WorldWideScience

Sample records for system simulation program

  1. Field: A Program for Simulating Ultrasound Systems

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1997-01-01

    A program for the simulation of ultrasound systems is presented.It is based on the Tupholme-Stepanishen method, and is fastbecause of the use of a far-field approximation. Any kind oftransducer geometry and excitation can be simulated, and bothpulse-echo and continuous wave fields can be calculated...... for bothtransmit and pulse-echo. Dynamic apodization and focusing arehandled through time lines, and different focusingschemes can be simulated. The versatility of the program isensured by interfacing it to Matlab. All routines are calleddirectly from Matlab, and all Matlab features can be used. Thismakes...

  2. Material control system simulator program reference manual

    Energy Technology Data Exchange (ETDEWEB)

    Hollstien, R.B.

    1978-01-24

    A description is presented of a Material Control System Simulator (MCSS) program for determination of material accounting uncertainty and system response to particular adversary action sequences that constitute plausible material diversion attempts. The program is intended for use in situations where randomness, uncertainty, or interaction of adversary actions and material control system components make it difficult to assess safeguards effectiveness against particular material diversion attempts. Although MCSS may be used independently in the design or analysis of material handling and processing systems, it has been tailored toward the determination of material accountability and the response of material control systems to adversary action sequences.

  3. Material control system simulator program reference manual

    International Nuclear Information System (INIS)

    Hollstien, R.B.

    1978-01-01

    A description is presented of a Material Control System Simulator (MCSS) program for determination of material accounting uncertainty and system response to particular adversary action sequences that constitute plausible material diversion attempts. The program is intended for use in situations where randomness, uncertainty, or interaction of adversary actions and material control system components make it difficult to assess safeguards effectiveness against particular material diversion attempts. Although MCSS may be used independently in the design or analysis of material handling and processing systems, it has been tailored toward the determination of material accountability and the response of material control systems to adversary action sequences

  4. Development of a safety and regulation systems simulation program II

    International Nuclear Information System (INIS)

    1985-05-01

    This report describes the development of a safety and regulation systems simulation program under contract to the Atomic Energy Control Board of Canada. A systems logic interaction simulation (SLISIM) program was developed for the AECB's HP-1000 computer which operates in the interactive simulation (INSIM) program environment. The SLISIM program simulates the spatial neutron dynamics, the regulation of the reactor power and in this version the CANDU-PHW 600 MW(e) computerized shutdown systems' trip parameters. The modular concept and interactive capability of the INSIM environment provides the user with considerable flexibility of the setup and control of the simulation

  5. Nuclear engine system simulation (NESS) program update

    International Nuclear Information System (INIS)

    Scheil, C.M.; Pelaccio, D.G.; Petrosky, L.J.

    1993-01-01

    The second phase of development of a Nuclear Thermal Propulsion (NTP) engine system design analysis code has been completed. The standalone, versatile Nuclear Engine System Simulation (NESS) code provides an accurate, detailed assessment of engine system operating performance, weight, and sizes. The critical information is required to support ongoing and future engine system and stage design study efforts. This recent development effort included incorporation of an updated solid-core nuclear thermal reactor model that yields a reduced core weight and higher fuel power density when compared to a NERVA type reactor. NESS can now analyze expander, gas generator, and bleed cycles, along with multi-redundant propellant pump feed systems. Performance and weight of efficient multi-stage axial turbopump can now be determined, in addition to the traditional centrifugal pump

  6. Apollo experience report: Guidance and control systems. Engineering simulation program

    Science.gov (United States)

    Gilbert, D. W.

    1973-01-01

    The Apollo Program experience from early 1962 to July 1969 with respect to the engineering-simulation support and the problems encountered is summarized in this report. Engineering simulation in support of the Apollo guidance and control system is discussed in terms of design analysis and verification, certification of hardware in closed-loop operation, verification of hardware/software compatibility, and verification of both software and procedures for each mission. The magnitude, time, and cost of the engineering simulations are described with respect to hardware availability, NASA and contractor facilities (for verification of the command module, the lunar module, and the primary guidance, navigation, and control system), and scheduling and planning considerations. Recommendations are made regarding implementation of similar, large-scale simulations for future programs.

  7. Specs: Simulation Program for Electronic Circuits and Systems

    Science.gov (United States)

    de Geus, Aart Jan

    Simulation tools are central to the development and verification of very large scale integrated circuits. Circuit simulation has been used for over two decades to verify the behavior of designs. Recently the introduction of switch-level simulators which model MOS transistors in terms of switches has helped to overcome the long runtimes associated with full circuit simulation. Used strictly for functional verification and fault simulation, switch -level simulation can only give very rough estimates of the timing of a circuit. In this dissertation an approach is presented which adds a timing capability to switch-level simulators at relatively little extra CPU cost. A new logic state concept is introduced which consists of a set of discrete voltage steps. Signals are known only in terms of these states thus allowing all current computations to be table driven. State changes are scheduled in the same fashion as in the case of gate-level simulators, making the simulator event-driven. The simulator is of mixed-mode nature in that it can model portions of a design at either the gate or transistor level. In order to represent the "unknown" state, a signal consists of both an upper and a lower bound defining a signal envelope. Both bounds are expressed in terms of states. In order to speed up the simulation, MOS networks are subdivided in small pull-up and pull-down transistor configurations that can be preanalysed and prepared for fast evaluation during the simulation. These concepts have been implemented in the program SPECS (Simulation Program For Electronic Circuits and Systems) and examples of simulations are given.

  8. Module-based Simulation System for efficient development of nuclear simulation programs

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Wakabayashi, Jiro

    1990-01-01

    Module-based Simulation System (MSS) has been developed to realize a new software environment enabling versatile dynamic simulation of a complex nuclear power plant system flexibly. Described in the paper are (i) fundamental methods utilized in MMS and its software systemization, (ii) development of human interface system to help users in generating integrated simulation programs automatically, and (iii) development of an intelligent user support system for helping users in the two phases of automatical semantic diagnosis and consultation to automatic input data setup for the MSS-generated programs. (author)

  9. LOADING SIMULATION PROGRAM C

    Science.gov (United States)

    LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for simulating hydrology, sediment, and general water quality

  10. Extension of Generalized Fluid System Simulation Program's Fluid Property Database

    Science.gov (United States)

    Patel, Kishan

    2011-01-01

    This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.

  11. LOADING SIMULATION PROGRAM C

    Data.gov (United States)

    U.S. Environmental Protection Agency — LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for...

  12. Generalized Fluid System Simulation Program (GFSSP) - Version 6

    Science.gov (United States)

    Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul

    2015-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.

  13. Generalized Fluid System Simulation Program, Version 5.0-Educational

    Science.gov (United States)

    Majumdar, A. K.

    2011-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems.

  14. Generalized Fluid System Simulation Program, Version 6.0

    Science.gov (United States)

    Majumdar, A. K.; LeClair, A. C.; Moore, R.; Schallhorn, P. A.

    2016-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a general purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. Two thermodynamic property programs (GASP/WASP and GASPAK) provide required thermodynamic and thermophysical properties for 36 fluids: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutene, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride, ammonia, hydrogen peroxide, and air. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. The users can also supply property tables for fluids that are not in the library. Twenty-four different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include pipe flow, flow through a restriction, noncircular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct

  15. Simulation model for wind energy storage systems. Volume III. Program descriptions. [SIMWEST CODE

    Energy Technology Data Exchange (ETDEWEB)

    Warren, A.W.; Edsinger, R.W.; Burroughs, J.D.

    1977-08-01

    The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume III, the SIMWEST program description contains program descriptions, flow charts and program listings for the SIMWEST Model Generation Program, the Simulation program, the File Maintenance program and the Printer Plotter program. Volume III generally would not be required by SIMWEST user.

  16. A flexible simulation program for multitasking operating systems to investigate controllers in thermal solar systems

    Energy Technology Data Exchange (ETDEWEB)

    Wittwer, C.; Horlitz, O.; Rommel, M. [Fraunhofer Inst. for Solar Energy Systems ISE, Freiburg (Germany)

    1996-12-31

    This paper describes a new program CoISim to simulate systems with complex controllers which is based on a principle similar to the wide-spread modular program TRNSYS. To get an accurate response of this dynamic system, small time are used steps. A numerical integration algorithm is used which is especially suitable for solving a system of nonlinear equations. With time steps of 1 second, it is possible to observe the dynamic effect of ``matched flow systems`` where the flow is a continous function of the state. An important motivation for the development of this dynamic simulation model is the validation of system models. This will be possible by comparing simulations with real measurement data having different time steps. One of the main aims is to determine the dependence of the heat transfer in the collector and the heat exchanger and the flow speed of the fluid. The energy demand of the pump is greatly influenced very much by this dependency. The mass flow controller can be a simple ``two-position controller`` or, as well, a complex ``fuzzy controller``. To describe the fuzzy controller, a separate, commercially available development program may be used. The controller is usually implemented in ANSI-C. (orig.)

  17. CHEMSIMUL - A program package for numerical simulation of chemical reaction systems

    International Nuclear Information System (INIS)

    Lang Rasmussen, O.; Bjergbakke, E.

    1984-01-01

    A description is given of a program package, CHEMSIMUL, for numerical simulation of chemical reaction systems. The main components in the package are a translator of chemical equations to differential equations, a balance equation program, a differential equation solver, EPISODE, and an input/output program. The performance of the program is demonstrated by four examples. A manual for the input file and the complete program text with comments are given in Appendices I and II. (author)

  18. SAFSIM: A computer program for engineering simulations of space reactor system performance

    International Nuclear Information System (INIS)

    Dobranich, D.

    1992-01-01

    SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program that provides engineering simulations of user-specified flow networks at the system level. It includes fluid mechanics, heat transfer, and reactor dynamics capabilities. SAFSIM provides sufficient versatility to allow the simulation of almost any flow system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary goals of SAFSIM. The current capabilities of SAFSIM are summarized, and some illustrative example results are presented

  19. Updating of the program for simulation of Darlington shutdown and regulation systems

    International Nuclear Information System (INIS)

    1988-07-01

    This report describes the current status of the developments of a simulation of the Darlington Nuclear Generating Station shutdown and regulating systems, DARSIM done under contract to the Atomic Energy Control Board (AECB). The DARSIM program simulates the spatial neutron dynamics, the regulation of the reactor power, and shutdown system 1 and shutdown system 2 software. The DARSIM program operates in the interactive simulation program environment. DARSIM was installed on the APOLLO computer at the AECB and a version for an IBM-PC was also provided for the exclusive use of the AECB. Shutdown system software was updated to incorporate the latest revisions in the functional specifications. Additional developments have been provided to assist in the use and interpretation of the DARSIM results

  20. An intelligent environment for dynamic simulation program generation of nuclear reactor systems

    International Nuclear Information System (INIS)

    Ishizaka, Hiroaki; Gofuku, Akio; Yoshikawa, Hidekazu

    2004-01-01

    A graphical user interface system was developed for the two dynamic simulation systems based on modular programming methods: MSS and DSNP. The following works were made in conjunction with the system development: (1) conversion of the module libraries of both DSNP and MSS, (2) extension of DSNP- pre-compiler, (3) graphical interface for module integration, and (4) automatic converter of simple language descriptions for DSNP, where (1) and (2) were made on an engineering work station, while the rest (3) and (4), on Macintosh HyperCard. By using the graphical interface, a user can specify the structure of a simulation model, geometrical data, initial values of variables, etc. only by handling modules as icon on the pallet fields. The use of extended DSNP pre-compiler then generates the final product of dynamic simulation program automatically. The capability and effectiveness of the system was confirmed by a sample simulation of PWR SBLOCA transient in PORV stuck open event. (author)

  1. Effects of a System Thinking-Based Simulation Program for Congestive Heart Failure.

    Science.gov (United States)

    Kim, Hyeon-Young; Yun, Eun Kyoung

    2018-03-01

    This study evaluated a system thinking-based simulation program for the care of patients with congestive heart failure. Participants were 67 undergraduate nursing students from a nursing college in Seoul, South Korea. The experimental group was given a 4-hour system-thinking program and a 2-hour simulation program, whereas the control group had a 4-hour case study and a 2-hour simulation program. There were significant improvements in critical thinking in both groups, but no significant group differences between educational methods (F = 3.26, P = .076). Problem-solving ability in the experimental group was significantly higher than in the control group (F = 5.04, P = .028). Clinical competency skills in the experimental group were higher than in the control group (t = 2.12, P = .038). A system thinking-based simulation program is a more effective learning method in terms of problem-solving ability and clinical competency skills compared to the existing simulation program. Further research using a longitudinal study is needed to test the long-term effect of the intervention and apply it to the nursing curriculum.

  2. Investigation of roughing machining simulation by using visual basic programming in NX CAM system

    Science.gov (United States)

    Hafiz Mohamad, Mohamad; Nafis Osman Zahid, Muhammed

    2018-03-01

    This paper outlines a simulation study to investigate the characteristic of roughing machining simulation in 4th axis milling processes by utilizing visual basic programming in NX CAM systems. The selection and optimization of cutting orientation in rough milling operation is critical in 4th axis machining. The main purpose of roughing operation is to approximately shape the machined parts into finished form by removing the bulk of material from workpieces. In this paper, the simulations are executed by manipulating a set of different cutting orientation to generate estimated volume removed from the machine parts. The cutting orientation with high volume removal is denoted as an optimum value and chosen to execute a roughing operation. In order to run the simulation, customized software is developed to assist the routines. Operations build-up instructions in NX CAM interface are translated into programming codes via advanced tool available in the Visual Basic Studio. The codes is customized and equipped with decision making tools to run and control the simulations. It permits the integration with any independent program files to execute specific operations. This paper aims to discuss about the simulation program and identifies optimum cutting orientations for roughing processes. The output of this study will broaden up the simulation routines performed in NX CAM systems.

  3. SIDAS - a block-diagram programming system for the interactive digital simulation of dynamic systems

    International Nuclear Information System (INIS)

    Moll, H.; Burkhardt, H.

    1978-01-01

    The paper describes a block-oriented digital simulation system. Some applications clarify the basic structure and operation. The main features of the system are: Easy handling and manipulation through interactive graphical input/output, operational flexibility through successive simulation runs and online modification of parameters, direct access to all facilities of a medium-sized computing system. (orig.) [de

  4. Modelling of reactor control and protection systems in the core simulator program GARLIC

    International Nuclear Information System (INIS)

    Beraha, D.; Lupas, O.; Ploegert, K.

    1984-01-01

    For analysis of the interaction between control and limitation systems and the power distribution in the reactor core, a valuable tool is provided by the joint simulation of the core and the interacting systems. To this purpose, the core simulator GARLIC has been enhanced by models of the systems for controlling and limiting the reactor power and the power distribution in the core as well as by modules for calculating safety related core parameters. The computer-based core protection system, first installed in the Grafenrheinfeld NPP, has been included in the simulation. In order to evaluate the accuracy of GARLIC-simulations, the code has been compared with a design code in the train of a verification phase. The report describes the program extensions and the results of the verification. (orig.) [de

  5. A study on intelligent nuclear systems (HASP: Human Acts Simulation Program)

    International Nuclear Information System (INIS)

    Asai, Kiyoshi; Fujii, Minoru; Higuchi, Kenji; Kume, Etsuo; Ohtani, Takayuki; Far, B.H.; Kambayashi, Shaw; Akimoto, Masayuki

    1991-06-01

    The fourth year progress of the Human Acts Simulation Program HASP in short, has been presented in this report. The HASP started in 1987 at JAERI as a ten-year research and development program of underlying technologies for intelligent robots, intelligent nuclear plants and so on. It consists of the research and development of technologies of a knowledge-base system, robot vision, robot kinematics/kinetics, plant geometry database, dose evaluation and high speed Monte Carlo machine. (author)

  6. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide. Final Report

    International Nuclear Information System (INIS)

    Pelaccio, D.G.; Scheil, C.M.; Petrosky, L.J.

    1993-03-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner

  7. A Novel Approach for Modeling Chemical Reaction in Generalized Fluid System Simulation Program

    Science.gov (United States)

    Sozen, Mehmet; Majumdar, Alok

    2002-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a computer code developed at NASA Marshall Space Flight Center for analyzing steady state and transient flow rates, pressures, temperatures, and concentrations in a complex flow network. The code, which performs system level simulation, can handle compressible and incompressible flows as well as phase change and mixture thermodynamics. Thermodynamic and thermophysical property programs, GASP, WASP and GASPAK provide the necessary data for fluids such as helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, water, a hydrogen, isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, several refrigerants, nitrogen trifluoride and ammonia. The program which was developed out of need for an easy to use system level simulation tool for complex flow networks, has been used for the following purposes to name a few: Space Shuttle Main Engine (SSME) High Pressure Oxidizer Turbopump Secondary Flow Circuits, Axial Thrust Balance of the Fastrac Engine Turbopump, Pressurized Propellant Feed System for the Propulsion Test Article at Stennis Space Center, X-34 Main Propulsion System, X-33 Reaction Control System and Thermal Protection System, and International Space Station Environmental Control and Life Support System design. There has been an increasing demand for implementing a combustion simulation capability into GFSSP in order to increase its system level simulation capability of a liquid rocket propulsion system starting from the propellant tanks up to the thruster nozzle for spacecraft as well as launch vehicles. The present work was undertaken for addressing this need. The chemical equilibrium equations derived from the second law of thermodynamics and the energy conservation equation derived from the first law of thermodynamics are solved simultaneously by a Newton-Raphson method. The numerical scheme was implemented as a User

  8. Generalized Fluid System Simulation Program (GFSSP) Version 6 - General Purpose Thermo-Fluid Network Analysis Software

    Science.gov (United States)

    Majumdar, Alok; Leclair, Andre; Moore, Ric; Schallhorn, Paul

    2011-01-01

    GFSSP stands for Generalized Fluid System Simulation Program. It is a general-purpose computer program to compute pressure, temperature and flow distribution in a flow network. GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches. It was primarily developed to analyze Internal Flow Analysis of a Turbopump Transient Flow Analysis of a Propulsion System. GFSSP development started in 1994 with an objective to provide a generalized and easy to use flow analysis tool for thermo-fluid systems.

  9. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y., E-mail: yican.wu@fds.org.cn [Inst. of Nuclear Energy Safety Technology, Hefei, Anhui (China)

    2015-07-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  10. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Wu, Y.

    2015-01-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  11. Development of support tools for efficient construction of dynamic simulation program for engineering systems

    International Nuclear Information System (INIS)

    Gofuku, Akio

    1993-01-01

    In this study, two support tools are developed for construction of a dynamic simulation program for engineering systems (especially nuclear systems) by combining software modules. These are (1) a sub-system to support the module selection suitable for dynamic simulation and (2) a graphical user interface to support visual construction of simulation programs. The support tools are designed to be independent on the conception of software modules (data communication methods between modules). In the module selection sub-system of item 1, a module is characterized beforehand by keywords for several criteria. The similarity between the characteristic of requested module by users and that of registered modules in the module library is estimated by a weighted average of similarity indexes for criteria. In the module selection sub-system, the weights are flexibly extracted from users by applying the analytic hierarchy process. The graphical user interface helps users to specify both calling order of modules and data transfer between two modules. The availability of the support tools is evaluated by several sample problems of module selection and dynamic simulation model construction. The support tools will be a strong tool for the efficient usage of software modules. (author)

  12. PUMN: a radiation damage simulation computer program for the WINERY system

    International Nuclear Information System (INIS)

    Kuspa, J.P.

    1976-01-01

    The WINERY Radiation Damage Computer Simulation System will attempt to solve the entire radiation damage problem from the incident radiation to the property changes which occur in the material, using a set of interrelated computer programs. Computer simulation may be indispensable to the study of the radiation damage to materials in breeder and fusion reactors. WINERY is introduced with this work, and one portion of the system, the PUMN program, is developed and used to obtain important radiation damage results with Fe 3 Al crystal. PUMN is a program which simulates the response of the atoms in a crystal to a knock-on atom. It yields the damage configuration of the crystal by considering the dynamic interaction of all the atoms of the computational cell, up to 1000 atoms. The trajectories of the atoms are calculated using the Nordsieck Method, which has a prediction step based upon Taylor series expansions of the position and its first five time derivatives, and has a correction sequence which uses coefficients which have been optimized for efficiency and accuracy. Other features, such as restart files, automatic time step control, and crystal extension, make PUMN a versatile program which can simulate cases of relatively high knock-on energy, at least up to 500 eV. The PUMN program provides the WINERY system with results for the number of displacements, N/sub d/, due to knock-on atoms with various energies. This study dealt exclusively with Fe 3 Al. The values of N/sub d/ for Fe 3 Al were obtained at two different energies, 100 eV and 500 eV, for a variety of initial directions

  13. Development of computer program for simulation of an ice bank system operation, Part I: Mathematical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Halasz, Boris; Grozdek, Marino; Soldo, Vladimir [Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lucica 5, 10 000 Zagreb (Croatia)

    2009-09-15

    Since the use of standard engineering methods in the process of an ice bank performance evaluation offers neither adequate flexibility nor accuracy, the aim of this research was to provide a powerful tool for an industrial design of an ice storage system allowing to account for the various design parameters and system arrangements over a wide range of time varying operating conditions. In this paper the development of a computer application for the prediction of an ice bank system operation is presented. Static, indirect, cool thermal storage systems with external ice on coil building/melting were considered. The mathematical model was developed by means of energy and mass balance relations for each component of the system and is basically divided into two parts, the model of an ice storage system and the model of a refrigeration unit. Heat transfer processes in an ice silo were modelled by use of empirical correlations while the performance of refrigeration unit components were based on manufacturers data. Programming and application design were made in Fortran 95 language standard. Input of data is enabled through drop down menus and dialog boxes, while the results are presented via figures, diagrams and data (ASCII) files. In addition, to demonstrate the necessity for development of simulation program a case study was performed. Simulation results clearly indicate that no simple engineering methods or rule of thumb principles could be utilised in order to validate performance of an ice bank system properly. (author)

  14. SAFSIM theory manual: A computer program for the engineering simulation of flow systems

    Energy Technology Data Exchange (ETDEWEB)

    Dobranich, D.

    1993-12-01

    SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.

  15. State, space relay modeling and simulation using the electromagnetic Transients Program and its transient analysis of control systems capability

    International Nuclear Information System (INIS)

    Domijan, A.D. Jr.; Emami, M.V.

    1990-01-01

    This paper reports on a simulation of a MHO distance relay developed to study the effect of its operation under various system conditions. Simulation is accomplished using a state space approach and a modeling technique using ElectroMagnetic Transient Program (Transient Analysis of Control Systems). Furthermore, simulation results are compared with those obtained in another independent study as a control, to validate the results. A data code for the practical utilization of this simulation is given

  16. Simulation programs for ph.D. study of analysis, modeling and optimum design of solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qin

    1998-12-31

    The design of solar domestic hot water (DHW) systems is a complex process, due to characteristics inherent in the solar heating technology. Recently, computer simulation has become a widely used technique to improve the understanding of the thermal processes in such systems. One of the main objects of the Ph.D. study of `Analysis, Modelling and optimum Design of Solar Domestic Hot Water Systems` is to develop and verify programs for carrying out the simulation and evaluation of the dynamic performance of solar DHW systems. During this study, simulation programs for hot water distribution networks and for certain types of solar DHW systems were developed. (au)

  17. Mini Combat Trauma Patient Simulation System Defense Acquisition Challenge Program (DACP): Mini Combat Trauma Patient Simulation (Mini CTPS)

    National Research Council Canada - National Science Library

    2004-01-01

    .... It consists of networked realistic casualty generators, patient simulators and computer-based casualty simulations, virtual patients and equipment, data and sensor recorders, and an After- Action Review System...

  18. Simulation and off-line programming at Sandia`s Intelligent Systems and Robotics Center

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, P.G.; Fahrenholtz, J.C.; McDonald, M. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center] [and others

    1997-11-01

    One role of the Intelligent Robotics and System Center (ISRC) at Sandia National Laboratories is to address certain aspects of Sandia`s mission to design, manufacture, maintain, and dismantle nuclear weapon components. Hazardous materials, devices, and environments are often involved. Because of shrinking resources, these tasks must be accomplished with a minimum of prototyping, while maintaining high reliability. In this paper, the authors describe simulation, off-line programming/planning, and related tools which are in use, under development, and being researched to solve these problems at the ISRC.

  19. DSNP, Program and Data Library System for Dynamic Simulation of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Saphier, D.; Madell, J.; Dean, E.

    1988-01-01

    1 - Description of problem or function: DSNP (Dynamic Simulator for Nuclear Power-Plants) is a system of programs and data files by which a nuclear power plant, or part thereof, can be simulated. The acronym DSNP is used interchangeably for the DSNP language, the DSNP libraries, the DSNP pre-compiler, and the DSNP document generator. The DSNP language is a special-purpose, block-oriented digital- simulation language developed to facilitate the preparation of dynamic simulations of a large variety of nuclear power plants. It is a user-oriented language that permits the user to prepare simulation programs directly from power plant block diagrams and flow charts by recognizing the symbolic DSNP statements for the appropriate physical components and listing these statements in a logical sequence according to the flow of physical properties in the simulated power plant. Physical components of nuclear power plants are represented by functional blocks, or modules. Many of the more complex components are represented by several modules. The nuclear reactor, for example, has a kinetic module, a power distribution module, a feedback module, a thermodynamic module, a hydraulic module, and a radioactive heat decay module. These modules are stored in DSNP libraries in the form of a DSNP subroutine or function, a block of statements, a macro, or a combination of the above. Basic functional blocks such as integrators, pipes, function generators, connectors, and many auxiliary functions representing properties of materials used in nuclear power plants are also available. The DSNP pre-compiler analyzes the DSNP simulation program, performs the appropriate translations, inserts the requested modules from the library, links these modules together, searches necessary data files, and produces a simulation program in FORTRAN. FORTRAN is considered to be a subset of DSNP and can be inserted anywhere in the simulation program without restriction. I/O statements can be located anywhere in

  20. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC

    International Nuclear Information System (INIS)

    Wu, Yican; Song, Jing; Zheng, Huaqing; Sun, Guangyao; Hao, Lijuan; Long, Pengcheng; Hu, Liqin

    2015-01-01

    Highlights: • The new developed CAD-based Monte Carlo program named SuperMC for integrated simulation of nuclear system makes use of hybrid MC-deterministic method and advanced computer technologies. SuperMC is designed to perform transport calculation of various types of particles, depletion and activation calculation including isotope burn-up, material activation and shutdown dose, and multi-physics coupling calculation including thermo-hydraulics, fuel performance and structural mechanics. The bi-directional automatic conversion between general CAD models and physical settings and calculation models can be well performed. Results and process of simulation can be visualized with dynamical 3D dataset and geometry model. Continuous-energy cross section, burnup, activation, irradiation damage and material data etc. are used to support the multi-process simulation. Advanced cloud computing framework makes the computation and storage extremely intensive simulation more attractive just as a network service to support design optimization and assessment. The modular design and generic interface promotes its flexible manipulation and coupling of external solvers. • The new developed and incorporated advanced methods in SuperMC was introduced including hybrid MC-deterministic transport method, particle physical interaction treatment method, multi-physics coupling calculation method, geometry automatic modeling and processing method, intelligent data analysis and visualization method, elastic cloud computing technology and parallel calculation method. • The functions of SuperMC2.1 integrating automatic modeling, neutron and photon transport calculation, results and process visualization was introduced. It has been validated by using a series of benchmarking cases such as the fusion reactor ITER model and the fast reactor BN-600 model. - Abstract: Monte Carlo (MC) method has distinct advantages to simulate complicated nuclear systems and is envisioned as a routine

  1. Nuclear Engine System Simulation (NESS). Version 2.0: Program user's guide. Final Report

    International Nuclear Information System (INIS)

    Pelaccio, D.G.; Scheil, C.M.; Petrosky, L.

    1993-03-01

    This Program User's Guide discusses the Nuclear Thermal Propulsion (NTP) engine system design features and capabilities modeled in the Nuclear Engine System Simulation (NESS): Version 2.0 program (referred to as NESS throughout the remainder of this document), as well as its operation. NESS was upgraded to include many new modeling capabilities not available in the original version delivered to NASA LeRC in Dec. 1991, NESS's new features include the following: (1) an improved input format; (2) an advanced solid-core NERVA-type reactor system model (ENABLER 2); (3) a bleed-cycle engine system option; (4) an axial-turbopump design option; (5) an automated pump-out turbopump assembly sizing option; (6) an off-design gas generator engine cycle design option; (7) updated hydrogen properties; (8) an improved output formnd (9) personal computer operation capability. Sample design cases are presented in the user's guide that demonstrate many of the new features associated with this upgraded version of NESS, as well as design modeling features associated with the original version of NESS

  2. Development of user interface to support automatic program generation of nuclear power plant analysis by module-based simulation system

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Mizutani, Naoki; Nakaya, Ken-ichiro; Wakabayashi, Jiro

    1988-01-01

    Module-based Simulation System (MSS) has been developed to realize a new software work environment enabling versatile dynamic simulation of a complex nuclear power system flexibly. The MSS makes full use of modern software technology to replace a large fraction of human software works in complex, large-scale program development by computer automation. Fundamental methods utilized in MSS and developmental study on human interface system SESS-1 to help users in generating integrated simulation programs automatically are summarized as follows: (1) To enhance usability and 'communality' of program resources, the basic mathematical models of common usage in nuclear power plant analysis are programed as 'modules' and stored in a module library. The information on usage of individual modules are stored in module database with easy registration, update and retrieval by the interactive management system. (2) Target simulation programs and the input/output files are automatically generated with simple block-wise languages by a precompiler system for module integration purpose. (3) Working time for program development and analysis in an example study of an LMFBR plant thermal-hydraulic transient analysis was demonstrated to be remarkably shortened, with the introduction of an interface system SESS-1 developed as an automatic program generation environment. (author)

  3. Interactive Dynamic-System Simulation

    CERN Document Server

    Korn, Granino A

    2010-01-01

    Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. Written by a pioneer in simulation, the book introduces dynamic-system models and explains how software for solving differential equations works. After demonstrating real simulation programs with simple examples, the author

  4. Users manual for an expert system (HSPEXP) for calibration of the hydrological simulation program; Fortran

    Science.gov (United States)

    Lumb, A.M.; McCammon, R.B.; Kittle, J.L.

    1994-01-01

    Expert system software was developed to assist less experienced modelers with calibration of a watershed model and to facilitate the interaction between the modeler and the modeling process not provided by mathematical optimization. A prototype was developed with artificial intelligence software tools, a knowledge engineer, and two domain experts. The manual procedures used by the domain experts were identified and the prototype was then coded by the knowledge engineer. The expert system consists of a set of hierarchical rules designed to guide the calibration of the model through a systematic evaluation of model parameters. When the prototype was completed and tested, it was rewritten for portability and operational use and was named HSPEXP. The watershed model Hydrological Simulation Program--Fortran (HSPF) is used in the expert system. This report is the users manual for HSPEXP and contains a discussion of the concepts and detailed steps and examples for using the software. The system has been tested on watersheds in the States of Washington and Maryland, and the system correctly identified the model parameters to be adjusted and the adjustments led to improved calibration.

  5. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC

    International Nuclear Information System (INIS)

    Wu, Y.; Song, J.; Zheng, H.; Sun, G.; Hao, L.; Long, P.; Hu, L.

    2013-01-01

    SuperMC is a (Computer-Aided-Design) CAD-based Monte Carlo (MC) program for integrated simulation of nuclear systems developed by FDS Team (China), making use of hybrid MC-deterministic method and advanced computer technologies. The design aim, architecture and main methodology of SuperMC are presented in this paper. The taking into account of multi-physics processes and the use of advanced computer technologies such as automatic geometry modeling, intelligent data analysis and visualization, high performance parallel computing and cloud computing, contribute to the efficiency of the code. SuperMC2.1, the latest version of the code for neutron, photon and coupled neutron and photon transport calculation, has been developed and validated by using a series of benchmarking cases such as the fusion reactor ITER model and the fast reactor BN-600 model

  6. Systemic Analysis, Mapping, Modeling, and Simulation of the Advanced Accelerator Applications Program

    International Nuclear Information System (INIS)

    Guan, Yue; Laidler, James J.; Morman, James A.

    2002-01-01

    Advanced chemical separations methods envisioned for use in the Department of Energy Advanced Accelerator Applications (AAA) program have been studied using the Systemic Analysis, Mapping, Modeling, and Simulation (SAMMS) method. This integrated and systematic method considers all aspects of the studied process as one dynamic and inter-dependent system. This particular study focuses on two subjects: the chemical separation processes for treating spent nuclear fuel, and the associated non-proliferation implications of such processing. Two levels of chemical separation models are developed: level 1 models treat the chemical process stages by groups; and level 2 models depict the details of each process stage. Models to estimate the proliferation risks based on proliferation barrier assessment are also developed. This paper describes the research conducted for the single-stratum design in the AAA program. Further research conducted for the multi-strata designs will be presented later. The method and models described in this paper can help in the design of optimized processes that fulfill the chemical separation process specifications and non-proliferation requirements. (authors)

  7. Program For Parallel Discrete-Event Simulation

    Science.gov (United States)

    Beckman, Brian C.; Blume, Leo R.; Geiselman, John S.; Presley, Matthew T.; Wedel, John J., Jr.; Bellenot, Steven F.; Diloreto, Michael; Hontalas, Philip J.; Reiher, Peter L.; Weiland, Frederick P.

    1991-01-01

    User does not have to add any special logic to aid in synchronization. Time Warp Operating System (TWOS) computer program is special-purpose operating system designed to support parallel discrete-event simulation. Complete implementation of Time Warp mechanism. Supports only simulations and other computations designed for virtual time. Time Warp Simulator (TWSIM) subdirectory contains sequential simulation engine interface-compatible with TWOS. TWOS and TWSIM written in, and support simulations in, C programming language.

  8. Present status of an integrated software system for HASP (Human Acts Simulation Program)

    International Nuclear Information System (INIS)

    Otani, Takayuki; Ebihara, Ken-ichi; Kambayashi, Shaw; Kume, Etsuo; Higuchi, Kenji; Fujii, Minoru; Akimoto, Masayuki

    1994-01-01

    In Human Acts Simulation Program (HASP), human acts to be realized by a human-shaped intelligent robot in a nuclear power plant are simulated by computers. The major purpose of HASP is to develop basic and underlying design technologies for intelligent and automatic power plant. The objectives of this paper is to show the present status of the HASP, with particular emphasis on activities targetted at the integration of developed subsystems to simulate the important capabilities of the intelligent robot such as planning, robot dynamics, and so on. (author)

  9. Fusion Simulation Program

    International Nuclear Information System (INIS)

    Greenwald, Martin

    2011-01-01

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. (1). Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical

  10. Plasma Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Greenwald, Martin

    2011-10-04

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a

  11. Simulation Programs for Ph.D. Study of Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems

    DEFF Research Database (Denmark)

    Qin, Lin

    1999-01-01

    The design of solar domestic hot water system is a complex process, due to characteristics inherent in solar heating technology. Recently, computer simulation has become a widely used technique to improve the understanding of the thermal processes in such systems. This report presents the detaile...... programs or units that were developed in the Ph.D study of " Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems"....

  12. EGS code system: computer programs for the Monte Carlo simulation of electromagnetic cascade showers. Version 3

    International Nuclear Information System (INIS)

    Ford, R.L.; Nelson, W.R.

    1978-06-01

    A code to simulate almost any electron--photon transport problem conceivable is described. The report begins with a lengthy historical introduction and a description of the shower generation process. Then the detailed physics of the shower processes and the methods used to simulate them are presented. Ideas of sampling theory, transport techniques, particle interactions in general, and programing details are discussed. Next, EGS calculations and various experiments and other Monte Carlo results are compared. The remainder of the report consists of user manuals for EGS, PEGS, and TESTSR codes; options, input specifications, and typical output are included. 38 figures, 12 tables

  13. A study on intelligent nuclear systems, (HASP: human acts simulation program)

    International Nuclear Information System (INIS)

    Asai, Kiyoshi; Uenaka, Junji; Kambayashi, Shaw; Higuchi, Kenji; Kume, Etsuo; Fujisaki, Masahide; Fujii, Minoru; Yokokawa, Mitsuo

    1989-03-01

    In 1987 Japan Atomic Energy Research Institute has started a ten-years program named HASP, i.e., Human Acts Simulation Program, for artificial intelligence and robotics research. In the HASP, a human-shaped robot reads and understands orders written in natural language, planning and producing a required sequence of actions, accesses to a device or an instrument recognizing its entity and dose the ordered work for plant maintenance. All of these processes including calculation of the radiation exposure of the robot are simulated by logical and numerical computations. The simulated actions of the robot in three-dimensional environments are displayed using a high speed computer for graphics. The aim of the HASP project is threefold, i.e., (1) to develop fundamental technologies for design of intelligent robots, (2) to develop technologies for automated and/or intelligent plants, (3) to provide researchers and engineers in nuclear field with basic and systematized artificial intelligence techniques. The research items are natural language understanding, goal planning by LISP calculus, pattern recognitions by neural network methods, plant modelling by solid modeller, biped robot simulations, graphic display of the robot motion, and a study of design concept of a Monte Carlo vector processor for high speed calculation of the radiation exposure. In this report research results attained in the second year of the HASP project are described. (author)

  14. Reliability and Availability Analysis of Some Systems with Common-Cause Failures Using SPICE Circuit Simulation Program

    Directory of Open Access Journals (Sweden)

    Muhammad Taher Abuelma'atti

    1999-01-01

    Full Text Available The effectiveness of SPICE circuit simulation program in calculating probabilities, reliability, steady-state availability and mean-time to failure of repairable systems described by Markov models is demonstrated. Two examples are presented. The first example is a warm standby system with common-cause failures and human errors. The second example is a non-identical unit parallel system with common-cause failures. In both cases recourse to numerical solution is inevitable to obtain the Laplace transforms of the probabilities. Results obtained using SPICE are compared with previously published results obtained using the Laplace transform method. Full SPICE listings are included.

  15. Programming for a nuclear reactor instrument simulator

    International Nuclear Information System (INIS)

    Cohn, C.E.

    1989-01-01

    A new computerized control system for a transient test reactor incorporates a simulator for pre-operational testing of control programs. The part of the simulator pertinent to the discussion here consists of two microprocessors. An 8086/8087 reactor simulator calculates simulated reactor power by solving the reactor kinetics equations. An 8086 instrument simulator takes the most recent power value developed by the reactor simulator and simulates the appropriate reading on each of the eleven reactor instruments. Since the system is required to run on a one millisecond cycle, careful programming was required to take care of all eleven instruments in that short time. This note describes the special programming techniques used to attain the needed performance

  16. Development of the Simulation Program for the In-Vessel Fuel Handling System of Double Rotating Plug Type

    International Nuclear Information System (INIS)

    Kim, S. H.; Kim, J. B.

    2011-01-01

    In-vessel fuel handling machines are the main equipment of the in-vessel fuel handling system, which can move the core assembly inside the reactor vessel along with the rotating plug during refueling. The in vessel fuel handling machines for an advanced sodium cooled fast reactor(SFR) demonstration plant are composed of a direct lift machine(DM) and a fixed arm machine(FM). These machines should be able to access all areas above the reactor core by means of the rotating combination of double rotating plugs. Thus, in the in vessel fuel handling system of the double rotating plug type, it is necessary to decide the rotating plug size and evaluate the accessibility of in-vessel fuel handling machines in given core configuration. In this study, the simulation program based on LABVIEW which can effectively perform the arrangement design of the in vessel fuel handling system and simulate the rotating plug motion was developed. Fig. 1 shows the flow chart of the simulation program

  17. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D L

    2009-05-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex

  18. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    International Nuclear Information System (INIS)

    Brown, D.L.

    2009-01-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex networked systems

  19. Use of Generalized Fluid System Simulation Program (GFSSP) for Teaching and Performing Senior Design Projects at the Educational Institutions

    Science.gov (United States)

    Majumdar, A. K.; Hedayat, A.

    2015-01-01

    This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects.

  20. Simulation of Darlington shutdown and regulation systems

    International Nuclear Information System (INIS)

    1986-10-01

    This report describes the development of a simulation of the Darlington Nuclear Generating Station shutdown and regulating systems, DARSIM. The DARSIM program simulates the spatial neutron dynamics, the regulation of the reactor power, and Shutdown System 1, SDS1, and Shutdown System 2, SDS2, software. The DARSIM program operates in the interactive simulation (INSIM) program environment

  1. MSCAP [Magnet System Circuitry Analysis Program] simulations of TESPE magnet safety transients

    International Nuclear Information System (INIS)

    Herring, J.S.; Juengst, K.P.; Jones, J.L.; Kraus, H.G.

    1988-01-01

    During 1987, a series of tests were carried out on the TESPE Facility at the Institut fuer Technische Physik of the Kernforschungszentrum Karlsruhe in conjunction with the Idaho National Engineering Laboratory (INEL) to experimentally and analytically investigate arcing phenomena in high field superconducting magnets. One objective of the tests was to verify computer code simulations of the magnet system. TESPE is a six coil, NbTi, toroidal magnet set, designed to operate with 7 T and 8.3 MJ at 7000 A. The full TESPE circuit was modeled for four series of experiments: internal shorts during charge and discharge, arcs initiated by electrode separation, arcs initiated by a vaporizing wire, and arcs moving along two rails. 3 refs., 15 figs., 1 tab

  2. Bourbaki's structure theory in the problem of complex systems simulation models synthesis and model-oriented programming

    Science.gov (United States)

    Brodsky, Yu. I.

    2015-01-01

    The work is devoted to the application of Bourbaki's structure theory to substantiate the synthesis of simulation models of complex multicomponent systems, where every component may be a complex system itself. An application of the Bourbaki's structure theory offers a new approach to the design and computer implementation of simulation models of complex multicomponent systems—model synthesis and model-oriented programming. It differs from the traditional object-oriented approach. The central concept of this new approach and at the same time, the basic building block for the construction of more complex structures is the concept of models-components. A model-component endowed with a more complicated structure than, for example, the object in the object-oriented analysis. This structure provides to the model-component an independent behavior-the ability of standard responds to standard requests of its internal and external environment. At the same time, the computer implementation of model-component's behavior is invariant under the integration of models-components into complexes. This fact allows one firstly to construct fractal models of any complexity, and secondly to implement a computational process of such constructions uniformly-by a single universal program. In addition, the proposed paradigm allows one to exclude imperative programming and to generate computer code with a high degree of parallelism.

  3. ORAC: a molecular dynamics simulation program to explore free energy surfaces in biomolecular systems at the atomistic level.

    Science.gov (United States)

    Marsili, Simone; Signorini, Giorgio Federico; Chelli, Riccardo; Marchi, Massimo; Procacci, Piero

    2010-04-15

    We present the new release of the ORAC engine (Procacci et al., Comput Chem 1997, 18, 1834), a FORTRAN suite to simulate complex biosystems at the atomistic level. The previous release of the ORAC code included multiple time steps integration, smooth particle mesh Ewald method, constant pressure and constant temperature simulations. The present release has been supplemented with the most advanced techniques for enhanced sampling in atomistic systems including replica exchange with solute tempering, metadynamics and steered molecular dynamics. All these computational technologies have been implemented for parallel architectures using the standard MPI communication protocol. ORAC is an open-source program distributed free of charge under the GNU general public license (GPL) at http://www.chim.unifi.it/orac. 2009 Wiley Periodicals, Inc.

  4. G4Beamline Program for Radiation Simulations

    International Nuclear Information System (INIS)

    Beard, Kevin; Roberts, Thomas J.; Degtiarenko, Pavel

    2008-01-01

    G4beamline, a program that is an interface to the Geant4 toolkit that we have developed to simulate accelerator beamlines, is being extended with a graphical user interface to quickly and efficiently model experimental equipment and its shielding in experimental halls. The program is flexible, user friendly, and requires no programming by users, so that even complex systems can be simulated quickly. This improved user interface is of much wider application than just the shielding simulations that are the focus of this project. As an initial application, G4beamline is being extended to provide the simulations that are needed to determine the radiation sources for the proposed experiments at Jefferson Laboratory so that shielding issues can be evaluated. Since the program already has the capabilities needed to simulate the transport of all known particles, including scattering, attenuation, interactions, and decays, the extension involves implementing a user-friendly graphical user inter

  5. Generalized Fluid System Simulation Program, Version 5.0-Educational. Supplemental Information for NASA/TM-2011-216470. Supplement

    Science.gov (United States)

    Majumdar, A. K.

    2011-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems. This supplement gives the input and output data files for the examples.

  6. MAGRAC: railgun simulation program

    International Nuclear Information System (INIS)

    Deadrick, F.J.; Hawke, R.S.; Scudder, J.K.

    1981-01-01

    A computer simulation code at the Lawrence Livermore National Laboratory (LLNL) to predict the performance of a railgun electromagnetic accelerator has been developed and validated. The code, called MAGRAC (MAGnetic Railgun ACcelerator), models the performance of a railgun driven by a magnetic flux compression current generator (MFCG). The MAGRAC code employs a time-step solution of the nonlinear time-varying element railgun circuit to determine rail currents. From the rail currents, the projectile acceleration, velocity, and position are found. The MAGRAC code was validated through a series of eight railgun tests conducted jointly with the Los Alamos National Laboratory. The formulation of the MAGRAC railgun model is described and the predicted current waveforms compared with those obtained from full-scale experiments

  7. Simulation program for multiple expansion Stirling machines

    International Nuclear Information System (INIS)

    Walker, G.; Weiss, M.; Fauvel, R.; Reader, G.; Bingham, E.R.

    1992-01-01

    Multiple expansion Stirling machines have been a topic of interest at the University of Calgary for some years. Recently a second-order computer simulation program with integral graphics package for Stirling cryocoolers with up to four stages of expansion were developed and made available to the Stirling community. Adaptation of the program to multiple expansion Stirling power systems is anticipated. This paper briefly introduces the program and presents a specimen result

  8. Use of Generalized Fluid System Simulation Program (GFSSP) for Teaching and Performing Senior Design Projects at the Educational Institutions

    Science.gov (United States)

    Majumdar, A. K.; Hedayat, A.

    2015-01-01

    This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects. The need for a generalized computer program for thermofluid analysis in a flow network has been felt for a long time in aerospace industries. Designers of thermofluid systems often need to know pressures, temperatures, flow rates, concentrations, and heat transfer rates at different parts of a flow circuit for steady state or transient conditions. Such applications occur in propulsion systems for tank pressurization, internal flow analysis of rocket engine turbopumps, chilldown of cryogenic tanks and transfer lines, and many other applications of gas-liquid systems involving fluid transients and conjugate heat and mass transfer. Computer resource requirements to perform time-dependent, three-dimensional Navier-Stokes computational fluid dynamic (CFD) analysis of such systems are prohibitive and therefore are not practical. Available commercial codes are generally suitable for steady state, single-phase incompressible flow. Because of the proprietary nature of such codes, it is not possible to extend their capability to satisfy the above-mentioned needs. Therefore, the Generalized Fluid System Simulation Program (GFSSP1) has been developed at NASA

  9. Computerized method for radiologic system parameter simulations destined for quality assurance programs

    International Nuclear Information System (INIS)

    Marques, M.A.; Frere, A.F.; Oliveira, H.J.Q.; Marques, P.M.A.; Schiabel, H.

    1999-01-01

    The objective of this work is to develop a computational simulation method that allows for fast radiographical image quality evaluations that are devoid of the problems inherent to the traditional methods used to date. The algorithms implemented take into consideration the focal spot size and intensity distribution, the geometric conditions of exposure, the angular X-ray distribution (heel effect), the Compton effect and the anti-scatter grids (Bucky). (author)

  10. HASP: human acts simulation program

    International Nuclear Information System (INIS)

    Asai, Kiyoshi; Kambayashi, Shaw; Higuchi, Kenji; Kume, Etsuo; Otani, Takayuki; Fujii, Minoru; Uenaka, Junji; Fujisaki, Masahide.

    1990-01-01

    The Human Acts Simulation Program (HASP) aims computer simulations of mechanized human acts in a nuclear plant by a human shaped intelligent robot. The HASP has started as a ten-year program at Japan Atomic Energy Research Institute since 1987. The purposes of HASP are threefold as follows; development of basic and generalized design technologies for intelligent robots, development of basic technologies for an advanced intelligent and automatic nuclear power plant, and provision of artificial intelligence techniques for researchers in the nuclear field. In this paper, the contents of the HASP are described. (author)

  11. Modeling of Compressible Flow with Friction and Heat Transfer Using the Generalized Fluid System Simulation Program (GFSSP)

    Science.gov (United States)

    Bandyopadhyay, Alak; Majumdar, Alok

    2007-01-01

    The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.

  12. The TAO Accelerator Simulation Program

    CERN Document Server

    Sagan, David

    2005-01-01

    A new accelerator design and analysis simulation environment based on the BMAD relativistic charged particle dynamics library is in development at Cornell University. Called TAO (Tool for Accelerator Optimization), it is a machine independent program that implements the essential ingredients needed to solve simulation problems. This includes the ability to: 1. Design lattices subject to constraints, 2. Simulate errors and changes in machine parameters, and 3. Simulate machine commissioning including simulating data measurement and correction. TAO is designed to be easily customizable so that extending it to solve new and different problems is straight forward. The capability to simultaneously model multiple accelerator lattices, both linacs and storage rings, and injection from one lattice to another allows for the design and commissioning of large multi stage accelerators. It can also simultaneously model multiple configurations of a single lattice. Single particle, particle beam and macroparticle tracking i...

  13. Modeling Two-Phase Flow and Vapor Cycles Using the Generalized Fluid System Simulation Program

    Science.gov (United States)

    Smith, Amanda D.; Majumdar, Alok K.

    2017-01-01

    This work presents three new applications for the general purpose fluid network solver code GFSSP developed at NASA's Marshall Space Flight Center: (1) cooling tower, (2) vapor-compression refrigeration system, and (3) vapor-expansion power generation system. These systems are widely used across engineering disciplines in a variety of energy systems, and these models expand the capabilities and the use of GFSSP to include fluids and features that are not part of its present set of provided examples. GFSSP provides pressure, temperature, and species concentrations at designated locations, or nodes, within a fluid network based on a finite volume formulation of thermodynamics and conservation laws. This paper describes the theoretical basis for the construction of the models, their implementation in the current GFSSP modeling system, and a brief evaluation of the usefulness of the model results, as well as their applicability toward a broader spectrum of analytical problems in both university teaching and engineering research.

  14. A programming language study and an implementation of a simulation system with formal derivation. Application to nuclear reactors, control systems and elecronic networks

    International Nuclear Information System (INIS)

    Nakhle, Michel.

    1979-06-01

    Physical systems simulation requires a lot of information about the controlled process, and the mathematical approach must be appropriate. On the other hand, the parameters describing most systems components are nonlinear and time dependent. Moreover the differential equations describing them are 'stiff' equations of high order. The scope of the study is the description of the NEPTUNIX language and the differential equations. Most of the algorithms used, and the programs implementing these algorithms, are dealt with. Examples of nuclear reactors and mechanical processes simulation are investigated. NEPTUNIX handles a given mathematical description of a continuous system such as: f (x, x(.), t) = 0. Even more, symbolic derivation is performed automatically in order to compute the jacobian associated with the system, requisite for the numerical integration. So, for large systems the manual method for computer the jacobian and the classical method of differentiation are avoided, the former being tiresome and consuming of human time and the latter being costly in run time. The jacobian evaluated in this way is dealt with, by the approach of sparse matrices. Every element of this matrix is assigned a type attribute to improve time execution. Moreover, this is done only once, for a physical system which is described by a mathematical model which topology is invariant. The results of this process are sayed on a suitable device ready for performing repeated simulations [fr

  15. Coalition Warfare Program Tactile Situation Awareness System for Aviation Applications: Simulator Flight Test

    Science.gov (United States)

    2015-12-01

    David Myers1 Timothy Gowen2 Angus Rupert3 Ben Lawson3 Justin Dailey3,4 1Chesapeake Technology International 2Naval Aviation Center for... Angus Rupert of the USAARL. The algorithm is described in “Configuration Parameters for the Tactile Situation Awareness System (TSAS)” dated July 2010

  16. A simulation program for the VIRGO experiment

    International Nuclear Information System (INIS)

    Caron, B.; Dominjon, A.; Flaminio, R.; Marion, F.; Massonet, L.; Morand, R.; Mours, B.; Verkindt, D.; Yvert, M.

    1994-07-01

    Within the VIRGO experiment a simulation program is developed providing an accurate description of the interferometric antenna behaviour, taking into account all sources of noise. Besides its future use as a tool for data analysis and for the commissioning of the apparatus, the simulation helps finalizing the design of the detector. Emphasis is put at the present time on the study of the stability of optical components implied in the global feedback control system of the interferometer. (author). 5 refs., 4 figs

  17. Clinical training: a simulation program for phlebotomy

    Directory of Open Access Journals (Sweden)

    Araki Toshitaka

    2008-01-01

    Full Text Available Abstract Background Basic clinical skills training in the Japanese medical education system has traditionally incorporated on-the-job training with patients. Recently, the complementary use of simulation techniques as part of this training has gained popularity. It is not known, however, whether the participants view this new type of education program favorably; nor is the impact of this program known. In this study we developed a new simulation-based training program in phlebotomy for new medical residents and assessed their satisfaction with the program Methods The education program comprised two main components: simulator exercise sessions and the actual drawing of blood from other trainees. At the end of the session, we surveyed participant sentiment regarding the program. Results There were 43 participants in total. In general, they were highly satisfied with the education program, with all survey questions receiving scores of 3 or more on a scale of 1–5 (mean range: 4.3 – 4.8, with 5 indicating the highest level of satisfaction. Additionally, their participation as a 'patient' for their co-trainees was undertaken willingly and was deemed to be a valuable experience. Conclusion We developed and tested an education program using a simulator for blood collection. We demonstrated a high satisfaction level among the participants for this unique educational program and expect that it will improve medical training, patient safety, and quality of care. The development and dissemination of similar educational programs involving simulation for other basic clinical skills will be undertaken in the future.

  18. EAC european accident code. A modular system of computer programs to simulate LMFBR hypothetical accidents

    International Nuclear Information System (INIS)

    Wider, H.; Cametti, J.; Clusaz, A.; Devos, J.; VanGoethem, G.; Nguyen, H.; Sola, A.

    1985-01-01

    One aspect of fast reactor safety analysis consists of calculating the strongly coupled system of physical phenomena which contribute to the reactivity balance in hypothetical whole-core accidents: these phenomena are neutronics, fuel behaviour and heat transfer together with coolant thermohydraulics in single- and two-phase flow. Temperature variations in fuel, coolant and neighbouring structures induce, in fact, thermal reactivity feedbacks which are added up and put in the neutronics calculation to predict the neutron flux and the subsequent heat generation in the reactor. At this point a whole-core analysis code is necessary to examine for any hypothetical transient whether the various feedbacks result effectively in a negative balance, which is the basis condition to ensure stability and safety. The European Accident Code (EAC), developed at the Joint Research Centre of the CEC at Ispra (Italy), fulfills this objective. It is a modular informatics structure (quasi 2-D multichannel approach) aimed at collecting stand-alone computer codes of neutronics, fuel pin mechanics and hydrodynamics, developed both in national laboratories and in the JRC itself. EAC makes these modules interact with each other and produces results for these hypothetical accidents in terms of core damage and total energy release. 10 refs

  19. A NOESY-HSQC simulation program, SPIRIT

    International Nuclear Information System (INIS)

    Zhu Leiming; Dyson, H. Jane; Wright, Peter E.

    1998-01-01

    A program SPIRIT (Simulation Program considering Incomplete Recovery of z magnetization and INEPT Transfer efficiency) has been developed to simulate three-dimensional NOESY-HSQC spectra. This program takes into account (1) different transfer efficiency during INEPT and reverse INEPT durations due to differential relaxation rates and 1 J coupling constants; (2) the different effect of the sensitivity-enhancement scheme on CH, CH 2 and CH 3 systems; and (3) incomplete recovery of longitudinal magnetization between scans. The simulation program incorporates anisotropic tumbling mode for symmetric tops, and allows for differential external relaxation rates for protons. Some well-defined internal motions, such as the fast rotation of methyl groups, are taken into account. The simulation program also allows for input of multiple conformations and their relative populations to calculate the average relaxation matrix to account for slow internal motions. With the SPIRIT program, the sensitivity-enhanced NOESY-HSQC experiment can be used directly in the evaluation of the accuracy of structures, which can potentially be improved by direct refinement against the primary data. Abbreviations: NOESY, nuclear Overhauser enhancement spectroscopy; HSQC, heteronuclear single quantum correlation; INEPT, insensitive nuclei enhanced by polarization transfer

  20. Fusion Simulation Program Execution Plan

    International Nuclear Information System (INIS)

    Brooks, Jeffrey

    2011-01-01

    . It will address the origins and structure of the plasma electric field, rotation, the L-H transition, and the wide variety of pedestal relaxation mechanisms. The Whole Device Model will predict the entire discharge evolution given external actuators (i.e., magnets, power supplies, heating, current drive and fueling systems) and control strategies. Based on components operating over a range of physics fidelity, the WDM will model the plasma equilibrium, plasma sources, profile evolution, linear stability and nonlinear evolution toward a disruption (but not the full disruption dynamics). The plan assumes that, as the FSP matures and demonstrates success, the program will evolve and grow, enabling additional science problems to be addressed. The next set of integration opportunities could include: 1) Simulation of disruption dynamics and their effects; 2) Prediction of core profile including 3D effects, mesoscale dynamics and integration with the edge plasma; 3) Computation of non-thermal particle distributions, self-consistent with fusion, radio frequency (RF) and neutral beam injection (NBI) sources, magnetohydrodynamics (MHD) and short-wavelength turbulence.

  1. System programming languages

    OpenAIRE

    Šmit, Matej

    2016-01-01

    Most operating systems are written in the C programming language. Similar is with system software, for example, device drivers, compilers, debuggers, disk checkers, etc. Recently some new programming languages emerged, which are supposed to be suitable for system programming. In this thesis we present programming languages D, Go, Nim and Rust. We defined the criteria which are important for deciding whether programming language is suitable for system programming. We examine programming langua...

  2. Parallel Simulation of Loosely Timed SystemC/TLM Programs: Challenges Raised by an Industrial Case Study

    Directory of Open Access Journals (Sweden)

    Denis Becker

    2016-05-01

    Full Text Available Transaction level models of systems-on-chip in SystemC are commonly used in the industry to provide an early simulation environment. The SystemC standard imposes coroutine semantics for the scheduling of simulated processes, to ensure determinism and reproducibility of simulations. However, because of this, sequential implementations have, for a long time, been the only option available, and still now the reference implementation is sequential. With the increasing size and complexity of models, and the multiplication of computation cores on recent machines, the parallelization of SystemC simulations is a major research concern. There have been several proposals for SystemC parallelization, but most of them are limited to cycle-accurate models. In this paper we focus on loosely timed models, which are commonly used in the industry. We present an industrial context and show that, unfortunately, most of the existing approaches for SystemC parallelization can fundamentally not apply in this context. We support this claim with a set of measurements performed on a platform used in production at STMicroelectronics. This paper surveys existing techniques, presents a visualization and profiling tool and identifies unsolved challenges in the parallelization of SystemC models at transaction level.

  3. Simulation program for the dynamic behaviour of the primary system and moderators's circuit of the Atucha I Nuclear Power Plant

    International Nuclear Information System (INIS)

    Castano, Jorge; Gvirtzman, H.A.

    1981-01-01

    A model of digital computation is presented to simulate the primary system of heat transportation, moderator system and the associated systems for adjustment, regulation and control in the PHWR reactor at the Atucha-1 nuclear power plant. The model discusses in a concentrated way the different components and allows the study of the dynamical behaviour of the power plant facing disturbances with respect to a state of stationary regime. General considerations and description of the model are made. The method is described showing flow sheets, graphs and developing basic formulas, simulating a primary system, moderator and secondary system of the steam generator and the main system of regulation. Also an analysis of the results is made, for the case of disturbances which reduce or increase the power of the reactor by 10%. (V.B.) [es

  4. Simulator configuration management system

    International Nuclear Information System (INIS)

    Faulent, J.; Brooks, J.G.

    1990-01-01

    The proposed revisions to ANS 3.5-1985 (Section 5) require Utilities to establish a simulator Configuration Management System (CMS). The proposed CMS must be capable of: Establishing and maintaining a simulator design database. Identifying and documenting differences between the simulator and its reference plant. Tracking the resolution of identified differences. Recording data to support simulator certification, testing and maintenance. This paper discusses a CMS capable of meeting the proposed requirements contained in ANS 3.5. The system will utilize a personal computer and a relational database management software to construct a simulator design database. The database will contain records to all reference nuclear plant data used in designing the simulator, as well as records identifying all the software, hardware and documentation making up the simulator. Using the relational powers of the database management software, reports will be generated identifying the impact of reference plant changes on the operation of the simulator. These reports can then be evaluated in terms of training needs to determine if changes are required for the simulator. If a change is authorized, the CMS will track the change through to its resolution and then incorporate the change into the simulator design database

  5. High Speed Simulation Framework for Reliable Logic Programs

    International Nuclear Information System (INIS)

    Lee, Wan-Bok; Kim, Seog-Ju

    2006-01-01

    This paper shows a case study of designing a PLC logic simulator that was developed to simulate and verify PLC control programs for nuclear plant systems. The nuclear control system requires strict restrictions rather than normal process control system does, since it works with nuclear power plants requiring high reliability under severe environment. One restriction is the safeness of the control programs which can be assured by exploiting severe testing. Another restriction is the simulation speed of the control programs, that should be fast enough to control multi devices concurrently in real-time. To cope with these restrictions, we devised a logic compiler which generates C-code programs from given PLC logic programs. Once the logic program was translated into C-code, the program could be analyzed by conventional software analysis tools and could be used to construct a fast logic simulator after cross-compiling, in fact, that is a kind of compiled-code simulation

  6. Innovative simulation systems

    CERN Document Server

    Jędrasiak, Karol

    2016-01-01

    This monograph provides comprehensive guidelines on the current and future trends of innovative simulation systems. In particular, their important components, such as augmented reality and unmanned vehicles are presented. The book consists of three parts. Each part presents good practices, new methods, concepts of systems and new algorithms. Presented challenges and solutions are the results of research and conducted by the contributing authors. The book describes and evaluates the current state of knowledge in the field of innovative simulation systems. Throughout the chapters there are presented current issues and concepts of systems, technology, equipment, tools, research challenges and current, past and future applications of simulation systems. The book is addressed to a wide audience: academic staff, representatives of research institutions, employees of companies and government agencies as well as students and graduates of technical universities in the country and abroad. The book can be a valuable sou...

  7. Immune system simulation online

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Lund, Ole; Castiglione, Filippo

    2011-01-01

    MOTIVATION: The recognition of antigenic peptides is a major event of an immune response. In current mesoscopic-scale simulators of the immune system, this crucial step has been modeled in a very approximated way. RESULTS: We have equipped an agent-based model of the immune system with immuno...

  8. Simulator testing system (STS)

    International Nuclear Information System (INIS)

    Miller, V.N.

    1990-01-01

    In recent years there has been a greater demand placed on the capabilities and time usage of real-time nuclear plant simulators due to NRC, INPO and utilities requirements. The requirements applied to certification, new simulators, upgrades, modifications, and maintenance of the simulators vary; however, they all require the capabilities of the simulator to be tested whether it is for NRC 10CFR55.45b requirements, ATP testing of new simulators, ATP testing of upgrades with or without panels, adding software/hardware due to plant modifications, or analyzing software/hardware problems on the simulator. This paper describes the Simulator Testing System (STS) which addresses each one of these requirements placed on simulators. Special attention will be given to ATP testing of upgrades without the use of control room panels. The capabilities and applications of the four parts of STS which are the Display Control Software (DCS), Procedure Control Software (PCS), Display Generator Software (DGS) and the Procedure Generator Software (PGS) will be reviewed

  9. HVDC System Characteristics and Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.I.; Han, B.M.; Jang, G.S. [Electric Enginnering and Science Research Institute, Seoul (Korea)

    2001-07-01

    This report deals with the AC-DC power system simulation method by PSS/E and EUROSTAG for the development of a strategy for the reliable operation of the Cheju-Haenam interconnected system. The simulation using both programs is performed to analyze HVDC simulation models. In addition, the control characteristics of the Cheju-Haenam HVDC system as well as Cheju AC system characteristics are described in this work. (author). 104 figs., 8 tabs.

  10. Modeling and simulation of large HVDC systems

    Energy Technology Data Exchange (ETDEWEB)

    Jin, H.; Sood, V.K.

    1993-01-01

    This paper addresses the complexity and the amount of work in preparing simulation data and in implementing various converter control schemes and the excessive simulation time involved in modelling and simulation of large HVDC systems. The Power Electronic Circuit Analysis program (PECAN) is used to address these problems and a large HVDC system with two dc links is simulated using PECAN. A benchmark HVDC system is studied to compare the simulation results with those from other packages. The simulation time and results are provided in the paper.

  11. Program Helps Simulate Neural Networks

    Science.gov (United States)

    Villarreal, James; Mcintire, Gary

    1993-01-01

    Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.

  12. Heat simulation via Scilab programming

    Science.gov (United States)

    Hasan, Mohammad Khatim; Sulaiman, Jumat; Karim, Samsul Arifin Abdul

    2014-07-01

    This paper discussed the used of an open source sofware called Scilab to develop a heat simulator. In this paper, heat equation was used to simulate heat behavior in an object. The simulator was developed using finite difference method. Numerical experiment output show that Scilab can produce a good heat behavior simulation with marvellous visual output with only developing simple computer code.

  13. Water Quality Analysis Simulation Program (WASP)

    Science.gov (United States)

    The Water Quality Analysis Simulation Program (WASP) model helps users interpret and predict water quality responses to natural phenomena and manmade pollution for various pollution management decisions.

  14. Intelligent Flight Control Simulation Research Program

    National Research Council Canada - National Science Library

    Stolarik, Brian

    2007-01-01

    ...). Under the program, entitled "Intelligent Flight Control Simulation Research Laboratory," a variety of technologies were investigated or developed during the course of the research for AFRL/VAC...

  15. Realtime graphics support for remote handling operations in complex working environments within the framework of a control, simulation and off-line programming system

    International Nuclear Information System (INIS)

    Kuehnapfel, U.

    1992-05-01

    The application independent simulation system KISMET was developed. This tool gives a different approach compared to previously existing robot simulators. A hierarchical data structure approach is used for the definition of workcell geometry, assembly topology and mechanism kinematics. This database structure allows for presentation of interactively selectable levels of detail and is, therefore, especially useful for real-time rigid body simulation of complex RH-scenarios. With KISMET, assembly structures can be modelled in any number of detail levels. Workcell geometry, assembly topology and mechanisms can be defined interactively by means of the integrated modeller. The mechanism simulation allows for kinematical tree structures with any number of joints, planar closed chains, and interconnections between joints. Examples of novel simulation methods, data structures, and algorithms are presented for selected examples: the hidden surface problem, graphical presentation techniques, collision testing, and control of scene cameras (image simulation, fast positioning and tracking). Special attention is paid to the real-time problem. The way this system was realized within the UNIX world is shown as an example for geometric and kinematic modelling techniques that grant for the optimum use of the capabilities of high-performance graphics workstations. A further chapter is focussing on the use of standard interfaces for CAD model transfer (CAD * I, STEP) and robot programming (IRDATA). Examples of practical KISMET applications for remote handling in fusion reactors, in a nuclear fuel element reprocessing cell and in sensor based robotics are used to present the developed methods. (orig.) [de

  16. TVF-NMCRC-A powerful program for writing and executing simulation inputs for the FLUKA Monte Carlo Code system

    International Nuclear Information System (INIS)

    Mark, S.; Khomchenko, S.; Shifrin, M.; Haviv, Y.; Schwartz, J.R.; Orion, I.

    2007-01-01

    We at the Negev Monte Carlo Research Center (NMCRC) have developed a powerful new interface for writing and executing FLUKA input files-TVF-NMCRC. With the TVF tool a FLUKA user has the ability to easily write an input file without requiring any previous experience. The TVF-NMCRC tool is a LINUX program that has been verified for the most common LINUX-based operating systems, and is suitable for the latest version of FLUKA (FLUKA 2006.3)

  17. Security Information System Digital Simulation

    OpenAIRE

    Tao Kuang; Shanhong Zhu

    2015-01-01

    The study built a simulation model for the study of food security information system relay protection. MATLAB-based simulation technology can support the analysis and design of food security information systems. As an example, the food security information system fault simulation, zero-sequence current protection simulation and transformer differential protection simulation are presented in this study. The case studies show that the simulation of food security information system relay protect...

  18. Nuclear Power Reactor simulator - based training program

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.S.

    2009-01-01

    nuclear power stations will continue playing a major role as an energy source for electric generation and heat production in the world. in this paper, a nuclear power reactor simulator- based training program will be presented . this program is designed to aid in training of the reactor operators about the principles of operation of the plant. also it could help the researchers and the designers to analyze and to estimate the performance of the nuclear reactors and facilitate further studies for selection of the proper controller and its optimization process as it is difficult and time consuming to do all experiments in the real nuclear environment.this program is written in MATLAB code as MATLAB software provides sophisticated tools comparable to those in other software such as visual basic for the creation of graphical user interface (GUI). moreover MATLAB is available for all major operating systems. the used SIMULINK reactor model for the nuclear reactor can be used to model different types by adopting appropriate parameters. the model of each component of the reactor is based on physical laws rather than the use of look up tables or curve fitting.this simulation based training program will improve acquisition and retention knowledge also trainee will learn faster and will have better attitude

  19. Photovoltaic systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-12-01

    Each of the Department of Energy's Photovoltaic Systems Program projects funded and/or in existence during fiscal year 1978 (October 1, 1977 through September 30, 1978) are described. The project sheets list the contractor, principal investigator, and contract number and funding and summarize the programs and status. The program is divided into various elements: program assessment and integration, research and advanced development, technology development, system definition and development, system application experiments, and standards and performance criteria. (WHK)

  20. Off-line programming and simulation in handling nuclear components

    International Nuclear Information System (INIS)

    Baker, C.P.

    1993-10-01

    IGRIP was used to create a simulation of the robotic workcell design for handling components at the PANTEX nuclear arms facility. This initial simulation identified problems with the customer's proposed worker layout, and allowed a correction to be proposed. Refinement of the IGRIP simulation allowed the design and construction of a workcell mock-up and accurate off-line programming of the system. IGRIP's off-line programming capabilities are being used to develop the motion control code for the workcell. PNLs success in this area suggests that simulation and off-line programming may be valuable tools for developing robotics in some automation resistant industries

  1. Cogeneration system simulation/optimization

    International Nuclear Information System (INIS)

    Puppa, B.A.; Chandrashekar, M.

    1992-01-01

    Companies are increasingly turning to computer software programs to improve and streamline the analysis o cogeneration systems. This paper introduces a computer program which originated with research at the University of Waterloo. The program can simulate and optimize any type of layout of cogeneration plant. An application of the program to a cogeneration feasibility study for a university campus is described. The Steam and Power Plant Optimization System (SAPPOS) is a PC software package which allows users to model any type of steam/power plant on a component-by-component basis. Individual energy/steam balances can be done quickly to model any scenario. A typical days per month cogeneration simulation can also be carried out to provide a detailed monthly cash flow and energy forecast. This paper reports that SAPPOS can be used for scoping, feasibility, and preliminary design work, along with financial studies, gas contract studies, and optimizing the operation of completed plants. In the feasibility study presented, SAPPOS is used to evaluate both diesel engine and gas turbine combined cycle options

  2. Application of Nuclear Application Programs to APR1400 Simulator

    International Nuclear Information System (INIS)

    Hwang, Do Hyun; Lee, Myeong Soo; Hong, Jin Hyuk

    2012-01-01

    Advanced Power Reactor 1400MWe (APR1400) simulator has been developed and installed at Kori Training Center for operators of ShinKori no.3, 4 nuclear power plant by Korea Hydro and Nuclear Power,s Central Research Institute (KHNP CRI). NAPS (Nuclear Application Programs) is a computerbased system which provides operators with past and real-time information for monitoring and controlling NSSS (Nuclear Steam Supply System), BOP (Balance Of Plant) and Electric system. NAPS consists of several programs such as COLSS (Core Operating Limit Supervisory System), SPADES+ (Safety Parameter Display and Evaluation System), CEA (Control Element Assembly) Application Program, and so on. Each program makes calculations based on its own algorithm and provides information available for operation. In order to use NAPS programs with a simulator even though they are being used in a real plant, they should be modified to add several simulation functions such as reset, snap, run/freeze and backtrack required by ANSI/ANS-3.5 to the original NAPS functionality. On top of that, interfacing programs should be developed for the data communication between respective NAPS programs and simulator sever. The purpose of this paper is to provide the overall architecture of the communication system between NAPS and simulator model, and to describe the method to apply NAPS to APR1400 simulator

  3. Programming for a nuclear reactor instrument simulation

    International Nuclear Information System (INIS)

    Cohn, C.

    1988-01-01

    This note discusses 8086/8087 machine-language programming for simulation of nuclear reactor instrument current inputs by means of a digital-analog converter (DAC) feeding a bank of series input resistors. It also shows FORTRAN programming for generating the parameter tales used in the simulation. These techniques would be generally useful for high-speed simulation of quantities varying over many orders of magnitude

  4. General Tokamak Circuit Simulation Program-GTCSP

    International Nuclear Information System (INIS)

    Matsukawa, Makoto; Miura, Yushi; Aoyagi, Tetsuo.

    1997-05-01

    General Tokamak Circuit Simulation Program (GTCSP) was originally developed for the design work of JT-60 Power Supply System in JAERI. Therefore the prepared models (components) to be analyzed are generator, thyristor converter and coils. This is one of the unique points of GTCSP in comparison with other conventional electric circuit analysis program, because they make a circuit from the small devices such as resister, coil, condenser, transistor and so on. However, GTCSP is also clearly conventional because it is possible to construct an electric circuit freely with the prepared components. Moreover, a similar function could be realized by addition a new component to GTCSP. This report is assumed to be used as an User Manual of the GTCSP, not only to present the development and the analytical functions. Then some useful examples are described, and how to get graphic outputs are also mentioned. (author)

  5. A links manipulator simulation program interim report

    International Nuclear Information System (INIS)

    Noble, R.A.

    1987-04-01

    A computer program to simulate the performance of the Heysham II rail-following manipulator has been developed. The program is being used to develop and test the rail-following control algorithms which will be used to control movements of the manipulator when it is operating below the gas baffle dome. The simulation includes the dynamic responses of the manipulator joint drives, excluding friction, backlash and compliance. It also includes full details of the manipulator's geometry. A method is given whereby the actual manipulator dynamics can be written into the program once these have been established by measurement. The program is written in FORTRAN and runs on a Perkin-Elmer 3220 mini-computer. The simulation program responds to velocity demands on the individual joints. These will normally come from the control program, in which they will be manually controlled by a joystick. A sigma 5664 colour graphics generator is programmed to display the current position of the manipulator. (UK)

  6. A dialogue simulator program TREDI

    International Nuclear Information System (INIS)

    Bezruk, A.I.; Gaevenko, A.B.; Ivanov, Yu.V.

    1989-01-01

    A specialized program providing in a dialogue with an operator the calculation and representation of beam envelopes by passing the transport channel was described. The possibility of optimality visual evaluation of the seting up of optical element conditions, the condition correction and the whole problem complex in operator training on channel control procedure was envisaged. The program provides for the operation at IVK-2 SM 1420 complex. 5 refs

  7. Using Expert Systems To Build Cognitive Simulations.

    Science.gov (United States)

    Jonassen, David H.; Wang, Sherwood

    2003-01-01

    Cognitive simulations are runnable computer programs for modeling human cognitive activities. A case study is reported where expert systems were used as a formalism for modeling metacognitive processes in a seminar. Building cognitive simulations engages intensive introspection, ownership and meaning making in learners who build them. (Author/AEF)

  8. Parallel programming with Easy Java Simulations

    Science.gov (United States)

    Esquembre, F.; Christian, W.; Belloni, M.

    2018-01-01

    Nearly all of today's processors are multicore, and ideally programming and algorithm development utilizing the entire processor should be introduced early in the computational physics curriculum. Parallel programming is often not introduced because it requires a new programming environment and uses constructs that are unfamiliar to many teachers. We describe how we decrease the barrier to parallel programming by using a java-based programming environment to treat problems in the usual undergraduate curriculum. We use the easy java simulations programming and authoring tool to create the program's graphical user interface together with objects based on those developed by Kaminsky [Building Parallel Programs (Course Technology, Boston, 2010)] to handle common parallel programming tasks. Shared-memory parallel implementations of physics problems, such as time evolution of the Schrödinger equation, are available as source code and as ready-to-run programs from the AAPT-ComPADRE digital library.

  9. PSSGP : Program for Simulation of Stationary Gaussian Processes

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    This report describes the computer program PSSGP. PSSGP can be used to simulate realizations of stationary Gaussian stochastic processes. The simulation algorithm can be coupled with some applications. One possibility is to use PSSGP to estimate the first-passage density function of a given system...

  10. Program management system manual

    International Nuclear Information System (INIS)

    1989-08-01

    OCRWM has developed a program management system (PMS) to assist in organizing, planning, directing and controlling the Civilian Radioactive Waste Management Program. A well defined management system is necessary because: (1) the Program is a complex technical undertaking with a large number of participants, (2) the disposal and storage facilities to be developed by the Program must be licensed by the Nuclear Regulatory Commission (NRC) and hence are subject to rigorous quality assurance (QA) requirements, (3) the legislation mandating the Program creates a dichotomy between demanding schedules of performance and a requirement for close and continuous consultation and cooperation with external entities, (4) the various elements of the Program must be managed as parts of an integrated waste management system, (5) the Program has an estimated total system life cycle cost of over $30 billion, and (6) the Program has a unique fiduciary responsibility to the owners and generators of the nuclear waste for controlling costs and minimizing the user fees paid into the Nuclear Waste Fund. This PMS Manual is designed and structured to facilitate strong, effective Program management by providing policies and requirements for organizing, planning, directing and controlling the major Program functions

  11. A failure detection and isolation system simulator

    International Nuclear Information System (INIS)

    Assumpcao Filho, E.O.; Nakata, H.

    1990-04-01

    A failure detection and isolation system (FDI) simulation program has been developed for IBM-PC microcomputers. The program, based on the sequential likelihood ratio testing method developed by A. Wald, was implemented with the Monte-Carlo technique. The calculated failure detection rate was favorably compared against the wind-tunnel experimental redundant temperature sensors. (author) [pt

  12. Material control system simulator user's manual

    International Nuclear Information System (INIS)

    Hollstien, R.B.

    1978-01-01

    This report describes the use of a Material Control System Simulator (MCSS) program for determination of material accounting uncertainty and system response to particular adversary action sequences that constitute plausible material diversion attempts. The program is intended for use in situations where randomness, uncertainty, or interaction of adversary actions and material control system components make it difficult to assess safeguards effectiveness against particular material diversion attempts

  13. Simulating neural systems with Xyce.

    Energy Technology Data Exchange (ETDEWEB)

    Schiek, Richard Louis; Thornquist, Heidi K.; Mei, Ting; Warrender, Christina E.; Aimone, James Bradley; Teeter, Corinne; Duda, Alex M.

    2012-12-01

    Sandias parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

  14. Quench Simulation Studies: Program documentation of SPQR

    CERN Document Server

    Sonnemann, F

    2001-01-01

    Quench experiments are being performed on prototypes of the superconducting magnets and busbars to determine the adequate design and protection. Many tests can only be understood correctly with the help of quench simulations that model the thermo-hydraulic and electrodynamic processes during a quench. In some cases simulations are the only method to scale the experimental results of prototype measurements to match the situation of quenching superconducting elements in the LHC. This note introduces the theoretical quench model and the use of the simulation program SPQR (Simulation Program for Quench Research), which has been developed to compute the quench process in superconducting magnets and busbars. The model approximates the heat balance equation with the finite difference method including the temperature dependence of the material parameters. SPQR allows the simulation of longitudinal quench propagation along a superconducting cable, the transverse propagation between adjacent conductors, heat transfer i...

  15. MHSS: a material handling system simulator

    Energy Technology Data Exchange (ETDEWEB)

    Pomernacki, L.; Hollstien, R.B.

    1976-04-07

    A Material Handling System Simulator (MHSS) program is described that provides specialized functional blocks for modeling and simulation of nuclear material handling systems. Models of nuclear fuel fabrication plants may be built using functional blocks that simulate material receiving, storage, transport, inventory, processing, and shipping operations as well as the control and reporting tasks of operators or on-line computers. Blocks are also provided that allow the user to observe and gather statistical information on the dynamic behavior of simulated plants over single or replicated runs. Although it is currently being developed for the nuclear materials handling application, MHSS can be adapted to other industries in which material accountability is important. In this paper, emphasis is on the simulation methodology of the MHSS program with application to the nuclear material safeguards problem. (auth)

  16. Graphical programming: On-line robot simulation for telerobotic control

    International Nuclear Information System (INIS)

    McDonald, M.J.; Palmquist, R.D.

    1993-01-01

    Sandia has developed an advanced operational control system approach, caged Graphical Programming, to design and operate robotic waste cleanup and other hazardous duty robotic systems. The Graphical Programming approach produces robot systems that are faster to develop and use, safer in operation, and cheaper overall than altemative teleoperation or autonomous robot control systems. The Graphical Programming approach uses 3-D visualization and simulation software with intuitive operator interfaces for the programming and control of complex robotic systems. Graphical Programming Supervisor software modules allow an operator to command and simulate complex tasks in a graphic preview mode and, when acceptable, command the actual robots and monitor their motions with the graphic system. Graphical Progranuning Supervisors maintain registration with the real world and allow the robot to perform tasks that cannot be accurately represented with models alone by using a combination of model and sensor-based control. This paper describes the Graphical Programming approach, several example control systems that use Graphical Programming, and key features necessary for implementing successful Graphical Programming systems

  17. Program Management System manual

    International Nuclear Information System (INIS)

    1986-01-01

    The Program Management System (PMS), as detailed in this manual, consists of all the plans, policies, procedure, systems, and processes that, taken together, serve as a mechanism for managing the various subprograms and program elements in a cohesive, cost-effective manner. The PMS is consistent with the requirements of the Nuclear Waste Policy Act of 1982 and the ''Mission Plan for the Civilian Radioactive Waste Management Program'' (DOE/RW-0005). It is based on, but goes beyond, the Department of Energy (DOE) management policies and procedures applicable to all DOE programs by adapting these directives to the specific needs of the Civilian Radioactive Waste Management program. This PMS Manual describes the hierarchy of plans required to develop and maintain the cost, schedule, and technical baselines at the various organizational levels of the Civilian Radioactive Waste Management Program. It also establishes the management policies and procedures used in the implementation of the Program. These include requirements for internal reports, data, and other information; systems engineering management; regulatory compliance; safety; quality assurance; and institutional affairs. Although expanded versions of many of these plans, policies, and procedures are found in separate documents, they are an integral part of this manual. The PMS provides the basis for the effective management that is needed to ensure that the Civilian Radioactive Waste Management Program fulfills the mandate of the Nuclear Waste Policy Act of 1982. 5 figs., 2 tabs

  18. RSW-MCFP: A Resource-Oriented Solid Waste Management System for a Mixed Rural-Urban Area through Monte Carlo Simulation-Based Fuzzy Programming

    Directory of Open Access Journals (Sweden)

    P. Li

    2013-01-01

    Full Text Available The growth of global population and economy continually increases the waste volumes and consequently creates challenges to handle and dispose solid wastes. It becomes more challenging in mixed rural-urban areas (i.e., areas of mixed land use for rural and urban purposes where both agricultural waste (e.g., manure and municipal solid waste are generated. The efficiency and confidence of decisions in current management practices significantly rely on the accurate information and subjective judgments, which are usually compromised by uncertainties. This study proposed a resource-oriented solid waste management system for mixed rural-urban areas. The system is featured by a novel Monte Carlo simulation-based fuzzy programming approach. The developed system was tested by a real-world case with consideration of various resource-oriented treatment technologies and the associated uncertainties. The modeling results indicated that the community-based bio-coal and household-based CH4 facilities were necessary and would become predominant in the waste management system. The 95% confidence intervals of waste loadings to the CH4 and bio-coal facilities were 387, 450 and 178, 215 tonne/day (mixed flow, respectively. In general, the developed system has high capability in supporting solid waste management for mixed rural-urban areas in a cost-efficient and sustainable manner under uncertainty.

  19. A users guide to the SIMULATION data assembler program

    International Nuclear Information System (INIS)

    Goodill, D.R.; Tymons, B.J.

    1984-09-01

    SIMULATION is a computer program that has been developed by Central Technical Services, UKAEA, Risley, to provide a method of analysis for any radioactive waste management system. The program models a complete system by taking any number of raw waste streams through any sequence of operations, such as treatment or conditioning, packaging or transport. Results are produced in terms of the quantity of waste in each store and the waste throughput of each process on a year by year basis. (author)

  20. A computer program for scanning transmission ion microscopy simulation

    International Nuclear Information System (INIS)

    Wu, R.; Shen, H.; Mi, Y.; Sun, M.D.; Yang, M.J.

    2005-01-01

    With the installation of the Scanning Proton Microprobe system at Fudan University, we are in the process of developing a three-dimension reconstruction technique based on scanning transmission ion microscopy-computed tomography (STIM-CT). As the first step, a related computer program of STIM simulation has been established. This program is written in the Visual C++[reg], using the technique of OOP (Object Oriented Programming) and it is a standard multiple-document Windows[reg] program. It can be run with all MS Windows[reg] operating systems. The operating mode is the menu mode, using a multiple process technique. The stopping power theory is based on the Bethe-Bloch formula. In order to simplify the calculation, the improved cylindrical coordinate model was introduced in the program instead of a usual spherical or cylindrical coordinate model. The simulated results of a sample at several rotation angles are presented

  1. Development of a computer program for the simulation of ice-bank system operation, part II: Verification

    Energy Technology Data Exchange (ETDEWEB)

    Grozdek, Marino; Halasz, Boris; Curko, Tonko [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lucica 5, 10 000 Zagreb (Croatia)

    2010-12-15

    In order to verify the mathematical model of an ice bank system developed for the purpose of predicting the system performance, experimental measurements on the ice bank system were performed. Static, indirect, cool thermal storage system, with an external ice-on-coil building/melting was considered. Cooling energy stored in the form of ice by night is used for the rapid cooling of milk after the process of pasteurization by day. The ice bank system was tested under real operating conditions to determine parameters such as the time-varying heat load imposed by the consumer, refrigeration unit load, storage capacity, supply water temperature to the load and to find charging and discharging characteristics of the storage. Experimentally obtained results were then compared to the computed ones. It was found that the calculated and experimentally obtained results are in good agreement as long as there is ice present in the silo. (author)

  2. Photovoltaics for appliances and small systems. Enhancement of the PVS for Windows simulation program for development and simulation of PV appliances and small systems. Final report; Photovoltaik fuer Geraete und Kleinsysteme. Erweiterung des Simulationsprogramms PVS fuer Windows zur Entwicklung und Simulation von PV-versorgten Geraeten und Kleinsystemen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R.; Imann, C.; Jung, V.

    2002-06-28

    The PVS simulation program for Windows was to be extended to the development and simulation of PV-supported equipment and small systems. The following new functions were to be integrated: a) Simulation and dimensioning of indoor power supply of systems with different light sources and independent outdoor systems. b)Integration of small wind generators in the simulation and dimensioning of isolated autonomous systems, including wind data and a component database for small wind turbines; c) Differentiation of the PVS battery model for different battery types (lead, Ni/Cd, Li etc.), optimized operating strategies and flexible dimensioning including an additional component database for battery types; d) Extensive cost analysis for PV-supported appliances and small systems, from investments to consumption, operation and maintenance. This will facilitate investment decisions and help systems of this type along in the market. All program components were designed for high flexibility. Users should be able to vary as many parameters as possible, and to generate and modify their own records. The current project focused on the user interface, i.e. input, data processing, and output. Parallel to this, the Fraunhofer ISE Institute worked on modifications of the computer hardware. [German] Das Projekt zielte auf eine Erweiterung des Simulationsprogramms PVS fuer Windows zur Entwicklung und Simulation von PV-versorgten Geraeten und Kleinsystemen hin. Das Entwicklungsprodukt sollte zusaetzlich zu den bisherigen Funktionen insbesondere Folgendes leisten: (a) Simulation und Dimensionierung der Energieversorgung von Geraeten im Indoor-Bereich, wobei unterschiedliche Lichtquellen verarbeitet werden muessen, sowie von sonstigen netzfreien (Outdoor-) Kleinsystemen. (b) Einbindung kleiner Windgeneratoren in die Simulation und Dimensionierung von netzfernen Systemen (Insel-Anlagen), einschliesslich Bereitstellung der Wind-Daten und einer zusaetzlichen Komponenten-Datenbank fuer kleine

  3. ROBOSIM, a simulator for robotic systems

    Science.gov (United States)

    Hinman, Elaine M.; Fernandez, Ken; Cook, George E.

    1991-01-01

    ROBOSIM, a simulator for robotic systems, was developed by NASA to aid in the rapid prototyping of automation. ROBOSIM has allowed the development of improved robotic systems concepts for both earth-based and proposed on-orbit applications while significantly reducing development costs. In a cooperative effort with an area university, ROBOSIM was further developed for use in the classroom as a safe and cost-effective way of allowing students to study robotic systems. Students have used ROBOSIM to study existing robotic systems and systems which they have designed in the classroom. Since an advanced simulator/trainer of this type is beneficial not only to NASA projects and programs but industry and academia as well, NASA is in the process of developing this technology for wider public use. An update on the simulators's new application areas, the improvements made to the simulator's design, and current efforts to ensure the timely transfer of this technology are presented.

  4. A Simulation Tool for tccp Programs

    Directory of Open Access Journals (Sweden)

    María-del-Mar Gallardo

    2017-01-01

    Full Text Available The Timed Concurrent Constraint Language tccp is a declarative synchronous concurrent language, particularly suitable for modelling reactive systems. In tccp, agents communicate and synchronise through a global constraint store. It supports a notion of discrete time that allows all non-blocked agents to proceed with their execution simultaneously. In this paper, we present a modular architecture for the simulation of tccp programs. The tool comprises three main components. First, a set of basic abstract instructions able to model the tccp agent behaviour, the memory model needed to manage the active agents and the state of the store during the execution. Second, the agent interpreter that executes the instructions of the current agent iteratively and calculates the new agents to be executed at the next time instant. Finally, the constraint solver components which are the modules that deal with constraints. In this paper, we describe the implementation of these components and present an example of a real system modelled in tccp.

  5. Contrasting the capabilities of building energy performance simulation programs

    Energy Technology Data Exchange (ETDEWEB)

    Crawley, Drury B. [US Department of Energy, Washington, DC (United States); Hand, Jon W. [University of Strathclyde, Glasgow, Scotland (United Kingdom). Energy Systems Research Unit; Kummert, Michael [University of Wisconsin-Madison (United States). Solar Energy Laboratory; Griffith, Brent T. [National Renewable Energy Laboratory, Golden, CO (United States)

    2008-04-15

    For the past 50 years, a wide variety of building energy simulation programs have been developed, enhanced and are in use throughout the building energy community. This paper is an overview of a report, which provides up-to-date comparison of the features and capabilities of twenty major building energy simulation programs. The comparison is based on information provided by the program developers in the following categories: general modeling features; zone loads; building envelope and daylighting and solar; infiltration, ventilation and multizone airflow; renewable energy systems; electrical systems and equipment; HVAC systems; HVAC equipment; environmental emissions; economic evaluation; climate data availability, results reporting; validation; and user interface, links to other programs, and availability. (author)

  6. User's Guide: Computer Program for Simulation of Construction Sequence for Stiff Wall Systems With Multiple Levels of Anchors (CMULTIANC)

    National Research Council Canada - National Science Library

    Dawkins, William

    2003-01-01

    .... Top-down construction is assumed in this analysis procedure. The retaining wall system is modeled using beam on inelastic foundation methods with elastoplastic soil- pressure deformation curves (R-y curves...

  7. Development of Simulator Maintenance Engineer Qualification Program Draft

    International Nuclear Information System (INIS)

    Chung, Kyung Hun

    2010-01-01

    As of 2009, KHNP has currently seven full scope simulators that are used for training of Nuclear Power Plant (NPP) Operators. Well-trained Simulator Maintenance Engineers (SME) are required to support these simulators. These SMEs will maintain and address any issues identified or any changes required for keep up the simulator with their respective plant sites. These issues will be identified as Simulator Discrepancy Reports (DR) or Work Order (WO) by the simulator operation personnel in KHNP. The simulator maintenance is a very complex. The simulator consists of many areas of process and requires experts in software modeling for different processes such as Neutronics, thermohydraulics, Logics, control, Electrical systems and computer systems as well as hardware subjects such as I and C, I/O, computers, etc. All these areas need experts the subject expertise need to be divided among SME's. In other word the SME's need to be trained for different expertise as well as having different level of SME's. KHNP has seen the need to outsource the maintenance work for these complex simulators. To have one company concentrating on this work will have many benefits such as: · Provides proper and well trained experts · Maintains consistent support personnel · Maintains the maintenance history for the simulator · Coordinates and Maintains the knowledge in house · The simulator maintenance will be consistent In order to accomplish the goals, KEPCO RI has recognized that there is a need for a program to adequately train and qualify the SME's. KEPCO RI and GSE, which has provided 6 simulators among 7 NPP simulators in Korea, have jointly developed this Simulator Maintenance Engineer Qualification Program (SMEQP). After issue of this plan, KEPCO RI will maintain and modify as needed periodically to meet the goals and purpose of the plan

  8. The development of fast simulation program for marine reactor parameters

    International Nuclear Information System (INIS)

    Chen Zhiyun; Hao Jianli; Chen Wenzhen

    2012-01-01

    Highlights: ► The simplified physical and mathematical models are proposed for a marine reactor system. ► A program is developed with Simulink module and Matlab file. ► The program developed has the merit of easy input preparation, output processing and fast running. ► The program can be used for the fast simulation of marine reactor parameters on the operating field. - Abstract: The fast simulation program for marine reactor parameters is developed based on the Simulink simulating software according to the characteristics of marine reactor with requirement of maneuverability and acute and fast response. The simplified core physical and thermal model, pressurizer model, steam generator model, control rod model, reactivity model and the corresponding Simulink modules are established. The whole program is developed by coupling all the Simulink modules. Two typical transient processes of marine reactor with fast load increase at low power level and load rejection at high power level are adopted to verify the program. The results are compared with those of Relap5/Mod3.2 with good consistency, and the program runs very fast. It is shown that the program is correct and suitable for the fast and accurate simulation of marine reactor parameters on the operating field, which is significant to the marine reactor safe operation.

  9. Fusion Simulation Program Definition. Final report

    International Nuclear Information System (INIS)

    Cary, John R.

    2012-01-01

    We have completed our contributions to the Fusion Simulation Program Definition Project. Our contributions were in the overall planning with concentration in the definition of the area of Software Integration and Support. We contributed to the planning of multiple meetings, and we contributed to multiple planning documents

  10. Building Interactive Simulations in Web Pages without Programming.

    Science.gov (United States)

    Mailen Kootsey, J; McAuley, Grant; Bernal, Julie

    2005-01-01

    A software system is described for building interactive simulations and other numerical calculations in Web pages. The system is based on a new Java-based software architecture named NumberLinX (NLX) that isolates each function required to build the simulation so that a library of reusable objects could be assembled. The NLX objects are integrated into a commercial Web design program for coding-free page construction. The model description is entered through a wizard-like utility program that also functions as a model editor. The complete system permits very rapid construction of interactive simulations without coding. A wide range of applications are possible with the system beyond interactive calculations, including remote data collection and processing and collaboration over a network.

  11. An application of object-oriented programming to process simulation

    International Nuclear Information System (INIS)

    Robinson, J.T.; Otaduy, P.J.

    1988-01-01

    This paper discusses the application of object-oriented programming to dynamic simulation of continuous processes. Processes may be modeled using this technique as a collection of objects which communicate with each other via message passing. Arriving messages invoke methods that describe the state and/or dynamic behavior of the receiving object. The objects fall into four broad categories actual plant components such as pumps, pipes, and tanks, abstract objects such as heat sources and conductors, plant systems such as flow loops, and simulation control and interface objects. This technique differs from traditional approaches to process simulation, in which the process is represented by either a system of differential equations or a block diagram of mathematical operators. The use of objects minimizes the representational gap between the model and actual process. From the users point of view, construction of a simulation model becomes equivalent to drawing a plant schematic. As an example application, a package developed for the simulation of nuclear power plants is described. The package allows users to build simulation models by selecting iconic representations of plant components from a menu and connecting them with a mouse. Objects for generating a mathematical model of the system and for controlling the simulation are automatically generated, freeing the user to concentrate on describing his process. This example illustrates the use of object-oriented programming to create a highly interactive and automated simulation environment. 2 figs

  12. Nuclear system test simulator

    International Nuclear Information System (INIS)

    Sawyer, S.D.; Hill, W.D.; Wilson, P.A.; Steiner, W.M.

    1987-01-01

    A transportable test simulator is described for a nuclear power plant. The nuclear power plant includes a control panel, a reactor having actuated rods for moving into and out of a reactor for causing the plant to operate, and a control rod network extending between the control panel and the reactor rods. The network serially transmits command words between the panel and rods, and has connecting interfaces at preselected points remote from the control panel between the control panel and rods. The test simulator comprises: a test simulator input for transport to and connection into the network at at least one interface for receiving the serial command words from the network. Each serial command includes an identifier portion and a command portion; means for processing interior of the simulator for the serial command words for identifying that portion of the power plant designated in the identifier portion and processing the word responsive to the command portion of the word after the identification; means for generating a response word responsive to the command portion; and output means for sending and transmitting the response word to the nuclear power plant at the interface whereby the control panel responds to the response word

  13. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  14. Simulation of Polygeneration Systems

    Directory of Open Access Journals (Sweden)

    Francesco Calise

    2016-11-01

    Full Text Available This Special Issue aims at collecting the recent studies dealing with polygeneration systems, with a special focus on the possible integration of different technologies into a single system, able to convert one or multiple energy sources into energy services (electricity, heat and cooling and other useful products (e.g., desalinized water, hydrogen, glycerin, ammonia, etc.. Renewable sources (solar, wind, hydro, biomass and geothermal, as well as fossil fuels, feeding advanced energy systems such as fuel cells and cogeneration systems, are considered. Special attention is paid to control strategies and to the management of the systems in general. Studies including thermoeconomic analyses and system optimizations are presented.

  15. Communication System Simulation Workstation

    Science.gov (United States)

    1990-01-30

    SIMULATION WORKSTATION Grant # AFOSR-89-0117 Submitted to: DEPARTMENT OF AIR FORCE AIR FORCE OFFICE OF SCIENTIFIC RESEARCH BOLLING AIR FORCE BASE , DC...CORRESPONOENCiA. PAGUETES. CONIIUCE. r ACTUHA. Y CONOCIMIENTO DE EMBAROUES. THIS PURCHASE ORDER [,rccion Cablegralica .1,1 Addrv~s NO MUST APPEAR ON ALL...sub-band decomposition was developed, PKX, based on the modulation of a single prototype filter. This technicde was introduced first by Nassbauner and

  16. DNA - A Thermal Energy System Simulator

    DEFF Research Database (Denmark)

    2008-01-01

    DNA is a general energy system simulator for both steady-state and dynamic simulation. The program includes a * component model library * thermodynamic state models for fluids and solid fuels and * standard numerical solvers for differential and algebraic equation systems and is free and portable...... (open source, open use, standard FORTRAN77). DNA is text-based using whichever editor, you like best. It has been integerated with the emacs editor. This is usually available on unix-like systems. for windows we recommend the Installation instructions for windows: First install emacs and then run...... the DNA installer...

  17. Military nuclear activities. The simulation program

    International Nuclear Information System (INIS)

    Delpuech, A.

    2000-01-01

    The durability of the French nuclear weapon dissuasion has to integrate two kind of problems: the geopolitical situation with the comprehensive nuclear test ban treaty (CTBT) and the aging of weapons. The replacement of decayed weapons requires a complete safety and reliability validation of the new weapons which is performed using simulation. This paper gives a brief presentation of the simulation program and of the technical means developed by the military division of the French atomic energy commission (CEA-DAM): the Airix X-ray radiography installation and the 'megajoule' laser facility. (J.S.)

  18. Simulation of micromegas detector by Garfield program

    International Nuclear Information System (INIS)

    Zhang Xiaodong; Zhang Yi; Yang Herun; Xu Hushan; Duan Limin; Li Chunyan; Li Zuyu

    2007-01-01

    In this paper, a batch file which describes the detailed structure and the corresponding physical process of Micro-Mesh Gaseous Structure (Micromegas) detector, the macro commands and the control structures based on the Garfield program has been developed. And using the Garfield program controlled by this batch file, the detector's gain and spatial resolution have been investigated under different conditions. These results obtained by the simulation program not only exhibit the influences of the mesh and drift voltage, the mixture gas proportion, the distance between the mesh cathode and the printed circuit board readout anode, and the Lines Per Inch of the mesh cathode on the gain and spatial resolution of the detector, but also are very important to optimize the design, shorten the experimental period, and save cost during the detector development. Additionally, they also indicate that the Garfield program is a powerful tool for the Micromegas detector design and optimization. (authors)

  19. Healthcare system simulation using Witness

    International Nuclear Information System (INIS)

    Khakdaman, Masoud; Zeinahvazi, Milad; Zohoori, Bahareh; Nasiri, Fardokht; Wong, Kuan Yew

    2013-01-01

    Simulation techniques have a proven track record in manufacturing industry as well as other areas such as healthcare system improvement. In this study, simulation model of a health center in Malaysia is developed through the application of WITNESS simulation software which has shown its flexibility and capability in manufacturing industry. Modelling procedure is started through process mapping and data collection and continued with model development, verification, validation and experimentation. At the end, final results and possible future improvements are demonstrated.

  20. Microcanonical simulation of Ising systems

    International Nuclear Information System (INIS)

    Bhanot, G.; Neuberger, H.

    1984-01-01

    Numerical simulations of the microcanonical ensemble for Ising systems are described. We explain how to write very fast algorithms for such simulations, relate correlations measured in the microcanonical ensemble to those in the canonical ensemble and discuss criteria for convergence and ergodicity. (orig.)

  1. A Multiprocessor Operating System Simulator

    Science.gov (United States)

    Johnston, Gary M.; Campbell, Roy H.

    1988-01-01

    This paper describes a multiprocessor operating system simulator that was developed by the authors in the Fall semester of 1987. The simulator was built in response to the need to provide students with an environment in which to build and test operating system concepts as part of the coursework of a third-year undergraduate operating systems course. Written in C++, the simulator uses the co-routine style task package that is distributed with the AT&T C++ Translator to provide a hierarchy of classes that represents a broad range of operating system software and hardware components. The class hierarchy closely follows that of the 'Choices' family of operating systems for loosely- and tightly-coupled multiprocessors. During an operating system course, these classes are refined and specialized by students in homework assignments to facilitate experimentation with different aspects of operating system design and policy decisions. The current implementation runs on the IBM RT PC under 4.3bsd UNIX.

  2. Electrical power system integrated thermal/electrical system simulation

    International Nuclear Information System (INIS)

    Freeman, W.E.

    1992-01-01

    This paper adds thermal properties to previously developed electrical Saber templates and incorporates these templates into a functional Electrical Power Subsystem (EPS) simulation. These combined electrical and thermal templates enable the complete and realistic simulation of a vehicle EPS on-orbit. Applications include on-orbit energy balance determinations for system load changes, initial array and battery EPS sizing for new EPS development, and array and battery technology trade studies. This effort proves the versatility of the Saber simulation program in handling varied and complex simulations accurately and in a reasonable amount of computer time. 9 refs

  3. Simulation bounds for system availability

    International Nuclear Information System (INIS)

    Tietjen, G.L.; Waller, R.A.

    1976-01-01

    System availability is a dominant factor in the practicality of nuclear power electrical generating plants. A proposed model for obtaining either lower bounds or interval estimates on availability uses observed data on ''n'' failure-to-repair cycles of the system to estimate the parameters in the time-to-failure and time-to-repair models. These estimates are then used in simulating failure/repair cycles of the system. The availability estimate is obtained for each of 5000 samples of ''n'' failure/repair cycles to form a distribution of estimates. Specific percentile points of those simulated distributions are selected as lower simulation bounds or simulation interval bounds for the system availability. The method is illustrated with operational data from two nuclear plants for which an exponential time-to-failure and a lognormal time-to-repair are assumed

  4. GPS system simulation methodology

    Science.gov (United States)

    Ewing, Thomas F.

    1993-01-01

    The following topics are presented: background; Global Positioning System (GPS) methodology overview; the graphical user interface (GUI); current models; application to space nuclear power/propulsion; and interfacing requirements. The discussion is presented in vugraph form.

  5. Systems and simulation

    CERN Document Server

    Torokhti, Anatoli

    2000-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques...

  6. An introduction to computer simulation methods applications to physical systems

    CERN Document Server

    Gould, Harvey; Christian, Wolfgang

    2007-01-01

    Now in its third edition, this book teaches physical concepts using computer simulations. The text incorporates object-oriented programming techniques and encourages readers to develop good programming habits in the context of doing physics. Designed for readers at all levels , An Introduction to Computer Simulation Methods uses Java, currently the most popular programming language. Introduction, Tools for Doing Simulations, Simulating Particle Motion, Oscillatory Systems, Few-Body Problems: The Motion of the Planets, The Chaotic Motion of Dynamical Systems, Random Processes, The Dynamics of Many Particle Systems, Normal Modes and Waves, Electrodynamics, Numerical and Monte Carlo Methods, Percolation, Fractals and Kinetic Growth Models, Complex Systems, Monte Carlo Simulations of Thermal Systems, Quantum Systems, Visualization and Rigid Body Dynamics, Seeing in Special and General Relativity, Epilogue: The Unity of Physics For all readers interested in developing programming habits in the context of doing phy...

  7. EGS code system: computer programs for the Monte Carlo simulation of electromagnetic cascade showers. Version 3. [EGS, PEGS, TESTSR, in MORTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Ford, R.L.; Nelson, W.R.

    1978-06-01

    A code to simulate almost any electron--photon transport problem conceivable is described. The report begins with a lengthy historical introduction and a description of the shower generation process. Then the detailed physics of the shower processes and the methods used to simulate them are presented. Ideas of sampling theory, transport techniques, particle interactions in general, and programing details are discussed. Next, EGS calculations and various experiments and other Monte Carlo results are compared. The remainder of the report consists of user manuals for EGS, PEGS, and TESTSR codes; options, input specifications, and typical output are included. 38 figures, 12 tables. (RWR)

  8. Current status of endoscopic simulation in gastroenterology fellowship training programs.

    Science.gov (United States)

    Jirapinyo, Pichamol; Thompson, Christopher C

    2015-07-01

    Recent guidelines have encouraged gastroenterology and surgical training programs to integrate simulation into their core endoscopic curricula. However, the role that simulation currently has within training programs is unknown. This study aims to assess the current status of simulation among gastroenterology fellowship programs. This questionnaire study consisted of 38 fields divided into two sections. The first section queried program directors' experience on simulation and assessed the current status of simulation at their institution. The second portion surveyed their opinion on the potential role of simulation on the training curriculum. The study was conducted at the 2013 American Gastroenterological Association Training Directors' Workshop in Phoenix, Arizona. The participants were program directors from Accreditation Council for Graduate Medical Education accredited gastroenterology training programs, who attended the workshop. The questionnaire was returned by 69 of 97 program directors (response rate of 71%). 42% of programs had an endoscopic simulator. Computerized simulators (61.5%) were the most common, followed by mechanical (30.8%) and animal tissue (7.7%) simulators, respectively. Eleven programs (15%) required fellows to use simulation prior to clinical cases. Only one program has a minimum number of hours fellows have to participate in simulation training. Current simulators are deemed as easy to use (76%) and good educational tools (65%). Problems are cost (72%) and accessibility (69%). The majority of program directors believe that there is a need for endoscopic simulator training, with only 8% disagreeing. Additionally, a majority believe there is a role for simulation prior to initiation of clinical cases with 15% disagreeing. Gastroenterology fellowship program directors widely recognize the importance of simulation. Nevertheless, simulation is used by only 42% of programs and only 15% of programs require that trainees use simulation prior to

  9. A simulation model of IT risk on program trading

    Science.gov (United States)

    Xia, Bingying; Jiang, Wenbao; Luo, Guangxuan

    2015-12-01

    The biggest difficulty for Program trading IT risk measures lies in the loss of data, in view of this situation, the current scholars approach is collecting court, network and other public media such as all kinds of accident of IT both at home and abroad for data collection, and the loss of IT risk quantitative analysis based on this database. However, the IT risk loss database established by this method can only fuzzy reflect the real situation and not for real to make fundamental explanation. In this paper, based on the study of the concept and steps of the MC simulation, we use computer simulation method, by using the MC simulation method in the "Program trading simulation system" developed by team to simulate the real programming trading and get the IT risk loss of data through its IT failure experiment, at the end of the article, on the effectiveness of the experimental data is verified. In this way, better overcome the deficiency of the traditional research method and solves the problem of lack of IT risk data in quantitative research. More empirically provides researchers with a set of simulation method are used to study the ideas and the process template.

  10. Purdue Contribution of Fusion Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Brooks

    2011-09-30

    . It will address the origins and structure of the plasma electric field, rotation, the L-H transition, and the wide variety of pedestal relaxation mechanisms. The Whole Device Model will predict the entire discharge evolution given external actuators (i.e., magnets, power supplies, heating, current drive and fueling systems) and control strategies. Based on components operating over a range of physics fidelity, the WDM will model the plasma equilibrium, plasma sources, profile evolution, linear stability and nonlinear evolution toward a disruption (but not the full disruption dynamics). The plan assumes that, as the FSP matures and demonstrates success, the program will evolve and grow, enabling additional science problems to be addressed. The next set of integration opportunities could include: 1) Simulation of disruption dynamics and their effects; 2) Prediction of core profile including 3D effects, mesoscale dynamics and integration with the edge plasma; 3) Computation of non-thermal particle distributions, self-consistent with fusion, radio frequency (RF) and neutral beam injection (NBI) sources, magnetohydrodynamics (MHD) and short-wavelength turbulence.

  11. Smart systems integration and simulation

    CERN Document Server

    Poncino, Massimo; Pravadelli, Graziano

    2016-01-01

    This book-presents new methods and tools for the integration and simulation of smart devices. The design approach described in this book explicitly accounts for integration of Smart Systems components and subsystems as a specific constraint. It includes methodologies and EDA tools to enable multi-disciplinary and multi-scale modeling and design, simulation of multi-domain systems, subsystems and components at all levels of abstraction, system integration and exploration for optimization of functional and non-functional metrics. By covering theoretical and practical aspects of smart device design, this book targets people who are working and studying on hardware/software modelling, component integration and simulation under different positions (system integrators, designers, developers, researchers, teachers, students etc.). In particular, it is a good introduction to people who have interest in managing heterogeneous components in an efficient and effective way on different domains and different abstraction l...

  12. Overview of HVAC system simulation

    NARCIS (Netherlands)

    Trcka, M.; Hensen, J.L.M.

    2010-01-01

    The paper gives an overview of heating, ventilation and air-conditioning (HVAC) system modeling and simulation. The categorization of tools for HVAC system design and analysis with respect to which problems they are meant to deal with is introduced. Each categorization is explained and example tools

  13. STEFINS: a steel freezing integral simulation program

    International Nuclear Information System (INIS)

    Frank, M.V.

    1980-09-01

    STEFINS (STEel Freezing INtegral Simulation) is a computer program for the calculation of the rate of solidification of molten steel on solid steel. Such computations arize when investigating core melt accidents in fast reactors. In principle this problem involves a coupled two-dimensional thermal and hydraulic approach. However, by physically reasonable assumptions a decoupled approach has been developed. The transient solidification of molten steel on a cold wall is solved in the direction normal to the molten steel flow and independent from the solution for the molten steel temperature and Nusselt number along the direction of flow. The solutions to the applicable energy equations have been programmed in cylindrical and slab geometries. Internal gamma heating of steel is included

  14. Modelling of windmill induction generators in dynamic simulation programs

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Knudsen, Hans

    1999-01-01

    with and without a model of the mechanical shaft. The reason for the discrepancies are explained, and it is shown that the phenomenon is due partly to the presence of DC offset currents in the induction machine stator, and partly to the mechanical shaft system of the wind turbine and the generator rotor......For AC networks with large amounts of induction generators-in case of e.g. windmills-the paper demonstrates a significant discrepancy in the simulated voltage recovery after faults in weak networks, when comparing result obtained with dynamic stability programs and transient programs, respectively....... It is shown that it is possible to include a transient model in dynamic stability programs and thus obtain correct results also in dynamic stability programs. A mechanical model of the shaft system has also been included in the generator model...

  15. The FSE system for crop simulation, version 2.1

    NARCIS (Netherlands)

    Kraalingen, van D.W.G.

    1995-01-01

    A FORTRAN 77 programming environment for continuous simulation of agro-ecological processes, such as crop growth and calculation of water balances is presented. This system, called FSE (FORTRAN Simulation Environment), consists of a main program, weather data and utilities for performing specific

  16. Simulation of traffic control signal systems

    Science.gov (United States)

    Connolly, P. J.; Concannon, P. A.; Ricci, R. C.

    1974-01-01

    In recent years there has been considerable interest in the development and testing of control strategies for networks of urban traffic signal systems by simulation. Simulation is an inexpensive and timely method for evaluating the effect of these traffic control strategies since traffic phenomena are too complex to be defined by analytical models and since a controlled experiment may be hazardous, expensive, and slow in producing meaningful results. This paper describes the application of an urban traffic corridor program, to evaluate the effectiveness of different traffic control strategies for the Massachusetts Avenue TOPICS Project.

  17. Java simulations of embedded control systems.

    Science.gov (United States)

    Farias, Gonzalo; Cervin, Anton; Arzén, Karl-Erik; Dormido, Sebastián; Esquembre, Francisco

    2010-01-01

    This paper introduces a new Open Source Java library suited for the simulation of embedded control systems. The library is based on the ideas and architecture of TrueTime, a toolbox of Matlab devoted to this topic, and allows Java programmers to simulate the performance of control processes which run in a real time environment. Such simulations can improve considerably the learning and design of multitasking real-time systems. The choice of Java increases considerably the usability of our library, because many educators program already in this language. But also because the library can be easily used by Easy Java Simulations (EJS), a popular modeling and authoring tool that is increasingly used in the field of Control Education. EJS allows instructors, students, and researchers with less programming capabilities to create advanced interactive simulations in Java. The paper describes the ideas, implementation, and sample use of the new library both for pure Java programmers and for EJS users. The JTT library and some examples are online available on http://lab.dia.uned.es/jtt.

  18. Interactive Simulations of Biohybrid Systems

    Directory of Open Access Journals (Sweden)

    Sebastian Albrecht von Mammen

    2017-10-01

    Full Text Available In this article, we present approaches to interactive simulations of biohybrid systems. These simulations are comprised of two major computational components: (1 agent-based developmental models that retrace organismal growth and unfolding of technical scaffoldings and (2 interfaces to explore these models interactively. Simulations of biohybrid systems allow us to fast forward and experience their evolution over time based on our design decisions involving the choice, configuration and initial states of the deployed biological and robotic actors as well as their interplay with the environment. We briefly introduce the concept of swarm grammars, an agent-based extension of L-systems for retracing growth processes and structural artifacts. Next, we review an early augmented reality prototype for designing and projecting biohybrid system simulations into real space. In addition to models that retrace plant behaviors, we specify swarm grammar agents to braid structures in a self-organizing manner. Based on this model, both robotic and plant-driven braiding processes can be experienced and explored in virtual worlds. We present an according user interface for use in virtual reality. As we present interactive models concerning rather diverse description levels, we only ensured their principal capacity for interaction but did not consider efficiency analyzes beyond prototypic operation. We conclude this article with an outlook on future works on melding reality and virtuality to drive the design and deployment of biohybrid systems.

  19. Water Hammer Simulations of MMH Propellant - New Capability Demonstration of the Generalized Fluid Flow Simulation Program

    Science.gov (United States)

    Burkhardt, Z.; Ramachandran, N.; Majumdar, A.

    2017-01-01

    Fluid Transient analysis is important for the design of spacecraft propulsion system to ensure structural stability of the system in the event of sudden closing or opening of the valve. Generalized Fluid System Simulation Program (GFSSP), a general purpose flow network code developed at NASA/MSFC is capable of simulating pressure surge due to sudden opening or closing of valve when thermodynamic properties of real fluid are available for the entire range of simulation. Specifically GFSSP needs an accurate representation of pressure-density relationship in order to predict pressure surge during a fluid transient. Unfortunately, the available thermodynamic property programs such as REFPROP, GASP or GASPAK does not provide the thermodynamic properties of Monomethylhydrazine (MMH). This paper will illustrate the process used for building a customized table of properties of state variables from available properties and speed of sound that is required by GFSSP for simulation. Good agreement was found between the simulations and measured data. This method can be adopted for modeling flow networks and systems with other fluids whose properties are not known in detail in order to obtain general technical insight. Rigorous code validation of this approach will be done and reported at a future date.

  20. Off-line programming (OLP) system comparison

    International Nuclear Information System (INIS)

    Holliday, M.A.

    1993-01-01

    Off-line programming (OLP) systems are being used to conceptualize, design, simulate, and now control automated robotic workcells. Currently available systems by Deneb, SILMA, and Cimetrix are being used at the Lawrenece Livermore National Laboratory (LLNL) to simulate and control automated robotic systems for radioactive material processing and hazardous waste sorting. The differences in system architectures, workcell and robot calibration procedures, operator interface, and graphical output capability of each will be discussed. The relative strengths and weaknesses of these attributes will be discussed as they relate to varying applications in robotic workcell development and control

  1. CHAP: a composite nuclear plant simulation program applied to the 3000 MW(t) HTGR

    International Nuclear Information System (INIS)

    Secker, P.A.; Bailey, P.G.; Gilbert, J.S.; Willcutt, G.J.E. Jr.; Vigil, J.C.

    1977-01-01

    The Composite HTGR Analysis Program (CHAP) is a general systems analysis program which has been developed at LASL. The program is being used for simulating large HTGR nuclear power plant operation and accident transients. The general features and analytical methods of the CHAP program are discussed. Features of the large HTGR model and results of model transients are also presented

  2. The implementation of full ATLAS detector simulation program

    International Nuclear Information System (INIS)

    Rimoldi, A.; Dell'Acqua, A.; Stavrianakou, M.; Amako, K.; Kanzaki, J.; Morita, Y.; Murakami, K.; Sasaki, T.; Saeki, T.; Ueda, I.; Tanaka, S.; Yoshida, H.

    2001-01-01

    The ATLAS detector is one of the most sophisticated and huge detectors ever designed up to now. A detailed, flexible and complete simulation program is needed in order to study the characteristics and possible problems of such a challenging apparatus and to answer to all raising questions in terms of physics, design optimization, etc. To cope with these needs the authors are implementing an application based on the simulation framework FADS/Goofy (Framework for ATLAS Detector Simulation /Geant4-based Object-Oriented Folly) in the Geant4 environment. The user's specific code implementation is presented in details for the different applications implemented until now, from the various components of the ATLAS spectrometer to some particular testbeam facilities. Particular emphasis is put in describing the simulation of the Muon Spectrometer and its subsystems as a test case for the implementation of the whole detector simulation program: the intrinsic complexity in the geometry description of the Muon System is one of the more demanding problems that are faced. The magnetic field handling, the physics impact in the event processing in presence of backgrounds from different sources and the implementation of different possible generators (including Pythia) are also discussed

  3. Dynamic simulation of LMFBR systems

    International Nuclear Information System (INIS)

    Agrawal, A.K.; Khatib-Rahbar, M.

    1980-01-01

    This review article focuses on the dynamic analysis of liquid-metal-cooled fast breeder reactor systems in the context of protected transients. Following a brief discussion on various design and simulation approaches, a critical review of various models for in-reactor components, intermediate heat exchangers, heat transport systems and the steam generating system is presented. A brief discussion on choice of fuels as well as core and blanket system designs is also included. Numerical considerations for obtaining system-wide steady-state and transient solutions are discussed, and examples of various system transients are presented. Another area of major interest is verification of phenomenological models. Various steps involved in the code and model verification are briefly outlined. The review concludes by posing some further areas of interest in fast reactor dynamics and safety. (author)

  4. The simulation of CAMAC system based on Windows API

    International Nuclear Information System (INIS)

    Li Lei; Song Yushou; Xi Yinyin; Yan Qiang; Liu Huilan; Li Taosheng

    2012-01-01

    Based on Windows API, a kind of design method to simulate the CAMAC System, which is commonly used in nuclear physics experiments, is developed. Using C++ object-oriented programming, the simulation is carried out in the environment of Visual Studio 2010 and the interfaces, the data-way, the control commands and the modules are simulated with the functions either user-defined or from Windows API. Applying this method, the amplifier plug AMP575A produced by ORTEC is simulated and performance experiments are studied for this simulation module. The results indicate that the simulation module can fulfill the function of pole-zero adjustment, which means this method is competent for the simulation of CAMAC System. Compared with the simulation based on LabVIEW, this way is more flexible and closer to the bottom of the system. All the works above have found a path to making the virtual instrument platform based on CAMAC system. (authors)

  5. Digital simulation of power electronic systems

    International Nuclear Information System (INIS)

    Mehring, P.; Jentsch, W.; John, G.; Kraemer, D.

    1981-01-01

    The following paper contains the final report on the NETSIM-Project. The purpose of this project is to develop a special digital simulation system, which could serve as a base for routine application of simulation in planning and development of power electronic systems. The project is realized in two steps. First a basic network analysis system is established. With this system the basic models and methods in treating power electronic networks could be probed. The resulting system is then integrated into a general digital simulation system for continous systems (CSSL-System). This integrated simulation system allows for convenient modeling and simulation of power electronic systems. (orig.) [de

  6. Simulation-Based Testing of Distributed Systems

    National Research Council Canada - National Science Library

    Rutherford, Matthew J; Carzaniga, Antonio; Wolf, Alexander L

    2006-01-01

    .... Typically written using an imperative programming language, these simulations capture basic algorithmic functionality at the same time as they focus attention on properties critical to distribution...

  7. Increase of Power System Survivability with the Decision Support Tool CRIPS Based on Network Planning and Simulation Program PSS®SINCAL

    Science.gov (United States)

    Schwaegerl, Christine; Seifert, Olaf; Buschmann, Robert; Dellwing, Hermann; Geretshuber, Stefan; Leick, Claus

    The increased interconnection and automation of critical infrastructures enlarges the complexity of the dependency structures and - as consequence - the danger of cascading effects, e.g. causing area-wide blackouts in power supply networks that are currently after deregulation operated closer to their limits. New tools or an intelligent combination of existing approaches are required to increase the survivability of critical infrastructures. Within the IRRIIS project the expert system CRIPS was developed based on network simulations realised with PSS®SINCAL, an established tool to support the analysis and planning of electrical power, gas, water or heat networks. CRIPS assesses the current situation in power supply networks analysing the simulation results of the physical network behaviour and recommends corresponding decisions.

  8. Trace contaminant control simulation computer program, version 8.1

    Science.gov (United States)

    Perry, J. L.

    1994-01-01

    The Trace Contaminant Control Simulation computer program is a tool for assessing the performance of various process technologies for removing trace chemical contamination from a spacecraft cabin atmosphere. Included in the simulation are chemical and physical adsorption by activated charcoal, chemical adsorption by lithium hydroxide, absorption by humidity condensate, and low- and high-temperature catalytic oxidation. Means are provided for simulating regenerable as well as nonregenerable systems. The program provides an overall mass balance of chemical contaminants in a spacecraft cabin given specified generation rates. Removal rates are based on device flow rates specified by the user and calculated removal efficiencies based on cabin concentration and removal technology experimental data. Versions 1.0 through 8.0 are documented in NASA TM-108409. TM-108409 also contains a source file listing for version 8.0. Changes to version 8.0 are documented in this technical memorandum and a source file listing for the modified version, version 8.1, is provided. Detailed descriptions for the computer program subprograms are extracted from TM-108409 and modified as necessary to reflect version 8.1. Version 8.1 supersedes version 8.0. Information on a separate user's guide is available from the author.

  9. FPGA-accelerated simulation of computer systems

    CERN Document Server

    Angepat, Hari; Chung, Eric S; Hoe, James C; Chung, Eric S

    2014-01-01

    To date, the most common form of simulators of computer systems are software-based running on standard computers. One promising approach to improve simulation performance is to apply hardware, specifically reconfigurable hardware in the form of field programmable gate arrays (FPGAs). This manuscript describes various approaches of using FPGAs to accelerate software-implemented simulation of computer systems and selected simulators that incorporate those techniques. More precisely, we describe a simulation architecture taxonomy that incorporates a simulation architecture specifically designed f

  10. A View on Future Building System Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  11. Simulation of an adsorption solar cooling system

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.; Bennacer, R.

    2011-01-01

    A more realistic theoretical simulation model for a tubular solar adsorption refrigerating system using activated carbon-methanol (AC/M) pair has been introduced. The mathematical model represents the heat and mass transfer inside the adsorption bed, the condenser, and the evaporator. The simulation technique takes into account the variations of ambient temperature and solar radiation along the day. Furthermore, the local pressure, and local thermal conductivity variations in space and time inside the tubular reactor are investigated as well. A C++ computer program is written to solve the proposed numerical model using the finite difference method. The developed program covers the operations of all the system components along the cycle time. The performance of the tubular reactor, the condenser, and the evaporator has been discussed. Time allocation chart and switching operations for the solar refrigeration system processes are illustrated as well. The case studied has a 1 m 2 surface area solar flat plate collector integrated with a 20 stainless steel tubes containing the AC/M pair and each tube has a 5 cm outer diameter. In addition, the condenser pressure is set to 54.2 kpa. It has been found that, the solar coefficient of performance and the specific cooling power of the system are 0.211 and 2.326 respectively. In addition, the pressure distribution inside the adsorption bed has been found nearly uniform and varying only with time. Furthermore, the AC/M thermal conductivity is shown to be constant in both space and time.

  12. Reactive programming in eventsourcing systems

    OpenAIRE

    Kučinskas, Žilvinas

    2017-01-01

    Eventsourcing describes current state as series of events that occurred in a system. Events hold all information that is needed to recreate current state. This method allows to achieve high volume of transactions, and enables efficient replication. Whereas reactive programming lets implement reactive systems in declarative style, decomposing logic into smaller, easier to understand components. Thesis aims to create reactive programming program interface, incorporating both principles. Applyin...

  13. Development of intelligent interface for simulation execution by module-based simulation system

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Mizutani, Naoki; Shimoda, Hiroshi; Wakabayashi, Jiro

    1988-01-01

    An intelligent user support for the two phases of simulation execution was newly developed for Module-based Simulation System (MSS). The MSS has been in development as a flexible simulation environment to improve software productivity in complex, large-scale dynamic simulation of nuclear power plant. The AI programing by Smalltalk-80 was applied to materialize the two user-interface programs for (i) semantic diagnosis of the simulation program generated automatically by MSS, and (ii) consultation system by which user can set up consistent numerical input data files necessary for executing a MSS-generated program. Frame theory was utilized in those interface programs to represent the four knowledge bases, which are (i) usage information on module library in MSS and MSS-generated program, and (ii) expertise knowledge on nuclear power plant analysis such as material properties and reactor system configuration. Capabilities of those interface programs were confirmed by some example practice on LMFBR reactor dynamic calculation, and it was demonstrated that the knowledge-based systemization was effective to improve software work environment. (author)

  14. Satellite Attitude Control System Simulator

    Directory of Open Access Journals (Sweden)

    G.T. Conti

    2008-01-01

    Full Text Available Future space missions will involve satellites with great autonomy and stringent pointing precision, requiring of the Attitude Control Systems (ACS with better performance than before, which is function of the control algorithms implemented on board computers. The difficulties for developing experimental ACS test is to obtain zero gravity and torque free conditions similar to the SCA operate in space. However, prototypes for control algorithms experimental verification are fundamental for space mission success. This paper presents the parameters estimation such as inertia matrix and position of mass centre of a Satellite Attitude Control System Simulator (SACSS, using algorithms based on least square regression and least square recursive methods. Simulations have shown that both methods have estimated the system parameters with small error. However, the least square recursive methods have performance more adequate for the SACSS objectives. The SACSS platform model will be used to do experimental verification of fundamental aspects of the satellite attitude dynamics and design of different attitude control algorithm.

  15. The program system for the automatic graphical representation, on the Calcomp recorder, of the results of numerical or hybrid simulations on the E.A.I. 8900 Computer

    International Nuclear Information System (INIS)

    Neel, Daniele

    1970-01-01

    This report was the first subject of a thesis submitted by Madame Daniele NEEL, on the 25 of May 1970, to the Faculte des Sciences in Paris in order to obtain the grade of doctor engineer. The differential equations, treated by hybrid calculations, were solved continuously by the analog machine; at the same time the digital computer sampled the results at different times. The program system was divided Into two parts. A card index system was developed progressively from the results (even if they were in real time); the results were displayed graphically directly on an oscilloscope screen with a memory as a curve or a series of curves or, by a delayed system using a digital tracer. The graphs obtained were ready to be inserted in a report and contained all the relevant information. The second subject 'The hybrid calculation - Generalities and Bibliography' was covered by a note CEA-N-1345. (author) [fr

  16. Intelligent programs-expert systems

    Energy Technology Data Exchange (ETDEWEB)

    Gledhill, V X

    1982-01-01

    In recent years, computer scientists have developed what are called expert systems. These programs have three fundamental components: a knowledge base, which changes with experience; an inference engine which enables the program to make decisions; and an interface that allows the program to communicate with the person using the system. Expert systems have been developed successfully in areas such as medical diagnosis, geology, and computer maintenance. This paper describes the evolution and basic principles of expert systems and give some examples of their use.

  17. Trends in programming languages for neuroscience simulations.

    Science.gov (United States)

    Davison, Andrew P; Hines, Michael L; Muller, Eilif

    2009-01-01

    Neuroscience simulators allow scientists to express models in terms of biological concepts, without having to concern themselves with low-level computational details of their implementation. The expressiveness, power and ease-of-use of the simulator interface is critical in efficiently and accurately translating ideas into a working simulation. We review long-term trends in the development of programmable simulator interfaces, and examine the benefits of moving from proprietary, domain-specific languages to modern dynamic general-purpose languages, in particular Python, which provide neuroscientists with an interactive and expressive simulation development environment and easy access to state-of-the-art general-purpose tools for scientific computing.

  18. Spent fuel reprocessing system availability definition by process simulation

    International Nuclear Information System (INIS)

    Holder, N.; Haldy, B.B.; Jonzen, M.

    1978-05-01

    To examine nuclear fuel reprocessing plant operating parameters such as maintainability, reliability, availability, equipment redundancy, and surge storage requirements and their effect on plant throughput, a computer simulation model of integrated HTGR fuel reprocessing plant operations is being developed at General Atomic Company (GA). The simulation methodology and the status of the computer programming completed on reprocessing head end systems is reported

  19. Calibration of a micro simulation program for a Chinese city

    NARCIS (Netherlands)

    Jie, L.; Fangfang, Z.; Van Zuylen, H.J.; Shoufeng, L.

    2011-01-01

    Micro simulation programs are often used to assess the quality of traffic conditions. They are especially suited to evaluate possible control scenarios in advance, so that the scenarios can be selected and optimized before implementation. Of course, the simulation programs should be valid for the

  20. Program BETA for simulation of particle decays and reactions

    International Nuclear Information System (INIS)

    Takhtamyshev, G.G.; Merkulova, T.A.

    1997-01-01

    Program BETA is designed for simulation of particle decays and reactions. The program also produces integration over the phase space and decay rate or the reaction cross section are calculated as a result of such integration. At the simulation process the adaptive random number generator SMART may be used, what is found to be useful for some difficult cases

  1. Tecnomatix Plant Simulation modeling and programming by means of examples

    CERN Document Server

    Bangsow, Steffen

    2015-01-01

    This book systematically introduces the development of simulation models as well as the implementation and evaluation of simulation experiments with Tecnomatix Plant Simulation. It deals with all users of Plant Simulation, who have more complex tasks to handle. It also looks for an easy entry into the program. Particular attention has been paid to introduce the simulation flow language SimTalk and its use in various areas of the simulation. The author demonstrates with over 200 examples how to combine the blocks for simulation models and how to deal with SimTalk for complex control and analys

  2. TURTLE with MAD input (Trace Unlimited Rays Through Lumped Elements) -- A computer program for simulating charged particle beam transport systems and DECAY TURTLE including decay calculations

    Energy Technology Data Exchange (ETDEWEB)

    Carey, D.C.

    1999-12-09

    TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For convenience of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE.

  3. TURTLE with MAD input (Trace Unlimited Rays Through Lumped Elements) -- A computer program for simulating charged particle beam transport systems and DECAY TURTLE including decay calculations

    International Nuclear Information System (INIS)

    Carey, D.C.

    1999-01-01

    TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For convenience of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE

  4. An intelligent tutoring system for a power plant simulator

    Energy Technology Data Exchange (ETDEWEB)

    Seifi, H.; Seifi, A.R. [Tarbiat Modarres University, Tehran (Iran). Faculty of Engineering, Dept. of Electrical Engineers

    2002-07-28

    An intelligent tutoring system (ITS) is proposed for a power plant simulator. With a well designed ITS, the need for an instructor is minimized and the operator may readily and efficiently take, in real-time, the control of simulator with appropriate messages he(she) gets from the tutoring system. Using SIMULINK and based on object oriented programming (OOP) and C programming language, a fossil-fuelled power plant simulator with an ITS is proposed. Promising results are demonstrated for a typical power plant.

  5. Thermodynamic simulation of ammonia-water absorption refrigeration system

    Directory of Open Access Journals (Sweden)

    Sathyabhama A.

    2008-01-01

    Full Text Available The ammonia-water absorption refrigeration system is attracting increasing research interests, since the system can be powered by waste thermal energy, thus reducing demand on electricity supply. The development of this technology demands reliable and effective system simulations. In this work, a thermodynamic simulation of the cycle is carried out to investigate the effects of different operating variables on the performance of the cycle. A computer program in C language is written for the performance analysis of the cycle.

  6. Agent Programming Languages and Logics in Agent-Based Simulation

    DEFF Research Database (Denmark)

    Larsen, John

    2018-01-01

    and social behavior, and work on verification. Agent-based simulation is an approach for simulation that also uses the notion of agents. Although agent programming languages and logics are much less used in agent-based simulation, there are successful examples with agents designed according to the BDI...

  7. Programming system for analytic geometry

    International Nuclear Information System (INIS)

    Raymond, Jacques

    1970-01-01

    After having outlined the characteristics of computing centres which do not comply with engineering tasks, notably the time required by all different tasks to be performed when developing a software (assembly, compilation, link edition, loading, run), and identified constraints specific to engineering, the author identifies the characteristics a programming system should have to suit engineering tasks. He discussed existing conversational systems and their programming language, and their main drawbacks. Then, he presents a system which aims at facilitating programming and addressing problems of analytic geometry and trigonometry

  8. Computer programming and computer systems

    CERN Document Server

    Hassitt, Anthony

    1966-01-01

    Computer Programming and Computer Systems imparts a "reading knowledge? of computer systems.This book describes the aspects of machine-language programming, monitor systems, computer hardware, and advanced programming that every thorough programmer should be acquainted with. This text discusses the automatic electronic digital computers, symbolic language, Reverse Polish Notation, and Fortran into assembly language. The routine for reading blocked tapes, dimension statements in subroutines, general-purpose input routine, and efficient use of memory are also elaborated.This publication is inten

  9. Simulator of a fail detector system for redundant sensors

    International Nuclear Information System (INIS)

    Assumpcao Filho, E.O.; Nakata, H.

    1990-01-01

    A failure detection and isolation system (FDI) simulation program has been developed for IBM-PC microcomputers. The program, based on the sequencial likelihood ratio testing method developed by A. Wald, was implemented with Monte-Carlo technique. The calculated failure detection rate was favorably compared against the wind-tunnel experimental redundant temperature sensors. (author)

  10. PVSOFT99 - Photovoltaic (PV) System Sizing And Simulation Software

    African Journals Online (AJOL)

    A computer program (PVSOFT99) has been developed for sizing and simulation of stand-alone photovoltaic (PV) systems. Two distinct PV sizing algorithms, one based on the worst case and the other on the reliability concept, have been incorporated in the program. The reliability concept is generalized in that variation of ...

  11. The Center-TRACON Automation System: Simulation and field testing

    Science.gov (United States)

    Denery, Dallas G.; Erzberger, Heinz

    1995-01-01

    A new concept for air traffic management in the terminal area, implemented as the Center-TRACON Automation System, has been under development at NASA Ames in a cooperative program with the FAA since 1991. The development has been strongly influenced by concurrent simulation and field site evaluations. The role of simulation and field activities in the development process will be discussed. Results of recent simulation and field tests will be presented.

  12. Simulation and Analysis of Roller Chain Drive Systems

    DEFF Research Database (Denmark)

    Pedersen, Sine Leergaard

    The subject of this thesis is simulation and analysis of large roller chain drive systems, such as e.g. used in marine diesel engines. The aim of developing a chain drive simulation program is to analyse dynamic phenomena of chain drive systems and investigate different design changes to the syst......The subject of this thesis is simulation and analysis of large roller chain drive systems, such as e.g. used in marine diesel engines. The aim of developing a chain drive simulation program is to analyse dynamic phenomena of chain drive systems and investigate different design changes...... mathematical models, and compare to the prior done research. Even though the model is developed at first for the use of analysing chain drive systems in marine engines, the methods can with small changes be used in general, as for e.g. chain drives in industrial machines, car engines and motorbikes. A novel...

  13. BASIC Instructional Program: System Documentation.

    Science.gov (United States)

    Dageforde, Mary L.

    This report documents the BASIC Instructional Program (BIP), a "hands-on laboratory" that teaches elementary programming in the BASIC language, as implemented in the MAINSAIL language, a machine-independent revision of SAIL which should facilitate implementation of BIP on other computing systems. Eight instructional modules which make up…

  14. BWR Full Integral Simulation Test (FIST) program: facility description report

    International Nuclear Information System (INIS)

    Stephens, A.G.

    1984-09-01

    A new boiling water reactor safety test facility (FIST, Full Integral Simulation Test) is described. It will be used to investigate small breaks and operational transients and to tie results from such tests to earlier large-break test results determined in the TLTA. The new facility's full height and prototypical components constitute a major scaling improvement over earlier test facilities. A heated feedwater system, permitting steady-state operation, and a large increase in the number of measurements are other significant improvements. The program background is outlined and program objectives defined. The design basis is presented together with a detailed, complete description of the facility and measurements to be made. An extensive component scaling analysis and prediction of performance are presented

  15. Planning-Programming-Budgeting Systems.

    Science.gov (United States)

    Tudor, Dean

    Planning Programming and Budgeting Systems (PPBS) have been considered as either synonymous with abstract, advanced, mathematical systems analysis or as an advanced accounting and control system. If PPBS is to perform a useful function, both viewpoints must be combined such that a number of standardized procedures and reports are required and…

  16. Material control system simulator user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Hollstien, R.B.

    1978-01-24

    This report describes the use of a Material Control System Simulator (MCSS) program for determination of material accounting uncertainty and system response to particular adversary action sequences that constitute plausible material diversion attempts. The program is intended for use in situations where randomness, uncertainty, or interaction of adversary actions and material control system components make it difficult to assess safeguards effectiveness against particular material diversion attempts.

  17. Trends in programming languages for neuroscience simulations

    Directory of Open Access Journals (Sweden)

    Andrew P Davison

    2009-12-01

    Full Text Available Neuroscience simulators allow scientists to express models in terms of biological concepts, without having to concern themselves with low-level computational details of their implementation. The expressiveness, power and ease-of-use of the simulator interface is critical in efficiently and accurately translating ideas into a working simulation. We review long-term trends in the development of programmable simulator interfaces, and examine the benefits of moving from proprietary, domain-specific languages to modern dynamic general-purpose languages, in particular Python, which provide neuroscientists with an interactive and expressive simulation development environment and easy access to state-of-the-art general-purpose tools for scientific computing.

  18. Trends in Programming Languages for Neuroscience Simulations

    Science.gov (United States)

    Davison, Andrew P.; Hines, Michael L.; Muller, Eilif

    2009-01-01

    Neuroscience simulators allow scientists to express models in terms of biological concepts, without having to concern themselves with low-level computational details of their implementation. The expressiveness, power and ease-of-use of the simulator interface is critical in efficiently and accurately translating ideas into a working simulation. We review long-term trends in the development of programmable simulator interfaces, and examine the benefits of moving from proprietary, domain-specific languages to modern dynamic general-purpose languages, in particular Python, which provide neuroscientists with an interactive and expressive simulation development environment and easy access to state-of-the-art general-purpose tools for scientific computing. PMID:20198154

  19. USAF Weapon System Evaluation Program

    National Research Council Canada - National Science Library

    1999-01-01

    During this task period, Schafer Corporation provided engineering services and analysis to the USAF at Eglin AFB, Florida in direct support of the USAF Air-to-Surface Weapon System Evaluation Program (WSEP...

  20. Parallel and Distributed System Simulation

    Science.gov (United States)

    Dongarra, Jack

    1998-01-01

    This exploratory study initiated our research into the software infrastructure necessary to support the modeling and simulation techniques that are most appropriate for the Information Power Grid. Such computational power grids will use high-performance networking to connect hardware, software, instruments, databases, and people into a seamless web that supports a new generation of computation-rich problem solving environments for scientists and engineers. In this context we looked at evaluating the NetSolve software environment for network computing that leverages the potential of such systems while addressing their complexities. NetSolve's main purpose is to enable the creation of complex applications that harness the immense power of the grid, yet are simple to use and easy to deploy. NetSolve uses a modular, client-agent-server architecture to create a system that is very easy to use. Moreover, it is designed to be highly composable in that it readily permits new resources to be added by anyone willing to do so. In these respects NetSolve is to the Grid what the World Wide Web is to the Internet. But like the Web, the design that makes these wonderful features possible can also impose significant limitations on the performance and robustness of a NetSolve system. This project explored the design innovations that push the performance and robustness of the NetSolve paradigm as far as possible without sacrificing the Web-like ease of use and composability that make it so powerful.

  1. A simulation program for electronics experiments

    International Nuclear Information System (INIS)

    Brun, R.; Hagelberg, R.; Hansroul, M.; Lassalle, Jc.

    1978-01-01

    A general description of the GEANT program is given. The GEANT program has been designed to cover a wide variety of particle detectors. The program is separated into 4 independent parts: kinematics generation, trackina in space, tracks intersection with detectors and digitization of detector information. The tracking requires the introduction of the experimental set-up description in terms of media. The detectors are described independently of the media in a separate way. The media and detector description have to be furnished by the user. The implementation of the GEANT program is based on 2 sets of subprograms: a fixed set of subprograms, which are independent of the experimental situation and thus transparent to the user; a set of user subprograms which should be written by the user. The GEANT program produces results stored in data banks, which the user can convert into his own format. In addition the GEANT program provides printed and graphical outputs

  2. Practical integrated simulation systems for coupled numerical simulations in parallel

    Energy Technology Data Exchange (ETDEWEB)

    Osamu, Hazama; Zhihong, Guo [Japan Atomic Energy Research Inst., Centre for Promotion of Computational Science and Engineering, Tokyo (Japan)

    2003-07-01

    In order for the numerical simulations to reflect 'real-world' phenomena and occurrences, incorporation of multidisciplinary and multi-physics simulations considering various physical models and factors are becoming essential. However, there still exist many obstacles which inhibit such numerical simulations. For example, it is still difficult in many instances to develop satisfactory software packages which allow for such coupled simulations and such simulations will require more computational resources. A precise multi-physics simulation today will require parallel processing which again makes it a complicated process. Under the international cooperative efforts between CCSE/JAERI and Fraunhofer SCAI, a German institute, a library called the MpCCI, or Mesh-based Parallel Code Coupling Interface, has been implemented together with a library called STAMPI to couple two existing codes to develop an 'integrated numerical simulation system' intended for meta-computing environments. (authors)

  3. THE MARK I BUSINESS SYSTEM SIMULATION MODEL

    Science.gov (United States)

    of a large-scale business simulation model as a vehicle for doing research in management controls. The major results of the program were the...development of the Mark I business simulation model and the Simulation Package (SIMPAC). SIMPAC is a method and set of programs facilitating the construction...of large simulation models. The object of this document is to describe the Mark I Corporation model, state why parts of the business were modeled as they were, and indicate the research applications of the model. (Author)

  4. CASINO: A Small System Simulator

    Science.gov (United States)

    Christensen, Borge

    1978-01-01

    This article is a tutorial on writing a simulator--the example used is a casino. The nontechnical, step by step approach is designed to enable even non-programmers to understand the design of such a simulation. (Author)

  5. Simulation for Nurse Anesthesia Program Selection: Redesigned

    Science.gov (United States)

    Roebuck, John Arthur

    2017-01-01

    Purpose: This project is meant to answer the research question: What applicant character traits do Nurse Anesthesia Program Directors and Faculty identify as favorable predictors for successful completion of a nurse anesthesia program, and what evaluation methods are best to evaluate these traits in prospective students? Methods: A prospective…

  6. Students Learn Programming Faster through Robotic Simulation

    Science.gov (United States)

    Liu, Allison; Newsom, Jeff; Schunn, Chris; Shoop, Robin

    2013-01-01

    Schools everywhere are using robotics education to engage kids in applied science, technology, engineering, and mathematics (STEM) activities, but teaching programming can be challenging due to lack of resources. This article reports on using Robot Virtual Worlds (RVW) and curriculum available on the Internet to teach robot programming. It also…

  7. Inovation of the computer system for the WWER-440 simulator

    International Nuclear Information System (INIS)

    Schrumpf, L.

    1988-01-01

    The configuration of the WWER-440 simulator computer system consists of four SMEP computers. The basic data processing unit consists of two interlinked SM 52/11.M1 computers with 1 MB of main memory. This part of the computer system of the simulator controls the operation of the entire simulator, processes the programs of technology behavior simulation, of the unit information system and of other special systems, guarantees program support and the operation of the instructor's console. An SM 52/11 computer with 256 kB of main memory is connected to each unit. It is used as a communication unit for data transmission using the DASIO 600 interface. Semigraphic color displays are based on the microprocessor modules of the SM 50/40 and SM 53/10 kit supplemented with a modified TESLA COLOR 110 ST tv receiver. (J.B.). 1 fig

  8. Comparison of co-simulation approaches for building and HVAC/R system simulation

    NARCIS (Netherlands)

    Trcka, M.; Wetter, M.; Hensen, J.L.M.; Jiang, Yi

    2007-01-01

    Appraisal of modern performance-based energy codes, as well as heating, ventilation, airconditioning and refrigeration (HVAC/R) system design require use of an integrated building and system performance simulation program. However, the required scope of the modeling library of such integrated tools

  9. SimZones: An Organizational Innovation for Simulation Programs and Centers.

    Science.gov (United States)

    Roussin, Christopher J; Weinstock, Peter

    2017-08-01

    The complexity and volume of simulation-based learning programs have increased dramatically over the last decade, presenting several major challenges for those who lead and manage simulation programs and centers. The authors present five major issues affecting the organization of simulation programs: (1) supporting both single- and double-loop learning experiences; (2) managing the training of simulation teaching faculty; (3) optimizing the participant mix, including individuals, professional groups, teams, and other role-players, to ensure learning; (4) balancing in situ, node-based, and center-based simulation delivery; and (5) organizing simulation research and measuring value. They then introduce the SimZones innovation, a system of organization for simulation-based learning, and explain how it can alleviate the problems associated with these five issues.Simulations are divided into four zones (Zones 0-3). Zone 0 simulations include autofeedback exercises typically practiced by solitary learners, often using virtual simulation technology. Zone 1 simulations include hands-on instruction of foundational clinical skills. Zone 2 simulations include acute situational instruction, such as clinical mock codes. Zone 3 simulations involve authentic, native teams of participants and facilitate team and system development.The authors also discuss the translation of debriefing methods from Zone 3 simulations to real patient care settings (Zone 4), and they illustrate how the SimZones approach can enable the development of longitudinal learning systems in both teaching and nonteaching hospitals. The SimZones approach was initially developed in the context of the Boston Children's Hospital Simulator Program, which the authors use to illustrate this innovation in action.

  10. Simulation of stand alone PV systems; Dokuritsugata taiyoko hatsuden system no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, I.; Sakuta, K. [Electrotechnical Laboratory, Tsukuba (Japan); Oshiro, T. [Japan Quality Assurance Organization, Tokyo (Japan); Kurokawa, K. [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    Studies are performed to develop a simulation program for a stand-alone photovoltaic power generation system equipped with a lead acid battery. In this stand-alone photovoltaic power generation system, the load is connected in shunt with the solar cell array output through the intermediary of a lead acid battery and inverter. The program is a model in which the solar cell model is built taking parallel resistance into account, and the temperature-dependence of the constants is described using approximations experimentally obtained by Solar Techno Center of JQA (Japan Quality Assurance Organization), Hamamatsu. Insolation data for the model is described using METPV compiled by Japan Weather Association, and load data is described using data actually measured at Shizuoka. This program is compared with the data of operation at Hamamatsu, and the result is almost satisfactory. Simulations are conducted at five typical locations in Japan using this program, and it is found that the array load matching correction factor is dependent on seasonal changes rather than locality, that the battery contribution rate does not change much throughout the year, and that it is not dependent on locality. 5 refs., 7 figs., 3 tabs.

  11. Object oriented programming in simulation of ions transport

    International Nuclear Information System (INIS)

    Zhang Wenyong; Wang Tongquan; Xiao Yabin; Dai Hongyi; Chen Yuzhong

    2001-01-01

    Using Object Oriented Programming (OOP) method can make our program more reliable and easier to read, debug, maintain and upgrade. This paper compared FORTRAN90-the language widely used in science computing with C ++ --An Object Oriented Language, and the conclusion was made that although FORTRAN90 have many deficiencies, it can be used in Object Oriented programming. Then OOP method was used in programming of Monte Carlo simulation of ions transport and the general process of OOP was given

  12. Multi-agent systems simulation and applications

    CERN Document Server

    Uhrmacher, Adelinde M

    2009-01-01

    Methodological Guidelines for Modeling and Developing MAS-Based SimulationsThe intersection of agents, modeling, simulation, and application domains has been the subject of active research for over two decades. Although agents and simulation have been used effectively in a variety of application domains, much of the supporting research remains scattered in the literature, too often leaving scientists to develop multi-agent system (MAS) models and simulations from scratch. Multi-Agent Systems: Simulation and Applications provides an overdue review of the wide ranging facets of MAS simulation, i

  13. Modeling on a PWR power conversion system with system program

    International Nuclear Information System (INIS)

    Gao Rui; Yang Yanhua; Lin Meng

    2007-01-01

    Based on the power conversion system of nuclear and conventional islands of Daya Bay Power Station, this paper models the thermal-hydraulic systems of primary and secondary loops for PWR by using the PWR best-estimate program-RELAP5. To simulate the full-scope power conversion system, not only the traditional basic system models of nuclear island, but also the major system models of conventional island are all considered and modeled. A comparison between the calculated results and the actual data of reactor demonstrates a fine match for Daya Bay Nuclear Power Station, and manifests the feasibility in simulating full-scope power conversion system of PWR by RELAP5 at the same time. (authors)

  14. Robot off-line programming and simulation as a true CIME-subsystem

    DEFF Research Database (Denmark)

    Nielsen, L.F; Trostmann, S; Trostmann, Erik

    1992-01-01

    A robot off-line programming and real-time simulation system, ROPSIM, which is based on the neutral interface concept and features simulation of the dynamics of both the controller and robot arm, has been developed. To avoid dependency on dedicated robot models, ROPSIM is based on generic models...... describing the robot controller, robot arm geometry, and the robot and arm kinetics. The software was developed using the C++ programming language. The key modules are discussed. The system is a true computer-integrated manufacturing and engineering subsystem which facilitates the exchange and reuse of robot...... model definition data and robot program definition data with systems of other origin or different functionality...

  15. Automatic generation of Fortran programs for algebraic simulation models

    International Nuclear Information System (INIS)

    Schopf, W.; Rexer, G.; Ruehle, R.

    1978-04-01

    This report documents a generator program by which econometric simulation models formulated in an application-orientated language can be transformed automatically in a Fortran program. Thus the model designer is able to build up, test and modify models without the need of a Fortran programmer. The development of a computer model is therefore simplified and shortened appreciably; in chapter 1-3 of this report all rules are presented for the application of the generator to the model design. Algebraic models including exogeneous and endogeneous time series variables, lead and lag function can be generated. In addition, to these language elements, Fortran sequences can be applied to the formulation of models in the case of complex model interrelations. Automatically the generated model is a module of the program system RSYST III and is therefore able to exchange input and output data with the central data bank of the system and in connection with the method library modules can be used to handle planning problems. (orig.) [de

  16. Development of space simulation / net-laboratory system

    Science.gov (United States)

    Usui, H.; Matsumoto, H.; Ogino, T.; Fujimoto, M.; Omura, Y.; Okada, M.; Ueda, H. O.; Murata, T.; Kamide, Y.; Shinagawa, H.; Watanabe, S.; Machida, S.; Hada, T.

    A research project for the development of space simulation / net-laboratory system was approved by Japan Science and Technology Corporation (JST) in the category of Research and Development for Applying Advanced Computational Science and Technology(ACT-JST) in 2000. This research project, which continues for three years, is a collaboration with an astrophysical simulation group as well as other space simulation groups which use MHD and hybrid models. In this project, we develop a proto type of unique simulation system which enables us to perform simulation runs by providing or selecting plasma parameters through Web-based interface on the internet. We are also developing an on-line database system for space simulation from which we will be able to search and extract various information such as simulation method and program, manuals, and typical simulation results in graphic or ascii format. This unique system will help the simulation beginners to start simulation study without much difficulty or effort, and contribute to the promotion of simulation studies in the STP field. In this presentation, we will report the overview and the current status of the project.

  17. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  18. Simulation of an advanced small aperture track system

    Science.gov (United States)

    Williams, Tommy J.; Crockett, Gregg A.; Brunson, Richard L.; Beatty, Brad; Zahirniak, Daniel R.; Deuto, Bernard G.

    2001-08-01

    Simulation development for EO Systems has progressed to new levels with the advent of COTS software tools such as Matlab/Simulink. These tools allow rapid reuse of simulation library routines. We have applied these tools to newly emerging Acquisition Tracking and Pointing (ATP) systems using many routines developed through a legacy to High Energy Laser programs such as AirBorne Laser, Space Based Laser, Tactical High Energy Laser, and The Air Force Research Laboratory projects associated with the Starfire Optical Range. The simulation architecture allows ease in testing various track algorithms under simulated scenes with the ability to rapidly vary system hardware parameters such as track sensor and track loop control systems. The atmospheric turbulence environment and associated optical distortion is simulated to high fidelity levels through the application of an atmospheric phase screen model to produce scintillation of the laser illuminator uplink. The particular ATP system simulated is a small transportable system for tracking satellites in a daytime environment and projects a low power laser and receives laser return from retro-reflector equipped satellites. The primary application of the ATP system (and therefore the simulation) is the determination of the illuminator beam profile, jitter, and scintillation of the low power laser at the satellite. The ATP system will serve as a test bed for satellite tracking in a high background during daytime. Of particular interest in this simulation is the ability to emulate the hardware modelogic within the simulation to test and refine system states and mode change decisions. Additionally, the simulation allows data from the hardware system tests to be imported into Matlab and to thereby drive the simulation or to be easily compared to simulation results.

  19. Development of the simulation monitoring system

    International Nuclear Information System (INIS)

    Kato, Katsumi; Watanabe, Tadashi; Kume, Etsuo

    2001-01-01

    Large-scale simulation technique is studied at the Center for Promotion of Computational Science and Engineering for the computational science research in nuclear fields. Visualization and animation processing techniques are developed for efficient understanding of simulation results. The development of the simulation monitoring system, which is used for real-time visualization of ongoing simulations or for successive visualization of calculated results, is described in this report. The standard visualization tool AVS5 or AVS/EXPRESS is used for the simulation monitoring system, and thus, this system can be utilized in various computer environments. (author)

  20. Conducting Simulation Studies in the R Programming Environment.

    Science.gov (United States)

    Hallgren, Kevin A

    2013-10-12

    Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtaining accurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted to researchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulation studies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a) the use of simulations to answer a novel question about statistical analysis, (b) the use of simulations to estimate statistical power, and (c) the use of simulations to obtain confidence intervals of parameter estimates through bootstrapping. Results and fully annotated syntax from these examples are provided.

  1. Flight simulation program for high altitude long endurance unmanned vehicle; Kokodo mujinki no hiko simulation program

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H.; Hashidate, M. [National Aerospace Laboratory, Tokyo (Japan)

    1995-11-01

    An altitude of about 20 km has the atmospheric density too dilute for common aircraft, and the air resistance too great for satellites. Attention has been drawn in recent years on a high-altitude long-endurance unmanned vehicle that flies at this altitude for a long period of time to serve as a wave relaying base and perform traffic control. Therefore, a development was made on a flight simulation program to evaluate and discuss the guidance and control laws for the high-altitude unmanned vehicle. Equations of motion were derived for three-dimensional six freedom and three-dimensional three freedom. Aerodynamic characteristics of an unmanned vehicle having a Rectenna wing were estimated, and formulation was made according to the past research results on data of winds that the unmanned vehicle is anticipated to encounter at an altitude of 20 km. Noticing the inside of a horizontal plane, a proposal was given on a guidance law that follows a given path. A flight simulation was carried out to have attained a prospect that the unmanned vehicle may be enclosed in a limited space even if the vehicle is encountered with a relatively strong wind. 18 refs., 20 figs., 1 tab.

  2. The GEM Detector projective alignment simulation system

    International Nuclear Information System (INIS)

    Wuest, C.R.; Belser, F.C.; Holdener, F.R.; Roeben, M.D.; Paradiso, J.A.; Mitselmakher, G.; Ostapchuk, A.; Pier-Amory, J.

    1993-01-01

    Precision position knowledge (< 25 microns RMS) of the GEM Detector muon system at the Superconducting Super Collider Laboratory (SSCL) is an important physics requirement necessary to minimize sagitta error in detecting and tracking high energy muons that are deflected by the magnetic field within the GEM Detector. To validate the concept of the sagitta correction function determined by projective alignment of the muon detectors (Cathode Strip Chambers or CSCs), the basis of the proposed GEM alignment scheme, a facility, called the ''Alignment Test Stand'' (ATS), is being constructed. This system simulates the environment that the CSCs and chamber alignment systems are expected to experience in the GEM Detector, albeit without the 0.8 T magnetic field and radiation environment. The ATS experimental program will allow systematic study and characterization of the projective alignment approach, as well as general mechanical engineering of muon chamber mounting concepts, positioning systems and study of the mechanical behavior of the proposed 6 layer CSCs. The ATS will consist of a stable local coordinate system in which mock-ups of muon chambers (i.e., non-working mechanical analogs, representing the three superlayers of a selected barrel and endcap alignment tower) are implemented, together with a sufficient number of alignment monitors to overdetermine the sagitta correction function, providing a self-consistency check. This paper describes the approach to be used for the alignment of the GEM muon system, the design of the ATS, and the experiments to be conducted using the ATS

  3. Program for simulation of reduction of effluents

    NARCIS (Netherlands)

    Grenier, P.; Vilette, P.; Mignonac, J.M.; Leclercq, P.A.; Gayda, A.; Cosson, J.L.; Moletta, R.; Racault, Y.

    1994-01-01

    Food industry and wineries in particular are responsible for a significant part of the org. industrial pollution in France. This pollution has been characterized at the Caves du Sieur d'Arques winery. Dynamic simulation of waste rejection should permit to est. the variability of inputs at the waste

  4. A survey of electric and hybrid vehicle simulation programs

    Science.gov (United States)

    Bevan, J.; Heimburger, D. A.; Metcalfe, M. A.

    1978-01-01

    Results of a survey conducted within the United States to determine the extent of development and capabilities of automotive performance simulation programs suitable for electric and hybrid vehicle studies are summarized. Altogether, 111 programs were identified as being in a usable state. The complexity of the existing programs spans a range from a page of simple desktop calculator instructions to 300,000 lines of a high-level programming language. The capability to simulate electric vehicles was most common, heat-engines second, and hybrid vehicles least common. Batch-operated programs are slightly more common than interactive ones, and one-third can be operated in either mode. The most commonly used language was FORTRAN, the language typically used by engineers. The higher-level simulation languages (e.g. SIMSCRIPT, GPSS, SIMULA) used by "model builders" were conspicuously lacking.

  5. Multiphysics simulation electromechanical system applications and optimization

    CERN Document Server

    Dede, Ercan M; Nomura, Tsuyoshi

    2014-01-01

    This book highlights a unique combination of numerical tools and strategies for handling the challenges of multiphysics simulation, with a specific focus on electromechanical systems as the target application. Features: introduces the concept of design via simulation, along with the role of multiphysics simulation in today's engineering environment; discusses the importance of structural optimization techniques in the design and development of electromechanical systems; provides an overview of the physics commonly involved with electromechanical systems for applications such as electronics, ma

  6. Improvements to information management systems simulator

    Science.gov (United States)

    Bilek, R. W.

    1972-01-01

    The performance of personnel in the augmentation and improvement of the interactive IMSIM information management simulation model is summarized. With this augmented model, NASA now has even greater capabilities for the simulation of computer system configurations, data processing loads imposed on these configurations, and executive software to control system operations. Through these simulations, NASA has an extremely cost effective capability for the design and analysis of computer-based data management systems.

  7. Nuclear Application Programs Development and Integration for a Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun-Joon; Lee, Tae-Woo [KEPCO Engineering and Construction Co., Deajeon (Korea, Republic of)

    2016-10-15

    KEPCO E and C participated in the NAPS (Nuclear Application Programs) development project for BNPP (Barakah Nuclear Power Plant) simulator. The 3KEY MASTER™ was adopted for this project, which is comprehensive simulation platform software developed by WSC (Western Services Corporation) for the development, and control of simulation software. The NAPS based on actual BNPP project was modified in order to meet specific requirements for nuclear power plant simulators. Considerations regarding software design for BNPP simulator and interfaces between the 3KM platform and application programs are discussed. The repeatability is one of functional requirements for nuclear power plant simulators. In order to migrate software from actual plants to simulators, software functions for storing and retrieving plant conditions and program variables should be implemented. In addition, software structures need to be redesigned to meet the repeatability, and source codes developed for actual plants would have to be optimized to reflect simulator’s characteristics as well. The synchronization is an important consideration to integrate external application programs into the 3KM simulator.

  8. Simulator: A Pilot Interactive Simulation Program for Use in Teaching Public Relations.

    Science.gov (United States)

    Pavlik, John V.

    An interactive simulation program was developed for use in teaching students how to handle public relations problems. The program user is placed in the role of assistant newsletter editor, facing a series of decision-making situations. Each choice the user makes affects the subsequent reality created by the program, which is designed to provide…

  9. Conducting Simulation Studies in the R Programming Environment

    Directory of Open Access Journals (Sweden)

    Kevin A. Hallgren

    2013-10-01

    Full Text Available Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtainingaccurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted toresearchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulationstudies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a the use of simulations to answer a novel question about statistical analysis, (b the use of simulations to estimate statistical power, and (c the use of simulations to obtain confidence intervals of parameter estimates throughbootstrapping. Results and fully annotated syntax from these examples are provided.

  10. Simulation-Based System Design Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The research objective is to develop, test, and implement effective and efficient simulation techniques for modeling, evaluating, and optimizing systems in order to...

  11. Validation of Multibody Program to Optimize Simulated Trajectories II Parachute Simulation with Interacting Forces

    Science.gov (United States)

    Raiszadeh, Behzad; Queen, Eric M.; Hotchko, Nathaniel J.

    2009-01-01

    A capability to simulate trajectories of multiple interacting rigid bodies has been developed, tested and validated. This capability uses the Program to Optimize Simulated Trajectories II (POST 2). The standard version of POST 2 allows trajectory simulation of multiple bodies without force interaction. In the current implementation, the force interaction between the parachute and the suspended bodies has been modeled using flexible lines, allowing accurate trajectory simulation of the individual bodies in flight. The POST 2 multibody capability is intended to be general purpose and applicable to any parachute entry trajectory simulation. This research paper explains the motivation for multibody parachute simulation, discusses implementation methods, and presents validation of this capability.

  12. Simulator for candu600 fuel handling system. the experimental model

    International Nuclear Information System (INIS)

    Marinescu, N.; Predescu, D.; Valeca, S.

    2013-01-01

    A main way to increase the nuclear plant safety is related to selection and continuous training of the operation staff. In this order, the computer programs for training, testing and evaluation of the knowledge get, or training simulators including the advanced analytical models of the technological systems are using. The Institute for Nuclear Research from Pitesti, Romania intend to design and build an Fuel Handling Simulator at his F/M Head Test Rig facility, that will be used for training of operating personnel. This paper presents simulated system, advantages to use the simulator, and the experimental model of simulator, that has been built to allows setting of the requirements and fabrication details, especially for the software kit that will be designed and implement on main simulator. (authors)

  13. Large Coil Program magnetic system design study

    International Nuclear Information System (INIS)

    Moses, S.D.; Johnson, N.E.

    1977-01-01

    The primary objective of the Large Coil Program (LCP) is to demonstrate the reliable operation of large superconducting coils to provide a basis for the design principles, materials, and fabrication techniques proposed for the toroidal magnets for the THE NEXT STEP (TNS) and other future tokamak devices. This paper documents a design study of the Large Coil Test Facility (LCTF) in which the structural response of the Toroidal Field (TF) Coils and the supporting structure was evaluated under simulated reactor conditions. The LCP test facility structural system consists of six TF Coils, twelve coil-to-coil torsional restraining beams (torque rings), a central bucking post with base, and a Pulse Coil system. The NASTRAN Finite Element Structural Analysis computer Code was utilized to determine the distribution of deflections, forces, and stresses for each of the TF Coils, torque rings, and the central bucking post. Eleven load conditions were selected to represent probable test operations. Pulse Coils suspended in the bore of the test coil were energized to simulate the pulsed field environment characteristic of the TNS reactor system. The TORMAC Computer Code was utilized to develop the magnetic forces in the TF Coils for each of the eleven loading conditions examined, with or without the Pulse Coils energized. The TORMAC computer program output forces were used directly as input load conditions for the NASTRAN analyses. Results are presented which demonstrate the reliability of the LCTF under simulated reactor operating conditions

  14. Building of Nuclear Ship Engineering Simulation System development of the simulator for the integral type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Teruo; Shimazaki, Junya; Yabuuchi, Noriaki; Fukuhara, Yosifumi; Kusunoki, Takeshi; Ochiai, Masaaki [Department of Nuclear Energy Systems, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Nakazawa, Toshio [Department of HTTR Project, Oarai Research Establishment, Japan Atomic Energy Research Institute, Oarai, Ibaraki (Japan)

    2000-03-01

    JAERI had carried out the design study of a light-weight and compact integral type reactor of power 100 MW{sub th} with passive safety as a power source for the future nuclear ships, and completed an engineering design. To confirm the design and operation performance and to utilize the study of automation of the operations of reactor, we developed a real-time simulator for the integral type reactor. This simulator is a part of Nuclear Ship Engineering Simulation System (NESSY) and on the same hardware as 'Mutsu' simulator which was developed to simulate the first Japanese nuclear ship Mutsu'. Simulation accuracy of 'Mutsu' simulator was verified by comparing the simulation results With data got in the experimental voyage of 'Mutsu'. The simulator for the integral type reactor uses the same programs which were used in 'Mutsu' simulator for the separate type PWR, and the simulated results are approximately consistent with the calculated values using RELAP5/MOD2 (The later points are reported separately). Therefore simulation accuracy of the simulator for the integral type reactor is also expected to be reasonable, though it is necessary to verify by comparing with the real plant data or experimental data in future. We can get the perspectives to use as a real-time engineering simulator and to achieve the above-mentioned aims. This is a report on development of the simulator for the integral type reactor mainly focused on the contents of the analytical programs expressed the structural features of reactor. (author)

  15. Issues in visual support to real-time space system simulation solved in the Systems Engineering Simulator

    Science.gov (United States)

    Yuen, Vincent K.

    1989-01-01

    The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.

  16. Relativistic positioning systems: Numerical simulations

    Science.gov (United States)

    Puchades Colmenero, Neus

    The position of users located on the Earth's surface or near it may be found with the classic positioning systems (CPS). Certain information broadcast by satellites of global navigation systems, as GPS and GALILEO, may be used for positioning. The CPS are based on the Newtonian formalism, although relativistic post-Newtonian corrections are done when they are necessary. This thesis contributes to the development of a different positioning approach, which is fully relativistic from the beginning. In the relativistic positioning systems (RPS), the space-time position of any user (ship, spacecraft, and so on) can be calculated with the help of four satellites, which broadcast their proper times by means of codified electromagnetic signals. In this thesis, we have simulated satellite 4-tuples of the GPS and GALILEO constellations. If a user receives the signals from four satellites simultaneously, the emission proper times read -after decoding- are the user "emission coordinates". In order to find the user "positioning coordinates", in an appropriate almost inertial reference system, there are two possibilities: (a) the explicit relation between positioning and emission coordinates (broadcast by the satellites) is analytically found or (b) numerical codes are designed to calculate the positioning coordinates from the emission ones. Method (a) is only viable in simple ideal cases, whereas (b) allows us to consider realistic situations. In this thesis, we have designed numerical codes with the essential aim of studying two appropriate RPS, which may be generalized. Sometimes, there are two real users placed in different positions, which receive the same proper times from the same satellites; then, we say that there is bifurcation, and additional data are needed to choose the real user position. In this thesis, bifurcation is studied in detail. We have analyzed in depth two RPS models; in both, it is considered that the satellites move in the Schwarzschild's space

  17. Developments in the electron gun simulation program, EGUN

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1994-11-01

    This paper discusses the developments in the electron gun simulation programs that are based on EGUN with its derivatives and supporting programs. Much of the code development has been inspired by technology changes in computer hardware; the implications of this evolution on EGN2 are discussed. Some examples and a review of the capabilities of the EGUN family are described

  18. Developments in the electron gun simulation program, EGUN

    Science.gov (United States)

    Herrmannsfeldt, W. B.

    1995-07-01

    This paper discusses the developments in the electron gun simulation programs that are based on EGUN with its derivatives and supporting programs. Much of the code development has been inspired by technology changes in computer hardware; the implications of this evolution on EGN2 are discussed. Some examples and a review of the capabilities of the EGUN family are described.

  19. Statistical mechanics of program systems

    International Nuclear Information System (INIS)

    Neirotti, Juan P; Caticha, Nestor

    2006-01-01

    We discuss the collective behaviour of a set of operators and variables that constitute a program and the emergence of meaningful computational properties in the language of statistical mechanics. This is done by appropriately modifying available Monte Carlo methods to deal with hierarchical structures. The study suggests, in analogy with simulated annealing, a method to automatically design programs. Reasonable solutions can be found, at low temperatures, when the method is applied to simple toy problems such as finding an algorithm that determines the roots of a function or one that makes a nonlinear regression. Peaks in the specific heat are interpreted as signalling phase transitions which separate regions where different algorithmic strategies are used to solve the problem

  20. Fractional-Order Nonlinear Systems Modeling, Analysis and Simulation

    CERN Document Server

    Petráš, Ivo

    2011-01-01

    "Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation" presents a study of fractional-order chaotic systems accompanied by Matlab programs for simulating their state space trajectories, which are shown in the illustrations in the book. Description of the chaotic systems is clearly presented and their analysis and numerical solution are done in an easy-to-follow manner. Simulink models for the selected fractional-order systems are also presented. The readers will understand the fundamentals of the fractional calculus, how real dynamical systems can be described using fractional derivatives and fractional differential equations, how such equations can be solved, and how to simulate and explore chaotic systems of fractional order. The book addresses to mathematicians, physicists, engineers, and other scientists interested in chaos phenomena or in fractional-order systems. It can be used in courses on dynamical systems, control theory, and applied mathematics at graduate or postgraduate level. ...

  1. Simulation

    DEFF Research Database (Denmark)

    Gould, Derek A; Chalmers, Nicholas; Johnson, Sheena J

    2012-01-01

    Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable p...... performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used....

  2. DESIGN OF AN EDUCATIONAL SIMULATION PROGRAM USING DIGITAL VIDEO PROCESSING TO DETERMINE THE THERMAL EXPANSION OF MATERIALS

    Directory of Open Access Journals (Sweden)

    V. Gökhan BÖCEKÇİ

    2013-01-01

    Full Text Available The present report describes the realization of an educational simulation program to determine the amount of linear thermal expansion in experimental materials. An interferogram signal derived from an interferometric measurement system was modeled as a video signal in a computer environment. A simulation program was designed from the model signal in order to detect the amount of expansion in materials. The simulation program determined the amount of to heat by detecting the number of fringes in interferogram video signals of the material. This simulation program facilitated experimental studies n academic institutions which are deprived of interferometric measurement systems.

  3. Parallel Object Oriented MD Simulation Program for Long Time Simulations of Metallic Glasses and Undercooled Liquids

    Science.gov (United States)

    Böddeker, B.; Teichler, H.

    The MD simulation program TABB is motivated by the need of long time simulations for the investigation of slow processes near the glass transition of glass forming alloys. TABB is written in C++ with a high degree of flexibility: TABB allows the use of any short ranged pair potentials or EAM potentials, by generating and using a spline representation of all functions and their derivatives. TABB supports several numerical integration algorithms like the Runge-Kotta or the modified Gear-predictor-corrector algorithm of order five. The boundary conditions can be chosen to resemble the geometry of bulk materials or films. The simulation box length or the pressure can be fixed for each dimension separately. TABB may be used in isokinetic, isoenergeric or canonic (with random forces) mode. TABB contains a simple instruction interpreter to easily control the parameters and options during the simulation. The same source code can be compiled either for workstations or for parallel computers. The main optimization goal of TABB is to allow long time simulations of medium or small sized systems. To make this possible, much attention is spent on the optimized communication between the nodes. TABB uses a domain decomposition procedure. To use many nodes with a small system, the domain size has to be small compared to the range of particle interactions. In the limit of many nodes for only few atoms, the bottle neck of communication is the latency time. TABB minimizes the number of pairs of domains containing atoms that interact between these domains. This procedure minimizes the need of communication calls between pairs of nodes. TABB decides automatically, to how many, and to which directions the decomposition shall be applied. E.g., in the case of one dimensional domain decomposition, the simulation box is only split into "slabs" along a selected direction. The three dimensional domain decomposition is best with respect to the number of interacting domains only for simulations

  4. PATH: a lumped-element beam-transport simulation program with space charge

    International Nuclear Information System (INIS)

    Farrell, J.A.

    1983-01-01

    PATH is a group of computer programs for simulating charged-particle beam-transport systems. It was developed for evaluating the effects of some aberrations without a time-consuming integration of trajectories through the system. The beam-transport portion of PATH is derived from the well-known program, DECAY TURTLE. PATH contains all features available in DECAY TURTLE (including the input format) plus additional features such as a more flexible random-ray generator, longitudinal phase space, some additional beamline elements, and space-charge routines. One of the programs also provides a simulation of an Alvarez linear accelerator. The programs, originally written for a CDC 7600 computer system, also are available on a VAX-VMS system. All of the programs are interactive with input prompting for ease of use

  5. Simulation Validation for Societal Systems

    National Research Council Canada - National Science Library

    Yahja, Alex

    2006-01-01

    .... There are however, substantial obstacles to validation. The nature of modeling means that there are implicit model assumptions, a complex model space and interactions, emergent behaviors, and uncodified and inoperable simulation and validation knowledge...

  6. Advanced Transport Operating Systems Program

    Science.gov (United States)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  7. Pilot chargeback system program plan

    International Nuclear Information System (INIS)

    Smith, P.

    1997-03-01

    This planning document outlines the steps necessary to develop, test, evaluate, and potentially implement a pilot chargeback system at the Idaho National Engineering and Environmental Laboratory for the treatment, storage, and disposal of current waste. This pilot program will demonstrate one system that can be used to charge onsite generators for the treatment and disposal of low-level radioactive waste. In FY 1997, mock billings will begin by July 15, 1997. Assuming approvals are received to do so, FY 1998 activities will include modifying the associated automated systems, testing and evaluating system performance, and estimating the amount generators will spend for waste storage, treatment, and disposal in FY 1999. If the program is fully implemented in FY 1999, generators will pay actual, automated bills for waste management services from funds transferred to their budgets from Environmental Management

  8. Distributed simulation of large computer systems

    International Nuclear Information System (INIS)

    Marzolla, M.

    2001-01-01

    Sequential simulation of large complex physical systems is often regarded as a computationally expensive task. In order to speed-up complex discrete-event simulations, the paradigm of Parallel and Distributed Discrete Event Simulation (PDES) has been introduced since the late 70s. The authors analyze the applicability of PDES to the modeling and analysis of large computer system; such systems are increasingly common in the area of High Energy and Nuclear Physics, because many modern experiments make use of large 'compute farms'. Some feasibility tests have been performed on a prototype distributed simulator

  9. ANATEM-A comprehensive program for power system dynamic simulation; Programa ANATEM para simulacao do desmpenho dinamico dos sistemas eletricos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Sebastiao E.M.; Rangel, Ricardo D; Thome, Luiz M; Baitelli, Roberto; Guimaraes, Carlos H [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)

    1994-12-31

    This work presents a description of the characteristics of the program ANATEM. It also shows the facilities to execution of the software in the current development stagy. (author) 16 refs., 8 figs., 1 tab.

  10. Some new directions in system transient simulation

    International Nuclear Information System (INIS)

    Ransom, V.H.

    1986-01-01

    The current research in system transient simulation at the Idaho National Engineering Laboratory (INEL) is summarized in this paper and three new directions that are emerging from this work are discussed. The new directions are: development of an Advanced Thermal Hydraulic Energy Network Analyzer (ATHENA) having new modeling capability, use of expert systems for enhancing simulation methods, and the trend to individual workstations for simulation

  11. Monte Carlo simulation of hybrid systems: An example

    International Nuclear Information System (INIS)

    Bacha, F.; D'Alencon, H.; Grivelet, J.; Jullien, E.; Jejcic, A.; Maillard, J.; Silva, J.; Zukanovich, R.; Vergnes, J.

    1997-01-01

    Simulation of hybrid systems needs tracking of particles from the GeV (incident proton beam) range down to a fraction of eV (thermic neutrons). We show how a GEANT based Monte-Carlo program can achieve this, with a realistic computer time and accompanying tools. An example of a dedicated original actinide burner is simulated with this chain. 8 refs., 5 figs

  12. Testing cooperative systems with the MARS simulator

    NARCIS (Netherlands)

    Netten, B.D.; Wedemeijer, H.

    2010-01-01

    The complexity of cooperative systems makes the use of high fidelity simulation essential in the development and testing of cooperative applications and their interactions with other cooperative systems. In SAFESPOT a simulator test bench is setup to test the safety margin applications running on

  13. Slab cooling system design using computer simulation

    NARCIS (Netherlands)

    Lain, M.; Zmrhal, V.; Drkal, F.; Hensen, J.L.M.

    2007-01-01

    For a new technical library building in Prague computer simulations were carried out to help design of slab cooling system and optimize capacity of chillers. In the paper is presented concept of new technical library HVAC system, the model of the building, results of the energy simulations for

  14. ARIANE: a scientific programming assisting system

    International Nuclear Information System (INIS)

    Kavenoky, A.; Lautard, J.J.; Robeau, M.F.

    1982-06-01

    The ARIANE system had been designed to make easier development, maintenance and operation of scientific programs; ARIANE is divided into three elementary functions: 1/ a pre-compiler processes a super-set of FORTRAN allowing virtual memory simulation (LAGD translator) and the OTOMAT library is used at run-time to perform the storage management, 2/ a dynamic loader permits the cancellation of the standard linkage-editor step and of the generation of overlays, 3/ the logical chaining of the mathematical modules is controlled by the ARIANE language: the user submits to the ARIANE compiler a program describing the logical algorithm to be perfomed; the compiler output is executed. The ARIANE system had been designed for IBM computers running under OS/VS1 or VS2; a Cray version had been generated and is now operational [fr

  15. Easy to use program “Simkine3” for simulating kinetic profiles of multi-step chemical Systems and optimisation of predictable rate coefficients therein

    Directory of Open Access Journals (Sweden)

    S.B. Jonnalagadda

    2012-08-01

    Full Text Available ‘Simkine3’, a Delphi based software is developed to simulate the kinetic schemes of complex reaction mechanisms involving multiple sequential and competitive elementary steps for homogeneous and heterogeneous chemical reactions. Simkine3 is designed to translate the user specified mechanism into chemical first-order differential equations (ODEs and optimise the estimated rate constants in such a way that simulated curves match the experimental kinetic profiles. TLSoda which uses backward differentiation method is utilised to solve resulting ODEs and Downhill Simplex method is used to optimise the estimated rate constants in a robotic way. An online help file is developed using HelpScrible Demo to guide the users of Simkine3. The versatility of the software is demonstrated by simulating the complex reaction between methylene violet and acidic bromate, a reaction which exhibits complex nonlinear kinetics. The new software is validated after testing it on a 19-step intricate mechanism involving 15 different species. The kinetic profiles of multiple simulated curves, illustrating the effect of initial concentrations of bromate, and bromide were matched with the corresponding experimental curves.DOI: http://dx.doi.org/10.4314/bcse.v26i2.10

  16. Network speech systems technology program

    Science.gov (United States)

    Weinstein, C. J.

    1981-09-01

    This report documents work performed during FY 1981 on the DCA-sponsored Network Speech Systems Technology Program. The two areas of work reported are: (1) communication system studies in support of the evolving Defense Switched Network (DSN) and (2) design and implementation of satellite/terrestrial interfaces for the Experimental Integrated Switched Network (EISN). The system studies focus on the development and evaluation of economical and endurable network routing procedures. Satellite/terrestrial interface development includes circuit-switched and packet-switched connections to the experimental wideband satellite network. Efforts in planning and coordination of EISN experiments are reported in detail in a separate EISN Experiment Plan.

  17. Robustness of Component Models in Energy System Simulators

    DEFF Research Database (Denmark)

    Elmegaard, Brian

    2003-01-01

    During the development of the component-based energy system simulator DNA (Dynamic Network Analysis), several obstacles to easy use of the program have been observed. Some of these have to do with the nature of the program being based on a modelling language, not a graphical user interface (GUI......). Others have to do with the interaction between models of the nature of the substances in an energy system (e.g., fuels, air, flue gas), models of the components in a system (e.g., heat exchangers, turbines, pumps), and the solver for the system of equations. This paper proposes that the interaction...

  18. The protection system to Brazilian Nuclear Program

    International Nuclear Information System (INIS)

    Andreuzza, Mario Giussepp Santezzi Bertottelli

    1997-01-01

    The Sistema de Protecao ao Programa Nuclear Brasileiro-SIPRON (Protection System to Brazilian Nuclear Program) was established in 1980. It is intended to accomplish in only one system, all the actions related to security and protection for Nuclear Facilities in Brazil. The author presents in detail the protection system SIPRON, describing the system structure and organization, the functions and obligations of the system involved main organizations, as well as, the system operation and behaviour during an postulated occurrence of a nuclear emergency. It is also described an Exercise that happened in June of 1997 at the Nuclear Power Plant (NPP) Angra I, after two simulated tests in December of 1996 and April of 1997. The NPP Angra I Emergency Plan Exercise was a good opportunity to test the SIPRON structure and preparedness program. It was verified, included by International Atomic Energy Agency observers, the system involved organizations effectiveness and the procedures efficacy to protect the public and the environmental. Finally, it is shown the SIPRON activities of routine, the system obstacles and the expected future performances. (author)

  19. Test results of the new NSSS thermal-hydraulics program of the KNPEC-2 simulator

    International Nuclear Information System (INIS)

    Jeong, J. Z.; Kim, K. D.; Lee, M. S.; Hong, J. H.; Lee, Y. K.; Seo, J. S.; Kweon, K. J.; Lee, S. W.

    2001-01-01

    As a part of the KNPEC-2 Simulator Upgrade Project, KEPRI and KAERI have developed a new NSSS thermal-hydraulics program, which is based on the best-estimate system code, RETRAN. The RETRAN code was originally developed for realistic simulation of thermal-hydraulic transient in power plant systems. The capability of 'real-time simulation' and robustness' should be first developed before being implemented in full-scope simulators. For this purpose, we have modified the RETRAN code by (i) eliminating the correlations' discontinuities between flow regime maps, (ii) simplifying physical correlations, (iii) correcting errors in the original program, and (iv) others. This paper briefly presents the test results fo the new NSSS thermal-hydraulics program

  20. Using Discrete Event Simulation for Programming Model Exploration at Extreme-Scale: Macroscale Components for the Structural Simulation Toolkit (SST).

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, Jeremiah J [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Kenny, Joseph P. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-02-01

    Discrete event simulation provides a powerful mechanism for designing and testing new extreme- scale programming models for high-performance computing. Rather than debug, run, and wait for results on an actual system, design can first iterate through a simulator. This is particularly useful when test beds cannot be used, i.e. to explore hardware or scales that do not yet exist or are inaccessible. Here we detail the macroscale components of the structural simulation toolkit (SST). Instead of depending on trace replay or state machines, the simulator is architected to execute real code on real software stacks. Our particular user-space threading framework allows massive scales to be simulated even on small clusters. The link between the discrete event core and the threading framework allows interesting performance metrics like call graphs to be collected from a simulated run. Performance analysis via simulation can thus become an important phase in extreme-scale programming model and runtime system design via the SST macroscale components.

  1. Design of penicillin fermentation process simulation system

    Science.gov (United States)

    Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi

    2011-10-01

    Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.

  2. Building a parallel file system simulator

    International Nuclear Information System (INIS)

    Molina-Estolano, E; Maltzahn, C; Brandt, S A; Bent, J

    2009-01-01

    Parallel file systems are gaining in popularity in high-end computing centers as well as commercial data centers. High-end computing systems are expected to scale exponentially and to pose new challenges to their storage scalability in terms of cost and power. To address these challenges scientists and file system designers will need a thorough understanding of the design space of parallel file systems. Yet there exist few systematic studies of parallel file system behavior at petabyte- and exabyte scale. An important reason is the significant cost of getting access to large-scale hardware to test parallel file systems. To contribute to this understanding we are building a parallel file system simulator that can simulate parallel file systems at very large scale. Our goal is to simulate petabyte-scale parallel file systems on a small cluster or even a single machine in reasonable time and fidelity. With this simulator, file system experts will be able to tune existing file systems for specific workloads, scientists and file system deployment engineers will be able to better communicate workload requirements, file system designers and researchers will be able to try out design alternatives and innovations at scale, and instructors will be able to study very large-scale parallel file system behavior in the class room. In this paper we describe our approach and provide preliminary results that are encouraging both in terms of fidelity and simulation scalability.

  3. Configuration Management File Manager Developed for Numerical Propulsion System Simulation

    Science.gov (United States)

    Follen, Gregory J.

    1997-01-01

    One of the objectives of the High Performance Computing and Communication Project's (HPCCP) Numerical Propulsion System Simulation (NPSS) is to provide a common and consistent way to manage applications, data, and engine simulations. The NPSS Configuration Management (CM) File Manager integrated with the Common Desktop Environment (CDE) window management system provides a common look and feel for the configuration management of data, applications, and engine simulations for U.S. engine companies. In addition, CM File Manager provides tools to manage a simulation. Features include managing input files, output files, textual notes, and any other material normally associated with simulation. The CM File Manager includes a generic configuration management Application Program Interface (API) that can be adapted for the configuration management repositories of any U.S. engine company.

  4. System modeling and simulation at EBR-II

    International Nuclear Information System (INIS)

    Dean, E.M.; Lehto, W.K.; Larson, H.A.

    1986-01-01

    The codes being developed and verified using EBR-II data are the NATDEMO, DSNP and CSYRED. NATDEMO is a variation of the Westinghouse DEMO code coupled to the NATCON code previously used to simulate perturbations of reactor flow and inlet temperature and loss-of-flow transients leading to natural convection in EBR-II. CSYRED uses the Continuous System Modeling Program (CSMP) to simulate the EBR-II core, including power, temperature, control-rod movement reactivity effects and flow and is used primarily to model reactivity induced power transients. The Dynamic Simulator for Nuclear Power Plants (DSNP) allows a whole plant, thermal-hydraulic simulation using specific component and system models called from libraries. It has been used to simulate flow coastdown transients, reactivity insertion events and balance-of-plant perturbations

  5. Description of the grout system dynamic simulation

    International Nuclear Information System (INIS)

    Zimmerman, B.D.

    1993-07-01

    The grout system dynamic computer simulation was created to allow investigation of the ability of the grouting system to meet established milestones, for various assumed system configurations and parameters. The simulation simulates the movement of tank waste through the system versus time, from initial storage tanks, through feed tanks and the grout plant, then finally to a grout vault. The simulation properly accounts for the following (1) time required to perform various actions or processes, (2) delays involved in gaining regulatory approval, (3) random system component failures, (4) limitations on equipment capacities, (5) available parallel components, and (6) different possible strategies for vault filling. The user is allowed to set a variety of system parameters for each simulation run. Currently, the output of a run primarily consists of a plot of projected grouting campaigns completed versus time, for comparison with milestones. Other outputs involving any model component can also be quickly created or deleted as desired. In particular, sensitivity runs where the effect of varying a model parameter (flow rates, delay times, number of feed tanks available, etc.) on the ability of the system to meet milestones can be made easily. The grout system simulation was implemented using the ITHINK* simulation language for Macintosh** computers

  6. Simulation of interaction between wind farm and power system

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Hansen, Anca Daniela; Janosi, L.

    2002-01-01

    A dynamic model of the wind farm Hagesholm has been implemented in the dedicated power system simulation program DIgSILENT. The wind farm con- sists of six 2MW NM2000/72 wind turbines from NEG-Micon. The model has been verified using simultaneous powerquality measurements on the 10 kV terminals...

  7. Hybrid and electric advanced vehicle systems (heavy) simulation

    Science.gov (United States)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  8. GENOMEPOP: A program to simulate genomes in populations

    Directory of Open Access Journals (Sweden)

    Carvajal-Rodríguez Antonio

    2008-04-01

    Full Text Available Abstract Background There are several situations in population biology research where simulating DNA sequences is useful. Simulation of biological populations under different evolutionary genetic models can be undertaken using backward or forward strategies. Backward simulations, also called coalescent-based simulations, are computationally efficient. The reason is that they are based on the history of lineages with surviving offspring in the current population. On the contrary, forward simulations are less efficient because the entire population is simulated from past to present. However, the coalescent framework imposes some limitations that forward simulation does not. Hence, there is an increasing interest in forward population genetic simulation and efficient new tools have been developed recently. Software tools that allow efficient simulation of large DNA fragments under complex evolutionary models will be very helpful when trying to better understand the trace left on the DNA by the different interacting evolutionary forces. Here I will introduce GenomePop, a forward simulation program that fulfills the above requirements. The use of the program is demonstrated by studying the impact of intracodon recombination on global and site-specific dN/dS estimation. Results I have developed algorithms and written software to efficiently simulate, forward in time, different Markovian nucleotide or codon models of DNA mutation. Such models can be combined with recombination, at inter and intra codon levels, fitness-based selection and complex demographic scenarios. Conclusion GenomePop has many interesting characteristics for simulating SNPs or DNA sequences under complex evolutionary and demographic models. These features make it unique with respect to other simulation tools. Namely, the possibility of forward simulation under General Time Reversible (GTR mutation or GTR×MG94 codon models with intra-codon recombination, arbitrary, user

  9. Conversational module-based simulation system as a human interface to versatile dynamic simulation of nuclear power plant

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Nakaya, K.; Wakabayashi, J.

    1986-01-01

    A new conversational simulation system is proposed which aims at effective re-utilization of software resources as module database, and conducting versatile simulations easily by automatic module integration with the help of user-friendly interfaces. The whole simulation system is composed of the four parts: master module library and pre-compiler system as the core system, while module database management system and simulation execution support system for the user interfaces. Basic methods employed in the system are mentioned with their knowledge representation and the relationship with the human information processing. An example practice of an LMFBR reactor dynamic simulation by the system demonstrated its capability to integrate a large simulation program and the related input/output files automatically by a single user

  10. Efficient Co-Simulation of Multicore Systems

    DEFF Research Database (Denmark)

    Brock-Nannestad, Laust; Karlsson, Sven

    2011-01-01

    the hardware state of a multicore design while it is running on an FPGA. With minimal changes to the design and using only the built-in JTAG programming and debug- ging facilities, we describe how to transfer the state from an FPGA to a simulator. We also show how the state can be transferred back from...... the simulator to FPGA. Given that the design runs in real-time on the FPGA, the end result is speed improvements of orders of magnitude over traditional pure software simulation....

  11. DNA – A General Energy System Simulation Tool

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Houbak, Niels

    2005-01-01

    The paper reviews the development of the energy system simulation tool DNA (Dynamic Network Analysis). DNA has been developed since 1989 to be able to handle models of any kind of energy system based on the control volume approach, usually systems of lumped parameter components. DNA has proven...... to be a useful tool in the analysis and optimization of several types of thermal systems: Steam turbines, gas turbines, fuels cells, gasification, refrigeration and heat pumps for both conventional fossil fuels and different types of biomass. DNA is applicable for models of both steady state and dynamic...... operation. The program decides at runtime to apply the DAE solver if the system contains differential equations. This makes it easy to extend an existing steady state model to simulate dynamic operation of the plant. The use of the program is illustrated by examples of gas turbine models. The paper also...

  12. Using Software Zelio Soft in Educational Process to Simulation Control Programs for Intelligent Relays

    Science.gov (United States)

    Michalik, Peter; Mital, Dusan; Zajac, Jozef; Brezikova, Katarina; Duplak, Jan; Hatala, Michal; Radchenko, Svetlana

    2016-10-01

    Article deals with point to using intelligent relay and PLC systems in practice, to their architecture and principles of programming and simulations for education process on all types of school from secondary to universities. Aim of the article is proposal of simple examples of applications, where is demonstrated methodology of programming on real simple practice examples and shown using of chosen instructions. In practical part is described process of creating schemas and describing of function blocks, where are described methodologies of creating program and simulations of output reactions on changeable inputs for intelligent relays.

  13. SIMUL - a program for the simulation of interactions in the streamer chamber RISK

    International Nuclear Information System (INIS)

    Friebel, W.; Gajewski, J.; Halm, I.

    1976-08-01

    A program for the simulation of interactions in the streamer chamber RISK is described. This program allows first investigations and tests for planning and preparing experiments. In the program the trajectories of all particles taking part in the interaction are computed. Selected points are projected onto film planes serving as measurement points for the use in the geometrical reconstruction. The program is used for testing a geometry program. But it also seems to be very helpful in investigating counter and trigger constellations and in the calculation of counting rates and trigger effectivities. (author)

  14. Computer Aided Design System for Developing Musical Fountain Programs

    Institute of Scientific and Technical Information of China (English)

    刘丹; 张乃尧; 朱汉城

    2003-01-01

    A computer aided design system for developing musical fountain programs was developed with multiple functions such as intelligent design, 3-D animation, manual modification and synchronized motion to make the development process more efficient. The system first analyzed the music form and sentiment using many basic features of the music to select a basic fountain program. Then, this program is simulated with 3-D animation and modified manually to achieve the desired results. Finally, the program is transformed to a computer control program to control the musical fountain in time with the music. A prototype system for the musical fountain was also developed. It was tested with many styles of music and users were quite satisfied with its performance. By integrating various functions, the proposed computer aided design system for developing musical fountain programs greatly simplified the design of the musical fountain programs.

  15. Modeling and simulation of discrete event systems

    CERN Document Server

    Choi, Byoung Kyu

    2013-01-01

    Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on

  16. Systematic modelling and simulation of refrigeration systems

    DEFF Research Database (Denmark)

    Rasmussen, Bjarne D.; Jakobsen, Arne

    1998-01-01

    The task of developing a simulation model of a refrigeration system can be very difficult and time consuming. In order for this process to be effective, a systematic method for developing the system model is required. This method should aim at guiding the developer to clarify the purpose...... of the simulation, to select appropriate component models and to set up the equations in a well-arranged way. In this paper the outline of such a method is proposed and examples showing the use of this method for simulation of refrigeration systems are given....

  17. An interactive beam position monitor system simulator

    International Nuclear Information System (INIS)

    Ryan, W.A.; Shea, T.J.

    1993-03-01

    A system simulator has been implemented to aid the development of the RHIC position monitor system. Based on the LabVIEW software package by National Instruments, this simulator allows engineers and technicians to interactively explore the parameter space of a system during the design phase. Adjustable parameters are divided into three categories: beam, pickup, and electronics. The simulator uses these parameters in simple formulas to produce results in both time-domain and frequencydomain. During the prototyping phase, these simulated results can be compared to test data acquired with the same software package. The RHIC position monitor system is presented as an example, but the software is applicable to several other systems as well

  18. Simulation of warehousing and distribution systems

    Directory of Open Access Journals (Sweden)

    Drago Pupavac

    2005-08-01

    Full Text Available The modern world abounds in simulation models. Thousands of organizations use simulation models to solve business problems. Problems in micro logistics systems are a very important segment of the business problems that can be solved by a simulation method. In most cases logistics simulation models should be developed with a purpose to evaluate the performance of individual value-adding indirect resources of logistics system, their possibilities and operational advantages as well as the flow of logistics entities between the plants, warehouses, and customers. Accordingly, this scientific paper elaborates concisely the theoretical characteristics of simulation models and the domains in which the simulation approach is best suited in logistics. Special attention is paid to simulation modeling of warehousing and distribution subsystems of logistic system and there is an example of spreadsheet application in the function of simulated demand for goods from warehouse. Apart from simulation model induction and deduction methods, the description method and a method of information modeling are applied.

  19. General specifications for the development of a PC-based simulator of the NASA RECON system

    Science.gov (United States)

    Dominick, Wayne D. (Editor); Triantafyllopoulos, Spiros

    1984-01-01

    The general specifications for the design and implementation of an IBM PC/XT-based simulator of the NASA RECON system, including record designs, file structure designs, command language analysis, program design issues, error recovery considerations, and usage monitoring facilities are discussed. Once implemented, such a simulator will be utilized to evaluate the effectiveness of simulated information system access in addition to actual system usage as part of the total educational programs being developed within the NASA contract.

  20. Universities Earth System Scientists Program

    Science.gov (United States)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  1. Developments in the electron gun simulation program, EGUN

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1995-01-01

    This paper discusses the developments in the electron gun simulation programs that are based on EGUN with its derivatives and supporting programs. Much of the code development has been inspired by technology changes in computer hardware; the implications of this evolution on EGN2 are discussed. Some examples and a review of the capabilities of the EGUN family are described. copyright 1995 American Institute of Physics

  2. Simulation Validation for Societal Systems

    Science.gov (United States)

    2006-09-01

    system. Rather than assuming the existence of an expert experienced in diagnosing a problem, model-based approaches assume the existence of a system...system behavior is required, the method is capable of diagnosing faults that have never occurred before. 44 3.1.5 Causal Reasoning When...BioWar has hundreds of parameters. The resulting parameter space is gigantic . Suppose that the Response Surface Methodology or RSM (Myers and Montgomery

  3. Visual software system for memory interleaving simulation

    Directory of Open Access Journals (Sweden)

    Milenković Katarina

    2017-01-01

    Full Text Available This paper describes the visual software system for memory interleaving simulation (VSMIS, implemented for the purpose of the course Computer Architecture and Organization 1, at the School of Electrical Engineering, University of Belgrade. The simulator enables students to expand their knowledge through practical work in the laboratory, as well as through independent work at home. VSMIS gives users the possibility to initialize parts of the system and to control simulation steps. The user has the ability to monitor simulation through graphical representation. It is possible to navigate through the entire hierarchy of the system using simple navigation. During the simulation the user can observe and set the values of the memory location. At any time, the user can reset the simulation of the system and observe it for different memory states; in addition, it is possible to save the current state of the simulation and continue with the execution of the simulation later. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III44009

  4. Instructional Simulation of a Commercial Banking System.

    Science.gov (United States)

    Hester, Donald D.

    1991-01-01

    Describes an instructional simulation of a commercial banking system. Identifies the teaching of portfolio theory, market robustness, and the subtleties of institutional constraints and decision making under uncertainty as the project's goals. Discusses the results of applying the simulation in an environment of local and national markets and a…

  5. Modeling and simulation for RF system design

    CERN Document Server

    Frevert, Ronny; Jancke, Roland; Knöchel, Uwe; Schwarz, Peter; Kakerow, Ralf; Darianian, Mohsen

    2005-01-01

    Focusing on RF specific modeling and simulation methods, and system and circuit level descriptions, this work contains application-oriented training material. Accompanied by a CD- ROM, it combines the presentation of a mixed-signal design flow, an introduction into VHDL-AMS and Verilog-A, and the application of commercially available simulators.

  6. University Program Management Information System

    Science.gov (United States)

    Gans, Gary (Technical Monitor)

    2004-01-01

    As basic policy, NASA believes that colleges and universities should be encouraged to participate in the nation's space and aeronautics program to the maximum extent practicable. Indeed, universities are considered as partners with government and industry in the nation's aerospace program. NASA's objective is to have them bring their scientific, engineering, and social research competence to bear on aerospace problems and on the broader social, economic, and international implications of NASA's technical and scientific programs. It is expected that, in so doing, universities will strengthen both their research and their educational capabilities to contribute more effectively to the national well being. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program. This report is consistent with agency accounting records, as the data is obtained from NASA's Financial and Contractual Status (FACS) System, operated by the Financial Management Division and the Procurement Office. However, in accordance with interagency agreements, the orientation differs from that required for financial or procurement purposes. Any apparent discrepancies between this report and other NASA procurement or financial reports stem from the selection criteria for the data.

  7. University Program Management Information System

    Science.gov (United States)

    2001-01-01

    As basic policy, NASA believes that colleges and universities should be encouraged to participate in the nation's space and aeronautics program to the maximum extent practicable. Indeed, universities are considered as partners with government and industry in the nation's aerospace program. NASA' objective is to have them bring their scientific, engineering, and social research competence to bear on aerospace problems and on the broader social, economic, and international implications of NASA's technical and scientific programs. It is expected that, in so doing, universities will strengthen both their research and their educational capabilities to contribute more effectively to the national well being. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program. This report is consistent with agency accounting records, as the data is obtained from NASA's Financial and Contractual Status (FACS) System, operated by the Financial Management Division and the Procurement Office. However, in accordance with interagency agreements, the orientation differs from that required for financial or procurement purposes. Any apparent discrepancies between this report and other NASA procurement or financial reports stem from the selection criteria for the data.

  8. Knowledge-based simulation using object-oriented programming

    Science.gov (United States)

    Sidoran, Karen M.

    1993-01-01

    Simulations have become a powerful mechanism for understanding and modeling complex phenomena. Their results have had substantial impact on a broad range of decisions in the military, government, and industry. Because of this, new techniques are continually being explored and developed to make them even more useful, understandable, extendable, and efficient. One such area of research is the application of the knowledge-based methods of artificial intelligence (AI) to the computer simulation field. The goal of knowledge-based simulation is to facilitate building simulations of greatly increased power and comprehensibility by making use of deeper knowledge about the behavior of the simulated world. One technique for representing and manipulating knowledge that has been enhanced by the AI community is object-oriented programming. Using this technique, the entities of a discrete-event simulation can be viewed as objects in an object-oriented formulation. Knowledge can be factual (i.e., attributes of an entity) or behavioral (i.e., how the entity is to behave in certain circumstances). Rome Laboratory's Advanced Simulation Environment (RASE) was developed as a research vehicle to provide an enhanced simulation development environment for building more intelligent, interactive, flexible, and realistic simulations. This capability will support current and future battle management research and provide a test of the object-oriented paradigm for use in large scale military applications.

  9. Transiout simulation program PHOTO for hybrid plants. Hybridilaitosten simulointi- ja mitoitusohjelmisto PHOTO; Dokumentti ja kaeyttoeohje

    Energy Technology Data Exchange (ETDEWEB)

    Manninen, L M; Lund, P D

    1988-09-01

    The sizing and design of photovoltaic and wind power systems are often approached by simple methods which employ mean monthly weather data and the autonomy time requirement as the basis for the performance predictions. These models do not provide any information on system reliability, which is a most important factor for practical installations. To give further insight on the operational reliability of photovoltaic and wind power systems, new design models and simulation tools have been developed. A leading feature in the work has been to consider the system as a whole, that is, to model all the subsystems and controls, and to account correctly for the subsystem interactions. The set of programs described in this report comprise a stochastic weather generating routine WESIM which provides hourly data from generally available monthly weather data. A parametrization procedure for solar cells is incorporated in the program set. Program FITSOL is applied to fit parameters of the model for solar cell current-coltage characteristics. The use of theoretical model instead of tabulated values simplifies the simulation procedure. Transient simulation program PHOTO is employed to calculate system performance as a function of time. Simulation program provides an accurate estimate on the various energy flows, battery performance etc. The individual subsystem models have been verified against real measurements.

  10. MC/DC and Toggle Coverage Measurement Tool for FBD Program Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eui Sub; Jung, Se Jin; Kim, Jae Yeob; Yoo, Jun Beom [Konkuk University, Seoul (Korea, Republic of)

    2016-05-15

    The functional verification of FBD program can be implemented with various techniques such as testing and simulation. Simulation is preferable to verify FBD program, because it replicates operation of the PLC as well. The PLC is executed repeatedly as long as the controlled system is running based on scan time. Likewise, the simulation technique operates continuously and sequentially. Although engineers try to verify the functionality wholly, it is difficult to find residual errors in the design. Even if 100% functional coverage is accomplished, code coverage have 50%, which might indicate that the scenario is missing some key features of the design. Unfortunately, errors and bugs are often found in the missing points. To assure a high quality of functional verification, code coverage is important as well as functional coverage. We developed a pair tool 'FBDSim' and 'FBDCover' for FBD simulation and coverage measurement. The 'FBDSim' automatically simulates a set of FBD simulation scenarios. While the 'FBDSim' simulates the FBD program, it calculates the MC/DC and Toggle coverage and identifies unstimulated points. After FBD simulation is done, the 'FBDCover' reads the coverage results and shows the coverage with graphical feature and uncovered points with tree feature. The coverages and uncovered points can help engineers to improve the quality of simulation. We slightly dealt with the both coverages, but the coverage is dealt with more concrete and rigorous manner.

  11. Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases

    International Nuclear Information System (INIS)

    2006-01-01

    The Performance Demonstration Program (PDP) for headspace gases distributes sample gases of volatile organic compounds (VOCs) for analysis. Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility's compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement

  12. Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases

    International Nuclear Information System (INIS)

    2007-01-01

    The Performance Demonstration Program (PDP) for headspace gases distributes blind audit samples in a gas matrix for analysis of volatile organic compounds (VOCs). Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility's compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document

  13. The validation of an infrared simulation system

    CSIR Research Space (South Africa)

    De Waal, A

    2013-08-01

    Full Text Available theoretical validation framework. This paper briefly describes the procedure used to validate software models in an infrared system simulation, and provides application examples of this process. The discussion includes practical validation techniques...

  14. Chaotic behavior in a system simulating the pressure balanced injection system. Analysis of passive safety reactor behavior. JAERI's nuclear research promotion program, H12-012 (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Madarame, Haruki; Okamoto, Koji; Tanaka, Gentaro; Morimoto, Yuichiro [Tokyo Univ., School of Engineering, Tokyo (Japan); Sato, Akira [Yamagata Univ., Faculty of Engineering, Yonezawa, Yamagata (Japan); Kondou, Masaya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The pressure Balanced Injection System (PBIS) was proposed in a passive safety reactor. Pressurizing Line (PL) connects the Reactor Vessel (RV) and the gas area in the Contain Vessel (CV), and Injected Line (IL) connects two vessels at relatively lower position. In an accident, the two lines are passively opened. The vapor generated by the residual heat pressed downward the water level in the RV. When the level is lower than the inlet of the PL, vapor is ejected into the CV through the PL attaining the pressure balance between the vessels. Then boron water in the CV is injected into the RV through the IL by the static head. This process is repeated by the succeeding vapor generation. In an experiment, the oscillating system was replaced by water column in a U-shaped duct. The vapor generation was simulated by cover gas supply to one end of the duct, while the other end was open to the atmosphere. When the water level reached a certain level, electromagnetic valves opened and the cover gas was ejected. The gas pressure decreased rapidly, resulting in a surface rise. When the water level reached another level, the valves closed. The cover gas pressure increased again, thus, gas ejection occurred intermittently. The interval of the gas ejection was not constant but fluctuated widely. Mere stochastic noise could hardly explain the large amplitude. Then was expressed the system using a set of linear equations. Various types of piecewise linear model were developed to examine the cause of the fluctuation. There appeared tangential bifurcation, period-doubling bifurcation, period-adding bifurcation and so on. The calculated interval exhibited chaotic features. Thus the cause of the fluctuation can be attributed to chaotic features of the system having switching. Since the piecewise linear model was highly simplified the behavior, a quantitative comparison between the calculation and the experiment was difficult. Therefore, numerical simulation code considering nonlinear

  15. Transactive Systems Simulation and Valuation Platform Trial Analysis

    International Nuclear Information System (INIS)

    Widergren, Steven E.; Hammerstrom, Donald J.; Huang, Qiuhua; Kalsi, Karanjit; Lian, Jianming; Makhmalbaf, Atefe; McDermott, Thomas E.; Sivaraman, Deepak; Tang, Yingying; Veeramany, Arun; Woodward, James C.

    2017-01-01

    Transactive energy systems use principles of value to coordinate responsive supply and demand in energy systems. Work continues within the Transactive Systems Program, which is funded by the U.S. Department of Energy at Pacific Northwest National Laboratory, to understand the value of, understand the theory behind, and simulate the behaviors of transactive energy systems. This report summarizes recent advances made by this program. The main capability advances include a more comprehensive valuation model, including recommended documentation that should make valuation studies of all sorts more transparent, definition of economic metrics with which transactive mechanisms can be evaluated, and multiple improvements to the time-simulation environment that is being used to evaluate transactive scenarios.

  16. Transactive Systems Simulation and Valuation Platform Trial Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Widergren, Steven E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hammerstrom, Donald J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Qiuhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kalsi, Karanjit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lian, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Makhmalbaf, Atefe [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McDermott, Thomas E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sivaraman, Deepak [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tang, Yingying [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Veeramany, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Woodward, James C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-01

    Transactive energy systems use principles of value to coordinate responsive supply and demand in energy systems. Work continues within the Transactive Systems Program, which is funded by the U.S. Department of Energy at Pacific Northwest National Laboratory, to understand the value of, understand the theory behind, and simulate the behaviors of transactive energy systems. This report summarizes recent advances made by this program. The main capability advances include a more comprehensive valuation model, including recommended documentation that should make valuation studies of all sorts more transparent, definition of economic metrics with which transactive mechanisms can be evaluated, and multiple improvements to the time-simulation environment that is being used to evaluate transactive scenarios.

  17. NEPTUNIX, a general program of simulation applied to nuclear reactors

    International Nuclear Information System (INIS)

    Bonnemay, A.; Dansac Bon, V.

    1978-01-01

    Most simulation languages admit an incremental description and involve explicit integration algorithms. NEPTUNIX is a simulation language directly admitting algebraic differential equations under an implicit form, and it involves a very efficient implicit integration method with variable step and order. NEPTUNIX is a tool used for building large systems models in the field of nuclear reactors [fr

  18. Simulating charge transport in flexible systems

    Directory of Open Access Journals (Sweden)

    Timothy Clark

    2015-12-01

    Full Text Available Systems in which movements occur on two significantly different time domains, such as organic electronic components with flexible molecules, require different simulation techniques for the two time scales. In the case of molecular electronics, charge transport is complicated by the several different mechanisms (and theoretical models that apply in different cases. We cannot yet combine time scales of molecular and electronic movement in simulations of real systems. This review describes our progress towards this goal.

  19. Integrating Robot Task Planning into Off-Line Programming Systems

    DEFF Research Database (Denmark)

    Sun, Hongyan; Kroszynski, Uri

    1988-01-01

    a system architecture for integrated robot task planning. It identifies and describes the components considered necessary for implementation. The focus is on functionality of these elements as well as on the information flow. A pilot implementation of such an integrated system architecture for a robot......The addition of robot task planning in off-line programming systems aims at improving the capability of current state-of-the-art commercially available off-line programming systems, by integrating modeling, task planning, programming and simulation together under one platform. This article proposes...... assembly task is discussed....

  20. Effects of hypodynamic simulations on the skeletal system of monkeys

    Science.gov (United States)

    Young, D. R.; Tremor, J. W.

    1977-01-01

    A research and development program was undertaken to evaluate the skeletal losses of subhuman primates in hypodynamic environments. The goals of the program are: (1) to uncover the mechanisms by which weightlessness affects the skeletal system; (2) to determine the consequences and reversibility of bone mineral losses; and (3) to acquire a body of data needed to formulate an appropriate countermeasure program for the prevention of skeletal deconditioning. Space flight experiment simulation facilities are under development and will be tested for their capability in supporting certain of the requirements for these investigations.

  1. Simulating 60 Co gamma irradiation systems

    International Nuclear Information System (INIS)

    Omi, Nelson M.; Rela, Paulo R.

    2000-01-01

    The use of Cadgamma, a software dedicated to simulate 60 Co gamma irradiation systems, can lead to an optimized process and simulating, in a few hours, many configurations setups for the irradiation elements. The software can also simulate changes in the path of the product and the influence of any steady body like the support of the product support and source shoulders. These simulations minimize the number of dose mapping tests in industrial applications and allow the study of unusual setups. Cadgamma was developed at IPEN to simulate it is multipurpose 60 Co irradiation system, under construction and planned to be operating by the second half of 2001. The software was used on project stage and will help to optimize the irradiation process for each product to be treated. (author)

  2. Construction of the real patient simulator system.

    Science.gov (United States)

    Chan, Richard; Sun, C T

    2012-05-01

    Simulation for perfusion education has been used for at least the past 25 years. The earlier models were either electronic (computer games) or fluid dynamic models and provided invaluable adjuncts to perfusion training and education. In 2009, the *North Shore-LIJ Health System at Great Neck, New York, opened an innovative "Bioskill Center" dedicated to simulated virtual reality advanced hands-on surgical training as well as perfusion simulation. Professional cardiac surgical organizations now show great interest in using simulation for training and recertification. Simulation will continue to be the direction for future perfusion training and education. This manuscript introduces a cost-effective system developed from discarded perfusion products and it is not intended to detail the actual lengthy process of its construction.

  3. Enhancing Student Engagement through Simulation in Programming Sessions

    Science.gov (United States)

    Isiaq, Sakirulai Olufemi; Jamil, Md Golam

    2018-01-01

    Purpose: The purpose of this paper is to explore the use of a simulator for teaching programming to foster student engagement and meaningful learning. Design/methodology/approach: An exploratory mixed-method research approach was adopted in a classroom-based environment at a UK university. A rich account of student engagement dimensions…

  4. The Australian Computational Earth Systems Simulator

    Science.gov (United States)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  5. FD_BH: a program for simulating electromagnetic waves from a borehole antenna

    Science.gov (United States)

    Ellefsen, Karl J.

    2002-01-01

    Program FD_BH is used to simulate the electromagnetic waves generated by an antenna in a borehole. The model representing the antenna may include metallic parts, a coaxial cable as a feed to the driving point, and resistive loading. The program is written in the C programming language, and the program has been tested on both the Windows and the UNIX operating systems. This Open-File Report describes • The contents and organization of the Zip file (section 2). • The program files, the installation of the program, the input files, and the execution of the program (section 3). • Address to which suggestions for improving the program may be sent (section 4).

  6. Reliability Assessment of Active Distribution System Using Monte Carlo Simulation Method

    Directory of Open Access Journals (Sweden)

    Shaoyun Ge

    2014-01-01

    Full Text Available In this paper we have treated the reliability assessment problem of low and high DG penetration level of active distribution system using the Monte Carlo simulation method. The problem is formulated as a two-case program, the program of low penetration simulation and the program of high penetration simulation. The load shedding strategy and the simulation process were introduced in detail during each FMEA process. Results indicate that the integration of DG can improve the reliability of the system if the system was operated actively.

  7. Power system restoration: planning and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, D. [Assam Engineering Coll., Dept. of Electrical Engineering, Assam (India); Sinha, A.K. [Inidan Inst. of Technology, Dept. of Electrical Engineering, Kharagpur (India)

    2003-03-01

    This paper describes a restoration guidance simulator, which allows power system operator/planner to simulate and plan restoration events in an interactive mode. The simulator provides a list of restoration events according to the priority based on some restoration rules and list of priority loads. It also provides in an interactive mode the list of events, which becomes possible as the system grows during restoration. Further, the selected event is validated through a load flow and other analytical tools to show the consequences of implementing the planned event. (Author)

  8. CIRMIS Data system. Volume 2. Program listings

    International Nuclear Information System (INIS)

    Friedrichs, D.R.

    1980-01-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for utilization by the hydraulic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required.The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System is a storage and retrieval system for model input and output data, including graphical interpretation and display. This is the second of four volumes of the description of the CIRMIS Data System

  9. Design and Analysis of Solar Smartflower Simulation by Solidwork Program

    Science.gov (United States)

    Mulyana, Tatang; Sebayang, Darwin; Fajrina, Fildzah; Raihan; Faizal, M.

    2018-03-01

    The potential of solar energy that is so large in Indonesia can be a driving force for the use of renewable energy as a solution for energy needs. Government with the community can utilize and optimize this technology to increase the electrification ratio up to 100% in all corners of Indonesia. Because of its modular and practical nature, making this technology easy to apply. One of the latest imported products that have started to be offered and sold in Indonesia but not yet widely used for solar power generation is the kind of smartflower. Before using the product, it is of course very important and immediately to undertake an in-depth study of the utilization, use, maintenance, repair, component supply and fabrication. The best way to know the above is through a review of the design and simulation. To meet this need, this paper presents a solar-smartflower design and then simulated using the facilities available in the solidwork program. Solid simulation express is a tool that serves to create power simulation of a design part modelling. With the simulation is very helpful at all to reduce errors in making design. Accurate or not a design created is also influenced by several other factors such as material objects, the silent part of the part, and the load given. The simulation is static simulation and body battery drop test, and based on the results of this simulation is known that the design results have been very satisfactory.

  10. Research on Monte Carlo simulation method of industry CT system

    International Nuclear Information System (INIS)

    Li Junli; Zeng Zhi; Qui Rui; Wu Zhen; Li Chunyan

    2010-01-01

    There are a series of radiation physical problems in the design and production of industry CT system (ICTS), including limit quality index analysis; the effect of scattering, efficiency of detectors and crosstalk to the system. Usually the Monte Carlo (MC) Method is applied to resolve these problems. Most of them are of little probability, so direct simulation is very difficult, and existing MC methods and programs can't meet the needs. To resolve these difficulties, particle flux point auto-important sampling (PFPAIS) is given on the basis of auto-important sampling. Then, on the basis of PFPAIS, a particular ICTS simulation method: MCCT is realized. Compared with existing MC methods, MCCT is proved to be able to simulate the ICTS more exactly and effectively. Furthermore, the effects of all kinds of disturbances of ICTS are simulated and analyzed by MCCT. To some extent, MCCT can guide the research of the radiation physical problems in ICTS. (author)

  11. Electromechanical motion systems design and simulation

    CERN Document Server

    Moritz, Frederick G

    2013-01-01

    An introductory reference covering the devices, simulations and limitations in the control of servo systems Linking theoretical material with real-world applications, this book provides a valuable introduction to motion system design. The book begins with an overview of classic theory, its advantages and limitations, before showing how classic limitations can be overcome with complete system simulation. The ability to efficiently vary system parameters (such as inertia, friction, dead-band, damping), and quickly determine their effect on performance, stability, efficiency, is also described. T

  12. Programs for Testing Processor-in-Memory Computing Systems

    Science.gov (United States)

    Katz, Daniel S.

    2006-01-01

    The Multithreaded Microbenchmarks for Processor-In-Memory (PIM) Compilers, Simulators, and Hardware are computer programs arranged in a series for use in testing the performances of PIM computing systems, including compilers, simulators, and hardware. The programs at the beginning of the series test basic functionality; the programs at subsequent positions in the series test increasingly complex functionality. The programs are intended to be used while designing a PIM system, and can be used to verify that compilers, simulators, and hardware work correctly. The programs can also be used to enable designers of these system components to examine tradeoffs in implementation. Finally, these programs can be run on non-PIM hardware (either single-threaded or multithreaded) using the POSIX pthreads standard to verify that the benchmarks themselves operate correctly. [POSIX (Portable Operating System Interface for UNIX) is a set of standards that define how programs and operating systems interact with each other. pthreads is a library of pre-emptive thread routines that comply with one of the POSIX standards.

  13. G189A analytical simulation of the RITE Integrated Waste Management-Water System

    Science.gov (United States)

    Coggi, J. V.; Clonts, S. E.

    1974-01-01

    This paper discusses the computer simulation of the Integrated Waste Management-Water System Using Radioisotopes for Thermal Energy (RITE) and applications of the simulation. Variations in the system temperature and flows due to particular operating conditions and variations in equipment heating loads imposed on the system were investigated with the computer program. The results were assessed from the standpoint of the computed dynamic characteristics of the system and the potential applications of the simulation to system development and vehicle integration.

  14. Simulation of the Energy Saver refrigeration system

    International Nuclear Information System (INIS)

    Barton, H.R. Jr.; Nicholls, J.E.; Mulholland, G.T.

    1981-10-01

    The helium refrigeration for the Energy Saver is supplied by a Central Helium Liquefier and 24 Satellite Refrigerators installed over a 1-1/4 square mile area. An interactive, software simulator has been developed to calculate the refrigeration available from the cryogenic system over a wide range of operating conditions. The refrigeration system simulator incorporates models of the components which have been developed to quantitatively describe changes in system performance. The simulator output is presented in a real-time display which has been used to search for the optimal operating conditions of the Satellite-Central system, to examine the effect of an extended range of operating parameters and to identify equipment modifications which would improve the system performance

  15. Computer program analyzes and monitors electrical power systems (POSIMO)

    Science.gov (United States)

    Jaeger, K.

    1972-01-01

    Requirements to monitor and/or simulate electric power distribution, power balance, and charge budget are discussed. Computer program to analyze power system and generate set of characteristic power system data is described. Application to status indicators to denote different exclusive conditions is presented.

  16. MathModelica - An Extensible Modeling and Simulation Environment with Integrated Graphics and Literate Programming

    OpenAIRE

    Fritzson, Peter; Gunnarsson, Johan; Jirstrand, Mats

    2002-01-01

    MathModelica is an integrated interactive development environment for advanced system modeling and simulation. The environment integrates Modelica-based modeling and simulation with graphic design, advanced scripting facilities, integration of program code, test cases, graphics, documentation, mathematical type setting, and symbolic formula manipulation provided via Mathematica. The user interface consists of a graphical Model Editor and Notebooks. The Model Editor is a graphical user interfa...

  17. GITTAM program for numerical simulation of one-dimensional targets TIS. Part 2

    International Nuclear Information System (INIS)

    Arpishkin, Yu.P.; Basko, M.M.; Sokolovskij, M.V.

    1989-01-01

    A finite-difference algorithm for numeric solution of a system of one-dimensional hydrodynamics equation with heat conductivity, radiation diffusion and thermonuclear combustion is considered. The algorithm presented allows one to simulate one-dimensional thermonuclear targets for heavy-ion synthesis (HIS), irradiated with heavy ion beams. A brief description of a complex of GITTAM programs in which finite-difference algorithm for one-dimensional thermonuclear HIS target simulation is used, is given. 5 refs.; 3 figs

  18. Simulations of floor cooling system capacity

    International Nuclear Information System (INIS)

    Odyjas, Andrzej; Górka, Andrzej

    2013-01-01

    Floor cooling system capacity depends on its physical and operative parameters. Using numerical simulations, it appears that cooling capacity of the system largely depends on the type of cooling loads occurring in the room. In the case of convective cooling loads capacity of the system is small. However, when radiation flux falls directly on the floor the system significantly increases productivity. The article describes the results of numerical simulations which allow to determine system capacity in steady thermal conditions, depending on the type of physical parameters of the system and the type of cooling load occurring in the room. Moreover, the paper sets out the limits of system capacity while maintaining a minimum temperature of the floor surface equal to 20 °C. The results are helpful for designing system capacity in different type of cooling loads and show maximum system capacity in acceptable thermal comfort condition. -- Highlights: ► We have developed numerical model for simulation of floor cooling system. ► We have described floor system capacity depending on its physical parameters. ► We have described floor system capacity depending on type of cooling loads. ► The most important in the obtained cooling capacities is the type of cooling loads. ► The paper sets out the possible maximum cooling floor system capacity

  19. Operating system for a real-time multiprocessor propulsion system simulator

    Science.gov (United States)

    Cole, G. L.

    1984-01-01

    The success of the Real Time Multiprocessor Operating System (RTMPOS) in the development and evaluation of experimental hardware and software systems for real time interactive simulation of air breathing propulsion systems was evaluated. The Real Time Multiprocessor Operating System (RTMPOS) provides the user with a versatile, interactive means for loading, running, debugging and obtaining results from a multiprocessor based simulator. A front end processor (FEP) serves as the simulator controller and interface between the user and the simulator. These functions are facilitated by the RTMPOS which resides on the FEP. The RTMPOS acts in conjunction with the FEP's manufacturer supplied disk operating system that provides typical utilities like an assembler, linkage editor, text editor, file handling services, etc. Once a simulation is formulated, the RTMPOS provides for engineering level, run time operations such as loading, modifying and specifying computation flow of programs, simulator mode control, data handling and run time monitoring. Run time monitoring is a powerful feature of RTMPOS that allows the user to record all actions taken during a simulation session and to receive advisories from the simulator via the FEP. The RTMPOS is programmed mainly in PASCAL along with some assembly language routines. The RTMPOS software is easily modified to be applicable to hardware from different manufacturers.

  20. Using system dynamics simulation for assessment of hydropower system safety

    Science.gov (United States)

    King, L. M.; Simonovic, S. P.; Hartford, D. N. D.

    2017-08-01

    Hydropower infrastructure systems are complex, high consequence structures which must be operated safely to avoid catastrophic impacts to human life, the environment, and the economy. Dam safety practitioners must have an in-depth understanding of how these systems function under various operating conditions in order to ensure the appropriate measures are taken to reduce system vulnerability. Simulation of system operating conditions allows modelers to investigate system performance from the beginning of an undesirable event to full system recovery. System dynamics simulation facilitates the modeling of dynamic interactions among complex arrangements of system components, providing outputs of system performance that can be used to quantify safety. This paper presents the framework for a modeling approach that can be used to simulate a range of potential operating conditions for a hydropower infrastructure system. Details of the generic hydropower infrastructure system simulation model are provided. A case study is used to evaluate system outcomes in response to a particular earthquake scenario, with two system safety performance measures shown. Results indicate that the simulation model is able to estimate potential measures of system safety which relate to flow conveyance and flow retention. A comparison of operational and upgrade strategies is shown to demonstrate the utility of the model for comparing various operational response strategies, capital upgrade alternatives, and maintenance regimes. Results show that seismic upgrades to the spillway gates provide the largest improvement in system performance for the system and scenario of interest.

  1. Gstat: a program for geostatistical modelling, prediction and simulation

    Science.gov (United States)

    Pebesma, Edzer J.; Wesseling, Cees G.

    1998-01-01

    Gstat is a computer program for variogram modelling, and geostatistical prediction and simulation. It provides a generic implementation of the multivariable linear model with trends modelled as a linear function of coordinate polynomials or of user-defined base functions, and independent or dependent, geostatistically modelled, residuals. Simulation in gstat comprises conditional or unconditional (multi-) Gaussian sequential simulation of point values or block averages, or (multi-) indicator sequential simulation. Besides many of the popular options found in other geostatistical software packages, gstat offers the unique combination of (i) an interactive user interface for modelling variograms and generalized covariances (residual variograms), that uses the device-independent plotting program gnuplot for graphical display, (ii) support for several ascii and binary data and map file formats for input and output, (iii) a concise, intuitive and flexible command language, (iv) user customization of program defaults, (v) no built-in limits, and (vi) free, portable ANSI-C source code. This paper describes the class of problems gstat can solve, and addresses aspects of efficiency and implementation, managing geostatistical projects, and relevant technical details.

  2. PGOPHER: A program for simulating rotational, vibrational and electronic spectra

    International Nuclear Information System (INIS)

    Western, Colin M.

    2017-01-01

    The PGOPHER program is a general purpose program for simulating and fitting molecular spectra, particularly the rotational structure. The current version can handle linear molecules, symmetric tops and asymmetric tops and many possible transitions, both allowed and forbidden, including multiphoton and Raman spectra in addition to the common electric dipole absorptions. Many different interactions can be included in the calculation, including those arising from electron and nuclear spin, and external electric and magnetic fields. Multiple states and interactions between them can also be accounted for, limited only by available memory. Fitting of experimental data can be to line positions (in many common formats), intensities or band contours and the parameters determined can be level populations as well as rotational constants. PGOPHER is provided with a powerful and flexible graphical user interface to simplify many of the tasks required in simulating, understanding and fitting molecular spectra, including Fortrat diagrams and energy level plots in addition to overlaying experimental and simulated spectra. The program is open source, and can be compiled with open source tools. This paper provides a formal description of the operation of version 9.1. - Highlights: • Easy-to-use graphical interface for assigning and understanding molecular spectra. • Simulates rotational and vibrational structure of many types of molecular spectra. • Fits molecular properties to line positions or spectral contours. • Handles linear molecules and symmetric and asymmetric tops. • Handles perturbations, nuclear and electron spin, and electric and magnetic fields.

  3. Subseabed-disposal program: systems-analysis program plan

    International Nuclear Information System (INIS)

    Klett, R.D.

    1981-03-01

    This report contains an overview of the Subseabed Nuclear Waste Disposal Program systems analysis program plan, and includes sensitivity, safety, optimization, and cost/benefit analyses. Details of the primary barrier sensitivity analysis and the data acquisition and modeling cost/benefit studies are given, as well as the schedule through the technical, environmental, and engineering feasibility phases of the program

  4. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  5. Simulation-based optimization of thermal systems

    International Nuclear Information System (INIS)

    Jaluria, Yogesh

    2009-01-01

    This paper considers the design and optimization of thermal systems on the basis of the mathematical and numerical modeling of the system. Many complexities are often encountered in practical thermal processes and systems, making the modeling challenging and involved. These include property variations, complicated regions, combined transport mechanisms, chemical reactions, and intricate boundary conditions. The paper briefly presents approaches that may be used to accurately simulate these systems. Validation of the numerical model is a particularly critical aspect and is discussed. It is important to couple the modeling with the system performance, design, control and optimization. This aspect, which has often been ignored in the literature, is considered in this paper. Design of thermal systems based on concurrent simulation and experimentation is also discussed in terms of dynamic data-driven optimization methods. Optimization of the system and of the operating conditions is needed to minimize costs and improve product quality and system performance. Different optimization strategies that are currently used for thermal systems are outlined, focusing on new and emerging strategies. Of particular interest is multi-objective optimization, since most thermal systems involve several important objective functions, such as heat transfer rate and pressure in electronic cooling systems. A few practical thermal systems are considered in greater detail to illustrate these approaches and to present typical simulation, design and optimization results

  6. An intelligent simulation environment for control system design

    International Nuclear Information System (INIS)

    Robinson, J.T.

    1989-01-01

    The Oak Ridge National Laboratory is currently assisting in the development of advanced control systems for the next generation of nuclear power plants. This paper presents a prototype interactive and intelligent simulation environment being developed to support this effort. The environment combines tools from the field of Artificial Intelligence; in particular object-oriented programming, a LISP programming environment, and a direct manipulation user interface; with traditional numerical methods for simulating combined continuous/discrete processes. The resulting environment is highly interactive and easy to use. Models may be created and modified quickly through a window oriented direct manipulation interface. Models may be modified at any time, even as the simulation is running, and the results observed immediately via real-time graphics. 8 refs., 3 figs

  7. An off-line programming system for palletizing robot

    Directory of Open Access Journals (Sweden)

    Youdong Chen

    2016-09-01

    Full Text Available Off-line programming systems are essential tools for the effective use of palletizing robots. This article presents a dedicated off-line programming system for palletizing robots. According to the user practical requirements, there are many user-defined patterns that can’t be easily generated by commercial off-line robot programming systems. This study suggests a pattern generation method that users can easily define their patterns. The proposed method has been simulation and experiment. The results have attested the effectiveness of the proposed pattern generation method.

  8. TPX Poloidal Field (PF) power systems simulation

    International Nuclear Information System (INIS)

    Lu, E.; Bronner, G.

    1993-01-01

    This paper describes the modeling and simulation of the PF power system for the Tokamak Physics Experiment (TPX), which is required to supply pulsed DC current to the Poloidal Field (PF) superconducting coil system. An analytical model was developed to simulate the dynamics of the PF power system for any PF current scenario and thereby provide the basis for selection of PF circuit topology, in support of the major design goal of optimizing the use of the existing Tokamak Fusion Test Reactor (TFTR) facilities at the Princeton Plasma Physics Lab (PPPL)

  9. Participatory simulation in hospital work system design

    DEFF Research Database (Denmark)

    Andersen, Simone Nyholm

    When ergonomic considerations are integrated into the design of work systems, both overall system performance and employee well-being improve. A central part of integrating ergonomics in work system design is to benefit from emplo y-ees’ knowledge of existing work systems. Participatory simulation...... (PS) is a method to access employee knowledge; namely employees are involved in the simulation and design of their own future work systems through the exploration of models representing work system designs. However, only a few studies have investigated PS and the elements of the method. Yet...... understanding the elements is essential when analyzing and planning PS in research and practice. This PhD study investigates PS and the method elements in the context of the Danish hospital sector, where PS is applied in the renewal and design of public hospitals and the work systems within the hospitals...

  10. Topics in computer simulations of statistical systems

    International Nuclear Information System (INIS)

    Salvador, R.S.

    1987-01-01

    Several computer simulations studying a variety of topics in statistical mechanics and lattice gauge theories are performed. The first study describes a Monte Carlo simulation performed on Ising systems defined on Sierpinsky carpets of dimensions between one and four. The critical coupling and the exponent γ are measured as a function of dimension. The Ising gauge theory in d = 4 - epsilon, for epsilon → 0 + , is then studied by performing a Monte Carlo simulation for the theory defined on fractals. A high statistics Monte Carlo simulation for the three-dimensional Ising model is presented for lattices of sizes 8 3 to 44 3 . All the data obtained agrees completely, within statistical errors, with the forms predicted by finite-sizing scaling. Finally, a method to estimate numerically the partition function of statistical systems is developed

  11. Video Monitoring a Simulation-Based Quality Improvement Program in Bihar, India.

    Science.gov (United States)

    Dyer, Jessica; Spindler, Hilary; Christmas, Amelia; Shah, Malay Bharat; Morgan, Melissa; Cohen, Susanna R; Sterne, Jason; Mahapatra, Tanmay; Walker, Dilys

    2018-04-01

    Simulation-based training has become an accepted clinical training andragogy in high-resource settings with its use increasing in low-resource settings. Video recordings of simulated scenarios are commonly used by facilitators. Beyond using the videos during debrief sessions, researchers can also analyze the simulation videos to quantify technical and nontechnical skills during simulated scenarios over time. Little is known about the feasibility and use of large-scale systems to video record and analyze simulation and debriefing data for monitoring and evaluation in low-resource settings. This manuscript describes the process of designing and implementing a large-scale video monitoring system. Mentees and Mentors were consented and all simulations and debriefs conducted at 320 Primary Health Centers (PHCs) were video recorded. The system design, number of video recordings, and inter-rater reliability of the coded videos were assessed. The final dataset included a total of 11,278 videos. Overall, a total of 2,124 simulation videos were coded and 183 (12%) were blindly double-coded. For the double-coded sample, the average inter-rater reliability (IRR) scores were 80% for nontechnical skills, and 94% for clinical technical skills. Among 4,450 long debrief videos received, 216 were selected for coding and all were double-coded. Data quality of simulation videos was found to be very good in terms of recorded instances of "unable to see" and "unable to hear" in Phases 1 and 2. This study demonstrates that video monitoring systems can be effectively implemented at scale in resource limited settings. Further, video monitoring systems can play several vital roles within program implementation, including monitoring and evaluation, provision of actionable feedback to program implementers, and assurance of program fidelity.

  12. Validation studies of the DOE-2 Building Energy Simulation Program. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.; Winkelmann, F.

    1998-06-01

    This report documents many of the validation studies (Table 1) of the DOE-2 building energy analysis simulation program that have taken place since 1981. Results for several versions of the program are presented with the most recent study conducted in 1996 on version DOE-2.1E and the most distant study conducted in 1981 on version DOE-1.3. This work is part of an effort related to continued development of DOE-2, particularly in its use as a simulation engine for new specialized versions of the program such as the recently released RESFEN 3.1. RESFEN 3.1 is a program specifically dealing with analyzing the energy performance of windows in residential buildings. The intent in providing the results of these validation studies is to give potential users of the program a high degree of confidence in the calculated results. Validation studies in which calculated simulation data is compared to measured data have been conducted throughout the development of the DOE-2 program. Discrepancies discovered during the course of such work has resulted in improvements in the simulation algorithms. Table 2 provides a listing of additions and modifications that have been made to various versions of the program since version DOE-2.1A. One of the most significant recent changes in the program occurred with version DOE-2.1E. An improved algorithm for calculating the outside surface film coefficient was implemented. In addition, integration of the WINDOW 4 program was accomplished resulting in improved ability in analyzing window energy performance. Validation and verification of a program as sophisticated as DOE-2 must necessarily be limited because of the approximations inherent in the program. For example, the most accurate model of the heat transfer processes in a building would include a three-dimensional analysis. To justify such detailed algorithmic procedures would correspondingly require detailed information describing the building and/or HVAC system and energy plant parameters

  13. A Study on Evaluation of Training Program for MCR Operators of SMART Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Jun; Lee, Joon Ku; Jeong, Kwang Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    It is important to develop a training program by simulators in main control room of nuclear power plants because there is no an operation expert and no operating experience in the pre-construction phase of nuclear power plants. It is also necessary to develop a training program and its evaluation method taking human error into account. The purpose of this study is developing evaluation model of simulators. In a training program, once training requirements are selected, evaluation of training is as important as its implementation. Training effectiveness is available value in a simulator-based environment. The main control room of SMART (System-integrated Modular Advanced ReacTor) is consist of workstation, visual display units such as LDP and FPD based on digital systems. Cognitive behaviors of a high level are required to operators in these man-machine interface system (MMIS). Therefore, it is essential to identify training requirements and to develop its evaluation model. Virtual Environments such as a simulator have utilized by a lot of industries and companies for training and accident prevention. Simulators have three primary benefits. The first is that training by simulators is less expensive than those in real environment. The second is that simulators enable safety enhancement using systematic training program. The third is that simulators provide a preliminary to prevent human error. It is significant to apply TER, TCR, TCE in evaluation of training effect. It is expected that these could be applied to revise training criteria and enable to consider efficiency in terms of cost and benefit.

  14. A Study on Evaluation of Training Program for MCR Operators of SMART Simulator

    International Nuclear Information System (INIS)

    Park, Hyun Jun; Lee, Joon Ku; Jeong, Kwang Il

    2015-01-01

    It is important to develop a training program by simulators in main control room of nuclear power plants because there is no an operation expert and no operating experience in the pre-construction phase of nuclear power plants. It is also necessary to develop a training program and its evaluation method taking human error into account. The purpose of this study is developing evaluation model of simulators. In a training program, once training requirements are selected, evaluation of training is as important as its implementation. Training effectiveness is available value in a simulator-based environment. The main control room of SMART (System-integrated Modular Advanced ReacTor) is consist of workstation, visual display units such as LDP and FPD based on digital systems. Cognitive behaviors of a high level are required to operators in these man-machine interface system (MMIS). Therefore, it is essential to identify training requirements and to develop its evaluation model. Virtual Environments such as a simulator have utilized by a lot of industries and companies for training and accident prevention. Simulators have three primary benefits. The first is that training by simulators is less expensive than those in real environment. The second is that simulators enable safety enhancement using systematic training program. The third is that simulators provide a preliminary to prevent human error. It is significant to apply TER, TCR, TCE in evaluation of training effect. It is expected that these could be applied to revise training criteria and enable to consider efficiency in terms of cost and benefit

  15. A Simulation of AI Programming Techniques in BASIC.

    Science.gov (United States)

    Mandell, Alan

    1986-01-01

    Explains the functions of and the techniques employed in expert systems. Offers the program "The Periodic Table Expert," as a model for using artificial intelligence techniques in BASIC. Includes the program listing and directions for its use on: Tandy 1000, 1200, and 2000; IBM PC; PC Jr; TRS-80; and Apple computers. (ML)

  16. Decision process simulation in training systems

    International Nuclear Information System (INIS)

    Zajtsev, K.S.; Serov, A.A.; Ajnutdinov, V.A.

    1984-01-01

    One of the approaches to arrangement of training process an automated trainning systems (ATS) based on actjve use of knowledge of experienced operators is presented. Problems of mathematical model simulatjon of decision process by people not having special knowledge in mathematics are considered. A language of solution tables based on indistinct tables is suggested to the used as a simulation language. The problem of automation of decision process simulation in ATS is solued

  17. ECONOMIC MODELING STOCKS CONTROL SYSTEM: SIMULATION MODEL

    OpenAIRE

    Климак, М.С.; Войтко, С.В.

    2016-01-01

    Considered theoretical and applied aspects of the development of simulation models to predictthe optimal development and production systems that create tangible products andservices. It isproved that theprocessof inventory control needs of economicandmathematical modeling in viewof thecomplexity of theoretical studies. A simulation model of stocks control that allows make managementdecisions with production logistics

  18. Mathematical modeling and simulation of a thermal system

    Science.gov (United States)

    Toropoc, Mirela; Gavrila, Camelia; Frunzulica, Rodica; Toma, Petrica D.

    2016-12-01

    The aim of the present paper is the conception of a mathematical model and simulation of a system formed by a heatexchanger for domestic hot water preparation, a storage tank for hot water and a radiator, starting from the mathematical equations describing this system and developed using Scilab-Xcos program. The model helps to determine the evolution in time for the hot water temperature, for the return temperature in the primary circuit of the heat exchanger, for the supply temperature in the secondary circuit, the thermal power for heating and for hot water preparation to the consumer respectively. In heating systems, heat-exchangers have an important role and their performances influence the energy efficiency of the systems. In the meantime, it is very important to follow the behavior of such systems in dynamic regimes. Scilab-Xcos program can be utilized to follow the important parameters of the systems in different functioning scenarios.

  19. Theory and Simulation of Multicomponent Osmotic Systems.

    Science.gov (United States)

    Karunaweera, Sadish; Gee, Moon Bae; Weerasinghe, Samantha; Smith, Paul E

    2012-05-28

    Most cellular processes occur in systems containing a variety of components many of which are open to material exchange. However, computer simulations of biological systems are almost exclusively performed in systems closed to material exchange. In principle, the behavior of biomolecules in open and closed systems will be different. Here, we provide a rigorous framework for the analysis of experimental and simulation data concerning open and closed multicomponent systems using the Kirkwood-Buff (KB) theory of solutions. The results are illustrated using computer simulations for various concentrations of the solutes Gly, Gly(2) and Gly(3) in both open and closed systems, and in the absence or presence of NaCl as a cosolvent. In addition, KB theory is used to help rationalize the aggregation properties of the solutes. Here one observes that the picture of solute association described by the KB integrals, which are directly related to the solution thermodynamics, and that provided by more physical clustering approaches are different. It is argued that the combination of KB theory and simulation data provides a simple and powerful tool for the analysis of complex multicomponent open and closed systems.

  20. A simple interface to computational fluid dynamics programs for building environment simulations

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, III, C R; Chen, Q [Massachusetts Institute of Technology, Cambridge, MA (United States)

    2000-07-01

    It is becoming a popular practice for architects and HVAC engineers to simulate airflow in and around buildings by computational fluid dynamics (CFD) methods in order to predict indoor and outdoor environment. However, many CFD programs are crippled by a historically poor and inefficient user interface system, particularly for users with little training in numerical simulation. This investigation endeavors to create a simplified CFD interface (SCI) that allows architects and buildings engineers to use CFD without excessive training. The SCI can be easily integrated into new CFD programs. (author)

  1. Test system to simulate transient overpower LMFBR cladding failure

    International Nuclear Information System (INIS)

    Barrus, H.G.; Feigenbutz, L.V.

    1981-01-01

    One of the HEDL programs has the objective to experimentally characterize fuel pin cladding failure due to cladding rupture or ripping. A new test system has been developed which simulates a transient mechanically-loaded fuel pin failure. In this new system the mechanical load is prototypic of a fuel pellet rapidly expanding against the cladding due to various causes such as fuel thermal expansion, fuel melting, and fuel swelling. This new test system is called the Fuel Cladding Mechanical Interaction Mandrel Loading Test (FCMI/MLT). The FCMI/MLT test system and the method used to rupture cladding specimens very rapidly to simulate a transient event are described. Also described is the automatic data acquisition and control system which is required to control the startup, operation and shutdown of the very fast tests, and needed to acquire and store large quantities of data in a short time

  2. Using the Large Fire Simulator System to map wildland fire potential for the conterminous United States

    Science.gov (United States)

    LaWen Hollingsworth; James Menakis

    2010-01-01

    This project mapped wildland fire potential (WFP) for the conterminous United States by using the large fire simulation system developed for Fire Program Analysis (FPA) System. The large fire simulation system, referred to here as LFSim, consists of modules for weather generation, fire occurrence, fire suppression, and fire growth modeling. Weather was generated with...

  3. Conflict simulation for surface transport systems

    International Nuclear Information System (INIS)

    Keeton, S.C.; De Laquil, P. III.

    1977-07-01

    An important element in the analysis of transportation safeguards systems is the determination of the outcome of an armed attack against the system. Such information is necessary to understand relationships among the various defender tactics, weapons systems, and adversary attributes. A battle model, SABRES, which can simulate safeguards engagements is under development. This paper briefly describes the first phase of SABRES and presents some examples of its capabilities

  4. Approaching Sentient Building Performance Simulation Systems

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer; Perkov, Thomas; Heller, Alfred

    2014-01-01

    Sentient BPS systems can combine one or more high precision BPS and provide near instantaneous performance feedback directly in the design tool, thus providing speed and precision of building performance in the early design stages. Sentient BPS systems are essentially combining: 1) design tools, 2......) parametric tools, 3) BPS tools, 4) dynamic databases 5) interpolation techniques and 6) prediction techniques as a fast and valid simulation system, in the early design stage....

  5. A model management system for combat simulation

    OpenAIRE

    Dolk, Daniel R.

    1986-01-01

    The design and implementation of a model management system to support combat modeling is discussed. Structured modeling is introduced as a formalism for representing mathematical models. A relational information resource dictionary system is developed which can accommodate structured models. An implementation is described. Structured modeling is then compared to Jackson System Development (JSD) as a methodology for facilitating discrete event simulation. JSD is currently better at representin...

  6. Biomolecular System Design: Architecture, Synthesis, and Simulation

    OpenAIRE

    Chiang , Katherine

    2015-01-01

    The advancements in systems and synthetic biology have been broadening the range of realizable systems with increasing complexity both in vitro and in vivo. Systems for digital logic operations, signal processing, analog computation, program flow control, as well as those composed of different functions – for example an on-site diagnostic system based on multiple biomarker measurements and signal processing – have been realized successfully. However, the efforts to date tend to tackle each de...

  7. Software Design for Interactive Graphic Radiation Treatment Simulation Systems*

    Science.gov (United States)

    Kalet, Ira J.; Sweeney, Christine; Jacky, Jonathan

    1990-01-01

    We examine issues in the design of interactive computer graphic simulation programs for radiation treatment planning (RTP), as well as expert system programs that automate parts of the RTP process, in light of ten years of experience at designing, building and using such programs. An experiment in object-oriented design using standard Pascal shows that while some advantage is gained from the design, it is still difficult to achieve modularity and to integrate expert system components. A new design based on the Common LISP Object System (CLOS) is described. This series of designs for RTP software shows that this application benefits in specific ways from object-oriented design methods and appropriate languages and tools.

  8. System-Reliability Cumulative-Binomial Program

    Science.gov (United States)

    Scheuer, Ernest M.; Bowerman, Paul N.

    1989-01-01

    Cumulative-binomial computer program, NEWTONP, one of set of three programs, calculates cumulative binomial probability distributions for arbitrary inputs. NEWTONP, CUMBIN (NPO-17555), and CROSSER (NPO-17557), used independently of one another. Program finds probability required to yield given system reliability. Used by statisticians and users of statistical procedures, test planners, designers, and numerical analysts. Program written in C.

  9. Computer programs simplify optical system analysis

    Science.gov (United States)

    1965-01-01

    The optical ray-trace computer program performs geometrical ray tracing. The energy-trace program calculates the relative monochromatic flux density on a specific target area. This program uses the ray-trace program as a subroutine to generate a representation of the optical system.

  10. Simulations of phase transitions in ionic systems

    International Nuclear Information System (INIS)

    Panagiotopoulos, A Z

    2005-01-01

    A review of recent simulation work in the area of phase transitions in ionic systems is presented. The vapour-liquid transition for the restricted primitive model has been studied extensively in the past decade. The critical temperature is now known to excellent accuracy and the critical density to moderate accuracy. There is also strong simulation-based evidence that the model is in the Ising universality class. Discretized lattice versions of the model are reviewed. Other systems covered are size- and charge-asymmetric electrolytes, colloid-salt mixtures, realistic salt models and charged chains. Areas of future research needs are briefly discussed

  11. ''NEPTUNIX'': a continuous system simulation language

    International Nuclear Information System (INIS)

    Nakhle, Michel; Roux, Pierre.

    1982-07-01

    From the mathematical description of a physical system, NEPTUNIX builds the corresponding simulator. Algebraic and ordinary differential equations describing a physical system may be ''stiff'', nonlinear, implicit and even dynamically variable. The non procedural language describing the mathematical model is independent from the integration algorithm. The NEPTUNIX built simulator, transportable on many computers, may be controlled by a userfriendly operating language, independent from host computer and integration method. Last years results about numerical and non-numerical algorithms were used for the package implementation. NEPTUNIX appears as a powerful modeling tool, specially in the field of nuclear reactors design [fr

  12. PGOPHER: A program for simulating rotational, vibrational and electronic spectra

    Science.gov (United States)

    Western, Colin M.

    2017-01-01

    The PGOPHER program is a general purpose program for simulating and fitting molecular spectra, particularly the rotational structure. The current version can handle linear molecules, symmetric tops and asymmetric tops and many possible transitions, both allowed and forbidden, including multiphoton and Raman spectra in addition to the common electric dipole absorptions. Many different interactions can be included in the calculation, including those arising from electron and nuclear spin, and external electric and magnetic fields. Multiple states and interactions between them can also be accounted for, limited only by available memory. Fitting of experimental data can be to line positions (in many common formats), intensities or band contours and the parameters determined can be level populations as well as rotational constants. PGOPHER is provided with a powerful and flexible graphical user interface to simplify many of the tasks required in simulating, understanding and fitting molecular spectra, including Fortrat diagrams and energy level plots in addition to overlaying experimental and simulated spectra. The program is open source, and can be compiled with open source tools. This paper provides a formal description of the operation of version 9.1.

  13. STEM image simulation with hybrid CPU/GPU programming

    International Nuclear Information System (INIS)

    Yao, Y.; Ge, B.H.; Shen, X.; Wang, Y.G.; Yu, R.C.

    2016-01-01

    STEM image simulation is achieved via hybrid CPU/GPU programming under parallel algorithm architecture to speed up calculation on a personal computer (PC). To utilize the calculation power of a PC fully, the simulation is performed using the GPU core and multi-CPU cores at the same time to significantly improve efficiency. GaSb and an artificial GaSb/InAs interface with atom diffusion have been used to verify the computation. - Highlights: • STEM image simulation is achieved by hybrid CPU/GPU programming under parallel algorithm architecture to speed up the calculation in the personal computer (PC). • In order to fully utilize the calculation power of the PC, the simulation is performed by GPU core and multi-CPU cores at the same time so efficiency is improved significantly. • GaSb and artificial GaSb/InAs interface with atom diffusion have been used to verify the computation. The results reveal some unintuitive phenomena about the contrast variation with the atom numbers.

  14. STEM image simulation with hybrid CPU/GPU programming

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Y., E-mail: yaoyuan@iphy.ac.cn; Ge, B.H.; Shen, X.; Wang, Y.G.; Yu, R.C.

    2016-07-15

    STEM image simulation is achieved via hybrid CPU/GPU programming under parallel algorithm architecture to speed up calculation on a personal computer (PC). To utilize the calculation power of a PC fully, the simulation is performed using the GPU core and multi-CPU cores at the same time to significantly improve efficiency. GaSb and an artificial GaSb/InAs interface with atom diffusion have been used to verify the computation. - Highlights: • STEM image simulation is achieved by hybrid CPU/GPU programming under parallel algorithm architecture to speed up the calculation in the personal computer (PC). • In order to fully utilize the calculation power of the PC, the simulation is performed by GPU core and multi-CPU cores at the same time so efficiency is improved significantly. • GaSb and artificial GaSb/InAs interface with atom diffusion have been used to verify the computation. The results reveal some unintuitive phenomena about the contrast variation with the atom numbers.

  15. A Simulation Base Investigation of High Latency Space Systems Operations

    Science.gov (United States)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael

    2017-01-01

    NASA's human space program has developed considerable experience with near Earth space operations. Although NASA has experience with deep space robotic missions, NASA has little substantive experience with human deep space operations. Even in the Apollo program, the missions lasted only a few weeks and the communication latencies were on the order of seconds. Human missions beyond the relatively close confines of the Earth-Moon system will involve missions with durations measured in months and communications latencies measured in minutes. To minimize crew risk and to maximize mission success, NASA needs to develop a better understanding of the implications of these types of mission durations and communication latencies on vehicle design, mission design and flight controller interaction with the crew. To begin to address these needs, NASA performed a study using a physics-based subsystem simulation to investigate the interactions between spacecraft crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation, built with a subsystem modeling tool developed at NASA's Johnson Space Center, models the life support system of a Mars transit vehicle. The simulation contains models of the cabin atmosphere and pressure control system, electrical power system, drinking and waste water systems, internal and external thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the vehicle subsystems; 2) a mission control center interface with data transport delays up to 15 minutes each way; 3) a real-time simulation test conductor interface that can be use to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission between July 18th and Aug 3rd of year 2016. The NEEMO

  16. Numerical Propulsion System Simulation (NPSS): An Award Winning Propulsion System Simulation Tool

    Science.gov (United States)

    Stauber, Laurel J.; Naiman, Cynthia G.

    2002-01-01

    The Numerical Propulsion System Simulation (NPSS) is a full propulsion system simulation tool used by aerospace engineers to predict and analyze the aerothermodynamic behavior of commercial jet aircraft, military applications, and space transportation. The NPSS framework was developed to support aerospace, but other applications are already leveraging the initial capabilities, such as aviation safety, ground-based power, and alternative energy conversion devices such as fuel cells. By using the framework and developing the necessary components, future applications that NPSS could support include nuclear power, water treatment, biomedicine, chemical processing, and marine propulsion. NPSS will dramatically reduce the time, effort, and expense necessary to design and test jet engines. It accomplishes that by generating sophisticated computer simulations of an aerospace object or system, thus enabling engineers to "test" various design options without having to conduct costly, time-consuming real-life tests. The ultimate goal of NPSS is to create a numerical "test cell" that enables engineers to create complete engine simulations overnight on cost-effective computing platforms. Using NPSS, engine designers will be able to analyze different parts of the engine simultaneously, perform different types of analysis simultaneously (e.g., aerodynamic and structural), and perform analysis in a more efficient and less costly manner. NPSS will cut the development time of a new engine in half, from 10 years to 5 years. And NPSS will have a similar effect on the cost of development: new jet engines will cost about a billion dollars to develop rather than two billion. NPSS is also being applied to the development of space transportation technologies, and it is expected that similar efficiencies and cost savings will result. Advancements of NPSS in fiscal year 2001 included enhancing the NPSS Developer's Kit to easily integrate external components of varying fidelities, providing

  17. A landscape simulation system for power plants

    International Nuclear Information System (INIS)

    Yoshinaga, Toshiaki; Yoshida, Miki; Usami, Yoshiaki.

    1997-01-01

    As scenes of power plants give many influences to environments, the plants that harmonized with the environments are demanded. We developed a landscape simulation system for the plants by using computer graphics technologies. This system has functions to generate realistic images about plant buildings and environments. Since the system contains information of ridge lines in addition to usual terrain data, the terrain shapes are expressed more precisely. Because the system enables users to visualize plant construction plans, the advance evaluations of plant scenes become possible. We regard this system as useful for environmental assessment of power plants. (author)

  18. Modeling and simulation of blood collection systems.

    Science.gov (United States)

    Alfonso, Edgar; Xie, Xiaolan; Augusto, Vincent; Garraud, Olivier

    2012-03-01

    This paper addresses the modeling and simulation of blood collection systems in France for both fixed site and mobile blood collection with walk in whole blood donors and scheduled plasma and platelet donors. Petri net models are first proposed to precisely describe different blood collection processes, donor behaviors, their material/human resource requirements and relevant regulations. Petri net models are then enriched with quantitative modeling of donor arrivals, donor behaviors, activity times and resource capacity. Relevant performance indicators are defined. The resulting simulation models can be straightforwardly implemented with any simulation language. Numerical experiments are performed to show how the simulation models can be used to select, for different walk in donor arrival patterns, appropriate human resource planning and donor appointment strategies.

  19. Participatory ergonomics simulation of hospital work systems: The influence of simulation media on simulation outcome

    DEFF Research Database (Denmark)

    Andersen, Simone Nyholm; Broberg, Ole

    2015-01-01

    of tool operation support ergonomics identification and evaluation related to the work system entities space and technologies & tools. The table-top models’ high fidelity of function relations and affordance of a helicopter view support ergonomics identification and evaluation related to the entity......Current application of work system simulation in participatory ergonomics (PE) design includes a variety of different simulation media. However, the actual influence of the media attributes on the simulation outcome has received less attention. This study investigates two simulation media: full......-scale mock-ups and table-top models. The aim is to compare, how the media attributes of fidelity and affordance influence the ergonomics identification and evaluation in PE design of hospital work systems. The results illustrate, how the full-scale mock-ups’ high fidelity of room layout and affordance...

  20. Biomass energy systems program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

  1. Simulation of Wireless Digital Communication Systems

    Directory of Open Access Journals (Sweden)

    A. Mohammed

    2004-12-01

    Full Text Available Due to the explosive demands for high speed wireless services, suchas wireless Internet, email and cellular video conferencing, digitalwireless communications has become one of the most exciting researchtopics in electrical and electronic engineering field. The never-endingdemand for such personal and multimedia services, however, demandstechnologies operating at higher data rates and broader bandwidths. Inaddition, the complexity of wireless communication and signalprocessing systems has grown considerably during the past decade.Therefore, powerful computer­aided techniques are required for theprocess of modeling, designing, analyzing and evaluating theperformance of digital wireless communication systems. In this paper wediscuss the basic propagation mechanisms affecting the performance ofwireless communication systems, and present a simple, powerful andefficient way to simulate digital wireless communication systems usingMatlab. The simulated results are compared with the theoreticalanalysis to validate the simulator. The simulator is useful inevaluating the performance of wireless multimedia services and theassociated signal processing structures and algorithms for current andnext generation wireless mobile communication systems.

  2. Development of the NSSS thermal-hydraulic program for YGN unit 1 simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Doo; Jeong, Jae Jun; Lee, Won Jae; Chung, Bub Dong; Ha, Kwi Seok; Kang, Kyung Ho

    2000-09-01

    The NSSS thermal-hydraulic programs installed in the domestic full-scope power plant simulators were provided in early 1980s by foreign vendors. Because of limited computational capability at that time, they usually adopt very simplified physical models for a real-time simulation of NSSS thermal-hydraulic phenomena, which entails inaccurate results and the possibility of so-called 'negative training', especially for complicated two-phase flows in the reactor coolant system. To resolve the problem, we developed a realistic NSSS T/H program (named 'ARTS' code) for use in YongGwang Nuclear Unit 1 full-scope simulator. The best-estimate code RETRAN03, developed by EPRI and approved by USNRC, was selected as a reference code of ARTS. For the development of ARTS, the followings have been performed: -Improvement of the robustness of RETRAN - Improvement of the real-time simulation capability of RETRAN - Optimum input data generation for the NSSS simulation - New model development that cannot be efficiently modeled by RETRAN - Assessment of the ARTS code. The systematic assessment of ARTS has been conducted in both personal computers (Windows 98, Visual fortran) and the simulator development environment (Windows NT, GSE simulator development tool). The results were resonable in terms of accuracy, real-time simulation and robustness.

  3. Development of the NSSS thermal-hydraulic program for YGN unit 1 simulator

    International Nuclear Information System (INIS)

    Kim, Kyung Doo; Jeong, Jae Jun; Lee, Won Jae; Chung, Bub Dong; Ha, Kwi Seok; Kang, Kyung Ho

    2000-09-01

    The NSSS thermal-hydraulic programs installed in the domestic full-scope power plant simulators were provided in early 1980s by foreign vendors. Because of limited computational capability at that time, they usually adopt very simplified physical models for a real-time simulation of NSSS thermal-hydraulic phenomena, which entails inaccurate results and the possibility of so-called 'negative training', especially for complicated two-phase flows in the reactor coolant system. To resolve the problem, we developed a realistic NSSS T/H program (named 'ARTS' code) for use in YongGwang Nuclear Unit 1 full-scope simulator. The best-estimate code RETRAN03, developed by EPRI and approved by USNRC, was selected as a reference code of ARTS. For the development of ARTS, the followings have been performed: -Improvement of the robustness of RETRAN - Improvement of the real-time simulation capability of RETRAN - Optimum input data generation for the NSSS simulation - New model development that cannot be efficiently modeled by RETRAN - Assessment of the ARTS code. The systematic assessment of ARTS has been conducted in both personal computers (Windows 98, Visual fortran) and the simulator development environment (Windows NT, GSE simulator development tool). The results were resonable in terms of accuracy, real-time simulation and robustness

  4. Dynamic simulation of a forced circulation evaporating system

    International Nuclear Information System (INIS)

    Lee, J.S.; Lee, K.J.

    1993-01-01

    A dynamic simulation program has been developed to simulate the forced circulation evaporating system of the Kori PWR Power Plant in Korea which is used to treat liquid waste containing boric acid. Energy and mass balances for the vapor and liquid phases are used to describe the interaction among system components such as the vapor body, heater jacket and condenser. In order to simulate entrainment carryover in the sieve tray column and wire mesh pad, Kister's and Carpenter-Othmer's correlations are adopted, respectively. A new correlation formula is also suggested to simulate the geometric effect of the vapor body. A fuzzy heuristic controller and conventional controllers such as P (proportional), PI (proportional-integral) and PID (proportional-integral-derivative) controls are incorporated to observe their responses to a given disturbance. The simulations show good agreement with the real operation data. It is also identified that the vapor velocity or flow rate in the sieve tray column determines the system decontamination factor (DF), and that the longer the vapor body is, the less entrainment carryover occurs out of the vapor body. In addition, the wire mesh pad is identified as maintaining very high deentrainment efficiency even though the vapor velocity may show large fluctuations. With respect to system control, the fuzzy heuristic controller approaches a new steady state faster than conventional controllers. Also the fuzzy controller maintains higher DF during transients and is stronger against time delay in the control components. (Author)

  5. Computational Physics Simulation of Classical and Quantum Systems

    CERN Document Server

    Scherer, Philipp O. J

    2010-01-01

    This book encapsulates the coverage for a two-semester course in computational physics. The first part introduces the basic numerical methods while omitting mathematical proofs but demonstrating the algorithms by way of numerous computer experiments. The second part specializes in simulation of classical and quantum systems with instructive examples spanning many fields in physics, from a classical rotor to a quantum bit. All program examples are realized as Java applets ready to run in your browser and do not require any programming skills.

  6. Computational physics. Simulation of classical and quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Philipp O.J. [TU Muenchen (Germany). Physikdepartment T38

    2010-07-01

    This book encapsulates the coverage for a two-semester course in computational physics. The first part introduces the basic numerical methods while omitting mathematical proofs but demonstrating the algorithms by way of numerous computer experiments. The second part specializes in simulation of classical and quantum systems with instructive examples spanning many fields in physics, from a classical rotor to a quantum bit. All program examples are realized as Java applets ready to run in your browser and do not require any programming skills. (orig.)

  7. Theory and Simulations of Solar System Plasmas

    Science.gov (United States)

    Goldstein, Melvyn L.

    2011-01-01

    "Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.

  8. Characteristics quality system assurance of university programs

    Directory of Open Access Journals (Sweden)

    Lucian Ion Medar

    2011-03-01

    Full Text Available Quality assurance program of study requires time, dedication, effort, innovative thinking and creativity. Competitive research programs monitored by quality assurance system to create the desired results on the relationship between learning and teaching methods and assessment.

  9. Performance measurement system for training simulators. Interim report

    International Nuclear Information System (INIS)

    Bockhold, G. Jr.; Roth, D.R.

    1978-05-01

    In the first project phase, the project team has designed, installed, and test run on the Browns Ferry nuclear power plant training simulator a performance measurement system capable of automatic recording of statistical information on operator actions and plant response. Key plant variables and operator actions were monitored and analyzed by the simulator computer for a selected set of four operating and casualty drills. The project has the following objectives: (1) To provide an empirical data base for statistical analysis of operator reliability and for allocation of safety and control functions between operators and automated controls; (2) To develop a method for evaluation of the effectiveness of control room designs and operating procedures; and (3) To develop a system for scoring aspects of operator performance to assist in training evaluations and to support operator selection research. The performance measurement system has shown potential for meeting the research objectives. However, the cost of training simulator time is high; to keep research program costs reasonable, the measurement system is being designed to be an integral part of operator training programs. In the pilot implementation, participating instructors judged the measurement system to be a valuable and objective extension of their abilities to monitor trainee performance

  10. Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2010-08-22

    This article describes the implementation of the Building Controls Virtual Test Bed (BCVTB). The BCVTB is a software environment that allows connecting different simulation programs to exchange data during the time integration, and that allows conducting hardware in the loop simulation. The software architecture is a modular design based on Ptolemy II, a software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. The BCVTB provides additions to Ptolemy II that allow the run-time coupling of different simulation programs for data exchange, including EnergyPlus, MATLAB, Simulink and the Modelica modelling and simulation environment Dymola. The additions also allow executing system commands, such as a script that executes a Radiance simulation. In this article, the software architecture is presented and the mathematical model used to implement the co-simulation is discussed. The simulation program interface that the BCVTB provides is explained. The article concludes by presenting applications in which different state of the art simulation programs are linked for run-time data exchange. This link allows the use of the simulation program that is best suited for the particular problem to model building heat transfer, HVAC system dynamics and control algorithms, and to compute a solution to the coupled problem using co-simulation.

  11. Fault-Tolerant Robot Programming through Simulation with Realistic Sensor Models

    Directory of Open Access Journals (Sweden)

    Axel Waggershauser

    2008-11-01

    Full Text Available We introduce a simulation system for mobile robots that allows a realistic interaction of multiple robots in a common environment. The simulated robots are closely modeled after robots from the EyeBot family and have an identical application programmer interface. The simulation supports driving commands at two levels of abstraction as well as numerous sensors such as shaft encoders, infrared distance sensors, and compass. Simulation of on-board digital cameras via synthetic images allows the use of image processing routines for robot control within the simulation. Specific error models for actuators, distance sensors, camera sensor, and wireless communication have been implemented. Progressively increasing error levels for an application program allows for testing and improving its robustness and fault-tolerance.

  12. Stable simulations of many fermion systems

    International Nuclear Information System (INIS)

    Loh, E.Y. Jr.; Gubernatis, J.E.; Scalapino, D.J.; Sugar, R.L.; White, S.R.; Scalettar, R.T.; Los Alamos National Lab., NM; California Univ., Santa Barbara, CA; Illinois Univ., Urbana, IL

    1989-01-01

    As the inverse temperature β becomes large, the diverse numerical scales present in exp(-βH) plague simulations of many-fermion systems on finite-precision computers. Representation of matrices in factorized form stabilizes these calculations, allowing efficient, low-temperature studies of condensed-matter models

  13. Analytical system dynamics modeling and simulation

    CERN Document Server

    Fabien, Brian C

    2008-01-01

    This book offering a modeling technique based on Lagrange's energy method includes 125 worked examples. Using this technique enables one to model and simulate systems as diverse as a six-link, closed-loop mechanism or a transistor power amplifier.

  14. Quality assurance program for isotopic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Hannigan, R.L.; Harnar, R.R.

    1982-12-01

    This report summarizes the Sandia National Laboratories Quality Assurance Program that applies to non-weapon (reimbursable) Radioisotopic Thermoelectric Generators. The program has been implemented over the past 16 years on power supplies used in various space and terrestrial systems. The quality assurance (QA) activity of the program is in support of the Department of Energy, Office of Space Nuclear Projects. Basic elements of the program are described in the report and examples of program decumentation are presented.

  15. Quality assurance program for isotopic power systems

    International Nuclear Information System (INIS)

    Hannigan, R.L.; Harnar, R.R.

    1982-12-01

    This report summarizes the Sandia National Laboratories Quality Assurance Program that applies to non-weapon (reimbursable) Radioisotopic Thermoelectric Generators. The program has been implemented over the past 16 years on power supplies used in various space and terrestrial systems. The quality assurance (QA) activity of the program is in support of the Department of Energy, Office of Space Nuclear Projects. Basic elements of the program are described in the report and examples of program decumentation are presented

  16. Development of module-based simulation system for nuclear power plant

    International Nuclear Information System (INIS)

    Yoshikawa, H.

    1990-01-01

    Module-based Simulation System (MSS) has been developed to realize a new software environment enabling versatile dynamic simulation of a complex nuclear power plant system flexibly. Described in the paper are (i) fundamental methods utilized in MMS and its software systemization, (ii) development of human interface system to help users in generating integrated simulation programs automatically, and (iii) development of an intelligent user support system for helping users in the two phases of automatical semantic diagnosis and consultation to automatic input data setup for the MSS-generated programs

  17. Future Automotive Systems Technology Simulator (FASTSim)

    Energy Technology Data Exchange (ETDEWEB)

    2018-04-11

    An advanced vehicle powertrain systems analysis tool, the Future Automotive Systems Technology Simulator (FASTSim) provides a simple way to compare powertrains and estimate the impact of technology improvements on light-, medium- and heavy-duty vehicle efficiency, performance, cost, and battery life. Created by the National Renewable Energy Laboratory, FASTSim accommodates a range of vehicle types - including conventional vehicles, electric-drive vehicles, and fuel cell vehicles - and is available for free download in Microsoft Excel and Python formats.

  18. Hanford solid waste management system simulation

    International Nuclear Information System (INIS)

    Shaver, S.R.; Armacost, L.L.; Konynenbelt, H.S.; Wehrman, R.R.

    1994-12-01

    This paper describes systems analysis and simulation model development for a proposed solid waste management system at a U.S. Department of Energy Site. The proposed system will include a central storage facility, four treatment facilities, and three disposal sites. The material managed by this system will include radioactive, hazardous, and mixed radioactive and hazardous wastes. The objective of the modeling effort is to provide a means of evaluating throughput and capacity requirements for the proposed treatment, storage, and disposal facilities. The model is used to evaluate alternative system configurations and the effect on the alternatives of changing waste stream characteristics and receipt schedules. An iterative modeling and analysis approach is used that provides macro-level models early in the project and establishes credibility with the customer. The results from the analyses based on the macro models influence system design decisions and provide information that helps focus subsequent model development. Modeling and simulation of alternative system configurations and operating strategies yield a better understanding of the solid waste system requirements. The model effectively integrates information obtained through systems analysis and waste characterization to provide a consistent basis for system and facility planning

  19. Explicit simulation of a midlatitude Mesoscale Convective System

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G.D.; Cotton, W.R. [Colorado State Univ., Fort Collins, CO (United States)

    1996-04-01

    We have explicitly simulated the mesoscale convective system (MCS) observed on 23-24 June 1985 during PRE-STORM, the Preliminary Regional Experiment for the Stormscale Operational and Research and Meterology Program. Stensrud and Maddox (1988), Johnson and Bartels (1992), and Bernstein and Johnson (1994) are among the researchers who have investigated various aspects of this MCS event. We have performed this MCS simulation (and a similar one of a tropical MCS; Alexander and Cotton 1994) in the spirit of the Global Energy and Water Cycle Experiment Cloud Systems Study (GCSS), in which cloud-resolving models are used to assist in the formulation and testing of cloud parameterization schemes for larger-scale models. In this paper, we describe (1) the nature of our 23-24 June MCS dimulation and (2) our efforts to date in using our explicit MCS simulations to assist in the development of a GCM parameterization for mesoscale flow branches. The paper is organized as follows. First, we discuss the synoptic situation surrounding the 23-24 June PRE-STORM MCS followed by a discussion of the model setup and results of our simulation. We then discuss the use of our MCS simulation. We then discuss the use of our MCS simulations in developing a GCM parameterization for mesoscale flow branches and summarize our results.

  20. SIMPSON: A general simulation program for solid-state NMR spectroscopy

    Science.gov (United States)

    Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

    2011-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tel scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple ID experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  1. OREST, LWR Burnup Simulation Using Program HAMMER and ORIGEN

    International Nuclear Information System (INIS)

    Hesse, Ulrich; Sieberer, Johann

    2006-01-01

    1 - Description of program or function: In OREST, the 1-dimensional lattice code HAMMER and the isotope generation and depletion code ORIGEN are directly coupled for burnup simulation in light-water reactor fuels (GRS recommended). Additionally heavy water and graphite moderated systems can be calculated. New version differs from the previous version in the following features: An 84-group-library LIB84 for up to 200 isotopes is used to update the 3-group -POISON-XS. LIB84 uses the same energy boundaries as THERMOS and HAMLET in . In this way, high flexibility is achieved in very different reactor models. The coupling factor between THERMOS and HAMLET is now directly transferred from HAMMER to THERES and omits the equation 4 (see page 6 of the manual). Sandwich-reactor fuel reactivity and burnup calculations can be started with NGEOM = 1. Thorium graphite reactivity and burnup calculations can be started with NLIBE = 1. High enriched U-235 heavy water moderated reactivity and burnup calculations can be started. HAMLET libraries in for U-235, U-236, U-238, Np-237, Pu-238, Pu-239, Pu-240, Pu-242, Am-241, Am-243 and Zirconium are updated using resonance parameters. NEA-1324/04: A new version of the module hamme97.f has replaced the old one. 2 - Method of solution: For the user-defined irradiation history, an input data processor generates program loops over small burnup steps for the main codes HAMMER and ORIGEN. The user defined assembly description is transformed to an equivalent HAMMER fuel cell. HAMMER solves the integral neutron transport equation in a four-region cylindrical or sandwiched model with reflecting boundaries and runs with fuel power calculated rod temperatures. ORIGEN runs with HAMMER-calculated cross sections and neutron spectra and calculates isotope concentrations during burnup by solving the buildup-, depletion- and decay-chain equations. An output data processor samples the outputs of the program modules and generates tabular works for the

  2. Physics detector simulation facility system software description

    International Nuclear Information System (INIS)

    Allen, J.; Chang, C.; Estep, P.; Huang, J.; Liu, J.; Marquez, M.; Mestad, S.; Pan, J.; Traversat, B.

    1991-12-01

    Large and costly detectors will be constructed during the next few years to study the interactions produced by the SSC. Efficient, cost-effective designs for these detectors will require careful thought and planning. Because it is not possible to test fully a proposed design in a scaled-down version, the adequacy of a proposed design will be determined by a detailed computer model of the detectors. Physics and detector simulations will be performed on the computer model using high-powered computing system at the Physics Detector Simulation Facility (PDSF). The SSCL has particular computing requirements for high-energy physics (HEP) Monte Carlo calculations for the simulation of SSCL physics and detectors. The numerical calculations to be performed in each simulation are lengthy and detailed; they could require many more months per run on a VAX 11/780 computer and may produce several gigabytes of data per run. Consequently, a distributed computing environment of several networked high-speed computing engines is envisioned to meet these needs. These networked computers will form the basis of a centralized facility for SSCL physics and detector simulation work. Our computer planning groups have determined that the most efficient, cost-effective way to provide these high-performance computing resources at this time is with RISC-based UNIX workstations. The modeling and simulation application software that will run on the computing system is usually written by physicists in FORTRAN language and may need thousands of hours of supercomputing time. The system software is the ''glue'' which integrates the distributed workstations and allows them to be managed as a single entity. This report will address the computing strategy for the SSC

  3. Biocellion: accelerating computer simulation of multicellular biological system models.

    Science.gov (United States)

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-11-01

    Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. XTAL system of crystallographic programs: programmer's manual

    International Nuclear Information System (INIS)

    Hall, S.R.; Stewart, J.M.; Norden, A.P.; Munn, R.J.; Freer, S.T.

    1980-02-01

    This document establishes the basis for collaborative writing of transportable computer programs for x-ray crystallography. The concepts and general-purpose utility subroutines described here can be readily adapted to other scientific calculations. The complete system of crystallographic programs and subroutines is called XTAL and replaces the XRAY (6,7,8) system of programs. The coding language for the XTAL system is RATMAC (5). The XTAL system of programs contains routines for controlling execution of application programs. In this sense it forms a suboperating system that presents the same computational environment to the user and programmer irrespective of the operating system in use at a particular installation. These control routines replace all FORTRAN I/O code, supply character reading and writing, supply binary file reading and writing, serve as a support library for applications programs, and provide for interprogram communication

  5. Post-tensioning system surveillance program

    International Nuclear Information System (INIS)

    Drew, G.E.

    1979-01-01

    Nuclear power plant containment structure post-tensioning system tendon surveillance program is described in detail. Data collected over three yearly post-tensioning system Surveillance Programs is presented and evaluated to correlate anticipated stress losses with actual losses. In addition corrosion protected system performance is analyzed

  6. Simulation model for wind energy storage systems. Volume I. Technical report. [SIMWEST code

    Energy Technology Data Exchange (ETDEWEB)

    Warren, A.W.; Edsinger, R.W.; Chan, Y.K.

    1977-08-01

    The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume I gives a brief overview of the SIMWEST program and describes the two NASA defined simulation studies.

  7. ELSHIM: Program to simulate elastic processes of heavy ions

    International Nuclear Information System (INIS)

    Van Ginneken, A.

    1992-05-01

    The Monte Carlo code ELSIM simulates elastic and quasi-elastic, i.e., of limited energy loss, processes of high energy hadrons in a thick target with particular attention to scattering off edges and the like. Its main applications concern accelerator beam loss, beam scraping, etc. Particles which only participate in elastic processes and are then reflected back into the aperture may cause problems elsewhere in the accelerator lattice -- often far removed from where the beam loss occurs. Therefore ELSIM is often run in conjunction with an accelerator tracking program. It can also be used as the first stage in energy deposition studies. For example, when beam is lost in a superconducting magnet ELSIM can provide energy deposition by the incident particles along with a file specifying coordinates and momenta of the inelastic interactions. The latter can then be processed by a program such as CASIM to complete the energy deposition simulation. A new version of this program, called ELSHIM is introduced here which extends ELSIM to include heavy ions as projectiles

  8. Building interactive simulations in a Web page design program.

    Science.gov (United States)

    Kootsey, J Mailen; Siriphongs, Daniel; McAuley, Grant

    2004-01-01

    A new Web software architecture, NumberLinX (NLX), has been integrated into a commercial Web design program to produce a drag-and-drop environment for building interactive simulations. NLX is a library of reusable objects written in Java, including input, output, calculation, and control objects. The NLX objects were added to the palette of available objects in the Web design program to be selected and dropped on a page. Inserting an object in a Web page is accomplished by adding a template block of HTML code to the page file. HTML parameters in the block must be set to user-supplied values, so the HTML code is generated dynamically, based on user entries in a popup form. Implementing the object inspector for each object permits the user to edit object attributes in a form window. Except for model definition, the combination of the NLX architecture and the Web design program permits construction of interactive simulation pages without writing or inspecting code.

  9. Simulating Complex Window Systems using BSDF Data

    Energy Technology Data Exchange (ETDEWEB)

    Konstantoglou, Maria; Jonsson, Jacob; Lee, Eleanor

    2009-06-22

    Nowadays, virtual models are commonly used to evaluate the performance of conventional window systems. Complex fenestration systems can be difficult to simulate accurately not only because of their geometry but also because of their optical properties that scatter light in an unpredictable manner. Bi-directional Scattering Distribution Functions (BSDF) have recently been developed based on a mixture of measurements and modelling to characterize the optics of such systems. This paper describes the workflow needed to create then use these BSDF datasets in the Radiance lighting simulation software. Limited comparisons are made between visualizations produced using the standard ray-tracing method, the BSDF method, and that taken in a full-scale outdoor mockup.

  10. Modular program systems for scientific-technical programs

    International Nuclear Information System (INIS)

    Bennewitz, F.; Lembcke, R.

    1977-01-01

    In order to replace the numerous traditional stand alone codes, great modular data based systems were developed by KWU for the simulation of nuclear reactors. These latter systems exhibit a high degree of automatization and combine quality assurance with a high flexibility in special problems. On the other hand they show a greater mashine dependency. (orig.) [de

  11. Simulation of depth distribution of geological strata. HQSW program

    International Nuclear Information System (INIS)

    Czubek, J.A.; Kolakowski, L.

    1987-01-01

    The method of simulation of the layered geological formation for a given geological parameter is presented. The geological formation contains at least two types of layers and is given with the depth resolution Δh corresponding to the thickness of the hypothetical elementary layer. Two types of geostatistical distributions of the rock parameters are considered: modified normal and modified lognormal for which the input data are expected value and the variance. The HQSW simulation program given in the paper generates in a random way (but in a given repeatable sequence) the thicknesses of a given type of strata, their average specific radioactivity and the variance of specific radioactivity within a given layer. 8 refs., 14 figs., 1 tab. (author)

  12. Problem reporting management system performance simulation

    Science.gov (United States)

    Vannatta, David S.

    1993-01-01

    This paper proposes the Problem Reporting Management System (PRMS) model as an effective discrete simulation tool that determines the risks involved during the development phase of a Trouble Tracking Reporting Data Base replacement system. The model considers the type of equipment and networks which will be used in the replacement system as well as varying user loads, size of the database, and expected operational availability. The paper discusses the dynamics, stability, and application of the PRMS and addresses suggested concepts to enhance the service performance and enrich them.

  13. Simulation approach towards energy flexible manufacturing systems

    CERN Document Server

    Beier, Jan

    2017-01-01

    This authored monograph provides in-depth analysis and methods for aligning electricity demand of manufacturing systems to VRE supply. The book broaches both long-term system changes and real-time manufacturing execution and control, and the author presents a concept with different options for improved energy flexibility including battery, compressed air and embodied energy storage. The reader will also find a detailed application procedure as well as an implementation into a simulation prototype software. The book concludes with two case studies. The target audience primarily comprises research experts in the field of green manufacturing systems. .

  14. The Karlsruhe program system KAPROS. Pt. 2

    International Nuclear Information System (INIS)

    Bachmann, H.; Kleinheins, S.

    1976-07-01

    The system nucleus of the Karlsruhe modular program system KAPROS is described from the point of view of the system programmer. In short reviews it is explained, how the module management, the data management, the buffer management, the error handling and the statistics work. The tables, the datasets, the routines and the commons of the system nucleus as well as some utility programs for the handling of system datasets are explained in full detail. The program listening of the system nucleus belongs to this documentation as a separate appendix. (orig.) [de

  15. Photovoltaic energy systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The ongoing research, development, and demonstration efforts of the Photovoltaics Program are highlighted and each of the US Department of Energy's current photovoltaics projects initiated or renewed during fiscal year 1981 is described, including its title, directing organization, project engineer, contractor, principal investigator, contract period, funding, and objectives. The Photovoltaics Program is briefly summarized, including the history and organization and highlights of the research and development and of planning, assessment, and integration. Also summarized is the Federal Photovoltaic Utilization Program. An exhaustive bibliography is included. (LEW)

  16. Process simulation in digital camera system

    Science.gov (United States)

    Toadere, Florin

    2012-06-01

    The goal of this paper is to simulate the functionality of a digital camera system. The simulations cover the conversion from light to numerical signal and the color processing and rendering. We consider the image acquisition system to be linear shift invariant and axial. The light propagation is orthogonal to the system. We use a spectral image processing algorithm in order to simulate the radiometric properties of a digital camera. In the algorithm we take into consideration the transmittances of the: light source, lenses, filters and the quantum efficiency of a CMOS (complementary metal oxide semiconductor) sensor. The optical part is characterized by a multiple convolution between the different points spread functions of the optical components. We use a Cooke triplet, the aperture, the light fall off and the optical part of the CMOS sensor. The electrical part consists of the: Bayer sampling, interpolation, signal to noise ratio, dynamic range, analog to digital conversion and JPG compression. We reconstruct the noisy blurred image by blending different light exposed images in order to reduce the photon shot noise, also we filter the fixed pattern noise and we sharpen the image. Then we have the color processing blocks: white balancing, color correction, gamma correction, and conversion from XYZ color space to RGB color space. For the reproduction of color we use an OLED (organic light emitting diode) monitor. The analysis can be useful to assist students and engineers in image quality evaluation and imaging system design. Many other configurations of blocks can be used in our analysis.

  17. Programming Guidelines for FBD Programs in Reactor Protection System Software

    International Nuclear Information System (INIS)

    Jung, Se Jin; Lee, Dong Ah; Kim, Eui Sub; Yoo, Jun Beom; Lee, Jang Su

    2014-01-01

    Properties of programming languages, such as reliability, traceability, etc., play important roles in software development to improve safety. Several researches are proposed guidelines about programming to increase the dependability of software which is developed for safety critical systems. Misra-c is a widely accepted programming guidelines for the C language especially in the sector of vehicle industry. NUREG/CR-6463 helps engineers in nuclear industry develop software in nuclear power plant systems more dependably. FBD (Function Block Diagram), which is one of programming languages defined in IEC 61131-3 standard, is often used for software development of PLC (programmable logic controllers) in nuclear power plants. Software development for critical systems using FBD needs strict guidelines, because FBD is a general language and has easily mistakable elements. There are researches about guidelines for IEC 61131-3 programming languages. They, however, do not specify details about how to use languages. This paper proposes new guidelines for the FBD based on NUREG/CR-6463. The paper introduces a CASE (Computer-Aided Software Engineering) tool to check FBD programs with the new guidelines and shows availability with a case study using a FBD program in a reactor protection system. The paper is organized as follows

  18. Programming Guidelines for FBD Programs in Reactor Protection System Software

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Se Jin; Lee, Dong Ah; Kim, Eui Sub; Yoo, Jun Beom [Division of Computer Science and Engineering College of Information and Communication, Konkuk University, Seoul (Korea, Republic of); Lee, Jang Su [Man-Machine Interface System team Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Properties of programming languages, such as reliability, traceability, etc., play important roles in software development to improve safety. Several researches are proposed guidelines about programming to increase the dependability of software which is developed for safety critical systems. Misra-c is a widely accepted programming guidelines for the C language especially in the sector of vehicle industry. NUREG/CR-6463 helps engineers in nuclear industry develop software in nuclear power plant systems more dependably. FBD (Function Block Diagram), which is one of programming languages defined in IEC 61131-3 standard, is often used for software development of PLC (programmable logic controllers) in nuclear power plants. Software development for critical systems using FBD needs strict guidelines, because FBD is a general language and has easily mistakable elements. There are researches about guidelines for IEC 61131-3 programming languages. They, however, do not specify details about how to use languages. This paper proposes new guidelines for the FBD based on NUREG/CR-6463. The paper introduces a CASE (Computer-Aided Software Engineering) tool to check FBD programs with the new guidelines and shows availability with a case study using a FBD program in a reactor protection system. The paper is organized as follows.

  19. Eight critical factors in creating and implementing a successful simulation program.

    Science.gov (United States)

    Lazzara, Elizabeth H; Benishek, Lauren E; Dietz, Aaron S; Salas, Eduardo; Adriansen, David J

    2014-01-01

    Recognizing the need to minimize human error and adverse events, clinicians, researchers, administrators, and educators have strived to enhance clinicians' knowledge, skills, and attitudes through training. Given the risks inherent in learning new skills or advancing underdeveloped skills on actual patients, simulation-based training (SBT) has become an invaluable tool across the medical education spectrum. The large simulation, training, and learning literature was used to provide a synthesized yet innovative and "memorable" heuristic of the important facets of simulation program creation and implementation, as represented by eight critical "S" factors-science, staff, supplies, space, support, systems, success, and sustainability. These critical factors advance earlier work that primarily focused on the science of SBT success, to also include more practical, perhaps even seemingly obvious but significantly challenging components of SBT, such as resources, space, and supplies. SYSTEMS: One of the eight critical factors-systems-refers to the need to match fidelity requirements to training needs and ensure that technological infrastructure is in place. The type of learning objectives that the training is intended to address should determine these requirements. For example, some simulators emphasize physical fidelity to enable clinicians to practice technical and nontechnical skills in a safe environment that mirrors real-world conditions. Such simulators are most appropriate when trainees are learning how to use specific equipment or conduct specific procedures. The eight factors-science, staff, supplies, space, support, systems, success, and sustainability-represent a synthesis of the most critical elements necessary for successful simulation programs. The order of the factors does not represent a deliberate prioritization or sequence, and the factors' relative importance may change as the program evolves.

  20. SOLVEX: a computer program for simulation of solvent extraction processes

    International Nuclear Information System (INIS)

    Scotten, W.C.

    1975-09-01

    SOLVEX is a FORTRAN IV computer program that simulates the dynamic behavior of solvent extraction processes conducted in mixer-settlers and centrifugal contactors. Two options permit terminating dynamic phases by time or by achieving steady state, and a third option permits artificial rapid close to steady state. Thus the program is well suited to multiple phases of dynamic problems and multiple input of steady state problems. Changes from the previous problem are the only inputs required for each succeeding problem. Distribution data can be supplied by two-variable third-power polynomial equations or by three-variable tables in any one of 16 different combinations involving phase concentrations or distribution coefficients (ratio of phase concentrations) or their logarithms

  1. Implementing a Cardiac Skills Orientation and Simulation Program.

    Science.gov (United States)

    Hemingway, Maureen W; Osgood, Patrice; Mannion, Mildred

    2018-02-01

    Patients with cardiac morbidities admitted for cardiac surgical procedures require perioperative nurses with a high level of complex nursing skills. Orienting new cardiac team members takes commitment and perseverance in light of variable staffing levels, high-acuity patient populations, an active cardiac surgical schedule, and the unpredictability of scheduling patients undergoing cardiac transplantation. At an academic medical center in Boston, these issues presented opportunities to orient new staff members to the scrub person role, but hampered efforts to provide active learning opportunities in a safe environment. As a result, facility personnel created a program to increase new staff members' skills, confidence, and proficiency, while also increasing the number of staff members who were proficient at scrubbing complex cardiac procedures. To address the safe learning requirement, personnel designed a simulation program to provide scrubbing experience, decrease orientees' supervision time, and increase staff members' confidence in performing the scrub person role. © AORN, Inc, 2018.

  2. Assessment and simulation tools for sustainable energy systems theory and applications

    CERN Document Server

    Cavallaro, Fausto

    2013-01-01

    This book covers both simulations using markal model and linear programming (LP) and methods and applications of multi-criteria, fuzzy-sets, algorithm genetics and neural nets (artificial intelligence) to energy systems.

  3. The preparation of teaching simulation system of endovascular intervention

    International Nuclear Information System (INIS)

    Li Yiming; Wang Jie; Shi Haibin; Jin Xijun

    2011-01-01

    Objective: To establish a teaching simulation system of endovascular intervention and to evaluate its application in clinical teaching practice. Methods: The vascular model, which had quite similar diameter and length to that of human arteries, was prepared with glass tubes of different diameters. Stainless steel tubes were cut and welded to manufacture the brackets of an operation bed and a C-arm, and then the above parts together with flat were assembled into the operation bed module. Fixed camera, computer and footswitch were assembled into the image module. The above three modules were integrated into the teaching simulation system of endovascular intervention. With the help of this system, the principal endovascular intervention manipulations were imitatively exercised. Results: The vascular model had the same proportions as in normal human subjects. The operation bed module could be moved in two dimensions. The image module could capture multiple and differently formatted images as well as dynamic images in different sizes. Also, this system carried the image-frozen function, which was just the same as last image hold function of DSA. This simulation system could imitate the basic manipulations of many kinds of endovascular interventions, such as the hepatic artery catheterization, carotid artery catheterization, the performing of looping-technique in uterine artery, etc. Conclusion: The simulation system can imitate many principal endovascular manipulations, and can distinctly display the relationship of the vascular anatomy and interventional instruments with their imaging shadows. Therefore, this simulation system has a promising prospect of being able to be used in the clinical teaching program concerning vascular interventional manipulations. (authors)

  4. COLUMN2 - A computer program for simulating migration

    International Nuclear Information System (INIS)

    Nielsen, O.J.; Bo, P.; Carlsen, L.

    1985-10-01

    COLUMN2 is a 1D FORTRAN77 computer program designed for studies of the effects of various physicochemical processes on migration. It solves the solute transport equation and cant take into account dispersion, sorption, ion exchange, first and second order homogeneous chemical reactions. Spacial variations of input pulses and retention factors are possible. The method of solution is based on a finite difference discretion followed by the application of the method of characteristics and two separate grid systems. This report explains the mathematical and numerical methods used, describes the necessary input, contains a number of test examples, provides a listing of the program and explains how to acquire the program, adapt it to other computers and run it. This report serves as a manual for the program. (author)

  5. Records Center Program Billing System

    Data.gov (United States)

    National Archives and Records Administration — RCPBS supports the Records center programs (RCP) in producing invoices for the storage (NARS-5) and servicing of National Archives and Records Administration’s...

  6. Nuclear Human Resources Development Program using Educational Core Simulator

    International Nuclear Information System (INIS)

    Choi, Yu Sun; Hong, Soon Kwan

    2015-01-01

    KHNP-CRI(Korea Hydro and Nuclear Power Co.-Central Research Institute) has redesigned the existing Core Simulator(CoSi) used as a sort of training tools for reactor engineers in operating nuclear power plant to support Nuclear Human Resources Development (NHRD) Program focusing on the nuclear department of Dalat university in Vietnam. This program has been supported by MOTIE in Korea and cooperated with KNA(Korea Nuclear Association for International Cooperation) and HYU(Hanyang University) for enhancing the nuclear human resources of potential country in consideration with Korean Nuclear Power Plant as a next candidate energy sources. KHNP-CRI has provided Edu-CoSi to Dalat University in Vietnam in order to support Nuclear Human Resources Development Program in Vietnam. Job Qualification Certificates Program in KHNP is utilized to design a training course for Vietnamese faculty and student of Dalat University. Successfully, knowhow on lecturing the ZPPT performance, training and maintaining Edu-CoSi hardware are transferred by several training courses which KHNP-CRI provides

  7. Nuclear Human Resources Development Program using Educational Core Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu Sun; Hong, Soon Kwan [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-10-15

    KHNP-CRI(Korea Hydro and Nuclear Power Co.-Central Research Institute) has redesigned the existing Core Simulator(CoSi) used as a sort of training tools for reactor engineers in operating nuclear power plant to support Nuclear Human Resources Development (NHRD) Program focusing on the nuclear department of Dalat university in Vietnam. This program has been supported by MOTIE in Korea and cooperated with KNA(Korea Nuclear Association for International Cooperation) and HYU(Hanyang University) for enhancing the nuclear human resources of potential country in consideration with Korean Nuclear Power Plant as a next candidate energy sources. KHNP-CRI has provided Edu-CoSi to Dalat University in Vietnam in order to support Nuclear Human Resources Development Program in Vietnam. Job Qualification Certificates Program in KHNP is utilized to design a training course for Vietnamese faculty and student of Dalat University. Successfully, knowhow on lecturing the ZPPT performance, training and maintaining Edu-CoSi hardware are transferred by several training courses which KHNP-CRI provides.

  8. System Planning With The Hanford Waste Operations Simulator

    International Nuclear Information System (INIS)

    Crawford, T.W.; Certa, P.J.; Wells, M.N.

    2010-01-01

    At the U. S. Department of Energy's Hanford Site in southeastern Washington State, 216 million liters (57 million gallons) of nuclear waste is currently stored in aging underground tanks, threatening the Columbia River. The River Protection Project (RPP), a fully integrated system of waste storage, retrieval, treatment, and disposal facilities, is in varying stages of design, construction, operation, and future planning. These facilities face many overlapping technical, regulatory, and financial hurdles to achieve site cleanup and closure. Program execution is ongoing, but completion is currently expected to take approximately 40 more years. Strategic planning for the treatment of Hanford tank waste is by nature a multi-faceted, complex and iterative process. To help manage the planning, a report referred to as the RPP System Plan is prepared to provide a basis for aligning the program scope with the cost and schedule, from upper-tier contracts to individual facility operating plans. The Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulation and mass balance computer model, is used to simulate the current planned RPP mission, evaluate the impacts of changes to the mission, and assist in planning near-term facility operations. Development of additional modeling tools, including an operations research model and a cost model, will further improve long-term planning confidence. The most recent RPP System Plan, Revision 4, was published in September 2009.

  9. Modelling and simulating the transitory regimes in NPP using the MMS package programs

    International Nuclear Information System (INIS)

    Prisecaru, I.; Dupleac, Daniel; Constantinescu, Adrian Cornel

    2003-01-01

    This paper introduces a brief presentation of the preoccupation of modelling and simulating group at the Nuclear Power Plant Department of the Faculty of Power Plant Engineering in 'Politehnica' University of Bucharest in using the Modular Modeling System, MMS, package programs for the simulation of NPP transitory regimes. Nuclear power plants are large, non-linear systems with numerous interactions between its components. In the analysis of such complex systems, dynamic simulation is recognized as a powerful method of keeping track of the myriad of interactions. The MMS is a simulation tool that has built in models for plant components using a modular approach to dynamic simulation. The MMS software modules were developed to correspond to plant components that are familiar to power plant engineers. The interface specifications of the modules were defined so that the modules can be interconnected analogously to components in the actual plant. For some components, several modules of differing complexity are available. These alternative modules allow the user to choose the module appropriate to his application, i.e. a detailed model or a more economical model with less detail. The modular nature of the MMS allows the user to tailor the goal of his simulation to the complexity of the application and allows the user to develop independent subsystems that can be integrated into a larger simulation. The MMS module library contains modules for components for fossil and nuclear power plants. Each module is a mathematical model of a type of plant component formulated from first principles. The MMS uses a simulation language that provides features to simplify the development of simulations. Features important to the development of the MMS are the macro capability, automatic sorting of modeling equations, and integration algorithms. The macro capability is used to express the modeling equations for an MMS module. Since modules may be used more than once in the same simulation

  10. Overview of simulation applications in safeguards systems

    International Nuclear Information System (INIS)

    Dugan, V.L.

    1976-01-01

    The objective of society relative to the utilization of the nuclear fuel cycle is to maximize the benefits of the high quality energy which is available and to minimize the total ''costs'' associated with acquiring these benefits. The comparison of the resulting ''benefits'' to the ''costs'' must be sufficiently attractive for society to accept nuclear energy. In this paper a representation of the structure determined by the ''costs'' (economic, socio-political, institutional, environmental, and legal) associated with adversary action against the nuclear industry and with the measures implemented to deter, prevent, or recover from adversary actions (safeguards) is used to illustrate a broad view of a dynamic safeguards system. This system representation is then used to describe the subsystem areas to which simulation techniques are currently being applied and to suggest other areas in which various simulation applications may benefit the safeguards decision process

  11. Multiscale simulation approach for battery production systems

    CERN Document Server

    Schönemann, Malte

    2017-01-01

    Addressing the challenge of improving battery quality while reducing high costs and environmental impacts of the production, this book presents a multiscale simulation approach for battery production systems along with a software environment and an application procedure. Battery systems are among the most important technologies of the 21st century since they are enablers for the market success of electric vehicles and stationary energy storage solutions. However, the performance of batteries so far has limited possible applications. Addressing this challenge requires an interdisciplinary understanding of dynamic cause-effect relationships between processes, equipment, materials, and environmental conditions. The approach in this book supports the integrated evaluation of improvement measures and is usable for different planning horizons. It is applied to an exemplary battery cell production and module assembly in order to demonstrate the effectiveness and potential benefits of the simulation.

  12. Simulations

    CERN Document Server

    Ngada, Narcisse

    2015-06-15

    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  13. Control system software, simulation, and robotic applications

    Science.gov (United States)

    Frisch, Harold P.

    1991-01-01

    All essential existing capabilities needed to create a man-machine interaction dynamics and performance (MMIDAP) capability are reviewed. The multibody system dynamics software program Order N DISCOS will be used for machine and musculo-skeletal dynamics modeling. The program JACK will be used for estimating and animating whole body human response to given loading situations and motion constraints. The basic elements of performance (BEP) task decomposition methodologies associated with the Human Performance Institute database will be used for performance assessment. Techniques for resolving the statically indeterminant muscular load sharing problem will be used for a detailed understanding of potential musculotendon or ligamentous fatigue, pain, discomfort, and trauma. The envisioned capacity is to be used for mechanical system design, human performance assessment, extrapolation of man/machine interaction test data, biomedical engineering, and soft prototyping within a concurrent engineering (CE) system.

  14. JACOS: AI-based simulation system for man-machine system behavior in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuo; Yokobayashi, Masao; Tanabe, Fumiya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kawase, Katsumi [CSK Corp., Tokyo (Japan); Komiya, Akitoshi [Computer Associated Laboratory, Inc., Hitachinaka, Ibaraki (Japan)

    2001-08-01

    A prototype of a computer simulation system named JACOS (JAERI COgnitive Simulation system) has been developed at JAERI (Japan Atomic Energy Research Institute) to simulate the man-machine system behavior in which both the cognitive behavior of a human operator and the plant behavior affect each other. The objectives of this system development is to provide man-machine system analysts with detailed information on the cognitive process of an operator and the plant behavior affected by operator's actions in accidental situations of a nuclear power plant. The simulation system consists of an operator model and a plant model which are coupled dynamically. The operator model simulates an operator's cognitive behavior in accidental situations based on the decision ladder model of Rasmussen, and is implemented using the AI-techniques of the distributed cooperative inference method with the so-called blackboard architecture. Rule-based behavior is simulated using knowledge representation with If-Then type of rules. Knowledge-based behavior is simulated using knowledge representation with MFM (Multilevel Flow Modeling) and qualitative reasoning method. Cognitive characteristics of attentional narrowing, limitation of short-term memory, and knowledge recalling from long-term memory are also taken into account. The plant model of a 3-loop PWR is also developed using a best estimate thermal-hydraulic analysis code RELAP5/MOD2. This report is prepared as User's Manual for JACOS. The first chapter of this report describes both operator and plant models in detail. The second chapter includes instructive descriptions for program installation, building of a knowledge base for operator model, execution of simulation and analysis of simulation results. The examples of simulation with JACOS are shown in the third chapter. (author)

  15. JACOS: AI-based simulation system for man-machine system behavior in NPP

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Yokobayashi, Masao; Tanabe, Fumiya; Komiya, Akitoshi

    2001-08-01

    A prototype of a computer simulation system named JACOS (JAERI COgnitive Simulation system) has been developed at JAERI (Japan Atomic Energy Research Institute) to simulate the man-machine system behavior in which both the cognitive behavior of a human operator and the plant behavior affect each other. The objectives of this system development is to provide man-machine system analysts with detailed information on the cognitive process of an operator and the plant behavior affected by operator's actions in accidental situations of a nuclear power plant. The simulation system consists of an operator model and a plant model which are coupled dynamically. The operator model simulates an operator's cognitive behavior in accidental situations based on the decision ladder model of Rasmussen, and is implemented using the AI-techniques of the distributed cooperative inference method with the so-called blackboard architecture. Rule-based behavior is simulated using knowledge representation with If-Then type of rules. Knowledge-based behavior is simulated using knowledge representation with MFM (Multilevel Flow Modeling) and qualitative reasoning method. Cognitive characteristics of attentional narrowing, limitation of short-term memory, and knowledge recalling from long-term memory are also taken into account. The plant model of a 3-loop PWR is also developed using a best estimate thermal-hydraulic analysis code RELAP5/MOD2. This report is prepared as User's Manual for JACOS. The first chapter of this report describes both operator and plant models in detail. The second chapter includes instructive descriptions for program installation, building of a knowledge base for operator model, execution of simulation and analysis of simulation results. The examples of simulation with JACOS are shown in the third chapter. (author)

  16. Simulation-based disassembly systems design

    Science.gov (United States)

    Ohlendorf, Martin; Herrmann, Christoph; Hesselbach, Juergen

    2004-02-01

    Recycling of Waste of Electrical and Electronic Equipment (WEEE) is a matter of actual concern, driven by economic, ecological and legislative reasons. Here, disassembly as the first step of the treatment process plays a key role. To achieve sustainable progress in WEEE disassembly, the key is not to limit analysis and planning to merely disassembly processes in a narrow sense, but to consider entire disassembly plants including additional aspects such as internal logistics, storage, sorting etc. as well. In this regard, the paper presents ways of designing, dimensioning, structuring and modeling different disassembly systems. Goal is to achieve efficient and economic disassembly systems that allow recycling processes complying with legal requirements. Moreover, advantages of applying simulation software tools that are widespread and successfully utilized in conventional industry sectors are addressed. They support systematic disassembly planning by means of simulation experiments including consecutive efficiency evaluation. Consequently, anticipatory recycling planning considering various scenarios is enabled and decisions about which types of disassembly systems evidence appropriateness for specific circumstances such as product spectrum, throughput, disassembly depth etc. is supported. Furthermore, integration of simulation based disassembly planning in a holistic concept with configuration of interfaces and data utilization including cost aspects is described.

  17. A research-oriented treatment planning program system

    International Nuclear Information System (INIS)

    Kalet, I.J.; Jacky, J.P.

    1982-01-01

    The function of a treatment planning program is to graphically simulate radiation dose distributions from proposed radiation therapy treatments. While many such programs are available which provide this much-needed service, none addresses the question of how to intercompare calculation and display techniques. This paper describes a program system designed for support of research efforts, particularly development and testing of new calculation algorithms. The system emphasizes a modular flexible structure, enabling programs to be developed somewhat as interchangeable parts. Thus multiple variants of a calculation algorithm can be compared without undue software overhead or additional data management. Unusual features of the system include extensive use of command procedures, logical names and a structured language (PASCAL). These features are described along with other implementation details. Obstacles, limitations and future applications are also discussed. (Auth.)

  18. PEP-II RF feedback system simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tighe, R [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    A model containing the fundamental impedance of the PEP-II cavity along with the longitudinal beam dynamics and RF feedback system components is in use. It is prepared in a format allowing time-domain as well as frequency-domain analysis and full graphics capability. Matlab and Simulink are control system design and analysis programs (widely available) with many built-in tools. The model allows the use of compiled C-code modules for compute intensive portions. We desire to represent as nearly as possible the components of the feedback system including all delays, sample rates and applicable nonlinearities. (author)

  19. CREDIT SYSTEM AND CREDIT GUARANTEE PROGRAMS

    OpenAIRE

    Turgay GECER

    2012-01-01

    Credit system is an integrated architecture consisted of financial information, credit rating, credit risk management, receivables and credit insurance systems, credit derivative markets and credit guarantee programs. The main purpose of the credit system is to provide the functioning of all credit channels and to make it easy to access of credit sources demanded by all of real and legal persons in any economic system. Credit guarantee program, the one of prominent elements of the credit syst...

  20. Design and simulation of a totally digital image system for medical image applications

    International Nuclear Information System (INIS)

    Archwamety, C.

    1987-01-01

    The Totally Digital Imaging System (TDIS) is based on system requirements information from the Radiology Department, University of Arizona Health Science Center. This dissertation presents the design of this complex system, the TDIS specification, the system performance requirements, and the evaluation of the system using the computer-simulation programs. Discrete-event simulation models were developed for the TDIS subsystems, including an image network, imaging equipment, storage migration algorithm, data base archive system, and a control and management network. The simulation system uses empirical data generation and retrieval rates measured at the University Medical Center hospital. The entire TDIS system was simulated in Simscript II.5 using a VAX 8600 computer system. Simulation results show the fiber-optical-image network to be suitable; however, the optical-disk-storage system represents a performance bottleneck

  1. 77 FR 70409 - System Safety Program

    Science.gov (United States)

    2012-11-26

    ...-0060, Notice No. 2] 2130-AC31 System Safety Program AGENCY: Federal Railroad Administration (FRA... rulemaking (NPRM) published on September 7, 2012, FRA proposed regulations to require commuter and intercity passenger railroads to develop and implement a system safety program (SSP) to improve the safety of their...

  2. Virtual Environment Computer Simulations to Support Human Factors Engineering and Operations Analysis for the RLV Program

    Science.gov (United States)

    Lunsford, Myrtis Leigh

    1998-01-01

    The Army-NASA Virtual Innovations Laboratory (ANVIL) was recently created to provide virtual reality tools for performing Human Engineering and operations analysis for both NASA and the Army. The author's summer research project consisted of developing and refining these tools for NASA's Reusable Launch Vehicle (RLV) program. Several general simulations were developed for use by the ANVIL for the evaluation of the X34 Engine Changeout procedure. These simulations were developed with the software tool dVISE 4.0.0 produced by Division Inc. All software was run on an SGI Indigo2 High Impact. This paper describes the simulations, various problems encountered with the simulations, other summer activities, and possible work for the future. We first begin with a brief description of virtual reality systems.

  3. Simulation and Analysis of Chain Drive Systems

    DEFF Research Database (Denmark)

    Pedersen, Sine Leergaard

    mathematical models, and compare to the prior done research. Even though the model is developed at first for the use of analysing chain drive systems in marine engines, the methods can with small changes be used in general, as for e.g. chain drives in industrial machines, car engines and motorbikes. A novel...... with a real tooth profile proves superior to other applied models. With this model it is possible to perform a dynamic simulation of large marine engine chain drives. Through the application of this method, it is shown that the interrelated dynamics of the elements in the chain drive system is captured...

  4. Modelling and simulation of railway cable systems

    Energy Technology Data Exchange (ETDEWEB)

    Teichelmann, G.; Schaub, M.; Simeon, B. [Technische Univ. Muenchen, Garching (Germany). Zentrum Mathematik M2

    2005-12-15

    Mathematical models and numerical methods for the computation of both static equilibria and dynamic oscillations of railroad catenaries are derived and analyzed. These cable systems form a complex network of string and beam elements and lead to coupled partial differential equations in space and time where constraints and corresponding Lagrange multipliers express the interaction between carrier, contact wire, and pantograph head. For computing static equilibria, three different algorithms are presented and compared, while the dynamic case is treated by a finite element method in space, combined with stabilized time integration of the resulting differential algebraic system. Simulation examples based on reference data from industry illustrate the potential of such computational tools. (orig.)

  5. Simulation for transient stability study of the Taiwan power system - a nuclear majority system

    International Nuclear Information System (INIS)

    Huang, J.C.C.

    1984-01-01

    A transient stability program was developed for the Taiwan Power Company, which has a high proportion of nuclear generation in its power system. This program offers a new territory to investigate nuclear plant effects on the power system transient stability. This program also provides a high speed tool for the Taipower system operational planning. A generalized procedure of synchronous machine modeling for a large-scale stability study is presented. The merits and weaknesses of machine modeling can be comprehended through each item of this procedure. Three types of nonlinear synchronous machine modeling implemented into this stability program are derived by following this procedure. A robust subroutine was derived to perform the fourth order Runge-Kutta integration method, making the software programming neat and systematical. For simulating the nuclear plant influence on the system, this program implemented an additional four functions: load-limit operation simulated by a low-value gate in the governor model, bypass valve capacity monitored by sending out a warning message, rotor overspeed protection relay, and generator anti-motoring relay

  6. Evaluation of Rankine cycle air conditioning system hardware by computer simulation

    Science.gov (United States)

    Healey, H. M.; Clark, D.

    1978-01-01

    A computer program for simulating the performance of a variety of solar powered Rankine cycle air conditioning system components (RCACS) has been developed. The computer program models actual equipment by developing performance maps from manufacturers data and is capable of simulating off-design operation of the RCACS components. The program designed to be a subroutine of the Marshall Space Flight Center (MSFC) Solar Energy System Analysis Computer Program 'SOLRAD', is a complete package suitable for use by an occasional computer user in developing performance maps of heating, ventilation and air conditioning components.

  7. Nuclear fuel cycle simulation system (VISTA)

    International Nuclear Information System (INIS)

    2007-02-01

    The Nuclear Fuel Cycle Simulation System (VISTA) is a simulation system which estimates long term nuclear fuel cycle material and service requirements as well as the material arising from the operation of nuclear fuel cycle facilities and nuclear power reactors. The VISTA model needs isotopic composition of spent nuclear fuel in order to make estimations of the material arisings from the nuclear reactor operation. For this purpose, in accordance with the requirements of the VISTA code, a new module called Calculating Actinide Inventory (CAIN) was developed. CAIN is a simple fuel depletion model which requires a small number of input parameters and gives results in a very short time. VISTA has been used internally by the IAEA for the estimation of: spent fuel discharge from the reactors worldwide, Pu accumulation in the discharged spent fuel, minor actinides (MA) accumulation in the spent fuel, and in the high level waste (HLW) since its development. The IAEA decided to disseminate the VISTA tool to Member States using internet capabilities in 2003. The improvement and expansion of the simulation code and the development of the internet version was started in 2004. A website was developed to introduce the simulation system to the visitors providing a simple nuclear material flow calculation tool. This website has been made available to Member States in 2005. The development work for the full internet version is expected to be fully available to the interested parties from IAEA Member States in 2007 on its website. This publication is the accompanying text which gives details of the modelling and an example scenario

  8. Vacuum system transient simulator and its application to TFTR

    International Nuclear Information System (INIS)

    Sredniawski, J.

    1978-01-01

    The vacuum system transient simulator (VSTS) models transient gas transport throughout complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. VSTS is capable of treating gas models of up to 10 species, for all flow regimes from pure molecular to continuum. Viscous interactions between species are considered as well as non-uniform temperature of a system. Although this program was specifically developed for use on the Tokamak Fusion Test Reactor (TFTR) project at Princeton, it is a generalized tool capable of handling a broad range of vacuum system problems. During the TFTR engineering design phase, VSTS has been used in many applications. Two applications selected for presentation are: (1) torus vacuum pumping system performance between 400 Ci tritium pulses and (2) tritium backstreaming to neutral beams during pulses

  9. Vacuum system transient simulator and its application to TFTR

    International Nuclear Information System (INIS)

    Sredniawski, J.

    1977-01-01

    The vacuum system transient simulator (VSTS) models transient gas transport throughout complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. VSTS is capable of treating gas models of up to 10 species, for all flow regimes from pure molecular to continuum. Viscous interactions between species are considered as well as non-uniform temperature of a system. Although this program was specifically developed for use on the Tokamak Fusion Test Reactor (TFTR) project at Princeton, it is a generalized tool capable of handling a broad range of vacuum system problems. During the TFTR engineering design phase, VSTS has been used in many applications. Two applications selected for presentation are: torus vacuum pumping system performance between 400 Ci tritium pulses and tritium backstreaming to neutral beams during pulses

  10. Communication Systems Simulation Laboratory (CSSL): Simulation Planning Guide

    Science.gov (United States)

    Schlesinger, Adam

    2012-01-01

    The simulation process, milestones and inputs are unknowns to first-time users of the CSSL. The Simulation Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.

  11. Overview of Advanced Turbine Systems Program

    Science.gov (United States)

    Webb, H. A.; Bajura, R. A.

    The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems (ATS) Program will lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: highly efficient (15 percent improvement over today's best systems); environmentally superior (10 percent reduction in nitrogen oxides over today's best systems); and cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements. Innovative cycle development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High temperature development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic component development/demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology base will support the overall program by conducting research and development (R&D) on generic technology issues. Coal application studies will adapt technology developed in the ATS program to coal-fired systems being developed in other DOE programs.

  12. Computational simulation of concurrent engineering for aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  13. Computational simulation for concurrent engineering of aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  14. Programming languages and operating systems used in data base systems

    International Nuclear Information System (INIS)

    Radulescu, T.G.

    1977-06-01

    Some apsects of the use of the programming languages and operating systems in the data base systems are presented. There are four chapters in this paper. In the first chapter we present some generalities about the programming languages. In the second one we describe the use of the programming languages in the data base systems. A classification of the programming languages used in data base systems is presented in the third one. An overview of the operating systems is made in the last chapter. (author)

  15. The Air Program Information Management System (APIMS)

    Science.gov (United States)

    2011-11-02

    Technology November 2, 2011 The Air Program Information Management System (APIMS) Frank Castaneda, III, P.E. APIMS Program Manager AFCEE/TDNQ APIMS...NOV 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE The Air Program Information Management System (APIMS... Information   Management   System : Sustainability of  Enterprise air quality management system • Aspects and Impacts to Process • Auditing and Measurement

  16. The program LISE: a simulation of fragment separators

    International Nuclear Information System (INIS)

    Bazin, D.; Tarasov, O.; Lewitowicz, M.; Sorlin, O.

    2001-01-01

    The program LISE, which simulates the operation of fragment separators, used in the production of radioactive beams via fragmentation is described. Various aspects of the physical phenomenon involved in the production of such radioactive beams are discussed. They include fragmentation cross sections, energy losses in materials, ionic charge state distributions, as well as ion optics calculations and acceptance effects. Among the goals of this program is a highly user-friendly environment, designed not only to forecast intensities and purities for future experiments, but also as a tuning tool during experiments where its results can be quickly compared to on-line data. In addition, several general purpose tools such as a physical parameters calculator, a database of nuclei properties, and relativistic two-body kinematics calculations make it also attractive in experiments where radioactive beams are not involved. After a general description of fragment separators, the principles underlying the calculations are presented, followed by a practical description of the program and its many features. Finally, a few examples of calculations are compared to on-line data, both qualitatively and quantitatively

  17. Numerical simulation system for environmental studies: SPEEDI-MP

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Chino, Masamichi; Terada, Hiroaki; Harayama, Takaya; Kobayashi, Takuya; Tsuduki, Katsunori; Kim, Keyong-Ok; Furuno, Akiko

    2006-09-01

    A numerical simulation system SPEEDI-MP has been developed to apply for various environmental studies. SPEEDI-MP consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, meteorological and geographical database for model inputs, and system utilities for file management, visualization, analysis, etc., using graphical user interfaces (GUIs). As a numerical simulation tool, a model coupling program (model coupler) has been developed. It controls parallel calculations of several models and data exchanges among them to realize the dynamical coupling of the models. A coupled model system for water circulation has been constructed with atmosphere, ocean, wave, hydrology, and land-surface models using the model coupler. System utility GUIs are based on the Web technology, allowing users to manipulate all the functions on the system using their own PCs via the internet. In this system, the source estimation function in the atmospheric transport model can be executed on the grid computer system. Performance tests of the coupled model system for water circulation were also carried out for the flood event at Saudi Arabia in January 2005 and the storm surge case by the hurricane KATRINA in August 2005. (author)

  18. Simulation of electric vehicles with hybrid power systems

    Science.gov (United States)

    Burke, A. F.; Cole, G. H.

    Computer programs for the simulation of the operation of electric vehicles with hybrid power systems are described. These programs treat cases in which high energy density ultracapacitors or high power density pulse batteries are used to load level the main energy storage battery in the vehicle. A generalized control strategy for splitting the power between the main battery and the pulse power devices is implemented such that the user can specify the nominal battery power as a function of the state-of-charge of the ultracapacitor or pulse power battery. The programs display graphically on the screen, as they run, the power from both the main battery and the pulse power device and the state-of-charge of the pulse power device. After each run is completed, a summary is printed out from which the effect of load leveling the battery on vehicle range and energy consumption can be determined. Default input files are provided with the programs so various combinations of vehicles, driveline components, and batteries of special current interest to the EV community can be run with either type of pulse power device. Typical simulation results are shown including cases in which the pulse power devices are connected in parallel with the main battery without interface electronics.

  19. Physical habitat simulation system reference manual: version II

    Science.gov (United States)

    Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.

    1989-01-01

    stream system basis. Such analysis is outside the scope of this manual, which concentrates on simulation of physical habitat based on depth, velocity, and a channel index. The results form PHABSIM can be used alone or by using a series of habitat time series programs that have been developed to generate monthly or daily habitat time series from the Weighted Usable Area versus streamflow table resulting from the habitat simulation programs and streamflow time series data. Monthly and daily streamflow time series may be obtained from USGS gages near the study site or as the output of river system management models.

  20. Participatory ergonomics simulation of hospital work systems: The influence of simulation media on simulation outcome.

    Science.gov (United States)

    Andersen, Simone Nyholm; Broberg, Ole

    2015-11-01

    Current application of work system simulation in participatory ergonomics (PE) design includes a variety of different simulation media. However, the actual influence of the media attributes on the simulation outcome has received less attention. This study investigates two simulation media: full-scale mock-ups and table-top models. The aim is to compare, how the media attributes of fidelity and affordance influence the ergonomics identification and evaluation in PE design of hospital work systems. The results illustrate, how the full-scale mock-ups' high fidelity of room layout and affordance of tool operation support ergonomics identification and evaluation related to the work system entities space and technologies & tools. The table-top models' high fidelity of function relations and affordance of a helicopter view support ergonomics identification and evaluation related to the entity organization. Furthermore, the study addresses the form of the identified and evaluated conditions, being either identified challenges or tangible design criteria. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. Particle simulation in curvilinear coordinate systems

    International Nuclear Information System (INIS)

    LeBrun, M.J.; Tajima, T.

    1989-01-01

    We present methods for particle simulation of plasmas in a nearly arbitrary coordinate metric and describe a toroidal electrostatic simulation code that evolved from this effort. A Mercier-type coordinate system is used, with a nonuniform radial grid for improved cross-field resolution. A fast iterative method for solving the Poisson equation is employed, and the interpolation/filtering technique shown to be momentum and energy conserving in the continuum limit. Lorentz ion and drift electron species are used. The code has been thoroughly tested for its reproduction of linear and nonlinear physics, and has been applied to the toroidal drift wave problem and its impact on anomalous transport in tokamaks. 40 refs., 10 figs., 1 tab

  2. Molecular Simulation of Reacting Systems; TOPICAL

    International Nuclear Information System (INIS)

    THOMPSON, AIDAN P.

    2002-01-01

    The final report for a Laboratory Directed Research and Development project entitled, Molecular Simulation of Reacting Systems is presented. It describes efforts to incorporate chemical reaction events into the LAMMPS massively parallel molecular dynamics code. This was accomplished using a scheme in which several classes of reactions are allowed to occur in a probabilistic fashion at specified times during the MD simulation. Three classes of reaction were implemented: addition, chain transfer and scission. A fully parallel implementation was achieved using a checkerboarding scheme, which avoids conflicts due to reactions occurring on neighboring processors. The observed chemical evolution is independent of the number of processors used. The code was applied to two test applications: irreversible linear polymerization and thermal degradation chemistry

  3. Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems

    Science.gov (United States)

    Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok

    2011-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.

  4. A Simulation Software for the Analysis of Cropping Systems in Livestock Farms

    Directory of Open Access Journals (Sweden)

    Tommaso Maggiore

    2011-02-01

    Full Text Available Simulation models can support quantitative and integrated analyses of agricultural systems. In this paper we describe VA.TE., a computer program developed to support the preparation and evaluation of nitrogen fertilising plans for livestock farms in the Lombardy region (northern Italy. The program integrates the cropping systems simulation model CropSyst with several regional agricultural databases, and provides the users with a simple framework for applying the model and interpreting results. VA.TE. makes good use of available data, integrating into a single relational database existing information about soils, climate, farms, animal breeds, crops and crop managements, and providing estimates of missing input variables. A simulation engine manages the entire simulation process: choice of farms to be simulated, model parameterisation, creation of model inputs, simulation of scenarios and analysis of model outputs. The program permits to apply at farm scale a model originally designed for the lower scale of homogeneous land parcel. It manages alternative simulation scenarios for each farm, helping to identify solutions to combine low nitrate losses and satisfactory crop yields. Example simulation results for three farms located on different soils and having varying levels of nitrogen surplus show that the integrated system (model + database can manage various simulations automatically, and that strategies to improve N management can be refined by analysing the simulated amounts and temporal patterns of nitrogen leaching.We conclude by discussing the issues regarding the integration of existing regional databases with simulation models.

  5. A Simulation Software for the Analysis of Cropping Systems in Livestock Farms

    Directory of Open Access Journals (Sweden)

    Luca Bechini

    2008-09-01

    Full Text Available Simulation models can support quantitative and integrated analyses of agricultural systems. In this paper we describe VA.TE., a computer program developed to support the preparation and evaluation of nitrogen fertilising plans for livestock farms in the Lombardy region (northern Italy. The program integrates the cropping systems simulation model CropSyst with several regional agricultural databases, and provides the users with a simple framework for applying the model and interpreting results. VA.TE. makes good use of available data, integrating into a single relational database existing information about soils, climate, farms, animal breeds, crops and crop managements, and providing estimates of missing input variables. A simulation engine manages the entire simulation process: choice of farms to be simulated, model parameterisation, creation of model inputs, simulation of scenarios and analysis of model outputs. The program permits to apply at farm scale a model originally designed for the lower scale of homogeneous land parcel. It manages alternative simulation scenarios for each farm, helping to identify solutions to combine low nitrate losses and satisfactory crop yields. Example simulation results for three farms located on different soils and having varying levels of nitrogen surplus show that the integrated system (model + database can manage various simulations automatically, and that strategies to improve N management can be refined by analysing the simulated amounts and temporal patterns of nitrogen leaching.We conclude by discussing the issues regarding the integration of existing regional databases with simulation models.

  6. MONTEC, an interactive fortran program to simulate radiation dose and dose-rate responses of populations

    International Nuclear Information System (INIS)

    Perry, K.A.; Szekely, J.G.

    1983-09-01

    The computer program MONTEC was written to simulate the distribution of responses in a population whose members are exposed to multiple radiation doses at variable dose rates. These doses and dose rates are randomly selected from lognormal distributions. The individual radiation responses are calculated from three equations, which include dose and dose-rate terms. Other response-dose/rate relationships or distributions can be incorporated by the user as the need arises. The purpose of this documentation is to provide a complete operating manual for the program. This version is written in FORTRAN-10 for the DEC system PDP-10

  7. GITTAM program for numerical simulation of one-dimensional targets TIS. Part 3

    International Nuclear Information System (INIS)

    Basko, M.M.; Sokolovskij, M.V.

    1989-01-01

    Results of testing calculations according to GITTAM program, developed for numeric simulation of one-dimensional thermonuclear targets of heavy-ion synthesis are presented. Finite-difference method for solving a system of one-dimensional hydrodynamics equations with heat conductivity, radiation diffusion and thermonuclear combustion is used in the GITTAM program. In the tests presented, based on simple automodel solutions, adiabatic motion as well as distribution of shock, thermal and radial waves in gas with simple polytron state equation is investigated. 3 refs.; 6 figs

  8. Expansive development of a decommissioning program 'recycle simulator' in nuclear power station

    International Nuclear Information System (INIS)

    Nishiuchi, T.; Ozaki, S.; Hironaga, M.

    2004-01-01

    A decommissioning program 'Recycle Simulator' should be put into practice in careful consideration of both recycle of non-radioactive wastes and reduce of radioactive wastes in the coming circulatory social system. Nevertheless current support systems for decommissioning planning mainly deal with decontamination, safety storage and dismantlement, so-called the prior part of the total decommissioning process. Authors emphasize the necessity of total planning of decommissioning including recycle or reuse of a large amount of demolition materials and are propelling the development of the multi expert system named 'Recycle Simulator'. This paper presents an algorithm of the recycling and reusing scenario of demolition materials and a summarized configuration. 'Recycle Simulator' for the demolished concrete was developed in 2000 and presented at a previous International Conference on Nuclear Engineering. Construction of a supporting multi expert system for the totally planning of decommissioning projects is objected by expansive development of the previous version. 3 main conclusions obtained from this paper are the following. (1) The previously developed expert system was advanced in its estimation function toward the satisfaction of decommissioning planners. (2) The applicability of the system was enlarged to all the radioactive and non-radioactive wastes, demolished metal and concrete products, in a corresponding site of decommissioning. (3) Finally decommissioning recycle simulator was completed in a harmonized unification. (authors)

  9. Programming models for energy-aware systems

    Science.gov (United States)

    Zhu, Haitao

    Energy efficiency is an important goal of modern computing, with direct impact on system operational cost, reliability, usability and environmental sustainability. This dissertation describes the design and implementation of two innovative programming languages for constructing energy-aware systems. First, it introduces ET, a strongly typed programming language to promote and facilitate energy-aware programming, with a novel type system design called Energy Types. Energy Types is built upon a key insight into today's energy-efficient systems and applications: despite the popular perception that energy and power can only be described in joules and watts, real-world energy management is often based on discrete phases and modes, which in turn can be reasoned about by type systems very effectively. A phase characterizes a distinct pattern of program workload, and a mode represents an energy state the program is expected to execute in. Energy Types is designed to reason about energy phases and energy modes, bringing programmers into the optimization of energy management. Second, the dissertation develops Eco, an energy-aware programming language centering around sustainability. A sustainable program built from Eco is able to adaptively adjusts its own behaviors to stay on a given energy budget, avoiding both deficit that would lead to battery drain or CPU overheating, and surplus that could have been used to improve the quality of the program output. Sustainability is viewed as a form of supply and demand matching, and a sustainable program consistently maintains the equilibrium between supply and demand. ET is implemented as a prototyped compiler for smartphone programming on Android, and Eco is implemented as a minimal extension to Java. Programming practices and benchmarking experiments in these two new languages showed that ET can lead to significant energy savings for Android Apps and Eco can efficiently promote battery awareness and temperature awareness in real

  10. The development of WIPPVENT, a windows based interactive mine ventilation simulation software program at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    McDaniel, K.H.

    1995-01-01

    An interactive mine ventilation simulation software program (WIPPVENT) was developed at the Waste Isolation Pilot Plant (WIPP). The WIPP is a US Department of Energy (DOE) research and development project located near Carlsbad, New Mexico. The facility is designed to provide a permanent, safe underground disposal of US defense generated transuranic waste in bedded salt. In addition to it's regular functions, the underground ventilation system is engineered to prevent the uncontrolled spread of radioactive materials in the unlikely event of a release. To enhance the operability system, Westinghouse Electric Corporation has developed an interactive mine ventilation simulation software program (WIPPVENT). While WIPPVENT includes most of the functions of the commercially available simulation program VNETPC (copyright 1991 Mine Ventilation Services, Inc.), the user interface has been completely rewritten as a Windows reg-sign application and screen graphics have been added. WIPPVENT is designed to interact with the WIPP ventilation monitoring systems through the site wide Central Monitoring System

  11. LOGIC SIMULATION OF LIFE SUPPORT SYSTEM COMPONENT IN REAL TIME

    Directory of Open Access Journals (Sweden)

    A. S. Marchenko

    2016-01-01

    Full Text Available Abstract. The article proposed the use of simulation methods for evaluating the effectiveness of a stepped fan engine speed control while maintaining the air flow volume in the set boundaries of the «fan-filter» system. A detailed algorithm of the program made on the basis of an Any Logic software package. Is analyzed the possibility of using the proposed method in the design of ventilation systems.The proposed method allows at the design stage to determine the maximum replacement intervals of the systems filter elements, as well as to predict the time to switch the fan motor speeds. Using of the technique allows to refuse the complex air flow systems and maximize the life of the filter elements set.Methods of logical processes modeling allows to reduce construction costs and improve energy efficiency of buildings. 

  12. Two programs two differing systems

    International Nuclear Information System (INIS)

    Beard, J.; Ireland, L.; Robb, B.; Brown, P.

    1999-01-01

    This paper is the result of the first evaluation of the Donor Tissue Bank of Victoria's (DTBV) approaches to families to offer the option of tissue donation. The DTBV has pioneered a new and developing community health service resulting in the provision of 2,318 allografts to surgeons throughout Australia from January 1994 to December 1997. Based within the Coronial Services Centre, the DTBV experience is with families associated with reportable deaths. The location of the program within a Coronial Centre is a significant feature and leads to a range of unique practice differences compared to a hospital donation/transplantation program. However there is a paucity of literature about tissue donation from cadaveric donor apart from what is known about organ donation, with most studies treating tissue and organ donation as the same. Thus ensuring differences between tissue donation and organ donation have not been articulated and to some extent have not been realised. The DTBV is the only tissue bank in Australia, which has been set up as part of Coronial Services. The DTBV was established in 1989 to provide a central facility for the acquisition, processing, storage and distribution of tissue for transplantation. Making a donation to a tissue bank does not have the same sense of immediacy as organ donation to a recipient. Tissue donation is not necessarily life-saving, but is it always life-enhancing. Whilst there are overlaps between hospital based programs and the DTBV program, significant differences exist. In this developing and unique area of practice, the role and functions of the transplant coordinators demands skills across two differing paradigms, the physical/biological sciences and the social sciences. The demands of meeting the requirements of both paradigms as central to many of the challenges and tensions in the Transplant Coordinator's work. The primary purpose of the evaluation was to describe, analyse and theorise the practice of the transplant

  13. Calculational limitations in PWR system simulation

    International Nuclear Information System (INIS)

    Abramson, P.B.; Kennedy, M.F.; Speis, T.P.

    1982-01-01

    Engineering transient analysis codes, which are in general more accurate than the present generation of simulator software, can be expected to yield reasonably accurate results (+-20% or so on system pressure) if carefully utilized and if the two-phase and transient flow conditions are not severe. As the severity of the transient increases, the confidence that one may have in the results decreases. None of the existing engineering analysis codes is well assessed or verified for transient analysis, but all give qualitatively the same results lending credence to their results. Recent comparisons to transients in LOFT and SEMISCALE are encouraging as are various comparisons to actual plant data

  14. Environmental Restoration Program Control Management System

    International Nuclear Information System (INIS)

    Duke, R.T.

    1992-01-01

    Environmental Restoration managers need to demonstrate that their programs are under control. Unlike most industrial programs, the public is heavily involved in Environmental Restoration activities. The public is demanding that the country prove that real progress is being made towards cleaning up the environment. A Program Control Management System can fill this need. It provides a structure for planning, work authorization, data accumulation, data analysis and change control. But it takes time to implement a control system and the public is losing its patience. This paper describes critical items essential to the quick development and implementation of a successful control system

  15. TITAN: a computer program for accident occurrence frequency analyses by component Monte Carlo simulation

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Tamaki, Hitoshi; Kanai, Shigeru

    2000-04-01

    In a plant system consisting of complex equipments and components for a reprocessing facility, there might be grace time between an initiating event and a resultant serious accident, allowing operating personnel to take remedial actions, thus, terminating the ongoing accident sequence. A component Monte Carlo simulation computer program TITAN has been developed to analyze such a complex reliability model including the grace time without any difficulty to obtain an accident occurrence frequency. Firstly, basic methods for the component Monte Carlo simulation is introduced to obtain an accident occurrence frequency, and then, the basic performance such as precision, convergence, and parallelization of calculation, is shown through calculation of a prototype accident sequence model. As an example to illustrate applicability to a real scale plant model, a red oil explosion in a German reprocessing plant model is simulated to show that TITAN can give an accident occurrence frequency with relatively good accuracy. Moreover, results of uncertainty analyses by TITAN are rendered to show another performance, and a proposal is made for introducing of a new input-data format to adapt the component Monte Carlo simulation. The present paper describes the calculational method, performance, applicability to a real scale, and new proposal for the TITAN code. In the Appendixes, a conventional analytical method is shown to avoid complex and laborious calculation to obtain a strict solution of accident occurrence frequency, compared with Monte Carlo method. The user's manual and the list/structure of program are also contained in the Appendixes to facilitate TITAN computer program usage. (author)

  16. On program restructuring, scheduling, and communication for parallel processor systems

    Energy Technology Data Exchange (ETDEWEB)

    Polychronopoulos, Constantine D. [Univ. of Illinois, Urbana, IL (United States)

    1986-08-01

    This dissertation discusses several software and hardware aspects of program execution on large-scale, high-performance parallel processor systems. The issues covered are program restructuring, partitioning, scheduling and interprocessor communication, synchronization, and hardware design issues of specialized units. All this work was performed focusing on a single goal: to maximize program speedup, or equivalently, to minimize parallel execution time. Parafrase, a Fortran restructuring compiler was used to transform programs in a parallel form and conduct experiments. Two new program restructuring techniques are presented, loop coalescing and subscript blocking. Compile-time and run-time scheduling schemes are covered extensively. Depending on the program construct, these algorithms generate optimal or near-optimal schedules. For the case of arbitrarily nested hybrid loops, two optimal scheduling algorithms for dynamic and static scheduling are presented. Simulation results are given for a new dynamic scheduling algorithm. The performance of this algorithm is compared to that of self-scheduling. Techniques for program partitioning and minimization of interprocessor communication for idealized program models and for real Fortran programs are also discussed. The close relationship between scheduling, interprocessor communication, and synchronization becomes apparent at several points in this work. Finally, the impact of various types of overhead on program speedup and experimental results are presented.

  17. Applied Information Systems Research Program Workshop

    Science.gov (United States)

    1991-01-01

    The first Applied Information Systems Research Program (AISRP) Workshop provided the impetus for several groups involved in information systems to review current activities. The objectives of the workshop included: (1) to provide an open forum for interaction and discussion of information systems; (2) to promote understanding by initiating a dialogue with the intended benefactors of the program, the scientific user community, and discuss options for improving their support; (3) create an advocacy in having science users and investigators of the program meet together and establish the basis for direction and growth; and (4) support the future of the program by building collaborations and interaction to encourage an investigator working group approach for conducting the program.

  18. Computer simulation of LMFBR piping systems

    International Nuclear Information System (INIS)

    A-Moneim, M.T.; Chang, Y.W.; Fistedis, S.H.

    1977-01-01

    Integrity of piping systems is one of the main concerns of the safety issues of Liquid Metal Fast Breeder Reactors (LMFBR). Hypothetical core disruptive accidents (HCDA) and water-sodium interaction are two examples of sources of high pressure pulses that endanger the integrity of the heat transport piping systems of LMFBRs. Although plastic wall deformation attenuates pressure peaks so that only pressures slightly higher than the pipe yield pressure propagate along the system, the interaction of these pulses with the different components of the system, such as elbows, valves, heat exchangers, etc.; and with one another produce a complex system of pressure pulses that cause more plastic deformation and perhaps damage to components. A generalized piping component and a tee branching model are described. An optional tube bundle and interior rigid wall simulation model makes such a generalized component model suited for modelling of valves, reducers, expansions, and heat exchangers. The generalized component and the tee branching junction models are combined with the pipe-elbow loop model so that a more general piping system can be analyzed both hydrodynamically and structurally under the effect of simultaneous pressure pulses

  19. Large-scale Intelligent Transporation Systems simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, T.; Canfield, T.; Hannebutte, U.; Levine, D.; Tentner, A.

    1995-06-01

    A prototype computer system has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS) capable of running on massively parallel computers and distributed (networked) computer systems. The prototype includes the modelling of instrumented ``smart`` vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of our design is that vehicles will be represented by autonomus computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  20. BIOACCUMULATION AND AQUATIC SYSTEM SIMULATOR (BASS) USER'S MANUAL BETA TEST VERSION 2.1

    Science.gov (United States)

    BASS (Bioaccumulation and Aquatic System Simulator) is a Fortran 95 simulation program that predicts the population and bioaccumulation dynamics of age-structured fish assemblages that are exposed to hydrophobic organic pollutants and class B and borderline metals that complex wi...

  1. Computer simulations of high pressure systems

    International Nuclear Information System (INIS)

    Wilkins, M.L.

    1977-01-01

    Numerical methods are capable of solving very difficult problems in solid mechanics and gas dynamics. In the design of engineering structures, critical decisions are possible if the behavior of materials is correctly described in the calculation. Problems of current interest require accurate analysis of stress-strain fields that range from very small elastic displacement to very large plastic deformation. A finite difference program is described that solves problems over this range and in two and three space-dimensions and time. A series of experiments and calculations serve to establish confidence in the plasticity formulation. The program can be used to design high pressure systems where plastic flow occurs. The purpose is to identify material properties, strength and elongation, that meet the operating requirements. An objective is to be able to perform destructive testing on a computer rather than on the engineering structure. Examples of topical interest are given

  2. Performance demonstration program plan for analysis of simulated headspace gases

    International Nuclear Information System (INIS)

    1995-06-01

    The Performance Demonstration Program (PDP) for analysis of headspace gases will consist of regular distribution and analyses of test standards to evaluate the capability for analyzing VOCs, hydrogen, and methane in the headspace of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each distribution is termed a PDP cycle. These evaluation cycles will provide an objective measure of the reliability of measurements performed for TRU waste characterization. Laboratory performance will be demonstrated by the successful analysis of blind audit samples of simulated TRU waste drum headspace gases according to the criteria set within the text of this Program Plan. Blind audit samples (hereinafter referred to as PDP samples) will be used as an independent means to assess laboratory performance regarding compliance with the QAPP QAOs. The concentration of analytes in the PDP samples will encompass the range of concentrations anticipated in actual waste characterization gas samples. Analyses which are required by the WIPP to demonstrate compliance with various regulatory requirements and which are included in the PDP must be performed by laboratories which have demonstrated acceptable performance in the PDP

  3. Designing and implementing nervous system simulations on LEGO robots.

    Science.gov (United States)

    Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph

    2013-05-25

    We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.(1) The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.

  4. The need for simulation in complex industrial systems

    Directory of Open Access Journals (Sweden)

    Aboura Khalid

    2012-10-01

    Full Text Available We discuss the concept of simulation and its application in the resolution of problems in complex industrial systems. Most problems of serious scale, be it an inventory problem, a production and distribution problem, a management of resources or process improvement, all real world problems require a mix of generic, data algorithmic and Ad-hoc solutions making the best of available information. We describe two projects in which analytical solutions were applied or contemplated. The first case study uses linear programming in the optimal allocation of advertising resources by a major internet service provider. The second study, in a series of projects, analyses options for the expansion of the production and distribution network of mining products, as part of a sensitive strategic business review. Using the examples, we make the case for the need of simulation in complex industrial problems where analytical solutions may be attempted but where the size and complexity of the problem forces a Monte Carlo approach.

  5. THE DYNAMICS OF A DISTRIBUTION SYSTEM SIMULATED ON A SPREADSHEET

    Directory of Open Access Journals (Sweden)

    R. Reinecke

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The dynamics of a typical production-distribution system, namely from manufacturer to distributors to retailers has been simulated with the aid of Lotus 123 on a personal computer. The original simulation program DYNAr10 was run on an IBM 1620 mainframe computer but we successfully converted it to run on a personal computer using LOTUS 123.
    This paper deals with problems encountered in using the present MS-DOS limited PC machines to run application programmes written for earlier mainframe machines. It is also shown that results very comparable with those obtained on mainframe machines can be generated on a simple PC.

    AFRIKAANSE OPSOMMING: Hierdie referaat beskryf die ervaring van magisterstudente met die omskakeling van die simulasieprogram DYNAMO vir die ondersoek van die dinamika van industriele stelsels van hoofraamrekenaar na 'n persoonlike rekenaar.

  6. Beyond Widgets -- Systems Incentive Programs for Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Robinson, Alastair [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walter, Travis [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-15

    Utility incentive programs remain one of the most significant means of deploying commercialized, but underutilized building technologies to scale. However, these programs have been largely limited to component-based products (e.g., lamps, RTUs). While some utilities do provide ‘custom’ incentive programs with whole building and system level technical assistance, these programs require deeper levels of analysis, resulting in higher program costs. This results in custom programs being restricted to utilities with greater resources, and are typically applied mainly to large or energy-intensive facilities, leaving much of the market without cost effective access and incentives for these solutions. In addition, with increasingly stringent energy codes, cost effective component-based solutions that achieve significant savings are dwindling. Building systems (e.g., integrated façade, HVAC and/or lighting solutions) can deliver higher savings that translate into large sector-wide savings if deployed at the scale of these programs. However, systems application poses a number of challenges – baseline energy use must be defined and measured; the metrics for energy and performance must be defined and tested against; in addition, system savings must be validated under well understood conditions. This paper presents a sample of findings of a project to develop validated utility incentive program packages for three specific integrated building systems, in collaboration with Xcel Energy (CO, MN), ComEd, and a consortium of California Public Owned Utilities (CA POUs) (Northern California Power Agency(NCPA) and the Southern California Public Power Authority(SCPPA)). Furthermore, these program packages consist of system specifications, system performance, M&V protocols, streamlined assessment methods, market assessment and implementation guidance.

  7. GTOROTO: a simulation system for HTGR core seismic behavior

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Nakamura, Yasuhiro; Onuma, Yoshio

    1980-07-01

    One of the most important design of HTGR core is its aseismic structure. Therefore, it is necessary to predict the forces and motion of the core blocks. To meet the requirement, many efforts to develop analytical methods and computer programs are made. A graphic simulation system GTOROTO with a CRT graphic display and lightpen was developed to analyze the HTGR core behavior in seismic excitation. Feature of the GTOROTO are as follows: (1) Behavior of the block-type HTGR core during earthquake can be shown on the CRT-display. (2) Parameters of the computing scheme can be changed with the lightpen. (3) Routines of the computing scheme can be changed with the lightpen and an alteration switch. (4) Simulation pictures are shown automatically. Hardcopies are available by plotter in stopping the progress of simulation pictures. Graphic representation can be re-start with the predetermined program. (5) Graphic representation informations can be stored in assembly language on a disk for rapid representation. (6) A computer-generated cinema can be made by COM (Computer Output Microfilming) or filming directly the CRT pictures. These features in the GTOROTO are provided in on-line conversational mode. (author)

  8. EVALUATION OF ENERGY PERFORMANCE USING DOE-2 ENERGY SIMULATION PROGRAM IN SINGAPORE

    Directory of Open Access Journals (Sweden)

    Po Seng Kian

    2000-01-01

    Full Text Available Recently, due to worldwide energy cost rising significantly, there has been an essential need to minimize the energy consumption. This global warning address many countries including Singapore realizing the important of energy efficiency in industries and buildings. This paper deals with analyzing the energy consumption of an 11-storey commercial building in Singapore using DOE-2 Energy Simulation Program. A study is made on the benefits derived from modifying the building envelope, space system setting, air-conditioning plant, and lighting. This encompasses a description of its quantitative impact on cooling load, energy consumption and energy saving achieved as compared with the original building. Following this, a life cycle costing is done to determine the economic benefits attained from this modification. This study shows that some alternative solutions can be achieved using energy simulation program to conserve the energy consumption.

  9. 'Transitorion' program for the simulation of the liquid zone evolution against power transients

    International Nuclear Information System (INIS)

    Coutsiers, Ernesto; Rabiti, Arnaldo; Pomerantz, Marcelo E.; Villar, Javier

    2003-01-01

    This work presents a program that allows to simulate the liquid zones evolution against power transients at Embalse nuclear power plant reactor. This program takes into account the dynamic effects of plutonium, samarium, xenon and iodine. It simulates also fuel burning, coolant void and the behavior of the reactor regulating system. The validation, based in the comparison with plant's real cases, gives a maximum error of 7% in liquid zone's average in periods of around 5 days. However, the typical adjustment has a lower error, around 2% in liquid zone's average. As the main conclusions of this work the good adjustment of the results of the code as well as the building of an important economic tool for the power plant could be highlighted. (author )

  10. The RMS program system and database

    International Nuclear Information System (INIS)

    Fisher, S.M.; Peach, K.J.

    1982-08-01

    This report describes the program system developed for the data reduction and analysis of data obtained with the Rutherford Multiparticle Spectrometer (RMS), with particular emphasis on the utility of a well structured central data-base. (author)

  11. Computer program for optical systems ray tracing

    Science.gov (United States)

    Ferguson, T. J.; Konn, H.

    1967-01-01

    Program traces rays of light through optical systems consisting of up to 65 different optical surfaces and computes the aberrations. For design purposes, paraxial tracings with astigmation and third order tracings are provided.

  12. SDDOT transportation systems management & operations program plan.

    Science.gov (United States)

    2016-06-01

    The objective of this project is the development of a comprehensive Transportation Systems Management and : Operations (TSM&O) Program Plan for the South Dakota Department of Transportation. This plan guides : business planning and strategic decision...

  13. 14 CFR 121.407 - Training program: Approval of airplane simulators and other training devices.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Training program: Approval of airplane... Program § 121.407 Training program: Approval of airplane simulators and other training devices. (a) Each airplane simulator and other training device that is used in a training course permitted under § 121.409...

  14. Programming model for distributed intelligent systems

    Science.gov (United States)

    Sztipanovits, J.; Biegl, C.; Karsai, G.; Bogunovic, N.; Purves, B.; Williams, R.; Christiansen, T.

    1988-01-01

    A programming model and architecture which was developed for the design and implementation of complex, heterogeneous measurement and control systems is described. The Multigraph Architecture integrates artificial intelligence techniques with conventional software technologies, offers a unified framework for distributed and shared memory based parallel computational models and supports multiple programming paradigms. The system can be implemented on different hardware architectures and can be adapted to strongly different applications.

  15. Scientific and Computational Challenges of the Fusion Simulation Program (FSP)

    International Nuclear Information System (INIS)

    Tang, William M.

    2011-01-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e

  16. Scientific and computational challenges of the fusion simulation program (FSP)

    International Nuclear Information System (INIS)

    Tang, William M.

    2011-01-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) - a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e

  17. Hybrid programming model for implicit PDE simulations on multicore architectures

    KAUST Repository

    Kaushik, Dinesh; Keyes, David E.; Balay, Satish; Smith, Barry F.

    2011-01-01

    The complexity of programming modern multicore processor based clusters is rapidly rising, with GPUs adding further demand for fine-grained parallelism. This paper analyzes the performance of the hybrid (MPI+OpenMP) programming model in the context of an implicit unstructured mesh CFD code. At the implementation level, the effects of cache locality, update management, work division, and synchronization frequency are studied. The hybrid model presents interesting algorithmic opportunities as well: the convergence of linear system solver is quicker than the pure MPI case since the parallel preconditioner stays stronger when hybrid model is used. This implies significant savings in the cost of communication and synchronization (explicit and implicit). Even though OpenMP based parallelism is easier to implement (with in a subdomain assigned to one MPI process for simplicity), getting good performance needs attention to data partitioning issues similar to those in the message-passing case. © 2011 Springer-Verlag.

  18. Microfluidic System Simulation Including the Electro-Viscous Effect

    Science.gov (United States)

    Rojas, Eileen; Chen, C. P.; Majumdar, Alok

    2007-01-01

    This paper describes a practical approach using a general purpose lumped-parameter computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels including electro-viscous effects due to the existence of electrical double layer (EDL). In this study, an empirical formulation for calculating an effective viscosity of ionic solutions based on dimensional analysis is described to account for surface charge and bulk fluid conductivity, which give rise to electro-viscous effect in microfluidics network. Two dimensional slit micro flow data was used to determine the model coefficients. Geometry effect is then included through a Poiseuille number correlation in GFSSP. The bi-power model was used to calculate flow distribution of isotropically etched straight channel and T-junction microflows involving ionic solutions. Performance of the proposed model is assessed against experimental test data.

  19. Simulation of heat-pump systems in Polysun 4 - Final report; Simulation von Waermepumpen-Systemen in Polysun 4 - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Marti, J.; Witzig, A. [Vela Solaris AG, Winterthur (Switzerland); Huber, A.; Ochs, M. [Huber Energietechnik AG, Zuerich (Switzerland)

    2009-01-15

    Polysun 4 is a software program for the simulation of heating systems. The simulation kernel applies a time stepping algorithm and dynamically calculates all relevant system parameters over a one year period, based on statistical weather data. On the one hand, Polysun draws out by physics-based simulation scheme and its modularity, which allows any arrangement of the system components. On the other hand, Polysun offers a unique set of component catalogues which cover a large number of commercially available system components. In this project, three kinds of heat pumps have been integrated in Polysun, namely the air/water, water/water and brine/water heat pumps. Furthermore, the relevant heat sources have been implemented, namely ambient air, soil and groundwater. In consequence, Polysun now covers a large, and almost complete, range of renewable energy systems. Simulation parameters are the measured heat pump COP values (in accordance with EN 255 and EN 14511). A linear interpolation scheme has been developed in this project in order to simulate systems for arbitrary source and heat pump temperatures and to interpolate the power consumption. For the dynamic simulation of the ground source heat pump, the numerical algorithm from the Program EWS (calculation module developed in 1997) has been integrated into Polysun. Groundwater probes are calculated with respect to the soil temperatures. Heat pumps and probes were implemented as independent components in Polysun. In the graphical user interface, they can be arbitrarily placed and connected with other hydraulic components. The timestepping simulation calculates inlet temperature, electric power consumption and heat transfer in the entire system. The Polysun catalogs have been extended accordingly with total over 300 component entries and a number of relevant system templates. (authors)

  20. Using the calculational simulating complexes when making the computer process control systems for NPP

    International Nuclear Information System (INIS)

    Zimakov, V.N.; Chernykh, V.P.

    1998-01-01

    The problems on creating calculational-simulating (CSC) and their application by developing the program and program-technical means for computer-aided process control systems at NPP are considered. The abo- ve complex is based on the all-mode real time mathematical model, functioning at a special complex of computerized means

  1. Satellite Power System (SPS) Program Summary

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    The joint DOE/NASA SPS program has as its objective to achieve by the end of 1980 an initial understanding of the technical feasibility, economic practicability, and the social and environmental acceptability of the SPS concepts so that recommendations concerning program continuation can be made. The four major study areas include (1) systems definition; (2) environmental assessment; (3) societal assessment; and (4) comparative assessment of alternative energy systems. All the projects on the SPS program are listed and summarized for FY 1978. (WHK)

  2. Aerial radiological measuring system program

    International Nuclear Information System (INIS)

    Doyle, J.F.; Boyns, P.K.

    1972-01-01

    The present ARMS aircraft has an effective survey time of four hours. Typical survey altitudes are 300 to 500 feet for terrain surveys and up to 20,000 feet for cloud tracks. A number of special airframe modifications have been made to accommodate the various sensor systems. The ARMS radiation measurement system consists of fourteen 4-inch diameter by 4-inch thick sodium iodide (NaI) detectors, a summing network for the detector signals, single and multichannel analyzers, analog computers, digital display and recording equipment, a doppler radar position computer, and strip chart recorders. Major subsystems include meteorology sensors, multispectral camera systems, and an infrared scanner for thermal mapping. Additional radiation detectors include an alpha spectrometer and a beta counter, used to count filter samples taken from a 150 cfm air sampler, which is a permanent part of the aircraft. A small lead shield houses a 1 / 2 -in. x 3-in. NaI crystal for beta and gamma counting of air filter samples. Several BF 3 neutron detectors are also available for neutron counting. The raw data from the gross gamma count and the gamma spectral measurements are permanently recorded on paper tape, and they must undergo reduction and analysis for final characterization of the radiological properties of the surveyed area. (U.S.)

  3. Simulation Model of Mobile Detection Systems

    International Nuclear Information System (INIS)

    Edmunds, T.; Faissol, D.; Yao, Y.

    2009-01-01

    In this paper, we consider a mobile source that we attempt to detect with man-portable, vehicle-mounted or boat-mounted radiation detectors. The source is assumed to transit an area populated with these mobile detectors, and the objective is to detect the source before it reaches a perimeter. We describe a simulation model developed to estimate the probability that one of the mobile detectors will come in to close proximity of the moving source and detect it. We illustrate with a maritime simulation example. Our simulation takes place in a 10 km by 5 km rectangular bay patrolled by boats equipped with 2-inch x 4-inch x 16-inch NaI detectors. Boats to be inspected enter the bay and randomly proceed to one of seven harbors on the shore. A source-bearing boat enters the mouth of the bay and proceeds to a pier on the opposite side. We wish to determine the probability that the source is detected and its range from target when detected. Patrol boats select the nearest in-bound boat for inspection and initiate an intercept course. Once within an operational range for the detection system, a detection algorithm is started. If the patrol boat confirms the source is not present, it selects the next nearest boat for inspection. Each run of the simulation ends either when a patrol successfully detects a source or when the source reaches its target. Several statistical detection algorithms have been implemented in the simulation model. First, a simple k-sigma algorithm, which alarms with the counts in a time window exceeds the mean background plus k times the standard deviation of background, is available to the user. The time window used is optimized with respect to the signal-to-background ratio for that range and relative speed. Second, a sequential probability ratio test [Wald 1947] is available, and configured in this simulation with a target false positive probability of 0.001 and false negative probability of 0.1. This test is utilized when the mobile detector maintains

  4. Simulation Model of Mobile Detection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, T; Faissol, D; Yao, Y

    2009-01-27

    In this paper, we consider a mobile source that we attempt to detect with man-portable, vehicle-mounted or boat-mounted radiation detectors. The source is assumed to transit an area populated with these mobile detectors, and the objective is to detect the source before it reaches a perimeter. We describe a simulation model developed to estimate the probability that one of the mobile detectors will come in to close proximity of the moving source and detect it. We illustrate with a maritime simulation example. Our simulation takes place in a 10 km by 5 km rectangular bay patrolled by boats equipped with 2-inch x 4-inch x 16-inch NaI detectors. Boats to be inspected enter the bay and randomly proceed to one of seven harbors on the shore. A source-bearing boat enters the mouth of the bay and proceeds to a pier on the opposite side. We wish to determine the probability that the source is detected and its range from target when detected. Patrol boats select the nearest in-bound boat for inspection and initiate an intercept course. Once within an operational range for the detection system, a detection algorithm is started. If the patrol boat confirms the source is not present, it selects the next nearest boat for inspection. Each run of the simulation ends either when a patrol successfully detects a source or when the source reaches its target. Several statistical detection algorithms have been implemented in the simulation model. First, a simple k-sigma algorithm, which alarms with the counts in a time window exceeds the mean background plus k times the standard deviation of background, is available to the user. The time window used is optimized with respect to the signal-to-background ratio for that range and relative speed. Second, a sequential probability ratio test [Wald 1947] is available, and configured in this simulation with a target false positive probability of 0.001 and false negative probability of 0.1. This test is utilized when the mobile detector maintains

  5. Effective programming of energy consuming industrial robot systems

    International Nuclear Information System (INIS)

    Trnka, K.; Pinter, T.; Knazik, M.; Bozek, P.

    2012-01-01

    This paper discusses the problem of effective motion planning for industrial robots. The first part dealt with current method for off-line motion planning. In the second part is presented the work done with one of the simulation system with automatic trajectory generation and off-line programming capability [4]. An spot welding process is involved. The practical application of this step strongly depends on the method for robot path optimization with high accuracy, thus, transform the path into a time and energy optimal robot program for the real world, which is discussed in the third step. (Authors)

  6. Description of waste pretreatment and interfacing systems dynamic simulation model

    International Nuclear Information System (INIS)

    Garbrick, D.J.; Zimmerman, B.D.

    1995-05-01

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggested average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage

  7. System program for MICRO-CAMAC terminal system

    International Nuclear Information System (INIS)

    Sasajima, Yoji; Yamada, Takayuki; Yagi, Hideyuki; Ishiguro, Misako

    1979-08-01

    A JAERI on-line network system was developed and exists for on-line data processing of nuclear instrumentation. As terminal systems for the network system, the one with a Micro -8 micro-computer is used. By modifying the control program for Micro-8 terminal system, a system program has been developed for a MICRO-CAMAC terminal system, which is controlled by a micro-computer framed within the CAMAC Crate Controller. In this report are described software specifications of the MICRO -CAMAC terminal system and its operation method. (author)

  8. Simulation Based Optimization for World Line Card Production System

    Directory of Open Access Journals (Sweden)

    Sinan APAK

    2012-07-01

    Full Text Available Simulation based decision support system is one of the commonly used tool to examine complex production systems. The simulation approach provides process modules which can be adjusted with certain parameters by using data relatively easily obtainable in production process. World Line Card production system simulation is developed to evaluate the optimality of existing production line via using discrete event simulation model with variaty of alternative proposals. The current production system is analysed by a simulation model emphasizing the bottlenecks and the poorly utilized production line. Our analysis identified some improvements and efficient solutions for the existing system.

  9. INDUSTRIAL ROBOT ARM SIMULATION SOFTWARE DEVELOPMENT USING JAVA-3D AND MATLAB SIMULINK PROGRAMMING LANGUAGE

    OpenAIRE

    Wirabhuana, Arya

    2011-01-01

    Robot Arms Simulation Software development using Structured Programming Languages, Third Party Language, and Artificial Intelligence Programming Language are the common techniques in simulating robot arms movement. Those three techniques are having its strengths and weaknesses depend on several constraints such as robot type, degree of operation complexity to be simulated, operator skills, and also computer capability. This paper will discuss on Robot Arms Simulation Software (RSS) developmen...

  10. Nonlinear distortion in wireless systems modeling and simulation with Matlab

    CERN Document Server

    Gharaibeh, Khaled M

    2011-01-01

    This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems

  11. Symbolic simulation of engineering systems on a supercomputer

    International Nuclear Information System (INIS)

    Ragheb, M.; Gvillo, D.; Makowitz, H.

    1986-01-01

    Model-Based Production-Rule systems for analysis are developed for the symbolic simulation of Complex Engineering systems on a CRAY X-MP Supercomputer. The Fault-Tree and Event-Tree Analysis methodologies from Systems-Analysis are used for problem representation and are coupled to the Rule-Based System Paradigm from Knowledge Engineering to provide modelling of engineering devices. Modelling is based on knowledge of the structure and function of the device rather than on human expertise alone. To implement the methodology, we developed a production-Rule Analysis System that uses both backward-chaining and forward-chaining: HAL-1986. The inference engine uses an Induction-Deduction-Oriented antecedent-consequent logic and is programmed in Portable Standard Lisp (PSL). The inference engine is general and can accommodate general modifications and additions to the knowledge base. The methodologies used will be demonstrated using a model for the identification of faults, and subsequent recovery from abnormal situations in Nuclear Reactor Safety Analysis. The use of the exposed methodologies for the prognostication of future device responses under operational and accident conditions using coupled symbolic and procedural programming is discussed

  12. PHAST Version 2-A Program for Simulating Groundwater Flow, Solute Transport, and Multicomponent Geochemical Reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Charlton, Scott R.

    2010-01-01

    The computer program PHAST (PHREEQC And HST3D) simulates multicomponent, reactive solute transport in three-dimensional saturated groundwater flow systems. PHAST is a versatile groundwater flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. Major enhancements in PHAST Version 2 allow spatial data to be defined in a combination of map and grid coordinate systems, independent of a specific model grid (without node-by-node input). At run time, aquifer properties are interpolated from the spatial data to the model grid; regridding requires only redefinition of the grid without modification of the spatial data. PHAST is applicable to the study of natural and contaminated groundwater systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock/water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, or density-dependent flow. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux (specified-flux), and leaky (head-dependent) conditions, as well as the special cases of rivers, drains, and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association or Pitzer specific interaction thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, ion exchange sites, surface complexation sites, solid solutions, and gases; and

  13. High Level Architecture Distributed Space System Simulation for Simulation Interoperability Standards Organization Simulation Smackdown

    Science.gov (United States)

    Li, Zuqun

    2011-01-01

    Modeling and Simulation plays a very important role in mission design. It not only reduces design cost, but also prepares astronauts for their mission tasks. The SISO Smackdown is a simulation event that facilitates modeling and simulation in academia. The scenario of this year s Smackdown was to simulate a lunar base supply mission. The mission objective was to transfer Earth supply cargo to a lunar base supply depot and retrieve He-3 to take back to Earth. Federates for this scenario include the environment federate, Earth-Moon transfer vehicle, lunar shuttle, lunar rover, supply depot, mobile ISRU plant, exploratory hopper, and communication satellite. These federates were built by teams from all around the world, including teams from MIT, JSC, University of Alabama in Huntsville, University of Bordeaux from France, and University of Genoa from Italy. This paper focuses on the lunar shuttle federate, which was programmed by the USRP intern team from NASA JSC. The shuttle was responsible for provide transportation between lunar orbit and the lunar surface. The lunar shuttle federate was built using the NASA standard simulation package called Trick, and it was extended with HLA functions using TrickHLA. HLA functions of the lunar shuttle federate include sending and receiving interaction, publishing and subscribing attributes, and packing and unpacking fixed record data. The dynamics model of the lunar shuttle was modeled with three degrees of freedom, and the state propagation was obeying the law of two body dynamics. The descending trajectory of the lunar shuttle was designed by first defining a unique descending orbit in 2D space, and then defining a unique orbit in 3D space with the assumption of a non-rotating moon. Finally this assumption was taken away to define the initial position of the lunar shuttle so that it will start descending a second after it joins the execution. VPN software from SonicWall was used to connect federates with RTI during testing

  14. Investigation of modeling and simulation on a PWR power conversion system with RELAP5

    International Nuclear Information System (INIS)

    Rui Gao; Yang Yanhua; Lin Meng; Yuan Minghao; Xie Zhengrui

    2007-01-01

    Based on the power conversion system of nuclear and conventional islands of Dayabay nuclear power station, this paper models the thermal-hydraulic systems for PWR by using the best-estimate program, RELAP5. To simulate the full-scope power conversion system, not only the reactor coolant system (RCP) of nuclear island, but also the main steam system (VVP), turbine steam and drain system (GPV), bypass system (GCT), feedwater system (FW), condensate extraction system (CEX), moisture separator reheater system (GSS), turbine-driven feedwater pump (APP), low-pressure and high-pressure feedwater heater systems (ABP and AHP) of conventional island are considered and modeled. A comparison between the simulated results and the actual data of reactor under full-power demonstrates a fine match for Dayabay, and also manifests the feasibility in simulating full-scope power conversion system of PWR with RELAP5. (author)

  15. Massive parallel electromagnetic field simulation program JEMS-FDTD design and implementation on jasmin

    International Nuclear Information System (INIS)

    Li Hanyu; Zhou Haijing; Dong Zhiwei; Liao Cheng; Chang Lei; Cao Xiaolin; Xiao Li

    2010-01-01

    A large-scale parallel electromagnetic field simulation program JEMS-FDTD(J Electromagnetic Solver-Finite Difference Time Domain) is designed and implemented on JASMIN (J parallel Adaptive Structured Mesh applications INfrastructure). This program can simulate propagation, radiation, couple of electromagnetic field by solving Maxwell equations on structured mesh explicitly with FDTD method. JEMS-FDTD is able to simulate billion-mesh-scale problems on thousands of processors. In this article, the program is verified by simulating the radiation of an electric dipole. A beam waveguide is simulated to demonstrate the capability of large scale parallel computation. A parallel performance test indicates that a high parallel efficiency is obtained. (authors)

  16. Cardiovascular system simulation in biomedical engineering education.

    Science.gov (United States)

    Rideout, V. C.

    1972-01-01

    Use of complex cardiovascular system models, in conjunction with a large hybrid computer, in biomedical engineering courses. A cardiovascular blood pressure-flow model, driving a compartment model for the study of dye transport, was set up on the computer for use as a laboratory exercise by students who did not have the computer experience or skill to be able to easily set up such a simulation involving some 27 differential equations running at 'real time' rate. The students were given detailed instructions regarding the model, and were then able to study effects such as those due to septal and valve defects upon the pressure, flow, and dye dilution curves. The success of this experiment in the use of involved models in engineering courses was such that it seems that this type of laboratory exercise might be considered for use in physiology courses as an adjunct to animal experiments.

  17. A PC-based computer program for simulation of containment pressurization

    International Nuclear Information System (INIS)

    Seifaee, F.

    1990-01-01

    This paper reports that a PC-based computer program has been developed to simulate a pressurized water reactor (PWR) containment during various transients. This containment model is capable of determining pressure and temperature history of a PWR containment in the event of a loss of coolant accident, as well as main steam line breaks inside the containment. Conservation of mass and energy equations are applied to the containment model. Development of the program is based on minimization of input specified information and user friendliness. Maximization of calculation efficiency is obtained by superseding the traditional trial and error procedure for determination of the state variables and implementation of an explicit solution for pressure. The program includes simplified models for active heat removal systems. The results are in close agreement between the present model and CONTEMPT-MOD5 computer code for pressure and temperature inside the containment

  18. The ITER Plasma Control System Simulation Platform

    International Nuclear Information System (INIS)

    Walker, M.L.; Ambrosino, G.; De Tommasi, G.; Humphreys, D.A.; Mattei, M.; Neu, G.; Rapson, C.J.; Raupp, G.; Treutterer, W.; Welander, A.S.; Winter, A.

    2015-01-01

    Highlights: • A development and test environment called PCSSP has been constructed for the ITER PCS. • A description of requirements and use cases, a final design and software architecture design, users guide, and a prototype implementation have been delivered. • The prototype implementation was demonstrated at IO in December of 2013. • PCSSP will be deployed for alpha testing to the IO, the development group, and selected other ITER partners upon completion of the next development phase. - Abstract: The Plasma Control System Simulation Platform (PCSSP) is a highly flexible, modular, time-dependent simulation environment developed primarily to support development of the ITER Plasma Control System (PCS). It has been under development since 2011 and is scheduled for first release to users in the ITER Organization (IO) and at selected additional sites in 2015. Modules presently implemented in PCSSP enable exploration of axisymmetric evolution and control, basic kinetic control, and tearing mode suppression. A basic capability for generation of control-relevant events is included, enabling study of exception handling in the PCS, continuous controllers, and PCS architecture. While the control design focus of PCSSP applications tends to require only a moderate level of accuracy and complexity in modules, more complex codes can be embedded or connected to access higher accuracy if needed. This paper describes the background and motivation for PCSSP, provides an overview of the capabilities, architecture, and features of PCSSP, and discusses details of the PCSSP vision and its intended goals and application. Completed work, including architectural design, prototype implementation, reference documents, and IO demonstration of PCSSP, is summarized and example use of PCSSP is illustrated. Near-term high-level objectives are summarized and include preparation for release of an “alpha” version of PCSSP and preparation for the next development phase. High

  19. The ITER Plasma Control System Simulation Platform

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M.L., E-mail: walker@fusion.gat.com [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Ambrosino, G.; De Tommasi, G. [CREATE/Università di Napoli Federico II, Napoli (Italy); Humphreys, D.A. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Mattei, M. [CREATE/Seconda Università di Napoli, Napoli (Italy); Neu, G.; Rapson, C.J.; Raupp, G.; Treutterer, W. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Welander, A.S. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Winter, A. [ITER Organization, Route de Vinon-sur-Verdon, 13115 St. Paul-lez-Durance (France)

    2015-10-15

    Highlights: • A development and test environment called PCSSP has been constructed for the ITER PCS. • A description of requirements and use cases, a final design and software architecture design, users guide, and a prototype implementation have been delivered. • The prototype implementation was demonstrated at IO in December of 2013. • PCSSP will be deployed for alpha testing to the IO, the development group, and selected other ITER partners upon completion of the next development phase. - Abstract: The Plasma Control System Simulation Platform (PCSSP) is a highly flexible, modular, time-dependent simulation environment developed primarily to support development of the ITER Plasma Control System (PCS). It has been under development since 2011 and is scheduled for first release to users in the ITER Organization (IO) and at selected additional sites in 2015. Modules presently implemented in PCSSP enable exploration of axisymmetric evolution and control, basic kinetic control, and tearing mode suppression. A basic capability for generation of control-relevant events is included, enabling study of exception handling in the PCS, continuous controllers, and PCS architecture. While the control design focus of PCSSP applications tends to require only a moderate level of accuracy and complexity in modules, more complex codes can be embedded or connected to access higher accuracy if needed. This paper describes the background and motivation for PCSSP, provides an overview of the capabilities, architecture, and features of PCSSP, and discusses details of the PCSSP vision and its intended goals and application. Completed work, including architectural design, prototype implementation, reference documents, and IO demonstration of PCSSP, is summarized and example use of PCSSP is illustrated. Near-term high-level objectives are summarized and include preparation for release of an “alpha” version of PCSSP and preparation for the next development phase. High

  20. Machine protection system algorithm compiler and simulator

    International Nuclear Information System (INIS)

    White, G.R.; Sherwin, G.

    1993-01-01

    The Machine Protection System (MPS) component of the SLC's beam selection system, in which integrated current is continuously monitored and limited to safe levels through careful selection and feedback of the beam repetition rate, is described elsewhere in these proceedings. The novel decision making mechanism by which that system can evaluate open-quotes safe levelsclose quotes, and choose an appropriate repetition rate in real-time, is described here. The algorithm that this mechanism uses to make its decision is written in test files and expressed in states of the accelerator and its devices, one file per accelerator region. Before being used, a file is open-quotes compiledclose quotes to a binary format which can be easily processed as a forward-chaining decision tree. It is processed by distributed microcomputers local to the accelerator regions. A parent algorithm evaluates all results, and reports directly to the beam control microprocessor. Operators can test new algorithms, or changes they make to them, with an online graphical MPS simulator