. Some sufficient conditions of exponential stability and corollaries for such price system are established by virtue of Lyapunov function. The time delay upper limit is solved by using our theoretical results when the system is exponentially stable. Our theoretical results show that if the classical price Rayleigh equation is exponentially stable, so is its perturbed system with delay provided that both the time delay and the intensity of perturbations are small enough. Two examples are presented to illustrate our results.

  19. Morocco; Financial System Stability Assessment: Update

    OpenAIRE

    International Monetary Fund

    2008-01-01

    This paper presents an update to the Financial System Stability Assessment on Morocco. Major reforms have been achieved since the 2002 Financial Sector Assessment Program (FSAP) within a policy of actively promoting economic and financial sector opening. The 2002 FSAP recommendations have been largely implemented. Although the financial system is stable and considerably more robust than in the past, the liberalization of capital flows and increased exchange rate flexibility present challenges...

  20. Effects of a wobble board-based therapeutic exergaming system for balance training on dynamic postural stability and intrinsic motivation levels.

    Science.gov (United States)

    Fitzgerald, Diarmaid; Trakarnratanakul, Nanthana; Smyth, Barry; Caulfield, Brian

    2010-01-01

    Randomized controlled trial. To compare the effects of wobble board exercises with and without feedback provided through integrating the wobble board movement into a computer game system, by comparing changes in postural stability and motivation. Therapeutic exergaming systems may offer a solution to poor adherence to postural control exercise regimes by improving motivation levels during exercise performance. Twenty-two healthy adults, randomly assigned to an exergaming group (n = 11) and a control group (n = 11), completed 12 exercise sessions. Dynamic postural stability was quantified at baseline and follow-up using the star excursion balance test and the dynamic postural stability index during a jump-landing task. Intrinsic motivation was measured at baseline using the Self-Motivation Inventory and at follow-up using the Intrinsic Motivation Inventory. Star excursion balance test scores showed a statistically significant (PIntrinsic Motivation Inventory showed significantly higher scores (PIntrinsic Motivation Inventory categories evaluated. The findings suggest that exercising with the therapeutic exergaming system showed similar improvements in dynamic postural stability and showed a greater level of interest and enjoyment when compared to a group doing similar balance training without the game system. Therapy, level 2b.

  1. Hybrid Dynamical Systems Modeling, Stability, and Robustness

    CERN Document Server

    Goebel, Rafal; Teel, Andrew R

    2012-01-01

    Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discret

  2. Stabilization of Harmonic Instability in AC Distribution Power System with Active Damping

    DEFF Research Database (Denmark)

    Yoon, Changwoo; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    This paper deals stabilizing method of the interaction problems among the interconnected power electronics based power devices in a power distribution system. Even if each of the inverters in the network is stable individually, the combined network stability cannot be assured unless holistic...... stability assessment is performed. The impedance based stability criterion is used to study the effect of the active damping on the system stability. A benchmark of a Cigré power distribution network is modeled under the impedance based stability criterion and validated using the PSCAD/EMTDC simulation...

  3. Global dynamics and stabilization of rigid body attitude systems

    Science.gov (United States)

    Chaturvedi, Nalin Arvind

    spherical pendulum and the spinning top. Finally, we show how results for the 3D pendulum provide a guide to obtaining almost globally stabilizing controllers for an orbiting spacecraft with gravity-gradient effects using low authority controllers such as pulsed plasma thrusters. All dynamics and stabilization results presented in this dissertation are based on new and novel problem formulations for attitude systems with a potential. They treat global issues in a geometric framework, and they provide substantial additions to the prior literature on stabilization of attitude systems.

  4. Transient stability risk assessment of power systems incorporating wind farms

    DEFF Research Database (Denmark)

    Miao, Lu; Fang, Jiakun; Wen, Jinyu

    2013-01-01

    Large-scale wind farm integration has brought several aspects of challenges to the transient stability of power systems. This paper focuses on the research of the transient stability of power systems incorporating with wind farms by utilizing risk assessment methods. The detailed model of double...... fed induction generator has been established. Wind penetration variation and multiple stochastic factors of power systems have been considered. The process of transient stability risk assessment based on the Monte Carlo method has been described and a comprehensive risk indicator has been proposed....... An investigation has been conducted into an improved 10-generator 39-bus system with a wind farm incorporated to verify the validity and feasibility of the risk assessment method proposed....

  5. Stability improvement of wind turbine penetrated using power system stabilizer (PSS) on South Sulawesi transmission system

    Science.gov (United States)

    Siswanto, Agus; Gunadin, Indar Chaerah; Said, Sri Mawar; Suyuti, Ansar

    2018-03-01

    The purpose of this research is to improve the stability of interconnection of South Sulawesi system caused by penetration new wind turbine in Sidrap area on bus 2 and in Jeniponto area on bus 34. The method used in this research was via software Power System analysis Toolbox (PSAT) under MATLAB. In this research, there are two problems that are evaluated, the stability of the system before and after penetration wind turbine into the system South Sulawesi system. From the simulation result shows that penetration of wind turbine on bus 2 Sidrap, bus 37 Jeniponto give effect oscillation on the system. The oscillation was damped by installation of Power System Stabilizer (PSS) on bus 29 area Sungguminasa, that South Sulawesi system stable according to normal condition.

  6. Almost Sure Stability and Stabilization for Hybrid Stochastic Systems with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Hua Yang

    2012-01-01

    Full Text Available The problems of almost sure (a.s. stability and a.s. stabilization are investigated for hybrid stochastic systems (HSSs with time-varying delays. The different time-varying delays in the drift part and in the diffusion part are considered. Based on nonnegative semimartingale convergence theorem, Hölder’s inequality, Doob’s martingale inequality, and Chebyshev’s inequality, some sufficient conditions are proposed to guarantee that the underlying nonlinear hybrid stochastic delay systems (HSDSs are almost surely (a.s. stable. With these conditions, a.s. stabilization problem for a class of nonlinear HSDSs is addressed through designing linear state feedback controllers, which are obtained in terms of the solutions to a set of linear matrix inequalities (LMIs. Two numerical simulation examples are given to show the usefulness of the results derived.

  7. Stability Analysis and Design of Impulsive Control Lorenz Systems Family

    International Nuclear Information System (INIS)

    Yu Yongbin; Zhang Fengli; Zhang Hongbin; Yu Juebang; Liao Xiaofeng

    2009-01-01

    Lorenz systems family unifying Lorenz system, Chen system and Lue system is a typical chaotic family. In this paper, we consider impulsive control Lorenz chaotic systems family with time-varying impulse intervals. By establishing an effective tool of a set of inequalities, we analyze the asymptotic stability of impulsive control Lorenz systems family and obtain some new less conservative conditions. Based on the stability analysis, we design a novel impulsive controller with time-varying impulse intervals. Illustrative examples are provided to show the feasibility and effectiveness of our method. The obtained results not only can be used to design impulsive control for Lorenz systems family, but also can be extended to other chaotic systems. (general)

  8. Nonlinear Observer-Based Robust Passive Control of Doubly-Fed Induction Generators for Power System Stability Enhancement via Energy Reshaping

    Directory of Open Access Journals (Sweden)

    Jun Dong

    2017-07-01

    Full Text Available The large-scale penetration of wind power might lead to degradation of the power system stability due to its inherent feature of randomness. Hence, proper control designs which can effectively handle various uncertainties become very crucial. This paper designs a novel robust passive control (RPC scheme of a doubly-fed induction generator (DFIG for power system stability enhancement. The combinatorial effect of generator nonlinearities and parameter uncertainties, unmodelled dynamics, wind speed randomness, is aggregated into a perturbation, which is rapidly estimated by a nonlinear extended state observer (ESO in real-time. Then, the perturbation estimate is fully compensated by a robust passive controller to realize a globally consistent control performance, in which the energy of the closed-loop system is carefully reshaped through output feedback passification, such that a considerable system damping can be injected to improve the transient responses of DFIG in various operation conditions of power systems. Six case studies are carried out while simulation results verify that RPC can rapidly stabilize the disturbed DFIG system much faster with less overshoot, as well as supress power oscillations more effectively compared to that of linear proportional-integral-derivative (PID control and nonlinear feedback linearization control (FLC.

  9. B-52 stability augmentation system reliability

    Science.gov (United States)

    Bowling, T. C.; Key, L. W.

    1976-01-01

    The B-52 SAS (Stability Augmentation System) was developed and retrofitted to nearly 300 aircraft. It actively controls B-52 structural bending, provides improved yaw and pitch damping through sensors and electronic control channels, and puts complete reliance on hydraulic control power for rudder and elevators. The system has experienced over 300,000 flight hours and has exhibited service reliability comparable to the results of the reliability test program. Development experience points out numerous lessons with potential application in the mechanization and development of advanced technology control systems of high reliability.

  10. System Design Description PFP Thermal Stabilization

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    2000-01-01

    The purpose of this document is to provide a system design description (SDD) and design basis for the Plutonium Finishing Plant (PFP) Thermal Stabilization project. The chief objective of the SDD is to document the Structures, Systems, and Components (SSCs) that establish and maintain the facility Safety Envelope necessary for normal safe operation of the facility; as identified in the FSAR, the OSRs, and Safety Assessment Documents (SADs). This safety equipment documentation should satisfy guidelines for the SDD given in WHC-SD-CP-TI-18 1, Criteria for Identification and Control of Equipment Necessary for Preservation of the Safety Envelope and Safe Operation of PFP. The basis for operational, alarm response, maintenance, and surveillance procedures are also identified and justified in this document. This document and its appendices address the following elements of the PFP Thermal Stabilization project: Functional and design requirements; Design description; Safety Envelope Analysis; Safety Equipment Class; and Operational, maintenance and surveillance procedures

  11. Exponential Stability of Stochastic Systems with Delay and Poisson Jumps

    Directory of Open Access Journals (Sweden)

    Wenli Zhu

    2014-01-01

    Full Text Available This paper focuses on the model of a class of nonlinear stochastic delay systems with Poisson jumps based on Lyapunov stability theory, stochastic analysis, and inequality technique. The existence and uniqueness of the adapted solution to such systems are proved by applying the fixed point theorem. By constructing a Lyapunov function and using Doob’s martingale inequality and Borel-Cantelli lemma, sufficient conditions are given to establish the exponential stability in the mean square of such systems, and we prove that the exponentially stable in the mean square of such systems implies the almost surely exponentially stable. The obtained results show that if stochastic systems is exponentially stable and the time delay is sufficiently small, then the corresponding stochastic delay systems with Poisson jumps will remain exponentially stable, and time delay upper limit is solved by using the obtained results when the system is exponentially stable, and they are more easily verified and applied in practice.

  12. A development of the direct Lyapunov method for the analysis of transient stability of a system of synchronous generators based on the determination of non- stable equilibria on a multidimensional sphere

    Directory of Open Access Journals (Sweden)

    A. V. Stepanov

    2014-01-01

    Full Text Available A development of the direct Lyapunov method for the analysis of transient stability of a system of synchronous generators based on the determination of non- stable equilibria on a multidimensional sphere.We consider the problem of transient stability analysis for a system of synchronous generators under the action of strong perturbations. The aim of our work is to develop methods to analyze a transient stability of the system of synchronous generators, which allow getting trustworthy results on reserve transient stability under different perturbations. For the analysis of transient stability, we use the direct Lyapunov method.One of the problems for this method application is to find the Lypunov function that well reflects the properties of a parallel system of synchronous generators. The most reliable results were obtained when the analysis of transient stability was performed with a Lyapunov function of energy type. Another problem for application of the direct Lyapunov method is to determine the critical value of the Lyapunov function, which requires finding the non-stable equilibria of the system. Determination of the non-stable equilibria requires studying the Lyapunov function in a multidimensional space in a neighborhood of a stable equilibrium for the post-breakdown system; this is a complicated non-linear problem.In the paper, we propose a method for determination of the non-stable equilibria on a multidimensional sphere. The method is based on a search of a minimum of the Lyapunov function on a multidimensional sphere the center of which is a stable equilibrium. Our method allows, comparing with the other, e.g., gradient methods, reliable finding a non-stable equilibrium and calculating the critical value. The reliability of our method is proved by numerical experiments. The developed methods and a program realized in a MATLAB package can be recommended for design of a post-breakdown control system of synchronous generators or as a

  13. Stabilization for Damping Multimachine Power System with Time-Varying Delays and Sector Saturating Actuator

    OpenAIRE

    Ma, Linlin; Liang, Yanping; Chen, Jian

    2016-01-01

    This paper studies the stabilization problem for damping multimachine power system with time-varying delays and sector saturating actuator. The multivariable proportional plus derivative (PD) type stabilizer is designed by transforming the problem of PD controller design to that of state feedback stabilizer design for a system in descriptor form. A new sufficient condition of closed-loop multimachine power system asymptomatic stability is derived based on the Lyapunov theory. Computer simulat...

  14. A Recursive Fuzzy System for Efficient Digital Image Stabilization

    Directory of Open Access Journals (Sweden)

    Nikolaos Kyriakoulis

    2008-01-01

    Full Text Available A novel digital image stabilization technique is proposed in this paper. It is based on a fuzzy Kalman compensation of the global motion vector (GMV, which is estimated in the log-polar plane. The GMV is extracted using four local motion vectors (LMVs computed on respective subimages in the logpolar plane. The fuzzy Kalman system consists of a fuzzy system with the Kalman filter's discrete time-invariant definition. Due to this inherited recursiveness, the output results into smoothed image sequences. The proposed stabilization system aims to compensate any oscillations of the frame absolute positions, based on the motion estimation in the log-polar domain, filtered by the fuzzy Kalman system, and thus the advantages of both the fuzzy Kalman system and the log-polar transformation are exploited. The described technique produces optimal results in terms of the output quality and the level of compensation.

  15. Estimation of Power System Stabilizer Parameters Using Swarm Intelligence Techniques to Improve Small Signal Stability of Power System

    Directory of Open Access Journals (Sweden)

    Hossein Soleymani

    2017-08-01

    Full Text Available Interconnection of the power system utilities and grids offers a formidable dispute in front of design engineers. With the interconnections, power system has emerged as a more intricate and nonlinear system. Recent years small signal stability problems have achieved much significance along with the conventional transient constancy problems. Transient stability of the power system can be attained with high gain and fast acting Automatic Voltage Regulators (AVRs. Yet, AVRs establish negative damping in the system. Propagation of small signals is hazardous for system’s health and offers a potential threat to system’s oscillatory stability. These small signals have magnitude of 0.2 to 2 Hz. The professional control tactic to develop system damping is Power System Stabilizer (PSS.This paper presents application of swarm intelligence for PSS parameter estimation issue on standard IEEE 10 Generator 39 Bus power network (New England. Realization of the objective function is done with the help of interpolation investigation using MATLAB. The system performance is compared with the conventional optimization algorithms like Genetic Algorithm (GA and Particle Swarm Optimization (PSO based PSS controller. The strength of proposed controller is tested by examining various operating conditions. An Eigen property analysis is done on this system i.e. before installing PSS, and after the employment of GA and PSO tuned PSSs. A significant comparison is carried out with GA and PSO on the basis of convergence uniqueness and dynamic response of speed deviation curves of various generators.

  16. Systems to accelerate in situ stabilization of waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Amdurer, M.; Fellman, R.T.; Roetzer, J.; Russ, C.

    1986-09-01

    In-situ systems to accelerate the stabilization of waste deposits involve three essential elements: selection of a chemical or biological agent (reactant) that can react with and stabilize the waste, a method for delivery of the reactant to the deposit, and a method for recovery of the reaction products or mobilized waste. Four reactant categories were examined: biodegradation, surfactant-assistant flushing, hydrolysis, and oxidation. Of these, biodegradation and surfactant-assisted flushing appear most promising as in-situ treatment techniques. Methods of delivery of reactants based upon gravity include surface flooding, ponding, surface spraying, ditching, and subsurface infiltration beds and galleries. Forced injection (pumping) may also be used. Permeability is an important consideration in selecting the delivery system. Recovery systems using gravity include open ditching and buried drains, and pumped methods include wellpoint and deep well systems. Basically, the same limitations that apply to delivery systems are also true for recovery systems.

  17. Automation for a base station stability testing

    OpenAIRE

    Punnek, Elvis

    2016-01-01

    This Batchelor’s thesis was commissioned by Oy LM Ericsson Ab Oulu. The aim of it was to help to investigate and create a test automation solution for the stability testing of the LTE base station. The main objective was to create a test automation for a predefined test set. This test automation solution had to be created for specific environments and equipment. This work included creating the automation for the test cases and putting them to daily test automation jobs. The key factor...

  18. Stability of minoxidil in Espumil foam base.

    Science.gov (United States)

    Geiger, Christine M; Sorenson, Bridget; Whaley, Paul A

    2013-01-01

    Minoxidil is a drug used to stimulate hair growth and to slow balding. It is marketed under a number of trade names, including Rogaine, and is available in varying strength dose forms from a number of generic manufacturers. Minoxidil is available in oral and topical forms. In topical form, it can be applied by a metered-spray or rub-on applicator. A hydroalcoholic compounding vehicle can minimize greasiness, itching, burning, and contact dermatitis where low concentrations of ethanol and propylene glycol are present. Espumil Foam Base contains low concentrations of these ingredients and also can form a foam on topical application. Espumil's unique delivery by foam-activating packaging assures simple application to difficult-to-treat areas, and it vanishes quickly after application, keeping it in place and avoiding health skin areas. The objective of this study was to determine the stability of minoxidil in Espumil Foam Base. The studied sample was compounded into a 50-mg/mL solution and stored in a plastic foam-activating bottle at room temperature conditions. Three samples were assayed at each time point out to 90 days by a stability-indicating high-performance liquid chromatography method. The method was validated for its specificity through forced-degradation studies. The beyond-use-date is at least 90 days, based on data collected when this formulation was stored at room temperature, protected from light.

  19. Operational stability prediction in milling based on impact tests

    Science.gov (United States)

    Kiss, Adam K.; Hajdu, David; Bachrathy, Daniel; Stepan, Gabor

    2018-03-01

    Chatter detection is usually based on the analysis of measured signals captured during cutting processes. These techniques, however, often give ambiguous results close to the stability boundaries, which is a major limitation in industrial applications. In this paper, an experimental chatter detection method is proposed based on the system's response for perturbations during the machining process, and no system parameter identification is required. The proposed method identifies the dominant characteristic multiplier of the periodic dynamical system that models the milling process. The variation of the modulus of the largest characteristic multiplier can also be monitored, the stability boundary can precisely be extrapolated, while the manufacturing parameters are still kept in the chatter-free region. The method is derived in details, and also verified experimentally in laboratory environment.

  20. Ecological networks. On the structural stability of mutualistic systems.

    Science.gov (United States)

    Rohr, Rudolf P; Saavedra, Serguei; Bascompte, Jordi

    2014-07-25

    In theoretical ecology, traditional studies based on dynamical stability and numerical simulations have not found a unified answer to the effect of network architecture on community persistence. Here, we introduce a mathematical framework based on the concept of structural stability to explain such a disparity of results. We investigated the range of conditions necessary for the stable coexistence of all species in mutualistic systems. We show that the apparently contradictory conclusions reached by previous studies arise as a consequence of overseeing either the necessary conditions for persistence or its dependence on model parameterization. We show that observed network architectures maximize the range of conditions for species coexistence. We discuss the applicability of structural stability to study other types of interspecific interactions. Copyright © 2014, American Association for the Advancement of Science.

  1. Nonlinear physical systems spectral analysis, stability and bifurcations

    CERN Document Server

    Kirillov, Oleg N

    2013-01-01

    Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems.Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynam

  2. Dynamic Stability Enhancement of a Multi Machine Electric Power System Using Unified Power Flow Controller

    OpenAIRE

    Ahmad Memaripour; Sayed Mojtaba Shirvani Boroujeni; Reza Hemmati

    2011-01-01

    This study presents the application of Unified Power Flow Controller (UPFC) to improvement dynamic stability of a multi-machine electric power system installed with UPFC. Since UPFC is considered to mitigate Low Frequency Oscillations (LFO) and stability enhancement, therefore a supplementary stabilizer based on UPFC (like power system stabilizer) is designed to reach the defined purpose. Intelligence optimization methods such as Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) a...

  3. Importance of stability study of continuous systems for ethanol production.

    Science.gov (United States)

    Paz Astudillo, Isabel Cristina; Cardona Alzate, Carlos Ariel

    2011-01-10

    Fuel ethanol industry presents different problems during bioreactors operation. One of them is the unexpected variation in the output ethanol concentration from the bioreactor or a drastic fall in the productivity. In this paper, a compilation of concepts and relevant results of several experimental and theoretical studies about dynamic behavior of fermentation systems for bioethanol production with Saccharomyces cerevisiae and Zymomonas mobilis is done with the purpose of understanding the stability phenomena that could affect the productivity of industries producing fuel ethanol. It is shown that the design of high scale biochemical processes for fuel ethanol production must be done based on stability studies. © 2010 Elsevier B.V. All rights reserved.

  4. Vibrations and stability of complex beam systems

    CERN Document Server

    Stojanović, Vladimir

    2015-01-01

     This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It...

  5. Robust power system stabilizer design with H∞ theory

    OpenAIRE

    Marjaneh Farhoodi; MohammadTaghi HamidiBeheshti; Ali Nejati

    2007-01-01

    In this paper, the H∞ robust control technique is presented to design a power system stabilizer. First, the H∞ standard problem is expressed and then, the modeling and stability analysis of power systems are studied. Finally, a H∞ power system stabilizer is designed and the simulation results are discussed.

  6. Stability and response bounds of non-conservative linear systems

    DEFF Research Database (Denmark)

    Pommer, Christian

    2003-01-01

    For a linear system of second order differential equations the stability is studied by Lyapunov's direct method. The Lyapunov matrix equation is solved and a sufficient condition for stability is expressed by the system matrices. For a system which satisfies the condition for stability the Lyapunov...

  7. Research on Handling Stability of Steering-by-wire System

    Directory of Open Access Journals (Sweden)

    Yuan Ying

    2017-01-01

    Full Text Available The main function of steer-by-wire (SBW system are improving steering characteristics, security and stability of the vehicle. In this paper, the variable steering ratio of SBW system is analyzed, and the method of steering ratio based on fuzzy control and neural network are researched. In order to solve the actual working condition, the wheel angle may not reach the expected value, this paper establishes a twodegree-of-freedom (2-DOF vehicle model, and a Matlab/Simulink simulation model, in which a control strategy based on PID controller is put forward to control the front wheel steering angle. Simulation results show that proposed control strategy based on fuzzy neural network can effectively reduce lateral deviation and improve the handling stability and comfortability of the vehicle.

  8. Transient Stability Improvement in Multi-Machine System Using Power System Stabilizer (PSS) and Static Var Compensator (SVC)

    OpenAIRE

    Khoshnaw Khalid Hama Saleh; Ergun Ercelebi

    2015-01-01

    Increasingly complex modern power systems require stability, especially for transient and small disturbances. Transient stability plays a major role in stability during fault and large disturbance. This paper compares a power system stabilizer (PSS) and static Var compensator (SVC) to improve damping oscillation and enhance transient stability. The effectiveness of a PSS connected to the exciter and/or governor in damping electromechanical oscillations of isolated synchro...

  9. Decentralized, cooperative control of multivehicle systems: Design and stability analysis

    Science.gov (United States)

    Weitz, Lesley Anne

    2009-12-01

    This dissertation addresses the design and stability analysis of decentralized, cooperative control laws for multivehicle systems. Advances in communication, navigation, and surveillance systems have enabled greater autonomy in multivehicle systems, and there is a shift toward decentralized, cooperative systems for computational efficiency and robustness. In a decentralized control scheme, control inputs are determined onboard each vehicle; therefore, decentralized controllers are more efficient for large numbers of vehicles, and the system is more robust to communication failures and reconfiguration. The design of decentralized, cooperative control laws is explored for a nonlinear vehicle model that can be represented in a double-integrator form. Cooperative controllers are functions of spacing errors with respect to other vehicles in the system, where the communication structure defines the information that is available to each vehicle. Control inputs are selected to achieve internal stability, or zero steady-state spacing errors, between vehicles in the system. Closed-loop equations of motion for the cooperative system can be written in a structural form, where damping and stiffness matrices contain control gains acting on the velocity and positions of the vehicles, respectively. The form of the stiffness matrix is determined by the communication structure, where different communication structures yield different control forms. Communication structures are compared using two structural analysis tools: modal cost and frequency-response functions, which evaluate the response of the multivehicle systems to disturbances. The frequency-response information is shown to reveal the string stability of different cooperative control forms. The effects of time delays in the feedback states of the cooperative control laws on system stability are also investigated. Closed-loop equations of motion are modeled as delay differential equations, and two stability notions are

  10. Stabilizing constrained chaotic system using a symplectic psuedospectral method

    Science.gov (United States)

    Peng, Haijun; Wang, Xinwei; Shi, Boyang; Zhang, Sheng; Chen, Biaosong

    2018-03-01

    The problem of controlling chaotic systems has drawn much attention in the last two decades. However, the controlled system may be subjected to complicated constraints and few researches on controlling chaos take constraints into consideration. Therefore, the stabilization of constrained chaotic system is solved under the frame of nonlinear optimal control in this paper. A symplectic pseudospectral method based on qusilinearizaiton techniques and the parametric variational principle is developed to solve constrained nonlinear optimal control problems with arbitrary Lagrange-type cost functional. At the beginning of the proposed method, the original nonlinear optimal control problem is converted into a series of linear-quadratic constrained optimal control problems. Then each of the converted linear quadratic problems is transformed into a standard linear complementarity problem. The proposed method is successfully applied to stabilizing constrained chaotic systems around an unstable equilibrium point or an unstable periodic orbit. Numerical simulations demonstrate that the developed method is effective and efficient, and constraints are strictly satisfied.

  11. Stability of a planet in the HD 41004 binary system

    Science.gov (United States)

    Satyal, S.; Musielak, Z. E.

    2016-03-01

    The Hill stability criterion is applied to analyse the stability of a planet in the binary star system of HD 41004 AB, with the primary and secondary separated by 22 AU, and masses of 0.7 M_⊙ and 0.4 M_⊙, respectively. The primary hosts one planet in an S-type orbit, and the secondary hosts a brown dwarf (18.64 M_J) on a relatively close orbit, 0.0177 AU, thereby forming another binary pair within this binary system. This star-brown dwarf pair (HD 41004 B+Bb) is considered a single body during our numerical calculations, while the dynamics of the planet around the primary, HD 41004 Ab, is studied in different phase-spaces. HD 41004 Ab is a 2.6 M_J planet orbiting at the distance of 1.7 AU with orbital eccentricity 0.39. For the purpose of this study, the system is reduced to a three-body problem and is solved numerically as the elliptic restricted three-body problem (ERTBP). The {Hill stability} function is used as a chaos indicator to configure and analyse the orbital stability of the planet, HD 41004 Ab. The indicator has been effective in measuring the planet's orbital perturbation due to the secondary star during its periastron passage. The calculated Hill stability time series of the planet for the coplanar case shows the stable and quasi-periodic orbits for at least ten million years. For the reduced ERTBP the stability of the system is also studied for different values of planet's orbital inclination with the binary plane. Also, by recording the planet's {ejection time} from the system or {collision time} with a star during the integration period, stability of the system is analysed in a bigger phase-space of the planet's orbital inclination, ≤ 90o, and its semimajor axis, 1.65-1.75 AU. Based on our analysis it is found that the system can maintain a stable configuration for the planet's orbital inclination as high as 65o relative to the binary plane. The results from the Hill stability criterion and the planet's dynamical lifetime map are found to be

  12. Performance and stability analysis of a photovoltaic power system

    Science.gov (United States)

    Merrill, W. C.; Blaha, R. J.; Pickrell, R. L.

    1978-01-01

    The performance and stability characteristics of a 10 kVA photovoltaic power system are studied using linear Bode analysis and a nonlinear analog simulation. Power conversion efficiencies, system stability, and system transient performance results are given for system operation at various levels of solar insolation. Additionally, system operation and the modeling of system components for the purpose of computer simulation are described.

  13. 3D active stabilization system with sub-micrometer resolution.

    Directory of Open Access Journals (Sweden)

    Olli Kursu

    Full Text Available Stable positioning between a measurement probe and its target from sub- to few micrometer scales has become a prerequisite in precision metrology and in cellular level measurements from biological tissues. Here we present a 3D stabilization system based on an optoelectronic displacement sensor and custom piezo-actuators driven by a feedback control loop that constantly aims to zero the relative movement between the sensor and the target. We used simulations and prototyping to characterize the developed system. Our results show that 95% attenuation of movement artifacts is achieved at 1 Hz with stabilization performance declining to ca. 70% attenuation at 10 Hz. Stabilization bandwidth is limited by mechanical resonances within the displacement sensor that occur at relatively low frequencies, and are attributable to the sensor's high force sensitivity. We successfully used brain derived micromotion trajectories as a demonstration of complex movement stabilization. The micromotion was reduced to a level of ∼1 µm with nearly 100 fold attenuation at the lower frequencies that are typically associated with physiological processes. These results, and possible improvements of the system, are discussed with a focus on possible ways to increase the sensor's force sensitivity without compromising overall system bandwidth.

  14. 3D Active Stabilization System with Sub-Micrometer Resolution

    Science.gov (United States)

    Rahkonen, Timo; Vähäsöyrinki, Mikko

    2012-01-01

    Stable positioning between a measurement probe and its target from sub- to few micrometer scales has become a prerequisite in precision metrology and in cellular level measurements from biological tissues. Here we present a 3D stabilization system based on an optoelectronic displacement sensor and custom piezo-actuators driven by a feedback control loop that constantly aims to zero the relative movement between the sensor and the target. We used simulations and prototyping to characterize the developed system. Our results show that 95 % attenuation of movement artifacts is achieved at 1 Hz with stabilization performance declining to ca. 70 % attenuation at 10 Hz. Stabilization bandwidth is limited by mechanical resonances within the displacement sensor that occur at relatively low frequencies, and are attributable to the sensor's high force sensitivity. We successfully used brain derived micromotion trajectories as a demonstration of complex movement stabilization. The micromotion was reduced to a level of ∼1 µm with nearly 100 fold attenuation at the lower frequencies that are typically associated with physiological processes. These results, and possible improvements of the system, are discussed with a focus on possible ways to increase the sensor's force sensitivity without compromising overall system bandwidth. PMID:22900045

  15. LMI optimization approach to stabilization of time-delay chaotic systems

    International Nuclear Information System (INIS)

    Park, Ju H.; Kwon, O.M.

    2005-01-01

    Based on the Lyapunov stability theory and linear matrix inequality (LMI) technique, this paper proposes a novel control method for stabilization of a class of time-delay chaotic systems. A stabilization criterion is derived in terms of LMIs which can be easily solved by efficient convex optimization algorithms. A numerical example is included to show the advantage of the result derived

  16. The Practical Stability of the Linear Systems with the Phase Space Variable Measurability

    Directory of Open Access Journals (Sweden)

    SOPRONIUK, Y.

    2007-04-01

    Full Text Available For the linear transitional systems with the variable measurability of the phase space it was formulated and solved the problem about the practical stability. It was proved the theorem about the criteria of the practical stability, on the base of which it was developed the algorithm of the digital method of the search of the quality criteria of the practical stability.

  17. "Psychological Boarding" and Community-Based Behavioral Health Crisis Stabilization.

    Science.gov (United States)

    Mukherjee, Dhrubodhi; Saxon, Verletta

    2018-01-27

    This exploratory paper presents a case study where a community based mental health organization forging a partnership with a local hospital system to establish a crisis stabilization unit (CSU) to address behavioral health emergency care. The study takes a mixed methods case study approach to address two research questions; (a) did this approach reduce the overall length of stay in the hospital emergency departments? (b) What challenges did the taskforce face in implementing this CSU model? The paper shares recommendation from the findings.

  18. Thermal stability of soy-based polyurethanes

    Directory of Open Access Journals (Sweden)

    Luciane L. Monteavaro

    2005-06-01

    Full Text Available New types of polyurethanes were prepared by reacting diisocyanates and formiated soy polyols with different OH functionalities. Thermal properties and degradation kinetics were investigated by TGA. All prepared PU's showed at least two-weight loss steps, the first one, around 210 °C. Thermal stability of these PUs depends strongly on urethane groups per unit volume and an increase in the weight loss was observed as a result of the increased amount of urethane groups. Degradation kinetics behavior of the soy-based polyurethanes was investigated according to the Flynn method. Different average activation energy values were obtained from isothermal and isoconversional curves, 140.6 KJ/mol and 62.8 KJ/mol, respectively, indicating the complexity of the PUs degradation process.

  19. System specification for the plutonium stabilization and packaging system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This document describes functional design requirements for the Plutonium Stabilization and Packaging System (Pu SPS), as required by DOE contract DE-AC03-96SF20948 through contract modification 9 for equipment in Building 707 at Rocky Flats Environmental Technology Site (RFETS).

  20. System specification for the plutonium stabilization and packaging system

    International Nuclear Information System (INIS)

    1996-01-01

    This document describes functional design requirements for the Plutonium Stabilization and Packaging System (Pu SPS), as required by DOE contract DE-AC03-96SF20948 through contract modification 9 for equipment in Building 707 at Rocky Flats Environmental Technology Site (RFETS)

  1. Stability Limits in Resonant Planetary Systems

    OpenAIRE

    Barnes, Rory; Greenberg, Richard

    2007-01-01

    The relationship between the boundaries for Hill and Lagrange stability in orbital element space is modified in the case of resonantly interacting planets. Hill stability requires the ordering of the planets to remain constant while Lagrange stability also requires all planets to remain bound to the central star. The Hill stability boundary is defined analytically, but no equations exist to define the Lagrange boundary, so we perform numerical experiments to estimate the location of this boun...

  2. Bank, Banking System, Macroprudential Supervision, Stability of Banking System

    Directory of Open Access Journals (Sweden)

    Tetiana Vasilyeva

    2016-10-01

    Full Text Available Intensification of financial development during last decade causes transformation of banking sector functioning. In particular, among the most significant changes over this period should be noted the next ones: convergence of financial market segments and appearance of cross-sector financial products, an increase of prevailing of financial sector in comparison with real economy and level of their interdependent, an intensification of crisis processes in financial and especially banking sector and a significant increase of the scale of the crisis consequences etc. thus, in such vulnerable conditions it is become very urgent to identify the relevant factors that can influence on the stability of banking sector, because its maintenance seems to be one of the most important preconditions of the stability of the national economy as a whole. Purpose of the article is to analyze key performance indicators of the Ukrainian banking system, clarify its main problems, identify relevant factors of the stability of the Ukrainian banking system and the character of their influence on the dependent variable. Realization of the mentioned above tasks was ensured by regression analysis (OLS regression. Analysis of key indicators that characterize current situation in the Ukrainian banking system found out the existence of numerous endogenous and exogenous problems, which, in turn, cause worsening most of analyzed indicators during 2013-2015. Unfavorable situation in Ukrainian banking system determined the necessity of identification of relevant factors of banking system stability to avoid transmission of financial shocks. According to the results of regression analysis on the stability of banking sector positively influence such factors as increase of interest margin to gross income ratio, reserves to assets ratio, number of branches, ratio of non-performing loans to total loans. Meanwhile, negative impact on stability of banking system has an increase of liquid

  3. COMPARISON OF DIFFERENT TECHNIQUES FOR DESIGN OF POWER SYSTEM STABILIZER

    OpenAIRE

    M. Ravindra Babu,; A. Ramulu; B. Durga Prasad,; Doradla. Prathap Hari Krishna,

    2011-01-01

    The major problem in power system operation is related to small signal instability caused by insufficient damping in the system. The most effective way of countering this instability is to use auxiliary controllers called power system stabilizers, to produce additional damping during low frequency oscillations in the system. Heffron-Phillip’s Model of a synchronous machine is commonly used in small signal stability analysis. Different techniques for designing of power system stabilizer is pro...

  4. Stability Analysis of Periodic Systems by Truncated Point Mappings

    Science.gov (United States)

    Guttalu, R. S.; Flashner, H.

    1996-01-01

    An approach is presented deriving analytical stability and bifurcation conditions for systems with periodically varying coefficients. The method is based on a point mapping(period to period mapping) representation of the system's dynamics. An algorithm is employed to obtain an analytical expression for the point mapping and its dependence on the system's parameters. The algorithm is devised to derive the coefficients of a multinominal expansion of the point mapping up to an arbitrary order in terms of the state variables and of the parameters. Analytical stability and bifurcation condition are then formulated and expressed as functional relations between the parameters. To demonstrate the application of the method, the parametric stability of Mathieu's equation and of a two-degree of freedom system are investigated. The results obtained by the proposed approach are compared to those obtained by perturbation analysis and by direct integration which we considered to the "exact solution". It is shown that, unlike perturbation analysis, the proposed method provides very accurate solution even for large valuesof the parameters. If an expansion of the point mapping in terms of a small parameter is performed the method is equivalent to perturbation analysis. Moreover, it is demonstrated that the method can be easily applied to multiple-degree-of-freedom systems using the same framework. This feature is an important advantage since most of the existing analysis methods apply mainly to single-degree-of-freedom systems and their extension to higher dimensions is difficult and computationally cumbersome.

  5. Transient stability probability evaluation of power system incorporating with wind farm and SMES

    DEFF Research Database (Denmark)

    Fang, Jiakun; Miao, Lu; Wen, Jinyu

    2013-01-01

    Large scale renewable power generation brings great challenges to the power system operation and stabilization. Energy storage is one of the most important technologies to face the challenges. This paper proposes a method for transient stability probability evaluation of power system with wind farm...... and SMES. Firstly, a modified 11-bus test system with both wind farm and SMES has been implemented. The wind farm is represented as a doubly fed induction generator (DFIG). Then a stochastic-based approach to evaluate the probabilistic transient stability index of the power system is presented. Uncertain...... the probability indices. With the proposed method based on Monte-Carlo simulation and bisection method, system stability is "measured". Quantitative relationship of penetration level, SMES coil size and system stability is established. Considering the stability versus coil size to be the production curve...

  6. An Effective Distributed Model for Power System Transient Stability Analysis

    Directory of Open Access Journals (Sweden)

    MUTHU, B. M.

    2011-08-01

    Full Text Available The modern power systems consist of many interconnected synchronous generators having different inertia constants, connected with large transmission network and ever increasing demand for power exchange. The size of the power system grows exponentially due to increase in power demand. The data required for various power system applications have been stored in different formats in a heterogeneous environment. The power system applications themselves have been developed and deployed in different platforms and language paradigms. Interoperability between power system applications becomes a major issue because of the heterogeneous nature. The main aim of the paper is to develop a generalized distributed model for carrying out power system stability analysis. The more flexible and loosely coupled JAX-RPC model has been developed for representing transient stability analysis in large interconnected power systems. The proposed model includes Pre-Fault, During-Fault, Post-Fault and Swing Curve services which are accessible to the remote power system clients when the system is subjected to large disturbances. A generalized XML based model for data representation has also been proposed for exchanging data in order to enhance the interoperability between legacy power system applications. The performance measure, Round Trip Time (RTT is estimated for different power systems using the proposed JAX-RPC model and compared with the results obtained using traditional client-server and Java RMI models.

  7. The efficacy and stability of an information and communication technology-based centralized monitoring system of adherence to immunosuppressive medication in kidney transplant recipients: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Jung, Hee-Yeon; Seong, Sook Jin; Choi, Ji-Young; Cho, Jang-Hee; Park, Sun-Hee; Kim, Chan-Duck; Yoon, Young-Ran; Kim, Hyung-Kee; Huh, Seung; Yoon, Se-Hee; Lee, Jong Soo; Kim, Yong-Lim

    2017-10-16

    Immunosuppression non-adherence in kidney transplant recipients (KTRs) not only increases the risk of medical intervention due to acute rejection and graft loss but burdens the socioeconomic system in the form of increased healthcare costs. An aggressive preemptive effort by healthcare professionals, geared to ensure adherence to immunosuppressants in KTRs, is significant and imperative. This study was designed as a prospective, open-label, multicenter, randomized controlled study aimed at evaluating the efficacy and stability of an information and communication technology (ICT)-based centralized monitoring system in boosting medication adherence in KTRs. One hundred fourteen KTRs registered throughout the year 2017 to 2018 are randomized into either the ICT-based centralized home monitoring system or to ambulatory follow-up. The planned follow-up duration is 6 months. The ICT-based centralized home monitoring system described consists of a smart pill box equipped with personal identification system, a home monitoring system, an electronic Case Report Form (eCRF) system, and a comprehensive clinical trial management system (CTMS). It alerts both patients and medical staff with texts and pill box alarms if there is a dosage/dosing time error or a missed dose. Medication adherence and transplant outcomes for the follow-up period are compared between the two groups, while patient satisfaction as well as the stability and cost-effectiveness of the ICT-based monitoring system are to be evaluated. This on-going study is expected to determine if consistent use of the ICT-based centralized monitoring system described could maximize mediation adherence and subsequently enhance transplant outcomes in KTRs. Further, it would lay the foundation for successful implementation of this ICT-based monitoring system for effective management of medication adherence in KTRs. ClinicalTrials.gov, Identifier: NCT03136588 . Registered on 20 April 2017.

  8. UNMANNED AIR VEHICLE STABILIZATION BASED ON NEURAL NETWORK REGULATOR

    Directory of Open Access Journals (Sweden)

    S. S. Andropov

    2016-09-01

    Full Text Available A problem of stabilizing for the multirotor unmanned aerial vehicle in an environment with external disturbances is researched. A classic proportional-integral-derivative controller is analyzed, its flaws are outlined: inability to respond to changing of external conditions and the need for manual adjustment of coefficients. The paper presents an adaptive adjustment method for coefficients of the proportional-integral-derivative controller based on neural networks. A neural network structure, its input and output data are described. Neural networks with three layers are used to create an adaptive stabilization system for the multirotor unmanned aerial vehicle. Training of the networks is done with the back propagation method. Each neural network produces regulator coefficients for each angle of stabilization as its output. A method for network training is explained. Several graphs of transition process on different stages of learning, including processes with external disturbances, are presented. It is shown that the system meets stabilization requirements with sufficient number of iterations. Described adjustment method for coefficients can be used in remote control of unmanned aerial vehicles, operating in the changing environment.

  9. System Design Description PFP Thermal Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    RISENMAY, H.R.

    2000-01-27

    DOE has authorized in their letter of August 2, 1999, the operation of these three furnaces, quote ''Operation of the three uncompleted muffle furnaces (No.3, No.4, and No.5) located in Room 235B is authorized, using the same feed charge limits as the two existing furnaces (No.1, and No.2) located in Room 230C,''. The above statement incorrectly refers to Room 230C whereas the correct location is Room 230A. The current effort is directed to initiate the operation and to complete the design activities DOE authorized the operation of the furnaces based on their Safety Evaluation Report (SER). Based on analogy and the principle of similarity, the risks and consequences of accidents both onsite and offsite due to operation of three furnaces are not significantly larger than those already evaluated with the two operating furnaces. Thermal stabilization operations and the material of feed for furnaces in Glovebox HA-21 I are essentially the same as those currently being stabilized in furnaces in Glovebox HC-21 C. Therefore the accident analysis has utilized identical accident scenarios in evaluation and no additional failure modes are introduced by HA-21 I muffle furnace operation that would enhance the consequences of accidents. Authorization Basis documents as referenced below (PFP FSAR and DOE Letter authorizing the operation) appear to contradict each other, i.e. one allows and authorizes the operation and the other imposes the restriction on the operation. The purpose of the PFP FSAR restrictions was to review thoroughly the design and installation of three furnaces and perform acceptance testing before approving the startup for operation. With the experience of operating the two furnaces in Glovebox HC-21C, and the knowledge of risks and hazards the facility operation, the plant is adequately prepared to operate these additional furnaces. ECN 653595 has been prepared to incorporate operation of the muffle furnaces in Glovebox HA-21 I into the

  10. Technique for Assessing the Stability and Controllability Characteristics of Naval Aircraft Systems Based on the Rational Combination of Modeling, Identification and Flight Experiments

    Directory of Open Access Journals (Sweden)

    S. V. Nikolaev

    2015-01-01

    motion in the range of main flight operating conditions. This model is aimed at using to not only to support testing, but at subsequent stages of the aviation system life cycle as well. These models are necessary when training the pilots to fly to the ship, when developing the simulators, at the stage of modernization, in examination of aircraft accidents, etc. As a result of the work, have been created a new technique for evaluating the stability and controllability characteristics of the naval aircraft system, including a new procedure for the identification and also the new algorithmic techniques that can be used to visualize the dependence of aerodynamic coefficients as a function of the angle of attack and a new approach to identify longitudinal channel according to lateral test flight modes. All the results are confirmed by processing of flight experiment materials.The work is fulfilled with the support of the Russian Foundation for Basic Research (RFBR, project 15-08-06237.

  11. Transient stability improvement by nonlinear controllers based on tracking

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Juan M. [Centro de Investigacion y Estudios Avanzados, Guadalajara, Mexico. Av. Cientifica 1145. Col. El Bajio. Zapopan, Jal. 45015 (Mexico); Arroyave, Felipe Valencia; Correa Gutierrez, Rosa Elvira [Universidad Nacional de Colombia, Sede Medellin. Facultad de Minas, Escuela de Mecatronica (Colombia)

    2011-02-15

    This paper deals with the control problem in multi-machine electric power systems, which represent complex great scale nonlinear systems. Thus, the controller design is a challenging problem. These systems are subjected to different perturbations, such as short circuits, connection and/or disconnection of loads, lines, or generators. Then, the utilization of controllers which guarantee good performance under those perturbations is required in order to provide electrical energy to the loads with admissible stability margins. The proposed controllers are based on a systematic strategy, which calculate nonlinear controllers for generating units in a power plant, both for voltage and velocity regulation. The formulation allows designing controllers in a multi-machine power system without intricate calculations. Results on a power system of the open research indicate the proposition's suitability. The problem is formulated as a tracking problem. The designed controllers may be implemented in any electric power system. (author)

  12. A comprehensive gaze stabilization controller based on cerebellar internal models

    DEFF Research Database (Denmark)

    Vannucci, Lorenzo; Falotico, Egidio; Tolu, Silvia

    2017-01-01

    based on the coordination of VCR and VOR and OKR. The model, inspired by neuroscientific cerebellar theories, is provided with learning and adaptation capabilities based on internal models. We present the results for the gaze stabilization model on three sets of experiments conducted on the SABIAN robot...... and on the iCub simulator, validating the robustness of the proposed control method. The first set of experiments focused on the controller response to a set of disturbance frequencies along the vertical plane. The second shows the performances of the system under three-dimensional disturbances. The last set...

  13. Adaptive Central Force Optimization Algorithm Based on the Stability Analysis

    Directory of Open Access Journals (Sweden)

    Weiyi Qian

    2015-01-01

    Full Text Available In order to enhance the convergence capability of the central force optimization (CFO algorithm, an adaptive central force optimization (ACFO algorithm is presented by introducing an adaptive weight and defining an adaptive gravitational constant. The adaptive weight and gravitational constant are selected based on the stability theory of discrete time-varying dynamic systems. The convergence capability of ACFO algorithm is compared with the other improved CFO algorithm and evolutionary-based algorithm using 23 unimodal and multimodal benchmark functions. Experiments results show that ACFO substantially enhances the performance of CFO in terms of global optimality and solution accuracy.

  14. Semi-global output feedback stabilization for a class of nonlinear systems using homogeneous domination approach.

    Science.gov (United States)

    Zhai, Junyong; Du, Haibo

    2013-03-01

    This paper investigates the problem of semi-global stabilization by output feedback for a class of nonlinear systems using homogeneous domination approach. For each subsystem, we first design an output feedback stabilizer for the nominal system without the perturbing nonlinearities. Then, based on the ideas of the homogeneous systems theory and the adding a power integrator technique, a series of homogeneous output feedback stabilizers are constructed recursively for each subsystem and the closed-loop system is rendered semi-globally asymptotically stable. The efficiency of the output feedback stabilizers is demonstrated by a simulation example. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  15. Stabilization for Damping Multimachine Power System with Time-Varying Delays and Sector Saturating Actuator

    Directory of Open Access Journals (Sweden)

    Linlin Ma

    2016-01-01

    Full Text Available This paper studies the stabilization problem for damping multimachine power system with time-varying delays and sector saturating actuator. The multivariable proportional plus derivative (PD type stabilizer is designed by transforming the problem of PD controller design to that of state feedback stabilizer design for a system in descriptor form. A new sufficient condition of closed-loop multimachine power system asymptomatic stability is derived based on the Lyapunov theory. Computer simulation of a two-machine power system has verified the effectiveness and efficiency of the proposed approach.

  16. Stabilization of Electromagnetic Suspension System Behavior by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Abbas Najar Khoda Bakhsh

    2012-07-01

    Full Text Available Electromagnetic suspension system with a nonlinear and unstable behavior, is used in maglev trains. In this paper a linear mathematical model of system is achieved and the state feedback method is used to improve the system stability. The control coefficients are tuned by two different methods, Riccati and a new method based on Genetic algorithm. In this new proposed method, we use Genetic algorithm to achieve the optimum values of control coefficients. The results of the system simulation by Matlab indicate the effectiveness of new proposed system. When a new reference of air gap is needed or a new external force is added, the proposed system could omit the vibration and shake of the train coupe and so, passengers feel more comfortable.

  17. Optimal Subinterval Selection Approach for Power System Transient Stability Simulation

    Directory of Open Access Journals (Sweden)

    Soobae Kim

    2015-10-01

    Full Text Available Power system transient stability analysis requires an appropriate integration time step to avoid numerical instability as well as to reduce computational demands. For fast system dynamics, which vary more rapidly than what the time step covers, a fraction of the time step, called a subinterval, is used. However, the optimal value of this subinterval is not easily determined because the analysis of the system dynamics might be required. This selection is usually made from engineering experiences, and perhaps trial and error. This paper proposes an optimal subinterval selection approach for power system transient stability analysis, which is based on modal analysis using a single machine infinite bus (SMIB system. Fast system dynamics are identified with the modal analysis and the SMIB system is used focusing on fast local modes. An appropriate subinterval time step from the proposed approach can reduce computational burden and achieve accurate simulation responses as well. The performance of the proposed method is demonstrated with the GSO 37-bus system.

  18. System design document for the plutonium stabilization and packaging system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-08

    The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements for DOE standards for safe storage of these materials for 50 years. This document describes the highest level design information and user characteristics from an operational perspective. It provides guidance for developing procurement and installation specifications, interface requirements, and test plans.

  19. Stability of neutral type descriptor system with mixed delays

    International Nuclear Information System (INIS)

    Li Hong; Li Houbiao; Zhong Shouming

    2007-01-01

    In this paper, the stability problems of general neutral type descriptor system with mixed delays are considered. Some new delay-independent stability and robust stability criteria, which are simpler and less conservative than existing results, are derived in terms of the stability of a new operator I and linear matrix inequalities (LMIs). Therefore, criteria can be easily checked by utilizing the Matlab LMI toolbox

  20. Polynomial stabilization of some dissipative hyperbolic systems

    Czech Academy of Sciences Publication Activity Database

    Ammari, K.; Feireisl, Eduard; Nicaise, S.

    2014-01-01

    Roč. 34, č. 11 (2014), s. 4371-4388 ISSN 1078-0947 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : exponential stability * polynomial stability * observability inequality Subject RIV: BA - General Mathematics Impact factor: 0.826, year: 2014 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=9924

  1. Power system stability modelling, analysis and control

    CERN Document Server

    Sallam, Abdelhay A

    2015-01-01

    This book provides a comprehensive treatment of the subject from both a physical and mathematical perspective and covers a range of topics including modelling, computation of load flow in the transmission grid, stability analysis under both steady-state and disturbed conditions, and appropriate controls to enhance stability.

  2. Virtual Impedance Based Stability Improvement for DC Microgrids with Constant Power Loads

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Huang, Lipei

    2014-01-01

    DC microgrid provides an efficient way to integrate different kinds of renewable energy sources with DC couplings. In this paper, in order to improve the stability of DC microgrids with constant power loads (CPLs), a virtual impedance based method is proposed. The CPLs have inherent instability...... issues induced by negative incremental impedances. This negative impedance makes the system poorly damped and the stability is thereby degraded. To enhance the system stability, virtual impedance based stabilizer comprised of series-connected inductance and resistance is employed. In particular, two...

  3. A Gimbal-Stabilized Compact Hyperspectral Imaging System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Gimbal-stabilized Compact Hyperspectral Imaging System (GCHIS) fully integrates multi-sensor spectral imaging, stereovision, GPS and inertial measurement,...

  4. A Gimbal-Stabilized Compact Hyperspectral Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Gimbal-stabilized Compact Hyperspectral Imaging System (GCHIS) fully integrates multi-sensor spectral imaging, stereovision, GPS and inertial measurement,...

  5. Stabilization of a class of sandwich systems via state feedback

    NARCIS (Netherlands)

    Wang, Xu; Stoorvogel, Antonie Arij; Saberi, Ali; Grip, H°avard Fjær; Roy, Sandip; Sannuti, Peddapullaiah

    We consider the problem of state-feedback stabilization for a class of sandwich systems, consisting of two linear systems connected in cascade via a saturation. In particular, we present design methodologies for constructing semiglobally and globally stabilizing controllers for such systems when the

  6. Genetic algorithm based reactive power dispatch for voltage stability improvement

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, D. [Department of Electrical and Electronics, Kalasalingam University, Krishnankoil 626 190 (India); Roselyn, J. Preetha [Department of Electrical and Electronics, SRM University, Kattankulathur 603 203, Chennai (India)

    2010-12-15

    Voltage stability assessment and control form the core function in a modern energy control centre. This paper presents an improved Genetic algorithm (GA) approach for voltage stability enhancement. The proposed technique is based on the minimization of the maximum of L-indices of load buses. Generator voltages, switchable VAR sources and transformer tap changers are used as optimization variables of this problem. The proposed approach permits the optimization variables to be represented in their natural form in the genetic population. For effective genetic processing, the crossover and mutation operators which can directly deal with the floating point numbers and integers are used. The proposed algorithm has been tested on IEEE 30-bus and IEEE 57-bus test systems and successful results have been obtained. (author)

  7. Stability of miniature electromagnetic tracking systems

    International Nuclear Information System (INIS)

    Schicho, Kurt; Figl, Michael; Donat, Markus; Birkfellner, Wolfgang; Seemann, Rudolf; Wagner, Arne; Bergmann, Helmar; Ewers, Rolf

    2005-01-01

    This study aims at a comparative evaluation of two recently introduced electromagnetic tracking systems under reproducible simulated operating-room (OR) conditions: the recently launched Medtronic StealthStation TM Treon-EM TM and the NDI Aurora TM . We investigate if and to what extent these systems provide improved performance and stability in the presence of surgical instruments as possible sources of distortions compared with earlier reports on electromagnetic tracking technology. To investigate possible distortions under pseudo-realistic OR conditions, a large Langenbeck hook, a dental drill with its handle and an ultrasonic (US) scanhead are fixed on a special measurement rack at variable distances from the navigation sensor. The position measurements made by the Treon-EM TM were least affected by the presence of the instruments. The lengths of the mean deviation vectors were 0.21 mm for the Langenbeck hook, 0.23 mm for the drill with handle and 0.56 mm for the US scanhead. The Aurora TM was influenced by the three sources of distortion to a higher degree. A mean deviation vector of 1.44 mm length was observed in the vicinity of the Langenbeck hook, 0.53 mm length with the drill and 2.37 mm due to the US scanhead. The maximum of the root mean squared error (RMSE) for all coordinates in the presence of the Langenbeck hook was 0.3 mm for the Treon TM and 2.1 mm for the Aurora TM ; the drill caused a maximum RMSE of 0.2 mm with the Treon TM and 1.2 mm with the Aurora TM . In the presence of the US scanhead, the maximum RMSE was 1.4 mm for the Treon TM and 5.1 mm for the Aurora TM . The new generation of electromagnetic tracking systems has significantly improved compared to common systems that were available in the middle of the 1990s and has reached a high level of technical development. We conclude that, in general, both systems are suitable for routine clinical application

  8. A Developed Graphical User Interface for Power System Stability and Robustness Studies

    OpenAIRE

    GHOURAF Djamel Eddine; NACERI Abdellatif; ABID Mohamed; KABI Wahiba

    2015-01-01

    This paper present the realization and development of a graphical user interface (GUI) to studied the stability and robustness of power systems (analysis and synthesis), using Conventional Power System Stabilizers (CPSS - realized on PID scheme) or advanced controllers (based on adaptive and robust control), and applied on automatic excitation control of powerful synchronous generators, to improve dynamic performances and robustness. The GUI is a useful average to facilitate stability study o...

  9. Assessing control of postural stability in community-living older adults using performance-based limits of stability

    DEFF Research Database (Denmark)

    Jbabdi, Myriam; Boissy, Patrice; Hamel, Mathieu

    2008-01-01

    BACKGROUND: Balance disability measurements routinely used to identify fall risks in frail populations have limited value in the early detection of postural stability deficits in community-living older adults. The objectives of the study were to 1) measure performance-based limits of stability (LOS......) in community-living older adults and compare them to theoretical LOS computed from data proposed by the Balance Master system, 2) explore the feasibility of a new measurement approach based on the assessment of postural stability during weight-shifting tasks at performance-based LOS, 3) quantify intra......-session performance variability during multiple trials using the performance-based LOS paradigm. METHODS: Twenty-four healthy community-living older adults (10 men, 14 women) aged between 62 to 85 (mean age +/- sd, 71.5 +/- 6 yrs) participated in the study. Subjects' performance-based LOS were established by asking...

  10. Stable Tending Control of Complex Power Systems: An Example of Localized Design of Power System Stabilizers

    OpenAIRE

    Wenjuan Du

    2016-01-01

    The phase compensation method was proposed based on the concept of the damping torque analysis (DTA). It is a method for the design of a PSS (power system stabilizer) to suppress local-mode power oscillations in a single-machine infinite-bus power system. This paper presents the application of the phase compensation method for the design of a PSS in a multi-machine power system. The application is achieved by examining the direct damping contribution of the stabilizer to the power oscillation...

  11. Nuclear Hybrid Energy System Model Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  12. On-line tuning of a fuzzy-logic power system stabilizer

    International Nuclear Information System (INIS)

    Hossein-Zadeh, N.; Kalam, A.

    2002-01-01

    A scheme for on-line tuning of a fuzzy-logic power system stabilizer is presented. firstly, a fuzzy-logic power system stabilizer is developed using speed deviation and accelerating power as the controller input variables. The inference mechanism of fuzzy-logic controller is represented by a decision table, constructed of linguistic IF-THEN rules. The Linguistic rules are available from experts and the design procedure is based on these rules. It assumed that an exact model of the plant is not available and it is difficult to extract the exact parameters of the power plant. Thus, the design procedure can not be based on an exact model. This is an advantage of fuzzy logic that makes the design of a controller possible without knowing the exact model of the plant. Secondly, two scaling parameters are introduced to tune the fuzzy-logic power system stabilizer. These scaling parameters are the outputs of another fuzzy-logic system, which gets the operating conditions of power system as inputs. These mechanism of tuning the fuzzy-logic power system stabilizer makes the fuzzy-logic power system stabilizer adaptive to changes in the operating conditions. Therefore, the degradation of the system response, under a wide range of operating conditions, is less compared to the system response with a fixed-parameter fuzzy-logic power system stabilizer and a conventional (linear) power system stabilizer. The tuned stabilizer has been tested by performing nonlinear simulations using a synchronous machine-infinite bus model. The responses are compared with a fixed parameters fuzzy-logic power system stabilizer and a conventional (linear) power system stabilizer. It is shown that the tuned fuzzy-logic power system stabilizer is superior to both of them

  13. Further Results on Finite-Time Partial Stability and Stabilization. Applications to Nonlinear Control Systems

    International Nuclear Information System (INIS)

    Jammazi, Chaker

    2009-01-01

    The paper gives Lyapunov type sufficient conditions for partial finite-time and asymptotic stability in which some state variables converge to zero while the rest converge to constant values that possibly depend on the initial conditions. The paper then presents partially asymptotically stabilizing controllers for many nonlinear control systems for which continuous asymptotically stabilizing (in the usual sense) controllers are known not to exist.

  14. Stability and Control of Wind Farms in Power Systems

    DEFF Research Database (Denmark)

    Jauch, Clemens

    The Ph.D. project ‘Stability and Control of Wind Farms in Power Systems' deals with some selected problems related to wind power in power systems. With increasing wind power penetration, wind turbines substitute the power production of conventional power plants. Therefore, wind turbines also have...... to take over the power system stabilisation and control tasks, that were traditionally carried out by conventional power plants. Out of the many aspects related to this problem, this project focuses on transient fault ride-through and power system stabilisation. The selection of turbine types considered...... that were in force, or published as drafts, at the time, and scientific literature related to the topic, are studied. The project is based on simulations of wind turbines in a power system simulations tool. Some of the models used in this project were readily available prior to the project; the development...

  15. Experimental and theoretical studies of the colloidal stability of nanoparticles-a general interpretation based on stability maps.

    Science.gov (United States)

    Segets, Doris; Marczak, Renata; Schäfer, Stefan; Paula, Carolin; Gnichwitz, Jan-Frederik; Hirsch, Andreas; Peukert, Wolfgang

    2011-06-28

    The current work addresses the understanding of the stabilization of nanoparticles in suspension. Specifically, we study ZnO in ethanol for which the influence of particle size and reactant ratio as well as surface coverage on colloidal stability in dependence of the purification progress was investigated. The results revealed that the well-known ζ-potential determines not only the colloidal stability but also the surface coverage of acetate groups bound to the particle surface. The acetate groups act as molecular spacers between the nanoparticles and prevent agglomeration. Next to DLVO calculations based on the theory of Derjaguin, Landau, Verwey and Overbeek using a core-shell model we find that the stability is better understood in terms of dimensionless numbers which represent attractive forces as well as electrostatic repulsion, steric effects, transport properties, and particle concentration. Evaluating the colloidal stability in dependence of time by means of UV-vis absorption measurements a stability map for ZnO is derived. From this map it becomes clear that the dimensionless steric contribution to colloidal stability scales with a stability parameter including dimensionless repulsion and attraction as well as particle concentration and diffusivity of the particles according to a power law with an exponent of -0.5. Finally, we show that our approach is valid for other stabilizing molecules like cationic dendrons and is generally applicable for a wide range of other material systems within the limitations of vanishing van der Waals forces in refractive index matched situations, vanishing ζ-potential and systems without a stabilizing shell around the particle surface.

  16. Stability and Multiscroll Attractors of Control Systems via the Abscissa

    Directory of Open Access Journals (Sweden)

    Edgar-Cristian Díaz-González

    2017-01-01

    Full Text Available We present an approach to generate multiscroll attractors via destabilization of piecewise linear systems based on Hurwitz matrix in this paper. First we present some results about the abscissa of stability of characteristic polynomials from linear differential equations systems; that is, we consider Hurwitz polynomials. The starting point is the Gauss–Lucas theorem, we provide lower bounds for Hurwitz polynomials, and by successively decreasing the order of the derivative of the Hurwitz polynomial one obtains a sequence of lower bounds. The results are extended in a straightforward way to interval polynomials; then we apply the abscissa as a measure to destabilize Hurwitz polynomial for the generation of a family of multiscroll attractors based on a class of unstable dissipative systems (UDS of affine linear type.

  17. A simple and selective colorimetric mercury (II) sensing system based on chitosan stabilized gold nanoparticles and 2,6-pyridinedicarboxylic acid

    International Nuclear Information System (INIS)

    Tian, Kun; Siegel, Gene; Tiwari, Ashutosh

    2017-01-01

    The development of simple and cost-effective methods for the detection and treatment of Hg 2+ in the environment is an important area of research due to the serious health risk that Hg 2+ poses to humans. Colorimetric sensing based on the induced aggregation of nanoparticles is of great interest since it offers a low cost, simple, and relatively rapid procedure, making it perfect for on-site analysis. Herein we report the development of a simple colorimetric sensor for the selective detection and estimation of mercury ions in water, based on chitosan stabilized gold nanoparticles (AuNPs) and 2,6-pyridinedicarboxylic acid (PDA). In the presence of Hg 2+ , PDA induces the aggregation of AuNPs, causing the solution to change colors varying from red to blue, depending on the concentration of Hg 2+ . The formation of aggregated AuNPs in the presence of Hg 2+ was confirmed using transmission electron microscopy (TEM) and UV–Vis spectroscopy. The method exhibits linearity in the range of 300 nM to 5 μM and shows excellent selectivity towards Hg 2+ among seventeen different metal ions and was successfully applied for the detection of Hg 2+ in spiked river water samples. The developed technique is simple and superior to the existing techniques in that it allows detection of Hg 2+ using the naked eye and simple and rapid colorimetric analysis, which eliminates the need for sophisticated instruments and sample preparation methods. - Highlights: • A simple colorimetric method for detection of Hg 2+ in water was proposed. • Au nanoparticles and 2,6-pyridinedicarboxylic acid were used for sensing Hg 2+ . • Sensing mechanisms were demonstrated by TEM and UV–Visible measurements. • It showed the solution color changes from red to blue upon addition of Hg 2+ . • The method selectively detected Hg 2+ among seventeen different metal ions.

  18. System identification on two-phase flow stability

    International Nuclear Information System (INIS)

    Wu Shaorong; Zhang Youjie; Wang Dazhong; Bo Jinghai; Wang Fei

    1996-01-01

    The theoretical principle, experimental method and results of interrelation analysis identification for the instability of two-phase flow are described. A completely new concept of test technology and method on two-phase flow stability was developed by using he theory of information science on system stability and system identification for two-phase flow stability in thermo-physics field. Application of this method would make it possible to identify instability boundary of two-phase flow under stable operation conditions of two-phase flow system. The experiment was carried out on the thermohydraulic test system HRTL-5. Using reverse repeated pseudo-random sequences of heating power as input signal sources and flow rate as response function in the test, the two-phase flow stability and stability margin of the natural circulation system are investigated. The effectiveness and feasibility of identifying two-phase flow stability by using this system identification method were experimentally demonstrated. Basic data required for mathematics modeling of two-phase flow and analysis of two-phase flow stability were obtained, which are useful for analyzing, monitoring of the system operation condition, and forecasting of two-phase flow stability in engineering system

  19. Learning and Understanding System Stability Using Illustrative Dynamic Texture Examples

    Science.gov (United States)

    Liu, Huaping; Xiao, Wei; Zhao, Hongyan; Sun, Fuchun

    2014-01-01

    System stability is a basic concept in courses on dynamic system analysis and control for undergraduate students with computer science backgrounds. Typically, this was taught using a simple simulation example of an inverted pendulum. Unfortunately, many difficult issues arise in the learning and understanding of the concepts of stability,…

  20. Development of a terminal voltage stabilization system for the FOTIA ...

    Indian Academy of Sciences (India)

    Abstract. A terminal voltage stabilization system for the folded tandem ion accelerator (FOTIA) was developed and is in continuous use. The system achieves good voltage stabilization, eliminates ground loops and noise interference. It incorporates a correcting circuit for compensating the mains frequency variations in the ...

  1. Development of a terminal voltage stabilization system for the FOTIA ...

    Indian Academy of Sciences (India)

    The system achieves good voltage stabilization, eliminates ground loops and noise interference. It incorporates a correcting circuit for compensating the mains frequency variations in the GVM amplifier circuit. The present system has two modes of operation namely GVM control mode and slit control mode. A voltage stability ...

  2. Probabilistic stability analysis: the way forward for stability analysis of sustainable power systems.

    Science.gov (United States)

    Milanović, Jovica V

    2017-08-13

    Future power systems will be significantly different compared with their present states. They will be characterized by an unprecedented mix of a wide range of electricity generation and transmission technologies, as well as responsive and highly flexible demand and storage devices with significant temporal and spatial uncertainty. The importance of probabilistic approaches towards power system stability analysis, as a subsection of power system studies routinely carried out by power system operators, has been highlighted in previous research. However, it may not be feasible (or even possible) to accurately model all of the uncertainties that exist within a power system. This paper describes for the first time an integral approach to probabilistic stability analysis of power systems, including small and large angular stability and frequency stability. It provides guidance for handling uncertainties in power system stability studies and some illustrative examples of the most recent results of probabilistic stability analysis of uncertain power systems.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  3. Stability and Bifurcation in Magnetic Flux Feedback Maglev Control System

    Directory of Open Access Journals (Sweden)

    Wen-Qing Zhang

    2013-01-01

    Full Text Available Nonlinear properties of magnetic flux feedback control system have been investigated mainly in this paper. We analyzed the influence of magnetic flux feedback control system on control property by time delay and interfering signal of acceleration. First of all, we have established maglev nonlinear model based on magnetic flux feedback and then discussed hopf bifurcation’s condition caused by the acceleration’s time delay. The critical value of delayed time is obtained. It is proved that the period solution exists in maglev control system and the stable condition has been got. We obtained the characteristic values by employing center manifold reduction theory and normal form method, which represent separately the direction of hopf bifurcation, the stability of the period solution, and the period of the period motion. Subsequently, we discussed the influence maglev system on stability of by acceleration’s interfering signal and obtained the stable domain of interfering signal. Some experiments have been done on CMS04 maglev vehicle of National University of Defense Technology (NUDT in Tangshan city. The results of experiments demonstrate that viewpoints of this paper are correct and scientific. When time lag reaches the critical value, maglev system will produce a supercritical hopf bifurcation which may cause unstable period motion.

  4. Stability and Relative Stability of Linear Systems with Many Constant Time Delays. Ph.D. Thesis

    Science.gov (United States)

    Barker, Larry Keith

    1976-01-01

    A method of determining the stability of linear systems with many constant time delays is developed. This technique, an extension of the tau-decomposition method, is used to examine not only the stability but also the relative stability of retarded systems with many delays and a class of neutral equations with one delay. Analytical equations are derived for partitioning the delay space of a retarded system with two time delays. The stability of the system in each of the regions defined by the partitioning curves in the parameter plane is determined using the extended tau-decomposition method. In addition, relative stability boundaries are defined using the extended tau-decompositon method in association with parameter plane techniques. Several applications of the extended tau-decomposition method are presented and compared with stability results obtained from other analyses. In all cases the results obtained using the method outlined herein coincide with and extend those of previous investigations. The extended tau-decomposition method applied to systems with time delays requires less computational effort and yields more complete stability analyses than previous techniques.

  5. Currency System and Its Impact on Economic Stability

    Directory of Open Access Journals (Sweden)

    Desmadi Saharuddin

    2017-05-01

    Full Text Available A number of economic problems that occurred during the power of Mamluk (1250-1517 AD was considered as a result of the change to currency system, namely from the system of commodity-based money (gold and silver into paper-based money (fiat. Instability prices, decrease of trading activities, high of unemployment number were a number of economic indicators that occurred at that time. This issue of macro-economy was considered as a result of changes in the money system. This study analyzes the dynamic relationship between the price of gold as a representation of commodity money system and M2 as a representation of fiat money against the stability of economic indicators such as inflation, economic growth, stock prices, and unemployment and interest rates. This study found that both systems not vary significantly against each other in its influence on macroeconomic variables. It means that the two systems do not have contrast distinction. Indeed, it was found that the commodity-based money system is not free of inflation, as propagated by the supporters of the dinar and dirham (dinarist. DOI: 10.15408/aiq.v9i2.4749

  6. Transient Stability Enhancement of the Power System with Wind Generation

    Directory of Open Access Journals (Sweden)

    Ashwani Kumar Chandel

    2011-08-01

    Full Text Available Transient stability analysis of a power system with wind generation has been addressed in this paper. The effects of automatic voltage regulators, power system stabilizers, and static synchronous compensators on transient stability of a power system are investigated. Various simulation results show that addition of power system stabilizer and static synchronous compensators reduce the rotor angle oscillations. However, the static synchronous compensator shows better damping characteristics and improves the stability of the wind integrated system. It has been established that the static synchronous compensator damps out the speed oscillations in the shaft of the constant speed wind turbine. A transient impact index has been proposed to prove that the static compensator damps out the rotor oscillations.

  7. Toluene stability Space Station Rankine power system

    Science.gov (United States)

    Havens, V. N.; Ragaller, D. R.; Sibert, L.; Miller, D.

    1987-01-01

    A dynamic test loop is designed to evaluate the thermal stability of an organic Rankine cycle working fluid, toluene, for potential application to the Space Station power conversion unit. Samples of the noncondensible gases and the liquid toluene were taken periodically during the 3410 hour test at 750 F peak temperature. The results obtained from the toluene stability loop verify that toluene degradation will not lead to a loss of performance over the 30-year Space Station mission life requirement. The identity of the degradation products and the low rates of formation were as expected from toluene capsule test data.

  8. Investigation on flow stability of supercritical water cooled systems

    International Nuclear Information System (INIS)

    Cheng, X.; Kuang, B.

    2006-01-01

    Research activities are ongoing worldwide to develop nuclear power plants with supercritical water cooled reactor (SCWR) with the purpose to achieve a high thermal efficiency and to improve their economical competitiveness. However, the strong variation of the thermal-physical properties of water in the vicinity of the pseudo-critical line results in challenging tasks in various fields, e.g. thermal-hydraulic design of a SCWR. One of the challenging tasks is to understand and to predict the dynamic behavior of supercritical water cooled systems. Although many thermal-hydraulic research activities were carried out worldwide in the past as well as in the near present, studies on dynamic behavior and flow stability of SC water cooled systems are scare. Due to the strong density variation, flow stability is expected to be one of the key items which need to be taken into account in the design of a SCWR. In the present work, the dynamic behavior and flow stability of SC water cooled systems are investigated using both numerical and theoretical approaches. For this purpose a new computer code SASC was developed, which can be applied to analysis the dynamic behavior of systems cooled by supercritical fluids. In addition, based on the assumptions of a simplified system, a theoretical model was derived for the prediction of the onset of flow instability. A comparison was made between the results obtained using the theoretical model and those from the SASC code. A good agreement was achieved. This gives the first evidence of the reliability of both the SASC code and the theoretical model

  9. Advances in power system modelling, control and stability analysis

    CERN Document Server

    Milano, Federico

    2016-01-01

    Advances in Power System Modelling, Control and Stability Analysis captures the variety of new methodologies and technologies that are changing the way modern electric power systems are modelled, simulated and operated.

  10. Stabilization of bilinear systems by linear state feedback and the estimation of its stability region

    International Nuclear Information System (INIS)

    Yasuda, Kazunori; Hirai, Kazumasa

    1980-01-01

    This paper is concerned with the stabilization problem for bilinear systems by means of a linear state feedback. A bilinear system described by the equation x*(t) (*: radical) = Ax(t) + Σ(i -- r) u sub(i)(t)Bx(t) + Cu(t) is stabilizable by using a linear state feedback u = K sup(T)x(t), if the pair (A, C) is controllable; however, it is not generally stabilizable in the large. We, in this paper, give a sufficient condition under which the bilinear system is stabilizable in the large, and estimate quantitatively the extent of a stability region around the equilibrium state in the case that the system is not stabilizable in the large. Moreover, the behavior of the solution whose initial state is in the estimated stability region is considered. It is also shown that the stability region derived here is evaluated on a ground tighter than the previous ones. (author)

  11. Wind energy systems solutions for power quality and stabilization

    CERN Document Server

    Ali, Mohd Hasan

    2012-01-01

    Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases--and wind energy is a free, renewable resource. However, the induction machines commonly used as wind generators have stability problems similar to the transient stability of synchronous machines. To minimize power, frequency, and voltage fluctuations caused by network faults or random wind speed variations, control mechanisms are necessary. Wind Energy Systems: Solutions for Power Quality and Stabilization clearly explains how to solve stability and power quality issues of wind generator systems. Covering

  12. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors

    Science.gov (United States)

    Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu

    2016-02-01

    We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.

  13. An Impedance-Based Stability Analysis Method for Paralleled Voltage Source Converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    This paper analyses the stability of paralleled voltage source converters in AC distributed power systems. An impedance-based stability analysis method is presented based on the Nyquist criterion for multiloop system. Instead of deriving the impedance ratio as usual, the system stability...... of converter and the passive network can also be predicted by the Nyquist diagrams. This method is applied to evaluate the current and voltage controller interactions of converters in both grid-connected and islanded operations. Simulations and experimental results verify the effectiveness of theoretical...... analysis....

  14. Robust Stability and H∞ Stabilization of Switched Systems with Time-Varying Delays Using Delta Operator Approach

    Directory of Open Access Journals (Sweden)

    Chen Qin

    2013-01-01

    Full Text Available This paper considers the problems of the robust stability and robust H∞ controller design for time-varying delay switched systems using delta operator approach. Based on the average dwell time approach and delta operator theory, a sufficient condition of the robust exponential stability is presented by choosing an appropriate Lyapunov-Krasovskii functional candidate. Then, a state feedback controller is designed such that the resulting closed-loop system is exponentially stable with a guaranteed H∞ performance. The obtained results are formulated in the form of linear matrix inequalities (LMIs. Finally, a numerical example is provided to explicitly illustrate the feasibility and effectiveness of the proposed method.

  15. Research on Design of MUH Attitude Stability Augmentation Control System

    Science.gov (United States)

    Fan, Shigang

    2017-09-01

    Attitude stability augmentation control system with a lower cost need to be designed so that MUH (Mini Unmanned Helicopter) can adapt to different types of geographic environment and fly steadily although the weather may be bad. Attitude feedback was calculated mainly by filtering estimation within attitude acquisition module in this system. Stability augmentation can be improved mainly by PI. This paper will depict running principle and designing process of MUH attitude stability augmentation control system and algorithm that is considered as an important part in this system.

  16. Stability Analysis for Fractional-Order Linear Singular Delay Differential Systems

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2014-01-01

    Full Text Available We investigate the delay-independently asymptotic stability of fractional-order linear singular delay differential systems. Based on the algebraic approach, the sufficient conditions are presented to ensure the asymptotic stability for any delay parameter. By applying the stability criteria, one can avoid solving the roots of transcendental equations. An example is also provided to illustrate the effectiveness and applicability of the theoretical results.

  17. Stability Limits in Extra-solar Planetary Systems

    OpenAIRE

    Barnes, Rory; Greenberg, Richard

    2006-01-01

    Two types of stability boundaries exist for any planetary system consisting of one star and two planets. Lagrange stability requires that the planets remain bound to the star, conserves the ordering of the distance from the star, and limits the variations of orbital elements like semi-major axis and eccentricity. Hill stability only requires that the ordering of the planets remain constant; the outer planet may escape to infinity. A simple formula defines a region in orbital element space tha...

  18. Multistage position-stabilized vibration isolation system for neutron interferometry

    Science.gov (United States)

    Arif, Muhammad; Brown, Dennis E.; Greene, Geoffrey L.; Clothier, R.; Littrell, K.

    1994-10-01

    A two stage, position stabilized vibration isolation system has been constructed and is now in operation at the Cold Neutron Research Facility of the National Institute of Standards and Technology, Gaithersburg, MD. The system employs pneumatic isolators with a multiple input/multiple output pneumatic servo system based upon pulse width modulation control loops. The first stage consists of a 40,000 kg reinforced concrete table supported by pneumatic isolators. A large environmentally isolated laboratory enclosure rests on the concrete table. The second stage consists of a 3000 kg granite optical table located within the enclosure and supported by another set of pneumatic isolators. The position of the two stages is monitored by proximity sensors and inclinometers with 12 degrees of freedom. The system controls 12 independent pneumatic airsprings. The signals from these sensors are fed into a personal computer based control system. The control system has maintained the position of the two stages to better than 1 micrometers in translation and 5 (mu) rad in orientation for a period of a few months. A description of the system and its characteristics is given.

  19. A Quantification Index for Power Systems Transient Stability

    Directory of Open Access Journals (Sweden)

    Shengen Chen

    2017-07-01

    Full Text Available In order to assess the reliability of power systems, transient stability simulations must be conducted in addition to steady state study. The transient stability component of reliability studies usually involves extensive simulations generating large amounts of data to be analyzed. Conventional stability analysis relies on a visual examination of selected simulation data plots to classify the severity of disturbances. This conventional examination, which aims to compare the simulations results to established performance criteria, is not comprehensive, is time consuming and prone to subjective interpretation. This paper presents a quantification method for power system performance evaluation. It applies a range of criteria such as rotor angle separation, loss of source, damping, and voltage sag directly to the simulation data files to achieve a more efficient and objective stability assessment. By using stability modules, the proposed method evaluates the performance of every fault location, numerically, by providing a local stability index, as well as an overall global stability index. The method also provides an evaluation of dispatches and their impacts on system stability. The IEEE 39-bus test system and the Northeast Interconnection Power System were used to show the results of this method. This method will free engineers from tedious, time-consuming and error-susceptible offline visual analysis and yield significantly quantified results.

  20. On a program manifold’s stability of one contour automatic control systems

    Directory of Open Access Journals (Sweden)

    Zumatov S. S.

    2017-12-01

    Full Text Available Methodology of analysis of stability is expounded to the one contour systems automatic control feedback in the presence of non-linearities. The methodology is based on the use of the simplest mathematical models of the nonlinear controllable systems. Stability of program manifolds of one contour automatic control systems is investigated. The sufficient conditions of program manifold’s absolute stability of one contour automatic control systems are obtained. The Hurwitz’s angle of absolute stability was determined. The sufficient conditions of program manifold’s absolute stability of control systems by the course of plane in the mode of autopilot are obtained by means Lyapunov’s second method.

  1. Design of rapid prototype of UAV line-of-sight stabilized control system

    Science.gov (United States)

    Huang, Gang; Zhao, Liting; Li, Yinlong; Yu, Fei; Lin, Zhe

    2018-01-01

    The line-of-sight (LOS) stable platform is the most important technology of UAV (unmanned aerial vehicle), which can reduce the effect to imaging quality from vibration and maneuvering of the aircraft. According to the requirement of LOS stability system (inertial and optical-mechanical combined method) and UAV's structure, a rapid prototype is designed using based on industrial computer using Peripheral Component Interconnect (PCI) and Windows RTX to exchange information. The paper shows the control structure, and circuit system including the inertial stability control circuit with gyro and voice coil motor driven circuit, the optical-mechanical stability control circuit with fast-steering-mirror (FSM) driven circuit and image-deviation-obtained system, outer frame rotary follower, and information-exchange system on PC. Test results show the stability accuracy reaches 5μrad, and prove the effectiveness of the combined line-of-sight stabilization control system, and the real-time rapid prototype runs stable.

  2. Students' Understanding of Equilibrium and Stability: The Case of Dynamic Systems

    Science.gov (United States)

    Canu, Michaël; de Hosson, Cécile; Duque, Mauricio

    2016-01-01

    Engineering students in control courses have been observed to lack an understanding of equilibrium and stability, both of which are crucial concepts in this discipline. The introduction of these concepts is generally based on the study of classical examples from Newtonian mechanics supplemented with a control system. Equilibrium and stability are…

  3. stabilization of cinder gravel with cment for base course

    African Journals Online (AJOL)

    Girma Berhanu

    design standards for heavily trafficked base course without adding fine soils is found to be 7 % cement. However, this high cement requirement was reduced to 5% cement which is a practical value by mechanically stabilizing cinder gravel with 12 % of fine soils before cement stabilization. Nevertheless, the performance of ...

  4. Stabilization of Neutral Systems with Saturating Actuators

    Directory of Open Access Journals (Sweden)

    F. El Haoussi

    2012-01-01

    to determine stabilizing state-feedback controllers with large domain of attraction, expressed as linear matrix inequalities, readily implementable using available numerical tools and with tuning parameters that make possible to select the most adequate solution. These conditions are derived by using a Lyapunov-Krasovskii functional on the vertices of the polytopic description of the actuator saturations. Numerical examples demonstrate the effectiveness of the proposed technique.

  5. High stability vector-based direct power control for DFIG-based wind turbine

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Wu, Xiaojie

    2015-01-01

    This paper proposes an improved vector-based direct power control (DPC) strategy for the doubly-fed induction generator (DFIG)-based wind energy conversion system. Based on the small signal model, the proposed DPC improves the stability of the DFIG, and avoids the DFIG operating in the marginal...... stable region (the real part of eigenvalue is equal to zero). The vector-based DPC combines with a space vector modulation technique to achieve a constant switching frequency. The simulation and experimental results clearly validate the effectiveness and feasibility of the proposed vector-based DPC...

  6. Stabilization of the field of a superconducting magnetic system

    International Nuclear Information System (INIS)

    Sukhoj, V.V.; Kurochkin, V.I.; Laptienko, A.Ya.; Timoshenko, A.O.

    1981-01-01

    A way of magnetic field stabilization of short circuited superconducting system is considered theoretically. Removable field instability is caused by resistance of circuits windings in places of conductor joints or by the presence of wive defects. An equation is obtained describing the stabilization condition which connects electrical and geometrical parameters of circuits. The cases of this equation solutions by means of geometry choice or choice of resistance value of one of the circuits are considered. Field stability dependence on the accuracy of stabilization condition satisfaction is studied. Three time scales are introduced, which characterize the system operation without the deterioration of field homogeneity and stability as well as without the critical current excess in the circuit state mostly close to a critical one. Numerical calculations for concrete two- and three-circuit systems are presented [ru

  7. Stability analysis of linear switching systems with time delays

    International Nuclear Information System (INIS)

    Li Ping; Zhong Shouming; Cui Jinzhong

    2009-01-01

    The issue of stability analysis of linear switching system with discrete and distributed time delays is studied in this paper. An appropriate switching rule is applied to guarantee the stability of the whole switching system. Our results use a Riccati-type Lyapunov functional under a condition on the time delay. So, switching systems with mixed delays are developed. A numerical example is given to illustrate the effectiveness of our results.

  8. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    International Nuclear Information System (INIS)

    Lewis, W.S.

    1994-01-01

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment

  9. Decentralized linear quadratic power system stabilizers for multi ...

    Indian Academy of Sciences (India)

    Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not ...

  10. New Results of Global Exponential Stabilization for BLDCMs System

    Directory of Open Access Journals (Sweden)

    Fengxia Tian

    2015-01-01

    Full Text Available The global exponential stabilization for brushless direct current motor (BLDCM system is studied. Four linear and simple feedback controllers are proposed to realize the global stabilization of BLDCM with exponential convergence rate; the control law used in each theorem is less conservative and more concise. Finally, an example is given to demonstrate the correctness of the proposed results.

  11. Decentralized linear quadratic power system stabilizers for multi ...

    Indian Academy of Sciences (India)

    Abstract. Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement ...

  12. MHD-Stabilization of Axisymmetric Mirror Systems Using Pulsed ECRH

    International Nuclear Information System (INIS)

    Post, R.F.

    2010-01-01

    This paper, part of a continuing study of means for the stabilization of MHD interchange modes in axisymmertric mirror-based plasma confinement systems, is aimed at a preliminary look at a technique that would employ a train of plasma pressure pulses produced by ECRH to accomplish the stabilization. The purpose of using sequentially pulsed ECRH rather than continuous-wave ECRH is to facilitate the localization of the heated-electron plasma pulses in regions of the magnetic field with a strong positive field-line curvature, e. g. in the 'expander' region of the mirror magnetic field, outside the outermost mirror, or in other regions of the field with positive field-line curvature. The technique proposed, of the class known as 'dynamic stabilization,' relies on the time-averaged effect of plasma pressure pulses generated in regions of positive field-line curvature to overcome the destabilizing effect of plasma pressure in regions of negative field-line curvature within the confinement region. As will also be discussed in the paper, the plasma pulses, when produced in regions of the confining having a negative gradient, create transient electric potentials of ambipolar origin, an effect that was studied in 1964 in The PLEIDE experiment in France. These electric fields preserve the localization of the hot-electron plasma pulses for a time determined by ion inertia. It is suggested that it may be possible to use this result of pulsed ECRH not only to help to stabilize the plasma but also to help plug mirror losses in a manner similar to that employed in the Tandem Mirror.

  13. Electrostatic stabilizer for a passive magnetic bearing system

    Science.gov (United States)

    Post, Richard F.

    2015-11-24

    Electrostatic stabilizers are provided for passive bearing systems composed of annular magnets having a net positive stiffness against radial displacements and that have a negative stiffness for vertical displacements, resulting in a vertical instability. Further embodiments are shown of a radial electrostatic stabilizer geometry (using circuitry similar to that employed in the vertical stabilizer). This version is suitable for stabilizing radial (lateral) displacements of a rotor that is levitated by annular permanent magnets that are stable against vertical displacements but are unstable against radial displacements.

  14. Breaking Dense Structures: Proving Stability of Densely Structured Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Eike Möhlmann

    2015-06-01

    Full Text Available Abstraction and refinement is widely used in software development. Such techniques are valuable since they allow to handle even more complex systems. One key point is the ability to decompose a large system into subsystems, analyze those subsystems and deduce properties of the larger system. As cyber-physical systems tend to become more and more complex, such techniques become more appealing. In 2009, Oehlerking and Theel presented a (de-composition technique for hybrid systems. This technique is graph-based and constructs a Lyapunov function for hybrid systems having a complex discrete state space. The technique consists of (1 decomposing the underlying graph of the hybrid system into subgraphs, (2 computing multiple local Lyapunov functions for the subgraphs, and finally (3 composing the local Lyapunov functions into a piecewise Lyapunov function. A Lyapunov function can serve multiple purposes, e.g., it certifies stability or termination of a system or allows to construct invariant sets, which in turn may be used to certify safety and security. In this paper, we propose an improvement to the decomposing technique, which relaxes the graph structure before applying the decomposition technique. Our relaxation significantly reduces the connectivity of the graph by exploiting super-dense switching. The relaxation makes the decomposition technique more efficient on one hand and on the other allows to decompose a wider range of graph structures.

  15. Study of nonlinear system stability using eigenvalue analysis: Gyroscopic motion

    Science.gov (United States)

    Shabana, Ahmed A.; Zaher, Mohamed H.; Recuero, Antonio M.; Rathod, Cheta

    2011-11-01

    orientation parameters and also to shed light on the important issue of using the eigenvalue analysis in the study of MBS stability. The validity of using the eigenvalue analysis based on the linearization of the nonlinear equations of motion in the study of the stability of railroad vehicle systems, which have known critical speeds, is examined. It is shown that such an eigenvalue analysis can lead to wrong conclusions regarding the stability of nonlinear systems.

  16. On the stability of some systems of exponential difference equations

    Directory of Open Access Journals (Sweden)

    N. Psarros

    2018-01-01

    Full Text Available In this paper we prove the stability of the zero equilibria of two systems of difference equations of exponential type, which are some extensions of an one-dimensional biological model. The stability of these systems is investigated in the special case when one of the eigenvalues is equal to -1 and the other eigenvalue has absolute value less than 1, using centre manifold theory. In addition, we study the existence and uniqueness of positive equilibria, the attractivity and the global asymptotic stability of these equilibria of some related systems of difference equations.

  17. Frequency Stability Improvement of Low Inertia Systems Using Synchronous Condensers

    DEFF Research Database (Denmark)

    Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde

    2016-01-01

    of converter interfaced components (wind turbine, HVDC, and Photovoltaic) may have negative effects on the stability of the power system. These components do not have enough inertia response to control frequency excursion, so the power grid can depend on few synchronous machines for frequency regulation...... turbine penetration, governor responsibility of synchronous generators, and disturbance are simulated to examine the impact of highlevel renewable energy integration on the system frequency characteristics. The effect of synchronous condensers for the frequency stability enhancement is investigated....... It can be concluded from the comparative simulation results that synchronous condenser demonstrates a satisfactory performance for improving the system frequency stability....

  18. Experimental Validation of a Compound Control Scheme for a Two-Axis Inertially Stabilized Platform with Multi-Sensors in an Unmanned Helicopter-Based Airborne Power Line Inspection System

    Directory of Open Access Journals (Sweden)

    Xiangyang Zhou

    2016-03-01

    Full Text Available A compound control scheme is proposed to achieve high control performance for a two-axis inertially stabilized platform (ISP with multi-sensors applied to an unmanned helicopter (UH-based airborne power line inspection (APLI system. Compared with the traditional two closed-loop control scheme that is composed of a high-bandwidth rate loop and a lower bandwidth position loop, a new current loop inside rate loop is particularly designed to suppress the influences of voltage fluctuation from power supply and motor back electromotive force (BEMF on control precision. In this way, the stabilization accuracy of the ISP is greatly improved. The rate loop, which is the middle one, is used to improve sensor’s stability precision through compensating for various disturbances. To ensure the pointing accuracy of the line of sight (LOS of multi-sensors, the position loop is designed to be the outer one and acts as the main feedback path, by which the accurate pointing angular position is achieved. To validate the scheme, a series of experiments were carried out. The results show that the proposed compound control scheme can achieve reliable control precision and satisfy the requirements of real APLI tasks.

  19. Experimental Validation of a Compound Control Scheme for a Two-Axis Inertially Stabilized Platform with Multi-Sensors in an Unmanned Helicopter-Based Airborne Power Line Inspection System.

    Science.gov (United States)

    Zhou, Xiangyang; Jia, Yuan; Zhao, Qiang; Yu, Ruixia

    2016-03-11

    A compound control scheme is proposed to achieve high control performance for a two-axis inertially stabilized platform (ISP) with multi-sensors applied to an unmanned helicopter (UH)-based airborne power line inspection (APLI) system. Compared with the traditional two closed-loop control scheme that is composed of a high-bandwidth rate loop and a lower bandwidth position loop, a new current loop inside rate loop is particularly designed to suppress the influences of voltage fluctuation from power supply and motor back electromotive force (BEMF) on control precision. In this way, the stabilization accuracy of the ISP is greatly improved. The rate loop, which is the middle one, is used to improve sensor's stability precision through compensating for various disturbances. To ensure the pointing accuracy of the line of sight (LOS) of multi-sensors, the position loop is designed to be the outer one and acts as the main feedback path, by which the accurate pointing angular position is achieved. To validate the scheme, a series of experiments were carried out. The results show that the proposed compound control scheme can achieve reliable control precision and satisfy the requirements of real APLI tasks.

  20. Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.

    Science.gov (United States)

    Wang, Leimin; Shen, Yi; Zhang, Guodong

    Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.

  1. Modified Schur-Cohn Criterion for Stability of Delayed Systems

    Directory of Open Access Journals (Sweden)

    Juan Ignacio Mulero-Martínez

    2015-01-01

    Full Text Available A modified Schur-Cohn criterion for time-delay linear time-invariant systems is derived. The classical Schur-Cohn criterion has two main drawbacks; namely, (i the dimension of the Schur-Cohn matrix generates some round-off errors eventually resulting in a polynomial of s with erroneous coefficients and (ii imaginary roots are very hard to detect when numerical errors creep in. In contrast to the classical Schur-Cohn criterion an alternative approach is proposed in this paper which is based on the application of triangular matrices over a polynomial ring in a similar way as in the Jury test of stability for discrete systems. The advantages of the proposed approach are that it halves the dimension of the polynomial and it only requires seeking real roots, making this modified criterion comparable to the Rekasius substitution criterion.

  2. Stability analysis of a simplified model of supercritical water-cooled system

    International Nuclear Information System (INIS)

    Xue Aijun; Cheng Xu

    2009-01-01

    This paper presents the stability analysis of a simplified model of supercritical water-cooled system. Based on the perturbation linearization and Laplace transformation, transfer function of the simplified system model is established. A stability map is generated using both dimensionless parameters, i.e. sub-pseudo-critical number and trans-pseudo-critical number. An unstable region nearby the pseudo-critical point is determined. The effect of some important parameters on the stability behavior is investigated. It is found that the system is stabilized with a higher hydraulic resistance of the inlet, fluid inlet velocity. It is also found that a longer heating zone or a bigger acceleration of gravity leads to a larger stability margin of the system. (authors)

  3. Power system small signal stability analysis and control

    CERN Document Server

    Mondal, Debasish; Sengupta, Aparajita

    2014-01-01

    Power System Small Signal Stability Analysis and Control presents a detailed analysis of the problem of severe outages due to the sustained growth of small signal oscillations in modern interconnected power systems. The ever-expanding nature of power systems and the rapid upgrade to smart grid technologies call for the implementation of robust and optimal controls. Power systems that are forced to operate close to their stability limit have resulted in the use of control devices by utility companies to improve the performance of the transmission system against commonly occurring power system

  4. Improving Power System Stability Using Transfer Function: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    G. Shahgholian

    2017-10-01

    Full Text Available In this paper, a small-signal dynamic model of a single-machine infinite-bus (SMIB power system that includes IEEE type-ST1 excitation system and PSS based on transfer fu¬n¬c¬¬tion structure is presented. The changes in the operating co¬n¬dition of a power system on dynamic performance have been exa¬m¬ined. The dynamic performance of the closed-loop system is ana¬lyzed base on its eigenvalues. The effectiveness of the par¬a¬m¬e¬t¬ers changes on dynamic stability is verified by simulation res¬u¬l¬ts. Three types of PSS have been considered for analysis: (a the derivative PSS, (b the lead-lag PSS or conventional PSS, and (c the proportional-integral-derivative PSS. The objective fu¬nc¬t¬i¬o¬n is formulated to increase the dam¬¬ping ratio of the electromechanical mode eigenvalues. Simu¬la¬tion results show that the PID-PSS performs better for less ov¬e¬r¬shoot and less settling time comp¬ared with the CPSS and DPSS un¬der different load ope¬ration and the significant system pa¬r¬am¬eter variation conditions.

  5. Earth System Stability Through Geologic Time

    Science.gov (United States)

    Rothman, D.; Bowring, S. A.

    2015-12-01

    Five times in the past 500 million years, mass extinctions haveresulted in the loss of greater than three-fourths of living species.Each of these events is associated with significant environmentalchange recorded in the carbon-isotopic composition of sedimentaryrocks. There are also many such environmental events in the geologicrecord that are not associated with mass extinctions. What makes themdifferent? Two factors appear important: the size of theenvironmental perturbation, and the time scale over which it occurs.We show that the natural perturbations of Earth's carbon cycle during thepast 500 million years exhibit a characteristic rate of change overtwo orders of magnitude in time scale. This characteristic rate isconsistent with the maximum rate that limits quasistatic (i.e., nearsteady-state) evolution of the carbon cycle. We identify this rate withmarginal stability, and show that mass extinctions occur on the fast,unstable side of the stability boundary. These results suggest thatthe great extinction events of the geologic past, and potentially a"sixth extinction" associated with modern environmental change, arecharacterized by common mechanisms of instability.

  6. Safety benefits of stability control systems for tractor-semitrailers.

    Science.gov (United States)

    2009-10-01

    This study was conducted by the University of Michigan Transportation Research Institute : (UMTRI) under a Cooperative Agreement between NHTSA and Meritor WABCO to examine : the performance of electronic stability control (ESC) systems, and roll stab...

  7. Stability of asynchronous pulse systems with random perturbations of parameters

    NARCIS (Netherlands)

    Gelig, AK

    The mean-square frequency stability conditions under arbitrary initial perturbations for an asynchronous system consisting of a linear part with Gaussian perturbations of coefficients and a fete pulse elements are derived.

  8. Stability of subsystem solutions in agent-based models

    Science.gov (United States)

    Perc, Matjaž

    2018-01-01

    The fact that relatively simple entities, such as particles or neurons, or even ants or bees or humans, give rise to fascinatingly complex behaviour when interacting in large numbers is the hallmark of complex systems science. Agent-based models are frequently employed for modelling and obtaining a predictive understanding of complex systems. Since the sheer number of equations that describe the behaviour of an entire agent-based model often makes it impossible to solve such models exactly, Monte Carlo simulation methods must be used for the analysis. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among agents that describe systems in biology, sociology or the humanities often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. This begets the question: when can we be certain that an observed simulation outcome of an agent-based model is actually stable and valid in the large system-size limit? The latter is key for the correct determination of phase transitions between different stable solutions, and for the understanding of the underlying microscopic processes that led to these phase transitions. We show that a satisfactory answer can only be obtained by means of a complete stability analysis of subsystem solutions. A subsystem solution can be formed by any subset of all possible agent states. The winner between two subsystem solutions can be determined by the average moving direction of the invasion front that separates them, yet it is crucial that the competing subsystem solutions are characterised by a proper composition and spatiotemporal structure before the competition starts. We use the spatial public goods game with diverse tolerance as an example, but the approach has relevance for a wide variety of agent-based models.

  9. Stability of position control system in JIPP T-II

    International Nuclear Information System (INIS)

    Sakurai, Keiichi; Tanahashi, Shygo

    1980-01-01

    Computations and experiments on the stability of a feedback control system for maintaining a plasma column in equilibrium are described. The time response of the displacement of the plasma to the desired position is examined by solving the equation of motion of the plasma column. We show that the stability of the feedback control system is improved by using an additional term which represents the shift velocity of the plasma column. (author)

  10. Preservation of stability and synchronization in nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Anaya, G. [Departamento de Fisica y Matematicas, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Mexico, D.F. 01210 (Mexico)], E-mail: guillermo.fernandez@uia.mx; Flores-Godoy, J.J. [Departamento de Fisica y Matematicas, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Mexico, D.F. 01210 (Mexico)], E-mail: job.flores@uia.mx; Femat, R. [Division de Matematicas Aplicadas y Sistemas Computacionales, IPICyT, Camino a la Presa San Jose 2055, Col. Lomas 4a. seccion, San Luis Potosi, San Luis Potosi 78216 (Mexico)], E-mail: rfemat@ipicyt.edu.mx; Alvarez-Ramirez, J.J. [Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico, D.F. 09340 (Mexico)], E-mail: jjar@xanum.uam.mx

    2007-11-12

    Preservation of stability in the presence of structural and/or parametric changes is an important issue in the study of dynamical systems. A specific case is the synchronization of chaos in complex networks where synchronization should be preserved in spite of changes in the network parameters and connectivity. In this work, a methodology to establish conditions for preservation of stability in a class of dynamical system is given in terms of Lyapunov methods. The idea is to construct a group of dynamical transformations under which stability is retained along certain manifolds. Some synchronization examples illustrate the results.

  11. Preservation of stability and synchronization in nonlinear systems

    International Nuclear Information System (INIS)

    Fernandez-Anaya, G.; Flores-Godoy, J.J.; Femat, R.; Alvarez-Ramirez, J.J.

    2007-01-01

    Preservation of stability in the presence of structural and/or parametric changes is an important issue in the study of dynamical systems. A specific case is the synchronization of chaos in complex networks where synchronization should be preserved in spite of changes in the network parameters and connectivity. In this work, a methodology to establish conditions for preservation of stability in a class of dynamical system is given in terms of Lyapunov methods. The idea is to construct a group of dynamical transformations under which stability is retained along certain manifolds. Some synchronization examples illustrate the results

  12. Stabilized high-power laser system for the gravitational wave detector advanced LIGO.

    Science.gov (United States)

    Kwee, P; Bogan, C; Danzmann, K; Frede, M; Kim, H; King, P; Pöld, J; Puncken, O; Savage, R L; Seifert, F; Wessels, P; Winkelmann, L; Willke, B

    2012-05-07

    An ultra-stable, high-power cw Nd:YAG laser system, developed for the ground-based gravitational wave detector Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory), was comprehensively characterized. Laser power, frequency, beam pointing and beam quality were simultaneously stabilized using different active and passive schemes. The output beam, the performance of the stabilization, and the cross-coupling between different stabilization feedback control loops were characterized and found to fulfill most design requirements. The employed stabilization schemes and the achieved performance are of relevance to many high-precision optical experiments.

  13. ℋ∞ constant gain state feedback stabilization of stochastic hybrid systems with Wiener process

    Directory of Open Access Journals (Sweden)

    E. K. Boukas

    2004-01-01

    Full Text Available This paper considers the stabilization problem of the class of continuous-time linear stochastic hybrid systems with Wiener process. The ℋ∞ state feedback stabilization problem is treated. A state feedback controller with constant gain that does not require access to the system mode is designed. LMI-based conditions are developed to design the state feedback controller with constant gain that stochastically stabilizes the studied class of systems and, at the same time, achieve the disturbance rejection of a desired level. The minimum disturbance rejection is also determined. Numerical examples are given to show the usefulness of the proposed results.

  14. Enzyme based soil stabilization for unpaved road construction

    Directory of Open Access Journals (Sweden)

    Renjith Rintu

    2017-01-01

    Full Text Available Enzymes as soil stabilizers have been successfully used in road construction in several countries for the past 30 years. However, research has shown that the successful application of these enzymes is case specific, emphasizing that enzyme performance is dependent on subgrade soil type, condition and the type of enzyme used as the stabilizer. A universal standard or a tool for road engineers to assess the performance of stabilized unbound pavements using well-established enzymes is not available to date. The research aims to produce a validated assessment tool which can be used to predict strength enhancement within a generalized statistical framework. The objective of the present study is to identify new materials for developing the assessment tool which supports enzyme based stabilization, as well as to identify the correct construction sequence for such new materials. A series of characterization tests were conducted on several soil types obtained from proposed construction sites. Having identified the suitable soil type to mix with the enzyme, a trial road construction has been performed to investigate the efficiency of the enzyme stabilization along with the correct construction sequence. The enzyme stabilization has showed significant improvement of the road performance as was evidenced from the test results which were based on site soil obtained before and after stabilization. The research will substantially benefit the road construction industry by not only replacing traditional construction methods with economical/reliable approaches, but also eliminating site specific tests required in current practice of enzyme based road construction.

  15. Dynamic stabilization of regular linear systems

    NARCIS (Netherlands)

    Weiss, G; Curtain, RF

    We consider a general class of infinite-dimensional linear systems, called regular linear systems, for which convenient representations are known to exist both in time and in frequency domain, For this class of systems, we investigate the concepts of stabilizability and detectability, in particular,

  16. Stability properties of nonlinear dynamical systems and evolutionary stable states

    Energy Technology Data Exchange (ETDEWEB)

    Gleria, Iram, E-mail: iram@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió-AL (Brazil); Brenig, Leon [Faculté des Sciences, Université Libre de Bruxelles, 1050 Brussels (Belgium); Rocha Filho, Tarcísio M.; Figueiredo, Annibal [Instituto de Física and International Center for Condensed Matter Physics, Universidade de Brasília, 70919-970 Brasília-DF (Brazil)

    2017-03-18

    Highlights: • We address the problem of equilibrium stability in a general class of non-linear systems. • We link Evolutionary Stable States (ESS) to stable fixed points of square quasi-polynomial (QP) systems. • We show that an interior ES point may be related to stable interior fixed points of QP systems. - Abstract: In this paper we address the problem of stability in a general class of non-linear systems. We establish a link between the concepts of asymptotic stable interior fixed points of square Quasi-Polynomial systems and evolutionary stable states, a property of some payoff matrices arising from evolutionary games.

  17. Two-Stage System Based on a Software-Defined Radio for Stabilizing of Optical Frequency Combs in Long-Term Experiments

    Czech Academy of Sciences Publication Activity Database

    Čížek, Martin; Hucl, Václav; Hrabina, Jan; Šmíd, Radek; Mikel, Břetislav; Lazar, Josef; Číp, Ondřej

    2014-01-01

    Roč. 14, č. 1 (2014), s. 1757-1770 ISSN 1424-8220 R&D Projects: GA ČR GPP102/11/P819; GA ČR GAP102/10/1813; GA MŠk ED0017/01/01; GA MŠk EE2.4.31.0016 Institutional support: RVO:68081731 Keywords : optical frequency combs * digital signal processing * software-defined radio * beat note * stabilization * long-term operation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.245, year: 2014

  18. Investigation of external and internal shock in the stability of Indonesia’s financial system

    Directory of Open Access Journals (Sweden)

    Maulina Vinus

    2017-07-01

    Full Text Available The objective of this research is to develop a financial system stability index and analyze the internal and external factors that we expect to affect the stability of the Indonesian financial system. We measured the single model of financial system stability index (FSSI from year 2004M03 to2014M09 in Indonesia, and compiled a single quantitative measure based on aggregate internal factors and external factors to capture and predict the shocks of the financial system stability. Stability parameters were composed of composite indicators on different bases. In addition, we developed a comprehensive index component associated with the relevant market conditions, including banking soundness index, financial vulnerability index, and regional economic climate index. Results stated that US economic growth and economic growth of ASEAN countries positively affected financial stability. In addition, current account, exchange rate, inflation, interest rate were shown to negatively affect financial stability. The results of this study imply that internal factors have a strong influence on the financial stability. Therefore, the central bank should give a fast and correct response to the changes of external and internal financial environment, especially for internal factors through monetary policy.

  19. Robust Stability Clearance of Flight Control Law Based on Global Sensitivity Analysis

    OpenAIRE

    Ou, Liuli; Liu, Lei; Dong, Shuai; Wang, Yongji

    2014-01-01

    To validate the robust stability of the flight control system of hypersonic flight vehicle, which suffers from a large number of parametrical uncertainties, a new clearance framework based on structural singular value ( $\\mu $ ) theory and global uncertainty sensitivity analysis (SA) is proposed. In this framework, SA serves as the preprocess of uncertain model to be analysed to help engineers to determine which uncertainties affect the stability of the closed loop system more slightly. By ig...

  20. Harmonic Stability Analysis of Inverter-Fed Power Systems Using Component Connection Method

    DEFF Research Database (Denmark)

    Wang, Yanbo; Wang, Xiongfei; Blaabjerg, Frede

    2016-01-01

    This paper presents a Component Connection Method (CCM)-based harmonic stability analysis for ac power-electronic-fed power systems. In the approach, the system is partitioned as individual components, including the controllers of DG units, LC filters, network impedances, and power loads...... is formulated. And the harmonic stability is assessed based on eigenvalue traces of the composite model. Simulations and experimental results are given to validate the effectiveness of the analysis method, which can be employed to assess the system harmonic stability for any combinations of system parameters....... They are first independently modeled and then assembled together based on component interconnection relationships, forming a composite system model featured with the sparse and diagonal state matrix, and thereby reducing the computational burdens. A modular modelling technique for inverter-fed power system...

  1. Fuzzy - Based Method of Detecting the Enviroment Character for UAV Optical Stabilization

    Directory of Open Access Journals (Sweden)

    David Novak

    2015-01-01

    Full Text Available An optical stabilization of UAV (UAS is a very important part of a structure in their control systems. Not only as a backup stabilization system in a case of IMU failure, but also as a main system, used for stabilization or navigation. In this paper the concept of a system for environment character detection is presented. The system can classify a surrounding environment depending on chosen characteristics. Such system can be used for a better horizon detection due to switching to a correct horizon detection algorithm, which can be used for determining the position of UAV. The system is based on Takagi - Sugeno fuzzy inference system and fuzzy artificial neural networks. An earlier work on this subject was presented last year, but concept of the system was redesigned with a usage of fuzzy artificial neural network for a more precisive outputs and automatic determination of characteristics of fuzzy sets on input.

  2. Dynamic stabilization of a coupled ultracold atom-molecule system.

    Science.gov (United States)

    Li, Sheng-Chang; Ye, Chong

    2015-12-01

    We numerically demonstrate the dynamic stabilization of a strongly interacting many-body bosonic system which can be realized by coupled ultracold atom-molecule gases. The system is initialized to an unstable equilibrium state corresponding to a saddle point in the classical phase space, where subsequent free evolution gives rise to atom-molecule conversion. To control and stabilize the system, periodic modulation is applied that suddenly shifts the relative phase between the atomic and the molecular modes and limits their further interconversion. The stability diagram for the range of modulation amplitudes and periods that stabilize the dynamics is given. The validity of the phase diagram obtained from the time-average calculation is discussed by using the orbit tracking method, and the difference in contrast with the maximum absolute deviation analysis is shown as well. A brief quantum analysis shows that quantum fluctuations can put serious limitations on the applicability of the mean-field results.

  3. Stabilization of switched nonlinear systems with unstable modes

    CERN Document Server

    Yang, Hao; Cocquempot, Vincent

    2014-01-01

    This book provides its reader with a good understanding of the stabilization of switched nonlinear systems (SNS), systems that are of practical use in diverse situations: design of fault-tolerant systems in space- and aircraft; traffic control; and heat propagation control of semiconductor power chips. The practical background is emphasized throughout the book; interesting practical examples frequently illustrate the theoretical results with aircraft and spacecraft given particular prominence. Stabilization of Switched Nonlinear Systems with Unstable Modes treats several different subclasses of SNS according to the characteristics of the individual system (time-varying and distributed parameters, for example), the state composition of individual modes and the degree and distribution of instability in its various modes. Achievement and maintenance of stability across the system as a whole is bolstered by trading off between individual modes which may be either stable or unstable, or by exploiting areas of part...

  4. Voltage stability margins assessment for Muscat power system

    Energy Technology Data Exchange (ETDEWEB)

    Ellithy, K.A.; Gastli, A. [Sultan Qaboos Univ., Dept. of Electrical Engineering and Electronics, Muscat (Oman); Al-Khusaibi, T. [Ministry of Housing and Electricity and Water, Muscat (Oman); Irving, M. [Brunel Univ., Dept. of Electrical Engineering and Electronics, Uxbridge (United Kingdom)

    2002-10-01

    Voltage instability problems in power systems today are, in many countries, one of the major concerns in power system planning and operation. This paper presents the assessment of voltage stability margins for Muscat power system under normal operating condition and under contingencies. The modal analysis method is applied to identify the weak buses in the system, which could lead to voltage instability. These weak buses are selected as the best locations for applying remedial actions to enhance the stability margins. The results show that the buses at South Batna load area are the weakest buses in the system. The results also show that an increase in load demand on that area without an adequate increase of reactive power could lead to voltage collapse. Shunt VAR compensations (remedial action) are installed at the weakest buses to enhance the system stability margins. The results presented in this paper are obtained using a MATLAB computer program developed by the authors. (Author)

  5. Experimental study of flame stability in biogas premix system

    International Nuclear Information System (INIS)

    Diaz G, Carlos A; Amell A Andres; Cardona Luis F

    2008-01-01

    Utilization of new renewable energy sources have had a special interest in last years looking for decrease the dependence of fossil fuels and the environmental impact generated for them. This work studies experimentally the flame stability of a simulated biogas with a volumetric composition of 60% methane and 40% carbon dioxide. The objective of this study is to obtain information about design and interchangeability of gases in premixed combustion systems that operate with different fuel gases. The critical velocity gradient was the stability criteria used. Utilization of this criteria and the experimental method followed, using a partial premixed burner, stability flame diagram of biogas studied had been obtained. Presence of carbon dioxide has a negative effect in flame stability, decreasing significantly the laminar flame speed and consequently, the stability range of biogas burners because of apparition of blow off.

  6. Exploring Different Forms of Base Stabilization

    Science.gov (United States)

    2012-07-24

    Our nations roadways have experienced a growing demand over the past couple of decades. With decreasing funds and the need to provide the public with an efficient, safe, and cost effective roadway system, there has been a remarkable increase in th...

  7. The electric power engineering handbook power system stability and control

    CERN Document Server

    Grisby, Leonard L

    2012-01-01

    With contributions from worldwide leaders in the field, Power System Stability and Control, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) updates coverage of recent developments and rapid technological growth in essential aspects of power systems. Edited by L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Miroslav Begovic, Prabha Kundur, and Bruce Wollenberg, this reference presents substantially new and revised content. Topics covered include: * Power System Protection * Power System Dynamics and Stability *

  8. Asymptotic Stabilization of Non-holonomic Port-controlled Hamiltonian Systems

    DEFF Research Database (Denmark)

    Sørensen, Mathias Jesper; Bendtsen, Jan Dimon; Andersen, Palle

    2004-01-01

    A novel method for asymptotic stabilization of a class of non-holonomic systems is presented. The method is based on the port-controlled Hamiltonian description of electro-mechanical systems. The general system is augmented with so-called kinematic inputs, thus representing a special class of mob...

  9. Power system dynamics and stability with synchrophasor measurement and power system toolbox

    CERN Document Server

    Sauer, Peter W; Chow, Joe H

    2017-01-01

    This new edition addresses the needs of dynamic modeling and simulation relevant to power system planning, design, and operation, including a systematic derivation of synchronous machine dynamic models together with speed and voltage control subsystems. Reduced-order modeling based on integral manifolds is used as a firm basis for understanding the derivations and limitations of lower-order dynamic models. Following these developments, a multi-machine model interconnected through the transmission network is formulated and simulated using numerical simulation methods. Energy function methods are discussed for direct evaluation of stability. Small-signal analysis is used for determining the electromechanical modes and mode-shapes, and for power system stabilizer design. Time-synchronized high-sampling-rate phasor measurement units (PMUs) to monitor power system disturbances ave been implemented throughout North America and many other countries. In this second edition, new chapters on synchrophasor measurement ...

  10. Dynamic postural stability in blind athletes using the biodex stability system.

    Science.gov (United States)

    Aydoğ, E; Aydoğ, S T; Cakci, A; Doral, M N

    2006-05-01

    Three systems affect the upright standing posture in humans - visual, vestibular, and somatosensory. It is well known that the visually impaired individuals have bad postural balance. On the other hand, it is a well documented fact that some sports can improve postural balance. Therefore, it is aimed in this study to evaluate the dynamic postural stability in goal-ball athletes. Twenty blind goal-ball players, 20 sighted and 20 sedentary blind controls were evaluated using the Biodex Stability System. Three adaptation trials and three test evaluations (a 20-second balance test at a platform stability of 8) were applied to the blind people, and to the sighted with eyes open and closed. Dynamic postural stability was measured on the basis of three indices: overall, anteroposterior, and mediolateral. Means of each test score were calculated. The tests results were compared for the blind athletes, sighted (with eyes open and closed) subjects, and sedentary blind people. There were significant differences between the results of the blind people and the sighted subjects with regards to all of the three indices. Although the stability of goal-ball players was better than sedentary blinds', only ML index values were statistically different (4.47 +/- 1.24 in the goal-ball players; 6.46 +/- 3.42 in the sedentary blind, p = 0.04). Dynamic postural stability was demonstrated to be affected by vision; and it was found that blind people playing goal-ball 1 - 2 days per week have higher ML stability than the sedentary sighted people.

  11. Stability of multiplanetary systems in star clusters

    NARCIS (Netherlands)

    Cai, X.; Kouwenhoven, M.B.N.; Portegies, Zwart S.F.; Spurzem, R.

    2017-01-01

    Most stars form in star clusters and stellar associations. However, only about ˜1 per cent of the presently known exoplanets are found in these environments. To understand the roles of star cluster environments in shaping the dynamical evolution of planetary systems, we carry out direct N-body

  12. FINANCIAL STABILITY OF THE UKRAINE NATIONAL SYSTEM OF PENSION INSURANCE

    Directory of Open Access Journals (Sweden)

    A. Khemii

    2014-03-01

    Full Text Available The system of pension insurance is a combination of created by the state legal, economic and organizational institutions and norms, providing financial support to citizens in the form of pensions. In the article analyzing the demographic situation and the condition of pension payments in the country today. In the terms of economic and social reforms, the level of financial stability the pension system is low. Therefore important is the analysis and exploring new methods to ensure financial stability of the Ukraine national system of pension insurance. The main institution of the national pension insurance is the National Pension Fund of Ukraine.

  13. Stability of Ni–yttria stabilized zirconia anodes based on Ni-impregnation

    DEFF Research Database (Denmark)

    Klemensø, Trine; Thydén, Karl Tor Sune; Chen, Ming

    2010-01-01

    Sintering of Ni is a key stability issue for Ni–YSZ anodes, and especially infiltration based electrodes. The potential of MgO, Al2O3, TiO2, CeO2 and Ce0.90Gd0.10O1.95 (CGO10) as sintering inhibitors was investigated for infiltrated Ni based anode structures. The structures were prepared from tap...

  14. Piezo-based miniature high resolution stabilized gimbal

    Science.gov (United States)

    Karasikov, Nir; Peled, Gal; Yasinov, Roman; Yetkariov, Rita

    2016-05-01

    Piezo motors are characterized by higher mechanical power density, fast response and direct drive. These features are beneficial for miniature gimbals. A gimbal based on such motors was developed. Diameter is 58 mm, weight is 190 grams. The gimbal carries two cameras: a Flir Quark and an HD day camera. The dynamic performance is as high as 3 rad/sec velocity and 100 rad/secΛ2 acceleration. A two axes stabilization algorithm was developed, yielding 80 micro radian stabilization. Further, a panoramic image capture, at a rate of six stabilized field of views per second, was developed. The manuscript reviews the gimbal structure and open architecture, allowing adaptation to other cameras (SWIR etc.), the control algorithm and presents experimental results of stabilization and of panoramic views taken on a vibration platform and on a UAV.

  15. Stability of large DC power systems using switching converters, with application to the international space station

    Science.gov (United States)

    Manners, B.; Gholdston, E. W.; Karimi, K.; Lee, F. C.; Rajagopalan, J.; Panov, Y.

    1996-01-01

    As space direct current (dc) power systems continue to grow in size, switching power converters are playing an ever larger role in power conditioning and control. When designing a large dc system using power converters of this type, special attention must be placed on the electrical stability of the system and of the individual loads on the system. In the design of the electric power system (EPS) of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) and its contractor team led by Boeing Defense & Space Group has placed a great deal of emphasis on designing for system and load stability. To achieve this goal, the team has expended considerable effort deriving a dear concept on defining system stability in both a general sense and specifically with respect to the space station. The ISS power system presents numerous challenges with respect to system stability, such as high power, complex sources and undefined loads. To complicate these issues, source and load components have been designed in parallel by three major subcontractors (Boeing, Rocketdyne, and McDonnell Douglas) with interfaces to both sources and loads being designed in different countries (Russia, Japan, Canada, Europe, etc.). These issues, coupled with the program goal of limiting costs, have proven a significant challenge to the program. As a result, the program has derived an impedance specification approach for system stability. This approach is based on the significant relationship between source and load impedances and the effect of this relationship on system stability. This approach is limited in its applicability by the theoretical and practical limits on component designs as presented by each system segment. As a result, the overall approach to system stability implemented by the ISS program consists of specific hardware requirements coupled with extensive system analysis and hardware testing. Following this approach, the ISS program plans to begin

  16. On stability of accelerator driven systems

    International Nuclear Information System (INIS)

    Makai, Mihaly

    2003-01-01

    An unsolved problem of energy production in nuclear reactors is the waste management. A large portion of the nuclear waste is the spent fuel. At present, two possibilities are seen. The first one is to 'wrap up' all the radioactive waste safely and to bury it at a remote quiet place where it can rest undisturbed until its activity decreases to a tolerable level. The second one is to exploit the excitation energy still present in the nuclear waste. In order to release that energy, the spent fuel is bombarded by high energy particles obtained from an accelerator. The resulting system is called accelerator driven system (ADS). In an ADS, the spent fuel forms a subcritical reactor, which is driven by an external source. (author)

  17. Gyroscopic stabilization and indefimite damped systems

    DEFF Research Database (Denmark)

    Pommer, Christian

    a class of feasibel skew-Hermitian matrices A depending on the choise of M. The theory can be applied to dynamical systems of the form x''(t) + ( dD + g G) x'(t) + K x(t) = 0 where G is a skew symmetric gyrocopic matrix, D is a symmetric indefinite damping matrix and K > 0 is a positive definite stiffness...

  18. Compressive strength and hydrolytic stability of fly ash based geopolymers

    Directory of Open Access Journals (Sweden)

    Nikolić Irena

    2013-01-01

    Full Text Available The process of geopolymerization involves the reaction of solid aluminosilicate materials with highly alkaline silicate solution yielding an aluminosilicate inorganic polymer named geopolymer, which may be successfully applied in civil engineering as a replacement for cement. In this paper we have investigated the influence of synthesis parameters: solid to liquid ratio, NaOH concentration and the ratio of Na2SiO3/NaOH, on the mechanical properties and hydrolytic stability of fly ash based geopolymers in distilled water, sea water and simulated acid rain. The highest value of compressive strength was obtained using 10 mol dm-3 NaOH and at the Na2SiO3/NaOH ratio of 1.5. Moreover, the results have shown that mechanical properties of fly ash based geopolymers are in correlation with their hydrolytic stability. Factors that increase the compressive strength also increase the hydrolytic stability of fly ash based geopolymers. The best hydrolytic stability of fly ash based geopolymers was shown in sea water while the lowest stability was recorded in simulated acid rain. [Projekat Ministarstva nauke Republike Srbije, br. 172054 i Nanotechnology and Functional Materials Center, funded by the European FP7 project No. 245916

  19. Stability Analysis of a Turbocharger Rotor System Supported on Floating Ring Bearings

    International Nuclear Information System (INIS)

    Zhang, H; Shi, Z Q; Zhen, D; Gu, F S; Ball, A D

    2012-01-01

    The stability of a turbocharger rotor is governed by the coupling of rotor dynamics and fluid dynamics because the high speed rotor system is supported on a pair of hydrodynamic floating ring bearings which comprise of inner and outer fluid films in series. In order to investigate the stability, this paper has developed a finite element model of the rotor system with consideration of such exciting forces as rotor imbalance, hydrodynamic fluid forces, lubricant feed pressure and dead weight. The dimensionless analytical expression of nonlinear oil film forces in floating ring bearings have been derived on the basis of short bearing theory. Based on numerical simulation, the effects of rotor imbalance, lubricant viscosity, lubricant feed pressure and bearing clearances on the stability of turbocharger rotor system have been studied. The disciplines of the stability of two films and dynamic performances of rotor system have been provided.

  20. Indefinite damping in mechanical systems and gyroscopic stabilization

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian

    2009-01-01

    This paper deals with gyroscopic stabilization of the unstable system Mx + D(x) over dot + K-x = 0, with positive definite mass and stiffness matrices M and K, respectively, and an indefinite damping matrix D. The main question if for which skew-symmetric matrices G the system Mx (D+ G)(x) over d...

  1. Stability of time-delay systems via Lyapunov functions

    Directory of Open Access Journals (Sweden)

    Carlos F. Alastruey

    2002-01-01

    Full Text Available In this paper, a Lyapunov function candidate is introduced for multivariable systems with inner delays, without assuming a priori stability for the nondelayed subsystem. By using this Lyapunov function, a controller is deduced. Such a controller utilizes an input–output description of the original system, a circumstance that facilitates practical applications of the proposed approach.

  2. Criteria for stability of linear dynamical systems with multiple delays ...

    African Journals Online (AJOL)

    In this study we considered a linear Dynamical system with multiple delays and find suitable conditions on the systems parameters such that for a given initial function, we can define a mapping in a carefully chosen complete metric space on which the mapping has a unique fixed point. An asymptotic stability theory for the ...

  3. Stabilization of third-order bilinear systems using constant controls

    Directory of Open Access Journals (Sweden)

    A. E. Golubev

    2014-01-01

    Full Text Available This paper deals with the zero equilibrium stabilization for dynamical systems that have control input singularities. A dynamical system with scalar control input is called nonregular if the coefficient of input becomes null on a subset of the phase space that contains the origin. One of the classes of nonregular dynamical systems is represented by bilinear systems. In case of second-order bilinear systems the necessary and sufficient conditions for the zero equilibrium stabilizability are known in the literature. However, in general case the stabilization problem in the presence of control input singularities has not been solved yet.In this note we solve the problem of the zero equilibrium stabilization for the third-order bilinear dynamical systems given in a canonical form. The solution is found in the class of constant controls. The necessary and sufficient conditions are obtained for the zero equilibrium stabilizability of the bilinear systems in question.The dependence of the zero equilibrium stabilizability on system parameter values is analyzed. The general criteria of stabilizability by means of constant controls are given for the bilinear systems in question. In case when all the system parameters have nonzero values the necessary and sufficient stabilizability conditions are proved. The case when some of the parameters are equal to zero is also considered.Further research can be focused on extending the obtained results to a higher-order case of bilinear and affine dynamical systems. The solution of the considered stabilization problem should also be found not only within constant controls but also in a class of state feedbacks, particularly, in the case when stabilizing constant control does not exist.One of the potential application areas for the obtained theoretical results is automatic control of technical plants like unmanned aerial vehicles and mobile robots.

  4. Robust stabilization of nonlinear systems: The LMI approach

    Directory of Open Access Journals (Sweden)

    Šiljak D. D.

    2000-01-01

    Full Text Available This paper presents a new approach to robust quadratic stabilization of nonlinear systems within the framework of Linear Matrix Inequalities (LMI. The systems are composed of a linear constant part perturbed by an additive nonlinearity which depends discontinuously on both time and state. The only information about the nonlinearity is that it satisfies a quadratic constraint. Our major objective is to show how linear constant feedback laws can be formulated to stabilize this type of systems and, at the same time, maximize the bounds on the nonlinearity which the system can tolerate without going unstable. We shall broaden the new setting to include design of decentralized control laws for robust stabilization of interconnected systems. Again, the LMI methods will be used to maximize the class of uncertain interconnections which leave the overall system connectively stable. It is useful to learn that the proposed LMI formulation “recognizes” the matching conditions by returning a feedback gain matrix for any prescribed bound on the interconnection terms. More importantly, the new formulation provides a suitable setting for robust stabilization of nonlinear systems where the nonlinear perturbations satisfy the generalized matching conditions.

  5. Stability of Spline-Type Systems in the Abelian Case

    Directory of Open Access Journals (Sweden)

    Darian Onchis

    2017-12-01

    Full Text Available In this paper, the stability of translation-invariant spaces of distributions over locally compact groups is stated as boundedness of synthesis and projection operators. At first, a characterization of the stability of spline-type spaces is given, in the standard sense of the stability for shift-invariant spaces, that is, linear independence characterizes lower boundedness of the synthesis operator in Banach spaces of distributions. The constructive nature of the proof for Theorem 2 enabled us to constructively realize the biorthogonal system of a given one. Then, inspired by the multiresolution analysis and the Lax equivalence for general discretization schemes, we approached the stability of a sequence of spline-type spaces as uniform boundedness of projection operators. Through Theorem 3, we characterize stable sequences of stable spline-type spaces.

  6. Stability of Spline-Type Systems in the Abelian Case.

    Science.gov (United States)

    Onchis, Darian; Zappalà, Simone

    2017-12-27

    In this paper, the stability of translation-invariant spaces of distributions over locally compact groups is stated as boundedness of synthesis and projection operators. At first, a characterization of the stability of spline-type spaces is given, in the standard sense of the stability for shift-invariant spaces, that is, linear independence characterizes lower boundedness of the synthesis operator in Banach spaces of distributions. The constructive nature of the proof for Theorem 2 enabled us to constructively realize the biorthogonal system of a given one. Then, inspired by the multiresolution analysis and the Lax equivalence for general discretization schemes, we approached the stability of a sequence of spline-type spaces as uniform boundedness of projection operators. Through Theorem 3, we characterize stable sequences of stable spline-type spaces.

  7. Transient Stability Enhancement in Power System Using Static VAR Compensator (SVC

    Directory of Open Access Journals (Sweden)

    Youssef MOULOUDI

    2012-12-01

    Full Text Available In this paper, an indirect adaptive fuzzy excitation and static VAR (unit of reactive power, volt-ampere reactive compensator (SVC controller is proposed to enhance transient stability for the power system, which based on input-output linearization technique. A three-bus system, which contains a generator and static VAR compensator (SVC, is considered in this paper, the SVC is located at the midpoint of the transmission lines. Simulation results show that the proposed controller compared with a controller based on tradition linearization technique can enhance the transient stability of the power system under a large sudden fault, which may occur nearly at the generator bus terminal.

  8. Stabilizing non-Hermitian systems by periodic driving

    Science.gov (United States)

    Gong, Jiangbin; Wang, Qing-hai

    2015-04-01

    The time evolution of a system with a time-dependent non-Hermitian Hamiltonian is in general unstable with exponential growth or decay. A periodic driving field may stabilize the dynamics because the eigenphases of the associated Floquet operator may become all real. This possibility can emerge for a continuous range of system parameters with subtle domain boundaries. It is further shown that the issue of stability of a driven non-Hermitian Rabi model can be mapped onto the band structure problem of a class of lattice Hamiltonians. As a straightforward application, we show how to use the stability of driven non-Hermitian two-level systems (0 dimension in space) to simulate a spectrum analogous to Hofstadter's butterfly that has played a paradigmatic role in quantum Hall physics. The simulation of the band structure of non-Hermitian superlattice potentials with parity-time reversal symmetry is also briefly discussed.

  9. Differentiable dynamical systems an introduction to structural stability and hyperbolicity

    CERN Document Server

    Wen, Lan

    2016-01-01

    This is a graduate text in differentiable dynamical systems. It focuses on structural stability and hyperbolicity, a topic that is central to the field. Starting with the basic concepts of dynamical systems, analyzing the historic systems of the Smale horseshoe, Anosov toral automorphisms, and the solenoid attractor, the book develops the hyperbolic theory first for hyperbolic fixed points and then for general hyperbolic sets. The problems of stable manifolds, structural stability, and shadowing property are investigated, which lead to a highlight of the book, the \\Omega-stability theorem of Smale. While the content is rather standard, a key objective of the book is to present a thorough treatment for some tough material that has remained an obstacle to teaching and learning the subject matter. The treatment is straightforward and hence could be particularly suitable for self-study. Selected solutions are available electronically for instructors only. Please send email to textbooks@ams.org for more informatio...

  10. The mathematical model of dynamic stabilization system for autonomous car

    Science.gov (United States)

    Saikin, A. M.; Buznikov, S. E.; Shabanov, N. S.; Elkin, D. S.

    2018-02-01

    Leading foreign companies and domestic enterprises carry out extensive researches and developments in the field of control systems for autonomous cars and in the field of improving driver assistance systems. The search for technical solutions, as a rule, is based on heuristic methods and does not always lead to satisfactory results. The purpose of this research is to formalize the road safety problem in the terms of modern control theory, to construct the adequate mathematical model for solving it, including the choice of software and hardware environment. For automatic control of the object, it is necessary to solve the problem of dynamic stabilization in the most complete formulation. The solution quality of the problem on a finite time interval is estimated by the value of the quadratic functional. Car speed, turn angle and additional yaw rate (during car drift or skidding) measurements are performed programmatically by the original virtual sensors. The limit speeds at which drift, skidding or rollover begins are calculated programmatically taking into account the friction coefficient identified in motion. The analysis of the results confirms both the adequacy of the mathematical models and the algorithms and the possibility of implementing the system in the minimal technical configuration.

  11. The Hill stability of triple planets in the Solar system

    Science.gov (United States)

    Liu, Chao; Gong, Shengping

    2017-07-01

    The Hill stability of the nine known triple asteroid systems in the solar system has been investigated in a framework of the three body system. In this paper, the Sun and triple-asteroid system are treated as a four body system to analyze the influence of the Sun on the Hill stability of the triple subsystem. First, the relationship of the total energy and the angular momentum between the four body system and the triple subsystem is derived. It is found that the total energy of this 1-3 configuration four body system is the sum of the energy of the triple subsystem and the energy of a two-body system composed of the Sun and the mass center of the subsystem; so is the angular momentum. Then, the Hill stability of the triple subsystem is reinvestigated using a previous criterion in the four body problem (Gong and Liu in Mon. Not. R. Astron. Soc. 462:547-553, 2016) and the results are compared to those in the three body problem. Among the nine known triple-asteroid systems, 1995 CC and 1999 TC are Hill stable for both models; the others are stable in the three body model while not stable in the four body model. In addition, the exploration of Pluto by New Horizons has attracted great attention in recent years, the Sun-Pluto-Charon-Hydra four body system is investigated in the paper, and it is found that the system is Hill stable.

  12. Communications and control for electric power systems: Power system stability applications of artificial neural networks

    Science.gov (United States)

    Toomarian, N.; Kirkham, Harold

    1994-01-01

    This report investigates the application of artificial neural networks to the problem of power system stability. The field of artificial intelligence, expert systems, and neural networks is reviewed. Power system operation is discussed with emphasis on stability considerations. Real-time system control has only recently been considered as applicable to stability, using conventional control methods. The report considers the use of artificial neural networks to improve the stability of the power system. The networks are considered as adjuncts and as replacements for existing controllers. The optimal kind of network to use as an adjunct to a generator exciter is discussed.

  13. Real-Time Stability Assessment based on Synchrophasors

    DEFF Research Database (Denmark)

    Jóhannsson, Hjörtur; Garcia-Valle, Rodrigo; Weckesser, Johannes Tilman Gabriel

    2011-01-01

    eventually cause in very sharp decline in system voltages at intermediate locations between the two groups as the angular separation approaches 180◦. In order to receive an early warning for the occurrence of such type of blackouts, the boundaries of the system generators aperiodic small-signal stability...... generator can inject into the system. The limits for maximum injectable power represent the boundary for aperiodic small signal stability. The concept of the proposed method is tested on two different systems. The results show that the method is capable of accurately detecting when a given machine crosses......In this paper, an overview is provided of a new method that in real-time provides an early warning for an emerging blackout that are characterized by a slowly increasing angular separation between sub-groups of system generators. Such angular separation between subgroups of generators can...

  14. On the conditional total stability of equilibrium for mechanical systems

    Directory of Open Access Journals (Sweden)

    L. Salvadori

    1991-05-01

    Full Text Available In connection with the problem of observability, properties of total stability restricted to classes of perturbations of the governing equations are discussed for the equilibrium of holonomic mechanical systems. These systems are subject to positional conservative and dissipative forces. The particular case of a null dissipation is included. The perturbations to which the total stability is restricted are those obtained by modifying the kinetic energy, the potential of the conservative force, and the dissipative terms, without altering the Lagrangian form of the equations of the motion.

  15. Robust Stabilization of Nonlinear Systems with Uncertain Varying Control Coefficient

    Directory of Open Access Journals (Sweden)

    Zaiyue Yang

    2014-01-01

    Full Text Available This paper investigates the stabilization problem for a class of nonlinear systems, whose control coefficient is uncertain and varies continuously in value and sign. The study emphasizes the development of a robust control that consists of a modified Nussbaum function to tackle the uncertain varying control coefficient. By such a method, the finite-time escape phenomenon has been prevented when the control coefficient is crossing zero and varying its sign. The proposed control guarantees the asymptotic stabilization of the system and boundedness of all closed-loop signals. The control performance is illustrated by a numerical simulation.

  16. Multiple-pattern stability in a photorefractive feedback system

    DEFF Research Database (Denmark)

    Schwab, M.; Denz, C.; Saffman, M.

    1999-01-01

    We report on the observation of a multiple-pattern stability region in a photorefractive single-feedback system. Whereas hexagonal patterns are predominant for feedback with positive diffraction length we show that a variety of stable non-hexagonal patterns are generated for certain negative...... diffraction lengths. For the same values of the control parameters square, rectangular, or squeezed hexagonal patterns are found alternating in time. Besides these pure states, we found a number of different mixed-pattern states. We review the linear stability analysis for this system and show...

  17. Chemical stability of prints made on hemp fibre based papers

    Directory of Open Access Journals (Sweden)

    Ivana Plazonić

    2016-11-01

    Full Text Available For paper industry and consequently graphic industry it is very important that fibres used in paper production provide high quality and printability of the paper. In pulp and paper industry fibres of cellulose pulp derived still predominantly from wood, but in the last few years the consumption of non-wood raw materials for that purpose has grown. This work presents research on the chemical stability of printed hemp fibre based papers to water, alcohol and alkali. Evaluation of chemical degradation on prints was determined through the spectrophotometric measurements. Deviations in colour of prints have shown that highest chemical stability provides prints made on industrially paper formed from mixture of hemp and post-consumer fibres with high share of inorganic components. Further, bleached hemp fibres in handmade 100 % hemp fibre based paper give prints with the lowest chemical stability.

  18. Solution stability of Captisol-stabilized melphalan (Evomela) versus Propylene glycol-based melphalan hydrochloride injection.

    Science.gov (United States)

    Singh, Ramsharan; Chen, Jin; Miller, Teresa; Bergren, Michael; Mallik, Rangan

    2016-12-14

    The objective of this study was to compare the stability of recently approved Captisol-stabilized propylene glycol-free melphalan injection (Evomela™) against currently marketed propylene glycol-based melphalan injection. The products were compared as reconstituted solutions in vials as well as admixture solutions prepared from normal saline in infusion bags. Evomela and propylene glycol-based melphalan injection were reconstituted in normal saline and organic custom diluent, respectively, according to their package insert instructions. The reconstituted solutions were diluted in normal saline to obtain drug admixture solutions at specific drug concentrations. Stability of the solutions was studied at room temperature by assay of melphalan and determination of melphalan-related impurities. Results show that based on the increase in total impurities in propylene glycol-based melphalan injection at 0.45 mg/mL, Evomela admixture solutions are about 5, 9, 15 and 29 times more stable at concentrations of 0.45, 1.0, 2.0 and 5.0 mg/mL, respectively. Results confirmed that reconstituted Evomela solution can be stored in the vial for up to 1 h at RT or for up to 24 h at refrigerated temperature (2-8 °C) with no significant degradation. After storage in the vial, it remains stable for an additional 3-29 h after preparation of admixture solution in infusion bags at concentrations of 0.25-5.0 mg/mL, respectively. In addition, Evomela solution in saline, at concentration of 5.0 mg/mL melphalan was bacteriostatic through 72 h storage at 2-8 °C. Formulation of melphalan with Captisol technology significantly improved stability compared to melphalan hydrochloride reconstituted with propylene-glycol based diluents.

  19. On the stability of boundary layers in gas mantle systems

    International Nuclear Information System (INIS)

    Ohlsson, D.

    1978-10-01

    In this thesis a systematic investigation of the stability properties of the partially ionized boundary regions of gas mantle systems for a large class of dissipative magneto-hydrodynamic modes is presented. In the partially ionized boundary regions of gas mantle systems several strong stabilizing mechanisms arise due to coupling between various dissipative effects in certain parameter regions. The presence of neutral gas strongly enhances the stabilizing effects in a dual fashion. First in an indirect way by cooling the edge region and second in a direct way by enhancing viscous and heat conduction effects. It has, however, to be pointed out that exceptions from this general picture may be found. The stabilizing influence of neutral gas on a large class of electrostatic as well as electromagnetic modes in the boundary regions of gas blanket systems is contrary to what has been found in low density weakly ionized plasmas. In these latter cases presence of neutral gas has even been found to be responsible for the onset of entirely new classes of instabilities. Thus there is no universal stabilizing or destabilizing effect associated with plasma-neutral gas interaction effects. (author)

  20. Stabilization of positive linear discrete-time systems by using a Brauer's theorem.

    Science.gov (United States)

    Cantó, Begoña; Cantó, Rafael; Kostova, Snezhana

    2014-01-01

    The stabilization problem of positive linear discrete-time systems (PLDS) by linear state feedback is considered. A method based on a Brauer's theorem is proposed for solving the problem. It allows us to modify some eigenvalues of the system without changing the rest of them. The problem is studied for the single-input single-output (SISO) and for multi-input multioutput (MIMO) cases and sufficient conditions for stability and positivity of the closed-loop system are proved. The results are illustrated by numerical examples and the proposed method is used in stochastic systems.

  1. Stabilization of Positive Linear Discrete-Time Systems by Using a Brauer’s Theorem

    Directory of Open Access Journals (Sweden)

    Begoña Cantó

    2014-01-01

    Full Text Available The stabilization problem of positive linear discrete-time systems (PLDS by linear state feedback is considered. A method based on a Brauer’s theorem is proposed for solving the problem. It allows us to modify some eigenvalues of the system without changing the rest of them. The problem is studied for the single-input single-output (SISO and for multi-input multioutput (MIMO cases and sufficient conditions for stability and positivity of the closed-loop system are proved. The results are illustrated by numerical examples and the proposed method is used in stochastic systems.

  2. Small-Signal Stability of Wind Power System With Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygaard; Jensen, Kim Høj

    2012-01-01

    Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants (WPP). In this paper a comprehensive analysis...... is presented which assesses the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine (WT) model with all grid relevant control functions is used in the study...

  3. Input–Output Finite Time Stabilization of Time-Varying Impulsive Positive Hybrid Systems under MDADT

    OpenAIRE

    Lihong Yao; Junmin Li

    2017-01-01

    Time-varying impulsive positive hybrid systems based on finite state machines (FSMs) are considered in this paper, and the concept of input–output finite time stability (IO-FTS) is extended for this type of hybrid system. The IO-FTS analysis of the single linear time-varying system is given first. Then, the sufficient conditions of IO-FTS for hybrid systems are proposed via the mode-dependent average dwell time (MDADT) technique. Moreover, the output feedback controller which can stabilize th...

  4. AC system stabilization via phase shift transformer with thyristor commutation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jose Carlos de; Guimaraes, Geraldo Caixeta; Moraes, Adelio Jose [Uberlandia Univ., MG (Brazil); Abreu, Jose Policarpo G. de [Escola Federal de Engenharia de Itajuba, MG (Brazil); Oliveira, Edimar Jose de [Juiz de Fora Univ., MG (Brazil)

    1994-12-31

    This article aims to present initially the constructive and operative forms of a phase-shift autotransformer which provides both magnitude and phase angle change through thyristor commutation, including a technic to reduce the number of thyristors. Following, it is proposed a control system to make such equipment an efficient AC system stabilizing tool. It is presented some simulation results to show the operation of this transformer in an electrical system. (author) 3 refs., 11 figs., 3 tabs.

  5. Comparison of Different Techniques For Tuning of Power System Stabilizer

    OpenAIRE

    BAYAT, Ehsan; DELAVARİ, Hadi

    2015-01-01

    Abstract. The power system is subjected to different types of disturbances such as small changes in the load that affects its efficiency and sometimes leads to unstable system. These disturbances cause oscillations at low frequencies that are undesirable since it affects the amount of transferred power through the transmission lines and leads to external stress to the mechanical shaft. In order to compress low-frequency oscillations, a common solution is use the power system stabilizer (PSS)....

  6. Stability of interconnected dynamical systems described on Banach spaces

    Science.gov (United States)

    Rasmussen, R. D.; Michel, A. N.

    1976-01-01

    New stability results for a large class of interconnected dynamical systems (also called composite systems or large scale systems) described on Banach spaces are established. In the present approach, the objective is always the same: to analyze large scale systems in terms of their lower order and simpler subsystems and in terms of their interconnecting structure. The present results provide a systematic procedure of analyzing hybrid dynamical systems (i.e., systems that are described by a mixture of different types of equations). To demonstrate the method of analysis advanced, two specific examples are considered.

  7. Investigating the influence of lithologic heterogeneity on gas hydrate formation and methane recycling at the base of the gas hydrate stability zone in channelized systems

    Energy Technology Data Exchange (ETDEWEB)

    Daigle, Hugh; Nole, Michael; Cook, Ann; Malinverno, Alberto

    2017-12-14

    In marine environments, gas hydrate preferentially accumulates in coarse-grained sediments. At the meso- to micro-scale, however, hydrate distribution in these coarse-grained units is often heterogeneous. We employ a methane hydrate reservoir simulator coupling heat and mass transfer as well as capillary effects to investigate how capillary controls on methane solubility affect gas and hydrate accumulations in reservoirs characterized by graded bedding and alternating sequences of coarse-grained sands and fine-grained silt and clay. Simulations bury a channelized reservoir unit encased in homogeneous, fine-grained material characterized by small pores (150 nm) and low permeability (~1 md in the absence of hydrate). Pore sizes within each reservoir bed between vary between coarse sand and fine silt. Sands have a median pore size of 35 microns and a lognormal pore size distribution. We also investigate how the amount of labile organic carbon (LOC) affects hydrate growth due to microbial methanogenesis within the sediments. In a diffusion-dominated system, methane movies into reservoir layers along spatial gradients in dissolved methane concentration. Hydrate grows in such a way as to minimize these concentration gradients by accumulating slower in finer-grained reservoir layers and faster in coarser-grained layers. Channelized, fining-upwards sediment bodies accumulate hydrate first along their outer surfaces and thence inward from top to bottom. If LOC is present in thin beds within the channel, higher saturations of hydrate will be distributed more homogeneously throughout the unit. When buried beneath the GHSZ, gas recycling can occur only if enough hydrate is present to form a connected gas phase upon dissociation. Simulations indicate that this is difficult to achieve for diffusion-dominated systems, especially those with thick GHSZs and/or small amounts of LOC. However, capillary-driven fracturing behavior may be more prevalent in settings with thick GHSZs.

  8. [Study on relationship between emotional stability in flight and nerve system excitability].

    Science.gov (United States)

    Liu, Fang; Huang, Wei-fen; Jing, Xiao-lu; Zhang, Ping

    2003-06-01

    To study the related factors of emotional stability in flight. Based on the operable definition of emotional stability in flight and the related literature review, 63 experienced pilots and flight coaches were investigated and the other-rating questionnaire of emotional stability in flight was established. To test the senior nerve system, Uchida Kraeplin (UK) test was administrated on 153 19-21 years old male student pilots of the second grade in the department of flight technique in China Civil Aviation College, who were selected through 13 h flight, 35 h solo flight, and acted as the standardization group. In the end, the correlation was explored between the testing results and their emotional behavioral characteristics in flight. Significant positive correlation was found between emotional feature indexes of emotional stability in flight and excitability in UK test. The excitability in UK test are good predictors for emotional stability in flight.

  9. Improved stability and stabilization design for networked control systems using new quadruple-integral functionals.

    Science.gov (United States)

    Li, Zhichen; Bai, Yan; Li, Tianqi

    2016-07-01

    This paper investigates stability analysis and stabilization for networked control systems. By a refined delay decomposition approach, slightly different Lyapunov-Krasovskii functionals (LKFs) with quadruple-integral terms and augmented vectors containing triple-integral forms of state are constructed. New integral inequalities are proposed to estimate the cross terms from derivatives of the LKFs, which can be proved to offer tighter bounds than what the Jensen one produces theoretically. Moreover, the non-strictly proper rational functions in deriving process are fully handled via reciprocally convex approach. A state feedback controller design approach is also developed. Numerical examples and applications to practical power and oscillator systems demonstrate the superiority of the proposed criteria in conservatism reduction compared to some existing ones. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Microgrid Stability Controller Based on Adaptive Robust Total SMC

    DEFF Research Database (Denmark)

    Su, Xiaoling; Han, Minxiao; Guerrero, Josep M.

    2015-01-01

    This paper presents a microgrid stability controller (MSC) in order to provide existing DGs the additional functionality of working in islanding mode without changing their control strategies in grid-connected mode and to enhance the stability of the microgrid. Microgrid operating characteristics....... The MSC provides fast dynamic response and robustness to the microgrid. When the system is operating in grid-connected mode, it is able to improve the controllability of the exchanged power between the microgrid and the utility grid, while smoothing DG’s output power. When the microgrid is operating...

  11. Voltage Stabilizer Based on SPWM technique Using Microcontroller

    Directory of Open Access Journals (Sweden)

    K. N. Tarchanidis

    2013-01-01

    Full Text Available This paper presents an application of the well known SPWM technique on a voltage stabilizer, using a microcontroller. The stabilizer is AC/DC/AC type. So, the system rectifies the input AC voltage to a suitable DC level and the intelligent control of an embedded microcontroller regulates the pulse width of the output voltage in order to produce through a filter a perfect sinusoidal AC voltage. The control program on the microcontroller has the ability to change the FET transistor firing in order to compensate any input voltage variation. The applied software using the microcontroller’s interrupts managed to achieve concurrency on the running program.

  12. Global Transient Stability and Voltage Regulation for Multimachine Power Systems

    DEFF Research Database (Denmark)

    Gordon, Mark; Hill, David J.

    2008-01-01

    This paper addresses simultaneously the major fundamental and difficult issues of nonlinearity, uncertainty, dimensionality and globality to derive performance enhancing power system stability control. The main focus is on simultaneous enhancement of transient stability and voltage regulation...... of power systems. This problem arises from the practical concern that both frequency and voltage control are important indices of power system control and operation but they are ascribed to different stages of system operation, i.e. the transient and post transient period respectively. The Direct Feedback...... Linearization (DFL) technique together with the robust control theory has been further developed and applied to design nonlinear excitation compensators which selectively eliminate system nonlinearities and deal with plant uncertainties and interconnections between generators. Then the so called global control...

  13. Wavelength stabilized multi-kW diode laser systems

    Science.gov (United States)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  14. Multi-objective approach for load shedding based on voltage stability index consideration

    Directory of Open Access Journals (Sweden)

    R. Kanimozhi

    2014-12-01

    Full Text Available In voltage stability analysis, it is useful to assess voltage stability of power systems by means of scalar magnitudes, or indices. Operators can use voltage stability indices to know how close the system to voltage collapse. The voltage stability indices are a powerful tool to identify the weakest bus and critical line. This identification can be used to gain control over devices for voltage stability up to certain level and load shedding is possible if the load keeps on increasing. This paper presents a computationally simple index based load shedding algorithm using weighted sum genetic algorithm where an AC power flow solution cannot be found for the stressed conditions. Minimization of total load shed and sum of New Voltage Stability Index (NVSI at the selected buses are considered as two objectives of this algorithm to restore the power flow solvability. This is validated in both IEEE 30 bus system and a practical system Tamil Nadu Electricity board (TNEB 69 bus system in India for considering both heavy loading and (N − 1 contingency.

  15. Comprehensive Stability Evaluation of Rock Slope Using the Cloud Model-Based Approach

    Science.gov (United States)

    Liu, Zaobao; Shao, Jianfu; Xu, Weiya; Xu, Fei

    2014-11-01

    This article presents the cloud model-based approach for comprehensive stability evaluation of complicated rock slopes of hydroelectric stations in mountainous area. This approach is based on membership cloud models which can account for randomness and fuzziness in slope stability evaluation. The slope stability is affected by various factors and each of which is ranked into five grades. The ranking factors are sorted into four categories. The ranking system of slope stability is introduced and then the membership cloud models are applied to analyze each ranking factor for generating cloud memberships. Afterwards, the obtained cloud memberships are synthesized with the factor weights given by experts for comprehensive stability evaluation of rock slopes. The proposed approach is used for the stability evaluation of the left abutment slope in Jinping 1 Hydropower Station. It is shown that the cloud model-based strategy can well consider the effects of each ranking factor and therefore is feasible and reliable for comprehensive stability evaluation of rock slopes.

  16. β-Casein nanoparticle-based oral drug delivery system for potential treatment of gastric carcinoma: stability, target-activated release and cytotoxicity.

    Science.gov (United States)

    Shapira, Alina; Davidson, Irit; Avni, Noa; Assaraf, Yehuda G; Livney, Yoav D

    2012-02-01

    We studied a potential drug delivery system comprising the hydrophobic anticancer drug paclitaxel entrapped within β-casein (β-CN) nanoparticles and its cytotoxicity to human gastric carcinoma cells. Paclitaxel was entrapped by stirring its dimethyl sulfoxide (DMSO) solution into PBS containing β-CN. Cryo-TEM analysis revealed drug nanocrystals, the growth of which was blocked by β-CN. Entrapment efficiency was nearly 100%, and the nanovehicles formed were colloidally stable. Following encapsulation and simulated digestion with pepsin (2 hours at pH=2, 37 °C), paclitaxel retained its cytotoxic activity to human N-87 gastric cancer cells; the IC(50) value (32.5 ± 6.2 nM) was similar to that of non-encapsulated paclitaxel (25.4 ± 2.6 nM). Without prior simulated gastric digestion, β-CN-paclitaxel nanoparticles were non-cytotoxic, suggesting the lack of untoward toxicity to bucal and esophageal epithelia. We conclude that β-CN shows promise to be useful for target-activated oral delivery of hydrophobic chemotherapeutics in the treatment of gastric carcinoma, one of the leading causes of cancer mortality worldwide. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Design of waste stabilization pond systems: A review.

    Science.gov (United States)

    Ho, Long T; Van Echelpoel, Wout; Goethals, Peter L M

    2017-10-15

    A better design instruction for waste stabilization ponds is needed due to their growing application for wastewater purification, increasingly strict environmental regulations, and the fact that most of previous design manuals are outdated. To critically review model-based designs of typical pond treatment systems, this paper analyzed more than 150 articles, books, and reports from 1956 to 2016. The models developed in these publications ranged from simple rules and equations to more complex first-order and mechanistic models. From a case study on all four approaches, it appeared that rules of thumb is no longer a proper tool for pond designs due to its low design specification and very high output variability and uncertainty. On the other hand, at the beginning phase of design process or in case of low pressure over land and moderate water quality required, regression equations can be useful to form an idea for pond dimensions. More importantly, mechanistic models proved their capacity of generating more precise and comprehensive designs but still need to overcome their lack of calibration and validation, and overparameterization. In another case study, an essential but often overlooked role of uncertainty analysis in pond designs was investigated via a comparison between deterministic and uncertainty-based approaches. Unlike applying a safety factor representing all uncertainty sources, probabilistic designs quantify the uncertainty of model outputs by including prior uncertainty of inputs and parameters, which generates more scientifically reliable outcomes for decision makers. Based on these findings, we advise engineers and designers to shift from the conventional approaches to more innovative and economic tools which are suitable for dealing with large variations of natural biological systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. An Excursion-Theoretic Approach to Stability of Discrete-Time Stochastic Hybrid Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Debasish, E-mail: chatterjee@control.ee.ethz.ch [ETH Zuerich, ETL I19 (Switzerland); Pal, Soumik, E-mail: soumik@math.washington.edu [University of Washington, Department of Mathematics (United States)

    2011-04-15

    We address stability of a class of Markovian discrete-time stochastic hybrid systems. This class of systems is characterized by the state-space of the system being partitioned into a safe or target set and its exterior, and the dynamics of the system being different in each domain. We give conditions for L{sub 1}-boundedness of Lyapunov functions based on certain negative drift conditions outside the target set, together with some more minor assumptions. We then apply our results to a wide class of randomly switched systems (or iterated function systems), for which we give conditions for global asymptotic stability almost surely and in L{sub 1}. The systems need not be time-homogeneous, and our results apply to certain systems for which functional-analytic or martingale-based estimates are difficult or impossible to get.

  19. Assessing Grasp Stability Based on Learning and Haptic Data

    DEFF Research Database (Denmark)

    Bekiroglu, Yasemin; Laaksonen, Janne; Jørgensen, Jimmy Alison

    2011-01-01

    An important ability of a robot that interacts with the environment and manipulates objects is to deal with the uncertainty in sensory data. Sensory information is necessary to, for example, perform online assessment of grasp stability. We present methods to assess grasp stability based on haptic...... measurements from fingertips; and joint configuration of the hand. Sensory knowledge affects the success of the grasping process both in the planning stage (before a grasp is executed) and during the execution of the grasp (closed-loop online control). In this paper, we study both of these aspects. We propose...

  20. Pedicle Screw-Based Posterior Dynamic Stabilization: Literature Review

    Directory of Open Access Journals (Sweden)

    Dilip K. Sengupta

    2012-01-01

    Full Text Available Posterior dynamic stabilization (PDS indicates motion preservation devices that are aimed for surgical treatment of activity related mechanical low back pain. A large number of such devices have been introduced during the last 2 decades, without biomechanical design rationale, or clinical evidence of efficacy to address back pain. Implant failure is the commonest complication, which has resulted in withdrawal of some of the PDS devices from the market. In this paper the authors presented the current understanding of clinical instability of lumbar motions segment, proposed a classification, and described the clinical experience of the pedicle screw-based posterior dynamic stabilization devices.

  1. DESIGN OF ROBUST NAVIGATION AND STABILIZATION LOOPS OF PRECISION ATTITUDE AND HEADING REFERENCE SYSTEM

    Directory of Open Access Journals (Sweden)

    Olha Sushchenko

    2017-11-01

    Full Text Available Purpose: The paper focuses on problems of design of robust precision attitude and heading reference systems, which can be applied in navigation of marine vehicles. The main goal is to create the optimization procedures for design of navigation and stabilization loops of the multimode gimballed system. The optimization procedure of the navigation loop design is based on the parametric robust H2/H∞-optimization. The optimization procedure of the stabilization loop design is based on the robust structural H∞-synthesis. Methods: To solve the given problem the methods of the robust control system theory and optimization methods are used. Results: The kinematical scheme of the precision gimballed attitude and heading reference system is represented. The parametrical optimization algorithm taking into consideration features of the researched system is given. Method of the mixed sensitivity relative to the researched system design is analyzed. Coefficients of the control laws of navigation loops are obtained based on optimization procedure providing compromise between accuracy and robustness. The robust controller of the stabilization loop was developed based on robust structural synthesis using method of the mixed sensitivity. Simulation of navigation and stabilization processes is carried out. Conclusions: The represented results prove efficiency of the proposed procedures, which can be useful for design of precision navigation systems of the moving vehicles.

  2. Stability and response bounds of non-conservative linear systems

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian

    2004-01-01

    This paper develops a stability theorem and response bounds for non-conservative systems of the form MX + (D + G)x + (K + N)x = f(t), with hermitian positive-definite matrices M, D and K, and skew-hermitian matrices G and N. To this end, we first find a Lyapunov function by solving the Lyapunov m...

  3. Stability field diagrams for Ln–O–Cl systems

    Indian Academy of Sciences (India)

    Permanent link: http://www.ias.ac.in/article/fulltext/boms/039/03/0603-0611. Keywords. Predominance area diagram; Kellogg diagram; lanthanide oxychloride; rare-earth mineral processing; thermodynamic properties. Abstract. Isothermal stability field diagrams for Ln−O−Cl systems (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, ...

  4. Stability and control of wind farms in power systems

    DEFF Research Database (Denmark)

    Jauch, Clemens

    The Ph.D. project ‘Stability and Control of Wind Farms in Power Systems’ deals with some selected problems related to wind power in power systems. With increasing wind power penetration, wind turbines substitute the power production of conventional powerplants. Therefore, wind turbines also have ...

  5. Harmonics and voltage stability analysis in power systems including ...

    Indian Academy of Sciences (India)

    These non-sinusoidal quantities can create serious harmonic distortions in transmission and distribution systems. In this paper, harmonic generation of a static VAR compensator with thyristor-controlled reactor and effects of the harmonics on steady-state voltage stability are examined for various operational conditions.

  6. Robust stabilization of nonlinear systems by quantized and ternary control

    NARCIS (Netherlands)

    Persis, Claudio De

    2009-01-01

    Results on the problem of stabilizing a nonlinear continuous-time minimum-phase system by a finite number of control or measurement values are presented. The basic tool is a discontinuous version of the so-called semi-global backstepping lemma. We derive robust practical stabilizability results by

  7. Robust Stability Analysis of Nonlinear Switched Systems with Filippov Solutions

    DEFF Research Database (Denmark)

    Ahmadi, Mohamadreza; Mojallali, Hamed; Wisniewski, Rafal

    2012-01-01

    This paper addresses the stability problem of a class of nonlinear switched systems with partitioned state-space and state-dependent switching. In lieu of the Caratheodory solutions, the general Filippov solutions are considered. This encapsulates solutions with infinite switching in finite time....... which provides sufficient means to construct the corresponding Lyapunov functions via available semi-definite programming techniques....

  8. Asymptotic stability results for retarded differential systems | Igobi ...

    African Journals Online (AJOL)

    ... matrices are used in formulating a Lyapunov functional. The introduction of convex set segment of a symmetric matrix is explored to establish boundedness of the first derivative of the formulated functional. The integral-differential equation is utilized in computing the maximum delay interval for the system to attain stability.

  9. Stability Analysis for Multi-Parameter Linear Periodic Systems

    DEFF Research Database (Denmark)

    Seyranian, A.P.; Solem, Frederik; Pedersen, Pauli

    1999-01-01

    This paper is devoted to stability analysis of general linear periodic systems depending on real parameters. The Floquet method and perturbation technique are the basis of the development. We start out with the first and higher-order derivatives of the Floquet matrix with respect to problem...

  10. Harmonics and voltage stability analysis in power systems including

    Indian Academy of Sciences (India)

    In this study, non-sinusoidal quantities and voltage stability, both known as power quality criteria, are examined together in detail. The widespread use of power electronics elements cause the existence of significant non-sinusoidal quantities in the system. These non-sinusoidal quantities can create serious harmonic ...

  11. Harmonics and voltage stability analysis in power systems including ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. In this study, non-sinusoidal quantities and voltage stability, both known as power quality criteria, are examined together in detail. The widespread use of power electronics elements cause the existence of significant non-sinusoidal quantities in the system. These non-sinusoidal quantities can create serious har-.

  12. Stability field diagrams for Ln–O–Cl systems

    Indian Academy of Sciences (India)

    Abstract. Isothermal stability field diagrams for Ln−O−Cl systems (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy,. Ho, Er, Tm, Yb) are developed by taking partial pressures of volatile components oxygen and chlorine as variables. Thermodynamic properties of all the oxides and trichlorides (LnCl3) are available in the literature.

  13. Stochastic stability of four-wheel-steering system

    International Nuclear Information System (INIS)

    Huang Dongwei; Wang Hongli; Zhu Zhiwen; Feng Zhang

    2007-01-01

    A four-wheel-steering system subjected to white noise excitations was reduced to a two-degree-of-freedom quasi-non-integrable-Hamiltonian system. Subsequently we obtained an one-dimensional Ito stochastic differential equation for the averaged Hamiltonian of the system by using the stochastic averaging method for quasi-non-integrable-Hamiltonian systems. Thus, the stochastic stability of four-wheel-steering system was analyzed by analyzing the sample behaviors of the averaged Hamiltonian at the boundary H = 0 and calculating its Lyapunov exponent. An example given at the end demonstrated that the conclusion obtained is of considerable significance

  14. Power System Transient Stability Enhancement By Tuning Of SSSC And PSS Parameters Using PSO Technique

    Directory of Open Access Journals (Sweden)

    Hashim Dhahir Mohammed

    2018-03-01

    Full Text Available In this paper, the tuning design of  SSSC and PSS was examined in increasing the damping of system oscillations and improve the stability of the power system during disturbances. The design problem of the SSSC controller and PSS is designed as problem of optimization and the technique uses (PSO technique to find for optimal control parameters. By minimizing the objective function based on the speed deviation and time domain, which deliberately deviates at the oscillation angle of the alternator rotor to improve performance of transient stability of the system. The proposed controllers are tested on the system of weak bonding ability exposed to severe disturbance. Nonlinear simulation results are presented to demonstrate the proposed controller's effectiveness and its ability to give efficient damping. It is also noted that the proposed controllers  of SSSC and PSS greatly improves the power system stability.

  15. Coordinated Stability Control of Wind-Thermal Hybrid AC/DC Power System

    Directory of Open Access Journals (Sweden)

    Zhiqing Yao

    2015-01-01

    Full Text Available The wind-thermal hybrid power transmission will someday be the main form of transmitting wind power in China but such transmission mode is poor in system stability. In this paper, a coordinated stability control strategy is proposed to improve the system stability. Firstly, the mathematical model of doubly fed wind farms and DC power transmission system is established. The rapid power controllability of large-scale wind farms is discussed based on DFIG model and wide-field optical fiber delay feature. Secondly, low frequency oscillation and power-angle stability are analyzed and discussed under the hybrid transmission mode of a conventional power plant with wind farms. A coordinated control strategy for the wind-thermal hybrid AC/DC power system is proposed and an experimental prototype is made. Finally, real time simulation modeling is set up through Real Time Digital Simulator (RTDS, including wind power system and synchronous generator system and DC power transmission system. The experimental prototype is connected with RTDS for joint debugging. Joint debugging result shows that, under the coordinated control strategy, the experimental prototype is conductive to enhance the grid damping and effectively prevents the grid from occurring low frequency oscillation. It can also increase the transient power-angle stability of a power system.

  16. Power System Transient Stability Analysis through a Homotopy Analysis Method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaobu; Du, Pengwei; Zhou, Ning

    2014-04-01

    As an important function of energy management systems (EMSs), online contingency analysis plays an important role in providing power system security warnings of instability. At present, N-1 contingency analysis still relies on time-consuming numerical integration. To save computational cost, the paper proposes a quasi-analytical method to evaluate transient stability through time domain periodic solutions’ frequency sensitivities against initial values. First, dynamic systems described in classical models are modified into damping free systems whose solutions are either periodic or expanded (non-convergent). Second, because the sensitivities experience sharp changes when periodic solutions vanish and turn into expanded solutions, transient stability is assessed using the sensitivity. Third, homotopy analysis is introduced to extract frequency information and evaluate the sensitivities only from initial values so that time consuming numerical integration is avoided. Finally, a simple case is presented to demonstrate application of the proposed method, and simulation results show that the proposed method is promising.

  17. Harmonics and voltage stability analysis in power systems including ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    1. Introduction. It is not only required to meet the demand for electrical energy but also to improve its quality. .... It is necessary to pay attention to energy system stability in the planning, management, and control of electrical ... where k ∈ {m, m + 1,... ,n} and n is total number of the buses in the system. F(h) r,k and F(h) i,k.

  18. Adaptive Stabilization for Nonholonomic Systems with Unknown Time Delays

    Directory of Open Access Journals (Sweden)

    Yuanyuan Wu

    2013-01-01

    Full Text Available This paper presents an adaptive control strategy for a class of nonholonomic systems in chained form with virtual control coefficients, nonlinear uncertainties, and unknown time delays. State scaling technique and backstepping recursive approach are applied to design a nonlinear state feedback controller, which can guarantee the stabilization of the closed-loop systems. The simulation results are provided to show the effectiveness of the proposed method.

  19. QFT Framework for Robust Tuning of Power System Stabilizers

    DEFF Research Database (Denmark)

    Alavi, Seyyed Mohammad Mahdi; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    This paper discusses the use of conventional quantitative feedback design for Power System Stabilizer (PSS). An appropriate control structure of the PSS that is directly applicable to PSS, is described. Two desired performances are also proposed in order to achieve an overall improvement in damping...... and robustness. The efficiency of the proposed method is demonstrated on Single Machine Infinite Bus (SMIB) power system with level of uncertainty....

  20. Adaptive Fuzzy Gain of Power System Stabilizer to Improve the Global Stability

    OpenAIRE

    Mekhanet, Mohammed; Mokrani, Lakhdar; Ameur, Aissa; Attia, Yacine

    2016-01-01

    The lead-lag power system stabilizer has several parameters to be optimized.In fact, the number of these latter increases with the number of generators constituting the multi-machine system.In this work, we propose anew approach of an adaptive and robust PSS; it achieves encouraging results by adjusting the gain using fuzzy logic and in the same time we use the same PSSs for each machine. In the first place, we could check that the gain is among the most critical parameters of the lead lag PS...

  1. Oscillatory Stability and Eigenvalue Sensitivity Analysis of A DFIG Wind Turbine System

    DEFF Research Database (Denmark)

    Yang, Lihui; Xu, Zhao; Østergaard, Jacob

    2011-01-01

    This paper focuses on modeling and oscillatory stability analysis of a wind turbine with doubly fed induction generator (DFIG). A detailed mathematical model of DFIG wind turbine with vector-control loops is developed, based on which the loci of the system Jacobian's eigenvalues have been analyzed......, showing that, without appropriate controller tuning a Hopf bifurcation can occur in such a system due to various factors, such as wind speed. Subsequently, eigenvalue sensitivity with respect to machine and control parameters is performed to assess their impacts on system stability. Moreover, the Hopf...

  2. Asymptotic stabilization of nonlinear systems using state feedback

    International Nuclear Information System (INIS)

    D'Attellis, Carlos

    1990-01-01

    This paper studies the design of state-feedback controllers for the stabilization of single-input single-output nonlinear systems x = f(x) + g(x)u, y = h(x). Two approaches for the stabilization problem are given; the asymptotic stability is achieved by means of: a) nonlinear state feedback: two nonlinear feedbacks are used; the first separates the system in a controllable linear part and in the zeros-dynamic part. The second feedback generates an asymptotically stable equilibrium on the manifold where this dynamics evolves; b) nonlinear dynamic feedback: conditions are established under which the system can follow the output of a completely controllable bilinear system which uses bounded controls. This fact enables the system to reach, using bounded controls too, a desired output value in finite time. As this value corresponds to a state that lays in the attraction basin of a stable equilibrium with the same output, the system evolves to that point. The two methods are illustrated by examples. (Author) [es

  3. Stability and control of wind farms in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.

    2006-10-15

    The Ph.D. project 'Stability and Control of Wind Farms in Power Systems' deals with some selected problems related to wind power in power systems. With increasing wind power penetration, wind turbines substitute the power production of conventional power plants. Therefore, wind turbines also have to take over the power system stabilisation and control tasks, that were traditionally carried out by conventional power plants. Out of the many aspects related to this problem, this project focuses on transient fault ride-through and power system stabilisation. The selection of turbine types considered in this project is limited to active-stall turbines and variable speed, variable pitch turbines with gearboxes and full-scale converter-connected synchronous generators. As a basis for the project, a study into the state of the art is conducted at the beginning of the project. Grid connection requirements that were in force, or published as drafts, at the time, and scientific literature related to the topic, are studied. The project is based on simulations of wind turbines in a power system simulations tool. Some of the models used in this project were readily available prior to the project; the development of others is part of the project. The most extensive modelling work deals with the design of the electrical part of the variable speed turbine and its controls. To simulate realistic grid operation the wind turbine models are connected to an aggregated model of the Nordic power system. For that purpose the Nordic power system model, which was available prior to the project, is extended with a realistic feeder configuration. It is commonly demanded from modern wind turbines, that they must not disconnect in case of transient faults. Therefore, controllers are designed that enable the two turbine types to ride through transient faults. With these transient fault controllers the wind turbines can stay connected to the grid, such that their generation capacity is

  4. The stability of the Manual Ability Classification System over time.

    Science.gov (United States)

    Öhrvall, Ann-Marie; Krumlinde-Sundholm, Lena; Eliasson, Ann-Christin

    2014-02-01

    To evaluate the stability over time of the Manual Ability Classification System (MACS) levels. The study group comprised 1267 children with cerebral palsy (746 males, 521 females) who were followed from 2005 to 2010 with two or more registered MACS classifications rated at least 1 year apart. Thirty-five percent of the children (n=445) had four MACS registrations. The children were between 4 and 17 years old at their first rating, The stability over time was also compared between children who were younger (4y of age) or older (≥10y) at the time of their first classification. An excellent stability was found between two ratings at 1-year intervals with an intraclass correlation coefficient (ICC) of 0.97 (95% CI 0.97-0.97) and 82% agreement (n=1267). The stability was also excellent for two ratings performed 3 to 5 years apart (ICC 0.96; 95% CI 0.95-0.97) with an agreement of 78% (n=445). Across four ratings, 70% of the children remained at the same level. The results were similar for younger and older children, indicating that stability was not influenced by age. This study provides evidence that MACS levels are stable over time and that the classification has predictive value. © 2013 Mac Keith Press.

  5. Handbook of electrical power system dynamics modeling, stability, and control

    CERN Document Server

    Eremia, Mircea

    2013-01-01

    Complete guidance for understanding electrical power system dynamics and blackouts This handbook offers a comprehensive and up-to-date treatment of power system dynamics. Addressing the full range of topics, from the fundamentals to the latest technologies in modeling, stability, and control, Handbook of Electrical Power System Dynamics provides engineers with hands-on guidance for understanding the phenomena leading to blackouts so they can design the most appropriate solutions for a cost-effective and reliable operation. Focusing on system dynamics, the book details

  6. Fault Tolerant Emergency Control to Preserve Power System Stability

    DEFF Research Database (Denmark)

    Pedersen, Andreas Søndergaard; Richter, Jan H.; Tabatabaeipour, Mojtaba

    2016-01-01

    This paper introduces a method for fault-masking and system reconfiguration in power transmission systems. The paper demonstrates how faults are handled by reconfiguring remaining controls through utilisation of wide-area measurement in real time. It is shown how reconfiguration can be obtained...... using a virtual actuator concept, which covers Lure-type systems. The paper shows the steps needed to calculate a virtual actuator, which relies on the solution of a linear matrix inequality. The solution is shown to work with existing controls by adding a compensation signal. Simulation results...... of a benchmark system show ability of the reconfiguration to maintain stability...

  7. Robust Stability Analysis of the Space Launch System Control Design: A Singular Value Approach

    Science.gov (United States)

    Pei, Jing; Newsome, Jerry R.

    2015-01-01

    Classical stability analysis consists of breaking the feedback loops one at a time and determining separately how much gain or phase variations would destabilize the stable nominal feedback system. For typical launch vehicle control design, classical control techniques are generally employed. In addition to stability margins, frequency domain Monte Carlo methods are used to evaluate the robustness of the design. However, such techniques were developed for Single-Input-Single-Output (SISO) systems and do not take into consideration the off-diagonal terms in the transfer function matrix of Multi-Input-Multi-Output (MIMO) systems. Robust stability analysis techniques such as H(sub infinity) and mu are applicable to MIMO systems but have not been adopted as standard practices within the launch vehicle controls community. This paper took advantage of a simple singular-value-based MIMO stability margin evaluation method based on work done by Mukhopadhyay and Newsom and applied it to the SLS high-fidelity dynamics model. The method computes a simultaneous multi-loop gain and phase margin that could be related back to classical margins. The results presented in this paper suggest that for the SLS system, traditional SISO stability margins are similar to the MIMO margins. This additional level of verification provides confidence in the robustness of the control design.

  8. Analysis and Design of an Active Stabilizer for a Boost Power Converter System

    Directory of Open Access Journals (Sweden)

    Yigeng Huangfu

    2016-11-01

    Full Text Available In electrical power converter systems, the presence of an LC input filter can efficiently reduce the Electromagnetic Interference (EMI effect, and at the same time protect the converter and the load from being impacted by sharp input impulse voltages. However, for transportation applications, the weight and size limitations of input LC filters for power converters have to be taken into consideration. The reduction of LC filter size may impair the system stability margin and dynamic response. In serve cases, the system may even become unstable. Thus, in order to ensure the system stability while minimizing the input LC filter size, the implementation of a stabilizer for the system control is needed. In this paper, a novel digital stabilizer design method is proposed for a boost power converter with a small input LC filter. The proposed method is based on input filter inductance current measurements and DSP (Digital Signal Processor -based digital stabilizer design. Simulation and experimentation confirm the validity of the proposed approach.

  9. Estimation of the Influence of Power System Mathematical Model Parameter Uncertainty on PSS2A System Stabilizers

    Directory of Open Access Journals (Sweden)

    Adrian Nocoń

    2015-09-01

    Full Text Available This paper presents an analysis of the influence of uncertainty of power system mathematical model parameters on optimised parameters of PSS2A system stabilizers. Optimisation of power system stabilizer parameters was based on polyoptimisation (multi-criteria optimisation. Optimisation criteria were determined for disturbances occurring in a multi-machine power system, when taking into account transient waveforms associated with electromechanical swings (instantaneous power, angular speed and terminal voltage waveforms of generators. A genetic algorithm with floating-point encoding, tournament selection, mean crossover and perturbative mutations, modified for the needs of investigations, was used for optimisation. The impact of uncertainties on the quality of operation of power system stabilizers with optimised parameters has been evaluated using various deformation factors.

  10. An image stabilization optical system using deformable freeform mirrors.

    Science.gov (United States)

    Hao, Qun; Cheng, Xuemin; Kang, Jiqiang; Jiang, Yuhua

    2015-01-15

    An image stabilization optical system using deformable freeform mirrors is proposed that enables the ray sets to couple dynamically in the object and image space. It aims to correct image blurring and degradation when there is relative movement between the imaging optical axis and the object. In this method, Fermat's principle and matrix methods are used to describe the optical path of the entire optical system with a shift object plane and a fixed corresponding image plane in the carrier coordinate system. A constant optical path length is determined for each ray set, so the correspondence between the object and the shift free image point is used to calculate the solution to the points on the surface profile of the deformable mirrors (DMs). Off-axis three-mirror anastigmats are used to demonstrate the benefits of optical image stabilization with one- and two-deformable mirrors.

  11. Stability of detecting system using NaI(Tl)

    International Nuclear Information System (INIS)

    Zhuo Yunshang; Lei Zhangyun; Zen Yu; Gong Hua

    1996-01-01

    A detecting system using NaI(Tl) is widely used in research and industry of nuclear science and other fields. For providing the high accuracy and working well under inclement environment, the stability of detecting system using NaI(Tl) is very important. The variation of environment temperature, the change of counting rate and long time continuous working of detector will cause un-negligible effect on the measurement. Three approaches were used. They are: 1) temperature control (It makes the effect of the variation of environment temperature on the measurement negligible.); 2) spectrum stabilizing (It adjust the peak position of the spectrum when the counting rate changes.); and 3) auto-checking and adjusting (It adjusts the drift of the NaI(Tl) detecting system when it works continuously)

  12. Study on modulation amplitude stabilization method for PEM based on FPGA in atomic magnetometer

    Science.gov (United States)

    Wang, Qinghua; Quan, Wei; Duan, Lihong

    2017-10-01

    Atomic magnetometer which uses atoms as sensitive elements have ultra-high precision and has wide applications in scientific researches. The photoelastic modulation method based on photoelastic modulator (PEM) is used in the atomic magnetometer to detect the small optical rotation angle of a linearly polarized light. However, the modulation amplitude of the PEM will drift due to the environmental factors, which reduces the precision and long-term stability of the atomic magnetometer. Consequently, stabilizing the PEM's modulation amplitude is essential to precision measurement. In this paper, a modulation amplitude stabilization method for PEM based on Field Programmable Gate Array (FPGA) is proposed. The designed control system contains an optical setup and an electrical part. The optical setup is used to measure the PEM's modulation amplitude. The FPGA chip, with the PID control algorithm implemented in it, is used as the electrical part's micro controller. The closed loop control method based on the photoelastic modulation detection system can directly measure the PEM's modulation amplitude in real time, without increasing the additional optical devices. In addition, the operating speed of the modulation amplitude stabilization control system can be greatly improved because of the FPGA's parallel computing feature, and the PID control algorithm ensures flexibility to meet different needs of the PEM's modulation amplitude set values. The Modelsim simulation results show the correctness of the PID control algorithm, and the long-term stability of the PEM's modulation amplitude reaches 0.35% in a 3-hour continuous measurement.

  13. Real time simulation application to monitor the stability limit of power system

    Science.gov (United States)

    Hartono, Kuo, Ming-Tse

    2017-06-01

    If the power system falls into an unsteady state, there will be voltage collapse in which the power system will be separated into small systems. Identifying the stability reserve in conformity with a certain practical operation condition is very important for the system management and operation. In fact, the global power system issue has caused serious outages due to voltage collapse such as in the United States-Canada in August 14, 2003; South London in August 28, 2003; southern Sweden and eastern Denmark in September 23, 2003; and Italy on September 28, 2003, and in Vietnam where power system problem led to power loss on 17 May 2005, 27 December 2006, 20 July 2007, and 10 September 2007. The analysis shows that the phenomenon is related to the loss of system stability. Thus, the operational system as well as the power system designs should be studied related to the issue of the system stability. To study the static stability of the power system, different approximate standards, called pragmatic criteria, were examined. Markovits has investigated the application of the standard of dP/dd to test the stability of the power button and dq/dU to check the voltage stability of the load button [1]. However, the storage stability when calculating standard dP/d d is usually much larger than the reserves when calculating standard dq/dU [1]. This paper presents a method to build a possible operation region in the power plane of load bus which works in comply with the stability limit to evaluate the stability reserve of the power system. This method is used to build a program to monitor the stability reserve of IEEE 39 Bus Power System in real time. To monitor the stability reserve of IEEE 39 nodes power system, articles based on the standard dq/dU was used to calculate the assessment. When using standard dq/dU to check for voltage stability load button, the amount of storage stability can be calculated by the following steps: first, transformed replacement scheme Masonry on

  14. On the stability and collisions in triple stellar systems

    Science.gov (United States)

    He, Matthias Y.; Petrovich, Cristobal

    2018-02-01

    A significant fraction of main-sequence (MS) stars are part of a triple system. We study the long-term stability and dynamical outcomes of triple stellar systems using a large number of long-term direct N-body integrations with relativistic precession. We find that the previously proposed stability criteria by Eggleton & Kiseleva and Mardling & Aarseth predict the stability against ejections reasonably well for a wide range of parameters. Assuming that the triple stellar systems follow orbital and mass distributions from FGK binary stars in the field, we find that ˜ 1 per cent and ˜ 0.5 per cent of the triple systems lead to a direct head-on collision (impact velocity ˜ escape velocity) between MS stars and between a MS star and a stellar-mass compact object, respectively. We conclude that triple interactions are the dominant channel for direct collisions involving a MS star in the field with a rate of one event every ˜100 years in the Milky Way. We estimate that the fraction of triple systems that form short-period binaries is up to ˜ 23 per cent with only up to ˜ 13 per cent being the result of three-body interactions with tidal dissipation, which is consistent with previous work using a secular code.

  15. Stability and dynamical properties of material flow systems on random networks

    Science.gov (United States)

    Anand, K.; Galla, T.

    2009-04-01

    The theory of complex networks and of disordered systems is used to study the stability and dynamical properties of a simple model of material flow networks defined on random graphs. In particular we address instabilities that are characteristic of flow networks in economic, ecological and biological systems. Based on results from random matrix theory, we work out the phase diagram of such systems defined on extensively connected random graphs, and study in detail how the choice of control policies and the network structure affects stability. We also present results for more complex topologies of the underlying graph, focussing on finitely connected Erdös-Réyni graphs, Small-World Networks and Barabási-Albert scale-free networks. Results indicate that variability of input-output matrix elements, and random structures of the underlying graph tend to make the system less stable, while fast price dynamics or strong responsiveness to stock accumulation promote stability.

  16. Evaluation of the tear film stability after laser in situ keratomileusis using the tear film stability analysis system.

    Science.gov (United States)

    Goto, Tomoko; Zheng, Xiaodong; Klyce, Stephen D; Kataoka, Hisashi; Uno, Toshihiko; Yamaguchi, Masahiko; Karon, Mike; Hirano, Sumie; Okamoto, Shigeki; Ohashi, Yuichi

    2004-01-01

    To evaluate the tear film stability of patients before and after laser in situ keratomileusis (LASIK) using the tear film stability analysis system (TSAS). Prospective observational case series. New videokeratography software for a topographic modeling system (TMS-2N) was developed that can automatically capture consecutive corneal surface images every second for 10 seconds. Thirty-four subjects (64 eyes) who underwent myopia LASIK were enrolled in this study. All subjects were examined with the new system before LASIK and at 1 week, 1 month, 3 months, and 6 months after the surgery. Corneal topographs were analyzed for tear breakup time (TMS breakup time) and breakup area (TMS breakup area). Based on pre-LASIK TSAS analysis, subjects were separated into normal and abnormal TSAS value groups. The criteria for the normal group were either TMS breakup time more than 5 seconds or TMS breakup area less than 0.2. The percentage of the occurrence of superficial punctuate keratitis was compared between the two groups with regard to subject's dry eye signs and symptoms. Tear film stability decreased significantly during the early period after LASIK, as indexed by decreased TMS breakup time and increased TMS breakup area. Tear film instability resolved at 6 months after surgery. Before LASIK, 22 subjects (43 eyes) had normal TSAS evaluation and 12 subjects (21 eyes) were abnormal. After LASIK, among normal TSAS value eyes, 8 of 43 (18.6%) eyes developed superficial punctuate keratitis. In sharp contrast, 14 of 21 (66.7%) eyes in the abnormal group displayed superficial punctuate keratitis, correlating well with the patients' dry eye symptoms. The difference in the presence of superficial punctuate keratitis after LASIK between normal and abnormal TSAS value groups was statistically significant (P <.001). Subjects with abnormal TSAS evaluation also displayed resistance to dry eye treatment and had extended period of recovery. Tear film stability analysis can be a useful

  17. Actively-stabilized photomultiplier tube base for vacuum operation

    International Nuclear Information System (INIS)

    Bryan, M.A; Morris, C.L.; Idzorek, G.C.

    1992-01-01

    An actively stabilized photomultiplier tube (PMT) base design for an Amperex XP-2262B PMT is described. Positive-negative-positive transistors are used as low-impedance current sources to maintain constant voltages on the last three dynodes. This technique results in a highly stable, low-power tube base ideal for use with low-duty-factor beams, such as those found at the Clinton P. Anderson Meson Physics Facility. Furthermore, because of the low power usage of this large design, these bases can be sealed in a heat-conductive, electrically insulating material and used in a vacuum

  18. Proportional derivative based stabilizing control of paralleled grid converters with cables in renewable power plants

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    Resonant interactions of grid-connected converters with each other and with cable capacitance are challenging the stability and power quality of renewable energy sources based power plants. This paper addresses the instability of current control of converters with the multiple resonance frequencies...... consisting in LCL filters and cables. Both grid and converter current controls are analyzed. The frequency region, within which the system may be destabilized, is identified by means of the impedance-based stability analysis and frequency-domain passivity theory. A proportional derivative control strategy...... is then proposed to stabilize the system. Simulation case studies on four paralleled grid converters and experimental tests for two paralleled grid converters are carried out to validate the performance of the proposed control....

  19. A unifying energy-based approach to stability of power grids with market dynamics

    NARCIS (Netherlands)

    Stegink, Tjerk; De Persis, Claudio; van der Schaft, Arjan

    2017-01-01

    In this paper a unifying energy-based approach is provided to the modeling and stability analysis of power systems coupled with market dynamics. We consider a standard model of the power network with a third-order model for the synchronous generators involving voltage dynamics. By applying the

  20. Stability Analysis of a Helicopter with an External Slung Load System

    OpenAIRE

    Thanapalan, Kary

    2016-01-01

    This paper describes the stability analysis of a helicopter with an underslung external load system. The Lyapunov second method is considered for the stability analysis. The system is considered as a cascade connection of uncertain nonlinear system. The stability analysis is conducted to ensure the stabilisation of the helicopter system and the positioning of the underslung load at hover condition. Stability analysis and numerical results proved that if desired condition for the stability is ...

  1. An extremely high stability cooling system for planet hunter

    Science.gov (United States)

    l’Allemand, J. L. Lizon a.; Becerril, S.; Mirabet, E.

    2017-12-01

    The detection of exoplanets is done by measuring very tiny periodical variations of the radial velocity of the parent star. Extremely stable spectrographs are required in order to enhance the wavelength variations of the spectral lines due to Doppler effect. CARMENES is the new high-resolution, high-stability spectrograph built for the 3.5 m telescope at the Calar Alto Observatory (CAHA, Almería, Spain) by a consortium formed by German and Spanish institutions. This instrument is composed of two separated spectrographs: VIS channel (550-1050 nm) and NIR channel (950-1700 nm). The NIR-channel spectrograph’s has been built under the responsibility of the Instituto de Astrofísica de Andalucía (IAA-CSIC). It has been manufactured, assembled, integrated and verified in the last two years, delivered in fall 2015 and commissioned in December 2015. Beside the various opto-mechanical challenges, the cooling system was one of the most demanding sub-systems of the NIR channel. Due to the highly demanding requirements applicable in terms of stability, this system arises as one of the core systems to provide outstanding stability to the channel at an operating temperature finally fixed at 140 K. Really at the edge of the state-of-the-art, the Cooling System is able to provide to the cold mass (∼1 Ton) better thermal stability than few hundredths of a degree over 24 hours (goal: 0.01K/day). The present paper describes the main technical approach, which has been taken in order to reach this very ambitious performance.

  2. Stability Analysis and Stabilization of T-S Fuzzy Delta Operator Systems with Time-Varying Delay via an Input-Output Approach

    Directory of Open Access Journals (Sweden)

    Zhixiong Zhong

    2013-01-01

    Full Text Available The stability analysis and stabilization of Takagi-Sugeno (T-S fuzzy delta operator systems with time-varying delay are investigated via an input-output approach. A model transformation method is employed to approximate the time-varying delay. The original system is transformed into a feedback interconnection form which has a forward subsystem with constant delays and a feedback one with uncertainties. By applying the scaled small gain (SSG theorem to deal with this new system, and based on a Lyapunov Krasovskii functional (LKF in delta operator domain, less conservative stability analysis and stabilization conditions are obtained. Numerical examples are provided to illustrate the advantages of the proposed method.

  3. Stability of Rotor Systems: A Complex Modelling Approach

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob

    1996-01-01

    with the results of the classical approach using Rayleighquotients. Several rotor systems are tested: a simple Laval rotor, a Laval rotor with additional elasticity and damping in thr bearings, and a number of rotor systems with complex symmetric 4x4 randomly generated matrices.......A large class of rotor systems can be modelled by a complex matrix differential equation of secondorder. The angular velocity of the rotor plays the role of a parameter. We apply the Lyapunov matrix equation in a complex setting and prove two new stability results which are compared...

  4. Study on transient stability of wind turbine with induction generator based on variable pitch control strategy

    DEFF Research Database (Denmark)

    Zhao, B.; Li, H.; Han, L.

    2011-01-01

    In order to enhance and improve the transient stability of a grid-connected wind turbine generator system under the power grid fault, based on typical pitch control strategy of wind turbine, considering the wind turbine system oscillation caused by the drive-train shaft flexibility, Based on Matlab....../Simulink, electromagnetic transient state models of the wind tubine generator system and the pitch control models were presented, and the transient behaviors of the wind turbine genarator system using the typical and the proposed pitch control strategies were analyzed and compared when the power grid was subjected...... to a three-phase short-circuit fault. Also the results were compared with using reactive compensation device. The simulation results show that the proposed pitch control strategy can effectively improve the transient stability of wind turbine generator system....

  5. Study on transient stability of wind turbine with induction generator based on variable pitch control strategy

    DEFF Research Database (Denmark)

    Zhao, B.; Li, H.; Han, L.

    2011-01-01

    In order to enhance and improve the transient stability of a grid-connected wind turbine generator system under the power grid fault, based on typical pitch control strategy of wind turbine, considering the wind turbine system oscillation caused by the drive-train shaft flexibility, Based on Matlab...... to a three-phase short-circuit fault. Also the results were compared with using reactive compensation device. The simulation results show that the proposed pitch control strategy can effectively improve the transient stability of wind turbine generator system......./Simulink, electromagnetic transient state models of the wind tubine generator system and the pitch control models were presented, and the transient behaviors of the wind turbine genarator system using the typical and the proposed pitch control strategies were analyzed and compared when the power grid was subjected...

  6. Optimized Extreme Learning Machine for Power System Transient Stability Prediction Using Synchrophasors

    Directory of Open Access Journals (Sweden)

    Yanjun Zhang

    2015-01-01

    Full Text Available A new optimized extreme learning machine- (ELM- based method for power system transient stability prediction (TSP using synchrophasors is presented in this paper. First, the input features symbolizing the transient stability of power systems are extracted from synchronized measurements. Then, an ELM classifier is employed to build the TSP model. And finally, the optimal parameters of the model are optimized by using the improved particle swarm optimization (IPSO algorithm. The novelty of the proposal is in the fact that it improves the prediction performance of the ELM-based TSP model by using IPSO to optimize the parameters of the model with synchrophasors. And finally, based on the test results on both IEEE 39-bus system and a large-scale real power system, the correctness and validity of the presented approach are verified.

  7. Small-Signal Stability Analysis of Inverter-Fed Power Systems Using Component Connection Method

    DEFF Research Database (Denmark)

    Wang, Yanbo; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    The small time constants of power electronics devices lead to dynamic couplings with the electromagnetic transients of power networks, and thus complicate the modeling and stability analysis of power-electronics-based power systems. This paper presents a computationally-efficient approach to asse...

  8. Exponential stability for formation control systems with generalized controllers: A unified approach

    NARCIS (Netherlands)

    Sun, Zhiyong; Mou, Shaoshuai; Anderson, Brian D.O.; Cao, Ming

    2016-01-01

    This paper discusses generalized controllers for distance-based rigid formation shape stabilization and aims to provide a unified approach for the convergence analysis. We consider two types of formation control systems according to different characterizations of target formations: minimally rigid

  9. Aggregated Modelling for Wind Farms for Power System Transient Stability Studies

    DEFF Research Database (Denmark)

    Liu, Hongzhi; Chen, Zhe

    2012-01-01

    to detailed modelling that models every wind turbines individually and the interconnections among them. In this paper, three aggregated modelling techniques, namely, multi-machine equivalent aggregation, full aggregation and semi-aggregation are presented for power system transient stability studies based...

  10. Aggregative stability of fungicidal nanomodifier based on zinc hydrosilicates

    Science.gov (United States)

    Grishina, Anna; Korolev, Evgeniy

    2018-03-01

    Currently, there is a strong need of high performance multi functional materials in high-rise construction. Obviously, such materials should be characterized by high strength; but for interior rooms biosafety is important as well. The promising direction to obtain both high strength and maintain biosafety in buildings and structures is to manage the structure of mineral binders by means of fungicidal nanomodifier based on zinc hydrosilicates. In the present work the aggregative stability of colloidal solutions of zinc hydrosilicates after one year of storage was studied. It has been established that the concentration of iron (III) hydroxide used to prepare the precursor of zinc hydrosilicates has a significant effect on the long-term aggregative stability: as the concentration of iron (III) hydroxide increases, the resistance of the fungicidal nanomodifier increases. It was found that, despite the minimal concentration of nano-sized zinc hydrosilicates (0.028%), the colloidal solution possesses a low long-term aggregative stability; while in the initial period (not less than 14 days) the colloidal solution of the nanomodifier is aggregatively stable. It is shown that when the ratio in the colloidal solution of the amount of the substance CH3COOH / SiO2 = 0.43 is reached, an increase in the polymerization rate is observed, which is the main cause of low aggregative stability. Colloidal solutions containing zinc hydrosilicates synthesized at a concentration of iron (III) hydroxide used to produce a precursor equal to 0.7% have a long-term aggregative stability and do not significantly change the reduced particle. Such compositions are to be expediently used for the nanomodifying of building composites in order to control their structure formation and to create conditions that impede the development of various mycelial fungi.

  11. An alternative soil nailing system for slope stabilization: Akarpiles

    Science.gov (United States)

    Lim, Chun-Lan; Chan, Chee-Ming

    2017-11-01

    This research proposes an innovative solution for slope stabilization with less environmental footprint: AKARPILES. In Malaysia, landslide has become common civil and environmental problems that cause impacts to the economy, safety and environment. Therefore, effective slope stabilization method helps to improve the safety of public and protect the environment. This study focused on stabilizing surfacial slope failure. The idea of AKARPILES was generated from the tree roots system in slope stabilization. After the piles are installed in the slope and intercepting the slip plane, grout was pumped in and discharged through holes on the piles. The grout then filled the pores in the soil with random flow within the slip zone. SKW mixture was used to simulate the soil slope. There were two designs being proposed in this study and the prototypes were produced by a 3D printer. Trial mix of the grout was carried out to obtain the optimum mixing ratio of bentonite: cement: water. A series of tests were conducted on the single-pile-reinforced slope under vertical slope crest loading condition considering different slope gradients and nail designs. Parameters such as ultimate load, failure time and failure strain were recorded and compared. As comparison with the unreinforced slope, both designs of AKARPILES showed better but different performances in the model tests.

  12. Dynamical stability of the holographic system with two competing orders

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yiqiang [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Lan, Shan-Quan [Department of Physics, Beijing Normal University,Beijing 100875 (China); Tian, Yu [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Science,Beijing 100190 (China); Zhang, Hongbao [Department of Physics, Beijing Normal University,Beijing 100875 (China); Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)

    2016-01-04

    We investigate the dynamical stability of the holographic system with two order parameters, which exhibits competition and coexistence of condensations. In the linear regime, we have developed the gauge dependent formalism to calculate the quasi-normal modes by gauge fixing, which turns out be considerably convenient. Furthermore, by giving different Gaussian wave packets as perturbations at the initial time, we numerically evolve the full nonlinear system until it arrives at the final equilibrium state. Our results show that the dynamical stability is consistent with the thermodynamical stability. Interestingly, the dynamical evolution, as well as the quasi-normal modes, shows that the relaxation time of this model is generically much longer than the simplest holographic system. We also find that the late time behavior can be well captured by the lowest lying quasi-normal modes except for the non-vanishing order towards the single ordered phase. To our knowledge, this exception is the first counter example to the general belief that the late time behavior towards a final stable state can be captured by the lowest lying quasi-normal modes. In particular, a double relation is found for this exception in certain cases.

  13. Stability and bifurcation for Marchuk's model of an immune system

    Science.gov (United States)

    Marzuki, Ira Syazwani Mohamad; Roslan, Ummu'Atiqah Mohd

    2017-08-01

    The investigation of an immune system has long been and will continue to be one of dominant themes in both ecology and biology due to its importance. In this paper, we consider Marchuk's model of an immune system where this model is governed by a system of three differential equations with time. This model has two equilibrium states which are healthy state and chronic state. It is healthy state when the antigen reproduction is small while chronic state is when antigen reproduction rate is large. The objectives of this paper are to analyse the stability of this model, to summarize this stability using bifurcation diagram and to discuss interaction between the healthy and chronic states at stationary solution. The methods involved are stability theory and bifurcation theory. Our results show that healthy states are saddle and only one chronic state is asymptotically stable for a region of parameter considered. For the bifurcation's case, as we increase the value of a parameter in this model, the chronic state shows that there are increment in the number of antigen, plasma cell and the antibody production.

  14. Modeling and Stability Analysis of Wedge Clutch System

    Directory of Open Access Journals (Sweden)

    Jian Yao

    2014-01-01

    Full Text Available A wedge clutch with unique features of self-reinforcement and small actuation force was designed. Its self-reinforcement feature, associated with different factors such as the wedge angle and friction coefficient, brings different dynamics and unstable problem with improper parameters. To analyze this system, a complete mathematical model of the actuation system is built, which includes the DC motor, the wedge mechanism, and the actuated clutch pack. By considering several nonlinear factors, such as the slip-stick friction and the contact or not of the clutch plates, the system is piecewise linear. Through the stability analysis of the linearized system in clutch slipping phase, the stable condition of the designed parameters is obtained as α>arctan⁡(μc. The mathematical model of the actuation system is validated by prototype testing. And with the validated model, the system dynamics in both stable and unstable conditions is investigated and discussed in engineering side.

  15. CONTROL AND STABILITY ANALYSIS OF THE GMC ALGORITHM APPLIED TO pH SYSTEMS

    Directory of Open Access Journals (Sweden)

    Manzi J.T.

    1998-01-01

    Full Text Available This paper deals with the control of the neutralization processes of the strong acid-strong base and the weak acid-strong base systems using the Generic Model Control (GMC algorithm. The control strategy is applied to a pilot plant where hydrochloric acid-sodium hydroxide and acetic acid-sodium hydroxide systems are neutralized. The GMC algorithm includes in the controller structure a nonlinear model of the process in the controller structure. The paper also focuses the provides a stability analysis of the controller for some of the uncertainties involved in the system. The rResults indicate that the controller stabilizes the system for a large range of uncertainties, but the performance may deteriorate when the system is submitted to large disturbances.

  16. Further results on stabilization for interval time-delay systems via new integral inequality approach.

    Science.gov (United States)

    Li, Zhichen; Bai, Yan; Huang, Congzhi; Yan, Huaicheng

    2017-05-01

    This paper investigates the stability and stabilization problems for interval time-delay systems. By introducing a new delay partitioning approach, various Lyapunov-Krasovskii functionals with triple-integral terms are established to make full use of system information. In order to reduce the conservatism, improved integral inequalities are developed for estimation of double integrals, which show remarkable outperformance over the Jensen and Wirtinger ones. Particularly, the relationship between the time-delay and each subinterval is taken into consideration. The resulting stability criteria are less conservative than some recent methods. Based on the derived condition, the state-feedback controller design approach is also given. Finally, the numerical examples and the application to inverted pendulum system are provided to illustrate the effectiveness of the proposed approaches. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Robust Stability and H∞ Control of Uncertain Piecewise Linear Switched Systems with Filippov Solutions

    DEFF Research Database (Denmark)

    Ahmadi, Mohamadreza; Mojallali, Hamed; Wisniewski, Rafal

    2012-01-01

    This paper addresses the robust stability and control problem of uncertain piecewise linear switched systems where, instead of the conventional Carathe ́odory solutions, we allow for Filippov solutions. In other words, in contrast to the previous studies, solutions with infinite switching in fini...... algorithm is proposed to surmount the aforementioned matrix inequality conditions....... time along the facets and on faces of arbitrary dimensions are also taken into account. Firstly, based on earlier results, the stability problem of piecewise linear systems with Filippov solutions is translated into a number of linear matrix inequality feasibility tests. Subsequently, a set of matrix...... inequalities are brought forward, which determines the asymptotic stability of the Filippov solutions of a given uncertain piecewise linear system. Afterwards, bilinear matrix inequality conditions for synthesizing a robust controller with a guaranteed H∞ per- formance are formulated. Finally, a V-K iteration...

  18. Stability of Exponential Euler Method for Stochastic Systems under Poisson White Noise Excitations

    Science.gov (United States)

    Li, Longsuo; Zhang, Yu

    2014-12-01

    The stability of stochastic systems under Poisson white noise excitations which based on the quantum theory is investigated in this paper. In general, the exact solution of the most of the stochastic systems with jumps is not easy to get. So it is very necessary to investigate the numerical solution of equations. On the one hand, exponential Euler method is applied to study stochastic delay differential equations, we can find the sufficient conditions for keeping mean square stability by investigating numerical method of systems. Through the comparison, we get the step-size of this method which is longer than the Euler-Maruyama method. On the other hand, mean square exponential stability of exponential Euler method for semi-linear stochastic delay differential equations under Poisson white noise excitations is confirmed.

  19. Stabilization loop of a two axes gimbal system using self-tuning PID type fuzzy controller.

    Science.gov (United States)

    Abdo, Maher Mahmoud; Vali, Ahmad Reza; Toloei, Ali Reza; Arvan, Mohammad Reza

    2014-03-01

    The application of inertial stabilization system is to stabilize the sensor's line of sight toward a target by isolating the sensor from the disturbances induced by the operating environment. The aim of this paper is to present two axes gimbal system. The gimbals torque relationships are derived using Lagrange equation considering the base angular motion and dynamic mass unbalance. The stabilization loops are constructed with cross coupling unit utilizing proposed fuzzy PID type controller. The overall control system is simulated and validated using MATLAB. Then, the performance of proposed controller is evaluated comparing with conventional PI controller in terms of transient response analysis and quantitative study of error analysis. The simulation results obtained in different conditions prove the efficiency of the proposed fuzzy controller which offers a better response than the classical one, and improves further the transient and steady-state performance. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Stability and synchronization of memristor-based fractional-order delayed neural networks.

    Science.gov (United States)

    Chen, Liping; Wu, Ranchao; Cao, Jinde; Liu, Jia-Bao

    2015-11-01

    Global asymptotic stability and synchronization of a class of fractional-order memristor-based delayed neural networks are investigated. For such problems in integer-order systems, Lyapunov-Krasovskii functional is usually constructed, whereas similar method has not been well developed for fractional-order nonlinear delayed systems. By employing a comparison theorem for a class of fractional-order linear systems with time delay, sufficient condition for global asymptotic stability of fractional memristor-based delayed neural networks is derived. Then, based on linear error feedback control, the synchronization criterion for such neural networks is also presented. Numerical simulations are given to demonstrate the effectiveness of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Dynamic Characteristics Analysis and Stabilization of PV-Based Multiple Microgrid Clusters

    DEFF Research Database (Denmark)

    Zhao, Zhuoli; Yang, Ping; Wang, Yuewu

    2018-01-01

    As the penetration of PV generation increases, there is a growing operational demand on PV systems to participate in microgrid frequency regulation. It is expected that future distribution systems will consist of multiple microgrid clusters. However, interconnecting PV microgrids may lead to system...... interactions and instability. To date, no research work has been done to analyze the dynamic behavior and enhance the stability of microgrid clusters considering the dynamics of the PV primary sources and dc links. To fill this gap, this paper presents comprehensive modeling, analysis, and stabilization of PV......-based multiple microgrid clusters. A detailed small-signal model for PV-based microgrid clusters considering local adaptive dynamic droop control mechanism of the voltage-source PV system is developed. The complete dynamic model is then used to access and compare the dynamic characteristics of the single...

  2. Investigating the Impact of Wind Turbines on Distribution System Stability

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Rishabh; Zhang, Yingchen; Hodge, Bri-Mathias

    2016-12-12

    Modern wind turbines utilize power electronic converters to regulate their output and optimize their performance. Their impact on the distribution system is not as well understood as for transmission system. The novelty of this work is in studying the impact of wind turbines given its proximity to faults or severe voltage events, and the influence on system stability given its location relative to the substation (representing the conventional grid). This paper presents the frequency and voltage swing plots for various study scenarios. The responses are analyzed two fold - Steady state operation, and performance given a fault or voltage events occurs in the system. The findings are presented, with crucial differences from transmission systems highlighted.

  3. Large-Signal Lyapunov-Based Stability Analysis of DC/AC Inverters and Inverter-Based Microgrids

    Science.gov (United States)

    Kabalan, Mahmoud

    Microgrid stability studies have been largely based on small-signal linearization techniques. However, the validity and magnitude of the linearization domain is limited to small perturbations. Thus, there is a need to examine microgrids with large-signal nonlinear techniques to fully understand and examine their stability. Large-signal stability analysis can be accomplished by Lyapunov-based mathematical methods. These Lyapunov methods estimate the domain of asymptotic stability of the studied system. A survey of Lyapunov-based large-signal stability studies showed that few large-signal studies have been completed on either individual systems (dc/ac inverters, dc/dc rectifiers, etc.) or microgrids. The research presented in this thesis addresses the large-signal stability of droop-controlled dc/ac inverters and inverter-based microgrids. Dc/ac power electronic inverters allow microgrids to be technically feasible. Thus, as a prelude to examining the stability of microgrids, the research presented in Chapter 3 analyzes the stability of inverters. First, the 13 th order large-signal nonlinear model of a droop-controlled dc/ac inverter connected to an infinite bus is presented. The singular perturbation method is used to decompose the nonlinear model into 11th, 9th, 7th, 5th, 3rd and 1st order models. Each model ignores certain control or structural components of the full order model. The aim of the study is to understand the accuracy and validity of the reduced order models in replicating the performance of the full order nonlinear model. The performance of each model is studied in three different areas: time domain simulations, Lyapunov's indirect method and domain of attraction estimation. The work aims to present the best model to use in each of the three domains of study. Results show that certain reduced order models are capable of accurately reproducing the performance of the full order model while others can be used to gain insights into those three areas of

  4. Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems

    Science.gov (United States)

    Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri

    2018-05-01

    The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.

  5. Stability Analysis of a Reaction-Diffusion System Modeling Atherogenesis

    KAUST Repository

    Ibragimov, Akif

    2010-01-01

    This paper presents a linear, asymptotic stability analysis for a reaction-diffusionconvection system modeling atherogenesis, the initiation of atherosclerosis, as an inflammatory instability. Motivated by the disease paradigm articulated by Ross, atherogenesis is viewed as an inflammatory spiral with a positive feedback loop involving key cellular and chemical species interacting and reacting within the intimal layer of muscular arteries. The inflammatory spiral is initiated as an instability from a healthy state which is defined to be an equilibrium state devoid of certain key inflammatory markers. Disease initiation is studied through a linear, asymptotic stability analysis of a healthy equilibrium state. Various theorems are proved, giving conditions on system parameters guaranteeing stability of the health state, and a general framework is developed for constructing perturbations from a healthy state that exhibit blow-up, which are interpreted as corresponding to disease initiation. The analysis reveals key features that arterial geometry, antioxidant levels, and the source of inflammatory components (through coupled third-kind boundary conditions or through body sources) play in disease initiation. © 2010 Society for Industrial and Applied Mathematics.

  6. Characterization and stability studies of emulsion systems containing pumice

    Directory of Open Access Journals (Sweden)

    Marilene Estanqueiro

    2014-04-01

    Full Text Available Emulsions are the most common form of skin care products. However, these systems may exhibit some instability. Therefore, when developing emulsions for topical application it is interesting to verify whether they have suitable physical and mechanical characteristics and further assess their stability. The aim of this work was to study the stability of emulsion systems, which varied in the proportion of the emulsifying agent cetearyl alcohol (and sodium lauryl sulfate (and sodium cetearyl sulfate (LSX, the nature of the oily phase (decyl oleate, cyclomethicone or dimethicone and the presence or absence of pumice (5% w/w. While maintaining the samples at room temperature, rheology studies, texture analysis and microscopic observation of formulations with and without pumice were performed. Samples were also submitted to an accelerated stability study by centrifugation and to a thermal stress test. Through the testing, it was found that the amount of emulsifying agent affects the consistency and textural properties such as firmness and adhesiveness. So, formulations containing LSX (5% w/w and decyl oleate or dimethicone as oily phase had a better consistency and remained stable with time, so exhibited the best features to be used for skin care products.

  7. Chip Scale Atomic Resonator Frequency Stabilization System With Ultra-Low Power Consumption for Optoelectronic Oscillators.

    Science.gov (United States)

    Zhao, Jianye; Zhang, Yaolin; Lu, Haoyuan; Hou, Dong; Zhang, Shuangyou; Wang, Zhong

    2016-07-01

    We present a long-term chip scale stabilization scheme for optoelectronic oscillators (OEOs) based on a rubidium coherent population trapping (CPT) atomic resonator. By locking a single mode of an OEO to the (85)Rb 3.035-GHz CPT resonance utilizing an improved phase-locked loop (PLL) with a PID regulator, we achieved a chip scale frequency stabilization system for the OEO. The fractional frequency stability of the stabilized OEO by overlapping Allan deviation reaches 6.2 ×10(-11) (1 s) and  ∼ 1.45 ×10 (-11) (1000 s). This scheme avoids a decrease in the extra phase noise performance induced by the electronic connection between the OEO and the microwave reference in common injection locking schemes. The total physical package of the stabilization system is [Formula: see text] and the total power consumption is 400 mW, which provides a chip scale and portable frequency stabilization approach with ultra-low power consumption for OEOs.

  8. Effect of PID Power System Stabilizer for a Synchronous Machine in Simulink Environment

    International Nuclear Information System (INIS)

    Yi, Tan Qian; Kasilingam, Gowrishankar; Raguraman, Raman

    2013-01-01

    This paper presents the use of Proportional-Integral-Derivative (PID) Controller with power system stabilizer (PSS) in a single machine infinite bus system. A PSS is used to generate supplementary damping control signals for an excitation system in order to damp out low frequency oscillations (LFO) of an electric power system. The paper is modelled in the MATLAB Simulink Environment to analyze the performance of a synchronous machine under a wide range of operating conditions. The functional blocks of PID controller with PSS are generated and the simulation studies are conducted based on different test cases to observe the dynamic performance of the power system. Analysis in this paper reveals that the PID-PSS gives better dynamic performance as compared to that of conventional power system stabilizer and also the optimal gain settings of PID PSS obtained at normal operating condition works well to other operating condition without much deterioration of the dynamic responses.

  9. Stability Enhancement of a Power System Containing High-Penetration Intermittent Renewable Generation

    Directory of Open Access Journals (Sweden)

    Jorge Morel

    2015-06-01

    Full Text Available This paper considers the transient stability enhancement of a power system containing large amounts of solar and wind generation in Japan. Following the Fukushima Daiichi nuclear disaster there has been an increasing awareness on the importance of a distributed architecture, based mainly on renewable generation, for the Japanese power system. Also, the targets of CO2 emissions can now be approached without heavily depending on nuclear generation. Large amounts of renewable generation leads to a reduction in the total inertia of the system because renewable generators are connected to the grid by power converters, and transient stability becomes a significant issue. Simulation results show that sodium-sulfur batteries can keep the system in operation and stable after strong transient disturbances, especially for an isolated system. The results also show how the reduction of the inertia in the system can be mitigated by exploiting the kinetic energy of wind turbines.

  10. Fuzzy Stabilization for Nonlinear Discrete Ship Steering Stochastic Systems Subject to State Variance and Passivity Constraints

    Directory of Open Access Journals (Sweden)

    Wen-Jer Chang

    2014-01-01

    Full Text Available For nonlinear discrete-time stochastic systems, a fuzzy controller design methodology is developed in this paper subject to state variance constraint and passivity constraint. According to fuzzy model based control technique, the nonlinear discrete-time stochastic systems considered in this paper are represented by the discrete-time Takagi-Sugeno fuzzy models with multiplicative noise. Employing Lyapunov stability theory, upper bound covariance control theory, and passivity theory, some sufficient conditions are derived to find parallel distributed compensation based fuzzy controllers. In order to solve these sufficient conditions, an iterative linear matrix inequality algorithm is applied based on the linear matrix inequality technique. Finally, the fuzzy stabilization problem for nonlinear discrete ship steering stochastic systems is investigated in the numerical example to illustrate the feasibility and validity of proposed fuzzy controller design method.

  11. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  12. Methods to assess the stability of a bicycle rider system

    NARCIS (Netherlands)

    Cooke, A.G.; Bulsink, Vera Elisabeth; Beusenberg, Mark; Dubbeldam, Rosemary; Bonnema, Gerrit Maarten; Poelman, Wim; Koopman, Hubertus F.J.M.

    2012-01-01

    The SOFIE (Intelligent Assisted Bicycles) project wishes to create performance and design guidelines for mechatronic appliances which improve the stability of electric bicycles, so-called intelligent stability assist devices (IAD). To achieve this goal, a stability hypothesis, an advanced

  13. Automotive mechatronics automotive networking, driving stability systems, electronics

    CERN Document Server

    2015-01-01

    As the complexity of automotive vehicles increases this book presents operational and practical issues of automotive mechatronics. It is a comprehensive introduction to controlled automotive systems and provides detailed information of sensors for travel, angle, engine speed, vehicle speed, acceleration, pressure, temperature, flow, gas concentration etc. The measurement principles of the different sensor groups are explained and examples to show the measurement principles applied in different types. Contents Basics of mechatronics.- Architecture.- Electronic control unit.- Software development.- Basic principles of networking.- Automotive networking.- Bus systems.- Automotive sensors.- Sensor measuring principles.- Sensor types.- Electric actuators.- Electrohydraulic actuators.- Electronic transmission control.- Electronic transmission control unit.- Modules for transmission control.- Antilock braking system.- Traction control system.- Electronic stability program.- Automatic brake functions.- Hydraulic modu...

  14. Phases stability of shape memory alloys Cu based under irradiation

    International Nuclear Information System (INIS)

    Zelaya, Maria Eugenia

    2006-01-01

    The effects of irradiation on the relative phase stability of phases related by a martensitic transformation in copper based shape memory alloys were studied in this work.Different kind of particles and energies were employed in the irradiation experiments.The first kind of irradiation was performed with 2,6 MeV electrons, the second one with 170 keV and 300 keV Cu ions and the third one with swift heavy ions (Kr, Xe, Au) with energies between 200 and 600 MeV.Stabilization of the 18 R martensite in Cu-Zn-Al-Ni induced by electron irradiation was studied.The results were compared to those of the stabilization induced by quenching and ageing in the same alloy, and the ones obtained by irradiation in 18 R-Cu-Zn-Al alloys.The effects of Cu irradiation over b phase were analyzed with several electron microscopy techniques including: scanning electron microscopy (S E M), high resolution electron microscopy (H R E M), micro diffraction and X-ray energy dispersive spectroscopy (E D S). Structural changes in Cu-Zn-Al b phase into a closed packed structure were induced by Cu ion implantation.The closed packed structures depend on the irradiation fluence.Based on these results, the interface between these structures (closed packed and b) and the stability of disordered phases were analyzed. It was also compared the evolution of long range order in the Cu-Zn-Al and in the Cu-Zn-Al-Ni b phase as a function of fluence.The evolution of the g phase was also compared. Both results were discussed in terms of the mobility of irradiation induced point defects.Finally, the effects induced by swift heavy ions in b phase and 18 R martensite were studied. The results of the irradiation in b phase were qualitatively similar to those produced by irradiation with lower energies. On the contrary, nano metric defects were found in the irradiated 18 R martensite.These defects were characterized by H R E M.The characteristic contrast of the defects was associated to a local change in the

  15. Stability of Moons in the Trappist-1 System

    Science.gov (United States)

    Allen, John; Becker, Christopher; Fuse, Christopher

    2018-01-01

    In the last 20 years, numerous exoplanets have been discovered and it has become clear that habitable bodies are rare. Exomoons mark the next stage in identifying habitable environs. In our own Solar system, several moons have been identified as having features suitable to sustain life. The Trappist-1 system (Gillon et al. 2017) is a compact configuration of seven Earth-like planets orbiting a M-type dwarf star. The presence of moons cannot be confirmed in the transit data. Kane et al. (2017) suggests that it would be highly improbable for a moon to maintain a stable orbit around any Trappist-1 planet. The current study investigates the claim by Kane et al. (2017), examining the stability of the Trappist-1 system in the presence of forming satellites. Moon disks are simulated by distributing 100 bodies, each with mass 5.26 x 1018 kg randomly within 10% - 90% of the exoplanet’s Hill sphere. Utilizing N-body simulations, the planets and theoretical moons were tracked for 500 kyrs, allowing for gravitational interactions and mergers. Instabilities in the orbital parameters of the Trappist-1 planets was detected, in agreement with previous authors (Burgasser & Mamajerk 2017). Some of the planets are found to retain at least a single satellite for the same duration as the planetary stability. These data suggest that additional observation of the Trappist-1 system may yield the first detection of an exomoon.

  16. METHODOLOGY FOR INSTITUTIONAL ANALYSIS OF STABILITY OF REGIONAL FINANCIAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. V. Milenkov

    2016-01-01

    Full Text Available The relevance of the article due to the urgent need to develop a methodological framework in the field of regional finance research dictated by the substantial increase in the volume and composition of the socio-economic problems, the solution of which, including financial support, the responsibility of the public authorities of the Russian Federation. The article presents the results of the author's research in the field of institutional analysis of the stability of the regional financial system as a set of institutions and organizations interacting with the regional real sector of economy.Methodology. The methodological basis of this article are the economic and statistical methods of analysis, legal documents in the field of the sustainability of the regional financial system, publications in the field of economic and financial security.Conclusions / relevance. The practical significance of the work lies in the provisions of orientation, conclusions and recommendations aimed at the widespread use of search and adaptation of the institutional analysis of the sources of the regional stability of the financial system, which can be used by the legislative and executive authorities of the Russian Federation, the Ministry of Defence in the current activity.Methodological approaches to the structuring objectives of institutional analysis on the basis of the hierarchical representation of the institutional environment of functioning of federal subject the financial system.

  17. Passivity-Based Stability Analysis and Damping Injection for Multiparalleled VSCs with LCL Filters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2017-01-01

    is decomposed into a passive filter output admittance in series with an active admittance which is dependent on the current controller and the time delay. The frequency-domain passivity theory is then applied to the active admittance for system stability analysis. It reveals that the stability region...... of the single-loop grid current control is not only dependent on the time delay, but affected also by the resonance frequency of the converter-side filter inductor and filter capacitor. Further on, the damping injection based on the discrete derivative controller is proposed to enhance the passivity...

  18. Pd-based alloy nanoclusters in ion-implanted silica: Formation and stability under thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Battaglin, G.; Cattaruzza, E.; De Marchi, G.; Gonella, F.; Mattei, G. E-mail: mattei@padova.infm.it; Maurizio, C.; Mazzoldi, P.; Parolin, M.; Sada, C.; Calliari, I

    2002-05-01

    In this work we report on the formation and stability under thermal annealing of Pd-Cu and Pd-Ag alloy nanoclusters obtained by sequential ion implantation in silica. The role of the annealing atmosphere on the alloy cluster formation and stability is investigated. A comparison is made with similar alloy-based systems obtained by sequential ion implantation in silica of Au-Ag or Au-Cu followed by annealing under similar conditions, in order to evidence the peculiar effect of the various metals in controlling the alloy evolution and/or decomposition.

  19. Asymptotic Stability of the Golden-Section Control Law for Multi-Input and Multi-Output Linear Systems

    Directory of Open Access Journals (Sweden)

    Duo-Qing Sun

    2012-01-01

    Full Text Available This paper is concerned with the problem of the asymptotic stability of the characteristic model-based golden-section control law for multi-input and multi-output linear systems. First, by choosing a set of polynomial matrices of the objective function of the generalized least-square control, we prove that the control law of the generalized least square can become the characteristic model-based golden-section control law. Then, based on both the stability result of the generalized least-square control system and the stability theory of matrix polynomial, the asymptotic stability of the closed loop system for the characteristic model under the control of the golden-section control law is proved for minimum phase system.

  20. The concept of "stability" in asynchronous distributed decision-making systems.

    Science.gov (United States)

    Lee, T S; Ghosh, S

    2000-01-01

    Asynchronous distributed decision-making (ADDM) systems constitute a special class of distributed problems and are characterized as large, complex systems wherein the principal elements are the geographically dispersed entities that communicate among themselves, asynchronously, through message passing and are permitted autonomy in local decision making. Such systems generally offer significant advantages over the traditional, centralized algorithms in the form of concurrency, scalability, high throughput, efficiency, low vulnerability to catastrophic failures, and robustness. A fundamental property of ADDM systems is stability that refers to their behavior under representative perturbations to their operating environments, given that such systems are intended to be real, complex, and to some extent, mission-critical, and are subject to unexpected changes in their operating conditions. This paper introduces the concept of stability in ADDM systems and proposes an intuitive yet practical and usable definition that is inspired by those used in control systems and physics. An ADDM system is defined as a stable system if it returns to a steady state in finite time, following perturbation, provided that it is initiated in a steady state. Equilibrium or steady state is defined through placing bounds on the measured error in the system. Where the final steady state is equivalent to the initial one, a system is referred to as strongly stable. If the final steady state is potentially worse then the initial one, a system is deemed marginally stable. When a system fails to return to steady state following the perturbation, it is unstable. The perturbations are classified as either changes in the input pattern or changes in one or more environmental characteristics of the system, such as hardware failures. For a given ADDM system, the definitions are based on the performance indices that must be judiciously identified by the system architect and are likely to be unique. To

  1. On the Problem of 2D Affine Systems Input to State Stabilization

    Directory of Open Access Journals (Sweden)

    A. V. Kavinov

    2015-01-01

    Full Text Available Various statements and a variety of solutions to the problem of input-to-state stabilization of dynamic systems with disturbances are known. Methods based on the use of Lyapunov functions play an important role with regard to non-linear systems. When using these methods, the problem of finding an appropriate Lyapunov function arises. The Lyapunov functions redesign method provides a Lyapunov function for a certain subclass of affine systems with disturbances using transformation of the corresponding affine system without disturbances to the equivalent regular canonical form. The desired Lyapunov function is constructed as a quadratic form of the canonical variables. Further, the found Lyapunov function can be used to construct the input-to-state asymptotically stabilizing control. The limits of applicability of this approach remain unclear: in general, constructed on the basis of the transformation to the equivalent canonical form the Lyapunov function for the system without disturbances can both be and not be the Lyapunov function for the affine system with disturbance.In the paper, we study the possibility of using the described approach to second-order affine systems with scalar control and scalar disturbances for which the corresponding systems without disturbances are equivalent to regular systems of canonical form in the whole state space. We have obtained the easily verifiable conditions for construction of the Lyapunov function on the basis of the regular canonical form where the Lyapunov function for the system with control will be the function for the system with disturbances. Thus, the class of systems which can be stabilized by using the above method is defined. Examples of applications of the obtained conditions with regard to certain classes of second-order affine systems and the results of numerical simulation of the stabilization process of the zero equilibrium point in the presence of various disturbances for the particular two

  2. Stability Analysis of a Voltage-Based Controller for Robot Manipulators

    Directory of Open Access Journals (Sweden)

    Jorge Orrante-Sakanassi

    2013-01-01

    Full Text Available A voltage-based control scheme for robot manipulators has been presented in recent literature, where feedback linearization is applied in the electrical equations of the DC motors in order to cancel the electrical current terms. However, in this paper we show that this control technique generates a system of the form Ex = Ax + Bu, where E is a singular matrix, that is to say, a generalized state-space system or singular system. This paper introduces a formal stability analysis of the respective system by considering the state-space equation as a singular system. Furthermore, in order to avoid the singularity of the closed-loop system, modified voltage-based control schemes are proposed, whose Lyapunov stability analyses conclude semiglobal asymptotic stability for the set-point control case and uniform boundedness of the solutions and semiglobal convergence of the position, as well as velocity errors for the tracking control case. The proposed control systems are simulated for the tracking and set-point cases using the CICESE Pelican robot driven by DC motors.

  3. System control for the CLIC main beam quadrupole stabilization and nano-positioning

    CERN Document Server

    Janssens, S; Collette, E; Esposito, M; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Kuzmin, A; Leuxe, R; Pfingstner, J; Schulte, D; Snuverink, J

    2011-01-01

    The conceptual design of the active stabilization and nano-positioning of the CLIC main beam quadrupoles was validated in models and experimentally demonstrated on test benches. Although the mechanical vibrations were reduced to within the specification of 1.5 nm at 1 Hz, additional input for the stabilization system control was received fromintegrated luminosity simulations that included the measured stabilization transfer functions. Studies are ongoing to obtain a transfer function which is more compatible with beam based orbit feedback; it concerns the controller layout, new sensors and their combination. In addition, the gain margin must be increased in order to reach the requirements froma higher vibration background. For this purpose, the mechanical support is adapted to raise the frequency of some resonances in the system and the implementation of force sensors is considered. Furthermore, this will increase the speed of repositioning the magnets between beam pulses. This paper describes the improvement...

  4. Seismic stability analyses of reinforced tapered landfill cover systems considering seepage forces.

    Science.gov (United States)

    Khoshand, Afshin; Fathi, Ali; Zoghi, Milad; Kamalan, Hamidreza

    2018-04-01

    One of the most common and economical methods for waste disposal is landfilling. The landfill cover system is one of the main components of landfills which prevents waste exposure to the environment by creating a barrier between the waste and the surrounding environment. The stability and integrity of the landfill cover system is a fundamental part of the design, construction, and maintenance of landfills. A reinforced tapered landfill cover system can be considered as a practical method for improving its stability; however, the simultaneous effects of seismic and seepage forces in the reinforced tapered landfill cover system have not been studied. The current paper provides a solution based on the limit equilibrium method in order to evaluate the stability of a reinforced tapered landfill cover system under seismic and seepage (both horizontal and parallel seepage force patterns) loading conditions. The proposed analytical approach is applied to different design cases through parametric study and the obtained results are compared to those derived from literature. Parametric study is performed to illustrate the sensitivity of the safety factor (FS) to the different design parameters. The obtained results reveal that parameters which describe the geometry have limited effects on the stability of the landfill cover system in comparison to the rest of the studied design parameters. Moreover, the comparisons between the derived results and available methods demonstrate good agreement between obtained findings with those reported in the literature.

  5. A gait stability investigation into FES-assisted paraplegic walking based on the walker tipping index

    Science.gov (United States)

    Ming, Dong; Bai, Yanru; Liu, Xiuyun; Qi, Hongzhi; Cheng, Longlong; Wan, Baikun; Hu, Yong; Wong, Yatwa; Luk, Keith D. K.; Leong, John C. Y.

    2009-12-01

    The gait outcome measures used in clinical trials of paraplegic locomotor training determine the effectiveness of improved walking function assisted by the functional electrical stimulation (FES) system. Focused on kinematic, kinetic or physiological changes of paraplegic patients, traditional methods cannot quantify the walking stability or identify the unstable factors of gait in real time. Up until now, the published studies on dynamic gait stability for the effective use of FES have been limited. In this paper, the walker tipping index (WTI) was used to analyze and process gait stability in FES-assisted paraplegic walking. The main instrument was a specialized walker dynamometer system based on a multi-channel strain-gauge bridge network fixed on the frame of the walker. This system collected force information for the handle reaction vector between the patient's upper extremities and the walker during the walking process; the information was then converted into walker tipping index data, which is an evaluation indicator of the patient's walking stability. To demonstrate the potential usefulness of WTI in gait analysis, a preliminary clinical trial was conducted with seven paraplegic patients who were undergoing FES-assisted walking training and seven normal control subjects. The gait stability levels were quantified for these patients under different stimulation patterns and controls under normal walking with knee-immobilization through WTI analysis. The results showed that the walking stability in the FES-assisted paraplegic group was worse than that in the control subject group, with the primary concern being in the anterior-posterior plane. This new technique is practical for distinguishing useful gait information from the viewpoint of stability, and may be further applied in FES-assisted paraplegic walking rehabilitation.

  6. Globally Asymptotic Stability of Stochastic Nonlinear Systems with Time-Varying Delays via Output Feedback Control

    Directory of Open Access Journals (Sweden)

    Mingzhu Song

    2016-01-01

    Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.

  7. Rotation Modes Stability Analysis and Phase Compensation for Magnetically Suspended Flywheel Systems with Cross Feedback Controller and Time Delay

    Directory of Open Access Journals (Sweden)

    Yuan Ren

    2016-01-01

    Full Text Available This paper analyzes the effects of time delay on the stability of the rotation modes for the magnetically suspended flywheel (MSFW with strong gyroscopic effects. A multi-input multioutput system is converted into a single-input single-output control system with complex coefficient by variable reconstruction, and the stability equivalence of the systems before and after variable reconstruction is proven. For the rotation modes, the stability limits and corresponding vibration frequencies are found as a function of nondimensional magnetic stiffness and damping and nondimensional parameters of rotor speed and time delay. Additionally, the relationship between cross feedback control system stability and time delay is investigated. And an effective phase compensation method based on cross-channel is further presented. Simulation and experimental results are presented to demonstrate the correctness of the stability analysis method and the superiority of the phase compensation strategy.

  8. Thermodynamic stability of driven open systems and control of phase separation by electro-autocatalysis.

    Science.gov (United States)

    Bazant, Martin Z

    2017-07-01

    Motivated by the possibility of electrochemical control of phase separation, a variational theory of thermodynamic stability is developed for driven reactive mixtures, based on a nonlinear generalization of the Cahn-Hilliard and Allen-Cahn equations. The Glansdorff-Prigogine stability criterion is extended for driving chemical work, based on variations of nonequilibrium Gibbs free energy. Linear stability is generally determined by the competition of chemical diffusion and driven autocatalysis. Novel features arise for electrochemical systems, related to controlled total current (galvanostatic operation), concentration-dependent exchange current (Butler-Volmer kinetics), and negative differential reaction resistance (Marcus kinetics). The theory shows how spinodal decomposition can be controlled by solo-autocatalytic charge transfer, with only a single faradaic reaction. Experimental evidence is presented for intercalation and electrodeposition in rechargeable batteries, and further applications are discussed in solid state ionics, electrovariable optics, electrochemical precipitation, and biological pattern formation.

  9. Applications of FBG-based sensors to ground stability monitoring

    Directory of Open Access Journals (Sweden)

    An-Bin Huang

    2016-08-01

    Full Text Available Over the past few decades, many optical fiber sensing techniques have been developed. Among these available sensing methods, optical fiber Bragg grating (FBG is probably the most popular one. With its unique capabilities, FBG-based geotechnical sensors can be used as a sensor array for distributive (profile measurements, deployed under water (submersible, for localized high resolution and/or differential measurements. The authors have developed a series of FBG-based transducers that include inclination, linear displacement and gauge/differential pore pressure sensors. Techniques that involve the field deployment of FBG inclination, extension and pore-pressure sensor arrays for automated slope stability and ground subsidence monitoring have been developed. The paper provides a background of FBG and the design concepts behind the FBG-based field monitoring sensors. Cases of field monitoring using the FBG sensor arrays are presented, and their practical implications are discussed.

  10. State-space-based harmonic stability analysis for paralleled grid-connected inverters

    DEFF Research Database (Denmark)

    Wang, Yanbo; Wang, Xiongfei; Chen, Zhe

    2016-01-01

    This paper addresses a state-space-based harmonic stability analysis of paralleled grid-connected inverters system. A small signal model of individual inverter is developed, where LCL filter, the equivalent delay of control system, and current controller are modeled. Then, the overall small signal...... model of paralleled grid-connected inverters is built. Finally, the state space-based stability analysis approach is developed to explain the harmonic resonance phenomenon. The eigenvalue traces associated with time delay and coupled grid impedance are obtained, which accounts for how the unstable...... inverter produces the harmonic resonance and leads to the instability of whole paralleled system. The proposed approach reveals the contributions of the grid impedance as well as the coupled effect on other grid-connected inverters under different grid conditions. Simulation and experimental results...

  11. Adaptive Neural-Sliding Mode Control of Active Suspension System for Camera Stabilization

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-01-01

    Full Text Available The camera always suffers from image instability on the moving vehicle due to the unintentional vibrations caused by road roughness. This paper presents a novel adaptive neural network based on sliding mode control strategy to stabilize the image captured area of the camera. The purpose is to suppress vertical displacement of sprung mass with the application of active suspension system. Since the active suspension system has nonlinear and time varying characteristics, adaptive neural network (ANN is proposed to make the controller robustness against systematic uncertainties, which release the model-based requirement of the sliding model control, and the weighting matrix is adjusted online according to Lyapunov function. The control system consists of two loops. The outer loop is a position controller designed with sliding mode strategy, while the PID controller in the inner loop is to track the desired force. The closed loop stability and asymptotic convergence performance can be guaranteed on the basis of the Lyapunov stability theory. Finally, the simulation results show that the employed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.

  12. Input–Output Finite Time Stabilization of Time-Varying Impulsive Positive Hybrid Systems under MDADT

    Directory of Open Access Journals (Sweden)

    Lihong Yao

    2017-11-01

    Full Text Available Time-varying impulsive positive hybrid systems based on finite state machines (FSMs are considered in this paper, and the concept of input–output finite time stability (IO-FTS is extended for this type of hybrid system. The IO-FTS analysis of the single linear time-varying system is given first. Then, the sufficient conditions of IO-FTS for hybrid systems are proposed via the mode-dependent average dwell time (MDADT technique. Moreover, the output feedback controller which can stabilize the non-autonomous hybrid systems is derived, and the obtained results are presented in a linear programming form. Finally, a numerical example is provided to show the theoretical results.

  13. Stability of plant virus-based nanocarriers in gastrointestinal fluids.

    Science.gov (United States)

    Berardi, Alberto; Evans, David J; Baldelli Bombelli, Francesca; Lomonossoff, George P

    2018-01-25

    Cowpea mosaic virus (CPMV) is a plant virus which is being extensively investigated as a drug delivery and vaccine nanocarrier for parenteral administration. However, to date little is known about the suitability of plant-based nanocarriers for oral delivery. In this study, the colloidal (i.e. aggregation), physical (i.e. denaturation) and chemical (i.e. digestion of the polypeptides) stability of CPMV and its empty virus-like particles (eVLPs) in conditions resembling the gastrointestinal fluids were evaluated. The nanoparticles were incubated in various simulated gastric and intestinal fluids and in pig gastric and intestinal fluids. CPMV and eVLPs had similar stabilities. In simulated gastric media, they were stable at pH ≥ 2.5. At lower pH destabilisation of the particle structure occurred, which, in turn, rendered the polypeptides extremely sensitive to pepsin digestion. However, both CPMV and eVLPs were stable in simulated intestinal fluids, in pig gastric fluids and in pig intestinal fluids. Thus CPMV, despite being a protein-based nanoparticle, was much more resistant to the harsh GI conditions than soluble proteins. Remarkably, both CPMV and eVLPs incubated in pig gastric and intestinal fluids were not subject to protein adsorption, with no formation of a detectable protein corona. The lack of a protein corona on CPMV and eVLP surfaces in GI fluids would imply that, if orally administered, these nanoparticles could maintain their native surface characteristics; thus, their biological interactions would remain predictable and unchanged. In summary, CPMV and eVLPs can be considered promising nanocarriers for applications requiring oral delivery, given their chemical, physical and colloidal stability and lack of protein adsorption from the environment in most of the tested conditions.

  14. Stability Tests of Positive Fractional Continuous-time Linear Systems with Delays

    Directory of Open Access Journals (Sweden)

    Tadeusz Kaczorek

    2013-06-01

    Full Text Available Necessary and sufficient conditions for the asymptotic stability of positive fractional continuous-time linear systems with many delays are established. It is shown that: 1 the asymptotic stability of the positive fractional system is independent of their delays, 2 the checking of the asymptotic stability of the positive fractional systems with delays can be reduced to checking of the asymptotic stability of positive standard linear systems without delays.

  15. Linear local stability of electrostatic drift modes in helical systems

    International Nuclear Information System (INIS)

    Yamagishi, O.; Nakajima, N.; Sugama, H.; Nakamura, Y.

    2003-01-01

    We investigate the stability of the drift wave in helical systems. For this purpose, we solve the linear local gyrokinetic-Poisson equation, in the electrostatic regime. As a model of helical plasmas, Large helical Device (LHD) is considered. The equation we apply is rather exact in the framework of linear gyrokinetic theory, where only the approximation is the ballooning representation. In this paper, we consider only collisionless cases. All the frequency regime can be naturally reated without any assumptions, and in such cases, ion temperature gradient modes (ITG), trapped electron modes (TEM), and electron temperature gradient modes (ETG) are expected to become unstable linearly independently. (orig.)

  16. Two-phase flow stability structure in a natural circulation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhiwei [Nuclear Engineering Laboratory Zurich (Switzerland)

    1995-09-01

    The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.

  17. Stability criterion for superfluidity based on the density spectral function

    Science.gov (United States)

    Watabe, Shohei; Kato, Yusuke

    2013-12-01

    We study a stability criterion hypothesis for superfluids expressed in terms of the local density spectral function In(r,ω) that is applicable to both homogeneous and inhomogeneous systems. We evaluate the local density spectral function in the presence of a one-dimensional repulsive or attractive external potential within Bogoliubov theory, using solutions for the tunneling problem. We also evaluate the local density spectral function using an orthogonal basis, and calculate the autocorrelation function Cn(r,t). When superfluids in a d-dimensional system flow below a threshold, In(r,ω)∝ωd holds in the low-energy regime and Cn(r,t)∝1/td+1 holds in the long-time regime. However, when superfluids flow with the critical current, In(r,ω)∝ωβ holds in the low-energy regime and Cn(r,t)∝1/tβ+1 holds in the long-time regime with βstability criterion hypothesis recently proposed.

  18. Long-term evolution and stability of planetary systems

    Science.gov (United States)

    Juric, Mario

    This dissertation studies the dynamical evolution and stability of planetary systems over long time spans (10 8 -10 9 years). I investigated the dynamical evolution of few-planet systems by simulating ensembles of systems consisting of hundreds to thousands of randomly constructed members. I looked at ways to classify the systems according to their dynamical activity, and found the median Hill separation of an ensemble to be a sufficiently good criterion for separation into active (those exhibiting frequent planetary close encounters, collisions or ejections) and inactive ensembles. I examined the evolution of dynamical parameters in active systems. I found that in ensembles of dynamically active (initially unstable) systems the eccentricity distribution evolves towards the same equilibrium form, irrespective of the distribution it began with. Furthermore, this equilibrium distribution is indistinguishable, within observational errors, from the distribution found in extrasolar planets. This is to my knowledge the first successful detailed theoretical reproduction of the form of observed exoplanet eccentricity distribution. I further looked for quantities that can be used as indicators of long-term stability of planetary systems, specifically the angular momentum deficit (AMD) as originally proposed by Laskar. I found that the quantity Q , defined as the ratio of minimum AMD required for a planetary collision to occur in secular theory and the total AMD of the system, may be used to predict the likelihood of decay of a planetary system. Qualitatively, the decay in systems having Q [Special characters omitted.] 1 is highly probable, while systems with Q [Special characters omitted.] 1 were found to be stable. To conduct the above investigations, I developed a new integrator package (VENUS), and the HYBRID/EE integration scheme designed for nearly-symplectic long-term integrations. VENUS implements integration algorithms for few-body planetary system integrations

  19. Recurrent Neural Network for Single Machine Power System Stabilizer

    Directory of Open Access Journals (Sweden)

    Widi Aribowo

    2010-04-01

    Full Text Available In this paper, recurrent neural network (RNN is used to design power system stabilizer (PSS due to its advantage on the dependence not only on present input but also on past condition. A RNN-PSS is able to capture the dynamic response of a system without any delays caused by external feedback, primarily by the internal feedback loop in recurrent neuron. In this paper, RNNPSS consists of a RNN-identifier and a RNN-controller. The RNN-Identifier functions as the tracker of dynamics characteristics of the plant, while the RNN-controller is used to damp the system’s low frequency oscillations. Simulation results using MATLAB demonstrate that the RNNPSS can successfully damp out oscillation and improve the performance of the system.

  20. Robust Stability Clearance of Flight Control Law Based on Global Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Liuli Ou

    2014-01-01

    Full Text Available To validate the robust stability of the flight control system of hypersonic flight vehicle, which suffers from a large number of parametrical uncertainties, a new clearance framework based on structural singular value (μ theory and global uncertainty sensitivity analysis (SA is proposed. In this framework, SA serves as the preprocess of uncertain model to be analysed to help engineers to determine which uncertainties affect the stability of the closed loop system more slightly. By ignoring these unimportant uncertainties, the calculation of μ can be simplified. Instead of analysing the effect of uncertainties on μ which involves solving optimal problems repeatedly, a simpler stability analysis function which represents the effect of uncertainties on closed loop poles is proposed. Based on this stability analysis function, Sobol’s method, the most widely used global SA method, is extended and applied to the new clearance framework due to its suitability for system with strong nonlinearity and input factors varying in large interval, as well as input factors subjecting to random distributions. In this method, the sensitive indices can be estimated via Monte Carlo simulation conveniently. An example is given to illustrate the efficiency of the proposed method.

  1. Development of a hardware-based AC microgrid for AC stability assessment

    Science.gov (United States)

    Swanson, Robert R.

    As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.

  2. Miniaturized screening of polymers for amorphous drug stabilization (SPADS): rapid assessment of solid dispersion systems.

    Science.gov (United States)

    Wyttenbach, Nicole; Janas, Christine; Siam, Monira; Lauer, Matthias Eckhard; Jacob, Laurence; Scheubel, Emmanuel; Page, Susanne

    2013-08-01

    Development of a novel, rapid, miniaturized approach to identify amorphous solid dispersions with maximum supersaturation and solid state stability. Three different miniaturized assays are combined in a 2-step decision process to assess the supersaturation potential and drug-polymer miscibility and stability of amorphous compositions. Step 1: SPADS dissolution assay. Drug dissolution is determined in 96-well plates to detect systems that generate and maintain supersaturation. Promising combinations graduate to step 2. Step 2: SPADS interaction and SPADS imaging assays. FTIR microspectroscopy is used to study intermolecular interactions. Atomic force microscopy is applied to analyze molecular homogeneity and stability. Based on the screening results, selected drug-polymer combinations were also prepared by spray-drying and characterized by classical dissolution tests and a 6-month physical stability study. From the 7 different polymers and 4 drug loads tested, EUDRAGIT E PO at a drug load of 20% performed best for the model drug CETP(2). The classical dissolution and stability tests confirmed the results from the miniaturized assays. The results demonstrate that the SPADS approach is a useful de-risking tool allowing the rapid, rational, time- and cost-effective identification of polymers and drug loads with appropriate dual function in supersaturation performance and amorphous drug stabilization. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Transient Stability Improvement for Combined Heat and Power System Using Load Shedding

    Directory of Open Access Journals (Sweden)

    Hung-Cheng Chen

    2014-01-01

    Full Text Available The purpose of the paper is to analyze and improve the transient stability of an industrial combined heat and power (CHP system in a high-tech science park in Taiwan. The CHP system installed two 161 kV/161 kV high-impendence transformers to connect with Taipower System (TPS for both decreasing the short-circuit fault current and increasing the fault critical clearing time. The transient stabilities of three types of operation modes in CHP units, 3G1S, 2G1S, and 1G1S, are analyzed. Under the 3G1S operation mode, the system frequency is immediately restored to 60 Hz after tie line tripping with the TPS. Under the 1G1S and 2G1S operation modes, the system frequencies will continuously decrease and eventually become unstable. A novel transient stability improvement approach using load shedding technique based on the change in frequency is proposed to improve the transient stability.

  4. Control of nonlinear systems with applications to constrained robots and spacecraft attitude stabilization

    Science.gov (United States)

    Krishnan, Hariharan

    1993-01-01

    This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude

  5. Steam Turbine Control Valve Stiction Effect on Power System Stability

    International Nuclear Information System (INIS)

    Halimi, B.

    2010-01-01

    One of the most important problems in power system dynamic stability is low frequency oscillations. This kind of oscillation has significant effects on the stability and security of the power system. In some previous papers, a fact was introduced that a steam pressure continuous fluctuation in turbine steam inlet pipeline may lead to a kind of low frequency oscillation of power systems. Generally, in a power generation plant, steam turbine system composes of some main components, i.e. a boiler or steam generator, stop valves, control valves and turbines that are connected by piping. In the conventional system, the turbine system is composed with a lot of stop and control valves. The steam is provided by a boiler or steam generator. In an abnormal case, the stop valve shuts of the steal flow to the turbine. The steam flow to the turbine is regulated by controlling the control valves. The control valves are provided to regulate the flow of steam to the turbine for starting, increasing or decreasing the power, and also maintaining speed control with the turbine governor system. Unfortunately, the control valve has inherent static friction (stiction) nonlinearity characteristics. Industrial surveys indicated that about 20-30% of all control loops oscillate due to valve problem caused by this nonlinear characteristic. In this paper, steam turbine control valve stiction effect on power system oscillation is presented. To analyze the stiction characteristic effect, firstly a model of control valve and its stiction characteristic are derived by using Newton's laws. A complete tandem steam prime mover, including a speed governing system, a four-stage steam turbine, and a shaft with up to for masses is adopted to analyze the performance of the steam turbine. The governor system consists of some important parts, i.e. a proportional controller, speed relay, control valve with its stiction characteristic, and stem lift position of control valve controller. The steam turbine has

  6. Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines

    International Nuclear Information System (INIS)

    Derafshian, Mehdi; Amjady, Nima

    2015-01-01

    This paper presents an evolutionary algorithm-based approach for optimal design of power system stabilizer (PSS) for multi-machine power systems that include doubly fed induction generator wind turbines. The proposed evolutionary algorithm is an improved particle swarm optimization named chaotic particle swarm optimization with passive congregation (CPSO-PC) applied for finding the optimal settings of PSS parameters. Two different eigenvalue-based objectives are combined as the objective function for the optimization problem of tuning PSS parameters. The first objective function comprises the damping factor of lightly damped electro-mechanical modes and the second one includes the damping ratio of these modes. The effectiveness of the proposed method to design PSS for the power systems including DFIG (Doubly Fed Induction Generator) is extensively demonstrated through eigenvalue analysis and time-domain simulations and also by comparing its simulation results with the results of other heuristic optimization approaches. - Highlights: • A new optimization model for design of PSS in power systems including DFIG is proposed. • A detailed and realistic modeling of DFIG is presented. • A new evolutionary algorithm is suggested for solving the optimization problem of designing PSS

  7. Stability analysis of multi-infeed HVDC system applying VSC-HVDC

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2010-01-01

    This paper presents a general model of dual infeed HVDC system applying VSC-HVDC, which can be used as an element in large multi infeed HVDC system. The model may have different structure under different grid faults because of the action of breakers. Hence power flow of the system based on this m......This paper presents a general model of dual infeed HVDC system applying VSC-HVDC, which can be used as an element in large multi infeed HVDC system. The model may have different structure under different grid faults because of the action of breakers. Hence power flow of the system based....../EMTDC to verify the theoretical analysis. Simulation results indicate that this dual infeed HVDC system can realize higher stability than single infeed HVDC system. And different control strategies on a VSC-HVDC link may result in different influence on AC voltage and active power oscillation during transient...

  8. Color stability of siloranes versus methacrylate-based composites after immersion in staining solutions.

    Science.gov (United States)

    Arocha, Mariana A; Mayoral, Juan R; Lefever, Dorien; Mercade, Montserrat; Basilio, Juan; Roig, Miguel

    2013-07-01

    The purpose of this study was to determine, by using a spectrophotometer device, the color stability of silorane in comparison with four methacrylate-based composites after being immersed in different staining solutions such as coffee, black tea, red wine, orange juice, and coke, and distilled water as control group. Four restorative methacrylate-based composites (Filtek Z250, TetricEvoCeram, Venus Diamond, and Grandio) and one silorane (FiltekSilorane) of shade A2 were selected to measure their color stability (180 disk samples) after 4 weeks of immersion in six staining solutions: black tea, coffee, red wine, orange juice, coke, and distilled water. The specimen's color was measured each week by means of a spectrophotometer (CIE L*a*b* system). Statistical analysis was carried out performing an ANOVA and LSD Test in order to statistically analyze differences in L*a*b*and ∆E values. All materials showed significant discoloration (p < 0.05) when compared to the control group (immersed in distilled water). The Highest ∆E observed was with red wine, whereas coke led to the lowest one. Silorane showed the highest color stability compared with methacrylate-based composites. Methacrylate-based materials immersed in staining solutions showed lower color stability when compared with silorane. Great differences in ∆E were found among the methacrylate-based materials tested. Although color stability of methacrylate-based composites immersed in staining solutions has been widely investigated, this has not been done for long immersion periods with silorane-based composites.

  9. Robust stabilization control based on guardian maps theory for a longitudinal model of hypersonic vehicle.

    Science.gov (United States)

    Liu, Yanbin; Liu, Mengying; Sun, Peihua

    2014-01-01

    A typical model of hypersonic vehicle has the complicated dynamics such as the unstable states, the nonminimum phases, and the strong coupling input-output relations. As a result, designing a robust stabilization controller is essential to implement the anticipated tasks. This paper presents a robust stabilization controller based on the guardian maps theory for hypersonic vehicle. First, the guardian maps theories are provided to explain the constraint relations between the open subsets of complex plane and the eigenvalues of the state matrix of closed-loop control system. Then, a general control structure in relation to the guardian maps theories is proposed to achieve the respected design demands. Furthermore, the robust stabilization control law depending on the given general control structure is designed for the longitudinal model of hypersonic vehicle. Finally, a simulation example is provided to verify the effectiveness of the proposed methods.

  10. An Novel Continuation Power Flow Method Based on Line Voltage Stability Index

    Science.gov (United States)

    Zhou, Jianfang; He, Yuqing; He, Hongbin; Jiang, Zhuohan

    2018-01-01

    An novel continuation power flow method based on line voltage stability index is proposed in this paper. Line voltage stability index is used to determine the selection of parameterized lines, and constantly updated with the change of load parameterized lines. The calculation stages of the continuation power flow decided by the angle changes of the prediction of development trend equation direction vector are proposed in this paper. And, an adaptive step length control strategy is used to calculate the next prediction direction and value according to different calculation stages. The proposed method is applied clear physical concept, and the high computing speed, also considering the local characteristics of voltage instability which can reflect the weak nodes and weak area in a power system. Due to more fully to calculate the PV curves, the proposed method has certain advantages on analysing the voltage stability margin to large-scale power grid.

  11. On the Stability of the Finite Difference based Lattice Boltzmann Method

    KAUST Repository

    El-Amin, Mohamed

    2013-06-01

    This paper is devoted to determining the stability conditions for the finite difference based lattice Boltzmann method (FDLBM). In the current scheme, the 9-bit two-dimensional (D2Q9) model is used and the collision term of the Bhatnagar- Gross-Krook (BGK) is treated implicitly. The implicitness of the numerical scheme is removed by introducing a new distribution function different from that being used. Therefore, a new explicit finite-difference lattice Boltzmann method is obtained. Stability analysis of the resulted explicit scheme is done using Fourier expansion. Then, stability conditions in terms of time and spatial steps, relaxation time and explicitly-implicitly parameter are determined by calculating the eigenvalues of the given difference system. The determined conditions give the ranges of the parameters that have stable solutions.

  12. System specification/system design document comment review: Plutonium Stabilization and Packaging System. Notes of conference

    International Nuclear Information System (INIS)

    1996-01-01

    A meeting was held between DOE personnel and the BNFL team to review the proposed resolutions to DOE comments on the initial issue of the system specification and system design document for the Plutonium Stabilization and Packaging System. The objectives of this project are to design, fabricate, install, and start up a glovebox system for the safe repackaging of plutonium oxide and metal, with a requirement of a 50-year storage period. The areas discussed at the meeting were: nitrogen in can; moisture instrumentation; glovebox atmosphere; can marking bar coding; weld quality; NFPA-101 references; inner can swabbing; ultimate storage environment; throughput; convenience can screw-top design; furnacetrays; authorization basis; compactor safety; schedule for DOE review actions; fire protection; criticality safety; applicable standards; approach to MC and A; homogeneous oxide; resistance welder power; and tray overfill. Revised resolutions were drafted and are presented

  13. System specification/system design document comment review: Plutonium Stabilization and Packaging System. Notes of conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    A meeting was held between DOE personnel and the BNFL team to review the proposed resolutions to DOE comments on the initial issue of the system specification and system design document for the Plutonium Stabilization and Packaging System. The objectives of this project are to design, fabricate, install, and start up a glovebox system for the safe repackaging of plutonium oxide and metal, with a requirement of a 50-year storage period. The areas discussed at the meeting were: nitrogen in can; moisture instrumentation; glovebox atmosphere; can marking-bar coding; weld quality; NFPA-101 references; inner can swabbing; ultimate storage environment; throughput; convenience can screw-top design; furnace/trays; authorization basis; compactor safety; schedule for DOE review actions; fire protection; criticality safety; applicable standards; approach to MC and A; homogeneous oxide; resistance welder power; and tray overfill. Revised resolutions were drafted and are presented.

  14. Stability considerations of packed multi-planet systems

    Science.gov (United States)

    Gratia, Pierre; Lissauer, Jack

    2018-04-01

    I will present our first results of the outcomes of five packed, Earth-mass planetary simulations around a Sun-like star, whose initial separations in terms of their semi-major axes is determined by a multiple of their mutual Hill radius, the parameter beta. In our simulations, we will vary beta between 3.5 and and 9, with a special emphasis on the region around 8.5, where stability times are wildly different for small increments of beta. While the zero initial eccentricity case has been investigated before, we expand on it by allowing for initial nonzero eccentricities of one or more planets. Furthermore, we increase the simulated time by up to one order of magnitude reaching billions of orbits. This of course will determine more accurately the fate of systems that take a long time to go unstable. Both of these investigations have not been done before, thus our findings improve our understanding of the stabilities of closely-spaced planetary systems.

  15. Analytical design of a high performance stability and control augmentation system for a hingeless rotor helicopter

    Science.gov (United States)

    Miyajima, K.

    1978-01-01

    A stability and control augmentation system (SCAS) was designed based on a set of comprehensive performance criteria. Linear optimal control theory was applied to determine appropriate feedback gains for the stability augmentation system (SAS). The helicopter was represented by six-degree-of-freedom rigid body equations of motion and constant factors were used as weightings for state and control variables. The ratio of these factors was employed as a parameter for SAS analysis and values of the feedback gains were selected on this basis to satisfy three of the performance criteria for full and partial state feedback systems. A least squares design method was then applied to determine control augmentation system (CAS) cross feed gains to satisfy the remaining seven performance criteria. The SCAS gains were then evaluated by nine degree-of-freedom equations which include flapping motion and conclusions drawn concerning the necessity of including the pitch/regressing and roll/regressing modes in SCAS analyses.

  16. Stability Analysis and H∞ Model Reduction for Switched Discrete-Time Time-Delay Systems

    Directory of Open Access Journals (Sweden)

    Zheng-Fan Liu

    2014-01-01

    Full Text Available This paper is concerned with the problem of exponential stability and H∞ model reduction of a class of switched discrete-time systems with state time-varying delay. Some subsystems can be unstable. Based on the average dwell time technique and Lyapunov-Krasovskii functional (LKF approach, sufficient conditions for exponential stability with H∞ performance of such systems are derived in terms of linear matrix inequalities (LMIs. For the high-order systems, sufficient conditions for the existence of reduced-order model are derived in terms of LMIs. Moreover, the error system is guaranteed to be exponentially stable and an H∞ error performance is guaranteed. Numerical examples are also given to demonstrate the effectiveness and reduced conservatism of the obtained results.

  17. A study on the operational stability of a refrigeration system having a variable speed compressor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiming; Deng, Shiming; Xu, Xiangguo; Chan, Mingyin [Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR (China)

    2008-12-15

    The increased use of variable speed compressors (VSC) in refrigeration systems can potentially lead to the unstable operation when compressor speed is varied from time to time for capacity control. The causes of unstable operation may be classified into two groups, one relating to control algorithms and the other to the inherent characteristics of systems. This paper reports on a study on the operational stability of a VSC refrigeration system due to its inherent characteristics. Based on experimental results, a new modified minimal stable superheat (MSS) line having a maximum MSS value and a minimal MSS value has been proposed. Using the modified MSS line, and supported by a series of purposely designed experiments, a detailed analysis on the operational stability of a VSC refrigeration system due to its inherent characteristics when its compressor speed is changed for capacity control has been carried out and presented. (author)

  18. A Study of Strong Stability of Distributed Systems. Ph.D. Thesis

    Science.gov (United States)

    Cataltepe, Tayfun

    1989-01-01

    The strong stability of distributed systems is studied and the problem of characterizing strongly stable semigroups of operators associated with distributed systems is addressed. Main emphasis is on contractive systems. Three different approaches to characterization of strongly stable contractive semigroups are developed. The first one is an operator theoretical approach. Using the theory of dilations, it is shown that every strongly stable contractive semigroup is related to the left shift semigroup on an L(exp 2) space. Then, a decomposition for the state space which identifies strongly stable and unstable states is introduced. Based on this decomposition, conditions for a contractive semigroup to be strongly stable are obtained. Finally, extensions of Lyapunov's equation for distributed parameter systems are investigated. Sufficient conditions for weak and strong stabilities of uniformly bounded semigroups are obtained by relaxing the equivalent norm condition on the right hand side of the Lyanupov equation. These characterizations are then applied to the problem of feedback stabilization. First, it is shown via the state space decomposition that under certain conditions a contractive system (A,B) can be strongly stabilized by the feedback -B(*). Then, application of the extensions of the Lyapunov equation results in sufficient conditions for weak, strong, and exponential stabilizations of contractive systems by the feedback -B(*). Finally, it is shown that for a contractive system, the first derivative of x with respect to time = Ax + Bu (where B is any linear bounded operator), there is a related linear quadratic regulator problem and a corresponding steady state Riccati equation which always has a bounded nonnegative solution.

  19. Evaluating the Dynamical Stability of Outer Solar System Objects in the Presence of Planet Nine

    Science.gov (United States)

    Becker, Juliette; Adams, Fred C.; Khain, Tali; Hamilton, Stephanie; Gerdes, David W.

    2017-10-01

    We present the results of an N-body analysis of the dynamical stability of a selection of outer solar system objects in the presence of the proposed new Solar System member Planet Nine. Our simulations show that some combinations of orbital elements ($a,e$) result in Planet Nine acting as a stabilizing influence on the TNOs, which can otherwise be destabilized by interactions with Neptune. We also see that some TNOs transition between several different mean-motion resonances during their lifetimes while still retaining approximate apsidal anti-alignment with Planet Nine. This behavior suggests that remaining in one particular orbit is not a requirement for orbital stability. As one product of our simulations, we present an {\\it a posteriori} probability distribution for the semi-major axis and eccentricity of the proposed Planet Nine based on TNO stability. We discuss this result in the broader context of the Planet Nine debate and the dynamical stability of the detached Kuiper Belt. We also announce the discovery of a new large semi-major axis, highly-inclined TNO, found in the Dark Energy Survey (DES) data. This new object’s orbit places it in the same population as was used to predict the existence of Planet Nine, and so this new object also helps constrain the orbital elements of the proposed Planet Nine.

  20. The armenian power system operation stability investigation accounting putting new power systems into operation

    International Nuclear Information System (INIS)

    Yeghiazaryan, L.V.; Hakobyan, S.G.; Gharibyan, G.V.; Harutyunyan, G.S.; Galstyan, G.H.

    2010-01-01

    The description of the power systems operation stability failure caused by the system significant emergency states occurred during the last working period in Armenian and USA power systems is performed. With the use of PSSTME-31 software portfolio of Siemens Firm a design model is developed and transient electromechanical process calculations for Armenian power system are performed. The accuracy of the model is checked by comparing real-time transient state parameters and their reproduction calculation results.The Armenia - Iran current power transmission lines permissible limit under the condition of the static and dynamic stability requirements and in case of the new thermal power units maintenance are defined