WorldWideScience

Sample records for system sanaga river

  1. Mapping hotspots of threatened species traded in bushmeat markets in the Cross-Sanaga rivers region.

    Science.gov (United States)

    Fa, John E; Farfán, Miguel Angel; Marquez, Ana Luz; Duarte, Jesús; Nackoney, Janet; Hall, Amy; Dupain, Jef; Seymour, Sarah; Johnson, Paul J; MacDonald, David W; Vargas, J Mario

    2014-02-01

    Bushmeat markets exist in many countries in West and Central Africa, and data on species sold can be used to detect patterns of wildlife trade in a region. We surveyed 89 markets within the Cross-Sanaga rivers region, West Africa. In each market, we counted the number of carcasses of each taxon sold. During a 6-month period (7594 market days), 44 mammal species were traded. Thirteen species were on the International Union for Conservation of Nature (IUCN) Red List or protected under national legislation, and at least 1 threatened species was traded in 88 of the 89 markets. We used these data to identify market groups that traded similar species assemblages. Using cluster analyses, we detected 8 market groups that were also geographically distinct. Market groups differed in the diversity of species, evenness of species, and dominant, prevalent, and characteristic species traded. We mapped the distribution of number of threatened species traded across the study region. Most threatened species were sold in markets nearest 2 national parks, Korup National Park in Cameroon and Cross River in Nigeria. To assess whether the threatened-species trade hotspots coincided with the known ranges of these species, we mapped the overlap of all threatened species traded. Markets selling more threatened species overlapped with those regions that had higher numbers of these. Our study can provide wildlife managers in the region with better tools to discern zones within which to focus policing efforts and reduce threats to species that are threatened by the bushmeat trade. © 2013 Society for Conservation Biology.

  2. Using Pooled Local Expert Opinions (PLEO to Discern Patterns in Sightings of Live and Dead Manatees (Trichechus senegalensis, Link 1785 in Lower Sanaga Basin, Cameroon.

    Directory of Open Access Journals (Sweden)

    Theodore B Mayaka

    Full Text Available We aimed at unveiling patterns in live and dead manatee sightings in the Lower Sanaga Basin, Cameroon. For this purpose, the expert opinions of 133 local fishers were collected during in-person interviews, distilled using categorical data analysis, and checked against scientific literature. The five main results are as follows: manatees were sighted averagely once a week in lakes, rivers, and the coast & estuaries, mostly in group sizes of 2-3; the odds of sighting live manatees (respectively dead manatees decreased (respectively increased from inland lakes to estuaries and the coast, via rivers; manatee carcasses were reported in all habitats, albeit more frequently in rivers; a distribution map based on fishers' reports show two manatee concentration areas: Lake Ossa and the Malimba-Mbiako section of River Sanaga; the number of manatees was perceived as increasing despite incidental and directed catches. Thus, our findings corroborate earlier assessments of the Lower Sanaga Basin as being a major manatee conservation area. Additionally, from these results and the literature, we identified three hypotheses about local manatee persistence: deep pools such as lakes offer year round sanctuaries, not just dry-season refugia; seasonality of specific habitat variables determine manatee occurrence patterns; and local variability in habitat encroachment mediate the meta-population dynamics of manatee in the Lower Sanaga Basin. Finally, we examine the implications for data requirements in light of the small ecological scale at which the surveyed fishers ply their trade. Thus, consonant with the Malawi principles for the ecosystem approach to management (www.cbd.int/ecosystem, we recommend collecting data preferably at landscape scale, through a participatory monitoring program that fully integrates scientific and traditional knowledge systems. This program should include, amongst others, a standardised necropsy protocol for collecting mortality and

  3. The dynamic of organic carbon in South Cameroon. Fluxes in a tropical river system and a lake system as a varying sink on a glacial-interglacial time scale

    Energy Technology Data Exchange (ETDEWEB)

    Giresse, P. [Laboratoire de Sedimentologie et Geochimie Marines, URA CNRS 715, Universite de Perpignan, 66860 Perpignan (France); Maley, J. [Paleoenvironnements et Palynologie, ISEM/CNRS, UMR 5554, ORSTOM, UR 12, Universite de Montpellier II, 34095 Montpellier (France)

    1998-05-01

    In the first attempt to estimate both (i) a bulk carbon flux in a tropical river system (mainly Sanaga River) and (ii) their palaeoenvironmental implications from the Last Glacial Maximum (LGM) to the present, this study presents a synthetic approach based on the combined use of modern evaluation of fluxes and estuarine biodegradation in the tropical river system Sanaga and nearby Douala Bay rivers, and of sedimentation rates of a well studied marine shelf and lake system (Barombi-Mbo). In the lake Barombi-Mbo, the Holocene transfer of particulate carbon (96.6x10{sup 3} t) is very close to the mass fixed presently in soil catchments (117x10{sup 3} t). A complete process of stored carbon consumption would require some 10{sup 4} years, namely the Holocene period. During the last 20,000 years, variations in the sediment organic matter can be explained by the change of the vegetation cover, particularly with the substitution of open environments by forests. The global sedimentation was slow between ca. 18,000 and 10,000 years BP and increased after 12,000 years. But the carbon sedimentation rate remains fairly constant as the carbon content is higher in the LGM deposits. Such LGM carbon concentrations are probably explained by the input of coarse debris by rough floods and by a less degraded organic matter as a result of the cooling of the climate. Today, the total transport of dissolved and particulate organic carbon of the Sanaga and Douala Bay rivers to the Guinea Gulf is estimated as 0.62 to 0.79x10{sup 6} t C yr{sup -1}. Based on 50% biodegradation at the estuarine interface, the loss of organic matter per unit of land is evaluated around 8.8 t C km{sup -2} yr{sup -1}. Marine oceanic records of the carbon sedimentation rate reflect with difficulty the major palaeoenvironmental changes according to interfering hydrodynamic factors. The greatest input of organic carbon during warm marine biozones would be balanced by higher concentrations during the LGM resulting in

  4. River System Behaviour Effects on Flood Risk

    NARCIS (Netherlands)

    Schweckendiek, T.; Vrouwenvelder, A.C.W.M.; Van Mierlo, M.C.L.M.; Calle, E.O.F.; Courage, W.M.G.

    2008-01-01

    A risk-based safety approach is indispensable to support decision-making on flood protection strategies and measures. Hitherto the effects of river system behaviour on flood risk have usually been neglected. River system behaviour refers to the fact that the flood risk (or safety) of a particular

  5. River system behaviour effects on flood risk

    NARCIS (Netherlands)

    Schweckendiek, T.; Vrouwenvelder, A.C.W.M.; Mierlo, M.C.L.M. van; Calle, E.O.F.; Courage, W.M.G.

    2009-01-01

    A risk-based safety approach is indispensable to support decision-making on flood protection strategies and measures. Hitherto the effects of river system behaviour on flood risk have usually been neglected. River system behaviour refers to the fact that the flood risk (or safety) of a particular

  6. The Columbia River System Inside Story

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-04-01

    The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwest—from fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the region’s electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

  7. Tanzania River Scoring System (TARISS): a macroinvertebrate ...

    African Journals Online (AJOL)

    The biological assessment of rivers using aquatic macroinvertebrates is an internationally recognised approach for the determination of riverine ecological conditions. In this study a Tanzanian macroinvertebrate-based biotic method, Tanzania River Scoring System (TARISS), was developed in 2012, based on the South ...

  8. RIVER PROTECTION PROJECT SYSTEM PLAN

    International Nuclear Information System (INIS)

    CERTA PJ

    2008-01-01

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste

  9. RIVER PROTECTION PROJECT SYSTEM PLAN

    Energy Technology Data Exchange (ETDEWEB)

    CERTA PJ

    2008-07-10

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste

  10. RIVER PROTECTION PROJECT SYSTEM PLAN

    Energy Technology Data Exchange (ETDEWEB)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and

  11. RIVER PROTECTION PROJECT SYSTEM PLAN

    International Nuclear Information System (INIS)

    Certa, P.J.; Kirkbride, R.A.; Hohl, T.M.; Empey, P.A.; Wells, M.N.

    2009-01-01

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal

  12. The Columbia River System : the Inside Story.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1991-09-01

    The Columbia Ricer is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Northwest-from providing the world-famous Pacific salmon to supplying the clean natural fuel for over 75 percent of the region's electrical generation. Since early in the century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system. And through cooperative efforts, the floods that periodically threaten developments near the river can be controlled. This publication presents a detailed explanation of the planning and operation of the multiple-use dams and reservoirs of the Columbia River system. It describes the river system, those who operate and use it, the agreements and policies that guide system operation, and annual planning for multiple-use operation.

  13. Colorado River Sewer System Joint Venture to Upgrade Wastewater System

    Science.gov (United States)

    SAN FRANCISCO -Today, the Colorado River Sewer System Joint Venture, located in Parker, Ariz. entered into an agreement with the EPA to upgrade their wastewater treatment system to meet stringent water quality standards. The cost of the upgrade is ap

  14. Taking the Pulse of a River System: Research on the Upper Mississippi River System

    Science.gov (United States)

    Sauer, Jennifer; Johnson, Barry

    2009-01-01

    Mark Twain raved about the Mississippi River basin as, 'the body of the Nation'. The 'upper body', upstream of the confluence with the Ohio River, includes commercially navigable reaches and branching tributaries that are recreationally and environmentally important. Together they feed and shelter an array of fish and wildlife in their flowing channels, floodplain lakes, backwaters, wetlands, and floodplain forests. Effective river management requires knowledge about factors controlling the dynamics and interactions of important ecosystem components. The Long Term Resource Monitoring Program (LTRMP) is the prized diagnostic tool in the Environmental Management Program for the Upper Mississippi River System that provides critical information about the status and trends of key environmental resources.

  15. RiverHeath: Neighborhood Loop Geothermal Exchange System

    Energy Technology Data Exchange (ETDEWEB)

    Geall, Mark [RiverHeath LLC, Appleton, WI (United States)

    2016-07-11

    The goal of the RiverHeath project is to develop a geothermal exchange system at lower capital infrastructure cost than current geothermal exchange systems. The RiverHeath system features an innovative design that incorporates use of the adjacent river through river-based heat exchange plates. The flowing water provides a tremendous amount of heat transfer. As a result, the installation cost of this geothermal exchange system is lower than more traditional vertical bore systems. Many urban areas are located along rivers and other waterways. RiverHeath will serve as a template for other projects adjacent to the water.

  16. Health evaluation indicator system for urban landscape rivers, case study of the Bailianjing River in Shanghai

    Science.gov (United States)

    Wang, Juan; Wang, Yue; Yang, Haizhen; Lu, Zhibo; Xu, Xiaotian

    2010-11-01

    The River Bailianjing is an iconic landscape feature known to all residents in Pudong area and running through the Shanghai Expo 2010 Park. The river and its basin was a complex living ecosystem which supports a unique variety of flora and fauna several decades ago. However, as a result of unsuccessful pollution source control, sewage and first flow of the storm water is directly coming into the river in some catchment. The water quality of the river is seriously organically polluted now. The typical organic pollutants are COD, NH3-N, TN and TP, which cause the extinction of the water plants and aquatic. Furthermore, the artificial hard river banks isolate the river course and the land, which damaged the whole ecological system totally. The nature of the River Bailianjing and its history has resulted in many government departments and authorities and non government organizations having jurisdiction and/or an interest in the river's management. As a new tool to improve river management, the river health assessment has become the major focus of ecological and environmental science. Consequently, research on river health evaluation and its development on river management are of great theoretical and practical significance. In order to evaluate the healthy status of the River Bailianjing and prepare comprehensive scientific background data for the integrated river ecological rehabilitation planning, the health evaluation indicator system for River Bailianjing is brought forward. The indicator system has three levels: the first is target layer; the second is criteria layer, including five fields: water quality characteristics, hydrology characteristics, river morphology, biological characteristics and river scenic beauty; the third is an index layer, a total of 15 specific indicators included. Fuzzy AHP method is used to evaluate the target river's health status, and five grades are set up to describe it: healthy, sub health, marginal, unhealthy and pathological. The

  17. Erosive forms in rivers systems

    International Nuclear Information System (INIS)

    Una Alvarez, E. de; Vidal Romani, J. R.; Rodriguez Martinez-Conde, R.

    2009-01-01

    The purpose of this work is to analyze the geomorphological meaning of the concepts of stability/change and to study its influence on a fluvial erosion system. Different cases of fluvial potholes in Galicia (NW of the Iberian Peninsula) are considered. The work conclusions refer to the nature of the process and its morphological evolution in order to advance towards later contributions with respect of this type of systems. (Author) 14 refs.

  18. Lowland river systems - processes, form and function

    DEFF Research Database (Denmark)

    Pedersen, M. L.; Kronvang, B.; Sand-Jensen, K.

    2006-01-01

    to answer two fundamental questions: How has anthropogenic disturbance of rivers changed the fundamental form and physical processes in river valleys? Can we use our understanding of fl uvial patterns to restore the dynamic nature of channelised rivers and drained fl oodplains in river valleys?...

  19. River Protection Project information systems assessment

    International Nuclear Information System (INIS)

    JOHNSON, A.L.

    1999-01-01

    The Information Systems Assessment Report documents the results from assessing the Project Hanford Management Contract (PHMC) Hanford Data Integrator 2000 (HANDI 2000) system, Business Management System (BMS) and Work Management System phases (WMS), with respect to the System Engineering Capability Assessment Model (CAM). The assessment was performed in accordance with the expectations stated in the fiscal year (FY) 1999 Performance Agreement 7.1.1, item (2) which reads, ''Provide an assessment report on the selected Integrated Information System by July 31, 1999.'' This report assesses the BMS and WMS as implemented and planned for the River Protection Project (RPP). The systems implementation is being performed under the PHMC HANDI 2000 information system project. The project began in FY 1998 with the BMS, proceeded in FY 1999 with the Master Equipment List portion of the WMS, and will continue the WMS implementation as funding provides. This report constitutes an interim quality assessment providing information necessary for planning RPP's information systems activities. To avoid confusion, HANDI 2000 will be used when referring to the entire system, encompassing both the BMS and WMS. A graphical depiction of the system is shown in Figure 2-1 of this report

  20. River Protection Project information systems assessment

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, A.L.

    1999-07-28

    The Information Systems Assessment Report documents the results from assessing the Project Hanford Management Contract (PHMC) Hanford Data Integrator 2000 (HANDI 2000) system, Business Management System (BMS) and Work Management System phases (WMS), with respect to the System Engineering Capability Assessment Model (CAM). The assessment was performed in accordance with the expectations stated in the fiscal year (FY) 1999 Performance Agreement 7.1.1, item (2) which reads, ''Provide an assessment report on the selected Integrated Information System by July 31, 1999.'' This report assesses the BMS and WMS as implemented and planned for the River Protection Project (RPP). The systems implementation is being performed under the PHMC HANDI 2000 information system project. The project began in FY 1998 with the BMS, proceeded in FY 1999 with the Master Equipment List portion of the WMS, and will continue the WMS implementation as funding provides. This report constitutes an interim quality assessment providing information necessary for planning RPP's information systems activities. To avoid confusion, HANDI 2000 will be used when referring to the entire system, encompassing both the BMS and WMS. A graphical depiction of the system is shown in Figure 2-1 of this report.

  1. Mitigation and enhancement techniques for the Upper Mississippi River system and other large river systems

    Science.gov (United States)

    Schnick, Rosalie A.; Morton, John M.; Mochalski, Jeffrey C.; Beall, Jonathan T.

    1982-01-01

    Extensive information is provided on techniques that can reduce or eliminate the negative impact of man's activities (particularly those related to navigation) on large river systems, with special reference to the Upper Mississippi River. These techniques should help resource managers who are concerned with such river systems to establish sound environmental programs. Discussion of each technique or group of techniques include (1) situation to be mitigated or enhanced; (2) description of technique; (3) impacts on the environment; (4) costs; and (5) evaluation for use on the Upper Mississippi River Systems. The techniques are divided into four primary categories: Bank Stabilization Techniques, Dredging and Disposal of Dredged Material, Fishery Management Techniques, and Wildlife Management Techniques. Because techniques have been grouped by function, rather than by structure, some structures are discussed in several contexts. For example, gabions are discussed for use in revetments, river training structures, and breakwaters. The measures covered under Bank Stabilization Techniques include the use of riprap revetments, other revetments, bulkheads, river training structures, breakwater structures, chemical soil stabilizers, erosion-control mattings, and filter fabrics; the planting of vegetation; the creation of islands; the creation of berms or enrichment of beaches; and the control of water level and boat traffic. The discussions of Dredging and the Disposal of Dredged Material consider dredges, dredging methods, and disposal of dredged material. The following subjects are considered under Fishery Management Techniques: fish attractors; spawning structures; nursery ponds, coves, and marshes; fish screens and barriers; fish passage; water control structures; management of water levels and flows; wing dam modification; side channel modification; aeration techniques; control of nuisance aquatic plants; and manipulated of fish populations. Wildlife Management

  2. Shutdown of the River Water System at the Savannah River Site: Draft environmental impact statement

    International Nuclear Information System (INIS)

    1996-11-01

    This environmental impact statement (EIS) evaluates alternative approaches to and environmental impacts of shutting down the River Water System at the Savannah River Site (SRS). Five production reactors were operated at the site.to support these facilities, the River Water System was constructed to provide cooling water to pass through heat exchangers to absorb heat from the reactor core in each of the five reactor areas (C, K, L, P, and R). The DOE Savannah River Strategic Plan directs the SRS to find ways to reduce operating costs and to determine what site infrastructure it must maintain and what infrastructure is surplus. The River Water System has been identified as a potential surplus facility. Three alternatives to reduce the River Water System operating costs are evaluated in this EIS. In addition to the No-Action Alternative, which consists of continuing to operate the River Water System, this EIS examines one alternative (the Preferred Alternative) to shut down and maintain the River Water System in a standby condition until DOE determines that a standby condition is no longer necessary, and one alternative to shut down and deactivate the River Water System. The document provides background information and introduces the River Water System at the SRS; sets forth the purpose and need for DOE action; describes the alternatives DOE is considering; describes the environment at the SRS and in the surrounding area potentially affected by the alternatives addressed and provides a detailed assessment of the potential environmental impacts of the alternatives; and identifies regulatory requirements and evaluates their applicability to the alternatives considered

  3. Columbia River System Operation Review final environmental impact statement. Appendix A: River Operation Simulation (ROSE)

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The River Operation Simulation Experts (ROSE) work group is comprised of representatives of the Corps, BPA, Reclamation, NMFS, Pacific Northwest Utilities Conference Committee (PNUCC), and Northwest Power Planning Council (NPPC). ROSE was responsible for using computer hydroregulation models to simulate the operation of the river system for all of the alternatives evaluated in screening and full scale analysis in SOR. These models are complex computer programs which sequentially route streamflows through each dam in the system, calculating the streamflows, reservoir elevations, spill, power generation and other information at each project and pertinent locations on the river system. ROSE first reviewed specifications of proposed alternatives to determine whether such alternatives were formulated adequately to be run on hydroregulation models

  4. River Water Quality Zoning: A Case Study of Karoon and Dez River System

    Directory of Open Access Journals (Sweden)

    M Karamouz, N Mahjouri, R Kerachian

    2004-10-01

    Full Text Available Karoon-Dez River basin, with an area of 67000 square kilometers, is located in southern part of Iran. This river system supplies the water demands of 16 cities, several villages, thousands hectares of agricultural lands, and several hydropower plants. The increasing water demands at the project development stage including agricultural networks, fish hatchery projects, and inter-basin water transfers, have caused a gloomy future for water quality of the Karoon and Dez Rivers. A good part of used agricultural water, which is about 8040 million cubic meters, is returned to the rivers through agricultural drainage systems or as non-point, return flows. River water quality zoning could provide essential information for developing river water quality management policies. In this paper, a methodology is presented for this purpose using methods of -mean crisp classification and a fuzzy clustering scheme. The efficiency of these clustering methods was evaluated using water quality data gathered from the monitoring sampling points along Karoon and Dez Rivers. The results show that the proposed methodology can provide valuable information to support decision-making and to help river water quality management in the region.

  5. Downstream fish passage on Black River system

    International Nuclear Information System (INIS)

    Downstream fish passage of juvenile alewife at the Black River hydroelectric system has traditionally been directed by a major screen assembly to a route avoiding altogether four out of five small hydroelectric power plants. This system includes retention of larvae/juveniles in a lake until mid July, diversion of fish via a major screen assembly and by-passing of a station using a fish ladder. However, difficulties with the arrangement have resulted in increasing numbers of fish passing by all five stations. A second option which reduces labour and maintenance activities and promotes increased growth of fish as they pass from reservoir to reservoir involves use of simple fishways coupled with fish pulsers to deflect fish from the station intakes. The fish pulsers use 100 Hz frequency at 20 pulses per minute placed directly in front of the station intake at a depth of 3 m. Both strategies have contributed to increased fish production and migration such that the present run is 5 million to 8 million fish. 4 refs., 4 figs

  6. Radium and barium in the Amazon River system

    International Nuclear Information System (INIS)

    Moore, W.S.; Edmond, J.M.

    1984-01-01

    Data for 226 Ra and 228 Ra in the Amazon River system show that the activity of each radium isotope is strongly correlated with barium concentrations. Two trends are apparent, one for rivers which drain shield areas and another for all other rivers. These data suggest that there has been extensive fractionation of U, Th, and Ba during weathering in the Amazon basin. The 226 Ra data fit a flux model for the major ions indicating that 226 Ra behaves conservatively along the main channel of the Amazon River

  7. Diazotrophy in alluvial meadows of subarctic river systems.

    Directory of Open Access Journals (Sweden)

    Thomas H DeLuca

    Full Text Available There is currently limited understanding of the contribution of biological N2 fixation (diazotrophy to the N budget of large river systems. This natural source of N in boreal river systems may partially explain the sustained productivity of river floodplains in Northern Europe where winter fodder was harvested for centuries without fertilizer amendments. In much of the world, anthropogenic pollution and river regulation have nearly eliminated opportunities to study natural processes that shaped early nutrient dynamics of large river systems; however, pristine conditions in northern Fennoscandia allow for the retrospective evaluation of key biochemical processes of historical significance. We investigated biological N2 fixation (diazotrophy as a potential source of nitrogen fertility at 71 independent floodplain sites along 10 rivers and conducted seasonal and intensive analyses at a subset of these sites. Biological N2 fixation occurred in all floodplains, averaged 24.5 kg N ha(-1 yr(-1 and was down regulated from over 60 kg N ha(-1 yr(-1 to 0 kg N ha(-1 yr(-1 by river N pollution. A diversity of N2-fixing cyanobacteria was found to colonize surface detritus in the floodplains. The data provide evidence for N2 fixation to be a fundamental source of new N that may have sustained fertility at alluvial sites along subarctic rivers. Such data may have implications for the interpretation of ancient agricultural development and the design of contemporary low-input agroecosystems.

  8. Preliminary checklists for applying SERCON (System for Evaluating Rivers for Conservation to rivers in Serbia

    Directory of Open Access Journals (Sweden)

    Teodorović Ivana

    2012-01-01

    Full Text Available This paper describes the first steps in gathering biological data to assess the conservation value of rivers in Serbia, using SERCON (System for Evaluating Rivers for Conservation. SERCON was developed in the UK to improve consistency in assessments of river ‘quality’ by using a scoring system to evaluate habitat features and species groups, catchment characteristics, and the potential impacts to which river systems may be subjected. This paper provides checklists for aquatic, semiaquatic and marginal plants, macroinvertebrates, fish and birds associated with rivers in Serbia, collated from a wide range of published and unpublished sources. These lists should be regarded as provisional because few wide-ranging biological surveys have been carried out specifically on Serbian rivers; further revisions are likely as more information becomes available in future. Ultimately, the work will benefit regulators and decision-makers with responsibility for river management under the new Water Law, and contribute to river protection and conservation in Serbia. [Acknowledgments. The hydromorphology dataset was prepared for the project ‘Biosensing Technologies and Global System for Long-Term Research and Integrated Management of Ecosystems’ (Biosensing tehnologije i globalni sistem za kontinuirana istraživanja i integrisano upravljanje ekosistema III 043002 grant, while the biodiversity dataset was prepared the project Plant biodiversity of Serbia and the Balkans – assessment, sustainable use and protection (Biodiverzitet biljnog sveta Srbije i Balkanskog poluostrva – procena, održivo korišćenje i zaštita 173030 Grant, supported by Ministry of Education and Science, Republic of Serbia

  9. Diversity of macrozoobenthos on Orlice river system

    International Nuclear Information System (INIS)

    Spacek, J.; Koza, V.; Havlicek, V.

    2003-01-01

    There are 2 saprobiology monitoring profiles and 1 faunictic research profile on Orlice river, 5 saprobiology monitoring profiles and 2 faunictic research profile on Divoka Orlice river, 4 saprobiology monitoring profiles on Ticha Orlice river. It was collected 255 taxons of macrozoobentos on long therm research in years 1996-2002. Number of taxons: Turbellaria 3, Oligochaeta 13, Nematomorpha 1, Hirudinea 4, Gastropoda 6, Bivalvia 4, Malacostraca 3, Hydracarina 1, Odonata 4, Ephemeroptera 42, Plecoptera 28, Heteroptera 1, Megaloptera 2, Coleoptera 6, Trichoptera 70, Diptera 16, Diptera - Chironomidae 40, Diptera - Simuliidae 11. On locality Blesno - Orlice was discovered very rare plecoptera species Agnetina elegantula (KLAPALEK, 1905), on locality Chocen - Ticha Orlice was discovered rare chironomidae species Symposiocladius lignicola (KIEFFER, 1915). (authors)

  10. Kyiv Small Rivers in Metropolis Water Objects System

    Science.gov (United States)

    Krelshteyn, P.; Dubnytska, M.

    2017-12-01

    The article answers the question, what really are the small underground rivers with artificial watercourses: water bodies or city engineering infrastructure objects? The place of such rivers in metropolis water objects system is identified. The ecological state and the degree of urbanization of small rivers, as well as the dynamics of change in these indicators are analysed on the Kiev city example with the help of water objects cadastre. It was found that the registration of small rivers in Kyiv city is not conducted, and the summary information on such water objects is absent and is not taken into account when making managerial decisions at the urban level. To solve this problem, we propose to create some water bodies accounting system (water cadastre).

  11. Evaluation of HIV Surveillance System in Rivers State, Nigeria ...

    African Journals Online (AJOL)

    Background: Rivers State has been reported to have the highest HIV prevalence of all the thirty-six states in Nigeria. HIV surveillance system generates information for timely and appropriate public health action. Evaluation of the surveillance system is vital in ensuring that the purpose of the surveillance system is being met.

  12. Assessment of denitrification process in lower Ishikari river system, Japan.

    Science.gov (United States)

    Jha, Pawan Kumar; Minagawa, Masao

    2013-11-01

    Sediment denitrification rate and its role in removal of dissolved nitrate load in lower Ishikari river system were examined. Denitrification rate were measured using acetylene inhibition technique on the sediment samples collected during August 2009-July 2010. The denitrification rate varied from 0.001 to 1.9 μg Ng(-1) DM h(-1) with an average value of 0.21 μg Ng(-1) DM h(-1) in lower Ishikari river system. Denitrification rate showed positive correlation with dissolved nitrate concentration in the river basin, indicating overlying water column supplied nitrate for the sediment denitrification processes. Nutrient enrichment experiments result showed that denitrification rate increased significantly with addition of nitrate in case of samples collected from Barato Lake however no such increase was observed in the samples collected from Ishikari river main channel and its major tributaries indicating that factors other than substrate concentration such as population of denitrifier and hydrological properties of stream channel including channel depth and flow velocity may affects the denitrification rate in lower Ishikari river system. Denitrification rate showed no significant increase with the addition of labile carbon (glucose), indicating that sediment samples had sufficient organic matter to sustain denitrification activity. The result of nutrient spiraling model indicates that in- stream denitrification process removes on an average 5%d(-1) of dissolve nitrate load in Ishikari river. This study was carried out to fill the gap present in the availability of riverine denitrification rate measurement and its role in nitrogen budget from Japanese rivers characterize by small river length and high flow rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Columbia River system operation review. Final environmental impact statement

    International Nuclear Information System (INIS)

    1995-11-01

    The Columbia River and its tributaries are the primary water system in the Pacific Northwest, draining some 219,000 square miles in seven states and another 39,500 square miles in British Columbia. Beginning in the 1930's, the Columbia River has been significantly modified by construction of 30 major dams on the river and its tributaries, along with dozens of non-Federal projects. Construction and subsequent operation of these water development projects have contributed to eight primary uses of the river system, including navigation, flood control, irrigation, electric power generation, fish migration, fish and wildlife habitat, recreation, and water supply and quality considerations. Increasing stress on the water development of the Columbia River and its tributaries has led primary Federal agencies to undertake intensive analysis and evaluation of the operation of these projects. These agencies are the U.S. Army Corps of Engineers and the Bureau of Reclamation, who operate the large Federal dams on the river, and the Bonneville Power Administration who sells the power generated at the dams. This review, termed the System Operation Review (SOR), has as its ultimate goal to define a strategy for future operation of the major Columbia River projects which effectively considers the needs of all river uses. This volume, Appendix D: Cultural resources appendix, Technical imput includes the following: Development of geomorphology based framework for cultural resources management, Dworshak Reservoir, Idaho; Impact profiles for SOR reservoirs; comments from the following Native American tribes: Burns Paiute Tribe; Coville Confederated Tribes; Confederated Tribes of the Warm Springs Indian Reservation; Confederated Tribes and bands of the Yakama Indian Nation (comments); Nez Perce Tribe; Coeur D'Alene Tribe; Spokane Tribe of Indians; The confederated Tribes of the Umatilla Indian Reservation

  14. Appropriate models in decision support systems for river basin management

    NARCIS (Netherlands)

    Xu, YuePing; Booij, Martijn J.; Morell, M.; Todorovik, O.; Dimitrov, D.; Selenica, A.; Spirkovski, Z.

    2004-01-01

    In recent years, new ideas and techniques appear very quickly, like sustainability, adaptive management, Geographic Information System, Remote Sensing and participations of new stakeholders, which contribute a lot to the development of decision support systems in river basin management. However, the

  15. Evaluation of HIV Surveillance System in Rivers State, Nigeria ...

    African Journals Online (AJOL)

    Sony Computer (Iby)

    Private health facilities should be included in the HIV surveillance system to ensure better representativeness. Key words: HIV, surveillance, Rivers State. INTRODUCTION. Human Immunodeficiency Virus (HIV) is a chronic viral infection that attacks the immune system of the infected individual and rapidly progresses to ...

  16. From academic to applied: Operationalising resilience in river systems

    Science.gov (United States)

    Parsons, Melissa; Thoms, Martin C.

    2018-03-01

    The concept of resilience acknowledges the ability of societies to live and develop with dynamic environments. Given the recognition of the need to prepare for anticipated and unanticipated shocks, applications of resilience are increasing as the guiding principle of public policy and programs in areas such as disaster management, urban planning, natural resource management, and climate change adaptation. River science is an area in which the adoption of resilience is increasing, leading to the proposition that resilience may become a guiding principle of river policy and programs. Debate about the role of resilience in rivers is part of the scientific method, but disciplinary disunity about the ways to approach resilience application in policy and programs may leave river science out of the policy process. We propose six elements that need to be considered in the design and implementation of resilience-based river policy and programs: rivers as social-ecological systems; the science-policy interface; principles, capacities, and characteristics of resilience; cogeneration of knowledge; adaptive management; and the state of the science of resilience.

  17. River Debris Management System using Off-Grid Photovoltaic Module

    Directory of Open Access Journals (Sweden)

    Saadon Intan Mastura

    2017-01-01

    Full Text Available In Malaysia, Malacca River has long been the tourism attraction in Malacca. However, due to negligence, the river has been polluted by the litters thrown by tourists and even local residents, thus reflects a negative perception on Malacca. Therefore, this paper discusses about a fully automated river debris management system development using a stand-alone photovoltaic system. The concept design is to be stand alone in the river and automatically pull debris towards it for disposal. An off-grid stand-alone photovoltaic solar panel is used as renewable energy source connected to water pump and Arduino Uno microcontroller. The water pump rotates a water wheel and at the same time moves a conveyor belt; which is connected to the water wheel by a gear for debris collection. The solar system sizing suitable for the whole system is shown in this paper. The dumpster barge is equipped with an infrared sensor to monitor maximum height for debris, and instruct Arduino Uno to turn off the water pump. This system is able to power up using solar energy on sunny days and using battery otherwise.

  18. Downstream flow top width prediction in a river system | Choudhury ...

    African Journals Online (AJOL)

    ANFIS, ARIMA and Hybrid Multiple Inflows Muskingum models (HMIM) were applied to simulate and forecast downstream discharge and flow top widths in a river system. The ANFIS model works on a set of linguistic rules while the ARIMA model uses a set of past values to predict the next value in a time series. The HMIM ...

  19. Clinch River Breeder Reactor secondary control rod system

    International Nuclear Information System (INIS)

    McKeehan, E.R.; Sim, R.G.

    1977-01-01

    The shutdown system for the Clinch River Breeder Reactor (CRBR) includes two independent systems--a primary and a secondary system. The Secondary Control Rod System (SCRS) is a new design which is being developed by General Electric to be independent from the primary system in order to improve overall shutdown reliability by eliminating potential common-mode failures. The paper describes the status of the SCRS design and fabrication and testing activities. Design verification testing on the component level is largely complete. These component tests are covered with emphasis on design impact results. A prototype unit has been manufactured and system level tests in sodium have been initiated

  20. Sediment deposition and associated organic carbon dynamics in a tropical River system; the Tana River (Kenya)

    Science.gov (United States)

    Omengo, Fred; Alleman, Tine; Geeraert, Naomi; Bouillon, Steven; Govers, Gerard

    2014-05-01

    Floodplains are known to play a potentially important role in regulating the downstream transport of sediments, carbon, and nutrients in river systems. We investigated sediment and carbon transport, retention and deposition in the floodplains of the lower Tana River (Kenya), between the two main downstream gauging stations Garissa and Garsen. The Tana River is the largest river in Kenya and runs for more than 1,000 km from Kenya's highlands (Mt Kenya and the Aberdare mountains). The catchment covers around 100,000km² and the hydrology is controlled by the shifting of intertropical convergence Zone (ITCZ), leading to a bimodal precipitation cycle. Sediment cores were taken at various sites within the floodplains, and analysed for bulk density, organic carbon (OC) and nitrogen content, stable isotope signatures (δ13C) of organic C, and grain size distribution. We determined 137Cs and 210Pbxs activities in order to estimate historical sedimentation rates and to quantify the post-depositional losses of organic carbon. In addition, we measured fresh sediment deposition rates immediately after an extended period of flooding, along with associated flood heights and the distance relative to the main River . Fresh sediment deposition rates ranged between 1mm and 15mm for the period of study at an average rate of 1.13 gcm-3 (dry weight). This varied with distance of the floodplain from the main river and its elevation relative to the full bank. The fresh deposited sediment had an average organic carbon content of 1.55 ± 0.42%. Sediment cores showed a strong downcore gradient in OC content, from 3 - 12%C in the top layers to typically less than 0.5 % below 50 cm. The C:N ratios varied from 8 to 16 with majority averaging 9-11. Stable isotope signatures (δ13C) of organic C varied between -28‰ to -16‰ for the deeper core samples. 137Cs and 210Pbxs profiles indicate a vertical accretion at an average rate of 0.6 cm per year in the sites measured so far. The Tana river

  1. Synergetic Development Assessment of Urban River System Landscapes

    Directory of Open Access Journals (Sweden)

    Jingya Qiao

    2017-11-01

    Full Text Available This paper presents Synergetic Development Assessment (SDA as a methodology to evaluate the environmental, economic, and social performance of an urban river system landscape from the perspective of sustainability. SDA is based on synergetics and its “order parameters” theory, proposed as a science to study the self-organization of complex systems. A case study of river system landscapes in China was carried out by, first, simplifying the composite system into three subsystems: environmental, economic, and social; then, going on to construct a hierarchical structure to explore the order parameters as the evaluation index. The Analytic Hierarchy Process was used to get the weight of the evaluation index to complete the assessment index system. At the same time, a Sequential Synergy Degree Model was built to accomplish the SDA. We find that from 2005 to 2015, the order degree of the environmental subsystem developed slowly, with fluctuations, and that river pattern is the key factor. Meanwhile, the order degree of the economic subsystem fluctuated widely, which significantly depended on the changing value of water resources, and the order degree of social subsystem improved continuously, with social culture lagging far behind. As a whole, the synergy degree of the composite system developed orderly at a corresponding low level, which was in low synergy from 2005 to 2009 and then in general synergy up to 2015.

  2. Automatic control of pollutant on a shallow river using surface water systems: application to the Ebro River.

    Science.gov (United States)

    Puig, V; Romera, J; Quevedo, J; Sarrate, R; Morales-Hernandez, M; Gonzalez-Sanchis, M; Garcia-Navarro, P

    2014-01-01

    In this paper, the problem of automatic control of pollutant on a shallow river using surface water systems is addressed using a benchmark test case based in the Ebro River. The Ebro River presents flooding episodes in the city of Zaragoza in Spring when snow melts in the Pyrenees. To avoid flooding and high pollutant levels in living areas, some lands outside the city are prepared to be flooded. Going one step further, this paper is focused on the pollutant level control at a certain point downstream of the river under flooding episodes, and several control strategies for that purpose are presented and tested.

  3. Reliability modeling of Clinch River breeder reactor electrical shutdown systems

    International Nuclear Information System (INIS)

    Schatz, R.A.; Duetsch, K.L.

    1974-01-01

    The initial simulation of the probabilistic properties of the Clinch River Breeder Reactor Plant (CRBRP) electrical shutdown systems is described. A model of the reliability (and availability) of the systems is presented utilizing Success State and continuous-time, discrete state Markov modeling techniques as significant elements of an overall reliability assessment process capable of demonstrating the achievement of program goals. This model is examined for its sensitivity to safe/unsafe failure rates, sybsystem redundant configurations, test and repair intervals, monitoring by reactor operators; and the control exercised over system reliability by design modifications and the selection of system operating characteristics. (U.S.)

  4. Interactive Forecasting with the National Weather Service River Forecast System

    Science.gov (United States)

    Smith, George F.; Page, Donna

    1993-01-01

    The National Weather Service River Forecast System (NWSRFS) consists of several major hydrometeorologic subcomponents to model the physics of the flow of water through the hydrologic cycle. The entire NWSRFS currently runs in both mainframe and minicomputer environments, using command oriented text input to control the system computations. As computationally powerful and graphically sophisticated scientific workstations became available, the National Weather Service (NWS) recognized that a graphically based, interactive environment would enhance the accuracy and timeliness of NWS river and flood forecasts. Consequently, the operational forecasting portion of the NWSRFS has been ported to run under a UNIX operating system, with X windows as the display environment on a system of networked scientific workstations. In addition, the NWSRFS Interactive Forecast Program was developed to provide a graphical user interface to allow the forecaster to control NWSRFS program flow and to make adjustments to forecasts as necessary. The potential market for water resources forecasting is immense and largely untapped. Any private company able to market the river forecasting technologies currently developed by the NWS Office of Hydrology could provide benefits to many information users and profit from providing these services.

  5. Watershed characterization for precipitation-runoff modeling system, north fork, American River and east fork, Carson River watersheds, California

    Science.gov (United States)

    Smith, J. LaRue; Reece, Brian D.

    1995-01-01

    As part of its Global Change Hydrology Program, the U.S. Geological Survey (USGS) is investigating the potential effects of climate change on the water resources of several river basins in the United States. The American River Basin in California represents the windward slope of the north-central Sierra Nevada, and the California part of the Carson River Basin, most of which is in Nevada, represents the leeward slope. Parts of the American River and Carson River Basins—the North Fork American River and East Fork Carson River watersheds, both in California—were studied to determine the sensitivity of water resources to potential climate change. The water resources of both basins are derived primarily from snowmelt. A geographic information system (GIS) data base has been created to facilitate paired-basin analysis. The GIS data base incorporates (1) land-surface data, which include elevation, land use and land cover, soil type, and geology; (2) hydrologic data, such as stream networks and streamflow-gaging stations; and (3) climatic data, such as snow-course, snow-telemetry, radiosonde, and meteorological data. Precipitation-runoff models were developed and calibrated for the North Fork watershed within the American River Basin and for the East Fork watershed within the Carson River Basin. (These watersheds were selected to represent the climatic and physiographic variability of the two larger basins.) Synthesized climate scenarios then were used in the model to predict potential effects of climate change.

  6. Evolution of biomolecular loadings along a major river system

    Science.gov (United States)

    Freymond, Chantal V.; Kündig, Nicole; Stark, Courcelle; Peterse, Francien; Buggle, Björn; Lupker, Maarten; Plötze, Michael; Blattmann, Thomas M.; Filip, Florin; Giosan, Liviu; Eglinton, Timothy I.

    2018-02-01

    Understanding the transport history and fate of organic carbon (OC) within river systems is crucial in order to constrain the dynamics and significance of land-ocean interactions as a component of the global carbon cycle. Fluvial export and burial of terrestrial OC in marine sediments influences atmospheric CO2 over a range of timescales, while river-dominated sedimentary sequences can provide valuable archives of paleoenvironmental information. While there is abundant evidence that the association of organic matter (OM) with minerals exerts an important influence on its stability as well as hydrodynamic behavior in aquatic systems, there is a paucity of information on where such associations form and how they evolve during fluvial transport. Here, we track total organic carbon (TOC) and terrestrial biomarker concentrations (plant wax-derived long-chain fatty acids (FA), branched glycerol dialkyl glycerol tetraethers (brGDGTs) and lignin-derived phenols) in sediments collected along the entire course of the Danube River system in the context of sedimentological parameters. Mineral-specific surface area-normalized biomarker and TOC concentrations show a systematic decrease from the upper to the lower Danube basin. Changes in OM loading of the available mineral phase correspond to a net decrease of 70-80% of different biomolecular components. Ranges for biomarker loadings on Danube River sediments, corresponding to 0.4-1.5 μgFA/m2 for long-chain (n-C24-32) fatty acids and 17-71 ngbrGDGT/m2 for brGDGTs, are proposed as a benchmark for comparison with other systems. We propose that normalizing TOC as well as biomarker concentrations to mineral surface area provides valuable quantitative constraints on OM dynamics and organo-mineral interactions during fluvial transport from terrigenous source to oceanic sink.

  7. Columbia River system operation review. Final environmental impact statement

    International Nuclear Information System (INIS)

    1995-11-01

    This Appendix C of the Final Environmental Impact Statement for the Columbia River System discusses impacts on andromous fish and juvenile fish transportation. The principal andromous fish in the Columbia basin include salmonid species (Chinook, coho, and sockeye salmon, and steelhead) and nonsalmoinid andromous species (sturgeon, lamprey, and shad). Major sections in this document include the following: background, scope and process; affected environment for salmon and steelhead, shaded, lamprey, sturgeon; study methods; description of alternatives: qualitative and quantitative findings

  8. Laboratory robotics systems at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Dyches, G.M.; Burkett, S.D.

    1983-01-01

    Many analytical chemistry methods normally used at the Savannah River site require repetitive procedures and handling of radioactive and other hazardous solutions. Robotics is being investigated as a method of reducing personnel fatigue and radiation exposure and also increasing product quality. Several applications of various commercially available robot systems are discussed involving cold (nonradioactive) and hot (radioactive) sample preparations and glovebox waste removal. Problems encountered in robot programming, parts fixturing, design of special robot hands and other support equipment, glovebox operation, and operator-system interaction are discussed. A typical robot system cost analysis for one application is given

  9. Life History Attributes of Asian Carps in the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Garvey, James E; DeGrandchamp, Kelly L; Williamson, Christopher J

    2007-01-01

    The Upper Mississippi River (UMR) system starts at the confluence of the Ohio River at Cairo, Illinois, and serves as a conduit for many aquatic invasive species to enter the waterways of the central and northern interior...

  10. Impacts of Urbanization on River Systems in the Taihu Region, China

    Directory of Open Access Journals (Sweden)

    Xiaojun Deng

    2015-03-01

    Full Text Available River systems are valuable to human beings; meanwhile, they are intensively influenced by human activities, especially urbanization. In this study, based on the data derived from topographic maps and remote sensing images, the temporal and spatial change of river system geomorphology in the Taihu Region over the past 50 years was investigated in conjunction with urbanization. Results demonstrated that the number of river systems decreased drastically, that the morphology of river channels changed into wider and straighter and that the structure of river network tended to simplify in the Taihu Region in recent 50 years. Meanwhile, the changes in river density, the water surface ratio, the river development coefficient, the main river area length ratio and the box dimension in the rapid urbanization period were much greater than those in the slow urbanization period, but the decrease of river sinuosity in the slow urbanization period was more intense. Moreover, the spatial differences of the changes in the river development coefficient were the largest, and the changes in the river indicators in the low-urbanized regions were the most intense. In addition, the changes in the water surface ratio had the closest correlation with urbanization, and the relational degrees between population urbanization and the changes in river systems were the largest. The results can provide a reliable basis to determine reasonable management and conservation strategies of river systems in the Taihu Region.

  11. Columbia River System Operation Review final environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1995-11-01

    The Columbia River System Operation Review (SOR) is being conducted jointly by the US Army Corps of Engineers, the Bureau of Reclamation, and the Bonneville Power Administration. This summary of the SOR story begins where the Draft EIS summary left off. It is divided into seven parts, each of which reports some aspect of the study's outcome: Part 1 is a history. The SOR was not a simple study on any level, and to understand the EIS alternatives, some background is necessary. Part 2 reports the major findings of the technical analysis of alternative system operating strategies, and presents the agencies' Preferred Alternative. Part 3 explains actions the agencies may take with respect to the Columbia River Regional Forum, the Pacific Northwest Coordination Agreement, and the Canadian Entitlement Allocation Agreements. Part 4 presents the Purpose and Need, elements at the core of any Federal EIS. It includes a map showing the Columbia River Basin and information on the affected Federal projects. Part 5 describes the substantial public participation and outreach that occurred during the SOR, and Part 6 summarizes efforts to incorporate the Tribal perspective into the study. Part 7 describes other activities that will be taking place in the next few years, which are related to and build upon the SOR

  12. Optimum Water Quality Monitoring Network Design for Bidirectional River Systems

    Directory of Open Access Journals (Sweden)

    Xiaohui Zhu

    2018-01-01

    Full Text Available Affected by regular tides, bidirectional water flows play a crucial role in surface river systems. Using optimization theory to design a water quality monitoring network can reduce the redundant monitoring nodes as well as save the costs for building and running a monitoring network. A novel algorithm is proposed to design an optimum water quality monitoring network for tidal rivers with bidirectional water flows. Two optimization objectives of minimum pollution detection time and maximum pollution detection probability are used in our optimization algorithm. We modify the Multi-Objective Particle Swarm Optimization (MOPSO algorithm and develop new fitness functions to calculate pollution detection time and pollution detection probability in a discrete manner. In addition, the Storm Water Management Model (SWMM is used to simulate hydraulic characteristics and pollution events based on a hypothetical river system studied in the literature. Experimental results show that our algorithm can obtain a better Pareto frontier. The influence of bidirectional water flows to the network design is also identified, which has not been studied in the literature. Besides that, we also find that the probability of bidirectional water flows has no effect on the optimum monitoring network design but slightly changes the mean pollution detection time.

  13. An extensive reef system at the Amazon River mouth.

    Science.gov (United States)

    Moura, Rodrigo L; Amado-Filho, Gilberto M; Moraes, Fernando C; Brasileiro, Poliana S; Salomon, Paulo S; Mahiques, Michel M; Bastos, Alex C; Almeida, Marcelo G; Silva, Jomar M; Araujo, Beatriz F; Brito, Frederico P; Rangel, Thiago P; Oliveira, Braulio C V; Bahia, Ricardo G; Paranhos, Rodolfo P; Dias, Rodolfo J S; Siegle, Eduardo; Figueiredo, Alberto G; Pereira, Renato C; Leal, Camille V; Hajdu, Eduardo; Asp, Nils E; Gregoracci, Gustavo B; Neumann-Leitão, Sigrid; Yager, Patricia L; Francini-Filho, Ronaldo B; Fróes, Adriana; Campeão, Mariana; Silva, Bruno S; Moreira, Ana P B; Oliveira, Louisi; Soares, Ana C; Araujo, Lais; Oliveira, Nara L; Teixeira, João B; Valle, Rogerio A B; Thompson, Cristiane C; Rezende, Carlos E; Thompson, Fabiano L

    2016-04-01

    Large rivers create major gaps in reef distribution along tropical shelves. The Amazon River represents 20% of the global riverine discharge to the ocean, generating up to a 1.3 × 10(6)-km(2) plume, and extensive muddy bottoms in the equatorial margin of South America. As a result, a wide area of the tropical North Atlantic is heavily affected in terms of salinity, pH, light penetration, and sedimentation. Such unfavorable conditions were thought to imprint a major gap in Western Atlantic reefs. We present an extensive carbonate system off the Amazon mouth, underneath the river plume. Significant carbonate sedimentation occurred during lowstand sea level, and still occurs in the outer shelf, resulting in complex hard-bottom topography. A permanent near-bottom wedge of ocean water, together with the seasonal nature of the plume's eastward retroflection, conditions the existence of this extensive (~9500 km(2)) hard-bottom mosaic. The Amazon reefs transition from accretive to erosional structures and encompass extensive rhodolith beds. Carbonate structures function as a connectivity corridor for wide depth-ranging reef-associated species, being heavily colonized by large sponges and other structure-forming filter feeders that dwell under low light and high levels of particulates. The oxycline between the plume and subplume is associated with chemoautotrophic and anaerobic microbial metabolisms. The system described here provides several insights about the responses of tropical reefs to suboptimal and marginal reef-building conditions, which are accelerating worldwide due to global changes.

  14. Large barchanoid dunes in the Amazon River and the rock record: Implications for interpreting large river systems

    Science.gov (United States)

    Paes de Almeida, Renato; Padalino Galeazzi, Cristiano; Tavares Freitas, Bernardo; Janikian, Liliane; Ianniruberto, Marco; Marconato, André

    2016-11-01

    The interpretation of large river deposits from the rock record is hampered by the scarcity of direct observations of active large river systems. That is particularly true for deep-channel environments, where tens of meters deep flows dominate. These conditions are extremely different from what is found in smaller systems, from which current facies models were derived. MBES and shallow seismic surveys in a selected area of the Upper Amazonas River in Northern Brazil revealed the presence of large compound barchanoid dunes along the channel thalweg. The dunes are characterized by V-shaped, concave-downstream crest lines and convex-up longitudinal profiles, hundreds of meters wide, up to 300 m in wavelength and several meters high. Based on the morphology of compound dunes, expected preserved sedimentary structures are broad, large-scale, low-angle, concave up and downstream cross-strata, passing laterally and downstream to inclined cosets. Examples of such structures from large river deposits in the rock record are described in the Silurian Serra Grande Group and the Cretaceous São Sebastião and Marizal formations in Northeastern Brazil, as well as in Triassic Hawkesburry Sandstone in Southeastern Australia and the Plio-Pleistocene Içá Formation in the western Amazon. All these sedimentary structures are found near channel base surfaces and are somewhat coarser than the overlying fluvial deposits, favoring the interpretation of thalweg depositional settings. The recognition of large barchanoid dunes as bedforms restricted to river thalwegs and probably to large river systems brings the possibility of establishing new criteria for the interpretation of fluvial system scale in the rock record. Sedimentary structures compatible with the morphological characteristics of these bedforms seem to be relatively common in large river deposits, given their initial recognition in five different fluvial successions in Brazil and Australia, potentially enabling substantial

  15. Accumulated state assessment of the Peace-Athabasca-Slave River system.

    Science.gov (United States)

    Dubé, Monique G; Wilson, Julie E

    2013-07-01

    Effects-based analysis is a fundamental component of watershed cumulative effects assessment. This study conducted an effects-based analysis for the Peace-Athabasca-Slave River System, part of the massive Mackenzie River Basin, encompassing 20% of Canada's total land mass and influenced by cumulative contributions of the W.A.C. Bennett Dam (Peace River) and industrial activities including oil sands mining (Athabasca River). This study assessed seasonal changes in 1) Peace River water quality and quantity before and after dam development, 2) Athabasca River water quality and quantity before and after oil sands developments, 3) tributary inputs from the Peace and Athabasca Rivers to the Slave River, and 4) upstream to downstream differences in water quality in the Slave River. In addition, seasonal benchmarks were calculated for each river based on pre-perturbation post-perturbation data for future cumulative effects assessments. Winter discharge (January-March) from the Peace and Slave Rivers was significantly higher than before dam construction (pre-1967) (p Slave River, as there were no significant differences in loadings of dissolved N, total P (TP), total organic C (TOC), total As, total Mn, total V, and turbidity and specific conductance between these rivers. In the Athabasca River, TP and specific conductance concentrations increased significantly since before oil sands developments (1967-2010), whereas dissolved N and sulfate have increased after the oil sands developments (1977-2010). Recently, the Athabasca River had significantly higher concentrations of dissolved N, TP, TOC, dissolved sulfate, specific conductance, and total Mn than either the Slave or the Peace Rivers during the winter months. The transboundary nature of the Peace, Athabasca, and Slave River basins has resulted in fragmented monitoring and reporting of the state of these rivers, and a more consistent monitoring framework is recommended. Copyright © 2012 SETAC.

  16. Hydrologic Engineering Center River Analysis System (HEC-RAS) Water Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental Impact Statement

    Science.gov (United States)

    2017-09-18

    ER D C/ EL T R- 17 -1 8 Missouri River Recovery Program (MRRP) Hydrologic Engineering Center-River Analysis System (HEC-RAS) Water...library at http://acwc.sdp.sirsi.net/client/default. Missouri River Recovery Program (MRRP) ERDC/EL TR-17-18 September 2017 Hydrologic ...Impact Statement” ERDC/EL TR-17-18 ii Abstract This report describes the Hydrologic Engineering Center-River Analysis System (HEC-RAS) water

  17. Improvements MOIRA system for application to nuclear sites Spanish river

    International Nuclear Information System (INIS)

    Gallego Diaz, E.; Iglesias Ferrer, R.; Dvorzhak, A.; Hofman, D.

    2011-01-01

    Possible consequences of a nuclear accident must have radioactive contamination in the medium and long-term freshwater aquatic systems. Faced with this problem, it is essential to have a realistic assessment of the radiological impact, ecological, social and economic potential management strategies, to take the best decisions rationally. MOIRA is a system of decision support developed in the course of the European Framework Programmes with participation of the UPM, which has been improved and adapted to Spanish nuclear sites in recent years in the context ISIDRO Project, sponsored by the Council Nuclear, with the participation of CIEMAT and UPM. The paper focuses on these advances, primarily related to complex hydraulic systems such as rivers Tajo, Ebro and Jucar, which are located several Spanish plants.

  18. Andean contributions to the biogeochemistry of the amazon river system

    Directory of Open Access Journals (Sweden)

    1995-01-01

    Atlántico. Un nuevo programa colaborativo de investigación se inició en 1994 con el propósito de caracterizar de una manera más completa la biogeoquímica de los ríos andinos. Contributions from Andean rivers may play a significant role in determining the basin-wide biogeochemistry integrated into the mainstem Amazon River of Brazil. Concentration data for organic C, NO3-, and PO43- in Andean rivers are highly variable and reveal no clear spatial or altitudinal patterns. Concentrations measured in Andean rivers are similar to those reported in the mainstem Amazon river and its major tributaries. Explanations of processes which alter Andean-derived particulates and solutes as they exit the Cordillera are only speculative at this time, but their net effect is to diminish Andean signals through decomposition and dilution by lowland inputs. The 13C of particulate and dissolved organic matter in the mainstem Amazon provides evidence that some fraction of Andean derived material persists within the river system, ultimately to be discharged to the Atlantic Ocean. In 1994 a new collaborative research program was launched to further characterize the biogeochemistry of Andean rivers.

  19. Flood forecasting and early warning system for Dungun River Basin

    International Nuclear Information System (INIS)

    Hafiz, I; Sidek, L M; Basri, H; Fukami, K; Hanapi, M N; Livia, L; Nor, M D

    2013-01-01

    Floods can bring such disasters to the affected dweller due to loss of properties, crops and even deaths. The damages to properties and crops by the severe flooding are occurred due to the increase in the economic value of the properties as well as the extent of the flood. Flood forecasting and warning system is one of the examples of the non-structural measures which can give early warning to the affected people. People who live near the flood-prone areas will be warned so that they can evacuate themselves and their belongings before the arrival of the flood. This can considerably reduce flood loss and damage and above all, the loss of human lives. Integrated Flood Analysis System (IFAS) model is a runoff analysis model converting rainfall into runoff for a given river basin. The simulation can be done using either ground or satellite-based rainfall to produce calculated discharge within the river. The calculated discharge is used to generate the flood inundation map within the catchment area for the selected flood event using Infowork RS.

  20. Hydrogeologic data for the Big River-Mishnock River stream-aquifer system, central Rhode Island

    Science.gov (United States)

    Craft, P.A.

    2001-01-01

    Hydrogeology, ground-water development alternatives, and water quality in the BigMishnock stream-aquifer system in central Rhode Island are being investigated as part of a long-term cooperative program between the Rhode Island Water Resources Board and the U.S. Geological Survey to evaluate the ground-water resources throughout Rhode Island. The study area includes the Big River drainage basin and that portion of the Mishnock River drainage basin upstream from the Mishnock River at State Route 3. This report presents geologic data and hydrologic and water-quality data for ground and surface water. Ground-water data were collected from July 1996 through September 1998 from a network of observation wells consisting of existing wells and wells installed for this study, which provided a broad distribution of data-collection sites throughout the study area. Streambed piezometers were used to obtain differences in head data between surface-water levels and ground-water levels to help evaluate stream-aquifer interactions throughout the study area. The types of data presented include monthly ground-water levels, average daily ground-water withdrawals, drawdown data from aquifer tests, and water-quality data. Historical water-level data from other wells within the study area also are presented in this report. Surface-water data were obtained from a network consisting of surface-water impoundments, such as ponds and reservoirs, existing and newly established partial-record stream-discharge sites, and synoptic surface-water-quality sites. Water levels were collected monthly from the surface-water impoundments. Stream-discharge measurements were made at partial-record sites to provide measurements of inflow, outflow, and internal flow throughout the study area. Specific conductance was measured monthly at partial-record sites during the study, and also during the fall and spring of 1997 and 1998 at 41 synoptic sites throughout the study area. General geologic data, such as

  1. Environmental state of aquatic systems in the Selenga River basin

    Science.gov (United States)

    Shinkareva, Galina; Lychagin, Mikhail

    2013-04-01

    The transboundary river system of Selenga is the biggest tributary of Lake Baikal (about 50 % of the total inflow) which is the largest freshwater reservoir in the world. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the environmental state of the river aquatic system. The main source of industrial waste in the Republic of Buryatia (Russia) is mining and in Mongolia it is mainly gold mining. Our study aimed to determine the present pollutant levels and main features of their spatial distribution in water, suspended matter, bottom sediments and water plants in the Selenga basin. The results are based on materials of the 2011 (July-August) field campaign carried out both in Russian and Mongolian part of the basin. The study revealed rather high levels of dissolved Fe, Al, Mn, Zn, Cu and Mo in the Selenga River water which often are higher than maximum permissible concentrations for water fishery in Russia. In Russian part of the basin most contrast distribution is found for W and Mo, which is caused by mineral deposits in this area. The study showed that Mo and Zn migrate mainly in dissolved form, since more than 70% of Fe, Al, and Mn are bound to the suspended solids. Suspended sediments in general are enriched by As, Cd and Pb in relation to the lithosphere averages. Compared to the background values rather high contents of Mo, Cd, and Mn were found in suspended matter of Selenga lower Ulan-Ude town. Transboundary transport of heavy metals from Mongolia is going both in dissolved and suspended forms. From Mongolia in diluted form Selenga brings a significant amount of Al, Fe, Mn, Zn, Cu and Mo. Suspended solids are slightly enriched with Pb, Cu, and Mn, in higher concentration - Mo. The study of the Selenga River delta allowed determining biogeochemical specialization of the region: aquatic plants accumulate Mn, Fe, Cu, Cd, and to

  2. Fluvial River Regime in Disturbed River Systems: A Case Study of Evolution of the Middle Yangtze River in Post-TGD (Three Gorges Dam), China

    NARCIS (Netherlands)

    Zhao, G.; Lu, J; Visser, P.J.

    2015-01-01

    The fluvial river is a kind of open system that can interact with its outside environments and give response to disturbance from outside on the earth. It can adjust itself to the disturbances outside the system and reflects new characteristics in the process of reaching a new equilibrium. The TGD

  3. Sr isotope tracing of multiple water sources in a complex river system, Noteć River, central Poland

    International Nuclear Information System (INIS)

    Zieliński, Mateusz; Dopieralska, Jolanta; Belka, Zdzislaw; Walczak, Aleksandra; Siepak, Marcin; Jakubowicz, Michal

    2016-01-01

    Anthropogenic impact on surface waters and other elements in the environment was investigated in the Noteć River basin in central Poland. The approach was to trace changes in the Sr isotope composition ( 87 Sr/ 86 Sr) and concentration in space and time. Systematic sampling of the river water shows a very wide range of 87 Sr/ 86 Sr ratios, from 0.7089 to 0.7127. This strong variation, however, is restricted to the upper course of the river, whereas the water in the lower course typically shows 87 Sr/ 86 Sr values around 0.7104–0.7105. Variations in 87 Sr/ 86 Sr are associated with a wide range of Sr concentrations, from 0.14 to 1.32 mg/L. We find that strong variations in 87 Sr/ 86 Sr and Sr concentrations can be accounted for by mixing of two end-members: 1) atmospheric waters charged with Sr from the near-surface weathering and wash-out of Quaternary glaciogenic deposits, and 2) waters introduced into the river from an open pit lignite mine. The first reservoir is characterized by a low Sr content and high 87 Sr/ 86 Sr ratios, whereas mine waters display opposite characteristics. Anthropogenic pollution is also induced by extensive use of fertilizers which constitute the third source of Sr in the environment. The study has an important implication for future archeological studies in the region. It shows that the present-day Sr isotope signatures of river water, flora and fauna cannot be used unambiguously to determine the “baseline” for bioavailable 87 Sr/ 86 Sr in the past. - Highlights: • Sr isotopes fingerprint water sources and their interactions in a complex river system. • Mine waters and fertilizers are critical anthropogenic additions in the river water. • Limited usage of environmental isotopic data in archeological studies. • Sr budget of the river is dynamic and temporary.

  4. Assessment of river quality in a subtropical Austral river system: a combined approach using benthic diatoms and macroinvertebrates

    Science.gov (United States)

    Nhiwatiwa, Tamuka; Dalu, Tatenda; Sithole, Tatenda

    2017-12-01

    River systems constitute areas of high human population densities owing to their favourable conditions for agriculture, water supply and transportation network. Despite human dependence on river systems, anthropogenic activities severely degrade water quality. The main aim of this study was to assess the river health of Ngamo River using diatom and macroinvertebrate community structure based on multivariate analyses and community metrics. Ammonia, pH, salinity, total phosphorus and temperature were found to be significantly different among the study seasons. The diatom and macroinvertebrate taxa richness increased downstream suggesting an improvement in water as we moved away from the pollution point sources. Canonical correspondence analyses identified nutrients (total nitrogen and reactive phosphorus) as important variables structuring diatom and macroinvertebrate community. The community metrics and diversity indices for both bioindicators highlighted that the water quality of the river system was very poor. These findings indicate that both methods can be used for water quality assessments, e.g. sewage and agricultural pollution, and they show high potential for use during water quality monitoring programmes in other regions.

  5. A brief history and summary of the effects of river engineering and dams on the Mississippi River system and delta

    Science.gov (United States)

    Alexander, Jason S.; Wilson, Richard C.; Green, W. Reed

    2012-01-01

    The U.S. Geological Survey Forecast Mekong project is providing technical assistance and information to aid management decisions and build science capacity of institutions in the Mekong River Basin. A component of this effort is to produce a synthesis of the effects of dams and other engineering structures on large-river hydrology, sediment transport, geomorphology, ecology, water quality, and deltaic systems. The Mississippi River Basin (MRB) of the United States was used as the backdrop and context for this synthesis because it is a continental scale river system with a total annual water discharge proportional to the Mekong River, has been highly engineered over the past two centuries, and the effects of engineering have been widely studied and documented by scientists and engineers. The MRB is controlled and regulated by dams and river-engineering structures. These modifications have resulted in multiple benefits including navigation, flood control, hydropower, bank stabilization, and recreation. Dams and other river-engineering structures in the MRB have afforded the United States substantial socioeconomic benefits; however, these benefits also have transformed the hydrologic, sediment transport, geomorphic, water-quality, and ecologic characteristics of the river and its delta. Large dams on the middle Missouri River have substantially reduced the magnitude of peak floods, increased base discharges, and reduced the overall variability of intraannual discharges. The extensive system of levees and wing dikes throughout the MRB, although providing protection from intermediate magnitude floods, have reduced overall channel capacity and increased flood stage by up to 4 meters for higher magnitude floods. Prior to major river engineering, the estimated average annual sediment yield of the Mississippi River Basin was approximately 400 million metric tons. The construction of large main-channel reservoirs on the Missouri and Arkansas Rivers, sedimentation in dike

  6. River Maintenance Management System Using Three-Dimensional UAV Data in Japan

    Science.gov (United States)

    Kubota, S.; Kawai, Y.

    2016-10-01

    River administration facilities such as levees and river walls play a major role in preventing flooding due to heavy rain. The forms of such facilities must be constantly monitored for alteration due to rain and running water, and limited human resources and budgets make it necessary to efficiently maintain river administration facilities. During maintenance, inspection results are commonly recorded on paper documents. Continuous inspection and repair using information systems are an on-going challenge. This study proposes a maintenance management system for river facilities that uses three-dimensional data to solve these problems and make operation and maintenance more efficient. The system uses three-dimensional data to visualize river facility deformation and its process, and it has functions that visualize information about river management at any point in the three-dimensional data. The threedimensional data is generated by photogrammetry using a camera on an Unmanned Aerial Vehicle.

  7. Advancement of Global-scale River Hydrodynamics Modelling and Its Potential Applications to Earth System Models

    Science.gov (United States)

    Yamazaki, D.

    2015-12-01

    Global river routine models have been developed for representing freshwater discharge from land to ocean in Earth System Models. At the beginning, global river models had simulated river discharge along a prescribed river network map by using a linear-reservoir assumption. Recently, in parallel with advancement of remote sensing and computational powers, many advanced global river models have started to represent floodplain inundation assuming sub-grid floodplain topography. Some of them further pursue physically-appropriate representation of river and floodplain dynamics, and succeeded to utilize "hydrodynamic flow equations" to realistically simulate channel/floodplain and upstream/downstream interactions. State-of-the-art global river hydrodynamic models can well reproduce flood stage (e.g. inundated areas and water levels) in addition to river discharge. Flood stage simulation by global river models can be potentially coupled with land surface processes in Earth System Models. For example, evaporation from inundated water area is not negligible for land-atmosphere interactions in arid areas (such as the Niger River). Surface water level and ground water level are correlated each other in flat topography, and this interaction could dominate wetting and drying of many small lakes in flatland and could also affect biogeochemical processes in these lakes. These land/surface water interactions had not been implemented in Earth System Models but they have potential impact on the global climate and carbon cycle. In the AGU presentation, recent advancements of global river hydrodynamic modelling, including super-high resolution river topography datasets, will be introduces. The potential applications of river and surface water modules within Earth System Models will be also discussed.

  8. William Halse Rivers Rivers (1864-1922) and the sensory nervous system.

    Science.gov (United States)

    Pearce, J M S

    2008-01-01

    The polymath William Rivers played an important role in his work with Henry Head in demonstrating the varied, evolving patterns of sensory loss, and epicritic and protopathic sensation, after the section of the superficial ramus of Head's left radial nerve. After a mixed and frustrated army career Rivers devoted his attentions to shell shock and other psychological disturbances which were well received in his time. Siegfried Sassoon and Wilfred Owen were among the distinguished patients whose writings revealed Rivers as the revered object of their gratitude. Copyright 2008 S. Karger AG, Basel.

  9. Columbia River Hatchery Reform System-Wide Report.

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Dan [Hatchery Scientific Review Group

    2009-04-16

    for Puget Sound/Coastal Washington hatchery programs, followed by the development in 2005 of a suite of analytical tools to support application of the principles (all reports and tools are available at www.hatcheryreform.us). In 2005, Congress directed the National Oceanic and Atmospheric Administration-Fisheries (NOAA Fisheries) to replicate the Puget Sound and Coastal Washington Hatchery Reform Project in the Columbia River Basin. The HSRG was expanded to 14 members to include individuals with specific knowledge about the Columbia River salmon and steelhead populations. This second phase was initially envisioned as a one-year review, with emphasis on the Lower Columbia River hatchery programs. It became clear however, that the Columbia River Basin needed to be viewed as an inter-connected ecosystem in order for the review to be useful. The project scope was subsequently expanded to include the entire Basin, with funding for a second year provided by the Bonneville Power Administration (BPA) under the auspices of the Northwest Power and Conservation Council's (NPCC) Fish and Wildlife Program. The objective of the HSRG's Columbia River Basin review was to change the focus of the Columbia River hatchery system. In the past, these hatchery programs have been aimed at supplying adequate numbers of fish for harvest as mitigation primarily for hydropower development in the Basin. A new, ecosystem-based approach is founded on the idea that harvest goals are sustainable only if they are compatible with conservation goals. The challenge before the HSRG was to determine whether or not conservation and harvest goals could be met by fishery managers and, if so, how. The HSRG determined that in order to address these twin goals, both hatchery and harvest reforms are necessary. The HSRG approach represents an important change of direction in managing hatcheries in the region. It provides a clear demonstration that current hatchery programs can indeed be redirected to

  10. Reliability evaluation of the Savannah River reactor leak detection system

    International Nuclear Information System (INIS)

    Daugherty, W.L.; Sindelar, R.L.; Wallace, I.T.

    1991-01-01

    The Savannah River Reactors have been in operation since the mid-1950's. The primary degradation mode for the primary coolant loop piping is intergranular stress corrosion cracking. The leak-before-break (LBB) capability of the primary system piping has been demonstrated as part of an overall structural integrity evaluation. One element of the LBB analyses is a reliability evaluation of the leak detection system. The most sensitive element of the leak detection system is the airborne tritium monitors. The presence of small amounts of tritium in the heavy water coolant provide the basis for a very sensitive system of leak detection. The reliability of the tritium monitors to properly identify a crack leaking at a rate of either 50 or 300 lb/day (0.004 or 0.023 gpm, respectively) has been characterized. These leak rates correspond to action points for which specific operator actions are required. High reliability has been demonstrated using standard fault tree techniques. The probability of not detecting a leak within an assumed mission time of 24 hours is estimated to be approximately 5 x 10 -5 per demand. This result is obtained for both leak rates considered. The methodology and assumptions used to obtain this result are described in this paper. 3 refs., 1 fig., 1 tab

  11. Columbia River System Operation Review final environmental impact statement. Appendix M: Water quality

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. Analysis of water quality begins with an account of the planning and evaluation process, and continues with a description of existing water quality conditions in the Columbia River Basin. This is followed by an explanation how the analysis was conducted. The analysis concludes with an assessment of the effects of SOR alternatives on water quality and a comparison of alternatives

  12. Columbia River System Operation Review final environmental impact statement. Appendix E: Flood control

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The Corps of Engineers, Bonneville Power Administration, and Bureau of Reclamation conducted a scoping process consisting of a series of regionwide public meetings and solicitation of written comments in the summer of 1990. Comments on flood control issues were received from all parts of the Columbia river basin. This appendix includes issues raised in the public scoping process, as well as those brought for consideration by members of the Flood Control Work Group

  13. The Water Quality of the River Enborne, UK: Observations from High-Frequency Monitoring in a Rural, Lowland River System

    Directory of Open Access Journals (Sweden)

    Sarah J. Halliday

    2014-01-01

    Full Text Available This paper reports the results of a 2-year study of water quality in the River Enborne, a rural river in lowland England. Concentrations of nitrogen and phosphorus species and other chemical determinands were monitored both at high-frequency (hourly, using automated in situ instrumentation, and by manual weekly sampling and laboratory analysis. The catchment land use is largely agricultural, with a population density of 123 persons km−2. The river water is largely derived from calcareous groundwater, and there are high nitrogen and phosphorus concentrations. Agricultural fertiliser is the dominant source of annual loads of both nitrogen and phosphorus. However, the data show that sewage effluent discharges have a disproportionate effect on the river nitrogen and phosphorus dynamics. At least 38% of the catchment population use septic tank systems, but the effects are hard to quantify as only 6% are officially registered, and the characteristics of the others are unknown. Only 4% of the phosphorus input and 9% of the nitrogen input is exported from the catchment by the river, highlighting the importance of catchment process understanding in predicting nutrient concentrations. High-frequency monitoring will be a key to developing this vital process understanding.

  14. Seismic evaluation of safety systems at the Savannah River reactors

    International Nuclear Information System (INIS)

    Hardy, G.S.; Johnson, J.J.; Eder, S.J.; Monahon, T.M.; Ketcham, D.R.

    1989-01-01

    A thorough review of all safety related systems in commercial nuclear power plants was prompted by the accident at the Three Mile Island Nuclear Power Plant. As a consequence of this review, the Nuclear Regulatory Commission (NRC) focused its attention on the environmental and seismic qualification of the industry's electrical and mechanical equipment. In 1980, the NRC issued Unresolved Safety Issue (USI) A-46 to verify the seismic adequacy of the equipment required to safely shut down a plant and maintain a stable condition for 72 hours. After extensive research by the NRC, it became apparent that traditional analysis and testing methods would not be a feasible mechanism to address this USI A-46 issue. The costs associated with utilizing the standard analytical and testing qualification approaches were exorbitant and could not be justified. In addition, the only equipment available to be shake table testing which is similar to the item being qualified is typically the nuclear plant component itself. After 8 years of studies and data collection, the NRC issued its ''Generic Safety Evaluation Report'' approving an alternate seismic qualification approach based on the use of seismic experience data. This experience-based seismic assessment approach will be the basis for evaluating each of the 70 pre-1972 commercial nuclear power units in the United States and for an undetermined number of nuclear plants located in foreign countries. This same cost-effective developed for the commercial nuclear power industry is currently being applied to the Savannah River Production Reactors to address similar seismic adequacy issues. This paper documents the results of the Savannah River Plant seismic evaluating program. This effort marks the first complete (non-trial) application of this state-of-the-art USI A-46 resolution methodology

  15. Seismic evaluation of safety systems at the Savannah River reactors

    International Nuclear Information System (INIS)

    Hardy, G.S.; Johnson, J.J.; Eder, S.J.; Monahon, T.; Ketcham, D.

    1989-01-01

    A thorough review of all safety related systems in commercial nuclear power plants was prompted by the accident at the Three Mile Island Nuclear Power Plant. As a consequence of this review, the Nuclear Regulatory Commission (NRC) focused its attention on the environmental and seismic qualification of the industry's electrical and mechanical equipment. In 1980, the NRC issued Unresolved Safety Issue (USI) A-46 to verify the seismic adequacy of the equipment required to safely shut down a plant and maintain a stable condition for 72 hours. After extensive research by the NRC, it became apparent that traditional analysis and testing methods would not be a feasible mechanism to address this USI A-46 issue. The costs associated with utilizing the standard analytical and testing qualification approaches were exorbitant and could not be justified. In addition, the only equipment available to be shake table tested which is similar to the item being qualified is typically the nuclear plant component itself. After 8 years of studies and data collection, the NRC issued its Generic Safety Evaluation Report approving an alternate seismic qualification approach based on the use of seismic experience data. This experience-based seismic assessment approach will be the basis for evaluating each of the 70 pre-1972 commercial nuclear power units in the US and for an undetermined number of nuclear plants located in foreign countries. This same cost-effective approach developed for the commercial nuclear power industry is currently being applied to the Savannah River Production Reactors to address similar seismic adequacy issues. This paper documents the results of the Savannah River Plant seismic evaluation program. This effort marks the first complete (non-trial) application of this state-of-the-art USI A-46 resolution methodology

  16. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix N: Wildlife.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    The Columbia River System is a vast and complex combination of Federal and non-Federal facilities used for many purposes including power production, irrigation, navigation, flood control, recreation, fish and wildlife habitat and municipal and industrial water supply. Each river use competes for the limited water resources in the Columbia River Basin. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The environmental impact statement (EIS) itself and some of the other appendices present analyses of the alternative approaches to the other three decisions considered as part of the SOR. This document is the product of the Wildlife Work Group, focusing on wildlife impacts but not including fishes. Topics covered include the following: scope and process; existing and affected environment, including specific discussion of 18 projects in the Columbia river basin. Analysis, evaluation, and alternatives are presented for all projects. System wide impacts to wildlife are also included.

  17. Columbia River system operation review: Final environmental impact statement. Appendix N, wildlife

    International Nuclear Information System (INIS)

    1995-11-01

    The Columbia River System is a vast and complex combination of Federal and non-Federal facilities used for many purposes including power production, irrigation, navigation, flood control, recreation, fish and wildlife habitat and municipal and industrial water supply. Each river use competes for the limited water resources in the Columbia River Basin. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The environmental impact statement (EIS) itself and some of the other appendices present analyses of the alternative approaches to the other three decisions considered as part of the SOR. This document is the product of the Wildlife Work Group, focusing on wildlife impacts but not including fishes. Topics covered include the following: scope and process; existing and affected environment, including specific discussion of 18 projects in the Columbia river basin. Analysis, evaluation, and alternatives are presented for all projects. System wide impacts to wildlife are also included

  18. Columbia River System Operation Review final environmental impact statement. Appendix G: Land use and development

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. The SOR began in early 1990, prior to the filing of petitions for endangered status for several salmon species under the Endangered Species Act. The comprehensive review of Columbia River operations encompassed by the SOR was prompted by the need for Federal decisions to (1) develop a coordinated system operating strategy (SOS) for managing the multiple uses of the system into the 21st century; (2) provide interested parties with a continuing and increased long-term role in system planning (Columbia River Regional Forum); (3) renegotiate and renew the Pacific Northwest Coordination Agreement (PNCA), a contractual arrangement among the region's major hydroelectric-generating utilities and affected Federal agencies to provide for coordinated power generation on the Columbia River system; and (4) renew or develop new Canadian Entitlement Allocation Agreements. The review provides the environmental analysis required by the National Environmental Policy Act (NEPA). This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The environmental impact statement (EIS) itself and some of the other appendices present analyses of the alternative approaches to the other three decisions considered as part of the SOR

  19. Trace element assessment in water of river kassa system, jos ...

    African Journals Online (AJOL)

    Global Journal of Geological Sciences. Journal Home ... The value of index of geoaccumulation (Igeo) is approximately 2; for Zn and Pb which indicates, moderate contamination. Areas of the river ... The major sources of contamination are mining and agricultural activities on the flood plain of this river. The anomalous ...

  20. Propagation of a cadmium spill through an impounded river system

    NARCIS (Netherlands)

    Klaver, G.T.; Joziasse, J.; Bakker, I.

    2009-01-01

    In this paper, the influence of impoundments (sluices, weirs, etc.) and stream components (tributaries, river branches, associated canals) on the metal content in water and suspended particulate matter (SPM) in the Dutch part of the River Meuse is assessed using the decrease in the cadmium content

  1. Environmental data management system at the Savannah River Site

    International Nuclear Information System (INIS)

    Story, C.H.; Gordon, D.E.

    1989-01-01

    The volume and complexity of data associated with escalating environmental regulations has prompted professionals at the Savannah River Site to begin taking steps necessary to better manage environmental information. This paper describes a plan to implement an integrated environmental information system at the site. Nine topic areas have been identified. They are: administrative, air, audit ampersand QA, chemical information/inventory, ecology, environmental education, groundwater, solid/hazardous waste, and surface water. Identification of environmental databases that currently exist, integration into a ''friendly environment,'' and development of new applications will all take place as a result of this effort. New applications recently completed include Groundwater Well Construction, NPDES (Surface Water) Discharge Monitoring, RCRA Quarterly Reporting, and Material Safety Data Sheet Information. Database applications are relational (Oracle RDBMS) and reside largely in DEC VMS environments. In today's regulatory and litigation climate, the site recognizes they must have knowledge of accurate environmental data at the earliest possible time. Implementation of this system will help ensure this

  2. The Paradox of Restoring Native River Landscapes and Restoring Native Ecosystems in the Colorado River System

    Science.gov (United States)

    Schmidt, J. C.

    2014-12-01

    Throughout the Colorado River basin (CRb), scientists and river managers collaborate to improve native ecosystems. Native ecosystems have deteriorated due to construction of dams and diversions that alter natural flow, sediment supply, and temperature regimes, trans-basin diversions that extract large amounts of water from some segments of the channel network, and invasion of non-native animals and plants. These scientist/manager collaborations occur in large, multi-stakeholder, adaptive management programs that include the Lower Colorado River Multi-Species Conservation Program, the Glen Canyon Dam Adaptive Management Program, and the Upper Colorado River Endangered Species Recovery Program. Although a fundamental premise of native species recovery is that restoration of predam flow regimes inevitably leads to native species recovery, such is not the case in many parts of the CRb. For example, populations of the endangered humpback chub (Gila cypha) are largest in the sediment deficit, thermally altered conditions of the Colorado River downstream from Glen Canyon Dam, but these species occur in much smaller numbers in the upper CRb even though the flow regime, sediment supply, and sediment mass balance are less perturbed. Similar contrasts in the physical and biological response of restoration of predam flow regimes occurs in floodplains dominated by nonnative tamarisk (Tamarix spp.) where reestablishment of floods has the potential to exacerbate vertical accretion processes that disconnect the floodplain from the modern flow regime. A significant challenge in restoring segments of the CRb is to describe this paradox of physical and biological response to reestablishment of pre-dam flow regimes, and to clearly identify objectives of environmentally oriented river management. In many cases, understanding the nature of the perturbation to sediment mass balance caused by dams and diversions and understanding the constraints imposed by societal commitments to provide

  3. Development of a GIS-Based Decision Support System for Diagnosis of River System Health and Restoration

    Directory of Open Access Journals (Sweden)

    Jihong Xia

    2014-10-01

    Full Text Available The development of a decision support system (DSS to inform policy making has been progressing rapidly. This paper presents a generic framework and the development steps of a decision tool prototype of geographic information systems (GIS-based decision support system of river health diagnosis (RHD-DSS. This system integrates data, calculation models, and human knowledge of river health status assessment, causal factors diagnosis, and restoration decision making to assist decision makers during river restoration and management in Zhejiang Province, China. Our RHD-DSS is composed of four main elements: the graphical user interface (GUI, the database, the model base, and the knowledge base. It has five functional components: the input module, the database management, the diagnostic indicators management, the assessment and diagnosis, and the visual result module. The system design is illustrated with particular emphasis on the development of the database, model schemas, diagnosis and analytical processing techniques, and map management design. Finally, the application of the prototype RHD-DSS is presented and implemented for Xinjiangtang River of Haining County in Zhejiang Province, China. This case study is used to demonstrate the advantages gained by the application of this system. We conclude that there is great potential for using the RHD-DSS to systematically manage river basins in order to effectively mitigate environmental issues. The proposed approach will provide river managers and designers with improved insight into river degradation conditions, thereby strengthening the assessment process and the administration of human activities in river management.

  4. Performance of a coupled lagged ensemble weather and river runoff prediction model system for the Alpine Ammer River catchment

    Science.gov (United States)

    Smiatek, G.; Kunstmann, H.; Werhahn, J.

    2012-04-01

    The Ammer River catchment located in the Bavarian Ammergau Alps and alpine forelands, Germany, represents with elevations reaching 2185 m and annual mean precipitation between1100 and 2000 mm a very demanding test ground for a river runoff prediction system. Large flooding events in 1999 and 2005 motivated the development of a physically based prediction tool in this area. Such a tool is the coupled high resolution numerical weather and river runoff forecasting system AM-POE that is being studied in several configurations in various experiments starting from the year 2005. Corner stones of the coupled system are the hydrological water balance model WaSiM-ETH run at 100 m grid resolution, the numerical weather prediction model (NWP) MM5 driven at 3.5 km grid cell resolution and the Perl Object Environment (POE) framework. POE implements the input data download from various sources, the input data provision via SOAP based WEB services as well as the runs of the hydrology model both with observed and with NWP predicted meteorology input. The one way coupled system utilizes a lagged ensemble prediction system (EPS) taking into account combination of recent and previous NWP forecasts. Results obtained in the years 2005-2011 reveal that river runoff simulations depict high correlation with observed runoff when driven with monitored observations in hindcast experiments. The ability to runoff forecasts is depending on lead times in the lagged ensemble prediction and shows still limitations resulting from errors in timing and total amount of the predicted precipitation in the complex mountainous area. The presentation describes the system implementation, and demonstrates the application of the POE framework in networking, distributed computing and in the setup of various experiments as well as long term results of the system application in the years 2005 - 2011.

  5. Analysis of the ancient river system in Loulan period in Lop Nur region

    Science.gov (United States)

    Zhu, Jianfeng; Jia, Peng; Nie, Yueping

    2010-09-01

    The Lop Nur region is located in the east of the Tarim Basin. It has served as the strategic passage and communication hub of the Silk Road since Han Dynasty. During Wei-Jin period, the river system there was well developed and the ancient city of Loulan was bred there. In this study, GIS is used to accomplish automatic extraction of the river course in the Lop Nur region at first using ArcGIS. Then the RCI index is constituted to extract ancient river course from Landsat ETM image with band 3 and band 4. It is concluded that the north river course of Peacock River conformed before the end of the 4th century AD according to the distribution of the entire river course of the Lop Nur region. Later, the Peacock River changed its way to south to Tarim River, and flowed into Lop Nur along the direction paralleling Altun Mountain from west to east. It was the change of the river system that mainly caused the decrease in water supply around ancient city of Loulan before the end of 4th century. The ancient city of Loulan has been gradually ruined in the sand because of the absence of water supply since then.

  6. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix O: Economic and Social Impact.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Appendix O of the Final Environmental Impact Statement for the Columbia River System measures the economic and social effects of the alternative system operation strategies and includes both geographic and methodology components. Areas discussed in detail include the following: purpose, scope and process; an economic history of the Columbia River Basin and its use today including the Columbia River and Socio-economic development in the Northwest and Major uses of the River System; Analysis procedures and methodologies including national economic evaluation, the concepts, analysis of assumptions, analysis for specific river uses, water quality, Regional evaluation, analysis, and social impacts; alternatives and impacts including implementation costs, andromous fish, resident fish and wildlife, flood control, irrigation and municipal and industrial water supply, navigation impacts, power, recreation, annual costs, regional economic analysis. Extensive comparison of alternatives is included.

  7. Columbia River system operation review: Final environmental impact statement. Appendix O, economic and social impact

    International Nuclear Information System (INIS)

    1995-11-01

    This Appendix O of the Final Environmental Impact Statement for the Columbia River System measures the economic and social effects of the alternative system operation strategies and includes both geographic and methodology components. Areas discussed in detail include the following: purpose, scope and process; an economic history of the Columbia River Basin and its use today including the Columbia River and Socio-economic development in the Northwest and Major uses of the River System; Analysis procedures and methodologies including national economic evaluation, the concepts, analysis of assumptions, analysis for specific river uses, water quality, Regional evaluation, analysis, and social impacts; alternatives and impacts including implementation costs, andromous fish, resident fish and wildlife, flood control, irrigation and municipal and industrial water supply, navigation impacts, power, recreation, annual costs, regional economic analysis. Extensive comparison of alternatives is included

  8. Contrasts in Sediment Delivery and Dispersal from River Mouth to Accumulation Zones in High Sediment Load Systems: Fly River, Papua New Guinea and Waipaoa River, New Zealand

    Science.gov (United States)

    Ogston, A. S.; Walsh, J. P.; Hale, R. P.

    2011-12-01

    The relationships between sediment-transport processes, short-term sedimentary deposition, subsequent burial, and long-term accumulation are critical to understanding the morphological development of the continental margin. This study focuses on processes involved in formation and evolution of the clinoform in the Gulf of Papua, Papua New Guinea in which much of the riverine sediment accumulates, and comparison to those processes active off the Waipaoa River, New Zealand that form mid-shelf deposits and export sediment to the slope. In tidally dominated deltas, sediment discharged from the river sources must transit through an estuarine region located within the distributary channels, where particle pathways can undergo significant transformations. Within the distributaries of the Fly River tidally dominated delta, near-bed fluid-mud concentrations were observed at the estuarine turbidity maximum and sediment delivery to the nearshore was controlled by the morphology and gradient of the distributary. El Niño results in anonymously low flow and sediment discharge conditions, which limits transport of sediment from the distributaries to the nearshore zone of temporary storage. Because the sediment stored nearshore feeds the prograding clinoform, this perturbation propagates throughout the dispersal system. In wave-dominated regions, transport mechanisms actively move sediment away from the river source, separating the site of deposition and accumulation from the river mouth. River-flood and storm-wave events each create discrete deposits on the Waipaoa River shelf and data has been collected to determine their form, distribution, and relationship to factors such as flood magnitude or wave energy. In this case, transport pathways appear to be influenced by structurally controlled shelf bathymetry. In both cases, the combined fluvial and marine processes can initiate and maintain gravity-driven density flows, and although their triggers and controls differ vastly

  9. Columbia River system operation review. Final environmental impact statement. Appendix J, recreation

    International Nuclear Information System (INIS)

    1995-11-01

    This Appendix J of the Final Environmental Impact Statement for the Columbia River System discusses impacts on the recreational activities in the region. Major sections include the following: scope and processes; recreation in the Columbia River Basin today - by type, location, participation, user characteristics, factors which affect usage, and managing agencies; recreation analysis procedures and methodology; and alternatives and their impacts

  10. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix J: Recreation.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Appendix J of the Final Environmental Impact Statement for the Columbia River System discusses impacts on the recreational activities in the region. Major sections include the following: scope and processes; recreation in the Columbia River Basin today - by type, location, participation, user characteristics, factors which affect usage, and managing agencies; recreation analysis procedures and methodology; and alternatives and their impacts.

  11. Status and conservation of the fish fauna of the Alabama River system

    Science.gov (United States)

    Freeman, Mary C.; Irwin, E.R.; Burkhead, N.M.; Freeman, B.J.; Bart, H.L.; Rinne, John N.; Hughes, Robert M.; Calamusso, Bob

    2005-01-01

    The Alabama River system, comprising the Alabama, Coosa, and Tallapoosa subsystems, forms the eastern portion of the Mobile River drainage. Physiographic diversity and geologic history have fostered development in the Alabama River system of globally significant levels of aquatic faunal diversity and endemism. At least 184 fishes are native to the system, including at least 33 endemic species. During the past century, dam construction for hydropower generation and navigation resulted in 16 reservoirs that inundate 44% of the length of the Alabama River system main stems. This extensive physical and hydrologic alteration has affected the fish fauna in three major ways. Diadromous and migratory species have declined precipitously. Fish assemblages persisting downstream from large main-stem dams have been simplified by loss of species unable to cope with altered flow and water quality regimes. Fish populations persisting in the headwaters and in tributaries to the mainstem reservoirs are now isolated and subjected to effects of physical and chemical habitat degradation. Ten fishes in the Alabama River system (including seven endemic species) are federally listed as threatened or endangered. Regional experts consider at least 28 additional species to be vulnerable, threatened, or endangered with extinction. Conserving the Alabama River system fish fauna will require innovative dam management, protection of streams from effects of urbanization and water supply development, and control of alien species dispersal. Failure to manage aggressively for integrity of remaining unimpounded portions of the Alabama River system will result in reduced quality of natural resources for future generations, continued assemblage simplification, and species extinction.

  12. Sr isotope tracing of multiple water sources in a complex river system, Noteć River, central Poland

    Energy Technology Data Exchange (ETDEWEB)

    Zieliński, Mateusz, E-mail: mateusz.zielinski@amu.edu.pl [Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Dopieralska, Jolanta, E-mail: dopieralska@amu.edu.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Belka, Zdzislaw, E-mail: zbelka@amu.edu.pl [Isotope Laboratory, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Walczak, Aleksandra, E-mail: awalczak@amu.edu.pl [Isotope Laboratory, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Siepak, Marcin, E-mail: siep@amu.edu.pl [Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznań (Poland); Jakubowicz, Michal, E-mail: mjakub@amu.edu.pl [Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland)

    2016-04-01

    Anthropogenic impact on surface waters and other elements in the environment was investigated in the Noteć River basin in central Poland. The approach was to trace changes in the Sr isotope composition ({sup 87}Sr/{sup 86}Sr) and concentration in space and time. Systematic sampling of the river water shows a very wide range of {sup 87}Sr/{sup 86}Sr ratios, from 0.7089 to 0.7127. This strong variation, however, is restricted to the upper course of the river, whereas the water in the lower course typically shows {sup 87}Sr/{sup 86}Sr values around 0.7104–0.7105. Variations in {sup 87}Sr/{sup 86}Sr are associated with a wide range of Sr concentrations, from 0.14 to 1.32 mg/L. We find that strong variations in {sup 87}Sr/{sup 86}Sr and Sr concentrations can be accounted for by mixing of two end-members: 1) atmospheric waters charged with Sr from the near-surface weathering and wash-out of Quaternary glaciogenic deposits, and 2) waters introduced into the river from an open pit lignite mine. The first reservoir is characterized by a low Sr content and high {sup 87}Sr/{sup 86}Sr ratios, whereas mine waters display opposite characteristics. Anthropogenic pollution is also induced by extensive use of fertilizers which constitute the third source of Sr in the environment. The study has an important implication for future archeological studies in the region. It shows that the present-day Sr isotope signatures of river water, flora and fauna cannot be used unambiguously to determine the “baseline” for bioavailable {sup 87}Sr/{sup 86}Sr in the past. - Highlights: • Sr isotopes fingerprint water sources and their interactions in a complex river system. • Mine waters and fertilizers are critical anthropogenic additions in the river water. • Limited usage of environmental isotopic data in archeological studies. • Sr budget of the river is dynamic and temporary.

  13. The ESA River & Lake System: Current Capabilities and Future Potential

    DEFF Research Database (Denmark)

    Smith, Richard G.; Salloway, Mark; Berry, Philippa A. M.

    Measuring the earth's river and lake resources using satellite radar altimetry offers a unique global monitoring capability, which complements the detailed measurements made by the steadily decreasing number of in-situ gauges. To exploit this unique remote monitoring capability, a global pilot...... scheme was implemented in 2005 to derive river and lake surface height measurements from multi-mission satellite radar altimetry. Near-Real-Time (NRT) products from the Jason-2 satellite altimeter are automatically generated based on data acquired daily from CNES; allowing for estimates of river and lake...

  14. Columbia River System Operation Review final environmental impact statement. Appendix L: Soils, geology and groundwater

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. This appendix addresses the study of geology, soils, and groundwater concerns relative to the System Operation Review (SOR). Chapter 1 provides an overview of the study, scope, and process for this resource area. In order, the respective sections of this chapter discuss the relevant issues for the study, and the means by which the SOR team carried out the study

  15. Building an Intelligent Water Information System - American River Prototype

    Science.gov (United States)

    Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2013-12-01

    recorded by sensors into information in the form that is useful for decision-making. In a sense it 'monetizes' the data. It is the cyber infrastructure that links measurements, data processing, models and users. System software must provide flexibility for multiple types of access from user queries to automated and direct links with analysis tools and decision-support systems. We are currently installing a basin-scale ground-based sensor network focusing on measurements of snowpack, solar radiation, temperature, rH and soil moisture across the American River basin. Although this is a research network, it also provides core elements of a full ground-based operational system.

  16. Paleodrainage of the Columbia River system on the Columbia Plateau of Washington State: a summary

    International Nuclear Information System (INIS)

    Fecht, K.R.; Reidel, S.P.; Tallman, A.M.

    1985-12-01

    The evolution of the Columbia River drainage system on the Columbia Plateau of Washington in the last 17 My reflects the geologic history of the plateau. We have updated an interpretation of the evolution of the Columbia River system and defined the geomorphic and structural features that have controlled the position of ancestral streams. The sequence of geologic events and the resulting drainage system for various time intervals in the last 17 My are summarized below. 121 refs., 14 figs

  17. Microbiological studies in the Mandovi-Zuari river system

    Digital Repository Service at National Institute of Oceanography (India)

    Row, A.

    Total heterotrophic and coliform bacteria were surveyed during October 1977 to September 1978 from 9 stations each along the rivers Mandovi and Zuari and 3 along the coast of Goa. Total heterotrophic population showed wide temporal and spatial...

  18. Low-Temperature Microbial Activity in River Systems

    National Research Council Canada - National Science Library

    White, K

    2001-01-01

    This technical note examines dissolved oxygen (DO) levels and changes in river microbiology during winter, low temperatures, and periods of ice cover with the objective of providing guidance for winter water quality modeling...

  19. Hydromorphological control of nutrient cycling in complex river floodplain systems

    Science.gov (United States)

    Hein, T.; Bondar-Kunze, E.; Felkl, M.; Habersack, H.; Mair, M.; Pinay, G.; Tritthart, M.; Welti, N.

    2009-04-01

    Riparian zones and floodplains are key components within river ecosystems controlling nutrient cycling by promoting transformation processes and thus, act as biogeochemical hot spots. The intensity of these processes depends on the exchange conditions (the connectivity) with the main channel and the morphological setting of the water bodies. At the landscape scale, three interrelated principles of hydromorphological dynamics can be formulated regarding the cycling and transfer of carbon and nutrients in large rivers ecosystems: a) The mode of carbon and nutrient delivery affects ecosystem functioning; b) Increasing residence time and contact area impact nutrient transformation; c) Floods and droughts are natural events that strongly influence pathways of carbon and nutrient cycling. These three principles of hydromorphological dynamics control the nutrient uptake and retention and are linked over different temporal and spatial scales. All three factors can be strongly affected by natural disturbances or anthropogenic impacts, through a change in either the water regime or the geomorphologic setting of the river valley. Any change in natural water regimes will affect the biogeochemistry of riparian zones and floodplains as well as their ability to cycle and mitigate nutrient fluxes originating from upstream and/or upslope. Especially these areas have been altered by river regulation and land use changes over the last 200 years leading to the deterioration of the functioning of these compartments within the riverine landscape. The resulting deficits have prompted rehabilitation and restoration measures aiming to increase the spatial heterogeneity, the complexity, of these ecosystems. Yet, a more integrated approach is needed considering the present status of nutrient dynamics and the effects of restoration measures at different scales. The present paper analyses the effects of river side-arm restoration on ecosystem functions within the side-arm and highlights

  20. Columbia River System Operation Review final environmental impact statement. Appendix T: Comments and responses

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. This appendix documents the public and agency review of the SOR Draft EIS and how the SOR agencies used the review to formulate the FINAL EIS. The appendix includes a summary of the review process, a discussion of the nature of the comments, a list of all commentors, reproductions of comment letters, and responses to all comments. Changes in the EIS text in response to comments are noted in the responses

  1. Upper and Middle Tiete River Basin dam-hydraulic system, travel time and temperature modeling

    Science.gov (United States)

    Devkota, Bishnu; Imberger, Jörg

    2012-12-01

    SummaryTiete River System in the State of Sao Paolo, Brazil is characterized by complex hydraulics and operational problems due to series of dams and point and diffuse inflows along the river. A one dimension Lagrangian river model was developed and applied to the 313 km reach of the Upper and Middle Tiete River Basin from the Penha Dam to the head water of Bara Bonita Reservoir, a stretch of river that includes six small to medium size dams (3.4-22 m high) including the Pirapora Reservoir and 26 inflows into the river (11 tributaries, 9 diffuse source areas, and discharges of 4 cities stormwater and 2 wastewater treatment plants. The conservative tracer transport and temperature model that accounts for the short and long wave radiation and heat transfers at the free surface was included and solved using the Crank-Nicholson scheme. The time variable catchment input to the model was the simulated output of the external hydrological model called Runoff Load Model which results were provided by CETESB. The numerical treatment of series of dams and spillway (that included uncontrolled overflow spillway, gate-controlled ogee spillway; and underflow gates and tunnels) and parameterisation of hydraulic jumps are described. Special attention was focused on the high spatial and temporal variation of flows in Tiete River Basin, a result of the large variation in catchment inflows and channel geometry due to dams and reservoirs along the river. Predicted and measured spatial and seasonal variation of flow and temperature profiles along the river show good agreement. The simulated travel time of conservative tracer is compared against the CETESB's 1982 and 1984 field study data in a 254 km reach of the Middle Tiete River that again shows good agreement. Being Lagrangian in construction, this new model is computationally efficient making it an ideal tool for long term simulation for water resource planning, management and operation decision making in a large and complex river

  2. Description and assessment of the Raft River Lotic system in the vicinity of the Raft River Geothermal Area. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Raft River is the only perennial lotic system within this area and one concern has been the impact a spill of geothermal water would have on the biota of the stream. Identification of the structure of these communities is the baseline information which was the objective of this study. The results of the inventory in terms of potential recovery of downstream communities from the impact of geothermal water induced perturbations are discussed.

  3. Columbia River System Operation Review final environmental impact statement. Appendix I: Power

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. This appendix discusses the work performed by the SOR Power Work Group. The Power Work Group (PWG) had several major responsibilities: first, to determine the effects of each of the various system operating strategies (SOS) on the Northwest regional power system; second, given these effects, to determine what, if any, actions are required to meet forecasted regional energy consumption; and finally, to estimate the cost for serving the forecasted regional energy consumption. The Northwest regional power system consists of Federal and non-Federal hydroelectric power projects (hydropower or hydro projects) on the main stem of the Columbia and Snake Rivers, numerous smaller hydro projects on other river reaches, and a number of thermal plants (coal, nuclear and combustion turbines)

  4. Application of optimization technique for flood damage modeling in river system

    Science.gov (United States)

    Barman, Sangita Deb; Choudhury, Parthasarathi

    2018-04-01

    A river system is defined as a network of channels that drains different parts of a basin uniting downstream to form a common outflow. An application of various models found in literatures, to a river system having multiple upstream flows is not always straight forward, involves a lengthy procedure; and with non-availability of data sets model calibration and applications may become difficult. In the case of a river system the flow modeling can be simplified to a large extent if the channel network is replaced by an equivalent single channel. In the present work optimization model formulations based on equivalent flow and applications of the mixed integer programming based pre-emptive goal programming model in evaluating flood control alternatives for a real life river system in India are proposed to be covered in the study.

  5. Columbia River System Operation Review final environmental impact statement. Appendix H: Navigation

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The Navigation Technical Appendix presents the analysis of the various SOR alternatives in terms of their potential affects on the congressionally authorized navigation system within the Columbia and Snake river waterways. The focus of the study, impacts to the authorized navigation, improvements/developments, reflects on one of the continuing historical missions of the US Army Corps of Engineers: to promote safe commercial navigation of the nation's waterways benefiting the development of commerce within the US. The study and evaluation process involved Scoping, Screening and Full Scale Evaluation. During screening two models were developed; one was used to evaluate the effects of the various alternatives on navigation through the Snake River Projects and the other the effects on the Dworshak Pool. Full Scale Analysis was expanded to included a study of effects throughout the system

  6. Design of river height and speed monitoring system by using Arduino

    Science.gov (United States)

    Nasution, T. H.; Siagian, E. C.; Tanjung, K.; Soeharwinto

    2018-02-01

    River is one part of the hydrologic cycle. Water in rivers is generally collected from precipitation, such as rain, dew, springs, underground runoff, and in certain countries also comes from melt ice/snow. The height and speed of water in a river is always changing. Changes in altitude and speed of water can affect the surrounding environment. In this paper, we will design a system to measure the altitude and speed of the river. In this work we use Arduino Uno, ultrasonic sensors and flow rate sensors. Ultrasonic sensor HC-SR04 is used as a river height meter. Based on the test results, this sensor has an accuracy of 96.6%.

  7. Carbon fate in a large temperate human-impacted river system: Focus on benthic dynamics

    Science.gov (United States)

    Vilmin, Lauriane; Flipo, Nicolas; Escoffier, Nicolas; Rocher, Vincent; Groleau, Alexis

    2016-07-01

    Fluvial networks play an important role in regional and global carbon (C) budgets. The Seine River, from the Paris urban area to the entrance of its estuary (220 km), is studied here as an example of a large human-impacted river system subject to temperate climatic conditions. We assess organic C (OC) budgets upstream and downstream from one of the world's largest wastewater treatment plants and for different hydrological conditions using a hydrobiogeochemical model. The fine representation of sediment accumulation on the river bed allows for the quantification of pelagic and benthic effects on OC export toward the estuary and on river metabolism (i.e., net CO2 production). OC export is significantly affected by benthic dynamics during the driest periods, when 25% of the inputs to the system is transformed or stored in the sediment layer. Benthic processes also substantially affect river metabolism under any hydrological condition. On average, benthic respiration accounts for one third of the total river respiration along the studied stretch (0.27 out of 0.86 g C m-2 d-1). Even though the importance of benthic processes was already acknowledged by the scientific community for headwater streams, these results stress the major influence of benthic dynamics, and thus of physical processes such as sedimentation and resuspension, on C cycling in downstream river systems. It opens the door to new developments in the quantification of C emissions by global models, whereby biogeochemical processing and benthic dynamics should be taken into account.

  8. Flow and Transport in the Hanford 300 Area Vadose Zone-Aquifer-River System

    Energy Technology Data Exchange (ETDEWEB)

    Waichler, Scott R.; Yabusaki, Steven B.

    2005-07-13

    Contaminant migration in the 300 Area unconfined aquifer is strongly coupled to fluctuations in the Columbia River stage. To better understand the interaction between the river, aquifer, and vadose zone, a 2-D saturated-unsaturated flow and transport model was developed for a vertical cross-section aligned west-east across the Hanford Site 300 Area, nearly perpendicular to the river. The model was used to investigate water flow and tracer transport in the vadose zone-aquifer-river flow system, in support of the ongoing study of the 300 Area uranium plume. The STOMP simulator was used to model 1-year from 3/1/92 to 2/28/93, a period when hourly data were available for both groundwater and river levels. Net water flow to the river (per 1-meter width of shoreline) was 182 m3/y in the base case, but the cumulative exchange or total flow back and forth across the riverbed was 30 times greater. The low river case had approximately double the net water and Groundwater tracer flux into the river as compared to the base case.

  9. Sediment Transport Dynamic in a Meandering Fluvial System: Case Study of Chini River

    Science.gov (United States)

    Nazir, M. H. M.; Awang, S.; Shaaban, A. J.; Yahaya, N. K. E. M.; Jusoh, A. M.; Arumugam, M. A. R. M. A.; Ghani, A. A.

    2016-07-01

    Sedimentation in river reduces the flood carrying capacity which lead to the increasing of inundation area in the river basin. Basic sediment transport can predict the fluvial processes in natural rivers and stream through modeling approaches. However, the sediment transport dynamic in a small meandering and low-lying fluvial system is considered scarce in Malaysia. The aim of this study was to analyze the current riverbed erosion and sedimentation scenarios along the Chini River, Pekan, Pahang. The present study revealed that silt and clay has potentially been eroded several parts of the river. Sinuosity index (1.98) indicates that Chini River is very unstable and continuous erosion process in waterways has increase the riverbank instability due to the meandering factors. The riverbed erosional and depositional process in the Chini River is a sluggish process since the lake reduces the flow velocity and causes the deposited particles into the silt and clay soil at the bed of the lake. Besides, the bed layer of the lake comprised of cohesive silt and clayey composition that tend to attach the larger grain size of sediment. The present study estimated the total sediment accumulated along the Chini River is 1.72 ton. The HEC-RAS was employed in the simulations and in general the model performed well, once all parameters were set within their effective ranges.

  10. A meteo-hydrological modelling system for the reconstruction of river runoff: the case of the Ofanto river catchment

    Directory of Open Access Journals (Sweden)

    G. Verri

    2017-10-01

    Full Text Available A meteo-hydrological modelling system has been designed for the reconstruction of long time series of rainfall and river runoff events. The modelling chain consists of the mesoscale meteorological model of the Weather Research and Forecasting (WRF, the land surface model NOAH-MP and the hydrology–hydraulics model WRF-Hydro. Two 3-month periods are reconstructed for winter 2011 and autumn 2013, containing heavy rainfall and river flooding events. Several sensitivity tests were performed along with an assessment of which tunable parameters, numerical choices and forcing data most impacted on the modelling performance.The calibration of the experiments highlighted that the infiltration and aquifer coefficients should be considered as seasonally dependent.The WRF precipitation was validated by a comparison with rain gauges in the Ofanto basin. The WRF model was demonstrated to be sensitive to the initialization time and a spin-up of about 1.5 days was needed before the start of the major rainfall events in order to improve the accuracy of the reconstruction. However, this was not sufficient and an optimal interpolation method was developed to correct the precipitation simulation. It is based on an objective analysis (OA and a least square (LS melding scheme, collectively named OA+LS. We demonstrated that the OA+LS method is a powerful tool to reduce the precipitation uncertainties and produce a lower error precipitation reconstruction that itself generates a better river discharge time series. The validation of the river streamflow showed promising statistical indices.The final set-up of our meteo-hydrological modelling system was able to realistically reconstruct the local rainfall and the Ofanto hydrograph.

  11. Tracking Polychlorinated Biphenyls (PCB) after an incident along a river system - Case study Elbe River

    Science.gov (United States)

    Kleisinger, Carmen; Dietrich, Stephan; Kehl, Nora; Claus, Evelyn; Schubert, Birgit

    2017-04-01

    In spring 2015, extremely high concentrations of Polychlorinated Biphenyls (PCB) well above the long-term average were detected in suspended particulate matter (SPM) within the River Elbe. They were released due to abrasive blasting of the old coating from a bridge in the upper part of the River, approximately 50 km upstream of the first measurement site. PCBs are persistent organic pollutants, preferentially bound to fine-grained fractions of the SPM. Results from monitoring of contaminants in SPM along the Elbe indicate the further dispersal of the PCB-contaminated sediments. These measurements include yearly investigations on PCB concentrations in sediments in the inner reaches of the Elbe, an additional longitudinal survey in 2015 and monthly monitoring of PCBs in SPM at stations along the river including the Elbe estuary (Germany). The Elbe estuary is of major economic importance since Hamburg harbour, one of the largest harbours in Europe, is located there. Maintaining the harbour includes dredging and, i.a., relocating large amounts of the dredged material within the water body. High PCB concentrations in sediments could lead to restrictions on the relocation of these sediments. This study aims at tracking the fate of PCB contaminated material released from the point source of the incident site along the whole river stretch and at estimating its impact on the quality of sediments and consequently on dredging activities in the estuary. The ratio of high (PCB 138, 152 and 180) versus low (PCB 28, 52, 101) chlorinated PCB congeners proved to be a suitable tracer to distinguish the PCB load released by the incident from the long-term background signals. As Delor 106/Clophen A60, which contains approx. 90% hexa- to decachloric congeners, was an additive in the coating of the bridge, the pattern of PCBs released by the incident is dominated by the highly chlorinated PCB-congeners PCB 138, 153 and 180. At the tidal weir Geesthacht, the entrance to the estuary, an

  12. Study on measuring social cost of water pollution: concentrated on Han River water system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im; Min, Dong Gee; Chung, Hoe Seong; Lim, Hyun Jeong; Kim, Mee Sook [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    Following the economic development and the progress of urbanization, the damage on water pollution has been more serious but a social cost caused by water pollution cannot be measured. Although the need of water quality preservation is emphasized, a base material for public investment on enhancing water quality preservation is not equipped yet due to the absence of economic values of water resource. Therefore it measured a cost generated by leaving pollution not treated water quality in this study. To measure the usable value of water resource or the cost of water pollution all over the country should include a national water system, but this study is limited on the mainstream of Han River water system from North Han River through Paldang to Chamsil sluice gates. Further study on Nakdong River and Keum River water systems should be done. 74 refs., 4 figs., 51 tabs.

  13. Pechora River basin integrated system management PRISM; biodiversity assessment for the Pechora River basin; Cluster B: biodiversity, land use & forestry modeling

    NARCIS (Netherlands)

    Sluis, van der T.

    2005-01-01

    This report describes the biodiversity for the Pechora River basin Integrated System Management (PRISM). The Pechora River Basin, situated just west of the Ural Mountains, Russia, consists of vast boreal forests and tundra landscapes, partly pristine and undisturbed. The concept of biodiversity is

  14. The influence of land-use patterns in the Ruvu river watershed on water quality in the river system

    Science.gov (United States)

    Ngoye, Elizabeth; Machiwa, John F.

    This work assessed the impacts of land-use patterns in the Ruvu river basin on water quality in the river system. Seasonal changes in water quality parameters were also investigated. Ten river water-sampling stations were selected and samples were collected and analysed according to standard analytical procedures. The results showed that physico-chemical parameters of river water ranged as follows: pH, from 6.95 ± 0.09 to 8.07 ± 0.23; temperature, from 14.0 ± 0.06 to 31.1 ± 0.4 °C; EC, from 39.8 ± 0.8 to 48,734 306 μs/cm; TDS, from 19.9 ± 0.4 to 24,367 ± 152.9 mg/l; turbidity, from 3.0 ± 0.6 to 840 ± 69.3 NTU and DO, from 6.8 ± 0.02 to 16.78 mg/l. The ranges for nutrient concentrations were NO 3-N, from 0.006 ± 0.0003 to 0.62 ± 0.3 mg/l; NH 4-N, from 0.34 ± 0.17 to 16.2 ± 0.5 mg/l; PO 4-P, from 0.009 ± 0.001 to 1.75 ± 0.2 mg/l and TP, from 0.02 ± 0.003 to 3.56 ± 0.38 mg/l. Generally, water samples from stations with forested catchments had high levels of DO and low levels of NH 4-N and NO 3-N compared to those from farmland, industrial, residential and market places. There were clear seasonal variations showing an increase in the concentrations of nutrients during rainy season. The results show impairment of the water quality of the river by anthropogenic activities in the catchment. Water pollution prevention strategies to ensure prevention of pollution and protection of water resources in the Ruvu river watershed are recommended.

  15. Columbia River System Operation Review final environmental impact statement. Appendix K: Resident fish

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. In this appendix the Resident Fish Work Group (RFWG) has attempted to characterize and evaluate impacts of dam operation on an extremely complex and diverse integrated resource. Not only is this required under the National Environmental Policy Act (NEPA) for SOR, there are resident fish populations that have status under the Federal Endangered Species Act (ESA) or equivalent state regulations (Kootenai River white sturgeon, Snake River white sturgeon, sandroller, shorthead and torrent sculpins, bull trout, westslope cutthroat trout, redband trout, and burbot). The RFWG has also attempted to develop operating alternatives that benefit not only resident fish, but anadromous fish, wildlife, and other human interests as well. The authors have recognized the co-evolution of resident fish, anadromous fish, and other integrated resources in the basin

  16. The Geomorphology, Hydrology and Evolution of a Chain of Ponds River System: A Poorly Recognised and Unique River Planform Type.

    Science.gov (United States)

    Williams, R.; Fryirs, K.

    2016-12-01

    Chain-of-ponds river types are alluvial, discontinuous watercourses that contain irregularly spaced, deep, steep-sided ponds separated by an ephemeral flow path. Despite being widespread, chains of ponds are now rare in Australia, having experienced extensive channelisation since European settlement and landuse intensification. The Mulwaree system is one of the largest remaining chain of ponds systems in the country. Little is known about its geomorphic structure, Quaternary evolution or hydrological function. The valley fill of the Mulwaree River contains layers of gravel and cobble clast-supported sediments at a depth of 20 m. Atop, silt and fine sand sediments are 1-3 m deep. The ponds, which sit in this valley-fill, are large (1000-4000 m2 and up to 8 m deep), and are relic form from a much larger and more energetic gravel-bed river that occurred in this valley in the past. Optically-stimulated luminescence ages date the change from high-energy gravel bed to the very low energy system seen today at approximately 20-25 ka. The oldest dates for the gravel bed system at 5-7 m deep are 60-90 ka. The coarser substrate beneath the fine-grained floodplain is mostly saturated, forming a near-surface aquifer in the valley fill/floodplain. The water levels in the floodplain are similar to the level of the adjacent ponds (within 0.2 m) and this water level adjusts readily (within 0.5-2 days) to rain/flow. There is significant hydrological connectivity between the ponds and adjacent floodplain. During high flow conditions, stable isotope (δ18O and δ2H) results from the ponds show no deviation through the profile as the water column is being mixed. However, during low-flow conditions, water in the ponds is enriched near the surface due to evaporation, and has a similar signal to the adjacent near-surface, floodplain aquifer below a weak thermocline. This shows that these systems have a dual function, behaving more as groundwater dependent systems during low flow

  17. The ESA River & Lake System: Current Capabilities and Future Potential

    DEFF Research Database (Denmark)

    Smith, Richard G.; Salloway, Mark; Berry, Philippa A. M.

    Measuring the earth's river and lake resources using satellite radar altimetry offers a unique global monitoring capability, which complements the detailed measurements made by the steadily decreasing number of in-situ gauges. To exploit this unique remote monitoring capability, a global pilot...

  18. Variability in the hydrology of the Ikpoba River system | Iloba ...

    African Journals Online (AJOL)

    The variability in some physico-chemical parameters was studied in Ikpoba River from June to November, 2009, in three stations. The study shows high variability in transparency, flow velocity, BOD, alkalinity, chloride, nitrate, phosphate with over 40% variability coefficient which is an indication that these parameters ...

  19. Defining biophysical reference conditions for dynamics river systems: an Alaskan example

    Science.gov (United States)

    Pess, G. R.

    2008-12-01

    Defining reference conditions for dynamic river ecosystems is difficult for two reasons. First long-term, persistent anthropogenic influences such as land development, harvest of biological resources, and invasive species have resulted in degraded, reduced, and simplified ecological communities and associated habitats. Second, river systems that have not been altered through human disturbance rarely have a long-term dataset on ecological conditions. However there are exceptions which can help us define the dynamic nature of river ecosystems. One large-scale exception is the Wood River system in Bristol Bay, Alaska, where habitat and salmon populations have not been altered by anthropogenic influences such as land development, hatchery production, and invasive species. In addition, the one major anthropogenic disturbance, salmon (Oncorhynchus spp.) harvest, has been quantified and regulated since its inception. First, we examined the variation in watershed and stream habitat characteristics across the Wood River system. We then compared these stream habitat characteristics with data that was collected in the 1950s. Lastly, we examined the correlation between pink (Oncorhynchus gorbuscha), chum (O. keta), and Chinook (O. tshawytscha), and sockeye salmon (O. nerka), and habitat characteristics in the Wood River system using four decades of data on salmon. We found that specific habitat attributes such as stream channel wetted width, depth, cover type, and the proportion of spawnable area were similar to data collected in the 1950s. Greater stream habitat variation occurred among streams than over time. Salmon occurrence and abundance, however was more temporal and spatially variable. The occurrence of pink and chum salmon increased from the 1970's to the present in the Wood River system, while sockeye abundance has fluctuated with changes in ocean conditions. Pink, Chinook and chum salmon ranged from non-existent to episodic to abundantly perennial, while sockeye

  20. Geographic Information System and Geoportal «River basins of the European Russia»

    Science.gov (United States)

    Yermolaev, O. P.; Mukharamova, S. S.; Maltsev, K. A.; Ivanov, M. A.; Ermolaeva, P. O.; Gayazov, A. I.; Mozzherin, V. V.; Kharchenko, S. V.; Marinina, O. A.; Lisetskii, F. N.

    2018-01-01

    Geographic Information System (GIS) and Geoportal with open access «River basins of the European Russia» were implemented. GIS and Geoportal are based on the map of basins of small rivers of the European Russia with information about natural and anthropogenic characteristics, namely geomorphometry of basins relief; climatic parameters, representing averages, variation, seasonal variation, extreme values of temperature and precipitation; land cover types; soil characteristics; type and subtype of landscape; population density. The GIS includes results of spatial analysis and modelling, in particular, assessment of anthropogenic impact on river basins; evaluation of water runoff and sediment runoff; climatic, geomorphological and landscape zoning for the European part of Russia.

  1. A hybrid conceptual-fuzzy inference streamflow modelling for the Letaba River system in South Africa

    Science.gov (United States)

    Katambara, Zacharia; Ndiritu, John G.

    There has been considerable water resources developments in South Africa and other regions in the world in order to meet the ever-increasing water demands. These developments have not been matched with a similar development of hydrological monitoring systems and hence there is inadequate data for managing the developed water resources systems. The Letaba River system ( Fig. 1) is a typical case of such a system in South Africa. The available water on this river is over-allocated and reliable daily streamflow modelling of the Letaba River that adequately incorporates the main components and processes would be an invaluable aid to optimal operation of the system. This study describes the development of a calibrated hybrid conceptual-fuzzy-logic model and explores its capability in reproducing the natural processes and human effects on the daily stream flow in the Letaba River. The model performance is considered satisfactory in view of the complexity of the system and inadequacy of relevant data. Performance in modelling streamflow improves towards the downstream and matches that of a stand-alone fuzzy-logic model. The hybrid model obtains realistic estimates of the major system components and processes including the capacities of the farm dams and storage weirs and their trajectories. This suggests that for complex data-scarce River systems, hybrid conceptual-fuzzy-logic modelling may be used for more detailed and dependable operational and planning analysis than stand-alone fuzzy modelling. Further work will include developing and testing other hybrid model configurations.

  2. Modeling of water flow in multi-channel river system in the Narew National Park

    Directory of Open Access Journals (Sweden)

    Marcinkowski Paweł

    2017-09-01

    Full Text Available Modeling of water flow in multi-channel river system in the Narew National Park. Anastomosing rivers constitute a rare example of multi-channel systems, which used to be very common before the agricultural and industrial development. Presently few of them remain worldwide and the only example in Poland is the Upper River Narew within Narew National Park. Although hydraulic modeling using one-dimensional models is commonly used to describe water flow in rivers, for multi-channel rivers problem is more complicated. For this type of rivers it is expected that the feedback between process of plants growth (expressed by Manning’s coefficient and distribution of flow in anabranches is high. However, assignment procedure on roughness coefficients in splitting and rejoining channels is laborious and difficult. Therefore, for efficient water flow modeling in multi-channel systems a stand-alone hydraulic model equipped with automatic optimization procedure was developed. Optimization and validation stages, based on field measurements data of discharge and water levels, indicated that the model accurately simulates water flow in multi-channel system.

  3. Model-Aided Altimeter-Based Water Level Forecasting System in Mekong River

    Science.gov (United States)

    Chang, C. H.; Lee, H.; Hossain, F.; Okeowo, M. A.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Anderson, E.; Hwang, E.

    2017-12-01

    Mekong River, one of the massive river systems in the world, has drainage area of about 795,000 km2 covering six countries. People living in its drainage area highly rely on resources given by the river in terms of agriculture, fishery, and hydropower. Monitoring and forecasting the water level in a timely manner, is urgently needed over the Mekong River. Recently, using TOPEX/Poseidon (T/P) altimetry water level measurements in India, Biancamaria et al. [2011] has demonstrated the capability of an altimeter-based flood forecasting system in Bangladesh, with RMSE from 0.6 - 0.8 m for lead times up to 5 days on 10-day basis due to T/P's repeat period. Hossain et al. [2013] further established a daily water level forecasting system in Bangladesh using observations from Jason-2 in India and HEC-RAS hydraulic model, with RMSE from 0.5 - 1.5 m and an underestimating mean bias of 0.25 - 1.25 m. However, such daily forecasting system relies on a collection of Jason-2 virtual stations (VSs) to ensure frequent sampling and data availability. Since the Mekong River is a meridional river with few number of VSs, the direct application of this system to the Mekong River becomes challenging. To address this problem, we propose a model-aided altimeter-based forecasting system. The discharge output by Variable Infiltration Capacity hydrologic model is used to reconstruct a daily water level product at upstream Jason-2 VSs based on the discharge-to-level rating curve. The reconstructed daily water level is then used to perform regression analysis with downstream in-situ water level to build regression models, which are used to forecast a daily water level. In the middle reach of the Mekong River from Nakhon Phanom to Kratie, a 3-day lead time forecasting can reach RMSE about 0.7 - 1.3 m with correlation coefficient around 0.95. For the lower reach of the Mekong River, the water flow becomes more complicated due to the reversal flow between the Tonle Sap Lake and the Mekong River

  4. Hydrodynamic modeling of hydrologic surface connectivity within a coastal river-floodplain system

    Science.gov (United States)

    Castillo, C. R.; Guneralp, I.

    2017-12-01

    Hydrologic surface connectivity (HSC) within river-floodplain environments is a useful indicator of the overall health of riparian habitats because it allows connections amongst components/landforms of the riverine landscape system to be quantified. Overbank flows have traditionally been the focus for analyses concerned with river-floodplain connectivity, but recent works have identified the large significance from sub-bankfull streamflows. Through the use of morphometric analysis and a digital elevation model that is relative to the river water surface, we previously determined that >50% of the floodplain for Mission River on the Coastal Bend of Texas becomes connected to the river at streamflows well-below bankfull conditions. Guided by streamflow records, field-based inundation data, and morphometric analysis; we develop a two-dimensional hydrodynamic model for lower portions of Mission River Floodplain system. This model not only allows us to analyze connections induced by surface water inundation, but also other aspects of the hydrologic connectivity concept such as exchanges of sediment and energy between the river and its floodplain. We also aggregate hydrodynamic model outputs to an object/landform level in order to analyze HSC and associated attributes using measures from graph/network theory. Combining physically-based hydrodynamic models with object-based and graph theoretical analyses allow river-floodplain connectivity to be quantified in a consistent manner with measures/indicators commonly used in landscape analysis. Analyzes similar to ours build towards the establishment of a formal framework for analyzing river-floodplain interaction that will ultimately serve to inform the management of riverine/floodplain environments.

  5. Floodplain Impact on Riverine Dissolved Carbon Cycling in the Mississippi-Atchafalaya River System

    Science.gov (United States)

    DelDuco, E.; Xu, Y. J.

    2017-12-01

    Studies have shown substantial increases in the export of terrestrial carbon by rivers over the past several decades, and have linked these increases to human activity such as changes in land use, urbanization, and intensive agriculture. The Mississippi River (MR) is the largest river in North America, and is among the largest in the world, making its carbon export globally significant. The Atchafalaya River (AR) receives 25% of the Mississippi River's flow before traveling 189 kilometers through the largest bottomland swamp in North America, providing a unique opportunity to study floodplain impacts on dissolved carbon in a large river. The aim of this study was to determine how dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the AR change spatially and seasonally, and to elucidate which processes control carbon cycling in this intricate swamp river system. From May 2015 -May 2016, we conducted monthly river sampling from the river's inflow to its outflow, analyzing samples for DOC and DIC concentrations and δ 13C stable isotope composition. During the study period, the river discharged a total of 5.35 Tg DIC and a total of 2.34 Tg DOC into the Gulf of Mexico. Based on the mass inflow-outflow balance, approximately 0.53 Tg ( 10%) of the total DIC exported was produced within the floodplain, while 0.24 Tg ( 10%) of DOC entering the basin was removed. The AR was consistently saturated with pCO2 above atmospheric pressure, indicating that this swamp-river system acts a large source of DIC to the atmosphere as well as to coastal margins. Largest changes in carbon constituents occurred during periods of greatest inundation of the basin, and corresponded with shifts in isotopic composition that indicated large inputs of DIC from floodplains. This effect was particularly pronounced during initial flood stages. This study demonstrates that a major river with extensive floodplains in its coastal margin can act as an important source of DIC as well

  6. Spatio-temporal patterns and predictions of phytoplankton assemblages in a subtropical river delta system

    DEFF Research Database (Denmark)

    Wang, Chao; Li, Xinhui; Wang, Xiangxiu

    2016-01-01

    Spatial and seasonal sampling within a subtropical river delta system, the Pearl River Delta (China), provided data to determine seasonal phytoplankton patterns and develop prediction models. The high nutrient levels and frequent water exchanges resulted in a phytoplankton community with greatest...... similarities. These groups were distinct with respect to species richness, biomass and indicators, especially for groups representing spatial dimension. The Linear Discriminant Analysis (LDA) model indicated that the spatial patterns of phytoplankton assemblages were mostly explained by water quality variables...

  7. Columbia River System Operation Review final environmental impact statement. Appendix Q: Regional forum

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The SOR is currently developing a System Operating Strategy (SOS) that will guide the physical operations of the Columbia River system. The SOR is also addressing the institutional arrangements that must be in place to make needed changes to the SOS in the future, or make interpretations of the strategy in the light of changing water conditions or river needs. For convenience, this future institutional arrangement is referred to as ''The Columbia River Regional Forum,'' or simply ''the Forum,'' even though the nature of this institution is still to be determined. This appendix and the Final Environmental Impact Statement (EIS) identify the Forum as an administrative process that will not result in impacts to the environment and will not require analysis in a NEPA context. The composition of and procedures followed by a decision making body cannot--in and of themselves--be used to predict a particular decision with definable impacts on the environment. Nevertheless, because of the relationship to the other SOR actions, the SOR lead agencies have prepared this Technical Appendix to provide opportunities for review and comment on the Forum alternatives

  8. Loss of the CNA I secured river water system: analysis and effect evaluation

    International Nuclear Information System (INIS)

    Berra, Sandra; Guala, Mariana I.; Lorenzo, Andrea T.; Raffo Calderon, Maria C.; Urrutia, Guillermo

    1999-01-01

    In this work the evolution of the plant parameters is evaluated in the case of a loss of the secured circuit of river water (system UK). In particular the systems which are affected for this loss were studied. It was evaluated the functional degradation of these systems. (author)

  9. Remote video radioactive systems evaluation, Savannah River Site

    International Nuclear Information System (INIS)

    Heckendorn, F.M.; Robinson, C.W.

    1991-01-01

    Specialized miniature low cost video equipment has been effectively used in a number of remote, radioactive, and contaminated environments at the Savannah River Site (SRS). The equipment and related techniques have reduced the potential for personnel exposure to both radiation and physical hazards. The valuable process information thus provided would not have otherwise been available for use in improving the quality of operation at SRS

  10. Application of the target fish community model to an urban river system.

    Science.gov (United States)

    Meixler, Marcia S

    2011-04-01

    Several models have been developed to assess the biological integrity of aquatic systems using fish community data. One of these, the target fish community (TFC) model, has been used primarily to assess the biological integrity of larger, mainstem rivers in southern New England with basins characterized by dispersed human activities. We tested the efficacy of the TFC approach to specify the fish community in the highly urbanized Charles River watershed in eastern Massachusetts. To create a TFC for the Charles River we assembled a list of fish species that historically inhabited the Charles River watershed, identified geomorphically and zoogeographically similar reference rivers regarded as being in high quality condition, amassed fish survey data for the reference rivers, and extracted from the collections the information needed to define a TFC. We used a similarity measurement method to assess the extent to which the study river community complies with the TFC and an inference approach to summarize the manner in which the existing fish community differed from target conditions. The five most abundant species in the TFC were common shiners (34%), fallfish (17%) redbreast sunfish (11%), white suckers (8%), and American eel (7%). Three of the five species predicted to be most abundant in the TFC were scarce or absent in the existing river community. Further, the river was dominated by macrohabitat generalists (99%) while the TFC was predicted to contain 19% fluvial specialist species, 43% fluvial dependent species, and 38% macrohabitat generalist species. In addition, while the target community was dominated by fish intolerant (37%) and moderately tolerant (39%) of water quality degradation, the existing community was dominated by tolerant individuals (59%) and lacked intolerant species expected in the TFC. Similarity scores for species, habitat use specialization, and water quality degradation tolerance categories were 28%, 35% and 66%, respectively. The clear

  11. Environmental evaluation of Turkey's transboundary rivers' hydropower systems

    International Nuclear Information System (INIS)

    Berkun, M.

    2010-01-01

    The hydroelectric power and potential environmental impacts of hydroelectric projects in 2 transboundary rivers in Turkey were assessed. The southeastern Anatolia project (GAP) is expected to encompass 27 dams and 19 hydroelectric power plants. The large-scale project will increase domestic electricity production and help to provide irrigation for large agricultural schemes. The Coruh project will consist of 27 dams and hydroelectric power plants, which are expected to have serious environmental impacts in both upstream Turkey and downstream Georgia. A slowing down of each river's velocity will cause changes in sediment transport, while the storage of water in large reservoirs will alter water quality and cause changes in local micro-climates. Irrigation methods may cause soil erosion and salinization. The construction of 2 GAP dams on the Tigris and Euphrates rivers has caused protest from Syria and Iraq. Economic development in the regions caused by the proposed hydroelectric projects is expected to have significant environmental impacts on woodland and grassland areas. The projects are expected to adversely affect threatened plant, mammal, and fish species. More detailed cumulative impact and environmental impact assessments are needed to evaluate the economic, environmental, and social problems that are likely to arise as a result of the projects. 17 refs., 3 tabs., 6 figs.

  12. [Tritium in the Water System of the Techa River].

    Science.gov (United States)

    Chebotina, M Ja; Nikolin, O A

    2016-01-01

    The aim of the paper is to study modern tritium levels in various sources of the drinking water supply in the settlements situated in the riverside zone of the Techa. Almost everywhere the water entering water-conduit wells from deep slits (100-180 m) contains averagely 2-3 times higher tritium concentrations than the water from less deep personal wells, slits and springs. Tritium levels in the drinking water supply decrease with the distance from the dam; while in wells, springs and personal wells they are constant all along the river. The observed phenomenon can be explained by the fact that the river bed of the Techa is situated at a break zone of the earth crust, where the contaminated deep water penetrates from the reservoirs of the "Mayak" enterprise situated in the upper part of the regulated river bed. Less deep water sources (personal wells, slits and springs) receive predominantly flood, atmospheric and subsoil waters and are not connected with the reservoirs.

  13. Solute geochemistry of the Snake River Plain regional aquifer system, Idaho and eastern Oregon

    International Nuclear Information System (INIS)

    Wood, W.W.; Low, W.H.

    1987-01-01

    Three geochemical methods were used to determine chemical reactions that control solute concentrations in the Snake River Plain regional aquifer system: (1) calculation of a regional solute balance within the aquifer and of mineralogy in the aquifer framework to identify solute reactions, (2) comparison of thermodynamic mineral saturation indices with plausible solute reactions, and (3) comparison of stable isotope ratios of the groundwater with those in the aquifer framework. The geothermal groundwater system underlying the main aquifer system was examined by calculating thermodynamic mineral saturation indices, stable isotope ratios of geothermal water, geothermometry, and radiocarbon dating. Water budgets, hydrologic arguments, and isotopic analyses for the eastern Snake River Plain aquifer system demonstrate that most, if not all, water is of local meteoric and not juvenile or formation origin. Solute balance, isotopic, mineralogic, and thermodynamic arguments suggest that about 20% of the solutes are derived from reactions with rocks forming the aquifer framework. Reactions controlling solutes in the western Snake river basin are believed to be similar to those in the eastern basin but the regional geothermal system that underlies the Snake river Plain contains total dissolved solids similar to those in the overlying Snake River Plain aquifer system but contains higher concentrations of sodium, bicarbonate, silica, fluoride, sulfate, chloride, arsenic, boron, and lithium, and lower concentrations of calcium, magnesium, and hydrogen. 132 refs., 30 figs., 27 tabs

  14. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix D: Exhibits.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    The Columbia River and its tributaries are the primary water system in the Pacific Northwest, draining some 219,000 square miles in seven states and another 39,500 square miles in British Columbia. Beginning in the 1930`s, the Columbia River has been significantly modified by construction of 30 major dams on the river and its tributaries, along with dozens of non-Federal projects. Construction and subsequent operation of these water development projects have contributed to eight primary uses of the river system, including navigation, flood control, irrigation, electric power generation, fish migration, fish and wildlife habitat, recreation, and water supply and quality considerations. Increasing stress on the water development of the Columbia River and its tributaries has led primary Federal agencies to undertake intensive analysis and evaluation of the operation of these projects. These agencies are the U.S. Army Corps of Engineers and the Bureau of Reclamation, who operate the large Federal dams on the river, and the Bonneville Power Administration who sells the power generated at the dams. This review, termed the System Operation Review (SOR), has as its ultimate goal to define a strategy for future operation of the major Columbia River projects which effectively considers the needs of all river uses. This volume, Appendix D: Cultural resources appendix, Technical imput includes the following: Development of geomorphology based framework for cultural resources management, Dworshak Reservoir, Idaho; Impact profiles for SOR reservoirs; comments from the following Native American tribes: Burns Paiute Tribe; Coville Confederated Tribes; Confederated Tribes of the Warm Springs Indian Reservation; Confederated Tribes and bands of the Yakama Indian Nation (comments); Nez Perce Tribe; Coeur D`Alene Tribe; Spokane Tribe of Indians; The confederated Tribes of the Umatilla Indian Reservation.

  15. How do long-term development and periodical changes of river-floodplain systems affect the fate of contaminants? Results from European rivers

    Energy Technology Data Exchange (ETDEWEB)

    Lair, G.J., E-mail: georg.lair@boku.ac.a [Institute of Soil Research, University of Natural Resources and Applied Life Sciences, Peter-Jordan-Str. 82, A-1190 Vienna (Austria); Zehetner, F., E-mail: franz.zehetner@boku.ac.a [Institute of Soil Research, University of Natural Resources and Applied Life Sciences, Peter-Jordan-Str. 82, A-1190 Vienna (Austria); Fiebig, M. [Institute of Applied Geology, University of Natural Resources and Applied Life Sciences, Peter-Jordan-Str. 70, 1190 Vienna (Austria); Gerzabek, M.H. [Institute of Soil Research, University of Natural Resources and Applied Life Sciences, Peter-Jordan-Str. 82, A-1190 Vienna (Austria); Gestel, C.A.M. van [Institute of Ecological Science, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Hein, T. [Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), University of Natural Resources and Applied Life Sciences, Max-Emanuel-Str. 17, A-1180 Vienna (Austria); WasserCluster Lunz - Interuniversity Center for Aquatic Ecosystem Research, Dr. Carl Kupelwieser Promenade 5, 3293 Lunz am See (Austria); Hohensinner, S. [Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), University of Natural Resources and Applied Life Sciences, Max-Emanuel-Str. 17, A-1180 Vienna (Austria); Hsu, P. [Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Eissendorferstr. 40, 21073 Hamburg (Germany); Jones, K.C. [Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster (United Kingdom); Jordan, G. [Geological Institute of Hungary (MAFI), Budapest, H-1143, Stefania ut 14 (Hungary); Koelmans, A.A. [Wageningen University Research Centre, Department of Environmental Science, Aquatic Ecology and Water Quality Group, P.O. Box 47, 6700 AA Wageningen (Netherlands); Wageningen-IMARES, Haringkade 1, 1976 CP, IJmuiden (Netherlands)

    2009-12-15

    In many densely populated areas, riverine floodplains have been strongly impacted and degraded by river channelization and flood protection dikes. Floodplains act as buffers for flood water and as filters for nutrients and pollutants carried with river water and sediment from upstream source areas. Based on results of the EU-funded 'AquaTerra' project (2004-2009), we analyze changes in the dynamics of European river-floodplain systems over different temporal scales and assess their effects on contaminant behaviour and ecosystem functioning. We find that human-induced changes in the hydrologic regime of rivers have direct and severe consequences on nutrient cycling and contaminant retention in adjacent floodplains. We point out the complex interactions of contaminants with nutrient availability and other physico-chemical characteristics (pH, organic matter) in determining ecotoxicity and habitat quality, and draw conclusions for improved floodplain management. - Human activities have changed the hydraulics and contaminant fate in river-floodplain ecosystems.

  16. How do long-term development and periodical changes of river-floodplain systems affect the fate of contaminants? Results from European rivers

    International Nuclear Information System (INIS)

    Lair, G.J.; Zehetner, F.; Fiebig, M.; Gerzabek, M.H.; Gestel, C.A.M. van; Hein, T.; Hohensinner, S.; Hsu, P.; Jones, K.C.; Jordan, G.; Koelmans, A.A.

    2009-01-01

    In many densely populated areas, riverine floodplains have been strongly impacted and degraded by river channelization and flood protection dikes. Floodplains act as buffers for flood water and as filters for nutrients and pollutants carried with river water and sediment from upstream source areas. Based on results of the EU-funded 'AquaTerra' project (2004-2009), we analyze changes in the dynamics of European river-floodplain systems over different temporal scales and assess their effects on contaminant behaviour and ecosystem functioning. We find that human-induced changes in the hydrologic regime of rivers have direct and severe consequences on nutrient cycling and contaminant retention in adjacent floodplains. We point out the complex interactions of contaminants with nutrient availability and other physico-chemical characteristics (pH, organic matter) in determining ecotoxicity and habitat quality, and draw conclusions for improved floodplain management. - Human activities have changed the hydraulics and contaminant fate in river-floodplain ecosystems.

  17. Geographical Information Systems for International River Basin Management in the Third World

    Energy Technology Data Exchange (ETDEWEB)

    Kammerud, Terje Andre

    1997-12-31

    This thesis discusses implementation and application of Geographical Information systems (GIS) in international River Basin Organizations (RBOs) in the Third World. Third World countries sharing the same river basin are increasingly experiencing conflicts because they exploit the same water resource. Empirical knowledge is derived from two case studies. (1) The Mekong River Commission Secretariat`s experiences in applying GIS are investigated. The conditions assessed are related to institutional, funding, expertise, training and technology issues for successful application of GIS. (2) The prospects for the implementation of GIS at a future WATERNET Centre in Amman are investigated. Israel, Jordan and the Palestinian Authority have decided to establish a regional GIS Centre in the lower Jordan River Basin. The study assesses political, legal and institutional conditions for the successful implementation of GIS. It is concluded that implementing and applying GIS successfully in RBOs in the Third World is challenging, although not for technological reasons. 265 refs., 28 figs., 13 tabs.

  18. An Innovative Steering System for a River Push Barge Operated in Environmentally Sensitive Areas

    Directory of Open Access Journals (Sweden)

    Abramowicz-Gerigk Teresa

    2017-12-01

    Full Text Available The paper presents an innovative steering system for a river push barge dedicated for operation in environmentally sensitive inland waterways. Development of the inland waterborne transport in Poland is dependent on the exploitation of rivers which can be adapted to navigation in the limited range because a high percent of their length is classified within special environment protection areas of Natura 2000 network. This is now the main reason that their better exploitation cannot be obtained without an introduction of a new generation of waterborne environment friendly inland units. In naturally winding rivers with differing and rapidly changing depths and widths it is important to equip a push barge with an efficient steering system that has a low environmental impact. The innovative steering system proposed in the paper is composed of main steering devices located at the pusher stern, auxiliary steering devices installed on the barge bow and a mechanical coupling system.

  19. Fluorescence and dissolved organic matter properties in a connected aquifer river system

    Science.gov (United States)

    Keshavarzi, Reza; Baker, Andy; Andersen, Martin S.; Kelly, Bryce F. J.; Fogwill, Christopher

    2017-04-01

    There have been limited investigations on the sources, distribution, and transformation of dissolved organic carbon in groundwater systems that are connected to streams and rivers. The role of such landscape settings in the terrestrial carbon cycle is therefore not well understood. We used optical methods to study dissolved organic matter (DOM) in groundwater in a connected river/aquifer reach adjacent to a limestone karst landscape near Wellington, NSW, Australia. Optical properties of water samples and their relation to DOM structure and source enables prompt evaluation of the relative abundance of organic matter components, and fingerprints the sources of DOM. We collected surface water samples along the river, and groundwater samples from alluvial and karst monitoring bores and from caves where they intercepted the groundwater table. Absorbance values were measured at wavelengths of 254, 340 and 350 nm and fluorescence properties were characterised by obtaining excitation (400 nm to 240 nm) - emission matrices (210 to 620 nm). The absorbance data were processed to provide the specific ultraviolet absorbance (SUVA) and spectral slopes. Parallel factor analysis (PARAFAC) was applied to discriminate fluorescent DOM components and to assess their dynamics in river and groundwater. Our groundwater DOM data show lower spectral slope, high SUVA values, and lower fluorescence/absorbance ratio, compared to the river. This is indicating a greater amount of relatively high molecular weight, chromophoric, and hydrophobic groundwater DOM is present in the groundwater compared to the river, which had relatively low molecular weight and hydrophilic DOM. PARAFAC modelling revealed different models were necessary for river and groundwater samples, with component one of the groundwater PARAFAC model in the 'peak T' region, and component one of the river model in the 'peak C' region. These results suggest that sedimentary organic matter in the alluvial and karstic aquifer is a

  20. Geospatial Modelling Approach for Interlinking of Rivers: A Case Study of Vamsadhara and Nagavali River Systems in Srikakulam, Andhra Pradesh

    Science.gov (United States)

    Swathi Lakshmi, A.; Saran, S.; Srivastav, S. K.; Krishna Murthy, Y. V. N.

    2014-11-01

    India is prone to several natural disasters such as floods, droughts, cyclones, landslides and earthquakes on account of its geoclimatic conditions. But the most frequent and prominent disasters are floods and droughts. So to reduce the impact of floods and droughts in India, interlinking of rivers is one of the best solutions to transfer the surplus flood waters to deficit/drought prone areas. Geospatial modelling provides a holistic approach to generate probable interlinking routes of rivers based on existing geoinformatics tools and technologies. In the present study, SRTM DEM and AWiFS datasets coupled with land-use/land -cover, geomorphology, soil and interpolated rainfall surface maps have been used to identify the potential routes in geospatial domain for interlinking of Vamsadhara and Nagavali River Systems in Srikakulam district, Andhra Pradesh. The first order derivatives are derived from DEM and road, railway and drainage networks have been delineated using the satellite data. The inundation map has been prepared using AWiFS derived Normalized Difference Water Index (NDWI). The Drought prone areas were delineated on the satellite image as per the records declared by Revenue Department, Srikakulam. Majority Rule Based (MRB) aggregation technique is performed to optimize the resolution of obtained data in order to retain the spatial variability of the classes. Analytical Hierarchy Process (AHP) based Multi-Criteria Decision Making (MCDM) is implemented to obtain the prioritization of parameters like geomorphology, soil, DEM, slope, and land use/land-cover. A likelihood grid has been generated and all the thematic layers are overlaid to identify the potential grids for routing optimization. To give a better routing map, impedance map has been generated and several other constraints are considered. The implementation of canal construction needs extra cost in some areas. The developed routing map is published into OGC WMS services using open source Geo

  1. Characterization of pool thermal stratification in the San Joaquin River system

    Science.gov (United States)

    Butler, N. L.; Hunt, J. R.

    2013-12-01

    Temperature is a critical water quality parameter for Chinook salmon (Oncorhynchus tshawystcha) and is a potentially limiting factor for the successful reintroduction of Chinook into the San Joaquin River system. When ambient stream water temperatures exceed salmon thermal tolerances, salmon seek out cooler water in pools as thermal refuge. While current models of the San Joaquin River can estimate ambient surface water temperature, vertical variations in pool temperature are unknown and not modeled. This study measured river pool thermal stratification in the San Joaquin River system to assess available thermal refuge and identify the key drivers of thermal stratification in this system. During July 2012, daytime vertical water temperature profiles were measured in 53 river pools to survey the prevalence of thermal stratification in the San Joaquin River system from the Mariposa Bypass to the its confluence with the Merced River. Between September and November 2012 six of the pools that exhibited thermal stratification during July were instrumented with water temperature sensor arrays and piezometers. The water temperature sensor arrays were constructed by attaching sensors at regular intervals to the exterior of a PVC pipe to measure the vertical water temperature in the pool and into the sediment. Additionally, piezometers determined pool water head along with pressure head at two different depths into the sediment. Sensor arrays were setup for a minimum of two weeks at each site with sensors recording data every 15 minutes. Thermal stratification occurred in 82% of the 53 pools surveyed in the San Joaquin River during July. Pool depths ranged from 0.64 m to 6.37 m with an average depth of 2.09 m. Differences in vertical water temperature ranged from less than 3 °C to 11.4 °C with an average water temperature difference of 4.2 °C. Vertical water temperature differences did not correlate with pool depth. In the six pools instrumented for two weeks, thermal

  2. Aquatic avifauna of the coastal lakes of the Mhlathuze River system ...

    African Journals Online (AJOL)

    This paper provides the first attempt to bring together all published and unpublished data on the aquatic avifauna of Lakes Mzingazi, Nsezi, Cubhu and Mangeza, situated near Richards Bay in the lower reaches of the Mhlathuze River system. Whilst the amount of data located was limited, it does show that the systems ...

  3. Nitrogen Leaching in Intensive Cropping Systems in Tam Duong District, Red River Delta of Vietnam

    NARCIS (Netherlands)

    Trinh, M.V.; Keulen, van H.; Roetter, R.P.

    2010-01-01

    The environmental and economic consequences of nitrogen (N) lost in rice-based systems in Vietnam is important but has not been extensively studied. The objective of this study was to quantify the amount of N lost in major cropping systems in the Red River Delta. An experiment was conducted in the

  4. Water quality dynamics in the Boro-Thamalakane-Boteti river system ...

    African Journals Online (AJOL)

    The quality of water in aquatic systems is subject to temporal and spatial variations due to varying effects of natural and anthropogenic factors. This study assessed the dynamics of water quality in the Boro-Thamalakane-Boteti river system along an upstream–downstream gradient above and below Maun during February, ...

  5. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China.

    Science.gov (United States)

    Ma, Hongbo; Nittrouer, Jeffrey A; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-05-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams.

  6. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    International Nuclear Information System (INIS)

    Zhao, T h; Yin, Z; Song, Y Z

    2012-01-01

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  7. Non–invasive sampling of endangered neotropical river otters reveals high levels of dispersion in the Lacantun River System of Chiapas, Mexico

    Directory of Open Access Journals (Sweden)

    Ortega, J.

    2012-01-01

    Full Text Available Patterns of genetic dispersion, levels of population genetic structure, and movement of the neotropical river otter (Lontra longicaudis were investigated by screening eight polymorphic microsatellites from DNA extracted from fecal samples, collected in a hydrologic system of the Lacandon rainforest in Chiapas, Mexico. A total of 34 unique genotypes were detected from our surveys along six different rivers, and the effect of landscape genetic structure was studied. We recovered 16 of the 34 individuals in multiple rivers at multiple times. We found high levels of dispersion and low levels of genetic differentiation among otters from the six surveyed rivers (P > 0.05, except for the pairwise comparison among the Lacantún and José rivers (P < 0.05. We recommend that conservation management plans for the species consider the entire Lacantún River System and its tributaries as a single management unit to ensure the maintenance of current levels of population genetic diversity, because the population analyzed seems to follow a source–sink dynamic mainly determined by the existence of the major river.

  8. ECOLOGICAL ASSESSMENT OF THE HUMAN -TRANSFORMED SYSTEMS OF THE IRPIN RIVER

    Directory of Open Access Journals (Sweden)

    Svitlana Madzhd

    2017-07-01

    Full Text Available Purpose: to learn the interaction of natural and anthropogenic factors and their consequences in the system “Natural environment (Irpin river – human-transformed environment (Nyvka river”. Methods: To assess the structural and functional changes of hydroecosystems, transformed under technogenic impact, hydrochemical, toxicological and biological techniques, as well as the methods of mathematical statistics for experimental data processing and summarization of obtained results, were applied. Results: it is proposed to determine the dynamics of the biotic self-regulation mechanism change under impact of the modifying (anthropogenic factors, by the example of the two-component system – “Natural environment (Irpin River – environment, transformed under technogenic impact (Nyvka River, the right-hand tributary of the Irpin River”. It is proposed to extend additionally the opportunities of the ecological assessment due to application of the integrating index – the index of ecological conformity. Discussion: obtained results stipulate necessity of the further investigation of structural and functional patterns of the Irpin River ecosystem in space and time. Assessment of anthropogenic factors impact on hydroecosystem condition will make it possible to correct the nature guard activity concerning the improvement of the fishery object ecological condition and recreation essence of the Irpin River. Integration of the Nyvka and Irpin Rivers into a single system “Natural environment – environment, transformed under technogenic impact” will make it possible to obtain the objective assessment of technogenic changes in hydroecosystems. Implementation of the index of ecological conformity will make it possible to estimate completely the inner processes in the rivers.

  9. Status and trends of selected resources in the Upper Mississippi River System

    Science.gov (United States)

    Johnson, Barry L.; Hagerty, Karen H.

    2010-01-01

    Like other large rivers, the Upper Mississippi River System (UMRS) serves a diversity of roles. The UMRS provides commercial and recreational fishing, floodplain agriculture, drinking water for many communities, an important bird migration pathway, a variety of recreational activities, and a navigation system that transports much of the country's agricultural exports. These multiple roles present significant management challenges. Regular assessment of the condition of the river is needed to improve management plans and evaluate their effectiveness. This report provides a summary of the recent status (mean and range of conditions) and trends (change in direction over time) for 24 indicators of the ecological condition of the Upper Mississippi and Illinois Rivers using data collected through the Long Term Resource Monitoring Program (LTRMP). The 24 indicators were grouped into seven categories: hydrology, sedimentation, water quality, land cover, aquatic vegetation, invertebrates, and fish. Most of the data used in the report were collected between about 1993 and 2004, although some older data were also used to compare to recent conditions.Historical observations and current LTRMP data clearly indicate that the UMRS has been changed by human activity in ways that have diminished the ecological health of the river. The data indicate that status and trends differ among regions, and we expect that regional responses to various ecological rehabilitation techniques will differ as well. The continuing role of the LTRMP will be to provide the data needed to assess changes in river conditions and to determine how those changes relate to management actions, natural variation, and the overall ecological integrity of the river system.

  10. Biogeochemistry of mercury in a river-reservoir system: impact of an inactive chloralkali plant on the Holston River-Cherokee Reservoir, Virginia and Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, S. G.; Lindberg, S. E.; Turner, R. R.; Huckabee, J. W.; Strand, R. H.; Lund, J. R.; Andren, A. W.

    1980-08-01

    Elevated mercury concentrations in fish species from the North Fork of the Holston River were observed in the early 1970's. The source of the mercury was a chloralkali plant which had ceased operation in 1972. Mercury continues to be released to the river from two large (approx. 40-ha) waste disposal ponds at the plant site. This report presents results of a study of the emission of mercury to the environment from the abandoned waste ponds and of the distribution of mercury in water, sediment, and biota of the Holston River-Cherokee Reservoir System in Virginia and eastern Tennessee.

  11. A passive collection system for whole size fractions in river suspended solids

    International Nuclear Information System (INIS)

    Takeshi Matsunaga; Takahiro Nakanishi; Mariko Atarashi-Andoh; Erina Takeuchi; Katsunori Tsuduki; Syusaku Nishimura; Jun Koarashi; Shigeyoshi Otosaka; Tsutomu Sato; Seiya Nagao

    2015-01-01

    In order to solve difficulties in collection of river suspended solids (SS) such as frequent observations during stochastic rainfall events, a simple passive collection system of SS has been developed. It is composed of sequentially connected two large-scale filter vessels. A portion of river water flows down into the filter vessels utilizing a natural drop of streambed. The system enable us to carry out long-term, unmanned SS collection. It is also compatible with dissolved component collection. Its performance was validated in a forested catchment by applying to radiocesium and stable carbon transport. (author)

  12. Real Time Monitoring System of Pollution Waste on Musi River Using Support Vector Machine (SVM) Method

    Science.gov (United States)

    Fachrurrozi, Muhammad; Saparudin; Erwin

    2017-04-01

    Real-time Monitoring and early detection system which measures the quality standard of waste in Musi River, Palembang, Indonesia is a system for determining air and water pollution level. This system was designed in order to create an integrated monitoring system and provide real time information that can be read. It is designed to measure acidity and water turbidity polluted by industrial waste, as well as to show and provide conditional data integrated in one system. This system consists of inputting and processing the data, and giving output based on processed data. Turbidity, substances, and pH sensor is used as a detector that produce analog electrical direct current voltage (DC). Early detection system works by determining the value of the ammonia threshold, acidity, and turbidity level of water in Musi River. The results is then presented based on the level group pollution by the Support Vector Machine classification method.

  13. Non–invasive sampling of endangered neotropical river otters reveals high levels of dispersion in the Lacantun River System of Chiapas, Mexico

    OpenAIRE

    Ortega, J.; Navarrete, D.; Maldonado, J. E.

    2012-01-01

    Patterns of genetic dispersion, levels of population genetic structure, and movement of the neotropical river otter (Lontra longicaudis) were investigated by screening eight polymorphic microsatellites from DNA extracted from fecal samples, collected in a hydrologic system of the Lacandon rainforest in Chiapas, Mexico. A total of 34 unique genotypes were detected from our surveys along six different rivers, and the effect of landscape genetic structure was studied. We recovered 16 of the 34 i...

  14. Remote sensing of rivers: an emerging tool to facilitate management and restoration of fluvial systems

    Science.gov (United States)

    Legleiter, C. J.; Overstreet, B. T.

    2013-12-01

    All phases of river restoration, from design to implementation to assessment, require spatially distributed, high-resolution data on channels and floodplains. Conventional field methods are cost prohibitive for large areas, but remote sensing presents an increasingly viable alternative for characterizing fluvial systems. For example, bathymetric maps useful for habitat assessment can be derived from readily available, free or low cost image data, provided depth measurements are available for calibration. In combination with LiDAR, spectrally-based bathymetry can be used to determine bed elevations for estimating scour and fill and/or to obtain topographic input data for morphodynamic modeling. New, water-penetrating green LiDAR systems that measure sub-aerial and submerged elevations could provide a single-sensor solution for mapping riparian environments. Our current research on the Snake River focuses on comparing optical- and LiDAR-based methods for retrieving depths and bed elevations. Multi-sensor surveys from 2012 and 2013 will allow us to evaluate each instrument's capabilities for measuring volumes of erosion and deposition in a dynamic gravel-bed river. Ongoing studies also suggest that additional river attributes, such as substrate composition and flow velocity, could be inferred from hyperspectral image data. In general, remote sensing has considerable potential to facilitate various aspects of river restoration, from site evaluation to post-project assessment. Moreover, by providing more extensive coverage, this approach favors an integrated, watershed perspective for planning, execution, and monitoring of sustainable restoration programs. To stimulate progress toward these objectives, our research group is now working to advance the remote sensing of rivers through tool development and sensor deployment. Bathymetric map of the Snake River, WY, derived from hyperspectral image data via optimal band ratio analysis. Flow direction is from right to left.

  15. A Basin Approach to a Hydrological Service Delivery System in the Amur River Basin

    Directory of Open Access Journals (Sweden)

    Sergei Borsch

    2018-03-01

    Full Text Available This paper presents the basin approach to the design, development, and operation of a hydrological forecasting and early warning system in a large transboundary river basin of high flood potential, where accurate, reliable, and timely available daily water-level and reservoir-inflow forecasts are essential for water-related economic and social activities (the Amur River basin case study. Key aspects of basin-scale system planning and implementation are considered, from choosing efficient forecast models and techniques, to developing and operating data-management procedures, to disseminating operational forecasts using web-GIS. The latter, making the relevant forecast data available in real time (via Internet, visual, and well interpretable, serves as a good tool for raising awareness of possible floods in a large region with transport and industrial hubs located alongside the Amur River (Khabarovsk, Komsomolsk-on-Amur.

  16. Application of science-based restoration planning to a desert river system.

    Science.gov (United States)

    Laub, Brian G; Jimenez, Justin; Budy, Phaedra

    2015-06-01

    Persistence of many desert river species is threatened by a suite of impacts linked to water infrastructure projects that provide human water security where water is scarce. Many desert rivers have undergone regime shifts from spatially and temporally dynamic ecosystems to more stable systems dominated by homogenous physical habitat. Restoration of desert river systems could aid in biodiversity conservation, but poses formidable challenges due to multiple threats and the infeasibility of recovery to pre-development conditions. The challenges faced in restoring desert rivers can be addressed by incorporating scientific recommendations into restoration planning efforts at multiple stages, as demonstrated here through an example restoration project. In particular, use of a watershed-scale planning process can identify data gaps and irreversible constraints, which aid in developing achievable restoration goals and objectives. Site-prioritization focuses limited the resources for restoration on areas with the greatest potential to improve populations of target organisms. Investment in research to understand causes of degradation, coupled with adoption of a guiding vision is critical for identifying feasible restoration actions that can enhance river processes. Setting monitoring as a project goal, developing hypotheses for expected outcomes, and implementing restoration as an experimental design will facilitate adaptive management and learning from project implementation. Involvement of scientists and managers during all planning stages is critical for developing process-based restoration actions and an implementation plan to maximize learning. The planning process developed here provides a roadmap for use of scientific recommendations in future efforts to recover dynamic processes in imperiled riverine ecosystems.

  17. Application of science-based restoration planning to a desert river system

    Science.gov (United States)

    Laub, Brian G.; Jimenez, Justin; Budy, Phaedra

    2015-01-01

    Persistence of many desert river species is threatened by a suite of impacts linked to water infrastructure projects that provide human water security where water is scarce. Many desert rivers have undergone regime shifts from spatially and temporally dynamic ecosystems to more stable systems dominated by homogenous physical habitat. Restoration of desert river systems could aid in biodiversity conservation, but poses formidable challenges due to multiple threats and the infeasibility of recovery to pre-development conditions. The challenges faced in restoring desert rivers can be addressed by incorporating scientific recommendations into restoration planning efforts at multiple stages, as demonstrated here through an example restoration project. In particular, use of a watershed-scale planning process can identify data gaps and irreversible constraints, which aid in developing achievable restoration goals and objectives. Site-prioritization focuses limited the resources for restoration on areas with the greatest potential to improve populations of target organisms. Investment in research to understand causes of degradation, coupled with adoption of a guiding vision is critical for identifying feasible restoration actions that can enhance river processes. Setting monitoring as a project goal, developing hypotheses for expected outcomes, and implementing restoration as an experimental design will facilitate adaptive management and learning from project implementation. Involvement of scientists and managers during all planning stages is critical for developing process-based restoration actions and an implementation plan to maximize learning. The planning process developed here provides a roadmap for use of scientific recommendations in future efforts to recover dynamic processes in imperiled riverine ecosystems.

  18. The dynamics of channel slope, width, and sediment transport in tectonically actively river systems

    Science.gov (United States)

    Yanites, B.

    2016-12-01

    related to underlying controls on erosion. The modeling highlights that channel geometry adjustment during transient responses to baselevel absorbs some of the topographic impact that would be solely accommodated by channel slope if the river systems behaved in a 1-D manner such that is often prescribed by many modern river erosion models.

  19. Modeling possible cooling-water intake system impacts on Ohio River fish populations.

    Science.gov (United States)

    Perry, Elgin; Seegert, Greg; Vondruska, Joe; Lohner, Timothy; Lewis, Randy

    2002-04-26

    To assess the possible impacts caused by cooling-water intake system entrainment and impingement losses, populations of six target fish species near power plants on the Ohio River were modeled. A Leslie matrix model was constructed to allow an evaluation of bluegill, freshwater drum, emerald shiner, gizzard shad, sauger, and white bass populations within five river pools. Site-specific information on fish abundance and length-frequency distribution was obtained from long-term Ohio River Ecological Research Program and Ohio River Sanitation Commission (ORSANCO) electrofishing monitoring programs. Entrainment and impingement data were obtained from 316(b) demonstrations previously completed at eight Ohio River power plants. The model was first run under a scenario representative of current conditions, which included fish losses due to entrainment and impingement. The model was then rerun with these losses added back into the populations, representative of what would happen if all entrainment and impingement losses were eliminated. The model was run to represent a 50-year time period, which is a typical life span for an Ohio River coal-fired power plant. Percent changes between populations modeled with and without entrainment and impingement losses in each pool were compared to the mean interannual coefficient of variation (CV), a measure of normal fish population variability. In 6 of the 22 scenarios of fish species and river pools that were evaluated (6 species x 5 river pools, minus 8 species/river pool combinations that could not be evaluated due to insufficient fish data), the projected fish population change was greater than the expected variability of the existing fish population, indicating a possible adverse environmental impact. Given the number of other variables affecting fish populations and the conservative modeling approach, which assumed 100% mortality for all entrained fish and eggs, it was concluded that the likelihood of impact was by no means

  20. Modeling Possible Cooling-Water Intake System Impacts on Ohio River Fish Populations

    Directory of Open Access Journals (Sweden)

    Elgin Perry

    2002-01-01

    Full Text Available To assess the possible impacts caused by cooling-water intake system entrainment and impingement losses, populations of six target fish species near power plants on the Ohio River were modeled. A Leslie matrix model was constructed to allow an evaluation of bluegill, freshwater drum, emerald shiner, gizzard shad, sauger, and white bass populations within five river pools. Site-specific information on fish abundance and length-frequency distribution was obtained from long-term Ohio River Ecological Research Program and Ohio River Sanitation Commission (ORSANCO electrofishing monitoring programs. Entrainment and impingement data were obtained from 316(b demonstrations previously completed at eight Ohio River power plants. The model was first run under a scenario representative of current conditions, which included fish losses due to entrainment and impingement. The model was then rerun with these losses added back into the populations, representative of what would happen if all entrainment and impingement losses were eliminated. The model was run to represent a 50-year time period, which is a typical life span for an Ohio River coal-fired power plant. Percent changes between populations modeled with and without entrainment and impingement losses in each pool were compared to the mean interannual coefficient of variation (CV, a measure of normal fish population variability. In 6 of the 22 scenarios of fish species and river pools that were evaluated (6 species × 5 river pools, minus 8 species/river pool combinations that could not be evaluated due to insufficient fish data, the projected fish population change was greater than the expected variability of the existing fish population, indicating a possible adverse environmental impact. Given the number of other variables affecting fish populations and the conservative modeling approach, which assumed 100% mortality for all entrained fish and eggs, it was concluded that the likelihood of impact was

  1. Linking the distribution of an invasive amphibian (Rana catesbeiana) to habitat conditions in a managed river system in northern California.

    Science.gov (United States)

    Terra Fuller; Karen Pope; Donald Ashton; Hartwell Welsh

    2010-01-01

    Extensive modifications of river systems have left floodplains some of the most endangered ecosystems in the world and made restoration of these systems a priority. Modified river ecosystems frequently support invasive species to the detriment of native species. Rana catesbeiana (American bullfrog) is an invasive amphibian that thrives in modified...

  2. Computer control of the beam transport system of the Chalk River electron test accelerator

    International Nuclear Information System (INIS)

    McMichael, G.E.; Kidner, S.H.; Fraser, J.S.

    1977-05-01

    The beam transport system of the Chalk River Electron Test Accelerator comprises steering coils and solenoidal focusing magnets driven by voltage-programmed, current-regulated power supplies. This report describes the beam transport and beam diagnostics systems presently in use. The computer controls all beam transport magnets from a single, allocatable control knob. The system is currently being expanded to two knobs and two readouts. (author)

  3. Bacterial communities hitching a hike - a guide to the river system of the Red river, Disko Island, West Greenland

    DEFF Research Database (Denmark)

    Hauptmann, Aviaja Zenia Edna Lyberth; Markussen, Thor N.; Stibal, Marek

    Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact...... of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on Disko Island, West Greenland (69°N). We describe the bacterial community through a river into the estuary......, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while...

  4. Seasonal nutrient chemistry in mountainous river systems of tropical Western Peninsular India

    Digital Repository Service at National Institute of Oceanography (India)

    Pradhan, U.K.; Wu, Y.; Shirodkar, P.V.; Zhang, J.

    %) is important, in view of alterations in biogeochemical processes of adjacent Arabian Sea. Furthermore, the yield of nutrient such as PO3-4 was found to be a function of runoff per catchment area in studied river systems, is comparable...

  5. Modeling suspended sediment discharge from the Waipaoa River system, New Zealand : The last 3000 years

    NARCIS (Netherlands)

    Kettner, A.J.; Gomez, B.; Syvitski, J.P.M.

    2007-01-01

    HydroTrend, a hydrologic-transport model, is used to simulate the water and suspended sediment discharge of the Waipaoa River system over the last 3 Kyr, a time period in which a well-documented sequence of natural events and anthropogenic activities that profoundly impacted drainage basin processes

  6. Aquatic Insect Fauna of Three River Systems in the Akyem Abuakwa ...

    African Journals Online (AJOL)

    Three river systems in the Akyem Abuakwa Traditional Area: Ayensu, Birim and Densu were sampled over a period of one year during the wet, dry and intermediate seasons for aquatic insect fauna. Fifteen sampling sites were chosen based on certain parameters such as accessibility as well as the inclusion of high and low ...

  7. Numerical models for calculating hydrologic processes in river and lake-river systems

    Science.gov (United States)

    Nikiforovskaya, V. S.; Voevodin, A. F.

    2017-10-01

    We use one-dimensional (1D) and two-dimensional (2D) longitudinal-vertical mathematical models and their 2D+1D combination as well as numerical methods to study unsteady processes in the complex open channel systems under the influence of water management measures. The analysis shows the economic feasibility and efficiency of using the developed mathematical models to study hydrological process in water bodies. The study of the physical processes in complex water body, consisting of significantly different components, based on the use of only one chosen mathematical model, is uneconomical and inefficient from the viewpoint of computational expense.

  8. Integrated Database Construction for Efficient Support of Yeongsan River Estuary Management System

    International Nuclear Information System (INIS)

    Lee, G H; Kim, K H; Lee, S J

    2014-01-01

    Yeongsan River is one of the four major rivers in South Korea, and it flows toward the Yellow Sea by passing through Damyang and Gwangju. In particular, the skewness of the main stream in Yeongsan River is relatively higher compared to other rivers. Accordingly, flood damage occurred frequently due to the flooding of sea water during tidal periods. Additionally, the environment of the estuary in Yeongsan River has been severely damaged due to indiscreet development and the inflow of various waste waters. Therefore, water quality improvement and management are crucial. For better water quality management, the government ministry is collecting various data from different fields to identify the water quality conditions. The necessity of collected data is being heightened in order to apply them into the estuary management system. However, in terms of the observed data, the observed field or items frequently modified according to social interests. Additionally, index is needed in order to search for massive amount of observation data. Due to this, the process of construction into database is relatively difficult. Therefore, in this study, these characteristics were considered for construction into the integrated DB

  9. Ichtyocoenosis of a section of the Jihlava river influenced by the Dukovany-Dalesice power system

    International Nuclear Information System (INIS)

    Penaz, M.; Wohlgemuth, E.

    1990-01-01

    The impact was investigated of the construction and operation of a hydropower station with two deep valley reservoirs and subsequently of a nuclear power station whose water management is closely associated with the river ecosystem, upon the ichthyocoenosis of the downstream river section. The initial quantitative and species composition of the ichthyocoenosis, being descriptive for the barbel zone community, changed into the community of the salmonid type, characteristic of the trout and grayling zones. This process was spontaneous as well as caused by the activity of fish management. The development of fishery catches in the past 30 years and their changes due to the operation of the power system are also analyzed in detail. After a temporary decrease, the annual mean fishery yields improved significantly in the affected river section, not only in their absolute weights but also in terms of the sport and market value of the fish caught. (author). 3 figs., 2 tabs., 22 refs

  10. Hydrological interdependencies of irrigation systems and river catchments

    NARCIS (Netherlands)

    Ertsen, M.W.; Prieto, D.; Giesen, van de N.C.

    2007-01-01

    This paper discusses (re)distributing effects of small and large irrigation systems at the catchment scale. Scales of catchment and system, each with their own temporal and spatial properties, are to be integrated. To be able to quantify water fluxes in irrigation, water fluxes within the system at

  11. Daily/Hourly Hydrosystem Operation : How the Columbia River System Responds to Short-Term Needs.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1994-02-01

    The System Operation Review, being conducted by the Bonneville Power Administration, the US Army Corps of Engineers, and the US Bureau of Reclamation, is analyzing current and potential future operations of the Columbia River System. One goal of the System Operations Review is to develop a new System Operation Strategy. The strategy will be designed to balance the many regionally and nationally important uses of the Columbia River system. Short-term operations address the dynamics that affect the Northwest hydro system and its multiple uses. Demands for electrical power and natural streamflows change constantly and thus are not precisely predictable. Other uses of the hydro system have constantly changing needs, too, many of which can interfere with other uses. Project operators must address various river needs, physical limitations, weather, and streamflow conditions while maintaining the stability of the electric system and keeping your lights on. It takes staffing around the clock to manage the hour-to-hour changes that occur and the challenges that face project operators all the time.

  12. Functional safeguards for computers for protection systems for Savannah River reactors

    International Nuclear Information System (INIS)

    Kritz, W.R.

    1977-06-01

    Reactors at the Savannah River Plant have recently been equipped with a ''safety computer'' system. This system utilizes dual digital computers in a primary protection system that monitors individual fuel assembly coolant flow and temperature. The design basis for the (SRP safety) computer systems allowed for eventual failure of any input sensor or any computer component. These systems are routinely used by reactor operators with a minimum of training in computer technology. The hardware configuration and software design therefore contain safeguards so that both hardware and human failures do not cause significant loss of reactor protection. The performance of the system to date is described

  13. Climate Change Impact Assessment of Dike Safety and Flood Risk in the Vidaa River System

    DEFF Research Database (Denmark)

    Madsen, H.; Sunyer Pinya, Maria Antonia; Larsen, J.

    2013-01-01

    The impact of climate change on the flood risk and dike safety in the Vidaa River system, a cross-border catchment located in the southern part of Jutland, Denmark and northern Germany, is analysed. The river discharges to the Wadden Sea through a tidal sluice, and extreme water level conditions...... in the river system occur in periods of high sea water levels where the sluice is closed and increased catchment run-off take place. Climate model data from the ENSEMBLES data archive are used to assess the changes in climate variables and the resulting effect on catchment run-off. Extreme catchment run......, and increases in storm surge levels of up to 0.8 m in 2100 are estimated. The changes in extreme catchment run-off and sea water level have a significant effect on the flood risk in the river system. While most parts today have a low risk of dike overtopping with annual exceedance probabilities of 0.1 % or less...

  14. Quantitative mineralogy of the Yukon River system: Changes with reach and season, and determining sediment provenance

    Science.gov (United States)

    Eberl, D.D.

    2004-01-01

    mineral dissolution during transport between Eagle and Pilot Station, a distance of over 2000 km. We estimate that approximately 3 wt% of the quartz, 15 wt% of the feldspar (1 wt% of the alkali and 25 wt% of the plagioclase), and 26 wt% of the carbonates (31 wt% of the calcite and 15 wt% of the dolomite) carried by the river dissolve in this reach. The mineralogies of the suspended sediments change with the season. For example, during the summer of 2002 the quartz content varied by 20 wt%, with a minimum in mid-summer. The calcite content varied by a similar amount, and had a maximum corresponding to the quartz minimum. These modes are related to the relative amount of sediment flowing from the White River system, which is relatively poor in quartz, but rich in carbonate minerals. Suspended total clay minerals varied by as much as 25 wt%, with maxima in mid July, and suspended feldspar varied up to 10 wt%. Suspended sediment data from the summers of 2001 and 2003 support the 2002 trends. A calculation technique was developed to determine theproportion of various sediment sources in a mixed sediment by unmixing its quantitative mineralogy. Results from this method indicate that at least three sediment sources can be identified quantitatively with good accuracy. With this technique, sediment mineralogies can be used to calculate the relative flux of sediment from different tributaries, thereby identifying sediment provenance.

  15. Application of a Sediment Information System to the Three Gorges Project on Yangtze River, China

    Science.gov (United States)

    Cao, Shuyou; Liu, Xingnian; Yang, Kejun; Li, Changzhi

    Based on survey and analysis of a huge number of observed entrance sediment transport data and the research results of physical and numerical modeling of Three Gorges Reservoir on the Yangtze River, a sediment information system was designed. The basis of this system includes spatial data and properties of geographic elements, and various documents involved to the Three Gorges Project (TGP). Database and knowledge base are constructed as the information bank. The running environment is constructed by the general control program to realize requirements about various sediment information. The system chooses the window software as the system software. The techniques of graphical user interfaces and groupware geographic information system are applied in this system. In this phase, the emphases of the system are development of document system, map system, and presentation system. Cross-section system of the TGP was also attached. For further improvement of the system, a prepared interface of decision supporting subsystem is finished.

  16. Savannah River Plant's Accountability Inventory Management System (AIMS) (Nuclear materials inventory control)

    International Nuclear Information System (INIS)

    Croom, R.G.

    1976-06-01

    The Accountability Inventory Management System (AIMS) is a new computer inventory control system for nuclear materials at the Savannah River Plant, Aiken, South Carolina. The system has two major components, inventory files and system parameter files. AIMS, part of the overall safeguards program, maintains an up-to-date record of nuclear material by location, produces reports required by ERDA in addition to onplant reports, and is capable of a wide range of response to changing input/output requirements through use of user-prepared parameter cards, as opposed to basic system reprogramming

  17. A concurrent neuro-fuzzy inference system for screening the ecological risk in rivers.

    Science.gov (United States)

    Ocampo-Duque, William; Juraske, Ronnie; Kumar, Vikas; Nadal, Martí; Domingo, José Luis; Schuhmacher, Marta

    2012-05-01

    A conceptual model to assess water quality in river basins was developed here. The model was based on ecological risk assessment principles, and incorporated a novel ranking and scoring system, based on self-organizing maps, to account for the likely ecological hazards posed by the presence of chemical substances in freshwater. This approach was used to study the chemical pollution in the Ebro River basin (Spain), whose currently applied environmental indices must be revised in terms of scientific accuracy. Ecological hazard indexes for chemical substances were calculated by pattern recognition of persistence, bioaccumulation, and toxicity properties. A fuzzy inference system was proposed to compute ecological risk points (ERP), which are a combination of the ecological hazard to aquatic sensitive organisms and environmental concentrations. By aggregating ERP, changes in water quality over time were estimated. The proposed concurrent neuro-fuzzy model was applied to a comprehensive dataset of the network controlling the levels of dangerous substances, such as metals, pesticides, and polycyclic aromatic hydrocarbons, in the Ebro river basin. The approach was verified by comparison versus biological monitoring. The results showed that water quality in the Ebro river basin is affected by presence of micro-pollutants. The ERP approach is suitable to analyze overall trends of potential threats to freshwater ecosystems by anticipating the likely impacts from multiple substances, although it does not account for synergies among pollutants. Anyhow, the model produces a convenient indicator to search for pollutant levels of concern.

  18. Occurrence of Giardia cysts and Cryptosporidium oocysts in the Temuan Orang Asli (aborigine) River System.

    Science.gov (United States)

    Lim, Y A L; Aahmad, R A

    2004-12-01

    A survey of the river water frequently used by the Temuan Orang Asli (aborigine) indicated that 66.7% of the river water samples were Giardia cyst positive and 5.6% were Cryptosporidium oocyst positive. Although Giardia cysts were detected in samples from all the sites (e.g. upstream, midstream, and downstream), Cryptosporidium was only present in one river water sample taken from downstream from a village. The only sample of upstream water which contained Giardia cysts had a concentration of 0.7 cysts/l. All samples taken from midstream contained cysts with a mean concentration of 9.8 +/- 6.6 cysts/l (range = 1-20 cysts/l). Eighty-three point three percent of the samples collected from downstream contained cysts and 16.7% had oocysts. The average concentration of cysts was 12.9 +/- 16.4 cysts/l (range = 0-44 cysts/l), whereas the oocyst concentration was 0.4 oocysts/l. All river samples tested positive for the presence of E. coli, indicating fecal contamination. The results of this study imply that the river system is contaminated with fecal-oral transmitted parasites. The river water, used by the Orang Asli, is a probable route for Giardia and Cryptosporidium transmission in this community. Long term strategies, incorporating health education regarding personal hygiene, and provision of toilets and the importance of their proper usage, need to be embraced by this community in order to control the spread of these parasites.

  19. A SYSTEM DYNAMICS-BASED CONFLICT RESOLUTION MODEL FOR RIVER WATER QUALITY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    M. Karamouz, M. Akhbari, A. Moridi, R. Kerachian

    2006-07-01

    Full Text Available System dynamics approach by simulating a bargaining process can be used for resolving conflict of interests in water quality management. This approach can be a powerful alternative for traditional approaches for conflict resolution, which often rely on classical game theory. Waste load allocation models for river water quality management determine the optimal monthly waste load allocation to each point load. Most of these approaches are based on the multi-objective optimization models and do not consider the existing conflicts. In this study, a system dynamics-based conflict resolution model is presented for monthly waste load allocation in river systems. In this model, the stakeholders and decision-makers negotiate with each other considering their relative authorities, aspirations and dissatisfactions. System dynamics approach is actually used for simulating the bargaining process among the players. The model incorporates the objectives and preferences of stakeholders and decision-makers of the system in the form of utility functions and could provide a final agreement among the players. To evaluate the spatial and temporal variation of the concentration of the water quality indicator in the system, a water quality simulation model is also linked to the conflict resolution model. In the proposed model, a pre-assigned utility is allocated to different water users and the results are evaluated using a simulation model. The allocated utilities are tested and adjusted in order to provide an agreement between the assumed utilities and the utilities assigned by the model. The proposed model is applied to the Karkheh River system located in the southwest of Iran. The results show that the model can effectively incorporate the preferences of the players in providing a final agreement and the runtime of the proposed model is much less than the classical conflict resolution models. It is also shown that the waste load allocation can significantly reduce

  20. A stochastic conflict resolution model for water quality management in reservoir river systems

    Science.gov (United States)

    Kerachian, Reza; Karamouz, Mohammad

    2007-04-01

    In this paper, optimal operating rules for water quality management in reservoir-river systems are developed using a methodology combining a water quality simulation model and a stochastic GA-based conflict resolution technique. As different decision-makers and stakeholders are involved in the water quality management in reservoir-river systems, a new stochastic form of the Nash bargaining theory is used to resolve the existing conflict of interests related to water supply to different demands, allocated water quality and waste load allocation in downstream river. The expected value of the Nash product is considered as the objective function of the model which can incorporate the inherent uncertainty of reservoir inflow. A water quality simulation model is also developed to simulate the thermal stratification cycle in the reservoir, the quality of releases from different outlets as well as the temporal and spatial variation of the pollutants in the downstream river. In this study, a Varying Chromosome Length Genetic Algorithm (VLGA), which has computational advantages comparing to other alternative models, is used. VLGA provides a good initial solution for Simple Genetic Algorithms and comparing to Stochastic Dynamic Programming (SDP) reduces the number of state transitions checked in each stage. The proposed model, which is called Stochastic Varying Chromosome Length Genetic Algorithm with water Quality constraints (SVLGAQ), is applied to the Ghomrud Reservoir-River system in the central part of Iran. The results show, the proposed model for reservoir operation and waste load allocation can reduce the salinity of the allocated water demands as well as the salinity build-up in the reservoir.

  1. Implementation of Environmental Flows for Intermittent River Systems: Adaptive Management and Stakeholder Participation Facilitate Implementation

    Science.gov (United States)

    Conallin, John; Wilson, Emma; Campbell, Josh

    2018-03-01

    Anthropogenic pressure on freshwater ecosystems is increasing, and often leading to unacceptable social-ecological outcomes. This is even more prevalent in intermittent river systems where many are already heavily modified, or human encroachment is increasing. Although adaptive management approaches have the potential to aid in providing the framework to consider the complexities of intermittent river systems and improve utility within the management of these systems, success has been variable. This paper looks at the application of an adaptive management pilot project within an environmental flows program in an intermittent stream (Tuppal Creek) in the Murray Darling Basin, Australia. The program focused on stakeholder involvement, participatory decision-making, and simple monitoring as the basis of an adaptive management approach. The approach found that by building trust and ownership through concentrating on inclusiveness and transparency, partnerships between government agencies and landholders were developed. This facilitated a willingness to accept greater risks and unintended consequences allowing implementation to occur.

  2. SOFTWARE AND TECHNOLOGIES FOR GEOGRAPHIC INFORMATION SYSTEM OF YENISEI RIVER BASIN

    Directory of Open Access Journals (Sweden)

    A. A. Kadochnikov

    2016-01-01

    Full Text Available The work considers the questions of formation of problem-focused geoinformation system of the Yenisei river basin based on interdisciplinary scientific studies. The creation of a system, in which are collected and systematized information about its river network, will provide an opportunity for analysis and modeling of hydrological processes various natural and man-made phenomena, qualitative and quantitative assessment of water resources, ecological status. Methodological basis of development is a regional system of indicators for sustainable environmental management. Development is created in the service-oriented paradigm on the basis of geoportal technologies, interactive web mapping, distributed storage and data processing. The focus in this article is paid to the problems of software design and technological support, the characteristics of software components implementation of the web GIS, the effective processing and presentation of geospatial data.

  3. The current content of artificial radionuclides in the water of the Tobol-Irtysh river system (from the mouth of the Iset River to the confluence with the Ob River)

    International Nuclear Information System (INIS)

    Nikitin, Alexander I.; Chumichev, Vladimir B.; Valetova, Nailia K.; Katrich, Ivan Yu.; Kabanov, Alexander I.; Dunaev, Gennady E.; Shkuro, Valentina N.; Rodin, Victor M.; Mironenko, Alexander N.; Kireeva, Elena V.

    2007-01-01

    Data on content of 90 Sr, 137 Cs, 239,240 Pu and 3 H in water of the Tobol-Irtysh part of the Techa-Iset-Tobol-Irtysh-Ob river system (through which the 'Mayak' PA radioactive wastes are transported) are presented and discussed. The data were received in 2004-2005 under the ISTC project on radioecological monitoring of the Tobol and Irtysh rivers. Monthly observations of 137 Cs, 90 Sr and 3 H content in water in the area of the Tobol and Irtysh confluence have been conducted starting from May 2004. To obtain information on the investigated river system as a whole, the radioecological survey of the Tobol and Irtysh rivers at the section from the mouth of the Iset River to the confluence with the Ob River was carried out in 2004. It is shown that the impact of 'Mayak' PA waste transport by 90 Sr is distinctly traced as far as the area of the Irtysh and Ob confluence

  4. Hidrochemical study of a fractured aquifer system in Precambrian rocks on the coast of the la Plata River

    International Nuclear Information System (INIS)

    Guarequiz, R.; Morales, E.; Da Rosa, E.; Bittencourt, A.

    2004-01-01

    The studied system is located in Punta Espinillo area, in the Northwest of Montevideo department (U), next to the right margin of Santa Lucia River, in the mouth of it, into de la Plata river. The area is surrounded by the safety water of the la Plata river. The area is characterised by an intesive agricultural activity and has a high demand of water for irrigation systems, which one has not been rational plane. Nowadays, there is a great density of wells. The water is extracted from a fractured aquifer system that has exceptional water amounts, but the great exploitaition generaes high drawdwons, even coming to the complete depletion.

  5. Spatial-temporal fluvial morphology analysis in the Quelite river: It's impact on communication systems

    Science.gov (United States)

    Ramos, Judith; Gracia, Jesús

    2012-01-01

    SummaryDuring 2008 and 2009 heavy rainfall took place around the Mazatlan County in the Sinaloa state, Mexico, with a return period (Tr) between 50 and 100 years. As a result, the region and its infrastructure, such as the railways and highways (designed for a Tr = 20 years) were severely exposed to floods and, as a consequence damage caused by debris and sediments dragged into the channel. One of the highest levels of damage to the infrastructure was observed in the columns of Quelite River railway's bridge. This is catastrophic as the railway is very important for trade within the state and also among other states in Mexico and in the USA. In order to understand the impact of the flooding and to avoid the rail system being damaged it is necessary to analyse how significant the changes in the river channel have been. This analysis looks at the definition of the main channel and its floodplain as a result of the sediment variability, not only at the bridge area, but also upstream and downstream. The Quelite River study considers the integration of Geographic Information Systems (GIS) and remote sensing data to map, recognise and assess the spatio-temporal change channel morphology. This increases the effectiveness of using different types of geospatial data with in situ measurements such as hydrological data. Thus, this paper is an assessment of a 20 years study period carried out using historical Landsat images and aerial photographs as well as recent Spot images. A Digital Elevation Model (DEM) of local topography and flow volumes were also used. The results show the Quelite River is an active river with a high suspended sediment load and migration of meanders associated to heavy rainfall. The river also has several deep alluvial floodplain channels which modified the geometry and other morphological characteristics of the channel in the downstream direction. After the identification of the channel changes, their causes and solutions to control, the channel

  6. Application of Integrated Flood Analysis System (IFAS) for Dungun River Basin

    International Nuclear Information System (INIS)

    Hafiz, I; Nor, N D M; Sidek, L M; Basri, H; F K; Hanapi, M N; Livia L

    2013-01-01

    The Northeast monsoon happening during the months of October until January is the major rainy season found in the eastern part of Peninsular Malaysia. The Dungun river basin (1,858 km 2 ) is exposed to this season thus experiencing characteristically regular flooding due to the prolong rainfall events. The annual rainfall over the river basins are 2,880 mm with great proportion falling in the months of December (19.4%). This study is to apply the Integrated Flood Analysis System (IFAS) model which Dungun river basin has been chosen for this study as the catchments have range of flood and relevant data that can be used to develop the model. The satellite data used in this study is provided by JAXA Global Rainfall Watch. The main feature of this real-time flood analysis model is the satellite-based rainfall data input employed during the model creation phase. The performance of the model for the river basins from satellite and ground-based rainfall data are compared using three error analysis methods.

  7. Population Aspects of Fishes in Geba and Sor Rivers, White Nile System in Ethiopia, East Africa

    Directory of Open Access Journals (Sweden)

    Simagegnew Melaku

    2017-01-01

    Full Text Available This study was carried out to assess the diversity, condition factor, length-weight relationship, and sex ratio of fishes in Geba and Sor Rivers located in Baro-Akobo Basin, White Nile system within Ethiopia. Fish samples were collected in one wet and one dry season. The length-weight relationships were fitted using power equation for the most abundant species. A total of 348 fish specimens were collected using gillnets and hooks. These were identified into eight species and one Garra sp. representing seven genera and four families. Family Cyprinidae was the most dominant with six species (66.7%. Labeobarbus intermedius, Labeobarbus nedgia, and Labeo cylindricus were the most abundant fish species, respectively, with 60.72%, 16.83%, and 14.66% index of relative importance (IRI. The diversity index was higher for Geba River (H′ = 1.50 than for Sor River (H′ = 1.10. All the three most abundant species had negative allometric growth. Seasonal variations in the mean Fulton condition factor (FCF were statistically significant for L. cylindricus (p<0.05. There was variation in the sex ratio with the females dominating in all the three most abundant species. Further investigation into the fish diversity, food, feeding, and reproductive behaviors of fish species especially in the tributaries of these rivers and their socioeconomic aspects is recommended.

  8. Occurrences of dissolved trace metals (Cu, Cd, and Mn) in the Pearl River Estuary (China), a large river-groundwater-estuary system

    Science.gov (United States)

    Wang, Deli; Lin, Wenfang; Yang, Xiqian; Zhai, Weidong; Dai, Minhan; Arthur Chen, Chen-Tung

    2012-12-01

    This study for the first time examined dissolved metals (Cu, Cd, and Mn) together with dissolved oxygen and carbonate system in the whole Pearl River Estuary system, from the upper rivers to the groundwater discharges until the estuarine zone, and explored their potential impacts in the adjacent northern South China Sea (SCS) during May-August 2009. This river-groundwater-estuary system was generally characterized by low dissolved metal levels as a whole, whilst subject to severe perturbations locally. In particular, higher dissolved Cu and Cd occurred in the North River (as high as 60 nmol/L of Cu and 0.99 nmol/L of Cd), as a result of an anthropogenic source from mining activities there. Dissolved Cu levels were elevated in the upper estuary near the city of Guangzhou (Cu: ˜40 nmol/L), which could be attributable to sewage and industrial effluent discharges there. Elevated dissolved metal levels (Cu: ˜20-40 nmol/L; Cd: ˜0.2-0.8 nmol/L) also occurred in the groundwaters and parts of the middle and lower estuaries, which could be attributable to a series of geochemical reactions, e.g., chloride-induced desorption from the suspended sediments, oxidation of metal sulfides, and the partial dissolution of minerals. The high river discharge during our sampling period (May-August 2009) significantly diluted anthropogenic signals in the estuarine mixing zone. Of particular note was the high river discharge (which may reach 18.5 times as high as in the dry season) that transported anthropogenic signals (as indicated by dissolved Cu and Cd) into the adjacent shelf waters of the northern SCS, and might have led to the usually high phytoplankton productivity there (chlorophyll-a value >10 μg/L).

  9. Bypass system modification at Bonneville Dam on the Columbia River improved the survival of juvenile salmon

    Science.gov (United States)

    Ferguson, J.W.; Sandford, B.P.; Reagan, R.E.; Gilbreath, L.G.; Meyer, E.B.; Ledgerwood, R.D.; Adams, N.S.

    2007-01-01

    From 1987 to 1992, we evaluated a fish bypass system at Bonneville Dam Powerhouse 2 on the Columbia River. The survival of subyearling Chinook salmon Oncorhynchus tshawytscha released into the system ranged from 0.774 to 0.911 and was significantly lower than the survival of test fish released into turbines and the area immediately below the powerhouse where bypass system flow reentered the river. Yearling and subyearling Chinook salmon and yearling coho salmon O. kisutch released into the bypass system were injured or descaled. Also, levels of blood plasma cortisol and lactate were significantly higher in yearling and subyearling Chinook salmon that passed through the bypass system than in fish released directly into a net located over the bypass exit. This original system was then extensively modified using updated design criteria, and the site where juvenile fish reentered the river was relocated 2.8 km further downstream to reduce predation on bypassed fish by northern pikeminnow Ptychocheilus oregonensis. Based on studies conducted from 1999 to 2001, the new bypass system resulted in high fish survival, virtually no injuries to fish, fish passage times that were generally similar to water travel times, and mild stress responses from which fish recovered quickly. The mean estimated survival of subyearling Chinook salmon passing through the new bypass system was 0.946 in 2001, which was an usually low-flow year. Survival, physical condition, passage timing, and blood physiological indicators of stress were all useful metrics for assessing the performance of both bypass systems and are discussed. The engineering and hydraulic criteria used to design the new bypass system that resulted in improved fish passage conditions are described.

  10. Pb isotope evidence for contaminant-metal dispersal in an international river system: The lower Danube catchment, Eastern Europe

    International Nuclear Information System (INIS)

    Bird, Graham; Brewer, Paul A.; Macklin, Mark G.; Nikolova, Mariyana; Kotsev, Tsvetan; Mollov, Mihail; Swain, Catherine

    2010-01-01

    Lead isotope signatures ( 207 Pb/ 206 Pb, 208 Pb/ 206 Pb, 208 Pb/ 204 Pb, 206 Pb/ 204 Pb), determined by magnetic sector ICP-MS in river channel sediment, metal ores and mine waste, have been used as geochemical tracers to quantify the delivery and dispersal of sediment-associated metals in the lower Danube River catchment. Due to a diverse geology and range of ore-body ages, Pb isotope signatures in ore-bodies within the lower Danube River catchment show considerable variation, even within individual metallogenic zones. It is also possible to discriminate between the Pb isotopic signatures in mine waste and river sediment within river systems draining individual ore bodies. Lead isotopic data, along with multi-element data; were used to establish the provenance of river sediments and quantify sedimentary contributions to mining-affected tributaries and to the Danube River. Data indicate that mining-affected tributaries in Serbia and Bulgaria contribute up to 30% of the river channel sediment load of the lower Danube River. Quantifying relative sediment contributions from mining-affected tributaries enables spatial patterns in sediment-associated metal and As concentrations to be interpreted in terms of key contaminant sources. Combining geochemical survey data with that regarding the provenance of contaminated sediments can therefore be used to identify foci for remediation and environmental management strategies.

  11. An integrated modelling framework for regulated river systems in Land Surface Hydrological Models

    Science.gov (United States)

    Rehan Anis, Muhammad; razavi, Saman; Wheater, Howard

    2017-04-01

    Many of the large river systems around the world are highly regulated with numerous physical flow control and storage structures as well as a range of water abstraction rules and regulations. Most existing Land Surface Models (LSM) do not represent the modifications to the hydrological regimes introduced by water management (reservoirs, irrigation diversions, etc.). The interactions between natural hydrological processes and changes in water and energy fluxes and storage due to human interventions are important to the understanding of how these systems may respond to climate change amongst other drivers for change as well as to the assessment of their feedbacks to the climate system at regional and global scales. This study presents an integrated modelling approach to include human interventions within natural hydrological systems using a fully coupled modelling platform. The Bow River Basin in Alberta (26,200 km2), one of the most managed Canadian rivers, is used to demonstrate the approach. We have dynamically linked the MESH modelling system, which embeds the Canadian Land Surface Scheme (CLASS), with the MODSIM-DSS water management modelling tool. MESH models the natural hydrology while MODSIM optimizes the reservoir operation of 4 simulated reservoirs to satisfy demands within the study basin. MESH was calibrated for the catchments upstream the reservoirs and gave good performance (NSE = 0.81) while BIAS was only 2.3% at the catchment outlet. Without coupling with MODSIM (i.e. no regulation), simulated hydrographs at the catchment outlet were in complete disagreement with observations (NSE = 0.28). The coupled model simulated the optimization introduced by the operation of the multi-reservoir system in the Bow river basin and shows excellent agreement between observed and simulated hourly flows (NSE = 0.98). Irrigation demands are fully satisfied during summer, however, there are some shortages in winter demand from industries, which can be rectified by

  12. Lower Mississippi River Environmental Program. Report 10. Evaluation of Bird and Mammal Utilization of Dike Systems Along the Lower Mississippi River.

    Science.gov (United States)

    1987-11-01

    systems at all river stages (Schramm and Pennington 1981; Pennington, Baker, and Bond 1983; Nailon and Pennington 1984). The pools contained in dike fields...Field Guide to Animal Tracks, Houghton-Mifflin Company, Boston, Mass. Nailon , R. W., and Pennington, C. H. 1984. "Fish of Two Dike Pools in the Lower

  13. Two Case Studies to Quantify Resilience across Food-Energy-Water Systems: the Columbia River Treaty and Adaptation in Yakima River Basin Irrigation Systems

    Science.gov (United States)

    Malek, K.; Adam, J. C.; Richey, A.; Rushi, B. R.; Stockle, C.; Yoder, J.; Barik, M.; Lee, S. Y.; Rajagopalan, K.; Brady, M.; Barber, M. E.; Boll, J.; Padowski, J.

    2017-12-01

    The U.S. Pacific Northwest (PNW) plays a significant role in meeting agricultural and hydroelectric demands nationwide. Climatic and anthropogenic stressors, however, potentially threaten the productivity, resilience, and environmental health of the region. Our objective is to understand how resilience of each Food-Energy-Water (FEW) sector, and the combined Nexus, respond to exogenous perturbations and the extent to which technological and institutional advances can buffer these perturbations. In the process of taking information from complex integrated models and assessing resilience across FEW sectors, we start with two case studies: 1) Columbia River Treaty (CRT) with Canada that determines how multiple reservoirs in the Columbia River basin (CRB) are operated, and 2) climate change adaptation actions in the Yakima River basin (YRB). We discuss these case studies in terms of the similarities and contrasts related to FEW sectors and management complexities. Both the CRB and YBP systems are highly sensitive to climate change (they are both snowmelt-dominant) and already experience water conflict. The CRT is currently undergoing renegotiation; a new CRT will need to consider a much more comprehensive approach, e.g., treating environmental flows explicitly. The YRB also already experiences significant water conflict and thus the comprehensive Yakima Basin Integrated Plan (YBIP) is being pursued. We apply a new modeling framework that mechanistically captures the interactions between the FEW sectors to quantify the impacts of CRT and YBIP planning (as well as adaptation decisions taken by individuals, e.g., irrigators) on resilience in each sector. Proposed modification to the CRT may relieve impacts to multiple sectors. However, in the YRB, irrigators' actions to adapt to climate change (through investing in more efficient irrigation technology) could reduce downstream water availability for other users. Developing a process to quantify resilience to perturbations

  14. Does reintroducing large wood influence the hydraulic landscape of a lowland river system?

    Science.gov (United States)

    Matheson, Adrian; Thoms, Martin; Reid, Michael

    2017-09-01

    Our understanding of the effectiveness of reintroduced large wood for restoration is largely based on studies from high energy river systems. By contrast, few studies of the effectiveness of reintroducing large wood have been undertaken on large, low energy, lowland river systems: river systems where large wood is a significant physical feature on the in-channel environment. This study investigated the effect of reintroduced large wood on the hydraulic landscape of the Barwon-Darling River, Australia, at low flows. To achieve this, the study compared three hydraulic landscapes of replicated reference (naturally wooded), control (unwooded,) and managed (wood reintroduced) treatments on three low flow periods. These time periods were prior to the reintroduction of large wood to managed reaches; several months after the reintroduction of large wood into the managed reaches; and then more than four years after wood reintroduction following several large flood events. Hydraulic landscapes of reaches were characterised using a range of spatial measures calculated from velocity measurements taken with a boat-mounted Acoustic Doppler Profiler. We hypothesised that reintroduced large wood would increase the diversity of the hydraulic landscape at low flows and that managed reaches would be more similar to the reference reaches. Our results suggest that the reintroduction of large wood did not significantly change the character of the hydraulic landscape at the reach scale after several months (p = 0.16) or several years (p = 0.29). Overall, the character of the hydraulic landscape in the managed reaches was more similar to the hydraulic landscape of the control reaches than the hydraulic landscape of the reference reaches, at low flows. Some variability in the hydraulic landscapes was detected over time, and this may reflect reworking of riverbed sediments and sensitivity to variation in discharge. The lack of a response in the low flow hydraulic landscape to the

  15. Restoring water quality in the polluted Turag-Tongi-Balu river system, Dhaka: Modelling nutrient and total coliform intervention strategies.

    Science.gov (United States)

    Whitehead, Paul; Bussi, Gianbattista; Hossain, Mohammed Abed; Dolk, Michaela; Das, Partho; Comber, Sean; Peters, Rebecca; Charles, Katrina J; Hope, Rob; Hossain, Sarwar

    2018-03-08

    River water quality in rapidly urbanising Asian cities threatens to damage the resource base on which human health, economic growth and poverty reduction all depend. Dhaka reflects the challenges and opportunities for balancing these dynamic and complex trade-offs which goals can be achieved through effective policy interventions. There is a serious problem of water pollution in central Dhaka, in the Turag-Tongi-Balu River system in Bangladesh with the river system being one of the most polluted in the world at the moment. A baseline survey of water chemistry and total coliforms has been undertaken and shows dissolved oxygen close to zero in the dry season, high organic loading together with extreme levels of Ammonium-N and total coliform in the water. Models have been applied to assess hydrochemical processes in the river and evaluate alternative strategies for policy and the management of the pollution issues. In particular models of flow, Nitrate-N, Ammonium-N and indicator bacteria (total coliforms) are applied to simulate water quality in the river system. Various scenarios are explored to clean up the river system, including flow augmentation and improved effluent treatment. The model results indicate that improved effluent treatment is likely to have a more significant impact on reducing Ammonium-N and total coliforms than flow augmentation, but a combined strategy would greatly reduce the pollution problems in the Turag-Tongi-Balu River System. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Columbia River system operation review: Final environmental impact statement. Appendix R, Pacific Northwest Coordination agreement (PNCA)

    International Nuclear Information System (INIS)

    1995-11-01

    Currently, the Federal government coordinates the planning and operation of the Federal Columbia River Power System (FCRPS) with projects owned and operated by the region's non-Federal hydrogenerating utilities pursuant to the Pacific North-west Coordination Agreement (PNCA). The Bureau of Reclamation (Reclamation), the Corps of Engineers (Corps), and the Bonneville Power Administration (BPA) are parties to the PNCA on behalf of the government of the United States. The PNCA is a complex agreement that provides an opportunity for the region's power producers to maximize the power system's reliability and economy while meeting their multiple-use objectives. The PNCA does not dictate the operation of the resources it coordinates. It is essentially an accounting mechanism that exchanges the power produced among the parties in order to improve the reliability of the system and reduce regional power costs. Project owners retain complete autonomy to operate as needed to meet their multiple-use requirements. The PNCA was executed in 1964 as an important component of regional plans to maximize the Northwest's hydro resource capability. Maximization also included the development of storage projects on the Columbia River in Canada pursuant to the terms of the 1964 Columbia River Treaty. Because of the link between power coordination and Treaty issues, the current parties to the PNCA, currently are contemplating entering into a replacement or renewed power coordination agreement. Because the power coordination agreement is a consensual arrangement, its ultimate provisions must be acceptable to all of its signatories. This Appendix R to the Final Environmental Impact Statement of the Columbia River System is a presentation of the Pacific North-west Coordination Agreement

  17. Surveys of tidal river systems in the northern territory of Australia and their crocodile populations

    Energy Technology Data Exchange (ETDEWEB)

    Vorlicek, G.C.; Messel, H.; Green, W.J.

    1986-01-01

    This book provides an update on the population dynamics of Crocodylus porous in the tidal waterways of Van Diemen Gulf and the Southern Gulf of Carpentaria, Australia, during 1984 and 1985. Contents: Prologue; Dedication; Introduction; Status of Crocodylus porous. July 1984, in the tidal waterways of the Alligator Region and in the Adelaide River System of Northern Australia: recovery underway; Resurvey of Crocodylus porous populations in the tidal waterways of the southern Gulf of Carpentaria, September - October 1985; Local knowledge - Northern Australia style.

  18. EVALUATION OF DISASTER MITIGATION SYSTEM AGAINST LAHAR FLOW OF PUTIH RIVER, MT. MERAPI AREA

    Directory of Open Access Journals (Sweden)

    T. Maksal Saputra

    2013-05-01

    Result of the evaluation shows that the existing early warning system does not produce sufficient time for the sand miners to save themselves. The proposed solution is to divide sand mine area in Putih River into 3 zones, each zone has different procedure of the early warning and evacuation. This is arranged to avoid casualties to the sand miners. Keywords: Lahar flood, sand miners, early warning.

  19. Soil and Land Resources Information System (SLISYS-Tarim) for Sustainable Management of River Oases along the Tarim River, China

    Science.gov (United States)

    Othmanli, Hussein; Zhao, Chengyi; Stahr, Karl

    2017-04-01

    The Tarim River Basin is the largest continental basin in China. The region has extremely continental desert climate characterized by little rainfall 3000 mm/a. The climate change is affecting severely the basin causing soil salinization, water shortage, and regression in crop production. Therefore, a Soil and Land Resources Information System (SLISYS-Tarim) for the regional simulation of crop yield production in the basin was developed. The SLISYS-Tarim consists of a database and an agro-ecological simulation model EPIC (Environmental Policy Integrated Climate). The database comprises relational tables including information about soils, terrain conditions, land use, and climate. The soil data implicate information of 50 soil profiles which were dug, analyzed, described and classified in order to characterize the soils in the region. DEM data were integrated with geological maps to build a digital terrain structure. Remote sensing data of Landsat images were applied for soil mapping, and for land use and land cover classification. An additional database for climate data, land management and crop information were linked to the system, too. Construction of the SLISYS-Tarim database was accomplished by integrating and overlaying the recommended thematic maps within environment of the geographic information system (GIS) to meet the data standard of the global and national SOTER digital database. This database forms appropriate input- and output data for the crop modelling with the EPIC model at various scales in the Tarim Basin. The EPIC model was run for simulating cotton production under a constructed scenario characterizing the current management practices, soil properties and climate conditions. For the EPIC model calibration, some parameters were adjusted so that the modeled cotton yield fits to the measured yield on the filed scale. The validation of the modeling results was achieved in a later step based on remote sensing data. The simulated cotton yield varied

  20. Field Operations For The "Intelligent River" Observation System: A Basin-wide Water Quality Observation System In The Savannah River Basin And Platform Supporting Related Diverse Initiatives.

    Science.gov (United States)

    Sutton, A.; Koons, M.; O'Brien-Gayes, P.; Moorer, R.; Hallstrom, J.; Post, C.; Gayes, P. T.

    2017-12-01

    The Intelligent River (IR) initiative is an NSF sponsored study developing new data management technology for a range of basin-scale applications. The technology developed by Florida Atlantic and Clemson University established a network of real-time reporting water quality sondes; from the mountains to the estuary of the Savannah River basin. Coastal Carolina University led the field operations campaign. Ancillary studies, student projects and initiatives benefitted from the associated instrumentation, infrastructure and operational support of the IR program. This provided a vehicle for students to participate in fieldwork across the watershed and pursue individual interests. Student projects included: 1) a Multibeam sonar survey investigating channel morphology in the area of an IR sensor station and 2) field tests of developing techniques for acquiring and assimilating flood velocity data into model systems associated with a separate NSF Rapid award. The multibeam survey within the lower Savannah basin exhibited a range of complexity in bathymetry, bedforms and bottom habitat in the vicinity of one of the water quality stations. The complex morphology and bottom habitat reflect complex flow patterns, localized areas of depositional and erosive tendencies providing a valuable context for considering point-source water quality time series. Micro- Lagrangian drifters developed by ISENSE at Florida Atlantic University, a sled mounted ADCP, and particle tracking from imagery collected by a photogrammetric drone were tested and used to develop methodology for establishing velocity, direction and discharge levels to validate, initialize and assimilate data into advance models systems during future flood events. The prospect of expanding wide scale observing systems can serve as a platform to integrate small and large-scale cooperative studies across disciplines as well as basic and applied research interests. Such initiatives provide opportunities for embedded education

  1. The Performance of Equalization Model of Water Allocation Inter Irrigation Areas in River System

    Directory of Open Access Journals (Sweden)

    Farriansyah Anang M.

    2018-01-01

    Full Text Available In Indonesia, water is public goods so it is necessary to control water allocation. Inequity of water allocation between water users is expanding largely, including irrigation as the largest user, while the density of headworks in the river are getting higher. Considering that water is limited, the practice of irrigation water allocation needs to be refined, from the traditional equity to volumetric equity. MEQAA (Model Equalisasi Alokasi Air/Equalization Model of Water Allocation plays a role in determining water sharing between headworks in order to meet the maximum-equal K-factor in river. MEQAA-Generic is a calculation machine with: analog-deterministic dynamic model; network equation according to mass balance and linear optimization; independent-based system; sustainability-efficiency-equity constraints; Ms. Excel-VBA. The inputs are: scheme system, local inflow, and irrigation demand. The outputs are: K-factor, release and ecosystem quote. The model performance is identified by comparing the output to the class of K-factor based on treatment of water distribution. The model test is performed in an uncontrolled and complicated system in Kukusan Tanggek watershed with 24 headworks in Lombok river basin. As long as it is adequate for water sharing, MEQAA-G can always produce maximum-equal K-factor. The output model is used to operation control.

  2. SNAKE LINE ANALYSIS FOR LAHAR FLOW WARNING SYSTEM (CASE STUDY IN PUTIH RIVER, MOUNT MERAPI

    Directory of Open Access Journals (Sweden)

    Nina Yulinsa

    2015-01-01

    Full Text Available Lahar flow in the region of Mount Merapi after an eruption of 2010 is still considered potentially to happen and threat the region along the river from the upstream. The development of warning criteria against the potential occurrence of lahar flow is a thing that should be done continuously to accommodate dynamics data availability (rainfall data and lahar flow occurrence data, although with limited data. This study aims to develop lahar warning system applying snake line as a rain phenomenon in Putih catchment area which will affect the occurrence of lahar flow and to evaluate the success rate of snake line for deciding the warning system. This study used the main reference from Guidelines for Development of Warning and Evacuation System against Sediment Disasters in Developing Countries released by Ministry of Land, Infrastructure and Transport Infrastructure Development Institute – Japan (2004. This research was conducted through several stages, i.e. secondary data collection in the form of rainfall data, lahar flow occurrence data, making correlation graph between rainfall intensity and working rainfall, determination of critical line, warning line and evacuation line. The results show that standard rainfall for warning and evacuation alert in Putih River are 22 mm, and 49 mm, respectively. The accuracy of warning criteria and the evacuation criteria against snake line for warning line is 30%, evacuation line is 61% and the critical line is 83%. The behavior of snake line that indicates lahar flow occurrence in Putih River forming an angle of 40o up to 45o.

  3. Study of ranking of bio-indices using benthic macroinvertebrates for Lower Dongnai River System, Vietnam.

    Science.gov (United States)

    Nga, Le Phi; Quoi, Le Phat; Duc, Pham Anh

    2012-04-01

    It has been demonstrated by research that the most successful assessment methods have been based on the benthic macroinvertebrate communities. A lot of bio-indices have been applied to evaluate the water quality widely. However, most of them have got the rankings for the water quality assessment. In this study, based on the monitoring results of the benthic macroinvertebrate and the environmental parameters in the Lower Dongnai River System during three-year periods (2007 - 2009), the linear correlations among the most popular bio-indices and each environmental parameter were considered. These environmental variables having the most closed correlation with the biological indices were DO (dissolved oxygen), WQI (water quality index) and total nitrogen. From the analysis, the ranking of bio-indices using benthic macroinvertebrate for the Lower Dongnai River System were established. The findings proved that the ranking of bio-indices for water quality assessment can be used to evaluate the water quality for the Lower Dongnai River System.

  4. Columbia River system operation review: Final environmental impact statement. Main report exhibits

    International Nuclear Information System (INIS)

    1995-11-01

    This Volume is a part of the Final Environmental Impact Statement (EIS) for the Columbia River System. This volume contains technical exhibits of cultural resources and commentary on the (System Operation Review) SOR process. The Confederated Tribes of the Umatilla Indian Reservation comment is the majority of the material in the volume, in the Consultation Plan, Identification of trust resources; Criteria for the selection of a System Operating Strategy; comment on rights protection and implementation of Federal Trust responsibility; analysis of the draft EIS. Comment by other Native American Tribes and groups is also included: Confederated Tribes of the Colville Reservation; Kootenai Tribe of Idaho; Spokane Tribe of Indians; Coeur d' Alene tribe

  5. Columbia River System Operation Review : Final Environmental Impact Statement, Main Report Exhibits.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Volume is a part of the Final Environmental Impact Statement (EIS) for the Columbia River System. This volume contains technical exhibits of cultural resources and commentary on the (System Operation Review) SOR process. The Confederated Tribes of the Umatilla Indian Reservation comment is the majority of the material in the volume, in the Consultation Plan, Identification of trust resources; Criteria for the selection of a System Operating Strategy; comment on rights protection and implementation of Federal Trust responsibility; analysis of the draft EIS. Comment by other Native American Tribes and groups is also included: Confederated Tribes of the Colville Reservation; Kootenai Tribe of Idaho; Spokane Tribe of Indians; Coeur d` Alene tribe.

  6. Standard criteria for disposal of liquid radioactive wastes from nuclear power plants into surface waters (river systems)

    International Nuclear Information System (INIS)

    Pisarev, V.V.; Tsybizov, I.S.

    1976-01-01

    Radioactive products discharge into natural water streams results in the necessity to regulate nuclear power plant discharges to ensure radiation safety (RS) for population using a river and surrounding river territory. To ensure RS it is necessary to set scientific-founded standards of permissible discharge level of liquid radioactive wastes (LRW) from nuclear power plant assuring observance of hygienic requirements for surface water puring. Volume of permissible LRW discharge into river systems must be set both with provision for concrete physical-geographycal conditions, specficity of utilizing the river and river valley and social-economical peculiarities of crtical population groups. The value of permissible LRW discharge into river systems is determined by three criterion groups: radiological, ecological and hydrological ones. By means of radiological group the internal and external irradiation doses for the whole body and its separate organs are set and RS of population is determined. Ecological criteria include a number of parameters (coefficients of accumulation, distribution and transition) determining quantitative ratios between radioactive element contents in water and separate links of biological chains: soil/water, fish/water, vegetables/water and others. Hydrological criteria determine the degree of waste dilution in rivers, control radioactive contamination of flood-lands areas and in common with ecological criteria determine radionuclide contents in soil and food products. A method of determining average annual values of LRW dilution in river waters is presented [ru

  7. Monitoring of organochlorine pesticides using PFU systems in Yunnan lakes and rivers, China.

    Science.gov (United States)

    Yang, Jun; Zhang, Wenjing; Shen, Yunfen; Feng, Weisong; Wang, Xinhua

    2007-01-01

    Polyurethane foam unit (PFU) systems were collected from 11 lakes and three rivers in the Yunnan Plateau, China and, the PFU extrusion liquids were analyzed for organochlorine pesticides (OCPs) by gas chromatography with electron capture detection (GC-ECD). The concentrations of pp'-DDE, HCB and HCHs were undetectable to 1.86 microgl-1 (mean 0.27 microgl-1), undetectable to 0.72 microgl-1 (mean 0.11 microgl-1), and 0.24-21.95 microgl-1 (mean 7.39 microgl-1) respectively in lakes; and those in rivers were undetectable to 0.23 microgl-1 (mean 0.08 microgl-1), 0.68-2.93 microgl-1 (mean 1.70 microgl-1), and 2.71-37.56 microgl-1 (mean 17.01 microgl-1) respectively. Notably, some residue levels of OCPs exceeded the US National Recommended Water Quality Criteria, implying Yunnan has levels of OCPs potentially harmful to human health. Further, the contamination by OCPs showed an obvious spatial distribution pattern. Amongst the lakes, Dianchi, Xingyun, Lugu and Yangzonghai had the highest OCP levels dominated by beta-HCH, whereas among rivers, Nujiang and Lancang Rivers had the highest contents of OCPs dominated by alpha-HCH. This demonstrates that HCHs are the predominant contaminants and some point sources of HCHs may still exist in Yunnan. The pollution levels in Yunnan were compared with other studies, suggesting the PFU method is suitable for long-term on-line monitoring of trace OCPs in aquatic ecosystems. Therefore, continuous studies monitoring OCPs in lakes and rivers are needed to further understand the future trend of contamination.

  8. One-dimensional flow model of the river-hyporheic zone system

    Science.gov (United States)

    Pokrajac, D.

    2016-12-01

    The hyporheic zone is a shallow layer beneath natural streams that is characterized by intense exchange of water, nutrients, pollutants and thermal energy. Understanding these exchange processes is crucial for successful modelling of the river hydrodynamics and morphodynamics at various scales from the river corridor up to the river network scale (Cardenas, 2015). Existing simulation models of hyporheic exchange processes are either idealized models of the tracer movement through the river-hyporheic zone system (e.g. TSM, Bencala and Walters, 1983) or detailed models of turbulent flow in a stream, coupled with a conventional 2D Darcian groundwater model (e.g. Cardenas and Wilson, 2007). This paper presents an alternative approach which involves a simple 1-D simulation model of the hyporheic zone system based on the classical SWE equations coupled with the newly developed porous media analogue. This allows incorporating the effects of flow unsteadiness and non-Darcian parameterization od the drag term in the hyporheic zone model. The conceptual model of the stream-hyporheic zone system consists of a 1D model of the open channel flow in the river, coupled with a 1D model of the flow in the hyporheic zone via volume flux due to the difference in the water level in the river and the hyporheic zone. The interaction with the underlying groundwater aquifer is neglected, but coupling the present model with any conventional groundwater model is straightforward. The paper presents the derivation of the 1D flow equations for flow in the hyporheic zone, the details of the numerical scheme used for solving them and the model validation by comparison with published experimental data. References Bencala, K. E., and R. A. Walters (1983) "Simulation of solute transport in a mountain pool-and-riffle stream- a transient storage model", Water Resources Reseach 19(3): 718-724. Cardenas, M. B. (2015) "Hyporheic zone hydrologic science: A historical account of its emergence and a

  9. Hydrogeologic framework of the Wood River Valley aquifer system, south-central Idaho

    Science.gov (United States)

    Bartolino, James R.; Adkins, Candice B.

    2012-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Hailey, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system, which consists primarily of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on groundwater for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the groundwater resource. As part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the Wood River Valley, this report describes the hydrogeologic framework of the Wood River Valley aquifer system. Although most of the Wood River Valley aquifer system is composed of Quaternary-age sediments and basalts of the Wood River Valley and its tributaries, older igneous, sedimentary, or metamorphic rocks that underlie these Quaternary deposits also are used for water supply. It is unclear to what extent these rocks are hydraulically connected to the main part of Wood River Valley aquifer system and thus whether they constitute separate aquifers. Paleozoic sedimentary rocks in and near the study area that produce water to wells and springs are the Phi Kappa and Trail Creek Formations (Ordovician and Silurian), the Milligen Formation (Devonian), and the Sun Valley Group including the Wood River Formation (Pennsylvanian-Permian) and the Dollarhide Formation (Permian). These sedimentary rocks are intruded by granitic rocks of the Late Cretaceous Idaho batholith. Eocene Challis Volcanic Group rocks overlie all of the older rocks (except where removed by erosion). Miocene Idavada Volcanics are found in the southern part of the study area. Most of these rocks have been folded, faulted, and

  10. Columbia River system operation review. Final environmental impact statement

    International Nuclear Information System (INIS)

    1995-11-01

    This study attempts to identify and analyze the impacts of the System Operating Strategy (SOS) alternatives on cultural resources. The impacts include effects on Native American traditional cultural values, properties and practices. They also include effects on archeological or historic properties meeting the criteria of the National Register of Historic Places. In addition to responding to the requirements of the National Environmental Policy Act (NEPA), this analysis addresses the requirements of the National Historic Preservation Act (NHPA), the Archeological Resources Protection Act (ARPA), the Native American Graves Protection and Repatriation Act (NAGPRA), the Native American Religious Freedom Act (NARFA), and other relevant legislation. To meet their legally mandated cultural resources requirements, the SOR agencies will develop agreements and Implementation Plans with the appropriate State Historic Preservation Officers (SHPOs), Tribes, and the Advisory Council on Historic Preservation (ACHP) detailing the measures necessary to best manage the resource. The planning and implementation activities will be staged over a number of years in consultation with affected Tribes

  11. Seasonal streamflow prediction by a combined climate-hydrologic system for river basins of Taiwan

    Science.gov (United States)

    Kuo, Chun-Chao; Gan, Thian Yew; Yu, Pao-Shan

    2010-06-01

    SummaryA combined, climate-hydrologic system with three components to predict the streamflow of two river basins of Taiwan at one season (3-month) lead time for the NDJ and JFM seasons was developed. The first component consists of the wavelet-based, ANN-GA model (Artificial Neural Network calibrated by Genetic Algorithm) which predicts the seasonal rainfall by using selected sea surface temperature (SST) as predictors, given that SST are generally predictable by climate models up to 6-month lead time. For the second component, three disaggregation models, Valencia and Schaake (VS), Lane, and Canonical Random Cascade Model (CRCM), were tested to compare the accuracy of seasonal rainfall disaggregated by these three models to 3-day time scale rainfall data. The third component consists of the continuous rainfall-runoff model modified from HBV (called the MHBV) and calibrated by a global optimization algorithm against the observed rainfall and streamflow data of the Shihmen and Tsengwen river basins of Taiwan. The proposed system was tested, first by disaggregating the predicted seasonal rainfall of ANN-GA to rainfall of 3-day time step using the Lane model; then the disaggregated rainfall data was used to drive the calibrated MHBV to predict the streamflow for both river basins at 3-day time step up to a season's lead time. Overall, the streamflow predicted by this combined system for the NDJ season, which is better than that of the JFM season, will be useful for the seasonal planning and management of water resources of these two river basins of Taiwan.

  12. Linking hydro-morphology with invertebrate ecology in diverse morphological units of a large river-floodplain system

    CSIR Research Space (South Africa)

    Blettler, MCM

    2016-12-01

    Full Text Available Interdisciplinary research in the fields of ecohydrology and ecogeomorphology is becoming increasingly important as a way to understand how biological and physical processes interact with each other in river systems. The objectives of the current...

  13. Potentiometric-surface altitude of the confined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  14. Water-table altitude of the unconfined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  15. ESTIMATION OF INHERENT OPTICAL PROPERTIES AND THE WATER QUALITY COMPONENTS IN THE NEUSE RIVER-PAMLICO SOUND ESTUARINE SYSTEM

    Science.gov (United States)

    Field observations carried out in the Neuse River-Pamlico Sound Estuarine System (NRE-PS), North Carolina, USA were used to develop optical algorithms for assessing inherent optical properties, IOPs (absorption and backscattering) associated with water quality components (WQC).

  16. Modeling invasive alien plant species in river systems : Interaction with native ecosystem engineers and effects on hydro-morphodynamic processes

    NARCIS (Netherlands)

    van Oorschot, M.; Kleinhans, M. G.; Geerling, G.W.; Egger, G.; Leuven, R.S.E.W.; Middelkoop, H.

    2017-01-01

    Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding

  17. Study of migration behavior of technogenic radionuclides in the Yenisey River-Kara Sea aquatic system

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.; Legin, E.; Legin, V.; Shishlov, A.; Savitskii, Yu.; Novikov, A.; Goryachenkova, T.

    2001-01-01

    For 35 years Krasnoyarsk Mining-Chemical Combine (MCC) manufactures weapon plutonium in single-pass production reactors cooled with water of the Yenisey River. Water discharge from these reactors is the major source of radioactive contamination of the Yenisey River. We have demonstrated that after putting the reactors out of operation (in late 1992) the contamination level of the Yenisey River with short-lived radionuclides considerably decreased, and now the radioactive contamination is caused essentially by Cs-137, Eu-152, Pu-239,240, Sr-90, and Am-241, whose concentration in the aqueous phase is lower than in bottom sediments and, particularly, flood-land deposits by several orders of magnitude (except for Sr-90). The flood-land deposits are classified with the most contaminated environmental objects in the territories under the impact of MCC: their radioactivity is comparable with that of low-level waste. Taking into account the considerable depth and area of the flood-land deposits, this allows their classification as a great technogenic radiation anomaly. Comparison of the maximal Cs-137 and Pu-239,240 levels in flood-land soils and bottom sediments of the Yenisey River with those in bottom sediments of the Pripyat' River and the Kiev reservoir shows that these values are close each to other. A direct correlation is found between the spatial distribution of Cs-137 on the one hand and Pu-239,240, Eu-152, and Am-241 on the other hand in the aqueous phase and bottom sediments, which is not the case for Sr-90. Data on the distribution coefficients of the indicated radionuclides between the deposits and aqueous phase (obtained with actual and model systems) and also on the radionuclide distribution throughout geochemical mobility forms suggest that the essential part of Cs, Pu, Eu, and Am migrates with fine-disperse suspended material, the transport and distribution of which is controlled by the hydrological regime of the Yenisey River. By contrast, strontium

  18. Study of migration behavior of technogenic radionuclides in the Yenisey River-Kara Sea aquatic system

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Yu.; Legin, E.; Legin, V. [Khlopin Radium Institute, St. Petersburg (Russian Federation); Shishlov, A.; Savitskii, Yu. [Krasnoyarsk Mining and Chemical Combine, Krasnoyarsk (Russian Federation); Novikov, A.; Goryachenkova, T. [Russian Academy of Sciences, Institute of Geochemistry and Analytical Chemistry, Moscow (Russian Federation)

    2001-03-01

    For 35 years Krasnoyarsk Mining-Chemical Combine (MCC) manufactures weapon plutonium in single-pass production reactors cooled with water of the Yenisey River. Water discharge from these reactors is the major source of radioactive contamination of the Yenisey River. We have demonstrated that after putting the reactors out of operation (in late 1992) the contamination level of the Yenisey River with short-lived radionuclides considerably decreased, and now the radioactive contamination is caused essentially by Cs-137, Eu-152, Pu-239,240, Sr-90, and Am-241, whose concentration in the aqueous phase is lower than in bottom sediments and, particularly, flood-land deposits by several orders of magnitude (except for Sr-90). The flood-land deposits are classified with the most contaminated environmental objects in the territories under the impact of MCC: their radioactivity is comparable with that of low-level waste. Taking into account the considerable depth and area of the flood-land deposits, this allows their classification as a great technogenic radiation anomaly. Comparison of the maximal Cs-137 and Pu-239,240 levels in flood-land soils and bottom sediments of the Yenisey River with those in bottom sediments of the Pripyat' River and the Kiev reservoir shows that these values are close each to other. A direct correlation is found between the spatial distribution of Cs-137 on the one hand and Pu-239,240, Eu-152, and Am-241 on the other hand in the aqueous phase and bottom sediments, which is not the case for Sr-90. Data on the distribution coefficients of the indicated radionuclides between the deposits and aqueous phase (obtained with actual and model systems) and also on the radionuclide distribution throughout geochemical mobility forms suggest that the essential part of Cs, Pu, Eu, and Am migrates with fine-disperse suspended material, the transport and distribution of which is controlled by the hydrological regime of the Yenisey River. By contrast, strontium

  19. Water Quality Projects Summary for the Mid-Columbia and Cumberland River Systems

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hadjerioua, Boualem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    Scheduling and operational control of hydropower systems is accompanied with a keen awareness of the management of water use, environmental effects, and policy, especially within the context of strict water rights policy and generation maximization. This is a multi-objective problem for many hydropower systems, including the Cumberland and Mid-Columbia river systems. Though each of these two systems have distinct operational philosophies, hydrologic characteristics, and system dynamics, they both share a responsibility to effectively manage hydropower and the environment, which requires state-of-the art improvements in the approaches and applications for water quality modeling. The Department of Energy and Oak Ridge National Laboratory have developed tools for total dissolved gas (TDG) prediction on the Mid-Columbia River and a decision-support system used for hydropower generation and environmental optimization on the Cumberland River. In conjunction with IIHR - Hydroscience & Engineering, The University of Iowa and University of Colorado s Center for Advanced Decision Support for Water and Environmental Systems (CADSWES), ORNL has managed the development of a TDG predictive methodology at seven dams along the Mid-Columbia River and has enabled the ability to utilize this methodology for optimization of operations at these projects with the commercially available software package Riverware. ORNL has also managed the collaboration with Vanderbilt University and Lipscomb University to develop a state-of-the art method for reducing high-fidelity water quality modeling results into surrogate models which can be used effectively within the context of optimization efforts to maximize generation for a reservoir system based on environmental and policy constraints. The novel contribution of these efforts is the ability to predict water quality conditions with simplified methodologies at the same level of accuracy as more complex and resource intensive computing methods

  20. Establishing the system of public communal utility on the river Danube and the river Sava on the territory of Belgrade

    Directory of Open Access Journals (Sweden)

    Pušić Antonije

    2007-01-01

    Full Text Available Waste disposal and treatment problem consideration in the Republic of Serbia is making a pioneer steps. Main goal of this paper is to emphasize problems of waste disposal on waterways in urban areas, which consists of three aspects: uncontrolled disposal, possibilities of waste elimination and institutional model of collecting and recycling. Considering the fact that Draft version of Waste disposal law is not yet adopted by the national government (beside the fact that it contains the question of disposing and recycling municipal solid waste and that it is not elaborating the problem of dumping the municipal waste into rivers, this paper will give methodological and legislative recommendations for the solution of this problem. However, city of Belgrade and the other cities in Serbia are often facing serious problems (arranged riverfronts covered with municipal waste. Because of that, it is necessary to define methods of collecting and treatment of waste disposed in the water streams (in the area of technology. It is also important to determine legislative framework, and also to establish hierarchy in decision-making on the local level. One of the main goals is to determine new aspects of public communal utilities (so called "river communal utility", which will have jurisdiction in this area. International experiences must be analyzed separately and based on them is proposed new concept of elimination of waste from the rivers. Implementation of this pilot project is recommended on the river Danube and the river Sava on the territory of the city of Belgrade.

  1. Adapting to Variable Water Supply in the Truckee-Carson River System, Western USA

    Directory of Open Access Journals (Sweden)

    Kelley Sterle

    2017-10-01

    Full Text Available In snow-fed inland river systems in the western United States, water supply depends upon timing, form, and amount of precipitation. In recent years, this region has experienced unprecedented drought conditions due to decreased snowpack, exacerbated by exceptionally warmer winter temperatures averaging 3–4 °C above normal. In the snow-fed Truckee-Carson River System, two sets of interviews were conducted as part of a larger collaborative modeling case study with local water managers to examine local adaptation to current drought conditions. A comparative analysis of these primary qualitative data, collected during the fourth and fifth consecutive years of continued warmer drought conditions, identifies shifts in adaptation strategies and emergent adaptation barriers. That is, under continuous exposure to climate stressors, managers shifted their adaptation focus from short-term efforts to manage water demand toward long-term efforts to enhance water supply. Managers described the need to: improve forecasts and scientific assessments of snowmelt timing, groundwater levels, and soil moisture content; increase flexibility of prior appropriation water allocation rules based on historical snowpack and streamflow timing; and foster collaboration and communication among water managers across the river system. While water scarcity and insufficient water delivery infrastructure remain significant impediments in this arid region, climate uncertainty emerged as a barrier surrounding adaptation to variable water supply. Existing prior appropriation based water institutions were also described as an adaptation barrier, meriting objective evaluation to assess how to best modify these historical institutions to support dynamic adaptation to climate-induced water supply variability. This study contributes to a growing body of research that assesses drought adaptation in snow-fed inland river systems, and contributes a unique report concerning how adaptation

  2. Individual Dose Calculations with Use of the Revised Techa River Dosimetry System TRDS-2009D

    Energy Technology Data Exchange (ETDEWEB)

    Degteva, M. O.; Shagina, N. B.; Tolstykh, E. I.; Vorobiova, M. I.; Anspaugh, L. R.; Napier, Bruce A.

    2009-10-23

    An updated deterministic version of the Techa River Dosimetry System (TRDS-2009D) has been developed to estimate individual doses from external exposure and intake of radionuclides for residents living on the Techa River contaminated as a result of radioactive releases from the Mayak plutonium facility in 1949–1956. The TRDS-2009D is designed as a flexible system that uses, depending on the input data for an individual, various elements of system databases to provide the dosimetric variables requested by the user. Several phases are included in the computation schedule. The first phase includes calculations with use of a common protocol for all cohort members based on village-average-intake functions and external dose rates; individual data on age, gender and history of residence are included in the first phase. This phase results in dose estimates similar to those obtained with system TRDS-2000 used previously to derive risks of health effects in the Techa River Cohort. The second phase includes refinement of individual internal doses for those persons who have had body-burden measurements or exposure parameters specific to the household where he/she lived on the Techa River. The third phase includes summation of individual doses from environmental exposure and from radiological examinations. The results of TRDS-2009D dose calculations have demonstrated for the ETRC members on average a moderate increase in RBM dose estimates (34%) and a minor increase (5%) in estimates of stomach dose. The calculations for the members of the ETROC indicated similar small changes for stomach, but significant increase in RBM doses (400%). Individual-dose assessments performed with use of TRDS-2009D have been provided to epidemiologists for exploratory risk analysis in the ETRC and ETROC. These data provide an opportunity to evaluate the possible impact on radiogenic risk of such factors as confounding exposure (environmental and medical), changes in the Techa River source

  3. Sorption Characteristics of Sediments in the Upper Mississippi River System Above Lake Pepin

    National Research Council Canada - National Science Library

    James, W

    1999-01-01

    This technical note examines equilibrium phosphorus processes and sorption characteristics for sediments collected from the Minnesota River, immediately upstream from its confluence with the Upper Mississippi River (UMR...

  4. Oxygen, deuterium, and strontium isotope characteristics of the Indus River water system

    Science.gov (United States)

    Sharma, Anupam; Kumar, Kamlesh; Laskar, Amzad; Singh, Sunil Kumar; Mehta, Pankaj

    2017-05-01

    Understanding the sources and compositional characteristics of waters and sediments in the Indus River system is extremely important as its water availability is one of the primary factors for sustenance of the irrigation activities and the socioeconomic status of a very densely populated region of the world. Here we used stable isotopic compositions (δD and δ18O) and strontium isotopic ratio (87Sr/86Sr) in the Indus River water, its tributaries and its small streams (nallahs) in the Indian territory to understand the regional hydrology, water sources, and catchment processes (evaporation, transpiration, recycling, and mixing). The δ18O values in the Indus River system (IRS) ranges from - 16.9‰ to - 12.5‰ and δD from - 122.8‰ to - 88.5‰. The Indus River and its major tributaries (such as the Zanskar, Nubra and Shyok rivers) are characterized by relatively lower δ18O values, whereas TangTse and other small streams contributing to the Indus are relatively enriched in 18O. The local meteoric water line for the IRS was found to be δD = 7.87 × δ18O + 11.41, which is similar to the Global Meteoric Water Line (GMWL) indicating meteoric origin of the water and insignificant secondary evaporation in the catchment. The Deuterium excess (d-excess) in the IRS varies between 6.5‰ and 14.9‰ with an average of 11.7‰, which is mostly higher than the long-term average for the Indian summer monsoon ( 8‰). The higher d-excess value is because of the contribution of moisture from westerlies; a simple mass balance shows 26% water in the main Indus channel is contributed by the westerlies originated from the Mediterranean Sea. The Sr isotope ratio in IRS varies between 0.70515 and 0.71291; wherein the Indus, and its tributary rivers Shyok and Nubra, are characterized by relatively high Sr isotope ratios (avg. 0.71086-0.71243) compared to the Zanskar and TangTse tributaries (Sr 0.709) because of the variation in silicate rock weathering component and carbonate

  5. Strontium concentrations and isotope ratios in a forest-river system in the South Qinling Mts., China.

    Science.gov (United States)

    Bu, Hongmei; Song, Xianfang; Zhang, Quanfa; Burford, Michele A

    2016-04-15

    The concentrations of dissolved strontium (Sr) and isotope ratios ((87)Sr/(86)Sr) in rainwater, river water, and water from forest soil are measured to investigate the contributions of these sources to a river during base flow conditions in the relatively pristine South Qinling Mountains, China. Dissolved Sr concentrations and (87)Sr/(86)Sr ratios vary significantly between different water types (p water samples including Ca(2+), Mg(2+), EC, and TDS (p water chemistry in the river water. Using the three-source mixing model, atmospheric inputs, carbonate, and silicate weathering contribute 74%, 20%, and 6% respectively to the dissolved Sr in the river water. This research has provided new insights into the contribution of sources of Sr to a river system in a mountainous catchment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Generalization of the Sitnica river drainage system with potential pollution of tributaries

    Directory of Open Access Journals (Sweden)

    Valjarević Aleksandar

    2015-01-01

    Full Text Available Maps are miniature graphic representation of distinct area and as not being completely real require generalization. Cartographic generalization represents a specific investigation method in cartography. Generalization includes the processes of selection, simplification, and symbolization of details according to the purpose and the map scale. The river generalization requires the phase classification, selection, magnification and simplification to being used. Linear symbols are given on the map by their corresponding/characteristic length and remained unchanged even after the generalization. Particular cartographic criterions need to be applied during generalization. In the given case of the Sitnica river drainage system were applied the computer supported generalization based on the software Global Mapper 16.1 and the Open source software QGIS 2.6.1. The Sitnica drainage system is generalized in three levels. The first included digitalization of all linear objects related to the river Sitnica and its tributaries. Second level resulted in vector generalized data that indicate on polluted tributaries, whereas the final, third stage led to construction of multilayered vector map of the Sitnica catchments area with polluted tributaries.

  7. Introduction: CRevolution 2: origin and evolution of the Colorado River System II

    Science.gov (United States)

    Karlstrom, Karl E.; Beard, L. Sue; House, P. Kyle; Young, Richard A.; Aslan, Andres; Billingsley, George; Pederson, Joel

    2012-01-01

    A 2010 Colorado River symposium held in Flagstaff, Arizona, in May 2010, had 70 participants who engaged in intense debate about the origin and evolution of the Colorado River system. This symposium, built on two previous decadal scientific meetings, focused on forging scientific consensus where possible, while also articulating continued controversies regarding the Cenozoic evolution of the Colorado River System and the landscapes of the Colorado Plateau–Rocky Mountain region that it drains. New developments involved hypotheses that Neogene mantle flow is driving plateau tilting and differential uplift, with consensus that multidisciplinary studies involving differential incision studies and additional geochronology and thermochronology are needed to test the relative importance of tectonic and geomorphic forcings in shaping the spectacular landscapes of the Colorado Plateau region. In addition to the scientific goals, the meeting participants emphasized the iconic status of Grand Canyon for geosciences, and the importance of good communication between the research community, the geoscience education/interpretation community, the public, and the media. Building on a century-long tradition, this region still provides a globally important natural laboratory for studies of the interactions of erosion and tectonism in the shaping landscape of elevated plateaus.

  8. Distribution and sources of aliphatic hydrocarbons in surface sediments of Sergipe River estuarine system.

    Science.gov (United States)

    Lima, Manoel B; Feitosa, Elaine A; Emídio, Elissandro S; Dórea, Haroldo S; Alexandre, Marcelo R

    2012-08-01

    The assessment of aliphatic hydrocarbons was performed in the Sergipe River estuarine system, northeastern Brazil. Aliphatic hydrocarbons concentration ranged from 9.9 ug g⁻¹ up to 30.8 ug g⁻¹ of dry sediment. The carbon preference index (CPI, based on nC₂₄ to nC₃₄ range), indicated predominance of petrogenic input in two of the sites analyzed (P4 and P5). The unresolved complex mixture (UCM) was found to be present in seven of the nine sites sampled (except for P4 and P5). Overall, the results of this work suggest that there is a mix of organic matter sources to the sediment. Although the coast of Sergipe has an intense off shore petroleum exploration and the Sergipe River crosses the entire city of Aracaju, the capital city of Sergipe, non-significant anthropogenic fingerprint was assessed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Helium isotopes in geothermal systems: Iceland, The Geysers, Raft River and Steamboat Springs

    International Nuclear Information System (INIS)

    Torgersen, T.

    1982-01-01

    Helium isotope ratios have been measured in geothermal fluids from Iceland, The Geysers, Raft River, Steamboat Springs and Hawaii. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios and in terms of the processes which can alter the isotopic ratio. Using this interpretational scheme, Iceland is found to be an area of hot-spot magmatic He implying an active volcanic source although the data are suggestive of high-temperature weathering release of crustal He incorporated in the geothermal fluids. By comparison to fumarolic gases from Hawaii and Juan De Fuca and Cayman Trench basaltic glass samples, The Geysers contains MOR type magmatic He again implying an active volcanic source possibly a 'leaky' transform related to the San Andreas Fault System. Raft River contains only crustal He indicating no active volcanic sources. Steamboat Springs He isotope ratios are distinctly less than typical plate margin volcanics but must still have a magmatic source. (author)

  10. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Sippel; William C. Carrigan; Kenneth D. Luff; Lyn Canter

    2003-11-12

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). The software tools in ICS have been developed for characterization of reservoir properties and evaluation of hydrocarbon potential using a combination of inter-disciplinary data sources such as geophysical, geologic and engineering variables. The ICS tools provide a means for logical and consistent reservoir characterization and oil reserve estimates. The tools can be broadly characterized as (1) clustering tools, (2) neural solvers, (3) multiple-linear regression, (4) entrapment-potential calculator and (5) file utility tools. ICS tools are extremely flexible in their approach and use, and applicable to most geologic settings. The tools are primarily designed to correlate relationships between seismic information and engineering and geologic data obtained from wells, and to convert or translate seismic information into engineering and geologic terms or units. It is also possible to apply ICS in a simple framework that may include reservoir characterization using only engineering, seismic, or geologic data in the analysis. ICS tools were developed and tested using geophysical, geologic and engineering data obtained from an exploitation and development project involving the Red River Formation in Bowman County, North Dakota and Harding County, South Dakota. Data obtained from 3D seismic surveys, and 2D seismic lines encompassing nine prospective field areas were used in the analysis. The geologic setting of the Red River Formation in Bowman and Harding counties is that of a shallow-shelf, carbonate system. Present-day depth of the Red River formation is approximately 8000 to 10,000 ft below ground surface. This report summarizes production results from well demonstration activity, results of reservoir characterization of the Red River Formation at demonstration sites, descriptions of ICS tools and strategies for their application.

  11. Sedimentation and contamination patterns of dike systems along the Rhône River (France)

    Science.gov (United States)

    Seignemartin, Gabrielle; Tena, Alvaro; Piégay, Hervé; Roux, Gwenaelle; Winiarski, Thierry

    2017-04-01

    Humans have historically modified the Rhône River, especially in the last centuries. In the 19th century, the river was systematically embanked for flood protection purposes, and works continued along the 20th century with dike system engineering work for navigation. The Rhône was canalised and its historical course by-passed by a series of hydroelectric dams. Besides, industrial activity polluted the river. For example, high levels of PCB's were attributed to the inputs of the heavily industrialized zone downstream from Lyon. During floods, these contaminants, associated with the suspended sediment, were trapped by the engineering works and the floodplain. Currently, a master plan to reactivate the river dynamics in the alluvial margins by removing the groyne-fields and dikes in the by-passed sections is being implemented. Within this context, this work aims to assess historical dynamics of sediment and associated contaminants in the floodplain (e.g. trace metal elements), notably in the dike system, in order to evaluate the contamination risk related to bank protection removal. With this objective, a transversal methodology has been applied coupling GIS diachronic analysis (old maps, bathymetric data, Orthophotos, LIDAR, etc.) to understand the historical floodplain evolution, sediment survey to obtain sediment thickness (metal rod and Ground Penetrating Radar), and sediment sampling (manual auger and core sampling) to obtain the metal element concentrations (X-Ray Fluorescence and Inductively Coupled Plasma Mass Spectrometry). By this way, metal element patterns were defined and used as contamination tracing indicators to apprehend the contamination history but also as geochemical background indicators to define the sediment source influence. We found that sediment temporal patterns are directly related with the by-pass construction year. Spatially, fine sediment deposition predominates in the dike systems, being lower in the floodplain already disconnected in

  12. Modeling of the Savannah River Site High Level Waste Evaporator Systems

    International Nuclear Information System (INIS)

    Hang, T.

    2003-01-01

    Three evaporators are used to reduce the volume of waste in the waste tank farm at the Savannah River Site (SRS). Evaporators are crucial operation in the SRS waste processing and management system. Using the Aspen Custom Modeler(TM) (ACM) software package marketed by Aspen Technology, Inc., the evaporator dynamic flowsheet models have been constructed to simulate the behavior of the evaporator systems. The evaporator models are used to assist operations and planning. The models account for the basic arrangement and flowpath for the evaporators: (1) Feed system, (2) Concentrate system, (3) Overheads system, and (4) Steam system. This paper provides a detailed description of the model development and presents the result of a typical simulation scenario

  13. Solute geochemistry of the Snake River plain regional aquifer system, Idaho and eastern Oregon

    Science.gov (United States)

    Wood, Warren W.; Low, Walton H.

    1988-01-01

    Four geochemical approaches were used to determine chemical reactions controlling solute concentrations in the Snake River Plain regional aquifer system: (1) calculation of a solute balance within the aquifer, (2) identification of weathered products in the aquifer frame- work, (3) comparison of thermodynamic mineral saturation indices with plausible solute reactions, and (4) comparison of stable-isotope ratios of the solutes with those in the aquifer framework. Solutes in the geo- thermal groundwater system underlying the main aquifer were examined by calculating thermodynamic mineral saturation indices, stable-isotope ratios, geothermometry, and radiocarbon dating.

  14. Shelf sedimentation off the Ganges-Brahmaputra river system: Evidence for sediment bypassing to the Bengal fan

    Science.gov (United States)

    Kuehl, Steven A.; Hariu, Tina M.; Moore, Willard S.

    1989-12-01

    The nature of shelf sedimentation seaward of the world's largest sediment dispersal system is examined by using sedimentological and geochronological techniques on a unique suite of sediment cores and grab samples. Sediments from the Ganges-Brahmaputra river system are currently accumulating on the shelf in water depths of less than about 80 m, forming a clinoform-like deposit similar to subaqueous deltas found off other major river systems. The highest sediment accumulation rates on the shelf occur near the head of the Swatch of No Ground, a major submarine canyon that indents the shelf west of the present river mouths. This observation, together with textural data, suggests that river sediments are transported seaward and westward and that the Swatch of No Ground is currently a major conduit for the transport of sediments from the Bengal shelf.

  15. Fine-resolution Modeling of Urban-Energy Systems' Water Footprint in River Networks

    Science.gov (United States)

    McManamay, R.; Surendran Nair, S.; Morton, A.; DeRolph, C.; Stewart, R.

    2015-12-01

    Characterizing the interplay between urbanization, energy production, and water resources is essential for ensuring sustainable population growth. In order to balance limited water supplies, competing users must account for their realized and virtual water footprint, i.e. the total direct and indirect amount of water used, respectively. Unfortunately, publicly reported US water use estimates are spatially coarse, temporally static, and completely ignore returns of water to rivers after use. These estimates are insufficient to account for the high spatial and temporal heterogeneity of water budgets in urbanizing systems. Likewise, urbanizing areas are supported by competing sources of energy production, which also have heterogeneous water footprints. Hence, a fundamental challenge of planning for sustainable urban growth and decision-making across disparate policy sectors lies in characterizing inter-dependencies among urban systems, energy producers, and water resources. A modeling framework is presented that provides a novel approach to integrate urban-energy infrastructure into a spatial accounting network that accurately measures water footprints as changes in the quantity and quality of river flows. River networks (RNs), i.e. networks of branching tributaries nested within larger rivers, provide a spatial structure to measure water budgets by modeling hydrology and accounting for use and returns from urbanizing areas and energy producers. We quantify urban-energy water footprints for Atlanta, GA and Knoxville, TN (USA) based on changes in hydrology in RNs. Although water intakes providing supply to metropolitan areas were proximate to metropolitan areas, power plants contributing to energy demand in Knoxville and Atlanta, occurred 30 and 90km outside the metropolitan boundary, respectively. Direct water footprints from urban landcover primarily comprised smaller streams whereas indirect footprints from water supply reservoirs and energy producers included

  16. A system dynamics approach for integrated management of the Jucar River Basin

    Science.gov (United States)

    Rubio-Martin, Adria; Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2017-04-01

    System dynamics (SD) is a modelling approach that allows the analysis of complex systems through the mathematical definition of variables and their relationships. Based on systems thinking, SD is suitable for interdisciplinary studies of the management of complex systems. Over the past 50 years, SD tools have been applied to fields as diverse as economics, ecology, politics, sociology and resource management. Its application to the field of water resources has grown significantly over the last two decades, facilitating the enhancement of models by adding social, economic and ecological components. However, its application to the operation of complex multireservoir systems has been very limited so far. In this contribution, we have developed a SD model for the Jucar River Basin, one of the most vulnerable basins in the western Mediterranean region with regard to droughts. The system has three main reservoirs, which allows for a multiannual management of the storage that compensates the highly variable streamflow from upstream. Our SD model of the Jucar River Basin is able to capture the complexity of the water resource system. The model developed consists of five interlinked subsystems: a) Topology of the system network, including the 3 main reservoirs, water seepage and evaporation, inflows and catchments. b) Monthly operating rules of each reservoir. The rules were derived from the expert knowledge eluded from the operators of the reservoirs. c) Monthly urban, agricultural and environmental water demands. d) State index of the system and drought mitigation measures triggered depending on the state index. e) Mancha Oriental aquifer and stream-aquifer interaction with the Jucar River. The comparison between observed and simulated series showed that the model provides a good representation of the observed reservoir operation and total deficits. The interdisciplinary and open nature of the methodology allows to add new variables and dynamics to the model that are

  17. Mapping of a river using close range photogrammetry technique and unmanned aerial vehicle system

    International Nuclear Information System (INIS)

    Room, M H M; Ahmad, A

    2014-01-01

    Photogrammetry is a technique that can be used to record the information of any feature without direct contact. Nowadays, a combination of photogrammetry and Unmanned Aerial Vehicle (UAV) systems is widely used for various applications, especially for large scale mapping. UAV systems offer several advantages in terms of cost and image resolution compared to terrestrial photogrammetry and remote sensing system. Therefore, a combination of photogrammetry and UAV created a new term which is UAV photogrammetry. The aim of this study is to investigate the ability of a UAV system to map a river at very close distance. A digital camera is attached to the Hexacopter UAV and it is flown at 2 m above the ground surface to produce aerial photos. Then, the aerial photos are processed to create two photogrammetric products as output. These are mosaicked orthophoto and digital image. Both products are assessed (RSME). The RSME of X and Y coordinates are ±0.009 m and ±0.033 m respectively. As a conclusion, photogrammetry and the UAV system offer a reliable accuracy for mapping a river model and advantages in term of cost-efficient, high ground resolution and rapid data acquisition

  18. Laboratory QA/QC improvements for small drinking water systems at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Turner, R.D.

    1995-12-01

    The Savannah River Site (SRS), a 310 square mile facility located near Aiken, S.C., is operated by Westinghouse Savannah River Company for the US Department of Energy. SRS has 28 separate drinking water systems with average daily demands ranging from 0.0002 to 0.5 MGD. All systems utilize treated groundwater. Until recently, the water laboratories for each system operated independently. As a result, equipment, reagents, chemicals, procedures, personnel, and quality control practices differed from location to location. Due to this inconsistency, and a lack of extensive laboratory OA/QC practices at some locations, SRS auditors were not confident in the accuracy of daily water quality analyses results. The Site`s Water Services Department addressed these concerns by developing and implementing a practical laboratory QA/QC program. Basic changes were made which can be readily adopted by most small drinking water systems. Key features of the program include: Standardized and upgraded laboratory instrumentation and equipment; standardized analytical procedures based on vendor manuals and site requirements; periodic accuracy checks for all instrumentation; creation of a centralized laboratory to perform metals digestions and chlorine colorimeter accuracy checks; off-site and on-site operator training; proper storage, inventory and shelf life monitoring for reagents and chemicals. This program has enhanced the credibility and accuracy of SRS drinking water system analyses results.

  19. ASSESSMENT OF UNCERTAINTY IN THE RADIATION DOSES FOR THE TECHA RIVER DOSIMETRY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Degteva, M. O.; Anspaugh, L. R.; Shagina, N. B.

    2009-10-23

    In order to provide more accurate and precise estimates of individual dose (and thus more precise estimates of radiation risk) for the members of the ETRC, a new dosimetric calculation system, the Techa River Dosimetry System-2009 (TRDS-2009) has been prepared. The deterministic version of the improved dosimetry system TRDS-2009D was basically completed in April 2009. Recent developments in evaluation of dose-response models in light of uncertain dose have highlighted the importance of different types of uncertainties in the development of individual dose estimates. These include uncertain parameters that may be either shared or unshared within the dosimetric cohort, and also the nature of the type of uncertainty as aleatory or epistemic and either classical or Berkson. This report identifies the nature of the various input parameters and calculational methods incorporated in the Techa River Dosimetry System (based on the TRDS-2009D implementation), with the intention of preparing a stochastic version to estimate the uncertainties in the dose estimates. This report reviews the equations, databases, and input parameters, and then identifies the author’s interpretations of their general nature. It presents the approach selected so that the stochastic, Monte-Carlo, implementation of the dosimetry System - TRDS-2009MC - will provide useful information regarding the uncertainties of the doses.

  20. Pilot-scale benthic microbial electrochemical system (BMES) for the bioremediation of polluted river sediment

    Science.gov (United States)

    Li, Henan; He, Weihua; Qu, Youpeng; Li, Chao; Tian, Yan; Feng, Yujie

    2017-07-01

    A benthic microbial electrochemical system (BMES) of 350 L is built for the bioremediation of river sediment (Ashi river, Harbin, China). Carbon mesh anode with honeycomb-structure supports and activated carbon cathodes are applied for the construction. Synthesis wastewater with glucose is added to simulate the natural condition of Ashi River as an intermittent pollutant-holding water body and accelerate the removal of accumulated bio-refractory organic contents in sediment, represented by the concentration changes of polycyclic aromatic hydrocarbons, as the co-metabolic substrate for bacteria. The effluent TOC in the water layer of BMES is stable at 40 ± 2 mg L-1 and further reduced to 19 ± 5 mg L-1 after the addition of synthesis wastewater, while the removal of polycyclic aromatic hydrocarbons(Benzo(b)fluoranthene, Benzo(k)fluoranthene and Benzo(a)pyrene) in sediment samples reaches 74%. A maximum power density of 63 ± 3 mW m-2 is achieved by BMES, which decrease to 42 ± 2 mW m-2 due to cathode degradation and further reduce to 30 ± 3 mW m-2 attributed to substrate limitation at the end of operation. Community analyses show the diversity of anode community is improved during operation and the abundance of Chloroflexi, Firmicutes and exoelectrogenic microbes like G. psychrophilus increase.

  1. A topological system for delineation and codification of the Earth's river basins

    Science.gov (United States)

    Verdin, K.L.; Verdin, J.P.

    1999-01-01

    A comprehensive reference system for the Earth's river basins is proposed as a support to fiver basin management, global change research, and the pursuit of sustainable development. A natural system for delineation and codification of basins is presented which is based upon topographic control and the topology of the fiver network. These characteristics make the system well suited for implementation and use with digital elevation models (DEMs) and geographic information systems. A demonstration of these traits is made with the 30-arcsecond GTOPO30 DEM for North America. The system has additional appeal owing to its economy of digits and the topological information that they carry. This is illustrated through presentation of comparisons with USGS hydrologic unit codes and demonstration of the use of code numbers to reveal dependence or independence of water use activities within a basin.

  2. Sustainable water quality management framework and a strategy planning system for a river basin.

    Science.gov (United States)

    Chen, Ching-Ho; Liu, Wei-Lin; Leu, Horng-Guang

    2006-12-01

    In Taiwan, the authorities have spent years working on remedying polluted rivers. Generally, the remediation planning works are divided into two phases. During the first phase, the allowed pollution discharge quantity and abatement quantity of each drainage zone, including the assimilative capacity, are generated based on the total river basin. In the second phase, the abatement action plans for each pollution source in each drainage zone are respectively devised by the related organizations based on the strategies generated during the first phase. However, the effectiveness of linking the two phases is usually poor. Highly integrated performances are not always achieved because the separate two-phase method does not take system and management thinking into consideration in the planning stage. This study pioneers the use of the Managing for Results (MFR) method in planning strategies and action plans for river water quality management. A sustainable management framework is proposed based on the concept and method of MFR, Management Thinking, and System Analysis. The framework, consisting of planning, implementation, and controlling stages, systematically considers the relationships and interactions among four factors: environment, society, economy, and institution, based on the principles of sustainable development. Based on the framework, the Modified Bounded Implicit Enumeration algorithm, which is used as a solving method, is combined with Visual Basic software and MS Excel to develop a computer system for strategy planning. The Shetzu River, located in northern Taiwan, is applied as a case study. According to the theoretical, practical, and regulatory considerations, the result-oriented objectives are defined to first improve the pollution length of the Shetzu River in specific remediation periods to finally meet regulated water quality standards. The objectives are then addressed as some of the constraints for the strategy planning model. The model objective

  3. Modelling nutrient exchange at the sediment water interface of river systems

    Science.gov (United States)

    Thouvenot, Marie; Billen, Gilles; Garnier, Josette

    2007-07-01

    SummaryIn-stream benthic processes can play a significant role on the water quality of overlying waters flowing through a river network. In order to better understand and quantify the fate of nutrients (nitrogen, phosphorus and silica) during their travel through the river continuum, a deterministic benthic sub-model was developed with the purpose of being connected to a drainage network model. This benthic sub-model resolves the differential equations representing early diagenesis in the sediment, linking the sedimentation rate of organic matter onto the sediment to the resulting flux of nutrients across the sediment-water interface. The model has been developed for conditions where sedimentation prevails as well as for situations where net erosion prevents the built-up of a significant sediment layer and where only a biofilm can develop, attached to solid substrates. The benthic model was tested independently of the main water column biological-hydrological model to which it is intended to be coupled. For this, three case studies were chosen from the literature representing various sedimentation/erosion conditions: the 8th order river Seine (France), the water storage basin of Méry s/Oise (France), and the headwater stream Orneau (Belgium). The general benthic model has been validated for ammonium, nitrate, oxygen and phosphorus fluxes across the sediment-water interface. The capability of the model to correctly predict the observed nutrients profiles within the sediment was also validated for organic carbon, ammonium and phosphorus. An uncertainty analysis showed that using two modelling objectives (observed fluxes and concentration profiles in the sediment) strongly reduces the uncertainty in parameters calibration. A sensitivity analysis illustrated the complexity of the interacting reactions driving each variable, and justifies the usefulness of the model as a tool for understanding and predicting the behaviour of the benthic compartment of river systems.

  4. Dam busy: beavers and their influence on the structure and function of river systems

    Science.gov (United States)

    Larsen, J.; Larsen, A.; Lane, S. N.

    2017-12-01

    Beavers (Castor fiber, Castor canadensis) are the most influential mammalian ecosystem engineer, heavily modifying rivers and floodplains and influencing the hydrology, geomorphology, carbon and nutrient cycling, and ecology. They do this by constructing dams, digging canals and burrows, felling trees and introducing wood into streams, which in turn impounds water, raises shallow water tables, and alters the partitioning of the water balance, sediment transport and channel patters, biogeochemical cycling, and aquatic and terrestrial habitats. However, largely in the absence of predators, beaver numbers have been rapidly increasing throughout Europe since the 1980s, but also in parts of the US and South America, prompting a need to comprehensively review the current state of knowledge on how beavers influence the structure and function of river systems. Here, we synthesize the overall impacts on hydrology, geomorphology, biogeochemistry, and aquatic and terrestrial ecosystems. We then examine the key feedbacks and overlaps between these changes induced by beavers, finding that modifications to the longitudinal connectivity drive many key process feedbacks. However, the magnitude of these feedbacks is also heavily dependent on the landscape and climatic context, with the ability to promote lateral connectivity determining the extent of beaver impacts as stream order increases. Crucially, beavers shape a river corridor, introducing distinct processes and feedbacks that would have existed prior to the historical collapse of beaver populations. There is thus a need to adapt current river management and restoration practices such that they can accommodate and enhance the ecosystem engineering services provided by beavers. We summarize key knowledge gaps that remain in our understanding of beaver impacts, which help map an interdisciplinary future research agenda.

  5. Effluent trading in river systems through stochastic decision-making process: a case study.

    Science.gov (United States)

    Zolfagharipoor, Mohammad Amin; Ahmadi, Azadeh

    2017-09-01

    The objective of this paper is to provide an efficient framework for effluent trading in river systems. The proposed framework consists of two pessimistic and optimistic decision-making models to increase the executability of river water quality trading programs. The models used for this purpose are (1) stochastic fallback bargaining (SFB) to reach an agreement among wastewater dischargers and (2) stochastic multi-criteria decision-making (SMCDM) to determine the optimal treatment strategy. The Monte-Carlo simulation method is used to incorporate the uncertainty into analysis. This uncertainty arises from stochastic nature and the errors in the calculation of wastewater treatment costs. The results of river water quality simulation model are used as the inputs of models. The proposed models are used in a case study on the Zarjoub River in northern Iran to determine the best solution for the pollution load allocation. The best treatment alternatives selected by each model are imported, as the initial pollution discharge permits, into an optimization model developed for trading of pollution discharge permits among pollutant sources. The results show that the SFB-based water pollution trading approach reduces the costs by US$ 14,834 while providing a relative consensus among pollutant sources. Meanwhile, the SMCDM-based water pollution trading approach reduces the costs by US$ 218,852, but it is less acceptable by pollutant sources. Therefore, it appears that giving due attention to stability, or in other words acceptability of pollution trading programs for all pollutant sources, is an essential element of their success.

  6. Automatic Monitoring System Design and Failure Probability Analysis for River Dikes on Steep Channel

    Science.gov (United States)

    Chang, Yin-Lung; Lin, Yi-Jun; Tung, Yeou-Koung

    2017-04-01

    The purposes of this study includes: (1) design an automatic monitoring system for river dike; and (2) develop a framework which enables the determination of dike failure probabilities for various failure modes during a rainstorm. The historical dike failure data collected in this study indicate that most dikes in Taiwan collapsed under the 20-years return period discharge, which means the probability of dike failure is much higher than that of overtopping. We installed the dike monitoring system on the Chiu-She Dike which located on the middle stream of Dajia River, Taiwan. The system includes: (1) vertical distributed pore water pressure sensors in front of and behind the dike; (2) Time Domain Reflectometry (TDR) to measure the displacement of dike; (3) wireless floating device to measure the scouring depth at the toe of dike; and (4) water level gauge. The monitoring system recorded the variation of pore pressure inside the Chiu-She Dike and the scouring depth during Typhoon Megi. The recorded data showed that the highest groundwater level insides the dike occurred 15 hours after the peak discharge. We developed a framework which accounts for the uncertainties from return period discharge, Manning's n, scouring depth, soil cohesion, and friction angle and enables the determination of dike failure probabilities for various failure modes such as overtopping, surface erosion, mass failure, toe sliding and overturning. The framework was applied to Chiu-She, Feng-Chou, and Ke-Chuang Dikes on Dajia River. The results indicate that the toe sliding or overturning has the highest probability than other failure modes. Furthermore, the overall failure probability (integrate different failure modes) reaches 50% under 10-years return period flood which agrees with the historical failure data for the study reaches.

  7. Watershed System Model: The Essentials to Model Complex Human-Nature System at the River Basin Scale

    Science.gov (United States)

    Li, Xin; Cheng, Guodong; Lin, Hui; Cai, Ximing; Fang, Miao; Ge, Yingchun; Hu, Xiaoli; Chen, Min; Li, Weiyue

    2018-03-01

    Watershed system models are urgently needed to understand complex watershed systems and to support integrated river basin management. Early watershed modeling efforts focused on the representation of hydrologic processes, while the next-generation watershed models should represent the coevolution of the water-land-air-plant-human nexus in a watershed and provide capability of decision-making support. We propose a new modeling framework and discuss the know-how approach to incorporate emerging knowledge into integrated models through data exchange interfaces. We argue that the modeling environment is a useful tool to enable effective model integration, as well as create domain-specific models of river basin systems. The grand challenges in developing next-generation watershed system models include but are not limited to providing an overarching framework for linking natural and social sciences, building a scientifically based decision support system, quantifying and controlling uncertainties, and taking advantage of new technologies and new findings in the various disciplines of watershed science. The eventual goal is to build transdisciplinary, scientifically sound, and scale-explicit watershed system models that are to be codesigned by multidisciplinary communities.

  8. Evidence of the St. Clair-Detroit River system as a dispersal corridor and nursery habitat for transient larval burbot

    Science.gov (United States)

    McCullough, Darrin E.; Roseman, Edward F.; Keeler, Kevin M.; DeBruyne, Robin L.; Pritt, Jeremy J.; Thompson, Patricia A.; Ireland, Stacey A.; Ross, Jason E.; Bowser, Dustin; Hunter, Robert D.; Castle, Dana Kristina; Fischer, Jason; Provo, Stacy A.

    2015-01-01

    Burbot Lota lota are distributed across the Laurentian Great Lakes where they occupy a top piscivore role. The St. Clair-Detroit River System is known to provide a migration corridor as well as spawning and nursery habitat for many indigenous fishes of economic and ecological significance. However, knowledge is scant of the early life history of burbot and the importance of this system in their dispersal, survival, and recruitment. In order to assess the role of the St. Clair-Detroit River System to burbot ecology, we collected larval burbot during ichthyoplankton surveys in this system from 2010 to 2013 as part of a habitat restoration monitoring program. More and larger burbot larvae were found in the St. Clair River than in the lower Detroit River, although this may be due to differences in sampling methods between the two rivers. Consistent with existing studies, larval burbot exhibited ontogenesis with a distinct transition from a pelagic zooplankton-based diet to a benthic macroinvertebrate-based diet. Our results demonstrate that the St. Clair-Detroit Rivers provide food resources, required habitat, and a migration conduit between the upper and lower Great Lakes, but the contribution of these fish to the lower lakes requires further examination.

  9. Urban metabolism and river systems: an historical perspective – Paris and the Seine, 1790–1970

    Directory of Open Access Journals (Sweden)

    S. Barles

    2007-11-01

    Full Text Available The aim of this paper is to analyse metabolic interaction between Paris and the Seine during the industrial era, 1790–1970, a period marked by strong population growth, technological changes, and the absence of specific legislation on environmental issues. The viewpoint focuses on exchanges of waters and wastes between city and river, quantifying them and tracing their evolution in the light of the strategies implemented by the stakeholders in charge. The study combines industrial ecology, local history and the history of technology. From 1790 to 1850, waste matters, and especially excreta, were considered as raw materials, not refuse: they generated real profits. The removal of human excreta aimed not only at improving urban hygiene, but at producing the fertilizers needed in rural areas. Discharging them into the river was out of the question. But after the 1860s, several factors upset this exploitation, notably domestic water supply: night soil became more and more liquid, difficult to handle and to turn into fertilizer; once utilised, the water had to be removed from the house; at the same time, the sewerage system developed and had negative impacts on the river. Even so, Parisian engineers continued to process sewage using techniques that would not only ensure hygiene but also conciliate economic and agricultural interests: combined sewerage system and sewage farms. Both of these early periods are thus noteworthy for a relative limitation of the river's deterioration by urban wastes. Not until the 1920s, when domestic water supply had become the standard and excreta came to be considered as worthless waste, was the principle of valorisation abandoned. This led to important and long-lasting pollution of the Seine (despite the construction of a treatment plant, aggravating the industrial pollution that had been in evidence since the 1840s. Analysing the priorities that led to the adoption of one principle or another in matters of urban

  10. Long term prospective of the Seine River system: Confronting climatic and direct anthropogenic changes

    International Nuclear Information System (INIS)

    Ducharne, A.; Baubion, C.; Beaudoin, N.; Benoit, M.; Billen, G.; Brisson, N.; Garnier, J.; Kieken, H.; Lebonvallet, S.; Ledoux, E.; Mary, B.; Mignolet, C.; Poux, X.; Sauboua, E.; Schott, C.; Thery, S.; Viennot, P.

    2007-01-01

    To explore the evolution of a human impacted river, the Seine (France), over the 21st century, three driving factors were examined: climate, agriculture, and point source inputs of domestic and industrial origin. Three future scenarios were constructed, by modification of a baseline representative of recent conditions. A climate change scenario, based on simulations by a general circulation model driven by the SRES-A2 scenario of radiative forcing, accounts for an average warming of + 3.3 deg. C over the watershed and marked winter increase and summer decrease in precipitation. To illustrate a possible reduction in nitrate pollution from agricultural origin, a scenario of good agricultural practices was considered, introducing catch crops and a 20% decrease in nitrogen fertilisation. Future point source pollution was estimated following the assumptions embedded in scenario SRES-A2 regarding demographic, economic and technologic changes, leading to reductions of 30 to 75% compared to 2000, depending on the pollutants. Four models, addressing separate components of the river system (agronomical model, hydrogeological model, land surface model and water quality model), were used to analyse the relative impact of these scenarios on water quality, in light of their impact on hydrology and crop production. The first-order driving factor of water quality over the 21st century is the projected reduction of point source pollution, inducing a noticeable decrease in eutrophication and oxygen deficits downstream from Paris. The impact of climate change on these terms is driven by the warming of the water column. It enhances algal growth in spring and the loss factors responsible for phytoplankton mortality in late summer (grazers and viruses). In contrast, increased seasonal contrasts in river discharge have a negligible impact on river water quality, as do the changes in riverine nitrate concentration, which never gets limiting. The latter changes have a similar magnitude

  11. Urban metabolism and river systems: an historical perspective - Paris and the Seine, 1790-1970

    Science.gov (United States)

    Barles, S.

    2007-11-01

    The aim of this paper is to analyse metabolic interaction between Paris and the Seine during the industrial era, 1790-1970, a period marked by strong population growth, technological changes, and the absence of specific legislation on environmental issues. The viewpoint focuses on exchanges of waters and wastes between city and river, quantifying them and tracing their evolution in the light of the strategies implemented by the stakeholders in charge. The study combines industrial ecology, local history and the history of technology. From 1790 to 1850, waste matters, and especially excreta, were considered as raw materials, not refuse: they generated real profits. The removal of human excreta aimed not only at improving urban hygiene, but at producing the fertilizers needed in rural areas. Discharging them into the river was out of the question. But after the 1860s, several factors upset this exploitation, notably domestic water supply: night soil became more and more liquid, difficult to handle and to turn into fertilizer; once utilised, the water had to be removed from the house; at the same time, the sewerage system developed and had negative impacts on the river. Even so, Parisian engineers continued to process sewage using techniques that would not only ensure hygiene but also conciliate economic and agricultural interests: combined sewerage system and sewage farms. Both of these early periods are thus noteworthy for a relative limitation of the river's deterioration by urban wastes. Not until the 1920s, when domestic water supply had become the standard and excreta came to be considered as worthless waste, was the principle of valorisation abandoned. This led to important and long-lasting pollution of the Seine (despite the construction of a treatment plant), aggravating the industrial pollution that had been in evidence since the 1840s. Analysing the priorities that led to the adoption of one principle or another in matters of urban hygiene and techniques

  12. Long term prospective of the Seine River system: confronting climatic and direct anthropogenic changes.

    Science.gov (United States)

    Ducharne, A; Baubion, C; Beaudoin, N; Benoit, M; Billen, G; Brisson, N; Garnier, J; Kieken, H; Lebonvallet, S; Ledoux, E; Mary, B; Mignolet, C; Poux, X; Sauboua, E; Schott, C; Théry, S; Viennot, P

    2007-04-01

    To explore the evolution of a human impacted river, the Seine (France), over the 21st century, three driving factors were examined: climate, agriculture, and point source inputs of domestic and industrial origin. Three future scenarios were constructed, by modification of a baseline representative of recent conditions. A climate change scenario, based on simulations by a general circulation model driven by the SRES-A2 scenario of radiative forcing, accounts for an average warming of +3.3 degrees C over the watershed and marked winter increase and summer decrease in precipitation. To illustrate a possible reduction in nitrate pollution from agricultural origin, a scenario of good agricultural practices was considered, introducing catch crops and a 20% decrease in nitrogen fertilisation. Future point source pollution was estimated following the assumptions embedded in scenario SRES-A2 regarding demographic, economic and technologic changes, leading to reductions of 30 to 75% compared to 2000, depending on the pollutants. Four models, addressing separate components of the river system (agronomical model, hydrogeological model, land surface model and water quality model), were used to analyse the relative impact of these scenarios on water quality, in light of their impact on hydrology and crop production. The first-order driving factor of water quality over the 21st century is the projected reduction of point source pollution, inducing a noticeable decrease in eutrophication and oxygen deficits downstream from Paris. The impact of climate change on these terms is driven by the warming of the water column. It enhances algal growth in spring and the loss factors responsible for phytoplankton mortality in late summer (grazers and viruses). In contrast, increased seasonal contrasts in river discharge have a negligible impact on river water quality, as do the changes in riverine nitrate concentration, which never gets limiting. The latter changes have a similar magnitude

  13. Natural equilibria and anthropic effects on sediment transport in big river systems: The Nile case

    Science.gov (United States)

    Garzanti, Eduardo; Andò, Sergio; Padoan, Marta; Vezzoli, Giovanni; Villa, Igor

    2014-05-01

    knowledge of the Nile sediment system not only has wide paleoclimatic, paleoceanographic and archaeological implications, including a better understanding of Quaternary environmental changes in northern Africa, water circulation and sapropel development in the Mediterranean Sea, and impact on the Egyptian civilization by natural phenomena, but is also strongly needed to mitigate undesirable impacts of human activities on natural equilibria and to improve watershed, reservoir and coastal management. Mineralogical data (Shukri, 1950) integrated by new petrographic, heavy-mineral and geochemical analyses (Padoan et al., 2011) show how sediments derived from Archean gneisses exposed through northern Uganda and from Panafrican basements drained by Ethiopian tributaries of River Sobat become progressively enriched in quartz at the expense of unstable components across the Sudd and Machar Marshes (grey shaded area). Petrographic, mineralogical, and isotopic signatures are gradually homogenized along both the Bahr el Jebel/Bahr ez Zeraf and the Sobat and remain finally unchanged down to Khartoum, which suggests massive sediment dumping in the marshes. This explains why White Nile sediment contribution to the main Nile downstream Khartoum is virtually negligible (Garzanti et al., 2006). Garzanti, E., Andò, S., Vezzoli, G., Abdel Megid, A.A., El Kammar, A., 2006. Petrology of Nile River sands (Ethiopian and Sudan): sediment budgets and erosion patterns. Earth Planet. Sci. Lett., 252, 327-341. Padoan, M., Garzanti, E., Harlavan, Y., Villa, I.M., 2011. Tracing Nile sediment sources by Sr and Nd isotope signatures (Uganda, Ethiopia, Sudan). Geochim. Cosmochim. Acta, 75, 3627-3644. Said, R., 1993. The River Nile, Oxford, Pergamon, 1993, 320 p. Shukri, N.M., 1950. The mineralogy of some Nile sediments. Quart. J. Geol. Soc. London, 105, 511-534. Williams, M.A.J., Faure, H., 1980. The Sahara and the Nile. Balkema, Rotterdam. Woodward, J.C., Macklin, M.G., Krom, M.D., Williams, M.A.J., 2007

  14. Global Drainage Patterns to Modern Terrestrial Sedimentary Basins and its Influence on Large River Systems

    Science.gov (United States)

    Nyberg, B.; Helland-Hansen, W.

    2017-12-01

    Long-term preservation of alluvial sediments is dependent on the hydrological processes that deposit sediments solely within an area that has available accomodation space and net subsidence know as a sedimentary basin. An understanding of the river processes contributing to terrestrial sedimentary basins is essential to fundamentally constrain and quantify controls on the modern terrestrial sink. Furthermore, the terrestrial source to sink controls place constraints on the entire coastal, shelf and deep marine sediment routing systems. In addition, the geographical importance of modern terrestrial sedimentary basins for agriculture and human settlements has resulted in significant upstream anthropogenic catchment modification for irrigation and energy needs. Yet to our knowledge, a global catchment model depicting the drainage patterns to modern terrestrial sedimentary basins has previously not been established that may be used to address these challenging issues. Here we present a new database of 180,737 global catchments that show the surface drainage patterns to modern terrestrial sedimentary basins. This is achieved by using high resolution river networks derived from digital elevation models in relation to newly acquired maps on global modern sedimentary basins to identify terrestrial sinks. The results show that active tectonic regimes are typically characterized by larger terrestrial sedimentary basins, numerous smaller source catchments and a high source to sink relief ratio. To the contrary passive margins drain catchments to smaller terrestrial sedimentary basins, are composed of fewer source catchments that are relatively larger and a lower source to sink relief ratio. The different geomorphological characteristics of source catchments by tectonic setting influence the spatial and temporal patterns of fluvial architecture within sedimentary basins and the anthropogenic methods of exploiting those rivers. The new digital database resource is aimed to help

  15. Improvement of the drought indicators system in the Júcar River Basin, Spain.

    Science.gov (United States)

    Ortega-Gómez, Tatiana; Pérez-Martín, Miguel A; Estrela, Teodoro

    2018-01-01

    Droughts are one of the gravest natural threats currently existing in the world and their occurrence and intensity might be exacerbated in the coming years due to climate change. The severe impacts that droughts cause to inland water resources and to the associated socio-economic activities justify the continuous monitoring of the drought. The case study presented shows a practical application of a distributed drought monitoring system implemented in a real river basin district, the Júcar River Basin District (43,000km 2 ), where drought periods of marked intensity have occurred historically and the climate ranges from humid in the north to semiarid in the south. Five drought indices have been applied: Standardised Precipitation Index (SPI) for meteorological drought; Palmer Drought Severity Index (PDSI) and a new soil moisture index (HI), for edaphic drought; Normalised Difference Vegetation Index (NDVI) for the vegetation activity; and Spanish Status Index (SI), for the operational drought. All indices are standardised to compare them. The relationship between the standardised operational drought index SI and the long-term meteorological indices, SPI-12 or SPI-24, show that in a medium size basin the concept of "prolonged drought" required by the European Commission under the Water Framework Directive could be defined by the use of accumulated precipitation indices. The number of months to be accumulated depends on the size of the basin and the water management system properties. In large basins, such as the Júcar river basin (22,000km 2 ), there are significant deviations due to the spatial distribution of the drought. The use of a unique aggregated indicator could hide a significant drought in a specific area, or on the other hand show a non-real drought. Evolution of drought indices for each water management system must be accompanied by spatially distributed drought maps to better understand the drought status and its evolution. Copyright © 2017 Elsevier B

  16. The Montana Rivers Information System: Edit/entry program user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The Montana Rivers Information System (MRIS) was initiated to assess the state`s fish, wildlife, and recreation value; and natural cultural and geologic features. The MRIS is now a set of data bases containing part of the information in the Natural Heritage Program natural features and threatened and endangered species data bases. The purpose of this User`s Manual is to: (1) describe to the user how to maintain the MRIS database of their choice by updating, changing, deleting, and adding records using the edit/entry programs; and (2) provide to the user all information and instructions necessary to complete data entry into the MRIS databases.

  17. Population Aspects of Fishes in Geba and Sor Rivers, White Nile System in Ethiopia, East Africa

    OpenAIRE

    Melaku, Simagegnew; Getahun, Abebe; Wakjira, Mulugeta

    2017-01-01

    This study was carried out to assess the diversity, condition factor, length-weight relationship, and sex ratio of fishes in Geba and Sor Rivers located in Baro-Akobo Basin, White Nile system within Ethiopia. Fish samples were collected in one wet and one dry season. The length-weight relationships were fitted using power equation for the most abundant species. A total of 348 fish specimens were collected using gillnets and hooks. These were identified into eight species and one Garra sp. rep...

  18. Ecological effects of Arges River hydroelectric systems. The minimum flow problem

    International Nuclear Information System (INIS)

    Diaconu, Sergiu

    1997-01-01

    The paper presents general observations of the ecological status of riverside areas, on Arges River between Capataneni and Bascov villages. These are affected by the presence of an important hydroelectric power system. The main problem generating negative impact on the environment is non-observance of Waters' Law no.107/1996 with reference to minimum flow. The minimum flow is defined as the flow through the cross section of a watercourse which ensures the living conditions for the existent aquatic ecosystems. It should be taken into account in order to protect the aquatic ecosystems. A methodology regarding the determination of minimum flow is proposed. (author)

  19. Urban Floods in Lowlands—Levee Systems, Unplanned Urban Growth and River Restoration Alternative: A Case Study in Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Gomes Miguez

    2015-08-01

    Full Text Available The development of cities has always had a very close relation with water. However, cities directly impact land use patterns and greatly change natural landscapes, aggravating floods. Considering this situation, this paper intends to discuss lowland occupation and city sustainability in what regards urban stormwater management, fluvial space, and river restoration, aiming at minimizing flood risks and improving natural and built environment conditions. River plains tend to be attractive places for a city to grow. From ancient times, levees have been used to protect lowland areas along major watercourses to allow their occupation. However, urban rivers demand space for temporary flood storage. From a systemic point of view, levees along extensive river reaches act as canalization works, limiting river connectivity with flood plains, rising water levels, increasing overtopping risks and transferring floods downstream. Departing from this discussion, four case studies in the Iguaçu-Sarapuí River Basin, a lowland area of Rio de Janeiro State, Brazil, are used to compose a perspective in which the central point refers to the need of respecting watershed limits and giving space to rivers. Different aspects of low-lying city planning are discussed and analyzed concerning the integration of the built and natural environments.

  20. Efficiency of Different Integrated Agriculture Aquaculture Systems in the Red River Delta of Vietnam

    Directory of Open Access Journals (Sweden)

    Nguyen Van Huong

    2018-02-01

    Full Text Available Integrated Agriculture Aquaculture (IAA is characteristic with diversity of small-scale production systems in the Red River Delta, Vietnam where most integrated aquaculture systems are closely associated to the VAC model, an ecosystem production that three components: garden (V, pond (A and livestock pen (C are integrated. These VAC systems effectively use all the available land, air, water and solar energy resources, and also effectively recycle by-products and waste for providing diversified agricultural products to meet the complex nutritional demands of rural communities. The IAA systems are dynamic, diverse and subject to economic and environmental changes. By investigating 167 aquaculture households, the traditional VAC, New VAC, Animal Fish (AF and Commercial Fish (FS systems are identified as four existing IAA systems. This paper presents the main characteristics and economic efficiency of these IAA systems. The study’s results indicate clear evidence that the traditional VAC system and New VAC system are the most efficient and effective models. The findings of this study have shed light on the important role of integrated aquaculture systems to food security and economic development of households and local communities. The VAC systems are likely to propose for improving household food security and developing the local economy.

  1. Drivers and Controls of the Zebra Mussel Invasion of the Mississippi-Missouri River System

    Science.gov (United States)

    Casagrandi, R.; Mari, L.; Bertuzzo, E.; Gatto, M.; Levin, S. A.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2010-12-01

    The zebra mussel Dreissena polymorpha has been haunting North American inland waters for the past twenty years. Due to the huge population densities reached by local colonies and the species' unparalleled dispersal ability, the zebra mussel represents a major threat from both an ecological and an economic perspective. We propose a novel ecohydrological model for the invasion of inland waters by this alien species and test it against field data gathered within the Mississippi-Missouri river system in North America. To incorporate both hydrologic controls and anthropogenic drivers of the invasion, the proposed multi-layer network model accounts explicitly for zebra mussel demographic dynamics, hydrologic transport and dispersal due to human activities. We show that hydrologic transport alone is not sufficient to explain the spread of the species at the basin scale. We also quantify the role played by commercial navigation in promoting the initial, selective colonization of the river system and show how recreational boating may have determined the capillary penetration of the species into the water system. The role of post-establishment dispersal mechanisms and the effectiveness of possible prevention measures are also discussed in the context of model sensitivity and robustness to reparameterization.

  2. Decision support system based on DPSIR framework for a low flow Mediterranean river basin

    Science.gov (United States)

    Bangash, Rubab Fatima; Kumar, Vikas; Schuhmacher, Marta

    2013-04-01

    The application of decision making practices are effectively enhanced by adopting a procedural approach setting out a general methodological framework within which specific methods, models and tools can be integrated. Integrated Catchment Management is a process that recognizes the river catchment as a basic organizing unit for understanding and managing ecosystem process. Decision support system becomes more complex by considering unavoidable human activities within a catchment that are motivated by multiple and often competing criteria and/or constraints. DPSIR is a causal framework for describing the interactions between society and the environment. This framework has been adopted by the European Environment Agency and the components of this model are: Driving forces, Pressures, States, Impacts and Responses. The proposed decision support system is a two step framework based on DPSIR. Considering first three component of DPSIR, Driving forces, Pressures and States, hydrological and ecosystem services models are developed. The last two components, Impact and Responses, helped to develop Bayesian Network to integrate the models. This decision support system also takes account of social, economic and environmental aspects. A small river of Catalonia (Northeastern Spain), Francoli River with a low flow (~2 m3/s) is selected for integration of catchment assessment models and to improve knowledge transfer from research to the stakeholders with a view to improve decision making process. DHI's MIKE BASIN software is used to evaluate the low-flow Francolí River with respect to the water bodies' characteristics and also to assess the impact of human activities aiming to achieve good water status for all waters to comply with the WFD's River Basin Management Plan. Based on ArcGIS, MIKE BASIN is a versatile decision support tool that provides a simple and powerful framework for managers and stakeholders to address multisectoral allocation and environmental issues in river

  3. The formation and maintenance of single-thread tie channels entering floodplain lakes: observations from three diverse river systems

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Joel C [Los Alamos National Laboratory; Dietrich, William E [UC BERKELEY; Day, Geoff [NEWCREST MINING; Parker, Gary [UNIV OF ILLINOIS

    2009-01-01

    Tie channels connect rivers to floodplain lakes on many lowland rivers and thereby play a central role in floodplain sedimentology and ecology, yet they are generally unrecognized and little studied. here we report the results of field studies focused on tie channel origin and morphodynamics in three contrasting systems: the Middle Fly River, Papua New Guinea, the Lower Mississippi River, and Birch Creek in Alaska. Across these river systems, tie channels vary by an order of magnitude in size but exhibit the same characteristic morphology and appear to develop and evolve by a similar set of processes. In all three systems, the channels are characterized by a narrow, leveed single-thread morphology with maximum width approximately one tenth the width of the mainstem river. The channels typically have a V shaped cross-section, unlike most fluvial channels. These channels develop as lakes become isolated from the river by sedimentation. Narrowing of the connection between river and lake causes a sediment-laden jet to develop. Levees develop along the margins of the jet leading to channel emergence and eventual levee aggradation to the height of the mainstem levees. Bi-directional flow in these channels is common. Outflows from the lake scour sediment and prevent channel blockage. We propose that channel geometry and size are then controlled by a dynamic balance between channel narrowing by suspended sediment deposition and incision and widening by mass failure of banks during outflows. Tie channels are laterally stable and may convey flow for hundreds to a few thousand of years.

  4. Migration and degradation of swine farm tetracyclines at the river catchment scale: Can the multi-pond system mitigate pollution risk to receiving rivers?

    Science.gov (United States)

    Chen, Qiuwen; Guo, Xiao; Hua, Guofen; Li, Guoliang; Feng, Ranran; Liu, Xiaoli

    2017-01-01

    The study investigated the degradation behaviors of swine farm tetracyclines (TCs) at a catchment scale and explored whether multi-pond systems could be beneficial to the interception of TCs so as to reduce the pollution risk to receiving rivers. The occurrence and migration of 12 kinds of tetracycline antibiotics, including their degradation products, were studied in four swine farms of the Meijiang River basin in China. The migration paths of the TCs were examined through sampling and analyzing the soil and/or sediment at different points along the swine wastewater outlet, which included sewer, sewage pond, mixed-canal (stream and sewage), farmland (paddy and upland soil) and finally the river. TC concentrations of all collected samples were obtained by solid phase extraction followed by measurement with high-performance liquid chromatography tandem mass spectrometry. The results showed that sediment TC concentrations varied greatly in different swine farms, from mg·kg -1 to μg·kg -1 levels. TCs had different decay patterns along different migration paths, such that TCs decayed exponentially in paddy soil, while linearly in sewer and mixed canal. The concentrations of TCs and their degradation products decreased in the order: sewer sediment > sewage pond sediment > mixed-canal sediment > paddy soil > upland soil, indicating that TCs tend to be more easily intercepted and accumulated in water-sediment systems such as ponds. Therefore, the multi-pond system could be an effective way to prevent TCs from migrating into rivers. These results provided essential information for contamination control of antibiotics in aquatic environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Variation in stable isotopes of freshwater mussel shells in a Kentucky river system

    Science.gov (United States)

    Erhardt, A. M.; Haag, W.; Price, S.; Weisrock, D.

    2017-12-01

    Isotopic signatures in freshwater mussel shells can reflect environmental differences among streams and human impacts on river systems. In the southeastern United States, mussels exhibit extraordinary biodiversity, serve an important role as filter feeders, and are sensitive to environmental change. Additionally, their long life-span (up to 50 years) and seasonal shell deposition can permit high-resolution environmental reconstructions. We examined variation in shell stable isotope values among mussel species and locations throughout the Licking River system in Kentucky. We sampled 8 species at 11 locations. These species represented a range of life-history traits, and locations were distributed among tributaries and the main stem of the Licking River. Samples of the outer organic periostracum layer were analysed for organic δ13C and δ15N, while organic δ15N and inorganic δ13C and δ18O were measured in the inner carbonate portion of the shell. At the same location, preliminary results show variations 2‰ in δ13C and 1‰ in δ15N between different species. We suspect these relationships are due to variations in diet and/or body size. Some, though not all, specimens show variation along the growth axis. For the same species at different locations, preliminary results showed a range of 4‰ in δ13C and 10‰ in δ15N values. Isotope ratios of specimens from the main stem were distinct from those of specimens from the river's largest tributary. Overall, δ13C shows distinct values for each tributary, while δ15N shows a general decline downstream. These variations are likely the result of environmental factors such as the degree of karstification and the ratio of forest to pasture within the catchment. We hope to use this study to identify if any isotopically distinct sources, such as fertilizers or animal manure, contribute to the high nutrient load in these systems. These results represent an exploratory effort to describe watershed-scale and mussel

  6. Integrated and Sustainable Water Management of Red-Thai Binh Rivers System Under Change

    Science.gov (United States)

    Giuliani, M.; Anghileri, D.; Castelletti, A.; Mason, E.; Micotti, M.; Soncini-Sessa, R.; Weber, E.

    2014-12-01

    Vietnam is currently undergoing a rapid economic and demographic development, characterized by internal migrations from the rural areas to the main cities with increasing water demands to guarantee adequate energy and food productions. Hydropower is the primary renewable energy resource in the country, accounting for 33% of the total electric power production, while agriculture contributes for 18% of the national GDP and employs 70% of the population. To cope with this heterogeneous and fast-evolving context, water resources development and management have to be reconsidered by enlarging their scope across sectors and by adopting effective tools to analyze the potential of current and projected infrastructure along with their operating strategies. This work contributes a novel decision-analytic framework based on Multi-Objective Evolutionary Direct Policy Search (MOE-DPS) to support the design of integrated and sustainable water resources management strategies in the Red-Thai Binh River system. The Red River Basin is the second largest basin of Vietnam, with a total area of about 169,000 km2, and comprises three main tributaries and several reservoirs, namely SonLa and HoaBinh on the Da River, ThacBa and TuyenQuang on the Lo River. These reservoirs are regulated for maximizing hydropower production, mitigating flood primarily in Hanoi, and guaranteeing irrigation water supply to the agricultural districts in the delta. The dimensionality of the system and the number of objectives involved increase the complexity of the problem. We address these challenges by combining the MOE-DPS framework with Gaussian radial basis functions policy approximation and the Borg MOEA, which have been demonstrated to guarantee good solutions quality in such many objective policy design problems. Results show that the proposed framework successfully identified alternative management strategies for the system, which explore different tradeoffs among the multi-sector services involved

  7. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    Science.gov (United States)

    Lindholm, G.F.

    1996-01-01

    Regional aquifers underlying the 15,600-square-mile Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. The largest and most productive aquifers in the Snake River Plain are composed of Quaternary basalt of the Snake River Group, which underlies most of the 10,8000-square-mile eastern plain. Aquifer tests and simulation indicate that transmissivity of the upper 200 feet of the basalt aquifer in the eastern plain commonly ranges from about 100,000 to 1,000,000 feet squared per day. However, transmissivity of the total aquifer thickness may be as much as 10 million feet squared per day. Specific yield of the upper 200 feet of the aquifer ranges from about 0.01 to 0.20. Average horizontal hydraulic conductivity of the upper 200 feet of the basalt aquifer ranges from less than 100 to 9,000 feet per day. Values may be one to several orders of magnitude higher in parts in individual flows, such as flow tops. Vertical hydraulic conductivity is probably several orders of magnitude lower than horizontal hydraulic conductivity and is generally related to the number of joints. Pillow lava in ancestral Snake River channels has the highest hydraulic conductivity of all rock types. Hydraulic conductivity of the basalt decreases with depth because of secondary filling of voids with calcite and silica. An estimated 80 to 120 million acre-feet of water is believed to be stored in the upper 200 feet of the basalt aquifer in the eastern plain. The most productive aquifers in the 4,800-square-mile western plain are alluvial sand and gravel in the Boise River valley. Although aquifer tests indicate that transmissivity of alluvium in the Boise River valley ranges from 5,000 to 160,000 feet squared per day, simulation suggests that average transmissivity of the upper 500 feet is generally less than 20,000 feet squared per day. Vertically averaged horizontal hydraulic conductivity of the upper

  8. National-local land-use conflicts in floodways of the Mississippi River system

    Directory of Open Access Journals (Sweden)

    G Mathias Kondolf

    2018-02-01

    Full Text Available Conflicts between national and local governments over land use in floodplains have been well documented in the US and elsewhere. The US National Flood Insurance Program offers subsidized flood insurance to communities that agree to prevent further development in floodplains, but the requirements are poorly enforced and local governments are commonly reluctant to restrain development on flood-prone lands. In this paper we highlight this problem in particularly sensitive areas: the floodways (or flood bypasses that are essential components of the Mississippi River flood control system. To properly operate the flood control system, the US Army Corps of Engineers must be able to divert flow from the mainstem Mississippi into the bypasses, thereby lowering stage in the main river, and thus minimizing flooding of cities and other vulnerable areas. However, operation of the Birds-Point-New Madrid Floodway in Missouri was compromised in 2011 by local opposition (and a legal challenge ultimately rejected by the US Supreme Court, and it was finally used to accommodate floodwaters. The West Atchafalaya Floodway in Louisiana experienced a threefold increase in the number of structures within the floodway from about 1970 to 2010. Because of the pattern of flooding, the West Atchafalaya Floodway was not needed in 2011, but if it is needed in the future, its operation may be compromised by the extensive encroachments within the floodway. Thus, operation of critical national infrastructure, designed to deal with floods on an interstate, river-basin scale, is compromised by land-use decisions made at the local level.

  9. Upriver transport of dissolved substances in an estuary and sub-estuary system of the lower James River, Chesapeake Bay

    Science.gov (United States)

    Hong, Bo; Shen, Jian; Xu, Hongzhou

    2018-01-01

    The water exchange between the James River and the Elizabeth River, an estuary and sub-estuary system in the lower Chesapeake Bay, was investigated using a 3D numerical model. The conservative passive tracers were used to represent the dissolved substances (DS) discharged from the Elizabeth River. The approach enabled us to diagnose the underlying physical processes that control the expansion of the DS, which is representative of potential transport of harmful algae blooms, pollutants from the Elizabeth River to the James River without explicitly simulating biological processes. Model simulations with realistic forcings in 2005, together with a series of processoriented numerical experiments, were conducted to explore the correlations of the transport process and external forcing. Model results show that the upriver transport depends highly on the freshwater discharge on a seasonal scale and maximum upriver transport occurs in summer with a mean transport time ranging from 15-30 days. The southerly/easterly wind, low river discharge, and neap tidal condition all act to strengthen the upriver transport. On the other hand, the northerly/westerly wind, river pulse, water level pulse, and spring tidal condition act to inhibit the upriver transport. Tidal flushing plays an important role in transporting the DS during spring tide, which shortens the travel time in the lower James River. The multivariable regression analysis of volume mean subtidal DS concentration in the mesohaline portion of the James River indicates that DS concentration in the upriver area can be explained and well predicted by the physical forcings (r = 0.858, p = 0.00001).

  10. Developing and testing temperature models for regulated systems: a case study on the Upper Delaware River

    Science.gov (United States)

    Cole, Jeffrey C.; Maloney, Kelly O.; Schmid, Matthias; McKenna, James E.

    2014-01-01

    well; the HFM model was the most accurate compared other models (RMSE = 0.92, both NSE = 0.98, d = 0.99) and the ARIMA model was least accurate (RMSE = 2.06, NSE = 0.92, d = 0.98); however, all models had an overestimation bias (PBIAS = −4.1 to −10.20). Aside from the one day forecast ARIMA model (md = 0.53), all models forecasted fairly well at the one, three, and five day forecasts (md = 0.77–0.96). Overall, we were successful in developing models predicting daily mean temperature across a broad range of temperatures. These models, specifically the GLScos, ANN, and HFM, may serve as important tools for predicting conditions and managing thermal releases in regulated river systems such as the Delaware River. Further model development may be important in customizing predictions for particular biological or ecological needs, or for particular temporal or spatial scales.

  11. The effect of the Madden-Julian Oscillation on station rainfall and river level in the Fly River system, Papua New Guinea

    Science.gov (United States)

    Matthews, Adrian J.; Pickup, Geoff; Peatman, Simon C.; Clews, Peter; Martin, Jason

    2013-10-01

    The Madden-Julian oscillation (MJO) is the dominant mode of intraseasonal variability in tropical rainfall on the large scale, but its signal is often obscured in individual station data, where effects are most directly felt at the local level. The Fly River system, Papua New Guinea, is one of the wettest regions on Earth and is at the heart of the MJO envelope. A 16 year time series of daily precipitation at 15 stations along the river system exhibits strong MJO modulation in rainfall. At each station, the difference in rainfall rate between active and suppressed MJO conditions is typically 40% of the station mean. The spread of rainfall between individual MJO events was small enough such that the rainfall distributions between wet and dry phases of the MJO were clearly separated at the catchment level. This implies that successful prediction of the large-scale MJO envelope will have a practical use for forecasting local rainfall. In the steep topography of the New Guinea Highlands, the mean and MJO signal in station precipitation is twice that in the satellite Tropical Rainfall Measuring Mission 3B42HQ product, emphasizing the need for ground-truthing satellite-based precipitation measurements. A clear MJO signal is also present in the river level, which peaks simultaneously with MJO precipitation input in its upper reaches but lags the precipitation by approximately 18 days on the flood plains.

  12. Development of a Reservoir System Operation Model for Water Sustainability in the Yaqui River Basin

    Science.gov (United States)

    Mounir, A.; Che, D.; Robles-Morua, A.; Kauneckis, D.

    2017-12-01

    The arid state of Sonora, Mexico underwent the Sonora SI project to provide additional water supply to the capital of Hermosillo. The main component of the project involves an interbasin transfer from the Yaqui River Basin (YRB) to the Sonora River Basin via the Independencia aqueduct. This project has generated conflicts over water among different social sectors in the YRB. To improve the management of the Yaqui reservoir system, we developed a daily watershed model. This model allowed us to predict the amount of water available in different regions of the basin. We integrated this simulation to an optimization model which calculates the best water allocation according to water rights established in Mexico's National Water Law. We compared different precipitation forcing scenarios: (1) a network of ground observations from Mexican water agencies during the historical period of 1980-2013, (2) gridded fields from the North America Land Data Assimilation System (NLDAS) at 12 km resolution, and (3) we will be studying a future forecast scenario. The simulation results were compared to historical observations at the three reservoirs existing in the YRB to generate confidence in the simulation tools. Our results are presented in the form of flow duration, reliability and exceedance frequency curves that are commonly used in the water management agencies. Through this effort, we anticipate building confidence among regional stakeholders in utilizing hydrological models in the development of reservoir operation policies.

  13. Recycling chip thickness screens : relocating a chip screen system from Gold River to Squamish

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, D. [Western Pulp Inc., Squamish, BC (Canada)

    2001-06-01

    Western Pulp Inc. acquired a used Chip Thickness Screening and conditioning system at reduced cost in April 2000. It purchased the used screen facility from Bowater's closed down Gold River mill. The advantages of a system similar to the Gold River mill are many: improved yield, improved brown stock washing, reduced bleach chemical consumption, increased pulp strength, improvement of the pulp machine performance, and improved overall quality. The author explained the project that involved moving the entire 1100 ton, 5 story building by barge to the Western Pulp Inc. site located at Squamish. Sandwell Engineering performed the detailed design and the construction phase began soon after. Once on location, the newly acquired facility was set into position and integrated with the remainder of the facilities. For the purpose of proper chip flow and pile management, a new chip reclaim and conveyors were installed. The tie-ins and foundations necessitated special attention to design details. Commonwealth Construction was responsible for the completion of the tie-ins, which took place during the mill annual shutdown. The operation of the new screen facility, which began on December 19, 2000, resulted in lower bleaching costs, energy savings, an increase in production (3.5 per cent in February 2001), as well as a lowering in black liquor solids. Based on the cost savings realized to date, it is expected that the payback period will be one year. 1 tab., 11 figs.

  14. Internal Technical Report, Summary of Raft River Supply and Injection System Operational History

    Energy Technology Data Exchange (ETDEWEB)

    Walrath, L.F.

    1980-01-01

    Asbestos-cement (Transite) pipe was installed at the Raft River Geothermal Area in the fall of 1975 and has been used extensively since. The pipe is used to transfer water from the well sites to the testing areas, reserve pits, and reinjection wells. The pipeline was designed to transport approximately 300 F water at 150 psi over a period of time for the present testing program and later, for the 5 MW(e) Raft River Pilot Plant. Numerous line failures have occurred since the original lines were installed. Due to the various causes of the line failures and the extensive downtime which has occurred because of them, further examination of Transite pipe is necessary to determine its future use as completion of the 5 MW(e) pilot plant approaches. The Conversion Technology and Engineering Branch has completed a preliminary study of the effects of S&I system transients on Transite pipe (re: OJD-7-79). Recommendations are proposed to conduct further studies and tests; however, no funding is presently available due to limitations in the budget for the 5 MW(e) pilot plant project. The Mechanical Design Branch is continuing design analysis in an effort to gather information to determine maximum warmup rates for the S&I system.

  15. CO2 Outgassing from an Urbanized River System Fueled by Wastewater Treatment Plant Effluents.

    Science.gov (United States)

    Yoon, Tae Kyung; Jin, Hyojin; Begum, Most Shirina; Kang, Namgoo; Park, Ji-Hyung

    2017-09-19

    Continuous underway measurements were combined with a basin-scale survey to examine human impacts on CO 2 outgassing in a highly urbanized river system in Korea. While the partial pressure of CO 2 (pCO 2 ) was measured at 15 sites using syringe equilibration, 3 cruises employing an equilibrator were done along a 30 km transect in the Seoul metropolitan area. The basin-scale survey revealed longitudinal increases in surface water pCO 2 and dissolved organic carbon (DOC) in the downstream reach. Downstream increases in pCO 2 , DOC, fluorescence index, and inorganic N and P reflected disproportionately large contributions from wastewater treatment plant (WWTP) effluents carried by major urban tributaries. Cruise transects exhibited strong localized peaks of pCO 2 up to 13 000 μatm and 13 CO 2 enrichment along the confluences of tributaries at an average flow, whereas CO 2 pulses were dampened by increased flow during the monsoon period. Fluctuations in pCO 2 along the eutrophic reach downstream of the confluences reflected environmental controls on the balance between photosynthesis, biodegradation, and outgassing. The results underscore WWTP effluents as an anthropogenic source of nutrients, DOC, and CO 2 and their influences on algal blooms and associated C dynamics in eutrophic urbanized river systems, warranting further research on urbanization-induced perturbations to riverine metabolic processes and carbon fluxes.

  16. Geographical information system (GIS) mapping of spatio-temporal pollution status of rivers in Ibadan, Nigeria.

    Science.gov (United States)

    Adeyemo, Olanike K; Babalobi, Olutayo O

    2008-04-01

    More accurate spatio-temporal predictions of urban environment are needed as a basis for assessing exposures as a part of environmental studies and to inform urban protection policy and management. In this study, an information system was developed to manage the physico-chemical pollution information of Ibadan river system, Oyo State, Southwest Nigeria. The study took into account the seasonal influences of point and non-point discharges on the levels of physico-chemical parameters. The overall sensitivity of the watershed to physicochemical environmental pollution revealed that during dry season, of the 22 (100%) sample points, only 3 (13.6%) were unpolluted; 6 (27.3%) were slightly polluted; 10(45.4%) were moderately polluted; 2 (9.1%) were seriously polluted and 1 (4.5%) was exceptionally polluted. During rainy season, 3 (13.6%) were unpolluted; 7 (31.8%) were slightly polluted; 9 (40.9%) were moderately polluted; 2 (9.1%) were seriously polluted and 1 (4.5%) was exceptionally polluted. There is a considerable environmental risk associated with the present level of pollution of the Ibadan river water body on fish health and biodiversity. This research provides a basis for aquatic management and assist in policy making at national and international levels. Appropriate strategies for the control of point and non-point pollution sources, amendments and enforcement of legislation should be developed.

  17. The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system

    Science.gov (United States)

    Latrubesse, Edgardo M.; Cozzuol, Mario; da Silva-Caminha, Silane A. F.; Rigsby, Catherine A.; Absy, Maria Lucia; Jaramillo, Carlos

    2010-05-01

    On the basis of paleontological content (vertebrates and palynology) and facies analysis from river banks, road cuts, and three wells, we have assigned the uppermost levels of the Solimões Formation in western Amazonia, Brazil, to the Late Miocene. The vertebrate fossil record from outcropping sediments is assigned to the Huayquerian-Mesopotamian mammalian biozones, spanning 9-6.5 Ma. Additionally, we present results that demonstrate that deposits in Peruvian Amazonia attributed to Miocene tidal environments are actually fluvial sediments that have been misinterpreted (both environmentally and chronologically) by several authors. The entire Late Miocene sequence was deposited in a continental environment within a subsiding basin. The facies analysis, fossil fauna content, and palynological record indicate that the environment of deposition was dominated by avulsive rivers associated with megafan systems, and avulsive rivers in flood basins (swamps, lakes, internal deltas, and splays). Soils developed on the flatter, drier areas, which were dominated by grasslands and gallery forest in a tropical to subtropical climate. These Late Miocene sediments were deposited from westward of the Purus arch up to the border of Brazil with Peru (Divisor Ranges) and Bolivia (Pando block). Eastward of the Iquitos structural high, however, more detailed studies, including vertebrate paleontology, need to be performed to calibrate with more precision the ages of the uppermost levels of the Solimões Formation. The evolution of the basin during the late Miocene is mainly related to the tectonic behavior of the Central Andes (˜ 3°-15°S). At approximately 5 Ma, a segment of low angle of subduction was well developed in the Nazca Plate, and the deformation in the Subandean foreland produced the inland reactivation of the Divisor/Contamana Ranges and tectonic arrangements in the Eastern Andes. During the Pliocene southwestern Brazilian Amazonia ceased to be an effective sedimentary

  18. The study of the interactions between groundwater and Sava River water in the Ljubljansko polje aquifer system (Slovenia)

    Science.gov (United States)

    Vrzel, Janja; Solomon, D. Kip; Blažeka, Željko; Ogrinc, Nives

    2018-01-01

    River basin aquifers are common sites for drinking water wells as bank filtration can be a cost effective pretreatment technology. A groundwater vulnerability to pollution depends on a groundwater mean residence time and on a relative contribution of river water versus local precipitation to groundwater. Environmental isotopes of oxygen and hydrogen (δ18O and δ2H), tritium (3H) and concentrations of nitrate (NO3-) were used to investigate hydrological pathways, mean residence time and interactions between surface water and groundwater in the Ljubljansko polje aquifer system in Slovenia. δ18O and δ2H values indicate a spatial variability of the influence of individual groundwater sources inside the aquifer - local precipitation and the Sava River water. Fractions of river water in groundwater depend on the depth of perforated screens in the pumping wells and their distance from the Sava River. It was estimated that groundwater at wells Kleče 11, Hrastje 3, and Hrastje 8 is mostly composed of recently infiltrated local precipitation, while the Sava River is the dominant source of groundwater at the well Jarški prod 1. Groundwater at wells Kleče 8, Kleče 12, and Jarški prod 3 contains on average between 41% and 48% of the Sava River water. The 3H and 3H/3He methods indicate short mean residence time of groundwater present at Jarški prod (2-7 years) and Hrastje (7-8 years). A small fraction (<10%) of old groundwater is present at Kleče. Furthermore, infiltration of local precipitation influenced the levels of NO3- at Hrastje. These data extend our understanding of groundwater flow in the Ljubljansko polje aquifer system, interactions between the Sava River water/local precipitation and groundwater, and the utility of isotope tracers in evaluating the spatial distribution of groundwater vulnerability to pollution.

  19. Environmental Nitrogen Losses from Commercial Crop Production Systems in the Suwannee River Basin of Florida.

    Science.gov (United States)

    Prasad, Rishi; Hochmuth, George J

    2016-01-01

    The springs and the Suwannee river of northern Florida in Middle Suwanee River Basin (MSRB) are among several examples in this planet that have shown a temporal trend of increasing nitrate concentration primarily due to the impacts of non-point sources such as agriculture. The rate of nitrate increase in the river as documented by Ham and Hatzell (1996) was 0.02 mg N L-1 y-1. Best management practices (BMPs) for nutrients were adopted by the commercial farms in the MSRB region to reduce the amounts of pollutants entering the water bodies, however the effectiveness of BMPs remains a topic of interest and discussion among the researchers, environmental administrators and policy makers about the loads of nitrogen entering into groundwater and river systems. Through this study, an initiative was taken to estimate nitrogen losses into the environment from commercial production systems of row and vegetable crops that had adopted BMPs and were under a presumption of compliance with state water quality standards. Nitrogen mass budget was constructed by quantifying the N sources and sinks for three crops (potato (Solanum tuberosum L.), sweet corn (Zea mays L.) and silage corn (Zea mays L.)) over a four year period (2010-2013) on a large representative commercial farm in northern Florida. Fertilizer N was found to be the primary N input and represented 98.0 ± 1.4, 91.0 ± 13.9, 78.0 ± 17.3% of the total N input for potato, sweet corn, and silage corn, respectively. Average crop N uptake represented 55.5%, 60.5%, and 65.2% of the mean total input N whereas average mineral N left in top 0.3 m soil layer at harvest represented 9.1%, 4.5%, and 2.6% of the mean total input N. Mean environmental N losses represented 35.3%, 34.3%, and 32.7% of the mean total input N for potato, sweet corn, and silage corn, respectively. Nitrogen losses showed a linear trend with increase in N inputs. Although, there is no quick fix for controlling N losses from crop production in MSRB, the

  20. A System Dynamics Model to Improve Water Resources Allocation in the Conchos River

    Science.gov (United States)

    Gastelum, J. R.; Valdes, J. B.; Stewart, S.

    2005-12-01

    The Conchos river located in Chihuahua state on a semiarid region is the most important Mexican river contributing water deliveries to USA as established by the Water treaty of 1944 signed between Mexico and USA. Historically, Mexico has delivered to UNITED STATES 550 Hm3 (445,549.5 ACF) per year of water since the treaty was established, which is 25% above the yearly water volume Mexico is required to deliver. The Conchos river has contributed with 54% of the historic Mexican water treaty deliveries to the UNITED STATES, which represents the highest percentage of the 6 Mexican rivers considered on the water treaty. However, during drought situations the basin has proven to be vulnerable, for instance, because of the severe drought of the 90's, several cities in 1992 on Chihuahua state where declared disaster areas, and from 1992 to 2001 Mexico had accumulated a water treaty deficit of 2111.6 Hm3 (1,710,586 ACF). This has conduced to economic, social, and political difficulties in both countries. Because of the cited problematic and considering the poor understanding of the relationship between water supply and demand factors on the basin, a decision support system (DSS) has been developed aimed to improve the decision making process related with the water resources allocation process. This DSS has been created using System Dynamics (SD). It is a semi-distributed model and is running on monthly time step basis. For both the short and long term, three important water resources management strategies have been evaluated: several water allocation policies from reservoirs to water users; bulk water rights transfers inside and outside Irrigation Districts; and improvement of water distribution efficiencies. The model results have provided very useful regard to gain more quantitative understanding of the different strategies being implemented. They have also indicated that the different water resources alternatives change its degree of importance according to the

  1. Potential for water salvage by removal of non-native woody vegetation from dryland river systems

    Science.gov (United States)

    Doody, T.M.; Nagler, P.L.; Glenn, E.P.; Moore, G.W.; Morino, K.; Hultine, K.R.; Benyon, R.G.

    2011-01-01

    Globally, expansion of non-native woody vegetation across floodplains has raised concern of increased evapotranspiration (ET) water loss with consequent reduced river flows and groundwater supplies. Water salvage programs, established to meet water supply demands by removing introduced species, show little documented evidence of program effectiveness. We use two case studies in the USA and Australia to illustrate factors that contribute to water salvage feasibility for a given ecological setting. In the USA, saltcedar (Tamarix spp.) has become widespread on western rivers, with water salvage programs attempted over a 50-year period. Some studies document riparian transpiration or ET reduction after saltcedar removal, but detectable increases in river base flow are not conclusively shown. Furthermore, measurements of riparian vegetation ET in natural settings show saltcedar ET overlaps the range measured for native riparian species, thereby constraining the possibility of water salvage by replacing saltcedar with native vegetation. In Australia, introduced willows (Salix spp.) have become widespread in riparian systems in the Murray-Darling Basin. Although large-scale removal projects have been undertaken, no attempts have been made to quantify increases in base flows. Recent studies of ET indicate that willows growing in permanently inundated stream beds have high transpiration rates, indicating water savings could be achieved from removal. In contrast, native Eucalyptus trees and willows growing on stream banks show similar ET rates with no net water salvage from replacing willows with native trees. We conclude that water salvage feasibility is highly dependent on the ecohydrological setting in which the non-native trees occur. We provide an overview of conditions favorable to water salvage. Copyright ?? 2011 John Wiley & Sons, Ltd.

  2. Local models for rainstorm-induced hazard analysis on Mediterranean river-torrential geomorphological systems

    Directory of Open Access Journals (Sweden)

    N. Diodato

    2004-01-01

    Full Text Available Damaging hydrogeomorphological events are defined as one or more simultaneous phenomena (e.g. accelerated erosions, landslides, flash floods and river floods, occurring in a spatially and temporal random way and triggered by rainfall with different intensity and extent. The storm rainfall values are highly dependent on weather condition and relief. However, the impact of rainstorms in Mediterranean mountain environments depend mainly on climatic fluctuations in the short and long term, especially in rainfall quantity. An algorithm for the characterisation of this impact, called Rainfall Hazard Index (RHI, is developed with a less expensive methodology. In RHI modelling, we assume that the river-torrential system has adapted to the natural hydrological regime, and a sudden fluctuation in this regime, especially those exceeding thresholds for an acceptable range of flexibility, may have disastrous consequences for the mountain environment. RHI integrate two rainfall variables based upon storm depth current and historical data, both of a fixed duration, and a one-dimensionless parameter representative of the degree ecosystem flexibility. The approach was applied to a test site in the Benevento river-torrential landscape, Campania (Southern Italy. So, a database including data from 27 events which have occurred during an 77-year period (1926-2002 was compared with Benevento-station RHI(24h, for a qualitative validation. Trends in RHIx for annual maximum storms of duration 1, 3 and 24h were also examined. Little change is observed at the 3- and 24-h duration of a storm, but a significant increase results in hazard of a short and intense storm (RHIx(1h, in agreement with a reduction in return period for extreme rainfall events.

  3. Improved Lower Mekong River Basin Hydrological Decision Making Using NASA Satellite-based Earth Observation Systems

    Science.gov (United States)

    Bolten, J. D.; Mohammed, I. N.; Srinivasan, R.; Lakshmi, V.

    2017-12-01

    Better understanding of the hydrological cycle of the Lower Mekong River Basin (LMRB) and addressing the value-added information of using remote sensing data on the spatial variability of soil moisture over the Mekong Basin is the objective of this work. In this work, we present the development and assessment of the LMRB (drainage area of 495,000 km2) Soil and Water Assessment Tool (SWAT). The coupled model framework presented is part of SERVIR, a joint capacity building venture between NASA and the U.S. Agency for International Development, providing state-of-the-art, satellite-based earth monitoring, imaging and mapping data, geospatial information, predictive models, and science applications to improve environmental decision-making among multiple developing nations. The developed LMRB SWAT model enables the integration of satellite-based daily gridded precipitation, air temperature, digital elevation model, soil texture, and land cover and land use data to drive SWAT model simulations over the Lower Mekong River Basin. The LMRB SWAT model driven by remote sensing climate data was calibrated and verified with observed runoff data at the watershed outlet as well as at multiple sites along the main river course. Another LMRB SWAT model set driven by in-situ climate observations was also calibrated and verified to streamflow data. Simulated soil moisture estimates from the two models were then examined and compared to a downscaled Soil Moisture Active Passive Sensor (SMAP) 36 km radiometer products. Results from this work present a framework for improving SWAT performance by utilizing a downscaled SMAP soil moisture products used for model calibration and validation. Index Terms: 1622: Earth system modeling; 1631: Land/atmosphere interactions; 1800: Hydrology; 1836 Hydrological cycles and budgets; 1840 Hydrometeorology; 1855: Remote sensing; 1866: Soil moisture; 6334: Regional Planning

  4. PermVeg: A model to design crop sequences for permanent vegetable production systems in the Red River Delta, Vietnam

    NARCIS (Netherlands)

    Pham Thi Thu Huong, Huong; Everaarts, A.P.; Berg, van den W.; Neeteson, J.J.; Struik, P.C.

    2014-01-01

    The constraints in current vegetable production systems in the Red River Delta, Vietnam, in which vegetables are rotated with flooded rice, called for the design of alternative systems of permanent vegetable production. The practical model, PermVeg, was developed to generate vegetable crop sequences

  5. Emergy and Economic Evaluations of Four Fruit Production Systems on Reclaimed Wetlands Surrounding the Pearl River Estuary, China

    Science.gov (United States)

    Emergy and economic methods were used to evaluate and compare a traditional tropical fruit cultivation system, for bananas, and three newly introduced fruit cultivation systems, for papaya, guava and wampee, on reclaimed wetlands of the Pearl River Estuary, China. The evaluations...

  6. Impact of Land Use on River Systems in Ghana | Ayivor | West ...

    African Journals Online (AJOL)

    Rivers play significant roles in the provision of water for domestic and industrial purposes. Nevertheless, land use dynamics continue to impact on river catchments which have negative repercussions for river health. This study focuses on land use change in the Okyeman Traditional Area, which encompasses three major ...

  7. Linking Flow Regime, Floodplain Lake Connectivity and Fish Catch in a Large River-Floodplain System, the Volga-Akhtuba Floodplain (Russian Federation)

    NARCIS (Netherlands)

    Wolfshaar, van de K.E.; Middelkoop, H.; Addink, E.; Winter, H.V.; Nagelkerke, L.A.J.

    2011-01-01

    River-floodplain systems are amongst the most productive—but often severely impacted—aquatic systems worldwide. We explored the ecological response of fish to flow regime in a large river-floodplain system by studying the relationships between (1) discharge and inundated floodplain area, with a

  8. Montana Rivers Information System : Edit/Entry Program User's Manual.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Montana Department of Fish, Wildlife and Parks

    1992-07-01

    The Montana Rivers Information System (MRIS) was initiated to assess the state`s fish, wildlife, and recreation value; and natural cultural, and geologic features. The MRIS is now a set of data bases containing part of the information in the Natural Heritage Program natural features and threatened and endangered species data bases and comprises of the Montana Interagency Stream Fisheries Database; the MDFWP Recreation Database; and the MDFWP Wildlife Geographic Information System. The purpose of this User`s Manual is to describe to the user how to maintain the MRIS database of their choice by updating, changing, deleting, and adding records using the edit/entry programs; and to provide to the user all information and instructions necessary to complete data entry into the MRIS databases.

  9. VRML visualization system of the Castelo de Vide aquifer and interaction with Sever river

    Science.gov (United States)

    Ribeiro, Luis; Tavares Ribeiro, Carlos; Monteiro, Jose P.; Amaro, Sunia

    2003-05-01

    This paper presents the development process of a visualization system for groundwater diffuse and concentrated flows, and quality parameters, within the same continuous media, based on the integration of VRML solutions within groundwater simulation models. The system is being implemented within Castelo de Vide aquifer for a virtual reality visualization of simulations and variability analysis of the aquifer and Sever river interaction, concerning climate and anthropogeneous factors, beyond pumping for water supply, on the 3D model of the aquifer, using data available in the Research Center. The implementation process meaning a compatibility platform between the FEM and VR environment converts data attributes into graphic qualities or shape modifications containing additional information such as the user's initial point of view, what lights are available, the background, and other contextual information is presented. An interface for three dimensional virtual reality is based on a standard web browser equipped with any one of many freely available plug-in's will be also described.

  10. Design and implementation of expert decision system in Yellow River Irrigation

    Science.gov (United States)

    Fuping, Wang; Bingbing, Lei; Jie, Pan

    2018-03-01

    How to make full use of water resources in the Yellow River irrigation is a problem needed to be solved urgently. On account of the different irrigation strategies in various growth stages of wheat, this paper proposes a novel irrigation expert decision system basing on fuzzy control technique. According to the control experience, expert knowledge and MATLAB simulation optimization, we obtain the irrigation fuzzy control table stored in the computer memory. The controlling irrigation is accomplished by reading the data from fuzzy control table. The experimental results show that the expert system can be used in the production of wheat to achieve timely and appropriate irrigation, and ensure that wheat growth cycle is always in the best growth environment.

  11. DOE Zero Energy Ready Home Case Study, Weiss Building & Development, LLC., System Home, River Forest, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    The Passive House Challenge Home located in River Forest, Illinois, is a 5-bedroom, 4.5-bath, 3,600 ft2 two-story home (plus basement) that costs about $237 less per month to operate than a similar sized home built to the 2009 IECC. For a home with no solar photovoltaic panels installed, it scored an amazingly low 27 on the Home Energy Rating System (HERS) score.An ENERGY STAR-rated dishwasher, clothes washer, and refrigerator; an induction cooktop, condensing clothes dryer, and LED lighting are among the energy-saving devices inside the home. All plumbing fixtures comply with EPA WaterSense criteria. The home was awarded a 2013 Housing Innovation Award in the "systems builder" category.

  12. Systems Engineering in the Development and Implementation of the Savannah River Site Transuranic Waste Disposition Program

    International Nuclear Information System (INIS)

    Fayfich, R.R.

    1999-01-01

    The use of systems engineering facilitated the strategic planning and implementation of the Savannah River Site (SRS) transuranic waste disposal program. This application represented the first SRS use of systems engineering in the pre-program planning stages during the development of a comprehensive strategic plan for the disposal of transuranic waste at the Department of Energy Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The use of systems engineering focused the efforts of the technical experts to devise a three initiative plan for the disposal of transuranic waste where previous efforts failed. Continued application of systems engineering facilitated the further development and implementation of the first initiative outlined in the strategic plan, i.e., set-up the program and process to begin to characterize and ship waste to the WIPP.This application of systems engineering to the transuranic waste program represented the first opportunity at the SRS for a comprehensive usage of systems engineering at all program levels. The application was initiated at the earliest possible point in the program development, i.e., strategic planning, and successively was used in detailed development and implementation of the program. Systems engineering successfully focused efforts to produce a comprehensive plan for the disposal of SRS transuranic waste at the WIPP, and facilitated development of the SRS capability and infrastructure to characterize, certify, and ship waste

  13. Ichthyofauna of the Kubo, Tochikura, and Ichinono river systems (Kitakami River drainage, northern Japan, with a comparison of predicted and surveyed species richness

    Directory of Open Access Journals (Sweden)

    Yusuke Miyazaki

    2014-11-01

    Full Text Available The potential fish species pool of the Kubo, Tochikura, and Ichinono river systems (tributaries of the Iwai River, Kitakami River drainage, Iwate Prefecture, northern Japan, was compared with the observed ichthyofauna by using historical records and new field surveys. Based on the literature survey, the potential species pool comprised 24 species/subspecies but only 20, including 7 non-native taxa, were recorded during the fieldwork. The absence during the survey of 11 species/subspecies from the potential species pool suggested either that sampling effort was insufficient, or that accurate determination of the potential species pool was hindered by lack of biogeographic data and ecological data related to the habitat use of the species. With respect to freshwater fish conservation in the area, Lethenteron reissneri, Carassius auratus buergeri, Pseudorasbora pumila, Tachysurus tokiensis, Oryzias latipes, and Cottus nozawae are regarded as priority species, and Cyprinus rubrofuscus, Pseudorasbora parva, and Micropterus salmoides as targets for removal.

  14. Columbia River System Operation Review : Final Environmental Impact Statement, Main Report.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.); United States. Bonneville Power Administration; United States. Army. Corps of Engineers. North Pacific Division; United States. Bureau of Reclamation. Pacific Northwest Region.

    1995-11-01

    The System Operation Review (SOR) Final EIS addresses four actions: (a) need to develop coordinated strategy for managing the multiple uses of the Federal Columbia River system (System Operating Strategy [SOS]); (b) need to provide interested parties other than management agencies with a long-term role in system planning (Forum); (c) need to renew or change current Canadian Entitlement Allocation Agreements (CEAA); and (d) need to renegotiate and renew the Pacific Northwest Coordination Agreement (PNCA). SOS alternatives analyzed are: (1) operation prior to Endangered Species Act listings of salmon stocks; (2) current operations (no action); (3) stable storage project operation; (4) natural river operation; (5) fixed drawdown; (6) operating strategies proposed by the U.S. Fish and Wildlife Service, National Marine Fisheries Service, State fisheries agencies, Native American tribes, and Federal operating agencies; and (7) Preferred Alternative. The seven Forum alternatives analyzed are: (1) decisionmaking by the SOR lead agencies (preferred alternative); (2) decisionmaking by SOR lead agencies and recommendations by an existing regional entity; (3) decisionmaking by SOR lead agencies and recommendations by a new regional entity; (4) decisionmaking by a Federal consultation forum; (5) decisionmaking by a new entity; (6) decisionmaking by one Federal operating agency; (7) decisionmaking by a Federal agency other than an operating agency. PNCA alternatives analyzed are: (1) no replacement contract; (2) contract to maximize regional power benefits; (3) roll over existing PNCA; (4) current PNCA with modified operating procedures (preferred alternative); (5) current PNCA with nonpower modifications. CEAA alternatives include: (1) no action (no replacement of current allocation agreements); (2) entitlement allocation: 55 percent Federal; 45 percent non-Federal; (3) entitlement allocation: 70 percent Federal, 30 percent non-Federal (preferred alternative); (4) no agreement.

  15. Columbia River system operation review: Final environmental impact statement. Main report

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) Final EIS addresses four actions: (a) need to develop coordinated strategy for managing the multiple uses of the Federal Columbia River system (System Operating Strategy [SOS]); (b) need to provide interested parties other than management agencies with a long-term role in system planning (Forum); (c) need to renew or change current Canadian Entitlement Allocation Agreements (CEAA); and (d) need to renegotiate and renew the Pacific Northwest Coordination Agreement (PNCA). SOS alternatives analyzed are: (1) operation prior to Endangered Species Act listings of salmon stocks; (2) current operations (no action); (3) stable storage project operation; (4) natural river operation; (5) fixed drawdown; (6) operating strategies proposed by the U.S. Fish and Wildlife Service, National Marine Fisheries Service, State fisheries agencies, Native American tribes, and Federal operating agencies; and (7) Preferred Alternative. The seven Forum alternatives analyzed are: (1) decisionmaking by the SOR lead agencies (preferred alternative); (2) decisionmaking by SOR lead agencies and recommendations by an existing regional entity; (3) decisionmaking by SOR lead agencies and recommendations by a new regional entity; (4) decisionmaking by a Federal consultation forum; (5) decisionmaking by a new entity; (6) decisionmaking by one Federal operating agency; (7) decisionmaking by a Federal agency other than an operating agency. PNCA alternatives analyzed are: (1) no replacement contract; (2) contract to maximize regional power benefits; (3) roll over existing PNCA; (4) current PNCA with modified operating procedures (preferred alternative); (5) current PNCA with nonpower modifications. CEAA alternatives include: (1) no action (no replacement of current allocation agreements); (2) entitlement allocation: 55 percent Federal; 45 percent non-Federal; (3) entitlement allocation: 70 percent Federal, 30 percent non-Federal (preferred alternative); (4) no agreement

  16. Quantification of century-scale human-driven coastline changes in the Adra River deltaic system of southeast Spain

    Science.gov (United States)

    Jabaloy-Sánchez, Antonio; José Lobo, Francisco; Azor, Antonio; Bárcenas, Patricia; Fernández-Salas, Luis Miguel; Díaz Del Río, Víctor; Pérez-Peña, José Vicente

    2010-05-01

    The Adra River, in the eastern sector of the Betic Cordillera in SE Spain, has a 744 km2 catchment draining a highly mountainous region towards the Mediterranean Sea. River management (dam building and channel deviation) has controlled the recent coastline evolution and the activity of the submerged parts of the delta, with subsequent modification of the main depositional/erosional areas. This recent evolution of the Adra River delta in southeastern Spain has been reconstructed from historical maps, aerial photographs, and submarine multibeam bathymetric data. We have distinguished three main evolutionary stages, whose development took place as a direct response to the main anthropic and natural influences on the river system. The first stage (6000 BP to 137 BP) represents the natural behaviour of the deltaic system with negligible anthropic influence. This long stage is characterized by the sediment infill of an estuary at a mean ratio of 0.56 m/year, and after the year 500 BP the coastline advance with the formation of a small asymmetric triangular delta in the natural river mouth and a typical prodeltaic deposit. The formation of the delta begun at around 0.09-0.17 m/year of advance, and towards the end of this stage (19th century), the amount of sediment supply increased to 0.56 m/year due to the confluence of both climatic and anthropic causes. The second and third stages are characterized by anthropic interventions in the catchment and the river mouth, which heavily modified the natural dynamics of the deltaic system. The second stage (137 BP to 35 BP) coincided with damming of the natural river channel very close to its mouth and the construction of two successive artificial channels to deviate the river flow. The coastal dynamics changed during this second stage with erosion of the original delta and the formation of a new, asymmetrical delta at the mouth of the artificial channels eastwards of the natural one. This younger eastern delta corresponds with

  17. Assessing the impact of non-point loading on river systems: A joint German-Canada study

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, P.A.; Culp, J.M.; Wrona, F.J. [National Hydrology Research Inst., Saskatoon, Saskatchewan (Canada); Dreyer, U.; Rupp, H.; Meissner, R.; Guhr, H.

    1995-12-31

    Understanding the ecological effects of non-point sources of nutrient and contaminant loadings has become increasingly important in the management of riverine ecosystems, particularly since successes in controlling effluent emissions have resulted in the reduction of point-source loadings to rivers in industrialized nations. The federal governments of Canada and Germany recognize the need to evaluate the impact of non-point loading, particularly agricultural, on river systems since nutrients and agricultural contaminants can directly affect ecosystem structure and processes. Moreover, in Germany, the government`s target of achieving equal environmental conditions throughout its unified territory by the year 2000 has provided impetus to develop cost-effective methods for determining the effect of agricultural activity on aquatic ecosystems. The objective of this study is to combine biological, chemical and hydrological approaches for assessing non-point source loadings to rivers in Canada and the former German Democratic Republic, and to make recommendations for the design of future monitoring programs. Studies were recently initiated on small tributaries of the Elbe River, Germany, and the Athabasca River, Canada, to quantify non-point nutrient loading, identify reaches of nitrogen or phosphorus limitation, and evaluate changes in benthic algal and invertebrate communities in relation to land-use practices. Once methods have been established and validated, the project will be scaled up to large river catchment areas. This study also assesses several rapid bioassessment techniques for monitoring riverine ecosystems impacted by non-point loadings.

  18. Pesticide residue assessment in three selected agricultural production systems in the Choluteca River Basin of Honduras

    International Nuclear Information System (INIS)

    Kammerbauer, J.; Moncada, J.

    1999-01-01

    There is a basic lack of information about the presence of pesticide residues in the environment in Central America. Over the period of February 1995 to June 1997, river, well, lagoon and spring water samples, as well as soil, fish tissue, lagoon bed sediments and some foodstuffs were taken from the greater Cholutecan River Basin of Honduras and analyzed for pesticide residues. These were collected at three separate sites (La Lima, Zamorano and Choluteca), each characterized by differing agricultural production systems. The main pesticide residues found in soil samples were dieldrin and p,p'-DDT, while river water samples were found to have detectable levels of heptachlor, endosulfan and chlorpyrifos, with lagoon and well water also being shown to contain heptachlor. These pesticides detected were in more than 20% of the samples assessed. In river water samples more pesticide residues at higher concentrations were found to be associated with areas of more intensive agricultural production. The fewest pesticides with lowest concentrations were found in the small subwatershed associated with traditional agricultural production. Although the pesticides found in the soils at the three sites were generally similar they tended to be higher in the southern part of the Cholutecan watershed, followed by the central zone, with the lowest concentrations being found in the more traditional production zone. In lagoon and well water samples more pesticides, but mostly in lower concentrations were detected at the traditional production site than at the others. Ten pesticide compounds were detected in fish tissue, mainly organochlorines, some of which were also found in lagoon sediments. In terms of food products, almost no pesticides were detected in vegetables, but the kidney adipose tissue taken from slaughtered cows was shown to have a tendency to contain some organochlorines. Spring water in the traditional agricultural production zone contained three organochlorine compounds

  19. Optimizing Water Use and Hydropower Production in Operational Reservoir System Scheduling with RiverWare

    Science.gov (United States)

    Magee, T. M.; Zagona, E. A.

    2017-12-01

    Practical operational optimization of multipurpose reservoir systems is challenging for several reasons. Each purpose has its own constraints which may conflict with those of other purposes. While hydropower generation typically provides the bulk of the revenue, it is also among the lowest priority purposes. Each river system has important details that are specific to the location such as hydrology, reservoir storage capacity, physical limitations, bottlenecks, and the continuing evolution of operational policy. In addition, reservoir operations models include discrete, nonlinear, and nonconvex physical processes and if-then operating policies. Typically, the forecast horizon for scheduling needs to be extended far into the future to avoid near term (e.g., a few hours or a day) scheduling decisions that result in undesirable future states; this makes the computational effort much larger than may be expected. Put together, these challenges lead to large and customized mathematical optimization problems which must be solved efficiently to be of practical use. In addition, the solution process must be robust in an operational setting. We discuss a unique modeling approach in RiverWare that meets these challenges in an operational setting. The approach combines a Preemptive Linear Goal Programming optimization model to handle prioritized policies complimented by preprocessing and postprocessing with Rulebased Simulation to improve the solution with regard to nonlinearities, discrete issues, and if-then logic. An interactive policy language with a graphical user interface allows modelers to customize both the optimization and simulation based on the unique aspects of the policy for their system while the routine physical aspect of operations are modeled automatically. The modeler is aided by a set of compiled predefined functions and functions shared by other modelers. We illustrate the success of the approach with examples from daily use at the Tennessee Valley

  20. Water quality analysis in rivers with non-parametric probability distributions and fuzzy inference systems: application to the Cauca River, Colombia.

    Science.gov (United States)

    Ocampo-Duque, William; Osorio, Carolina; Piamba, Christian; Schuhmacher, Marta; Domingo, José L

    2013-02-01

    The integration of water quality monitoring variables is essential in environmental decision making. Nowadays, advanced techniques to manage subjectivity, imprecision, uncertainty, vagueness, and variability are required in such complex evaluation process. We here propose a probabilistic fuzzy hybrid model to assess river water quality. Fuzzy logic reasoning has been used to compute a water quality integrative index. By applying a Monte Carlo technique, based on non-parametric probability distributions, the randomness of model inputs was estimated. Annual histograms of nine water quality variables were built with monitoring data systematically collected in the Colombian Cauca River, and probability density estimations using the kernel smoothing method were applied to fit data. Several years were assessed, and river sectors upstream and downstream the city of Santiago de Cali, a big city with basic wastewater treatment and high industrial activity, were analyzed. The probabilistic fuzzy water quality index was able to explain the reduction in water quality, as the river receives a larger number of agriculture, domestic, and industrial effluents. The results of the hybrid model were compared to traditional water quality indexes. The main advantage of the proposed method is that it considers flexible boundaries between the linguistic qualifiers used to define the water status, being the belongingness of water quality to the diverse output fuzzy sets or classes provided with percentiles and histograms, which allows classify better the real water condition. The results of this study show that fuzzy inference systems integrated to stochastic non-parametric techniques may be used as complementary tools in water quality indexing methodologies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Status after 5 Years of Survival Compliance Testing in the Federal Columbia River Power System (FCRPS)

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Weiland, Mark A.; Ham, Kenneth D.; Ploskey, Gene R.; McMichael, Geoffrey A.; Colotelo, Alison H.; Carlson, Thomas J.; Woodley, Christa M.; Eppard, M. Brad; Hockersmith, Eric E.

    2016-06-27

    Survival studies of juvenile salmonids implanted with acoustic tags have been conducted at hydroelectric dams within the Federal Columbia River Power System (FCRPS) in the Columbia and Snake rivers between 2010 and 2014 to assess compliance with dam passage survival standards stipulated in the 2008 Biological Opinion (BiOp). For juvenile salmonids migrating downstream in the spring, dam passage survival defined as survival from the upstream dam face to the tailrace mixing zone must be ≥96% and for summer migrants, ≥93%, and estimated with a standard error ≤1.5% (i.e., 95% confidence interval of ±3%). A total of 29 compliance tests have been conducted at 6 of 8 FCRPS main-stem dams, using over 109,000 acoustic-tagged salmonid smolts. Of these 29 compliance studies, 23 met the survival standards and 26 met the precision requirements. Of the 6 dams evaluated to date, individual survival estimates range from 0.9597 to 0.9868 for yearling Chinook Salmon, 0.9534 to 0.9952 for steelhead, and 0.9076 to 0.9789 for subyearling Chinook Salmon. These investigations suggest the large capital investment over the last 20 years to improve juvenile salmon passage through the FCRPS dams has been beneficial.

  2. Estimating the Spatial Extent of Unsaturated Zones in Heterogeneous River-Aquifer Systems

    Science.gov (United States)

    Schilling, Oliver S.; Irvine, Dylan J.; Hendricks Franssen, Harrie-Jan; Brunner, Philip

    2017-12-01

    The presence of unsaturated zones at the river-aquifer interface has large implications on numerous hydraulic and chemical processes. However, the hydrological and geological controls that influence the development of unsaturated zones have so far only been analyzed with simplified conceptualizations of flow processes, or homogeneous conceptualizations of the hydraulic conductivity in either the aquifer or the riverbed. We systematically investigated the influence of heterogeneous structures in both the riverbed and the aquifer on the development of unsaturated zones. A stochastic 1-D criterion that takes both riverbed and aquifer heterogeneity into account was developed using a Monte Carlo sampling technique. The approach allows the reliable estimation of the upper bound of the spatial extent of unsaturated areas underneath a riverbed. Through systematic numerical modeling experiments, we furthermore show that horizontal capillary forces can reduce the spatial extent of unsaturated zones under clogged areas. This analysis shows how the spatial structure of clogging layers and aquifers influence the propensity for unsaturated zones to develop: In riverbeds where clogged areas are made up of many small, spatially disconnected patches with a diameter in the order of 1 m, unsaturated areas are less likely to develop compared to riverbeds where large clogged areas exist adjacent to unclogged areas. A combination of the stochastic 1-D criterion with an analysis of the spatial structure of the clogging layers and the potential for resaturation can help develop an appropriate conceptual model and inform the choice of a suitable numerical simulator for river-aquifer systems.

  3. The Effect of Zebra Mussels on Algal Community Structure in an Impounded River System

    Science.gov (United States)

    Trumble, A. F.; Luttenton, M.

    2005-05-01

    The zebra mussel, Dreissena polymorpha, invaded the Great Lakes Region in the mid 1980's, and subsequently colonized inland lakes and coastal river systems through secondary invasions. The Muskegon River below Croton Dam was colonized by zebra mussels in 2000 following their introduction into Croton impoundment in the late 1990's. No zebra mussels were found below Croton Dam in 1999 but had increased to 25,000 m-2 by 2001. We examined the affect of zebra mussels on epilithic periphyton communities by comparing plots that were and were not colonized by zebra mussels. Chlorophyll a increased in both treatments over time but was significantly higher in control plots than in zebra mussel plots. The concentration of chlorophyll a in the control plots increased from 14 µgcm-2 to 26 µgcm-2 and the concentration in the zebra mussel plots started at 12 µgcm-2, peaked at 19 µgcm-2, and then decreased to 15 µgcm-2 over a 6 week period. In a related experiment using artificial streams, chlorophyll a increased with increasing zebra mussel density, but differences were not significant. The different trends observed between the two experiments may be explained in part by arthropod invertebrates associated with zebra mussel populations.

  4. Investing for upgrading: the emergence of financial system of science and technology in China’s Pearl River Delta

    OpenAIRE

    XIAODONG WANG; CHRISTOF MORSCHER

    2016-01-01

    This article discusses the recent reform policy in China on setting up new financial system for supporting science and technology innovation. Based on the financial sector development in the Pearl River Delta in China’s Guangdong Province, especially Guangzhou, one pilot city of Chinese Science and Technology Financial System Reform, the article analyses the problems in financial system and makes some suggestion on how to restructure the financial system to meet the financial need of local em...

  5. Oxygenated, nitrated, methyl and parent polycyclic aromatic hydrocarbons in rivers of Haihe River System, China: occurrence, possible formation, and source and fate in a water-shortage area.

    Science.gov (United States)

    Qiao, Meng; Qi, Weixiao; Liu, Huijuan; Qu, Jiuhui

    2014-05-15

    Substituted polycyclic aromatic hydrocarbons (SPAHs) occur ubiquitously in the whole global environment as a result of their persistence and widely-spread sources. Some SPAHs show higher toxicities and levels than the corresponding PAHs. Three types of most frequently existing SPAHs, oxygenated-PAHs (OPAHs), nitrated-PAHs (NPAHs), and methyl-PAHs (MPAHs), as well as the 16 priority PAHs were investigated in this study. The purpose was to identify the occurrence, possible transformation, and source and fate of these target compounds in a water shortage area of North China. We took a river system in the water-shortage area in China, the Haihe River System (HRS), as a typical case. The rivers are used for irrigating the farmland in the North of China, which probably introduce these pollutants to the farmland of this area. The MPAHs (0.02-0.40 μg/L in dissolved phase; 0.32-16.54 μg/g in particulate phase), OPAHs (0.06-0.19 μg/L; 0.41-17.98 μg/g), and PAHs (0.16-1.20 μg/L; 1.56-79.38 μg/g) were found in the water samples, but no NPAHs were detected. The concentrations of OPAHs were higher than that of the corresponding PAHs. Seasonal comparison results indicated that the OPAHs, such as anthraquinone and 2-methylanthraquinone, were possibly transformed from the PAHs, particularly at higher temperature. Wastewater treatment plant (WWTP) effluent was deemed to be the major source for the MPAHs (contributing 62.3% and 87.6% to the receiving river in the two seasons), PAHs (68.5% and 89.4%), and especially OPAHs (80.3% and 93.2%) in the rivers. Additionally, the majority of MPAHs (12.4 kg, 80.0% of the total input), OPAHs (16.2 kg, 83.5%), and PAHs (65.9 kg, 93.3%) in the studied months entered the farmland through irrigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Demonstration and evaluation of the pulsed ultraviolet-irradiation gas-treatment system, Savannah River Site

    International Nuclear Information System (INIS)

    Schneider, J.; Wilkey, M.; Peters, R.; Tomczyk, N.; Friedlund, J.; Farber, P.

    1994-10-01

    Argonne National Laboratory was asked to demonstrate and evaluate a pulsed ultraviolet-irradiation system developed by Purus, Inc., at the Volatile Organic Compounds Non-Arid Integrated Demonstration at the Savannah River Site near aiken, South Carolina. The Purus system consists of four reactor chambers, each containing a xenon flash lamp. During the two weeks of testing, samples were taken and analyzed from the inlet and outlet sides of the Purus system. The contaminants of concern on the inlet were tetrachloroethylene (PCE), trichloroethylene (TCE), and 1,1,1-trichloroethane (TCA); the contaminants of concern on the outlet were PCE, TCE, TCA, carbon tetrachloride (CT), and chloroform. The evaluation of the Purus system included an examination of the reduction of both TCE and PCE and a search for any change in the concentrations. (Operating conditions included flow rates, ranging from 25 to 100 standard cubic feet per minute; inlet concentration of PCE, ranging from 360 to 10,700 parts per million volume; and flash lamp rates, ranging from 1 to 30 hertz.) The Purus system was quite efficient at reducing the concentrations of both PCE and TCE. The potential by-products, TCA, CT, and chloroform, showed no significant increases throughout the range of the various operating parameters. Overall, the Purus system appears to be a cost-efficient means of reducing the concentrations of PCE and TCE, while the removal of the initial photo-oxidation products and TCA is slower and needs further evaluation

  7. Water and chemical budgets in an urbanized river system under various hydrological conditions

    Science.gov (United States)

    Brion, Natacha; Carbonnel, Vincent; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.

    2017-04-01

    Since historical times, riversides are preferential settlement places for human life and activities, ultimately leading to the development of Cities. Available water resources are not only essential to ensure human's vital functions, they are also used for the production of food, goods, and energy, as transport routes and as evacuation ways for domestic and industrial waste products. All these activities profoundly modify natural water circulation as well as water quality, with increased hydrological risks (floods, droughts,…) and chemical hazards (untreated sewage releases, industrial pollution,…) as consequence. An extreme example of strongly modified river system is the river Zenne crossing the city of Brussels. In and around the city, the river together with its connected navigation canal, determine a small vertical urbanized area (800 km2) combining extreme land-use landscapes. While the southern upstream part of this area lies in a region of intensive agricultural activities, the central part is occupied by a dense cityscape including a forested area, and the downstream part is mainly under industrial influence. In this context, we established a box-model representation of water and selected polluting chemicals (N and P, biological oxygen demand, and a selection of metals, pesticides and PAHs) budgets for the studied area under variable hydrological conditions. We first have identified the general distribution of water and pollutant tracers in the various background sources of the system: waters in streams located in the very upstream parts of the catchment, and untreated and treated sewage. Secondly we have assessed the distribution of water flows, and pollutant tracer concentrations at the boundaries of the studied water systems for different stable hydrological conditions and during flood events. Finally we will discuss water budgets and pollution tracer budgets for a yearly average hydrological situation and for dry and wet weather conditions in order

  8. Water for Energy and Food: A System Modelling Approach for Blue Nile River Basin

    Directory of Open Access Journals (Sweden)

    Cho Chia Tan

    2017-02-01

    Full Text Available The world is facing a more water constrained future as a result of urbanisation, population growth, industrialisation and the emergence of climate change. This has direct impacts on the resilience and performance of the energy and food industries, as water plays a key role in electricity generation processes and agriculture production. Water, energy and food dependencies are more evident in transboundary river basins where several countries share the same source of water for irrigation demand and energy production. From the perspective of the upstream users, it would be ideal to store the water for hydropower generation and the agriculture sector while protecting the environment, whereas the downstream users need the supply of water for their agricultural growth and municipal requirements. We aim to develop a system thinking study by focusing on the transboundary Blue Nile River basin where the Ethiopian government investment in the Grand Renaissance dam has led to opposition by downstream users due to potential reduction of water resource availability downstream. We propose a system thinking approach for analysing different water management practices that considers all the available resources and the requirements set by all the users. To simulate this interaction, we use system dynamics to model the linkage between food production, water abstraction and energy generation. We link the simulation model to an optimisation engine to achieve effective management of the reservoir’s operation. The study provides a platform to investigate how the reservoir operating policies can improve an understanding of the value of water in its alternative uses, and shows how different optimal reservoir release rules generate different optimal solutions inherently involved in upstream and downstream users’ requirements. The proposed methodology is an attempt to enable Nile riparian countries to make more informed decisions on water resources policy and

  9. Telemetry narrows the search for sea lamprey spawning locations in the St. Clair-Detroit River System

    Science.gov (United States)

    Holbrook, Christopher; Jubar, Aaron K.; Barber, Jessica M.; Tallon, Kevin; Hondorp, Darryl W.

    2016-01-01

    Adult sea lamprey (Petromyzon marinus) abundance in Lake Erie has remained above targets set by fishery managers since 2005, possibly due to increased recruitment in the St. Clair-Detroit River System (SCDRS). Sea lamprey recruitment in the SCDRS poses an enormous challenge to sea lamprey control and assessment in Lake Erie because the SCDRS contains no dams to facilitate capture and discharge is at least an order of magnitude larger in the SCDRS than most other sea lamprey-producing tributaries in the Great Lakes. As a first step toward understanding population size, spatial distribution, and spawning habitat of adult sea lampreys in the SCDRS, we used acoustic telemetry to determine where sea lampreys ceased migration (due to spawning, death, or both) among major regions of the SCDRS. All tagged sea lampreys released in the lower Detroit River (N = 27) moved upstream through the Detroit River and entered Lake St. Clair. After entering Lake St. Clair, sea lampreys entered the St. Clair River (N = 22), Thames River (N = 1), or were not detected again (N = 4). Many sea lampreys (10 of 27) were last observed moving downstream (“fallback”) but we were unable to determine if those movements occurred before or after spawning, or while sea lampreys were dead or alive. Regardless of whether estimates of locations where sea lampreys ceased migration were based on the most upstream region occupied or final region occupied, most sea lampreys ceased migration in the St. Clair River or Lake St. Clair. Results suggest that spawning and rearing in the St. Clair River could be an important determinant of sea lamprey recruitment in the SCDRS and may direct future assessment and control activities in that system.

  10. Potential effects of deepening the St. Johns River navigation channel on saltwater intrusion in the surficial aquifer system, Jacksonville, Florida

    Science.gov (United States)

    Bellino, Jason C.; Spechler, Rick M.

    2013-01-01

    The U.S. Army Corps of Engineers (USACE) has proposed dredging a 13-mile reach of the St. Johns River navigation channel in Jacksonville, Florida, deepening it to depths between 50 and 54 feet below North American Vertical Datum of 1988. The dredging operation will remove about 10 feet of sediments from the surficial aquifer system, including limestone in some locations. The limestone unit, which is in the lowermost part of the surficial aquifer system, supplies water to domestic wells in the Jacksonville area. Because of density-driven hydrodynamics of the St. Johns River, saline water from the Atlantic Ocean travels upstream as a saltwater “wedge” along the bottom of the channel, where the limestone is most likely to be exposed by the proposed dredging. A study was conducted to determine the potential effects of navigation channel deepening in the St. Johns River on salinity in the adjacent surficial aquifer system. Simulations were performed with each of four cross-sectional, variable-density groundwater-flow models, developed using SEAWAT, to simulate hypothetical changes in salinity in the surficial aquifer system as a result of dredging. The cross-sectional models were designed to incorporate a range of hydrogeologic conceptualizations to estimate the effect of uncertainty in hydrogeologic properties. The cross-sectional models developed in this study do not necessarily simulate actual projected conditions; instead, the models were used to examine the potential effects of deepening the navigation channel on saltwater intrusion in the surficial aquifer system under a range of plausible hypothetical conditions. Simulated results for modeled conditions indicate that dredging will have little to no effect on salinity variations in areas upstream of currently proposed dredging activities. Results also indicate little to no effect in any part of the surficial aquifer system along the cross section near River Mile 11 or in the water-table unit along the cross

  11. [Genetic Differentiation of Sockeye Salmon Oncorhynchus nerka from Kamchatka River Basin and the Lake-River Systems of the West Coast of the Bering Sea as Inferred from Data on Single Nucleotide Polymorphism].

    Science.gov (United States)

    Khrustaleva, A M; Klovach, N V; Vedischeva, E V; Seeb, J E

    2015-10-01

    The variability of 45 single nucleotide polymorphism loci (SNP) was studied in sockeye salmon from the Kamchatka River basin and four lake-river systems of the west coast of the Bering Sea. Based on the genetic differentiation estimates for the largest sockeye salmon populations of Eastern Kamchatka and Chukotka, the examined samples were combined into two regional groups represented by the population of the Kamchatka River drainage, which included numerous local subpopulations and seasonal races, and the northern population grouping from the rivers of Olutorsko-Navarinsky raion, wherein the sockeye salmon from Maynypilginskaya Lake-River system was relatively isolated. Considerable divergence was observed between the island (Sarannoe Lake, Bering Island) and continental populations. Genetic heterogeneity was revealed and groups of early- and late-maturing individuals were isolated in the sample of late-run sockeye salmon from Kamchatka River. In Apuka River, subdivision of the spawning run into two genetically distinct spatial and temporal groupings was also observed. The results suggest that the differentiation of sockeye salmon samples by single nucleotide substitution frequencies was largely due to differences in the direction and strength of local selection at some loci in the population complexes and intrapopulation groupings from the examined river basins of Eastern Kamchatka, Chukotka, and Commander Islands.

  12. Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review

    Directory of Open Access Journals (Sweden)

    J.-T. Cornelis

    2011-01-01

    Full Text Available Silicon (Si released as H4SiO4 by weathering of Si-containing solid phases is partly recycled through vegetation before its land-to-rivers transfer. By accumulating in terrestrial plants to a similar extent as some major macronutrients (0.1–10% Si dry weight, Si becomes largely mobile in the soil-plant system. Litter-fall leads to a substantial reactive biogenic silica pool in soil, which contributes to the release of dissolved Si (DSi in soil solution. Understanding the biogeochemical cycle of silicon in surface environments and the DSi export from soils into rivers is crucial given that the marine primary bio-productivity depends on the availability of H4SiO4 for phytoplankton that requires Si. Continental fluxes of DSi seem to be deeply influenced by climate (temperature and runoff as well as soil-vegetation systems. Therefore, continental areas can be characterized by various abilities to transfer DSi from soil-plant systems towards rivers. Here we pay special attention to those processes taking place in soil-plant systems and controlling the Si transfer towards rivers. We aim at identifying relevant geochemical tracers of Si pathways within the soil-plant system to obtain a better understanding of the origin of DSi exported towards rivers. In this review, we compare different soil-plant systems (weathering-unlimited and weathering-limited environments and the variations of the geochemical tracers (Ge/Si ratios and δ30Si in DSi outputs. We recommend the use of biogeochemical tracers in combination with Si mass-balances and detailed physico-chemical characterization of soil-plant systems to allow better insight in the sources and fate of Si in these biogeochemical systems.

  13. Role of neutron activation analysis in the study of heavy metal pollution of a lake-river system

    International Nuclear Information System (INIS)

    Filby, R.H.; Shah, K.R.; Funk, W.H.

    1974-01-01

    Details of a study of combined organic and metallic pollution of the Coeur d'Alene Lake-River and Spokane River system and the role played by nuclear techniques in the investigation are presented. The Coeur d'Alene River drains through the N. Idaho Pb--Zn mining region of Kellogg and the mining industry is the major source of metallic pollution of the lake and river system. The first part of the study has involved the determination of Pb, Zn, Ag, Cd, As, Cu, Sb, Co, Cr, Cs, Rb, Sc, Ba, Eu, La, Tb, Y, Zr, Fe, Mn, Mo, by INAA in waters, sediments and organisms throughout the region. Extremely high values for Pb, Zn, Sb, Fe and other metals were found in the Coeur d'Alene River delta sediments and in the lake sediments. Results from the study of metals in an aquatic ecosystem show the value of combining nuclear techniques with other methods of trace analysis in practical pollution problems

  14. Strategic analysis for sustainable urban river aquatic environment using the system dynamic approach.

    Science.gov (United States)

    Lee, M T; Chang, Y C

    2006-01-01

    A sustainable aquatic environment, which relates to the issues of pollution mitigation and ecological restoration, is one of the important indicators of the vitality and prosperity of a city. Traditionally, resort to engineering efforts is always the first priority in dealing with such problems. Nevertheless, treated as an integrated system, the nature of the problem should involve many aspects including economic, ecological, environmental, and engineering factors. Meanwhile, the special feature of the time-dependent state has also made such a system a dynamic and complex problem. The current research has employed the concepts of integrated assessment trying to aggregate related studies and tackling the problem as a complete system. With the aid of the system dynamic modeling tool, which is capable of dealing with dynamic and complex problems, the simulation model was formulated following the macrostructure of system behavior. Various strategies for improving the sustainability of the aquatic environment in Love River, Kaohsiung, Taiwan have been evaluated. The decision makers are therefore allowed to choose more effective strategies based on the integrated perspectives.

  15. River Protection Project Integrated safety management system phase II verification review plan - 7/29/99

    International Nuclear Information System (INIS)

    SHOOP, D.S.

    1999-01-01

    The purpose of this review is to verify the implementation status of the Integrated Safety Management System (ISMS) for the River Protection Project (RPP) facilities managed by Fluor Daniel Hanford, Inc. (FDH) and operated by Lockheed Martin Hanford Company (LMHC). This review will also ascertain whether within RPP facilities and operations the work planning and execution processes are in place and functioning to effectively protect the health and safety of the workers, public, environment, and federal property over the RPP life cycle. The RPP ISMS should support the Hanford Strategic Plan (DOERL-96-92) to safely clean up and manage the site's legacy waste and deploy science and technology while incorporating the ISMS central theme to ''Do work safely'' and protect human health and the environment

  16. Source to sink: Evolution of lignin composition in the Madre de Dios River system with connection to the Amazon basin and offshore

    Science.gov (United States)

    Feng, Xiaojuan; Feakins, Sarah J.; Liu, Zongguang; Ponton, Camilo; Wang, Renée. Z.; Karkabi, Elias; Galy, Valier; Berelson, William M.; Nottingham, Andrew T.; Meir, Patrick; West, A. Joshua

    2016-05-01

    While lignin geochemistry has been extensively investigated in the Amazon River, little is known about lignin distribution and dynamics within deep, stratified river channels or its transformations within soils prior to delivery to rivers. We characterized lignin phenols in soils, river particulate organic matter (POM), and dissolved organic matter (DOM) across a 4 km elevation gradient in the Madre de Dios River system, Peru, as well as in marine sediments to investigate the source-to-sink evolution of lignin. In soils, we found more oxidized lignin in organic horizons relative to mineral horizons. The oxidized lignin signature was maintained during transfer into rivers, and lignin was a relatively constant fraction of bulk organic carbon in soils and riverine POM. Lignin in DOM became increasingly oxidized downstream, indicating active transformation of dissolved lignin during transport, especially in the dry season. In contrast, POM accumulated undegraded lignin downstream during the wet season, suggesting that terrestrial input exceeded in-river degradation. We discovered high concentrations of relatively undegraded lignin in POM at depth in the lower Madre de Dios River in both seasons, revealing a woody undercurrent for its transfer within these deep rivers. Our study of lignin evolution in the soil-river-ocean continuum highlights important seasonal and depth variations of river carbon components and their connection to soil carbon pools, providing new insights into fluvial carbon dynamics associated with the transfer of lignin biomarkers from source to sink.

  17. Los Alamos MAWST software layered on Westinghouse Savannah River Company's nuclear materials accountability system

    International Nuclear Information System (INIS)

    Whitty, W.J.; Smith, J.E.; Davis, J.M. Jr.

    1995-01-01

    The Los Alamos Safeguards Systems Group's Materials Accounting With Sequential Testing (MAWST) computer program was developed to fulfill DOE Order 5633.3B requiring that inventory-difference control limits be based on variance propagation or any other statistically valid technique. Westinghouse Savannah River Company (WSRC) developed a generic computerized accountability system, NucMAS, to satisfy accounting and reporting requirements for material balance areas. NucMAS maintains the calculation methods and the measurement information required to compute nuclear material transactions in elemental and isotopic masses by material type code. The Safeguards Systems Group designed and implemented to WSRC's specifications a software interface application, called NucMASloe. It is a layered product for NucMAS that automatically formats a NucMAS data set to a format compatible with MAWST and runs MAWST. This paper traces the development of NucMASloe from the Software Requirements through the testing and demonstration stages. The general design constraints are described as well as the difficulties encountered on interfacing an external software product (MAWST) with an existing classical accounting structure (NucMAS). The lessons learned from this effort, the design, and some of the software are directly applicable to the Local Area Network Material Accountability System (LANMAS) being sponsored by DOE

  18. Hydrological Controls on Dissolved Organic Matter Quality and Export in a Coastal River System in Southeastern USA

    Science.gov (United States)

    Bhattacharya, R.; Osburn, C. L.

    2017-12-01

    Dissolved organic matter (DOM) exported from river catchments can influence the biogeochemical processes in coastal environments with implications for water quality and carbon budget. High flow conditions are responsible for most DOM export ("pulses") from watersheds, and these events reduce DOM transformation and production by "shunting" DOM from river networks into coastal waters: the Pulse-Shunt Concept (PSC). Subsequently, the source and quality of DOM is also expected to change as a function of river flow. Here, we used stream dissolved organic carbon concentrations ([DOC]) along with DOM optical properties, such as absorbance at 350 nm (a350) and fluorescence excitation and emission matrices modeled by parallel factor analysis (PARAFAC), to characterize DOM source, quality and fluxes under variable flow conditions for the Neuse River, a coastal river system in the southeastern US. Observations were made at a flow gauged station above head of tide periodically between Aug 2011 and Feb 2013, which captured low flow periods in summer and several high flow events including Hurricane Irene. [DOC] and a350 were correlated and varied positively with river flow, implying that a large portion of the DOM was colored, humic and flow-mobilized. During high flow conditions, PARAFAC results demonstrated the higher influx of terrestrial humic DOM, and lower in-stream phytoplankton production or microbial degradation. However, during low flow, DOM transformation and production increased in response to higher residence times and elevated productivity. Further, 70% of the DOC was exported by above average flows, where 3-4 fold increases in DOC fluxes were observed during episodic events, consistent with PSC. These results imply that storms dramatically affects DOM export to coastal waters, whereby high river flow caused by episodic events primarily shunt terrestrial DOM to coastal waters, whereas low flow promotes in-stream DOM transformation and amendment with microbial DOM.

  19. Zoning of Water Quality of Hamadan Darreh-Morad Beyg River Based on NSFWQI Index Using Geographic Information System

    Directory of Open Access Journals (Sweden)

    A.R. Rahmani

    2009-10-01

    Full Text Available Introduction & Objective: Rivers are one of the main water supply resources for various uses such as agricultural, industrial and drinking purposes. As population and consumption increase, monitoring of rivers water quality becomes an important function of environmental management field. Because Darreh-Morad Beyg river of Hamadan is a water supply for different purposes and many pollutants are discharged in it, its water quality assessment seems necessary. Zoning of pollution and depicting a detailed image of surface water resources quality using geographic information system (GIS are the key factors for the better management of these resources.Materials & Methods: This research is a cross sectional- descriptive study and river water samples were taken for 7 months from 6 sampling stations on the length of the river. Biochemical oxygen demand (BOD, electrical conductivity, dissolved oxygen (D.O., pH, fecal coli form, nitrate, temperature, phosphate and total solids were determined in the samples. Obtained data were analyzed by national sanitation foundation water quality index (NSFWQI and the river was zoned using GIS software.Results: Results of the analyses by NSFWQI showed the best water quality for station 1 and the worst water quality for station 6 with scores of 62.78 and 27.49, respectively.Conclusion: The NSFWQI is a suitable index for zoning of Darreh-Morad Beyg river. Monitoring of physical, chemical, bacteriological quality parameters and using water quality index in various sampling stations are used in the assessment of water pollution. It also helps the officials to correctly decide about the water uses for different purposes.

  20. The Spatial Distribution of Bed Sediment on Fluvial System: A Mini Review of the Aceh Meandering River

    Directory of Open Access Journals (Sweden)

    Muhammad Irham

    2016-08-01

    Full Text Available Dynamic interactions of hydrological and geomorphological processes in the fluvial system result in accumulated deposit on the bed because the capacity to carry sediment has been exceeded. The bed load of the Aceh fluvial system is primarily generated by mechanical weathering resulting in boulders, pebbles, and sand, which roll or bounce along the river bed forming temporary deposits as bars on the insides of meander bends, as a result of a loss of transport energy in the system. This dynamic controls the style and range of deposits in the Aceh River. This study focuses on the spatial distribution of bed-load transport of the Aceh River. Understanding the spatial distribution of deposits facilitates the reconstruction of the changes in controlling factors during accumulation of deposits. One of the methods can be done by sieve analysis of sediment, where the method illuminates the distribution of sediment changes associated with channel morphology under different flow regimes. Hence, the purpose of this mini review is to investigate how the sediment along the river meander spatially dispersed. The results demonstrate that channel deposits in the Aceh River are formed from four different type of materials: pebble deposited along upstream left bank; sand located on the upstream, downstream, and along meander belts; and silt and clay located along the cut bank of meander bends. Because of different depositional pattern, the distribution of the sediment along the river can be used as a surrogate to identify bank stability, as well as to predict critical geometry for meander bend initiation

  1. The development of a decision support system for prioritizing forested wetland restoration areeas in the lower Yazoo River Basin, Mississippi

    Science.gov (United States)

    Anegla A. Davis; Barbara A. Kleiss; Charles G. O' Hara; Jennifer S. Derby

    2000-01-01

    The Eco-Assessor, a GIS-based decision-support system, has been developed for the lower part of the Yazoo River Basin, Mississippi, to help planners and managers determine the best locations for the restoration of wetlands based on defined ecological and geographic criteria and probability of success. To assess the functional characteristics of the potential...

  2. Space-time indicators in interdependent urban-environmental systems: A study on the Huai River Basin in China

    NARCIS (Netherlands)

    Guo, Y.; Wang, H.; Nijkamp, P.; Xu, J.

    2015-01-01

    Cities in the Huai River Basin are experiencing rapid urbanization, which has resulted in many challenges. Based on the concept of '. coupling' - the interaction between the man-made urban environment and the ecological environment -this paper presents a comprehensive index system and an interlinked

  3. Non-linear response of the Golo River system, Corsica, France, to Late Quaternary climatic and sea level variations

    NARCIS (Netherlands)

    Forzoni, A.; Storms, J.E.A.; Reimann, T.; Moreau, J.; Jouet, G.

    2015-01-01

    Disentangling the impact of climatic and sea level variations on fluvio-deltaic stratigraphy is still an outstanding question in sedimentary geology and geomorphology. We used the Golo River system, Corsica, France, as a natural laboratory to investigate the impact of Late Quaternary climate and sea

  4. 78 FR 56264 - Big Bear Mining Corp., Four Rivers BioEnergy, Inc., Mainland Resources, Inc., QI Systems Inc...

    Science.gov (United States)

    2013-09-12

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Big Bear Mining Corp., Four Rivers BioEnergy, Inc., Mainland Resources, Inc., QI Systems Inc., South Texas Oil Co., and Synova Healthcare Group, Inc... that there is a lack of current and accurate information concerning the securities of Big Bear Mining...

  5. Impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon

    Science.gov (United States)

    Dauble, D.D.; Hanrahan, T.P.; Geist, D.R.; Parsley, M.J.

    2003-01-01

    Salmonid habitats in main-stem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13% and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the main-stem Columbia River and 163 km of the main-stem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains, which were once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment and more bars and islands and had lower water surface slopes than did less extensively used areas. Because flows in the main stem are now highly regulated, the predevelopment alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes - specifically, sustained peak flows for scouring - is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries, tailrace spawning areas, and hatcheries) be considered.

  6. Modernisation Strategy for National Irrigation Systems in the Philippines: Balanac and Sta. Maria River Irrigation Systems

    NARCIS (Netherlands)

    Delos Reyes, M.L.F.

    2017-01-01

    This book examines the nature and impact of irrigation system rehabilitation on increasing the actual area irrigated by the publicly funded canal irrigation systems of the Philippines. It proposes a system diagnosis approach for the development of a more appropriate and climate-smart irrigation

  7. Hydrogeology, groundwater levels, and generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system, 2010–14, in the northern Green River structural basin

    Science.gov (United States)

    Bartos, Timothy T.; Hallberg, Laura L.; Eddy-Miller, Cheryl

    2015-07-14

    In cooperation with the Bureau of Land Management, groundwater levels in wells located in the northern Green River Basin in Wyoming, an area of ongoing energy development, were measured by the U.S. Geological Survey from 2010 to 2014. The wells were completed in the uppermost aquifers of the Green River Basin lower Tertiary aquifer system, which is a complex regional aquifer system that provides water to most wells in the area. Except for near perennial streams, groundwater-level altitudes in most aquifers generally decreased with increasing depth, indicating a general downward potential for groundwater movement in the study area. Drilled depth of the wells was observed as a useful indicator of depth to groundwater such that deeper wells typically had a greater depth to groundwater. Comparison of a subset of wells included in this study that had historical groundwater levels that were measured during the 1960s and 1970s and again between 2012 and 2014 indicated that, overall, most of the wells showed a net decline in groundwater levels.

  8. A data assimilation system combining CryoSat-2 data and hydrodynamic river models

    DEFF Research Database (Denmark)

    Schneider, Raphael; Ridler, Marc-Etienne; Godiksen, Peter Nygaard

    2017-01-01

    There are numerous hydrologic studies using satellite altimetry data from repeat-orbit missions such as Envisat or Jason over rivers. This study is one of the first examples for the combination of altimetry from drifting-ground track satellite missions, namely CryoSat-2, with a river model. Cryo......Sat-2 SARIn Level 2 data is used to improve a 1D hydrodynamic model of the Brahmaputra River in South Asia, which is based on the Saint-Venant equations for unsteady flow and set up in the MIKE HYDRO River software. After calibration of discharge and water level the hydrodynamic model can accurately...

  9. Lead Pollution Remanence in an Urban River System: A multi-scale temporal and spatial study

    Directory of Open Access Journals (Sweden)

    Ayrault S.

    2013-04-01

    Full Text Available This work aims at studying the fate of sediments contaminated with tetraethyl Pb from leaded gasoline using a two-dimension upscaling approach, from a small urban subcatchment, the Orge River (900 km2 to the whole Seine River basin (64700 km2, in France. In France, the leaded gasoline reduction started in 1986 and leaded gasoline was completely banned after 2000. This work aims at assessing whether the ban of leaded gasoline is related to changes in Pb contamination sources of these river suspended sediment particles (SPM and bed sediment. Sediment cores and samples collected in the course of previous research projects of the Seine River contamination were used as temporal archives. The study of the isotopic lead ratio showed the fast decrease of the contamination of urban river suspended particulate matter due to the “gasoline” lead source from 2000 to 2011. This source mostly disappeared in the SPM from the Seine River basin that includes urban areas but also agricultural and industrial activities. Nevertheless, it is still present in the small urban catchment of the Orge River. The results on bed sediments showed a different pattern, where the “gasoline” source is still active in densely populated areas, either in the Seine River in the 20 km downstream Paris, or along the Orge River.

  10. Coastline Change Surround Sekampung River Estuary Estimated by Geographic Information System Technique

    Directory of Open Access Journals (Sweden)

    Fahri

    2011-05-01

    Full Text Available Surround a big river estuary coastline has a dynamic characteristic and change along a period of time, because of a natural process and/or it is accelerated by human activities. The surround Sekampung river estuary coastline located in Rawa Sragi area is one of the most dynamic coastlines in southern Lampung Province that has changed significantly from 1959 (as a natural process to year 1987 (as an accelerated process by human activities since the government of Indonesia has applied swamp drainage system for Rawa Sragi area. It is likely that the coastline has changed significantly in the period of 1987 to 2009 (as an increasing intensity of the human activities in the surrounding Rawa Sragi land. The objective of this research was to analyze the coastline change in the surrounding of Sekampung river estuary in two periods of time: (1 the change of the 1959 – 1987 period coastlines; and (2 the change of the 1987 – 2009 period coastlines. The method of this research was a GIS technique, the implementation was divided into three main steps: (1 the first analysis was conducted in laboratory include raster data source analysis and registration, coastline digitations, and overlaying and analysis of the coastline data; (2 field observation (ground check was conducted to observe and verify the ground existing coastline; and (3 the last analysis was conducted after ground check activity to improve and to verify the first coastline analysis results. The result of this research indicated that coastline change in the period of 1959 to 1987 increased the coast land as much as 717.19 hectares, but decreased the coast land as much as 308.51 hectares. Furthermore the coastline change in the period of 1987 to 2009 increased the coast land as much as 162.504 hectares, but decreased the coast land as much as 492.734 hectares. The 1959 – 1987 coastline change was a coast land increasing period, but the 1987 – 2009 coastline change was a coast land

  11. Water quality evaluation system to assess the status and the suitability of the Citarum river water to different uses.

    Science.gov (United States)

    Fulazzaky, Mohamad Ali

    2010-09-01

    Water quality degradation in the Citarum river will increase from the year to year due to increasing pollutant loads when released particularly from Bandung region of the upstream areas into the river without treatment. This will be facing the problems on water quality status to use for multi-purposes in the downstream areas. The water quality evaluation system is used to evaluate the available water condition that distinguishes into two categories, i.e., the water quality index (WQI) and water quality aptitude (WQA). The assessment of water quality for the Citarum river from 10 selected stations was found that the WQI situates in the bad category generally and the WQA ranges from the suitable quality for agriculture and livestock watering uses to the unsuitable for biological potential function, drinking water production, and leisure activities and sports in the upstream areas of Saguling dam generally.

  12. Systems Modeling to Improve River, Riparian, and Wetland Habitat Quality and Area

    Science.gov (United States)

    Alafifi, A.

    2016-12-01

    The suitability of watershed habitat to support the livelihood of its biota primarily depends on managing flow. Ecological restoration requires finding opportunities to reallocate available water in a watershed to increase ecological benefits and maintain other beneficial uses. We present the Watershed Area of Suitable Habitat (WASH) systems model that recommends reservoir releases, streamflows, and water allocations throughout a watershed to maximize the ecosystem habitat quality. WASH embeds and aggregates area-weighted metrics for aquatic, floodplain, and wetland habitat components as an ecosystem objective to maximize, while maintaining water deliveries for domestic and agricultural uses, mass balance, and available budget for restoration actions. The metrics add spatial and temporal functionality and area coverage to traditional habitat quality indexes and can accommodate multiple species of concern. We apply the WASH model to the Utah portion of the Bear River watershed which includes 8 demand sites, 5 reservoirs and 37 nodes between the Utah-Idaho state line and the Great Salt Lake. We recommend water allocations to improve current conservation efforts and show tradeoffs between human and ecosystem uses of water. WASH results are displayed on an open-source web mapping application that allows stakeholders to access, visualize, and interact with the model data and results and compare current and model-recommended operations. Results show that the Bear River is largely developed and appropriated for human water uses. However, increasing reservoirs winter and early spring releases and minimizing late spring spill volumes can significantly improve habitat quality without harming agricultural or urban water users. The spatial and temporal reallocation of spring spills to environmental uses creates additional 70 thousand acres of suitable habitat in the watershed without harming human users. WASH also quantifies the potential environmental gains and losses from

  13. River Basin Information System: Open Environmental Data Management for Research and Decision Making

    Directory of Open Access Journals (Sweden)

    Franziska Zander

    2016-07-01

    Full Text Available An open, standardized data management and related service infrastructure is a crucial requirement for a seamless storage and exchange of data and information within research projects, for the dissemination of project results and for their application in decision making processes. However, typical project databases often refer to only one research project and are limited to specific purposes. Once implemented, those systems are often not further maintained and updated, rendering the stored information useless once the system stops operating. The River Basin Information System (RBIS presented here is designed to fit not only the requirements of one research project, but focuses on generic functions, extensibility and standards compliance typically found in interdisciplinary environmental research. Developed throughout more than 10 years of research cooperation worldwide, RBIS is designed to manage different types of environmental data with and without spatial context together with a rich set of metadata. Beside data management and storage, RBIS provides functions for the visualization, linking, analysis and processing of different types of data to support research, decision making, result dissemination and information discovery for all kinds of users. The focus of this paper is on the description of the technical implementation and the presentation of functions. This will be complemented by an overview of example applications and experiences during RBIS development and operation.

  14. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    International Nuclear Information System (INIS)

    Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F.

    1991-09-01

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications

  15. About the coding system of rivers, catchment basing and their characteristics of the republic of Armenia

    International Nuclear Information System (INIS)

    Avagyan, A.A.; Arakelyan, A.A.

    2011-01-01

    The coding of rivers, catchements, lakes and seas is one of the most important requirements of Water Framework Directive of the European Union. This coding provides solutions to actual problems of planning and management of water resources of the Republic of Armenia. The coding system provides the hierarchy of water bodies and watersheds with their typology as well as their geographic and natural conditions, anthropogenic pressures and ecological status. This approach is a fundamentally new complex solution to the coding of water resources. The coding technique allows you to automate the assessment and mapping of environmental risks and areas of water bodies which are subjected to significant pressure and also helps to solve other problems concerning the planning and the management of water resources. A complex code of each water body consists of the following groups of codes: Hydrographic code - an identifier of a water body in the hydrographic system of the country; Codes of static attributes in the system requirements of the Water Framework Directive of the European Union; Codes of static attributes of the qualifiers of the RA National Water Program; Codes of dynamic attributes that define the quality of water and characteristics of water use; Codes of dynamic attributes describing the human impact and determining the ecological status of water body

  16. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F. (Sandia National Labs., Albuquerque, NM (United States))

    1991-09-01

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications.

  17. Transport and fluxes of terrestrial polycyclic aromatic hydrocarbons in a small mountain river and submarine canyon system.

    Science.gov (United States)

    Lin, Bing-Sian; Lee, Chon-Lin; Brimblecombe, Peter; Liu, James T

    2016-08-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations in the Gaoping River were investigated in the wet and dry seasons. PAH characteristics allowed us to trace the particulate matter transported in a river-sea system containing a small mountain river, continental shelf, and submarine canyon. PAH signatures of the Gaoping River showed that particles were rapidly transported from the high mountain to the Gaoping coastal areas in the wet season, even arriving at the deep ocean via the Gaoping Submarine Canyon. By contrast, in the dry season, the particles were delivered quite slowly and included mostly pyrogenic contaminants. The annual riverine flux estimates for PAHs were 2241 kg in the Gaoping river-sea system. Only 18.0 kg were associated with the dissolved phase; the rest was bound onto particles. The fluxes caused by typhoons and their effects accounted for 20.2% of the dissolved and 68.4% of the particulate PAH fluxes from the river. Normalized partition coefficients for organic carbon suggested that PAHs were rigid on the particles. Distinct source characteristics were evident for PAHs on riverine suspended particles and coastal surface sediments: the particles in the wet season (as background signals) were similar to petrogenic sources, whereas the particles in the dry season had characteristics of coal burning and vehicular emissions. The sediments in the northwestern shelf were similar to pyrogenic sources (including vehicular emissions and coal and biomass burning), whereas the sediments in the canyon and southeastern shelf arose from mixed sources, although some diesel signature was also evident. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Mercury pollution on district of Dimembe river system North Sulawesi, Indonesia, due to traditional gold mining activities

    Science.gov (United States)

    Ayhuan, D.; Atteng, O.; Dondokambey, A.; Randuk, M.

    2003-05-01

    Mercury contamination caused by the amalgamation of gold in small scale gold mining is a environmental problem. Small-scale gold mining (SSGM) is common in mineral endowed developing countries. It offers an important means of livehood and has served as a safety net in times of natural calamities or economic distress. In north Sulawesi Province alone, approximately 22,000 small-scale gold miners were active in 1998, and produced an estimated 10 tonnes of gold bullion. Activities of traditional / illegal gold mining (PETI) in Dimembe of district, which is located in Minahasa Regency, North Sulawesi Province. The major environmental concern associated with PETI in mercury pollution from processing of gold-bearing ore. In both the inorganic and organic forms, mercury is one of the most toxic substances to humans. One of the environmental pollution is water pollution on district of Dimembe river system that is probably caused by the use of mercury (Hg) in processing mine ore. This mercury is used in an iron rolling vessel, wllich is called tromol. Mercury concentration at employed in this operation reaches 1 kg out of 30 kg ore. Sampling stage was conducted at Warat river, downstream Taiawaan river, Merut river and Kadumut river on late April 2002 by BAPEDALDA team together with Health Laboratory staff. Material which were sampled was water. Sampling methods carried out were bottle sample immersed about 10 cm below the water surface. The analysis method used was mercury analyzer. The analysis result show that total concentration of mercury range from 1. 69 to 25. 54 ppb. This concentration is closed to Water Quality Standard IV Class that is 0.005 mg/L (Regulation Government No. 82/2001). The result of this research indicate that the district of Dimembe river system in the gold mining area have been contaminated by mercury.

  19. Software and system development using virtual platforms full-system simulation with wind river simics

    CERN Document Server

    Aarno, Daniel

    2014-01-01

    Virtual platforms are finding widespread use in both pre- and post-silicon computer software and system development. They reduce time to market, improve system quality, make development more efficient, and enable truly concurrent hardware/software design and bring-up. Virtual platforms increase productivity with unparalleled inspection, configuration, and injection capabilities. In combination with other types of simulators, they provide full-system simulations where computer systems can be tested together with the environment in which they operate. This book is not only about what simulat

  20. Assessing the toxicity to fish embryos of surface water from the Watts Bar Lake/Clinch River system

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, L.J.; Niemela, S.L.; McCracken, M.K.; Greeley, M.S. Jr. [Oak Ridge National Lab., TN (United States)

    1995-12-31

    Successful reproduction of fish populations requires the successful development of offspring into new reproductive cohorts. In order to evaluate the ability of fish offspring to survive and develop properly in the Watts Bar Lake/Clinch River system downstream of the Department of Energy facilities in Oak Ridge, TN, a series of fish embryo-larval toxicity tests were conducted on surface water samples from Poplar Creek and the Clinch River adjacent to the Oak Ridge Reservation. Quarterly tests were conducted over an eighteen-month interval with embryos from laboratory stocks of the Japanese medaka (Oryzias latipes). Eggs obtained from largemouth bass (Micropterus salmoides) and redbreast sunfish (Lepomis auritus) collected from reference sites during their respective breeding seasons were fertilized in vitro for additional embryo-larval tests utilizing fish species indigenous to the Watts Bar/Clinch River system. Average survival of medaka embryos decreased significantly in water from Poplar Creek sites within the Oak Ridge Reservation, coincident with an increase in the prevalence of certain developmental abnormalities. Similar but less pronounced results were also obtained with redbreast sunfish embryos. Development of largemouth bass eggs was not adversely affected by any of the tested water samples. These findings suggest that the development of fish eggs and fry in certain reaches of the Watts Bar Lake/Clinch River system may be negatively impacted by activities on the Oak Ridge Reservation.

  1. Improving the Performance of Highly Constrained Water Resource Systems using Multiobjective Evolutionary Algorithms and RiverWare

    Science.gov (United States)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2015-12-01

    Instead of building new infrastructure to increase their supply reliability, water resource managers are often tasked with better management of current systems. The managers often have existing simulation models that aid their planning, and lack methods for efficiently generating and evaluating planning alternatives. This presentation discusses how multiobjective evolutionary algorithm (MOEA) decision support can be used with the sophisticated water infrastructure model, RiverWare, in highly constrained water planning environments. We first discuss a study that performed a many-objective tradeoff analysis of water supply in the Tarrant Regional Water District (TRWD) in Texas. RiverWare is combined with the Borg MOEA to solve a seven objective problem that includes systemwide performance objectives and individual reservoir storage reliability. Decisions within the formulation balance supply in multiple reservoirs and control pumping between the eastern and western parts of the system. The RiverWare simulation model is forced by two stochastic hydrology scenarios to inform how management changes in wet versus dry conditions. The second part of the presentation suggests how a broader set of RiverWare-MOEA studies can inform tradeoffs in other systems, especially in political situations where multiple actors are in conflict over finite water resources. By incorporating quantitative representations of diverse parties' objectives during the search for solutions, MOEAs may provide support for negotiations and lead to more widely beneficial water management outcomes.

  2. Multi-timescale sediment responses across a human impacted river-estuary system

    Science.gov (United States)

    Chen, Yining; Chen, Nengwang; Li, Yan; Hong, Huasheng

    2018-05-01

    Hydrological processes regulating sediment transport from land to sea have been widely studied. However, anthropogenic factors controlling the river flow-sediment regime and subsequent response of the estuary are still poorly understood. Here we conducted a multi-timescale analysis on flow and sediment discharges during the period 1967-2014 for the two tributaries of the Jiulong River in Southeast China. The long-term flow-sediment relationship remained linear in the North River throughout the period, while the linearity showed a remarkable change after 1995 in the West River, largely due to construction of dams and reservoirs in the upland watershed. Over short timescales, rainstorm events caused the changes of suspended sediment concentration (SSC) in the rivers. Regression analysis using synchronous SSC data in a wet season (2009) revealed a delayed response (average 5 days) of the estuary to river input, and a box-model analysis established a quantitative relationship to further describe the response of the estuary to the river sediment input over multiple timescales. The short-term response is determined by both the vertical SSC-salinity changes and the sediment trapping rate in the estuary. However, over the long term, the reduction of riverine sediment yield increased marine sediments trapped into the estuary. The results of this study indicate that human activities (e.g., dams) have substantially altered sediment delivery patterns and river-estuary interactions at multiple timescales.

  3. Studies on calcium, magnesium and sulphate in the Mandovi and Zuari river system (Goa)

    Digital Repository Service at National Institute of Oceanography (India)

    SenGupta, R.; Naik, S.

    -conservative parameters. Sulphate, however behaves in a purely conservative manner and remains in a steady state in the rivers. A'Simple mixture'relationship is applied to calculate the dilution and mixing processes in the rivers using calcium, magnesium and sulphate...

  4. Reliability analysis of the Red River dikes system in Viet Nam

    NARCIS (Netherlands)

    Pham Quang, T.

    2014-01-01

    This dissertation presents the applications of probabilistic-based frameworks in geotechnical and hydraulic engineering, for the assessment of the Red River dikes in Viet Nam. Dike along rivers often spread over the deltaic environment and its earthen structures are parts of a long civilian history,

  5. Data management for the Clinch River Breeder Reactor Plant Project by use of document status and hold systems

    International Nuclear Information System (INIS)

    Hunt, C.S.; Beck, A.E.; Akhtar, M.S.

    1982-01-01

    This paper describes the development, framework, and scope of the Document Status System and the Document Hold System for the Clinch River Breeder Reactor Plant Project. It shows how data are generated at five locations and transmitted to a central computer for processing and storage. The resulting computerized data bank provides reports needed to perform day-to-day management and engineering planning. Those reports also partially satisfy the requirements of the Project's Quality Assurance Program

  6. Wandering gravel-bed rivers and high-constructive stable channel sandy fluvial systems in the Ross River area, Yukon Territory, Canada

    Directory of Open Access Journals (Sweden)

    Darrel G.F. Long

    2011-07-01

    Gravel-dominated strata, inter-bedded with, and overlying coal-bearing units, are interpreted as deposits of wandering gravel-bed rivers, with sinuosity approaching 1.4. In most exposures they appear to be dominated by massive and thin planar-bedded granule to small pebble conglomerates, which would traditionally be interpreted as sheet-flood or longitudinal bar deposits of a high-gradient braided stream or alluvial fan. Architectural analysis of exposures in an open-pit shows that the predominance of flat bedding is an artefact of the geometry of the roadside exposures. In the pit the conglomerates are dominated by large scale cross stratification on a scale of 1–5.5 m. These appear to have developed as downstream and lateral accretion elements on side-bars and on in-channel bars in water depths of 2–12 m. Stacking of strata on domed 3rd order surfaces suggests development of longitudinal in-channel bar complexes similar to those observed in parts of the modern Rhône River system. Mudstone preserved in some of the channels reflects intervals of channel abandonment or avulsion. Minimum channel width is from 70 to 450 m.

  7. A river system to watch: documenting the effects of saltcedar (Tamarix spp.) biocontrol in the Virgin River valley

    Science.gov (United States)

    Bateman, Heather L.; Dudley, Tom L.; Bean, Dan W.; Ostoja, Steven M.; Hultine, Kevin R.; Kuehn, Michael J.

    2010-01-01

    Throughout riparian areas of the southwestern United States, non-native saltcedar (also known as tamarisk; Tamarix spp.) can form dense, monotypic stands and is often reported to have detrimental effects on native plants and habitat quality (Everitt 1980; Shafroth et al. 2005). Natural resource managers of these riparian areas spend considerable time and resources controlling saltcedar using a variety of techniques, including chemical (Duncan and McDaniel 1998), mechanical, and burning methods (Shafroth et al. 2005). Approximately one billion dollars are spent each year on river restoration projects nationally (Bernhardt et al. 2005), and a majority of these projects focus on invasive species control in the Southwest (Follstad Shah et al. 2007). A technique that has drawn much attention is the use of the saltcedar leaf beetle (Diorhabda spp.), a specialist herbivore, as biological control of saltcedar (Lewis et al. 2003). Research testing was conducted with beetles housed in secure enclosures in six states in 1998 and 1999 (Dudley et al. 2001), followed by open release at some of those sites starting in 2001 (DeLoach et al. 2004). By 2005, full-scale saltcedar biocontrol was implemented in 13 states, led by the USDA Animal and Plant Health Inspection Service (APHIS), the agency that oversees biological control programs, and with the participation and support of the U.S. Fish and Wildlife Service (USFWS). Despite the widespread application of Diorhabda, however, only limited research has quantified the consequences (benefits and costs) on biotic communities and ecosystem services. Alterations to riparian areas caused by various non-native species control activities have the potential to affect a variety of habitat types used by wildlife (Bateman et al. 2008a); processes like water availability, fluvial deposition, and erosion; and the establishment of other non-native species (Carruthers and D'Antonio 2005, Shafroth et al. 2005, DeLoach et al. 2006). Similarly

  8. Towards an optimal integrated reservoir system management for the Awash River Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    R. Müller

    2016-05-01

    Full Text Available Recently, the Kessem–Tendaho project is completed to bring about socioeconomic development and growth in the Awash River Basin, Ethiopia. To support reservoir Koka, two new reservoirs where built together with extensive infrastructure for new irrigation projects. For best possible socioeconomic benefits under conflicting management goals, like energy production at three hydropower stations and basin wide water supply at various sites, an integrated reservoir system management is required. To satisfy the multi-purpose nature of the reservoir system, multi-objective parameterization-simulation-optimization model is applied. Different Pareto-optimal trade-off solutions between water supply and hydro-power generation are provided for two scenarios (i recent conditions and (ii future planned increases for Tendaho and Upper Awash Irrigation projects. Reservoir performance is further assessed under (i rule curves with a high degree of freedom – this allows for best performance, but may result in rules curves to variable for real word operation and (ii smooth rule curves, obtained by artificial neuronal networks. The results show no performance penalty for smooth rule curves under future conditions but a notable penalty under recent conditions.

  9. Columbia River Coordinated Information System (CIS); Data Catalog, 1992 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Dick (Washington Department of Fisheries, Olympia, WA); Allen, Stan; Reece, Doug (Idaho Department of Fish and Game, Boise, ID)

    1993-05-01

    The Columbia River Coordinated Information system (CIS) Project started in 1989 to address regional data sharing. Coordinated exchange and dissemination of any data must begin with dissemination of information about those data, such as: what is available; where the data are stored; what form they exist in; who to contact for further information or access to these data. In Phase II of this Project (1991), a Data Catalog describing the contents of regional datasets and less formal data collections useful for system monitoring and evaluation projects was built to improve awareness of their existence. Formal datasets are described in a `Dataset Directory,` while collections of data are Used to those that collect such information in the `Data Item Directory.` The Data Catalog will serve regional workers as a useful reference which centralizes the institutional knowledge of many data contacts into a single source. Recommendations for improvement of the Catalog during Phase III of this Project include addressing gaps in coverage, establishing an annual maintenance schedule, and loading the contents into a PC-based electronic database for easier searching and cross-referencing.

  10. A preliminary look at the impacts of warming on the federal Columbia River power system

    International Nuclear Information System (INIS)

    Stephan, N.

    2008-01-01

    Studies have indicated that the precipitation changes resulting from climatic warming are unlikely to be distinguishable from natural variability until late in the 21. century. This study presented scenarios and projected changes for the Federal Columbia River power system that used volume and runoff data in monthly time-steps. A streamflow model of data from the previous 44 years was also used. The region is currently meeting 50 per cent of its loads with clean hydro-generation, and is now examining ways of limiting greenhouse gas (GHG) emissions as electricity loads continue to grow. The impacts of climate change were compared with projected loads up to the year 2040. Flow targets for regional fish operations peak between April and July. Volume changes in water as a result of hydroelectricity projects in the region have also been simulated. Monitoring tools and meteorological data were presented as well as watershed run-off data from 1929 to 2008. Policies related to climate change continue to be challenged by both legal and political issues as well as a lack of strategic planning. It was concluded that accurate system modelling is needed to avoid the impacts of costly and un-informed decision-making processes. tabs., figs

  11. Demonstration of Eastman Christensen horizontal drilling system -- Integrated Demonstration Site, Savannah River Site

    International Nuclear Information System (INIS)

    1992-12-01

    An innovative horizontal drilling system was used to install two horizontal wells as part of an integrated demonstration project at the Savannah River Site (SRS), Aiken, South Carolina. The SRS is located in south-central South Carolina in the upper Coastal Plain physiographic province. The demonstration site is located near the A/M Area, and is currently known as the Integated Demonstration Site. The Department of Energy's Office of Technology Development initiated an integrated demonstration of innovative technologies for cleanup of volatile organic compounds (VOCS) in soils and groundwater at the SRS in 1989. The overall goal of the program is to demonstrate, at a single location, multiple technologies in the fields of drilling, characterization, monitoring, and remediation. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program

  12. Towards an optimal integrated reservoir system management for the Awash River Basin, Ethiopia

    Science.gov (United States)

    Müller, Ruben; Gebretsadik, Henok Y.; Schütze, Niels

    2016-05-01

    Recently, the Kessem-Tendaho project is completed to bring about socioeconomic development and growth in the Awash River Basin, Ethiopia. To support reservoir Koka, two new reservoirs where built together with extensive infrastructure for new irrigation projects. For best possible socioeconomic benefits under conflicting management goals, like energy production at three hydropower stations and basin wide water supply at various sites, an integrated reservoir system management is required. To satisfy the multi-purpose nature of the reservoir system, multi-objective parameterization-simulation-optimization model is applied. Different Pareto-optimal trade-off solutions between water supply and hydro-power generation are provided for two scenarios (i) recent conditions and (ii) future planned increases for Tendaho and Upper Awash Irrigation projects. Reservoir performance is further assessed under (i) rule curves with a high degree of freedom - this allows for best performance, but may result in rules curves to variable for real word operation and (ii) smooth rule curves, obtained by artificial neuronal networks. The results show no performance penalty for smooth rule curves under future conditions but a notable penalty under recent conditions.

  13. Weathering processes and the composition of inorganic material transported through the orinoco river system, Venezuela and Colombia

    Science.gov (United States)

    Stallard, R.F.; Koehnken, L.; Johnsson, M.J.

    1991-01-01

    The composition of river-borne material in the Orinoco River system is related primarily to erosion regime, which in turn is related to tectonic setting; especially notable is the contrast between material derived from tectonically active mountain belts and that from stable cratonic regions. For a particular morpho-tectonic region, the compositional suites of suspended sediment, bed material, overback deposits, and dissolved phases are fairly uniform are are typically distinct from whose of other regions. For each region, a consistent set of chemical weathering reactions can be formulated to explain the composition of dissolved and solid loads. In developing these formulations, erosion on slopes and storage of solids in soils and alluvial sediments are important considerations. Compositionally verymature sediment is derived from areas of thick soils where erosion is transport limited and from areas where sediments are stored for extended periods of time in alluvial deposits. Compositionally immature sediments are derived from tectonically active mountain belts where erosion is weathering limited. Weathering-limited erosion also is important in the elevated parts of the Guayana Shield within areas of sleep topography. Compared to the mountain belts, sediments derived from elevated parts of the Shield are more mature. A greater degree of chemical weathering seems to be needed to erode the rock types typical of the Shield. The major-element chemistry and mineral composition of sediment delivered by the Orinoco River to the ocean are controlled by rivers that have their headwaters in mountain belts and cross the Llanos, a region of alluvial plains within the foreland basin. The composition of sediments in rivers that drain the Shield seems to be established primarily at the site of soil formation, whereas for rivers that drain the mountain belts, additional weathering occurs during s episodes of storage on alluvial plains as sediments are transported across the Llanos

  14. Optical Remote Sensing Algorithm Validation using High-Frequency Underway Biogeochemical Measurements in Three Large Global River Systems

    Science.gov (United States)

    Kuhn, C.; Richey, J. E.; Striegl, R. G.; Ward, N.; Sawakuchi, H. O.; Crawford, J.; Loken, L. C.; Stadler, P.; Dornblaser, M.; Butman, D. E.

    2017-12-01

    More than 93% of the world's river-water volume occurs in basins impacted by large dams and about 43% of river water discharge is impacted by flow regulation. Human land use also alters nutrient and carbon cycling and the emission of carbon dioxide from inland reservoirs. Increased water residence times and warmer temperatures in reservoirs fundamentally alter the physical settings for biogeochemical processing in large rivers, yet river biogeochemistry for many large systems remains undersampled. Satellite remote sensing holds promise as a methodology for responsive regional and global water resources management. Decades of ocean optics research has laid the foundation for the use of remote sensing reflectance in optical wavelengths (400 - 700 nm) to produce satellite-derived, near-surface estimates of phytoplankton chlorophyll concentration. Significant improvements between successive generations of ocean color sensors have enabled the scientific community to document changes in global ocean productivity (NPP) and estimate ocean biomass with increasing accuracy. Despite large advances in ocean optics, application of optical methods to inland waters has been limited to date due to their optical complexity and small spatial scale. To test this frontier, we present a study evaluating the accuracy and suitability of empirical inversion approaches for estimating chlorophyll-a, turbidity and temperature for the Amazon, Columbia and Mississippi rivers using satellite remote sensing. We demonstrate how riverine biogeochemical measurements collected at high frequencies from underway vessels can be used as in situ matchups to evaluate remotely-sensed, near-surface temperature, turbidity, chlorophyll-a derived from the Landsat 8 (NASA) and Sentinel 2 (ESA) satellites. We investigate the use of remote sensing water reflectance to infer trophic status as well as tributary influences on the optical characteristics of the Amazon, Mississippi and Columbia rivers.

  15. Climate Change Impacts on Stream Temperature in Regulated River Systems: A Case Study in the Southeastern United States

    Science.gov (United States)

    Cheng, Y.; Niemeyer, R. J.; Zhang, X.; Yearsley, J. R.; Voisin, N.; Nijssen, B.

    2017-12-01

    Climate change and associated changes in air temperature and precipitation are projected to impact natural water resources quantity, quality and timing. In the past century, over 280 major dams were built in the Southeastern United States (SEUS) (GRanD database). Regulation of the river system greatly alters natural streamflow as well as stream temperature. Understanding the impacts of climate change on regulated systems, particularly within the context of the Clean Water Act, can inform stakeholders how to maintain and adapt water operations (e.g. regulation, withdrawals). In this study, we use a new modeling framework to study climate change impacts on stream temperatures of a regulated river system. We simulate runoff with the Variable Infiltration Capacity (VIC) macroscale hydrological model, regulated streamflow and reservoir operations with a large-scale river routing-reservoir model (MOSART-WM), and stream temperature using the River Basin Model (RBM). We enhanced RBM with a two-layer thermal stratification reservoir module. This modeling framework captures both the impact of reservoir regulation on streamflow and the reservoir stratification effects on downstream temperatures. We evaluate changes in flow and stream temperatures based on climate projections from two representative concentration pathways (RCPs; RCP4.5 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We simulate river temperature with meteorological forcings that have been downscaled with the Multivariate Constructed Analogs (MACA) method. We are specifically interested in analyzing extreme periods during which stream temperature exceeds water quality standards. In this study, we focus on identifying whether these extreme temperature periods coincide with low flows, and whether the frequency and duration of these operationally-relevant periods will increase under future climate change.

  16. Contextual Essays on the Monongahela River Navigation System. Locks and Dams 2, 3 and 4 Monongahela River Project

    Science.gov (United States)

    2012-09-24

    for example, was equipped with a conveyor belt system that brought coal excavated from mines six miles inland the company’s waiting barges. This...dock facility then had the longest operating conveyor belt system in the world. In a little over eleven years, U.S. Steel built up the largest fleet of...hoists (each equipped with two six-ton grab buckets) for unloading the barges onto conveyor belts that carried coal to the coking ovens. Clairton also

  17. Interpreting the response of a dryland river system to Late Quaternary climate change

    Science.gov (United States)

    Candy, I.; Black, S.; Sellwood, B. W.

    2004-12-01

    A U-series calcrete chronology has been constructed for three Late Quaternary terrace units, termed the D1, D2 and D3 terraces in age descending order, from the Rio Aguas river system of the Sorbas basin, southeast Spain. The D1 terrace formed between 30,300±4400 year BP and 12,140±360 year BP, correlating well with the Last Glacial Maximum when rates of sediment supply would have increased greatly, because of higher rates of weathering, reduced vegetation cover and weak soil development. The D2 terrace formed between 12,800±1100 year BP and 9,600±530 year BP, correlating well with the Younger Dryas event. The D3 terrace could only be poorly constrained to the early Holocene and no unequivocal cause could be assigned to this period of aggradation. The sedimentology and geomorphology of the D2 terrace suggests, however, that the aggradation of this unit was a response to diapirism/karstic processes occurring within the underlying Messinian gypsum strata and the subsequent damming of the Aguas system. Therefore, despite its coincident occurrence with the Younger Dryas, aggradation of the D2 terrace is unrelated to climate change. The style of this response, controlled predominantly by the characteristics of the underlying bedrock, makes correlating the terrace record of the Aguas with other systems in the Mediterranean unreliable. This study, therefore, highlights the problems of correlating fluvial sequences in regions of variable tectonics, climatic history and bedrock geology and emphasises the need to properly understand the main controls on individual fluvial systems before any attempt is made to correlate their depositional histories.

  18. Simulation of daily streamflow for nine river basins in eastern Iowa using the Precipitation-Runoff Modeling System

    Science.gov (United States)

    Haj, Adel E.; Christiansen, Daniel E.; Hutchinson, Kasey J.

    2015-10-14

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for nine river basins in eastern Iowa that drain into the Mississippi River. The models are part of a suite of methods for estimating daily streamflow at ungaged sites. The Precipitation-Runoff Modeling System is a deterministic, distributed- parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration and validation periods used in each basin mostly were October 1, 2002, through September 30, 2012, but differed depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.

  19. Model based control for run-of-river system. Part 1: Model implementation and tuning

    Directory of Open Access Journals (Sweden)

    Liubomyr Vytvytskyi

    2015-10-01

    Full Text Available Optimal operation and control of a run-of-river hydro power plant depends on good knowledge of the elements of the plant in the form of models. River reaches are often considered shallow channels with free surfaces. A typical model for such reaches use the Saint Venant model, which is a 1D distributed model based on the mass and momentum balances. This combination of free surface and momentum balance makes the problem numerically challenging to solve. The finite volume method with staggered grid was compared with the Kurganov-Petrova central upwind scheme, and was used to illustrate the dynamics of the river upstream from the Grønvollfoss run-of-river power plant in Telemark, Norway, operated by Skagerak Energi AS. In an experiment on the Grønvollfoss run-of-river power plant, a step was injected in the upstream inlet flow at Årlifoss, and the resulting change in level in front of the dam at the Grønvollfoss plant was logged. The results from the theoretical Saint Venant model was then compared to the experimental results. Because of uncertainties in the geometry of the river reach (river bed slope, etc., the slope and length of the varying slope parts were tuned manually to improve the fit. Then, friction factor, river width and height drop of the river was tuned by minimizing a least squares criterion. The results of the improved model (numerically, tuned to experiments, is a model that can be further used for control synthesis and analysis.

  20. Forecasting skills of the ensemble hydro-meteorological system for the Po river floods

    Science.gov (United States)

    Ricciardi, Giuseppe; Montani, Andrea; Paccagnella, Tiziana; Pecora, Silvano; Tonelli, Fabrizio

    2013-04-01

    The Po basin is the largest and most economically important river-basin in Italy. Extreme hydrological events, including floods, flash floods and droughts, are expected to become more severe in the next future due to climate change, and related ground effects are linked both with environmental and social resilience. A Warning Operational Center (WOC) for hydrological event management was created in Emilia Romagna region. In the last years, the WOC faced challenges in legislation, organization, technology and economics, achieving improvements in forecasting skill and information dissemination. Since 2005, an operational forecasting and modelling system for flood modelling and forecasting has been implemented, aimed at supporting and coordinating flood control and emergency management on the whole Po basin. This system, referred to as FEWSPo, has also taken care of environmental aspects of flood forecast. The FEWSPo system has reached a very high level of complexity, due to the combination of three different hydrological-hydraulic chains (HEC-HMS/RAS - MIKE11 NAM/HD, Topkapi/Sobek), with several meteorological inputs (forecasted - COSMOI2, COSMOI7, COSMO-LEPS among others - and observed). In this hydrological and meteorological ensemble the management of the relative predictive uncertainties, which have to be established and communicated to decision makers, is a debated scientific and social challenge. Real time activities face professional, modelling and technological aspects but are also strongly interrelated with organization and human aspects. The authors will report a case study using the operational flood forecast hydro-meteorological ensemble, provided by the MIKE11 chain fed by COSMO_LEPS EQPF. The basic aim of the proposed approach is to analyse limits and opportunities of the long term forecast (with a lead time ranging from 3 to 5 days), for the implementation of low cost actions, also looking for a well informed decision making and the improvement of

  1. Evolution of the vegetation system in the Heihe River basin in the last 2000 years

    Directory of Open Access Journals (Sweden)

    S. Li

    2017-08-01

    Full Text Available The response of vegetation systems to the long-term changes in climate, hydrology, and social–economic conditions in river basins is critical for sustainable river basin management. This study aims to investigate the evolution of natural and crop vegetation systems in the Heihe River basin (HRB over the past 2000 years. Archived Landsat images, historical land use maps and hydrological records were introduced to derive the long-term spatial distribution of natural and crop vegetation and the corresponding biomass levels. The major findings are that (1 both natural and crop vegetation experienced three development stages: a pre-development stage (before the Republic of China, a rapid development stage (Republic of China – 2000, and a post-development stage (after 2000. Climate and hydrological conditions did not show significant impacts over crop vegetation, while streamflow presented synchronous changes with natural vegetation in the first stage. For the second stage, warmer temperature and increasing streamflow were found to be important factors for the increase in both natural and crop vegetation in the middle reaches of the HRB. For the third stage, positive climate and hydrological conditions, together with policy interventions, supported the overall vegetation increase in both the middle and lower HRB; (2 there was a significantly faster increase in crop biomass than that of native vegetation since 1949, which could be explained by the technological development; and (3 the ratio of natural vegetation to crop vegetation decreased from 16 during the Yuan Dynasty to about 2.2 since 2005. This ratio reflects the reaction of land and water development to a changing climate and altering social–economic conditions at the river basin level; therefore, it could be used as an indicator of water and land management at river basins.

  2. Automated lidar-derived canopy height estimates for the Upper Mississippi River System

    Science.gov (United States)

    Hlavacek, Enrika

    2015-01-01

    Land cover/land use (LCU) classifications serve as important decision support products for researchers and land managers. The LCU classifications produced by the U.S. Geological Survey’s Upper Midwest Environmental Sciences Center (UMESC) include canopy height estimates that are assigned through manual aerial photography interpretation techniques. In an effort to improve upon these techniques, this project investigated the use of high-density lidar data for the Upper Mississippi River System to determine canopy height. An ArcGIS tool was developed to automatically derive height modifier information based on the extent of land cover features for forest classes. The measurement of canopy height included a calculation of the average height from lidar point cloud data as well as the inclusion of a local maximum filter to identify individual tree canopies. Results were compared to original manually interpreted height modifiers and to field survey data from U.S. Forest Service Forest Inventory and Analysis plots. This project demonstrated the effectiveness of utilizing lidar data to more efficiently assign height modifier attributes to LCU classifications produced by the UMESC.

  3. Fish Community Composition and Habitat Use in the Eg-Uur River System, Mongolia

    Directory of Open Access Journals (Sweden)

    Norman Mercado-Silva

    2008-06-01

    Full Text Available Mongolian rivers and their fi sh communities have suffered severe impacts from anthropogenic activities. However, the remoteness of some systems has allowed for the conservation of unique fi sh faunas, including robust populations of Hucho taimen . Conservation of H. taimen requires understanding the composition and ecology of other fi shes in the community. Using multiple sampling techniques, direct observation, and existing literature, we assessed the composition, relative abundance, and ecological attributes of fi shes in the Eg-Uur watershed (Selenge basin. We collected 6 of 12 species known in the watershed. Phoxinus cf. phoxinus and Lota lota were the most and least abundant species, respectively. We failed to detect H. taimen , indicating low abundance or unknown habitat requirements for juveniles. We compared the effectiveness of different sampling techniques (with electro fi shing producing the highest species richness, constructed length-weight relationships for four species , and identi fi ed ecological attributes (i.e., trophic guild, preferred habitat for resident fi shes.

  4. Contribution of anadromous fish to the diet of European catfish in a large river system

    Science.gov (United States)

    Syväranta, Jari; Cucherousset, Julien; Kopp, Dorothée; Martino, Aurélia; Céréghino, Régis; Santoul, Frédéric

    2009-05-01

    Many anadromous fish species, when migrating from the sea to spawn in fresh waters, can potentially be a valuable prey for larger predatory fish, thereby efficiently linking these two ecosystems. Here, we assess the contribution of anadromous fish to the diet of European catfish ( Silurus glanis) in a large river system (Garonne, southwestern France) using stable isotope analysis and allis shad ( Alosa alosa) as an example of anadromous fish. Allis shad caught in the Garonne had a very distinct marine δ13C value, over 8‰ higher after lipid extraction compared to the mean δ13C value of all other potential freshwater prey fish. The δ13C values of European catfish varied considerably between these two extremes and some individuals were clearly specializing on freshwater prey, whereas others specialized on anadromous fish. The mean contribution of anadromous fish to the entire European catfish population was estimated to be between 53% and 65%, depending on the fractionation factor used for δ13C.

  5. Structure of the parasites communities in two Erythrinidae fish from Amazon river system (Brazil).

    Science.gov (United States)

    Alcântara, Natália Milhomem; Tavares-Dias, Marcos

    2015-01-01

    This study compared the parasite communities of Hoplias malabaricus and Hoplerythrinus unitaeniatus from Amazon river system. Hoplias malabaricus were infected by Ichthyophthirius multifiliis, Piscinoodinium pillulare, Tetrahymena sp., Urocleidoides eremitus, Braga patagonica, metacercariae of Clinostomum marginatum, Procamallanus (Spirocamallanus) inopinatus, larvae of Contracaecum sp. and larvae of Nomimoscolex matogrossensis. Hoplerythrinus unitaeniatus were also infected by these same species of protozoans, nematodes, digeneans and cestodes, except for Tetrahymena sp. and B. patagonica, which were replaced by Argulus pestifer, Urocleidoides sp., Whittingtonocotyle caetei, Whittingtonocotyle jeju and Gorytocephalus spectabilis. For both hosts, I. multifiliis and P. pillulare were the predominant parasites. Most of the parasites presented an overdispersion. Parasite species richness, Brillouin diversity, evenness and Berger-Parker dominance were similar for the two hosts. The length and weight of H. malabaricus showed a positive correlation with the abundance of U. eremitus and Contracaecum sp., while the weight of H. unitaeniatus showed a positive correlation with the abundance of I. multifiliis. The diversity of ectoparasites seemed to be influenced by the behavior of these two hosts. This was shown by the similar parasite communities and was characterized by low species diversity, low evenness and low richness, and by a high prevalence of ectoparasites.

  6. Structure of the parasites communities in two Erythrinidae fish from Amazon river system (Brazil

    Directory of Open Access Journals (Sweden)

    Natália Milhomem Alcântara

    Full Text Available This study compared the parasite communities of Hoplias malabaricus and Hoplerythrinus unitaeniatus from Amazon river system. Hoplias malabaricus were infected by Ichthyophthirius multifiliis, Piscinoodinium pillulare, Tetrahymena sp., Urocleidoides eremitus, Braga patagonica, metacercariae of Clinostomum marginatum, Procamallanus(Spirocamallanus inopinatus, larvae of Contracaecum sp. and larvae of Nomimoscolex matogrossensis. Hoplerythrinus unitaeniatus were also infected by these same species of protozoans, nematodes, digeneans and cestodes, except for Tetrahymena sp. and B. patagonica, which were replaced by Argulus pestifer, Urocleidoides sp., Whittingtonocotylecaetei, Whittingtonocotyle jeju and Gorytocephalus spectabilis. For both hosts, I. multifiliis and P. pillulare were the predominant parasites. Most of the parasites presented an overdispersion. Parasite species richness, Brillouin diversity, evenness and Berger-Parker dominance were similar for the two hosts. The length and weight of H. malabaricusshowed a positive correlation with the abundance of U. eremitusand Contracaecum sp., while the weight of H. unitaeniatus showed a positive correlation with the abundance of I. multifiliis. The diversity of ectoparasites seemed to be influenced by the behavior of these two hosts. This was shown by the similar parasite communities and was characterized by low species diversity, low evenness and low richness, and by a high prevalence of ectoparasites.

  7. Systems costs for disposal of Savannah River high-level waste sludge and salt

    International Nuclear Information System (INIS)

    McDonell, W.R.; Goodlett, C.B.

    1984-01-01

    A systems cost model has been developed to support disposal of defense high-level waste sludge and salt generated at the Savannah River Plant. Waste processing activities covered by the model include decontamination of the salt by a precipitation process in the waste storage tanks, incorporation of the sludge and radionuclides removed from the salt into glass in the Defense Waste Processing Facility (DWPF), and, after interim storage, final disposal of the DWPF glass waste canisters in a federal geologic repository. Total costs for processing of waste generated to the year 2000 are estimated to be about $2.9 billion (1984 dollars); incremental unit costs for DWPF and repository disposal activities range from $120,000 to $170,000 per canister depending on DWPF processing schedules. In a representative evaluation of process alternatives, the model is used to demonstrate cost effectiveness of adjustments in the frit content of the waste glass to reduce impacts of wastes generated by the salt decontamination operations. 13 references, 8 tables

  8. Predictive Management of Asian Carps in the Upper Mississippi River System

    Science.gov (United States)

    Vondracek, Bruce C.; Carlson, Andrew K.

    2014-01-01

    Prolific non-native organisms pose serious threats to ecosystems and economies worldwide. Nonnative bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix), collectively referred to as Asian carps, continue to colonize aquatic ecosystems throughout the central United States. These species are r-selected, exhibiting iteroparous spawning, rapid growth, broad environmental tolerance, high density, and long-distance movement. Hydrological, thermal, and physicochemical conditions are favorable for establishment beyond the current range, rendering containment and control imperative. Ecological approaches to confine Asian carp populations and prevent colonization characterize contemporary management in the United States. Foraging and reproduction of Asian carps govern habitat selection and movement, providing valuable insight for predictive control. Current management approaches are progressive and often anticipatory but deficient in human dimensions. We define predictive management of Asian carps as synthesis of ecology and human dimensions at regional and local scales to develop strategies for containment and control. We illustrate predictive management in the Upper Mississippi River System and suggest resource managers integrate predictive models, containment paradigms, and human dimensions to design effective, socially acceptable management strategies. Through continued research, university-agency collaboration, and public engagement, predictive management of Asian carps is an auspicious paradigm for preventing and alleviating consequences of colonization in the United States.

  9. Salmonella and antimicrobial resistance in an animal-based agriculture river system.

    Science.gov (United States)

    Palhares, Julio Cesar Pascale; Kich, Jalusa D; Bessa, Marjo C; Biesus, Luiza L; Berno, Lais G; Triques, Nelise J

    2014-02-15

    The aim of this study was to examine the Salmonella serovars and antimicrobial resistance within an animal-based agriculture river system. The study area consisted of a 1,345 ha upper part of Pinhal catchment. A total of 384 samples were collected in four years of monitoring. Salmonella was isolated from 241 samples (62.7%), resulting in 324 isolates. The highest number of Salmonella sp. occurred in samples associated with sites with high stoking density animal unit per hectare. It was possible to demonstrate the variability of serovars in the study area: 30 different serovars were found and at least 11 per monitoring site. Thirty-three potentially related isolates were genotyped by PFGE, one major clone was observed in serovar Typhimurium, which occurred in animal feces (swine and bovine), and different sites and samplings proving the cross-contamination and persistence of this specific clone. Among 180 isolates submitted to an antimicrobial susceptibility test, 50.5% were susceptible to all 21 antimicrobials tested and 54 different profiles were found. In the current study, 49.5% of the tested isolates were resistant to at least one antimicrobial, and multi-resistance occurred in 18% of isolates. Results indicate a close interaction between animal-based agriculture, Salmonella, and antimicrobial resistance. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Analysis of radiation monitoring data by distribution-free statistical methods (a case of river system Techa-Iset'-Tobol-Irtysh contamination)

    International Nuclear Information System (INIS)

    Luneva, K.V.; Kryshev, A.I.; Nikitin, A.I.; Kryshev, I.I.

    2010-01-01

    The article presents the results of statistical analysis of radiation monitoring data of river system Techa-Iset'-Tobol-Irtysh contamination. A short description of analyzable data and the territory under consideration was given. The distribution-free statistic methods, used for comparative analysis, were described. Reasons of the methods selection and their application features were given. Comparative data analysis with traditional statistics methods was presented. Reliable decrease of 90 Sr specific activity in the river system object to object was determined, which is the evidence of the radionuclide transportation in the river system Techa-Iset'-Tobol-Irtysh [ru

  11. Zooplankton From a Reef System Under the Influence of the Amazon River Plume.

    Science.gov (United States)

    Neumann-Leitão, Sigrid; Melo, Pedro A M C; Schwamborn, Ralf; Diaz, Xiomara F G; Figueiredo, Lucas G P; Silva, Andrea P; Campelo, Renata P S; de Melo Júnior, Mauro; Melo, Nuno F A C; Costa, Alejandro E S F; Araújo, Moacyr; Veleda, Dóris R A; Moura, Rodrigo L; Thompson, Fabiano

    2018-01-01

    At the mouth of the Amazon River, a widespread carbonate ecosystem exists below the river plume, generating a hard-bottom reef (∼9500 km 2 ) that includes mainly large sponges but also rhodolith beds. The mesozooplankton associated with the pelagic realm over the reef formation was characterized, considering the estuarine plume and oceanic influence. Vertical hauls were carried out using a standard plankton net with 200 μm mesh size during September 2014. An indicator index was applied to express species importance as ecological indicators in community. Information on functional traits was gathered for the most abundant copepod species. Overall, 179 zooplankton taxa were recorded. Copepods were the richest (92 species), most diverse and most abundant group, whereas meroplankton were rare and less abundant. Species diversity (>3.0 bits.ind -1 ) and evenness (>0.6) were high, indicating a complex community. Small holoplanktonic species dominated the zooplankton, and the total density varied from 107.98 ind. m -3 over the reef area to 2,609.24 ind. m -3 in the estuarine plume, with a significant difference between coastal and oceanic areas. The most abundant copepods were the coastal species ithona plumifera and Clausocalanus furcatus and early stages copepodites of Paracalanidae. The holoplanktonic Oikopleura , an important producer of mucous houses, was very abundant on the reefs. The indicator species index revealed three groups: (1) indicative of coastal waters under the influence of the estuarine plume [ Euterpina acutifrons, Parvocalanus crassirostris, Oikopleura (Vexillaria) dioica and Hydromedusae]; (2) characterized coastal and oceanic conditions ( Clausocalanus ); (3) characterized the reef system ( O. plumifera ). Two major copepods functional groups were identified and sorted according to their trophic strategy and coastal-oceanic distribution. The species that dominated the coastal area and the area over the rhodolith beds are indicators of the

  12. Zooplankton From a Reef System Under the Influence of the Amazon River Plume

    Directory of Open Access Journals (Sweden)

    Sigrid Neumann-Leitão

    2018-03-01

    Full Text Available At the mouth of the Amazon River, a widespread carbonate ecosystem exists below the river plume, generating a hard-bottom reef (∼9500 km2 that includes mainly large sponges but also rhodolith beds. The mesozooplankton associated with the pelagic realm over the reef formation was characterized, considering the estuarine plume and oceanic influence. Vertical hauls were carried out using a standard plankton net with 200 μm mesh size during September 2014. An indicator index was applied to express species importance as ecological indicators in community. Information on functional traits was gathered for the most abundant copepod species. Overall, 179 zooplankton taxa were recorded. Copepods were the richest (92 species, most diverse and most abundant group, whereas meroplankton were rare and less abundant. Species diversity (>3.0 bits.ind-1 and evenness (>0.6 were high, indicating a complex community. Small holoplanktonic species dominated the zooplankton, and the total density varied from 107.98 ind. m-3 over the reef area to 2,609.24 ind. m-3 in the estuarine plume, with a significant difference between coastal and oceanic areas. The most abundant copepods were the coastal species ithona plumifera and Clausocalanus furcatus and early stages copepodites of Paracalanidae. The holoplanktonic Oikopleura, an important producer of mucous houses, was very abundant on the reefs. The indicator species index revealed three groups: (1 indicative of coastal waters under the influence of the estuarine plume [Euterpina acutifrons, Parvocalanus crassirostris, Oikopleura (Vexillaria dioica and Hydromedusae]; (2 characterized coastal and oceanic conditions (Clausocalanus; (3 characterized the reef system (O. plumifera. Two major copepods functional groups were identified and sorted according to their trophic strategy and coastal-oceanic distribution. The species that dominated the coastal area and the area over the rhodolith beds are indicators of the estuarine

  13. Benefits of prescribed flows for salmon smolt survival enhancement vary longitudinally in a highly managed river system

    Science.gov (United States)

    Courter, Ian; Garrison, Thomas; Kock, Tobias J.; Perry, Russell W.; Child, David; Hubble, Joel

    2016-01-01

    The influence of streamflow on survival of emigrating juvenile Pacific salmonids Oncorhynchus spp. (smolts) is a major concern for water managers throughout the northeast Pacific Rim. However, few studies have quantified flow effects on smolt survival, and available information does not indicate a consistent flow–survival relationship within the typical range of flows under management control. In the Yakima Basin, Washington, the potential effects of streamflow alterations on smolt survival have been debated for over 20 years. Using a series of controlled flow releases from upper basin reservoirs and radiotelemetry, we quantified the relationship between flow and yearling Chinook salmon smolt survival in the 208 km reach between Roza Dam and the Yakima River mouth. A multistate mark–recapture model accounted for weekly variation in flow conditions experienced by tagged fish in four discrete river segments. Smolt survival was significantly associated with streamflow in the Roza Reach [river kilometre (rkm) 208–189] and marginally associated with streamflow in the Sunnyside Reach (rkm 169–77). However, smolt survival was not significantly associated with flow in the Naches and Prosser Reaches (rkm 189–169 and rkm 77–3). This discrepancy indicates potential differences in underlying flow-related survival mechanisms, such as predation or passage impediments. Our results clarify trade-offs between flow augmentation for fisheries enhancement and other beneficial uses, and our study design provides a framework for resolving uncertainties about streamflow effects on migratory fish survival in other river systems

  14. Porous media of the Red River Formation, Williston Basin, North Dakota: a possible Sedimentary Enhanced Geothermal System

    Science.gov (United States)

    Hartig, Caitlin M.

    2018-01-01

    Fracture-stimulated enhanced geothermal systems (EGS) can be developed in both crystalline rocks and sedimentary basins. The Red River Formation (Ordovician) is a viable site for development of a sedimentary EGS (SEGS) because the formation temperatures exceed 140 °C and the permeability is 0.1-38 mD; fracture stimulation can be utilized to improve permeability. The spatial variations of the properties of the Red River Formation were analyzed across the study area in order to understand the distribution of subsurface formation temperatures. Maps of the properties of the Red River Formation-including depth to the top of the formation, depth to the bottom of the formation, porosity, geothermal gradient, heat flow, and temperature-were produced by the Kriging interpolation method in ArcGIS. In the future, these results may be utilized to create a reservoir simulation model of an SEGS in the Red River Formation; the purpose of this model would be to ascertain the thermal response of the reservoir to fracture stimulation.

  15. Transport and accumulation of cesium-137 and mercury in the Clinch River and Watts Bar Reservoir system

    International Nuclear Information System (INIS)

    Olsen, C.R.; Larsen, I.L.; Lowry, P.D.; Moriones, C.R.; Ford, C.J.; Dearstone, K.C.; Turner, R.R.; Kimmel, B.L.; Brandt, C.C.

    1992-06-01

    Operations and waste disposal activities at the Oak Ridge Y-12 Plant, the Oak Ridge National Laboratory (ORNL), and the Oak Ridge K-25 Site (formerly the Oak Ridge Gaseous Diffusion Plant) on the US Department of Energy (DOE) Oak Ridge Reservation (ORR) have introduced a variety of airborne, liquid, and solid wastes into the surrounding environment. Some of these wastes may affect off-site areas by entering local streams, which ultimately drain into the Clinch and Tennessee river system. Previously reported concentrations of radionuclides, metals and organic compounds in water, sediment, and biota of the Clinch River and Watts Bar Reservoir suggest the presence of a variety of contaminants of possible concern to the protection of human health and the environment. The work reported here represents part of the initial scoping phase for the Clinch River RCRA Facility Investigation. In this work, the distribution of 137 Cs is used to identify contaminant accumulation patterns and potential problem, or ''hot-spot,'' areas with regard to environmental hazard or human health. Radiocesium was chosen for this scoping effort because (1) its history of release into the Clinch River is reasonably well documented, (2) it is easy and inexpensive to measure by gamma spectrometry, and (3) it is rapidly sorbed to particulate matter and thus serves as a cost-effective tracer for identifying the transport and accumulation patterns of many other particle-reactive contaminants, such as mercury (Hg), lead (Pb), and plutonium (Pu), and polychlorinated biphenyls (PCBs)

  16. A Google Earth-based surveillance system for schistosomiasis japonica implemented in the lower reaches of the Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Sun Le-Ping

    2011-11-01

    Full Text Available Abstract Background Due to the success of the national schistosomiasis control programme in China, transmission has been sufficiently reduced in many areas to severely limit identification of areas at risk by conventional snail surveys only. In this study, we imported Google Earth technology and a Global Positioning System (GPS into the monitoring system for schistosomiasis surveillance of the banks of the Yangtze River in Jiangsu Province, China. Methods A total of 45 sites were selected and the risk was assessed monthly by water exposure of sentinel mice at these sites from May to September in 2009 and 2010. The results were assembled and broadcast via the Google Earth platform. Results The intensity of schistosomiasis transmission showed peaks of risk in June and September of 2009, while there was only one small peak in June in 2010 as the number of detected positive transmission sites dropped dramatically that year thanks to improved mollusciciding. River ports were found to be areas of particular risk, but ferry terminals and other centres of river-related activities were also problematic. Conclusions The results confirm that the surveillance system can be rapidly updated and easily maintained, which proves the Google Earth approach to be a user-friendly, inexpensive warning system for schistosomiasis risk.

  17. Pharmaceuticals occurrence in a WWTP with significant industrial contribution and its input into the river system.

    Science.gov (United States)

    Collado, N; Rodriguez-Mozaz, S; Gros, M; Rubirola, A; Barceló, D; Comas, J; Rodriguez-Roda, I; Buttiglieri, G

    2014-02-01

    Occurrence and removal of 81 representative Pharmaceutical Active Compounds (PhACs) were assessed in a municipal WWTP located in a highly industrialized area, with partial water reuse after UV tertiary treatment and discharge to a Mediterranean river. Water monitoring was performed in an integrated way at different points in the WWTP and river along three seasons. Consistent differences between therapeutic classes were observed in terms of influent concentration, removal efficiencies and seasonal variation. Conventional (primary and secondary) treatment was unable to completely remove numerous compounds and UV-based tertiary treatment played a complementary role for some of them. Industrial activity influence was highlighted in terms of PhACs presence and seasonal distribution. Even if global WWTP effluent impact on the studied river appeared to be minor, PhACs resulted widespread pollutants in river waters. Contamination can be particularly critical in summer in water scarcity areas, when water flow decreases considerably. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Environmental Sensitivity Index (ESI) Atlas: Hudson River, maps and geographic information systems data (NODC Accession 0014791)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for the Hudson River from 1942 to 2005. ESI data characterize estuarine environments and...

  19. Environmental Sensitivity Index (ESI) Atlas: Columbia River, maps and geographic information systems data (NODC Accession 0013951)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for the Columbia River from 1979 to 2004. ESI data characterize estuarine environments and...

  20. Statistical Characterization of River and Channel Network Formation in Intermittently Flowing Vortex Systems.

    Science.gov (United States)

    Olson, C. J.; Reichhardt, C.; Nori, F.

    1997-03-01

    Vortices moving in dirty superconductors can form intricate flow patterns, resembling fluid rivers, as they interact with the pinning landscape (F. Nori, Science 271), 1373 (1996).. Weaker pinning produces relatively straight nori>vortex channels, while stronger pinning results in the formation of one or more winding channels that carry all flow. This corresponds to a crossover from elastic flow to plastic flow as the pinning strength is increased. For several pinning parameters, we find the fractal dimension of the channels that form, the vortex trail density, the distance travelled by vortices as they pass through the sample, the branching ratio, the sinuosity, and the size distribution of the rivers, and we compare our rivers with physical rivers that follow Horton's laws.

  1. Coastline Change Surround Sekampung River Estuary Estimated by Geographic Information System Technique

    OpenAIRE

    Fahri; Tamaluddin Syam

    2011-01-01

    Surround a big river estuary coastline has a dynamic characteristic and change along a period of time, because of anatural process and/or it is accelerated by human activities. The surround Sekampung river estuary coastline located in Rawa Sragi area is one of the most dynamic coastlines in southern Lampung Province that has changed significantly from 1959 (as a natural process) to year 1987 (as an accelerated process by human activities) since the government of Indonesia has applied swamp dr...

  2. Neutron activation analysis studies of selected portions of the Mahoning River system using 252Cf

    International Nuclear Information System (INIS)

    Abram, E.; Cordon, P.J.; Hazari, A.S.G.; Kline, R.; Mahadeviah, I.; Mooney, E. Jr.

    1975-01-01

    A neutron activation analysis study was conducted on portions of the Mahoning River located in eastern Ohio and western Pennsylvania. This river occurs in a highly populated area and is used extensively by numerous industries, including four steel mills, located in the area. Detailed analysis of water and sediment samples indicates the presence of ten different elements. These are sodium, chlorine, bromine, copper, manganese, magnesium, calcium, vanadium, potassium and aluminum. (U.S.)

  3. System methodology application to make water resources management plan for unstudied rivers

    Science.gov (United States)

    Dvinskikh, S. A.; Larchenko, O. V.

    2018-01-01

    Current public monitoring network is not able to involve in and to control water chemical composition of a rivers basin, and there is no coasts monitoring of water objects. As a result, the complete comprehension of rivers use and pollution is impossible. Due to this fact, a new conception of water resources management has been worked out. The conception is based on new approaches to define parameters that characterise usage potentialities and range.

  4. Community Based Warning and Evacuation System against Debris Flow in the Upper Jeneberang River, Gowa, South Sulawesi

    Directory of Open Access Journals (Sweden)

    Sutikno Hardjosuwarno

    2008-07-01

    Full Text Available Gigantic collapse of the Caldera wall of Mt. Bawakaraeng (2,830 m in March 2004 had supplied the sediment volume of 230 million to the most upper stream of Jeneberang River, which flowed down to the lower reach in the form of debris flow which is triggered by rainfall. The purpose of the research is to provide a system which is able to forecast the occurrence of debris flow, to identify the weak points along the river course, to identify the hazard areas and how to inform effectively and efficiently the warning messages to the inhabitants in the dangerous area by using the existing modern equipment combined with the traditional one. The standard rainfall which is used to judge the occurrence of debris flow was established by Yano method. It is based on the historical data of rainfall that trigger and not trigger to the occurrence of debris flow which is widely used in Japan so far. The hazard area was estimated by Two-Dimensional Simulation Model for debris flow, the debris flow arrival time at each point in the river were estimated by dividing their distance from reference point by debris flow velocity, where the check dam no. 7-1 in Manimbahoi was designated as reference point. The existing evacuation routes were checked by field survey, the strength and coverage of sound for kentongan and manual siren were examined using sound pressure level at the location of the existing monitoring post and the effectiveness of warning and evacuation were evaluated by comparing the warning and evacuation time against the debris flow arrival time. It was resulted that debris flow occurrence was triggered by short duration of high rainfall intensity, long duration of low rainfall intensity and the outbreak of natural dam which is formed by land slide or bank collapses. The hazard area of upper Jeneberang River are mostly located on the river terraces where the local inhabitants earn their living through cultivating the river terraces as paddy fields, dry

  5. A study on the formation of fouling in a heat exchanging system for Han-river water as cooling water

    International Nuclear Information System (INIS)

    Sung, Sun Kyung; Suh, Sang Ho; Rho, Hyung Woon; Cho, Young Il

    2003-01-01

    Scale is formed when hard water is heated or cooled in heat transfer equipments such as heat exchangers, condensers, evaporators, cooling towers, boilers, and pipe walls. When scale deposits in a heat exchanger surface, it is traditionally called fouling. The objective of the present study is to investigate the formation of fouling in a heat exchanging system. A lab-scale heat exchanging system is built-up to observe and measure the formation of fouling experimentally. Water analyses are conducted to obtain the properties of Han river water. In the present study a microscopic observation is conducted to visualize the process of scale formation. Hardness of Han-river water is higher than that of tap water in Seoul

  6. The risk assessment of sudden water pollution for river network system under multi-source random emission

    Science.gov (United States)

    Li, D.

    2016-12-01

    Sudden water pollution accidents are unavoidable risk events that we must learn to co-exist with. In China's Taihu River Basin, the river flow conditions are complicated with frequently artificial interference. Sudden water pollution accident occurs mainly in the form of a large number of abnormal discharge of wastewater, and has the characteristics with the sudden occurrence, the uncontrollable scope, the uncertainty object and the concentrated distribution of many risk sources. Effective prevention of pollution accidents that may occur is of great significance for the water quality safety management. Bayesian networks can be applied to represent the relationship between pollution sources and river water quality intuitively. Using the time sequential Monte Carlo algorithm, the pollution sources state switching model, water quality model for river network and Bayesian reasoning is integrated together, and the sudden water pollution risk assessment model for river network is developed to quantify the water quality risk under the collective influence of multiple pollution sources. Based on the isotope water transport mechanism, a dynamic tracing model of multiple pollution sources is established, which can describe the relationship between the excessive risk of the system and the multiple risk sources. Finally, the diagnostic reasoning algorithm based on Bayesian network is coupled with the multi-source tracing model, which can identify the contribution of each risk source to the system risk under the complex flow conditions. Taking Taihu Lake water system as the research object, the model is applied to obtain the reasonable results under the three typical years. Studies have shown that the water quality risk at critical sections are influenced by the pollution risk source, the boundary water quality, the hydrological conditions and self -purification capacity, and the multiple pollution sources have obvious effect on water quality risk of the receiving water body

  7. Massive land system changes impact water quality of the Jhelum River in Kashmir Himalaya.

    Science.gov (United States)

    Rather, Mohmmad Irshad; Rashid, Irfan; Shahi, Nuzhat; Murtaza, Khalid Omar; Hassan, Khalida; Yousuf, Abdul Rehman; Romshoo, Shakil Ahmad; Shah, Irfan Yousuf

    2016-03-01

    The pristine aquatic ecosystems in the Himalayas are facing an ever increasing threat from various anthropogenic pressures which necessitate better understanding of the spatial and temporal variability of pollutants, their sources, and possible remedies. This study demonstrates the multi-disciplinary approach utilizing the multivariate statistical techniques, data from remote sensing, lab, and field-based observations for assessing the impact of massive land system changes on water quality of the river Jhelum. Land system changes over a period of 38 years have been quantified using multi-spectral satellite data to delineate the extent of different anthropogenically driven land use types that are the main non-point sources of pollution. Fifteen water quality parameters, at 12 sampling sites distributed uniformly along the length of the Jhelum, have been assessed to identify the possible sources of pollution. Our analysis indicated that 18% of the forested area has degraded into sparse forest or scrublands from 1972 to 2010, and the areas under croplands have decreased by 24% as people shifted from irrigation-intensive agriculture to orchard farming while as settlements showed a 397% increase during the observation period. One-way ANOVA revealed that all the water quality parameters had significant spatio-temporal differences (p < 0.01). Cluster analysis (CA) helped us to classify all the sampling sites into three groups. Factor analysis revealed that 91.84% of the total variance was mainly explained by five factors. Drastic changes in water quality of the Jhelum since the past three decades are manifested by increases in nitrate-nitrogen, TDS, and electric conductivity. The especially high levels of nitrogen (858 ± 405 μgL(-1)) and phosphorus (273 ± 18 μgL(-1)) in the Jhelum could be attributed to the reckless application of fertilizers, pesticides, and unplanned urbanization in the area.

  8. wrv: An R Package for Groundwater Flow Model Construction, Wood River Valley Aquifer System, Idaho

    Science.gov (United States)

    Fisher, J. C.

    2014-12-01

    Groundwater models are one of the main tools used in the hydrogeological sciences to assess resources and to simulate possible effects from future water demands and changes in climate. The hydrological inputs to groundwater models can be numerous and can vary in both time and space. Difficulties associated with model construction are often related to extensive datasets and cumbersome data processing tasks. To mitigate these difficulties, a graphical user interface (GUI) is often employed to aid the input of data for creating models. Unfortunately, GUI software presents an obstacle to reproducibility, a cornerstone of research. The considerable effort required to document processing steps in a GUI program, and the rapid obsoleteness of these steps with subsequent versions of the software, has prompted modelers to explicitly write down processing steps as source code to make them 'easily' reproducible. This research describes the R package wrv, a collection of datasets and functions for pre- and post-processing the numerical groundwater flow model of the Wood River Valley aquifer system, south-central Idaho. R largely facilitates reproducible modeling with the package vignette; a document that is a combination of content and source code. The code is run when the vignette is built, and all data analysis output (such as figures and tables) is created on the fly and inserted into the final document. The wrv package includes two vignettes that explain and run steps that (1) create package datasets from raw data files located on a publicly accessible repository, and (2) create and run the groundwater flow model. MODFLOW-USG, the numerical groundwater model used in this study, is executed from the vignette, and model output is returned for exploratory analyses. The ability of R to perform all processing steps in a single workflow is attributed to its comprehensive list of features; that include geographic information system and time series functionality.

  9. Compliance of the Savannah River Site D-Area cooling system with environmental regulations

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.; Mackey, H.E.; Paller, M.H.; Wike, L.D.; Wilde, E.W. (eds.)

    1990-08-01

    This document presents information relating to a demonstration under Section 316(a) of the Clean Water Act for the 400-D Area cooling system at the Savannah River Site (SRS) near Aiken, South Carolina. The demonstration was mandated because the National Pollution Discharge Elimination System (NPDES) permit for SRS (SC0000175), granted on January 1, 1984, specified in-stream temperature limits in SRS streams of 32.2{degree}C and a {Delta}T limit of 2.8{degree}C above ambient. To achieve compliance with in-stream temperature limits, the Department of Energy (DOE) and the South Carolina Department of Health and Environmental Control (SCDHEC) entered into a Consent Order (84-4-W) which temporarily superseded the temperature requirements and identified a process for attaining compliance. The preferred option for achieving thermal compliance in Beaver Dam Creek consisted of increased flow, with mixing of the raw water basin overflow with the cooling water discharge during the summer months. Although this action can achieve instream temperatures of less than 32.2{degree}C, {Delta}T's still exceed 2.8{degree}C. Therefore, a 316 (a) Demonstration was initiated to determine whether a balanced indigenous biological community can be supported in the receiving stream with {Delta}T's in excess of 2.8{degree}C. A Biological Monitoring Program for Beaver Dam Creek was approved by SCDHEC in June 1988 and implemented in September 1988. The program monitored the water quality, habitat formers, zooplankton, macroinvertebrates, fish, other vertebrate wildlife and threatened and endangered species in Beaver Dam Creek for an 18-month period (September 1988-February 1990). This document summarizes information collected during the monitoring program and evaluates the data to determine whether Beaver Dam Creek presently supports a balanced indigenous biological community. 97 refs., 32 figs., 51 tabs.

  10. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China

    Directory of Open Access Journals (Sweden)

    Zhouping Liu

    2015-12-01

    Full Text Available Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg−1, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM. This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety.

  11. Integrated environmental modeling system for noble gas releases at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cooper, R.E.

    1973-01-01

    The Savannah River Plant (SRP) is a large nuclear complex engaged in varied activities and is the AEC's major site for the production of weapons material. As a result of these activities, there are continuous and intermittent releases of radioactive gases to the atmosphere. Of these releases, the noble gases constitute about 11 percent of the total man-rem exposure to the population out to a distance of 100 km. Although SRP has an extensive radiological monitoring program, an environmental modeling system is necessary for adequately estimating effects on the environment. The integrated environmental modeling system in use at SRP consists of a series of computer programs that generate and use a library of environmental effects data as a function of azimuth and distance. Annual average atmospheric dispersion and azimuthal distribution of material assumed to be released as unit sources is estimated from a 2-year meteorological data base--assuming an arbitrary point of origin. The basic library of data consists of: ground-level concentrations according to isotope, and whole body gamma dose calculations that account for the total spatial distribution at discrete energy levels. These data are normalized to tritium measurements, and are subsequently used to generate similar library data that pertain to specific source locations, but always with respect to the same population grid. Thus, the total additive effects from all source points, both on- and off-site, can be estimated. The final program uses the library data to estimate population exposures for specified releases and source points for the nuclides of interest (including noble gases). Multiple source points are considered within a single pass to obtain the integrated effects from all sources

  12. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China.

    Science.gov (United States)

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-12-22

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg(-)¹, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety.

  13. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix C: Anadromous Fish and Juvenile Fish Transportation.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Appendix C of the Final Environmental Impact Statement for the Columbia River System discusses impacts on andromous fish and juvenile fish transportation. The principal andromous fish in the Columbia basin include salmonid species (Chinook, coho, and sockeye salmon, and steelhead) and nonsalmoinid andromous species (sturgeon, lamprey, and shad). Major sections in this document include the following: background, scope and process; affected environment for salmon and steelhead, shaded, lamprey, sturgeon; study methods; description of alternatives: qualitative and quantitative findings.

  14. Variability of the water availability in a river lake system – A case study of Lake Symsar

    Directory of Open Access Journals (Sweden)

    Kuriata-Potasznik Angela B.

    2016-12-01

    Full Text Available It is predicted that climate change will result in the diminution of water resources available both on global and regional scales. Local climate change is harder to observe and therefore, while counteracting its effects, it seems advisable to undertake studies on pertinent regional and local conditions. In this research, our aim was to assess the impact of a river and its catchment on fluctuations in the water availability in a natural lake which belongs to a post-glacial river and lake system. River and lake systems behave most often like a single interacting hydrological unit, and the intensity of water exchange in these systems is quite high, which may cause temporary water losses. This study showed that water in the analyzed river and lake system was exchanged approx. every 66 days, which resulted from the total (horizontal and vertical water exchange. Also, the management of a catchment area seems to play a crucial role in the local water availability, as demonstrated by this research, where water retention was favoured by wooded and marshy areas. More intensive water retention was observed in a catchment dominated by forests, pastures and wetlands. Wasteland and large differences in the land elevation in the tested catchment are unfavourable to water retention because they intensify soil evaporation and accelerate the water run-off outside of the catchment. Among the actions which should be undertaken in order to counteract water deficiencies in catchment areas, rational use and management of the land resources in the catchment are most often mentioned.

  15. Control Scheme of River-lake System from the View of Ecological Sponge Basin aiming at Sponge City Construction

    Science.gov (United States)

    Ding, X.; Liu, J.; Yang, Z.

    2017-12-01

    China is in the rapid advance of urbanization, and is promoting the Sponge City Construction (SCC) with the characteristics of natural accumulation, natural infiltration and natural purification. The Chinese government selected 16 and 14 cities as pilot cities in 2015 and 2016 respectively to carry out SCC taking Low Impact Development (LID) as the concept. However, in 2015 and 2016, water-logging occurred in 10 cities and 9 cities respectively during the pilot cities. Therefore, relying solely on LID can not solve the problem of urban flood and waterlogging. Except for a series of LID measures during the process of SCC, corresponding control scheme of river-lake system should be established to realize water-related targets. From the view of ecological sponge basin, this study presents the general idea of SCC both in and out of the unban built-up area and the corresponding control scheme of river-lake system: for the regions outside the built-up area, the main aim of SCC is to carry out the top-level design of urban flood control and waterlogging, establish the water security system outside the city for solving the problems including flood control, water resources, water environment and water ecology; for the built-up area, the main aim of SCC is to construct different kinds of urban sponge according to local conditions and develop multi-scale drainage system responding to different intensities of rainfall taking the river-lake system as the core. Taking Fenghuang County of Hunan Province as an example for the application research, the results indicate that, after the implementation of the control scheme of river-lake system: 1) together with other SCC measures including LID, the control rate of total annual runoff in Fenghuang County is expected to be 82.9% which meets the target requirement of 80%; 2) flood control and drainage standards in Fenghuang County can be increased from the current 10-year return to 20-year return; 3) urban and rural water supply

  16. Aquifer Recharge and Watershed Response to Climate Change in the Upper Umatilla River Subbasin Using the Precipitation Runoff Modeling System

    Science.gov (United States)

    Yazzie, K.

    2014-12-01

    Groundwater recharge in the Columbia River Basalt Group (CRBG) in the Umatilla River Basin, OR, is poorly understood. The long-term decline of groundwater storage in the basalt aquifers, present a serious environmental challenge for the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). This study will provide a groundwater estimate to help CTUIR better understand the hydrologic budget and inform water management decisions for present and future needs. The study site is in the upper Umatilla River Subbasin in Northeastern Oregon with an area that is 2,365 km2. The Precipitation Runoff Modeling System (PRMS) developed by the U.S. Geological Survey (USGS) is a distributed-parameter, physical-process watershed model that will be used to calculate groundwater recharge and simulate the watershed response to different climate and land use scenarios (Markstrom, 2008). The response of the hydrologic regime to climate change in the 2050s and 2080s will be determined using three downscaled Global Climate Models (GCMs), including the Earth System model of the Hadley Centre Global Environment Model, Version 2 (HadGEM2-ES), Model for Interdisciplinary Research on Climate (MIROC5), and the Geophysical Fluid Dynamics Laboratory - Earth System Model, (GFDL-ESM2M). The relationships between hydrologic processes at the surface, soil-zone, subsurface and groundwater reservoirs will be studied and defined in a water budget analysis to characterize the hydrologic regime in response to climate change.

  17. Simulation of the Lower Walker River Basin hydrologic system, west-central Nevada, using PRMS and MODFLOW models

    Science.gov (United States)

    Allander, Kip K.; Niswonger, Richard G.; Jeton, Anne E.

    2014-01-01

    Walker Lake is a terminal lake in west-central Nevada with almost all outflow occurring through evaporation. Diversions from Walker River since the early 1900s have contributed to a substantial reduction in flow entering Walker Lake. As a result, the lake is receding, and salt concentrations have increased to a level in which Oncorhynchus clarkii henshawi (Lahontan Cutthroat trout) are no longer present, and the lake ecosystem is threatened. Consequently, there is a concerted effort to restore the Walker Lake ecosystem and fishery to a level that is more sustainable. However, Walker Lake is interlinked with the lower Walker River and adjacent groundwater system which makes it difficult to understand the full effect of upstream water-management actions on the overall hydrologic system including the lake level, volume, and dissolved-solids concentrations of Walker Lake. To understand the effects of water-management actions on the lower Walker River Basin hydrologic system, a watershed model and groundwater flow model have been developed by the U.S. Geological Survey in cooperation with the Bureau of Reclamation and the National Fish and Wildlife Foundation.

  18. Employment of the generalized adsorption model for the prediction of the solid-water distribution of radiocesium in the river-estuary-ocean system

    International Nuclear Information System (INIS)

    Fan, Qiaohui; Takahashi, Yoshio

    2017-01-01

    Since last century, a large amount of radiocesium (RCs) released from atomic weapon tests and nuclear accidents, such as in Chernobyl and Fukushima, was directly introduced into the environment through atmospheric transportation and deposition on land surface soil, discharged into river systems by erosion effects during rainfall, and finally released into the ocean. In this study, a generalized adsorption model (GAM) for Cs + was employed to estimate the solid-water distribution of Cs + in the river-estuary-ocean system. The results confirmed that the capacity of each adsorption site of river sediments, i.e., interlayer site, type II site, and planar site, can be precisely optimized through the adsorption isotherm of Cs + on the river sediments combined with the radiocesium interception potential (RIP) and cation exchange capacity (CEC). According to the GAM, the main contributor for Cs + adsorption is the frayed edge site rather than others due to the very low concentration of Cs + in the river-estuary-ocean system. The different solid-water distribution of Cs + in the river-estuary-ocean system was dominantly controlled by the salinity in the aqueous phase. Therefore, Cs + should be highly reactive with strong adsorptive character to particulate matter in the river system, whereas a conservative distribution must be dominant in ocean with much weaker affinity to particulate matter because of the high salinity. - Highlights: • A new method to extend the utility range of GAM from illite to natural samples. • GAM was adapted to quantitatively explore the transportation of radiocesium in river in rive-estuary-ocean system. • High reactivity in river water and conservative behavior in seawater were clarified.

  19. River-groundwater connectivity in a karst system, Wellington, New South Wales, Australia

    Science.gov (United States)

    Keshavarzi, Mohammadreza; Baker, Andy; Kelly, Bryce F. J.; Andersen, Martin S.

    2017-03-01

    The characterization of river-aquifer connectivity in karst environments is difficult due to the presence of conduits and caves. This work demonstrates how geophysical imaging combined with hydrogeological data can improve the conceptualization of surface-water and groundwater interactions in karst terrains. The objective of this study is to understand the association between the Bell River and karst-alluvial aquifer at Wellington, Australia. River and groundwater levels were continuously monitored, and electrical resistivity imaging and water quality surveys conducted. Two-dimensional resistivity imaging mapped the transition between the alluvium and karst. This is important for highlighting the proximity of the saturated alluvial sediments to the water-filled caves and conduits. In the unsaturated zone the resistivity imaging differentiated between air- and sediment-filled karst features, and in the saturated zone it mapped the location of possible water- and sediment-filled caves. Groundwater levels are dynamic and respond quickly to changes in the river stage, implying that there is a strong hydraulic connection, and that the river is losing and recharging the adjacent aquifer. Groundwater extractions (1,370 ML, megalitres, annually) from the alluvial aquifer can cause the groundwater level to fall by as much as 1.5 m in a year. However, when the Bell River flows after significant rainfall in the upper catchment, river-leakage rapidly recharges the alluvial and karst aquifers. This work demonstrates that in complex hydrogeological settings, the combined use of geophysical imaging, hydrograph analysis and geochemical measurements provide insights on the local karst hydrology and groundwater processes, which will enable better water-resource and karst management.

  20. Simulation of daily streamflow for 12 river basins in western Iowa using the Precipitation-Runoff Modeling System

    Science.gov (United States)

    Christiansen, Daniel E.; Haj, Adel E.; Risley, John C.

    2017-10-24

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for 12 river basins in western Iowa that drain into the Missouri River. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration periods for each basin varied depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.A geographic information system tool was used to delineate each basin and estimate initial values for model parameters based on basin physical and geographical features. A U.S. Geological Survey automatic calibration tool that uses a shuffled complex evolution algorithm was used for initial calibration, and then manual modifications were made to parameter values to complete the calibration of each basin model. The main objective of the calibration was to match daily discharge values of simulated streamflow to measured daily discharge values. The Precipitation-Runoff Modeling System model was calibrated at 42 sites located in the 12 river basins in western Iowa.The accuracy of the simulated daily streamflow values at the 42 calibration sites varied by river and by site. The models were satisfactory at 36 of the sites based on statistical results. Unsatisfactory performance at the six other sites can be attributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) limited availability and accuracy of meteorological input data. The Precipitation-Runoff Modeling System

  1. Occurence of the Quagga Mussel Dreissena bugensis and the Zebra Mussel Dreissena polymorha in the Upper Mississippi River System

    Science.gov (United States)

    This manuscript reports on a range expansion of the invasive quagga mussel in the Great Rivers of the Upper Missippi River Basin. This research will be of interest to great river ecologists and to invasive species specialists.

  2. Long Term Resource Monitoring Program Annual Status Report, 1999: Macroinvertebrate Sampling in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Sauer, Jennifer

    2000-01-01

    In 1992, macroinvertebrate sampling was initiated in Pools 4, 8, 13, 26, and the Open River reach of the Mississippi River, and La Orange Pool of the Illinois River as part of the Long Term Resource Monitoring Program...

  3. Study on groundwater flow system in a sedimentary rock area. Case study for the Yoro river basin, Chiba Prefecture

    International Nuclear Information System (INIS)

    Sakai, Ryutaro; Munakata, Masahiro; Kimura, Hideo

    2007-01-01

    In the safety assessment for a geological disposal of long-lived radioactive waste such as high-level radioactive waste and TRU waste etc, it is important to estimate radionuclide migration to human society associated with groundwater flow. Groundwater flow systems for many domestic areas including Tono Mine, Kamaishi Mine and Horonobe district have been studied, but deep groundwater flow circumstances, and mixing between deep groundwater and shallow groundwater flow system are not well understood. Japan Atomic Energy Agency (JAEA) has started to investigate a sedimentary rock area in the Yoro river basin, in Chiba Prefecture, where the topographic and geological features are relatively simple for mathematical modeling, and hydraulic data as well as data from river and well water are available. Hydro-chemical conditions of the regional groundwater were discussed based on temperature, chemical compositions, isotopic ratios of hydrogen and oxygen, and the isotopic age of radioactive carbon for water samples collected from wells, rivers and springs in the Yoro river basin. It was found that the groundwater system in this basin consists of types of water: Ca-HCO 3 type water, Na-HCO 3 type water and NaCl type water. The Ca-HCO 3 type water is meteoric water cultivated several thousand years or after, the Na-HCO 3 type water is meteoric water cultivated under cold climates several to twenty thousand years ago. The NaCl type water is fossil brine water formed twenty thousand years ago. It was also observed that the Na-HCO 3 type water upwelled at the surface originates from GL-200m to -400m. This observation indicates that the Na-HCO 3 type water upwelled through the Ca-HCO 3 type water area with the both waters partially mixed. (author)

  4. The role of effective discharge in the ocean delivery of particulate organic carbon by small, mountainous river systems

    Science.gov (United States)

    Wheatcroft, R.A.; Goni, M.A.; Hatten, J.A.; Pasternack, G.B.; Warrick, J.A.

    2010-01-01

    Recent research has shown that small, mountainous river systems (SMRS) account for a significant fraction of the global flux of sediment and particulate organic carbon (POC) to the ocean. The enormous number of SMRS precludes intensive studies of the sort conducted on large systems, necessitating development of a conceptual framework that permits cross-system comparison and scaling up. Herein, we introduce the geomorphic concept of effective discharge to the problem of source-to-sink POC transport. This idea recognizes that transport effectiveness is the product of discharge frequency and magnitude, wherein the latter is quantified as a power-law relationship between discharge and load (the 'rating curve'). An analytical solution for effective discharge (Qe) identifies two key variables: the standard deviation of the natural logarithm of discharge (??q), and the rating exponent of constituent i (bi Data from selected SMRS are used to show that for a given river Qe-POC < Qesediment, Qe for different POC constituents (e.g., POCfossil vs. POC(modern) differs in predictable ways, and Qe for a particular constituent can vary seasonally. When coupled with the idea that discharge peaks of small rivers may be coincident with specific oceanic conditions (e.g., large waves, wind from a certain direction) that determine dispersal and burial, these findings have potentially important implications for POC fate on continental margins. Future studies of POC transport in SMRS should exploit the conceptual framework provided herein and seek to identify how constituent-specific effective discharges vary between rivers and respond to perturbations. ?? 2010, by the American Society of Limnology and Oceanography, Inc.

  5. Wells measured for water-levels, unconfined and confined aquifers, Wood River Valley aquifer system, south-central Idaho, October 2006 and October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  6. Changes in the water-table altitude of the unconfined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2006 to October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  7. Changes in the potentiometric-surface altitude of the confined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2006 to October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  8. The CO2 system in rivers of the Australian Victorian Alps: CO2 evasion in relation to system metabolism and rock weathering on multi-annual time scales

    International Nuclear Information System (INIS)

    Hagedorn, Benjamin; Cartwright, Ian

    2010-01-01

    The patterns of dissolved inorganic C (DIC) and aqueous CO 2 in rivers and estuaries sampled during summer and winter in the Australian Victorian Alps were examined. Together with historical (1978-1990) geochemical data, this study provides, for the first time, a multi-annual coverage of the linkage between CO 2 release via wetland evasion and CO 2 consumption via combined carbonate and aluminosilicate weathering. δ 13 C values imply that carbonate weathering contributes ∼36% of the DIC in the rivers although carbonates comprise less than 5% of the study area. Baseflow/interflow flushing of respired C3 plant detritus accounts for ∼50% and atmospheric precipitation accounts for ∼14% of the DIC. The influence of in river respiration and photosynthesis on the DIC concentrations is negligible. River waters are supersaturated with CO 2 and evade ∼27.7 x 10 6 mol/km 2 /a to ∼70.9 x 10 6 mol/km 2 /a CO 2 to the atmosphere with the highest values in the low runoff rivers. This is slightly higher than the global average reflecting higher gas transfer velocities due to high wind speeds. Evaded CO 2 is not balanced by CO 2 consumption via combined carbonate and aluminosilicate weathering which implies that chemical weathering does not significantly neutralize respiration derived H 2 CO 3 . The results of this study have implications for global assessments of chemical weathering yields in river systems draining passive margin terrains as high respiration derived DIC concentrations are not directly connected to high carbonate and aluminosilicate weathering rates.

  9. An experimental seasonal hydrological forecasting system over the Yellow River basin - Part 1: Understanding the role of initial hydrological conditions

    Science.gov (United States)

    Yuan, Xing; Ma, Feng; Wang, Linying; Zheng, Ziyan; Ma, Zhuguo; Ye, Aizhong; Peng, Shaoming

    2016-06-01

    The hydrological cycle over the Yellow River has been altered by the climate change and human interventions greatly during past decades, with a decadal drying trend mixed with a large variation of seasonal hydrological extremes. To provide support for the adaptation to a changing environment, an experimental seasonal hydrological forecasting system is established over the Yellow River basin. The system draws from a legacy of a global hydrological forecasting system that is able to make use of real-time seasonal climate predictions from North American Multimodel Ensemble (NMME) climate models through a statistical downscaling approach but with a higher resolution and a spatially disaggregated calibration procedure that is based on a newly compiled hydrological observation dataset with 5 decades of naturalized streamflow at 12 mainstream gauges and a newly released meteorological observation dataset including 324 meteorological stations over the Yellow River basin. While the evaluation of the NMME-based seasonal hydrological forecasting will be presented in a companion paper to explore the added values from climate forecast models, this paper investigates the role of initial hydrological conditions (ICs) by carrying out 6-month Ensemble Streamflow Prediction (ESP) and reverse ESP-type simulations for each calendar month during 1982-2010 with the hydrological models in the forecasting system, i.e., a large-scale land surface hydrological model and a global routing model that is regionalized over the Yellow River. In terms of streamflow predictability, the ICs outweigh the meteorological forcings up to 2-5 months during the cold and dry seasons, but the latter prevails over the former in the predictability after the first month during the warm and wet seasons. For the streamflow forecasts initialized at the end of the rainy season, the influence of ICs for lower reaches of the Yellow River can be 5 months longer than that for the upper reaches, while such a difference

  10. [Soil physical properties of different hedgerow systems in upper reaches of Yangtze River].

    Science.gov (United States)

    Li, Jian-Qiang; Zhang, Hong-Jiang; Cheng, Jin-Hua; Wang, Xing; Lü, Wen-Xing

    2011-02-01

    Based on the investigation of present hedgerows in the upper reaches of Yangtze River, this paper analyzed the soil physical properties at different positions of three kinds of hedgerows (arbor, shrub, and grass). Comparing with those between the hedgerows, the soil physical properties within the hedgerows improved significantly. The average values of soil porosity, moisture content, saturated conductivity, water stable aggregates content, anti-erodibility index, anti-scouribility index, and clay content within the arbor, grass, and shrub hedgerows increased by 18.8%, 30.1%, 12.9%, 139.3%, 108.3%, 95.9%, and 25.5%, and the soil bulk density and sand content averagely decreased by 17.3% and 9.6%, respectively. The soil properties within the three hedgerows differed significantly. The soil anti-scouribility index within arbor hedgerow was the highest; the soil porosity, moisture content, saturated conductivity, anti-scouribility index, water-stable aggregates content, and clay content within the shrub hedgerow were higher than those within the tree and grass hedgerows; while the soil bulk density within the shrub hedgerows was lower than that within the tree and grass hedgerows. Because of the differences in the affecting degree of hedgerow on the soil physical properties at different positions of the three hedgerow systems, the related parameters presented definite horizontal variation at steep lands within, before, and behind the hedgerows, and between the hedgerows. The coefficient of variation (CV) of soil moisture content, anti-erodibility index, saturated conductivity, and clay content of arbor hedgerows was bigger than that of shrub and grass hedgerows, while the CV of soil bulk density, porosity, water-stable aggregates content, and anti-scouribility index of shrub hedgerow was bigger than that of arbor and grass hedgerows.

  11. Error modeling of DEMs from topographic surveys of rivers using fuzzy inference systems

    Science.gov (United States)

    Bangen, Sara; Hensleigh, James; McHugh, Peter; Wheaton, Joseph

    2016-02-01

    Digital elevation models (DEMs) have become common place in the earth sciences as a tool to characterize surface topography and set modeling boundary conditions. All DEMs have a degree of inherent error that is propagated to subsequent models and analyses. While previous research has shown that DEM error is spatially variable it is often represented as spatially uniform for analytical simplicity. Fuzzy inference systems (FIS) offer a tractable approach for modeling spatially variable DEM error, including flexibility in the number of inputs and calibration of outputs based on survey technique and modeling environment. We compare three FIS error models for DEMs derived from TS surveys of wadeable streams and test them at 34 sites in the Columbia River basin. The models differ in complexity regarding the number/type of inputs and degree of site-specific parameterization. A 2-input FIS uses inputs derived from the topographic point cloud (slope, point density). A 4-input FIS adds interpolation error and 3-D point quality. The 5-input FIS adds bed-surface roughness estimates. Both the 4 and 5-input FIS model output were parameterized to site-specific values. In the wetted channel we found (i) the 5-input FIS resulted in lower mean δz due to including roughness, and (ii) the 4 and 5-input FIS resulted in a higher standard deviation and maximum δz due to the inclusion of site-specific bank heights. All three FIS gave plausible estimates of DEM error, with the two more complicated models offering an improvement in the ability to detect spatially localized areas of DEM uncertainty.

  12. Geographic information systems-based expert system modelling for shoreline sensitivity to oil spill disaster in Rivers State, Nigeria

    Directory of Open Access Journals (Sweden)

    Olanrewaju Lawal

    2017-07-01

    Full Text Available In the absence of adequate and appropriate actions, hazards often result in disaster. Oil spills across any environment are very hazardous; thus, oil spill contingency planning is pertinent, supported by Environmental Sensitivity Index (ESI mapping. However, a significant data gap exists across many low- and middle-income countries in aspect of environmental monitoring. This study developed a geographic information system (GIS-based expert system (ES for shoreline sensitivity to oiling. It focused on the biophysical attributes of the shoreline with Rivers State as a case study. Data on elevation, soil, relative wave exposure and satellite imageries were collated and used for the development of ES decision rules within GIS. Results show that about 70% of the shoreline are lined with swamp forest/mangroves/nympa palm, and 97% have silt and clay as dominant sediment type. From the ES, six ranks were identified; 61% of the shoreline has a rank of 9 and 19% has a rank of 3 for shoreline sensitivity. A total of 568 km out of the 728 km shoreline is highly sensitive (ranks 7–10. There is a clear indication that the study area is a complex mixture of sensitive environments to oil spill. GIS-based ES with classification rules for shoreline sensitivity represents a rapid and flexible framework for automatic ranking of shoreline sensitivity to oiling. It is expected that this approach would kick-start sensitivity index mapping which is comprehensive and openly available to support disaster risk management around the oil producing regions of the country.

  13. The rSPA Processes of River Water-quality Analysis System for Critical Contaminate Detection, Classification Multiple-water-quality-parameter Values and Real-time Notification

    OpenAIRE

    Chalisa VEESOMMAI; Yasushi KIYOKI

    2016-01-01

    The water quality analysis is one of the most important aspects of designing environmental systems. It is necessary to realize detection and classification processes and systems for water quality analysis. The important direction is to lead to uncomplicated understanding for public utilization. This paper presents the river Sensing Processing Actuation processes (rSPA) for determination and classification of multiple-water- parameters in Chaophraya river. According to rSPA processes of multip...

  14. Effects of the Operation of Hungry Horse Dam on the Kokanee Fishery in the Flathead River System, 1983 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fraley, John J.

    1983-11-01

    This study was undertaken to assess the effects of the operation of Hungry Horse Dam on the kokanee fishery in the Flathead River system. This annual report covers the 1982-1983 field season concerning the effects of Hungry Horse operations on kokanee abundance, migration, spawning, egg incubation and fry emergence in the Flathead River system. This report also addresses the expected recovery of the mainstem kokanee population under the flow regime recommended by the Department of Fish, Wildlife and Parks in 1982.

  15. Nutrient dynamics and control of eutrophication in the Marne River system: modelling the role of exchangeable phosphorus

    Science.gov (United States)

    Garnier, Josette; Némery, Julien; Billen, Gilles; Théry, Sylvain

    2005-03-01

    The Marne River (12,762 km 2) is one of the main tributaries of the Seine river, upstream from the City of Paris. Its population counts 2 million inhabitants of which 70% are concentrated in the downstream part of the basin. It has a high industrial activity and an intensive agriculture. The Marne River water supplies drinking water production to a large number of Parisians. A diversion reservoir (350×10 6 m 3) is used mainly to sustain summer low flows. On the basis of field observations and experimental studies, a hydrological and ecological model of this river system was built using the Riverstrahler approach (Billen, G., Garnier, J., Hanset, Ph., 1994. Modelling phytoplankton development in whole drainage networks: the riverstrahler model applied to the seine river system. Hydrobiologia 289, 119-137; Garnier, J., Billen, G., Coste, M., 1995. Seasonnal succession of diatoms and Chlorophyceae in the drainage network of the river Seine: observations and modelling. Limnol. Oceanogr. 40, 750-765). The modelling strategy was to consider separately nine sub-basins and the main branch, to which was coupled a model of the reservoir. The point and diffuse sources of nutrients were analysed over more than 10 years (1991-2001) taking into account the role of exchangeable phosphorus (Némery (2003). Origine et devenir du phosphore dans le continuum aquatique de la Seine, des petis basins à l'estuaire. Rôle du phosphore échangeable sur l'eutrophisation. Thèse Univ. Paris 6, p. 258; Némery, J., Garnier, J., Morel, C., 2004. Phosphorus budget in the Marne watershed (France): urban vs. diffuse sources, dissolved vs. particulate forms. Biogeochemistry (in press)). The model was validated through its ability to reproduce available water quality observations. Different realistic scenarios of future reduction of phosphorus load were tested, in various hydrological conditions (dry and wet years). Phytoplankton development can be slightly reduced by a further 85% abatement of

  16. Climate change and livestock system in mountain: Understanding from Gandaki River basin of Nepal Himalaya.

    Science.gov (United States)

    Dahal, P.; Shrestha, N. S.; Krakauer, N.; Lakhankar, T.; Panthi, J., Sr.; Pradhanang, S.; Jha, A. K.; Shrestha, M.; Sharma, M.

    2015-12-01

    In recent years climate change has emerged as a source of vulnerability for agro-livestock smallholders in Nepal where people are mostly dependent on rain-fed agriculture and livestock farming for their livelihoods. There is a need to understand and predict the potential impacts of climate change on agro-livestock farmer to develop effective mitigation and adaptation strategies. To understand dynamics of this vulnerability, we assess the farmers' perceptions of climate change, analysis of historical and future projections of climatic parameters and try to understand impact of climate change on livestock system in Gandaki River Basin of Central Nepal. During the period of 1981-2012, as reported by the mountain communities, the most serious hazards for livestock system and agriculture are the increasing trend of temperature, erratic rainfall patterns and increase in drought. Poor households without irrigated land are facing greater risks and stresses than well-off people. Analysis of historical climate data also supports the farmer perception. Result shows that there is increasing trend of temperature but no consistent trend in precipitation but a notable finding is that wet areas are getting wetter and dry areas getting drier. Besides that, there is increase in percentage of warm days and nights with decrease in the cool nights and days. The magnitude of the trend is found to be higher in high altitude. Trend of wet days has found to be increasing with decreasing in rainy days. Most areas are characterized by increases in both severity and frequency of drought and are more evident in recent years. The summers of 2004/05/06/09 and winters of 2006/08/09 were the worst widespread droughts and have a serious impact on livestock since 1981. Future projected change in temperature and precipitation obtained from downscaling the data global model by regional climate model shows that precipitation in central Nepal will change by -8% to 12% and temperature will change by 1

  17. Mobility of major and trace elements in a coupled groundwater-surface water system: Merced River, CA

    Science.gov (United States)

    Wildman, R. A.; Domagalski, J. L.; Hering, J. G.

    2004-12-01

    Trace element transport in coupled surface water/groundwater systems is controlled not only by advective flow, but also by redox reactions that affect the partitioning of various elements between mobile and immobile phases. These processes have been examined in the context of a field project conducted by the U.S. Geological Survey (USGS) as part of the National Water-Quality Assessment (NAWQA) program. The Merced River flows out of Yosemite National Park and the Sierra Nevada foothills and into California's Central Valley, where it joins the San Joaquin River. Our field site is approximately twenty river kilometers from the confluence with the San Joaquin River. This deep alluvial plain has minimal topography. Agricultural development characterizes the land surrounding this reach of river; consequently, the hydrology is heavily influenced by irrigation. Riverbed groundwater samples were collected from ten wells aligned in two transects across the river located approximately 100 m apart. The wells were sampled from depths of 0.5 m, 1 m, and 3 m below the sediment-water interface. Groundwater flowpath samples were taken from wells positioned on a path perpendicular to the river and located 100 m, 500 m, and 1000 m from the river. The saturated groundwater system exists from 7 to 40 m below the surface and is confined below by a clay layer. Each well location samples from 3-5 depths in this surface aquifer. Samples were collected in December 2003, March-April, June-July, and October 2004. This served to provide an evenly-spaced sampling frequency over the course of a year, and also to allow observation of trends coinciding with the onset of winter, the spring runoff, and early and late summer irrigation. An initial survey of the elements in the riverbed samples was conducted using Inductively-Coupled Plasma Mass Spectrometry (ICP-MS). Elements for further study were selected based on variability in this survey, either with respect to depth or location, as well as to

  18. Creation of of the National GIS system «The geography and geo-ecology of rivers and river basins of European Part of Russia: Spatial Analysis, Assessment and Modeling»

    Science.gov (United States)

    Yermolaev, Oleg; Gilyazov, Albert; Ivanov, Maksim; Kharchenko, Sergei; Maltsev, Kirill; Mozzherin, Vadim; Muharamova, Svetlana; Shynbergenov, Erlan

    2016-04-01

    Problem-oriented geographic information system and geoportal «The geography and geo-ecology of rivers and river basins of European Part of Russia» is proposed to form the base for investigations concerned to assessment and prognosis of geo-ecological state of river basins belonging to the European Russia (approx. 4 million of sq. km. in total). This large part of Russia concentrates the predominant part of country's population, industrial and agricultural potential. Actuality of assessment and prognosis of the environmental state for the chosen territory is caused by the increasing anthropogenic influence onto the basin geosystems of Russia and triggering negative riverbed-erosion processes, shifts of river runoff regimes, and lack of drinking water resources. These problems are demanding for examination of the response of the basin geosystems from various landscape zones to the anthropogenic impact, and the climate change, for understanding, predicting and managing streamflow. Assessment of river basins and changes occurring in them is based on a complex spatial-temporal analysis of long-term monitoring data, the use of remote sensing and maps of state surveys. All available geo-information will be integrated into the multi-function, problem-oriented GIS. Proposed approaches of investigation: cartographic and geoinformational methods, automated procedures of territory zoning, automated procedures of interpretation of remote sensing images, modern statistical methods of analysis (geostatistics, statistical and mathematical models). Study area: the European Part of Russia (except for mountainous areas). Scale studies (level of spatial detail): Regional (corresponding to a scale 1: 1 000 000). The object of study: Geosystems river basins. Subject of study: - The development of GIS; - Analysis of the spatial and temporal relationships of river runoff; - Quantitative assessment of the current geo-ecological state of European Russia river basins. Scientific novelty of

  19. Investigation of isotopes and hydrological processes in Indus river system, Pakistan

    International Nuclear Information System (INIS)

    Manzoor Ahmad, M; Latif, Z.; Tariq, J.A.; Akram, W.; Rafique, M.

    2009-11-01

    Indus River, one of the longest rivers in the World, has five major eastern tributaries viz. Bias, Sutlej, Ravi, Chenab and Jhelum) while many small rivers join it from the right side among which Kabul River is the biggest with its main tributaries, the Swat, Panjkora and Kunar. All these main rivers are perennial and originate from the mountains. Basic sources of these rivers are snow melt, rainfall and under certain conditions seepage from the formations. Different water sources are labeled with different isotope signatures which are used as fingerprints for identifying source and movement of water, geochemical and/or hydrological processes, and dynamics (age of water). Monitoring of isotopes in rivers can also enhance understanding of the water cycle of large river basins and to assess impacts of environmental and climatic changes on the water cycle. Therefore, a national network of suitable stations was established for isotopic monitoring of river waters in Indus Basin with specific objectives to study temporal variations of isotopes (/sup 2/H, /sup 18/O and /sup 3/H), understand water cycles and hydrological processes in the catchments of these rivers, and to develop comprehensive database to support future isotope-based groundwater studies in the basin on recharge mechanism, water balance and monitoring of ongoing environmental changes. Water samples were collected during 2002-2006 on monthly basis from more than 20 stations at the major rivers and analyzed for /sup 18/O, /sup 2/H and /sup 3/H isotopes. Headwaters of main Indus River (Hunza, Gilgit and Kachura tributaries), which are generally snow melt, have the most depleted values of delta /sup 18/O (-14.5 to -11.0%) and delta /sup 2/H ( 106.1 to -72.6%) due to precipitation at very high altitude and very low temperatures. Generally these waters have low d-excess showing that the moisture source is from Indian Ocean. High d-excess of some winter (November-February) samples from Hunza and Gilgit indicates

  20. Present and potential contamination of the river system at Mayak PA

    International Nuclear Information System (INIS)

    Amundsen, I.; Strand, P.; Malyshev, S.V.

    1999-01-01

    Studies of mobility of radionuclides in environmental samples at Mayak show that strontium-90 is the most mobile of the relevant radionuclides and hence can be transported by river water. Cesium-137, although less mobile, can also be transported over large distances. The main source of river contamination today is the remobilization of strontium-90 from the boggy area at the upper reaches of Techa River (Asanov Swamp). Regular Russian monitoring programmes show that levels of strontium-90 leaving the swamp are three times higher than levels entering the swamp. The net outflow from the Swamp is now estimated to 2-3% of the 37 TBq of strontium-90 located in the swamp, 1992 levels

  1. Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Robert K Podgorney; Thomas R. Wood; Travis L McLing; Gregory Mines; Mitchell A Plummer; Michael McCurry; Ahmad Ghassemi; John Welhan; Joseph Moore; Jerry Fairley; Rachel Wood

    2013-09-01

    The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associated with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).

  2. Building the ensemble flood prediction system by using numerical weather prediction data: Case study in Kinu river basin, Japan

    Science.gov (United States)

    Ishitsuka, Y.; Yoshimura, K.

    2016-12-01

    Floods have a potential to be a major source of economic or human damage caused by natural disasters. Flood prediction systems were developed all over the world and to treat the uncertainty of the prediction ensemble simulation is commonly adopted. In this study, ensemble flood prediction system using global scale land surface and hydrodynamic model was developed. The system requests surface atmospheric forcing and Land Surface Model, MATSIRO, calculates runoff. Those generated runoff is inputted to hydrodynamic model CaMa-Flood to calculate discharge and flood inundation. CaMa-Flood can simulate flood area and its fraction by introducing floodplain connected to river channel. Forecast leadtime was set 39hours according to forcing data. For the case study, the flood occurred at Kinu river basin, Japan in 2015 was hindcasted. In a 1761 km² Kinu river basin, 3-days accumulated average rainfall was 384mm and over 4000 people was left in the inundated area. Available ensemble numerical weather prediction data at that time was inputted to the system in a resolution of 0.05 degrees and 1hour time step. As a result, the system predicted the flood occurrence by 45% and 84% at 23 and 11 hours before the water level exceeded the evacuation threshold, respectively. Those prediction lead time may provide the chance for early preparation for the floods such as levee reinforcement or evacuation. Adding to the discharge, flood area predictability was also analyzed. Although those models were applied for Japan region, this system can be applied easily to other region or even global scale. The areal flood prediction in meso to global scale would be useful for detecting hot zones or vulnerable areas over each region.

  3. Preliminary uncertainty analysis for the doses estimated using the Techa River dosimetry system - 2000

    International Nuclear Information System (INIS)

    Napier, Bruce A.; Shagina, N B.; Degteva, M O.; Tolstykh, E I.; Vorobiova, M I.; Anspaugh, L R.

    2000-01-01

    The Mayak Production Association (MPA) was the first facility in the former Soviet Union for the production of plutonium. As a result of failures in the technological processes in the late 1940's and early 1950's, members of the public were exposed via discharge of about 1017 Bq of liquid wastes into the Techa River (1949-1956). Residents of many villages downstream on the Techa River were exposed via a variety of pathways; the more significant included drinking of water from the river and external gamma exposure due to proximity to sediments and shoreline. The specific aim of this project is to enhance the reconstruction of external and internal radiation doses for individuals in the Extended Techa River Cohort. The purpose of this paper is to present the approaches being used to evaluate the uncertainty in the calculated individual doses and to provide example and representative results of the uncertainty analyses. The magnitude of the uncertainties varies depending on location and time of individual exposure, but the results from reference-individual calculations indicate that for external doses, the range of uncertainty is about factors of four to five. For internal doses, the range of uncertainty depends on village of residence, which is actually a surrogate for source of drinking water. For villages with single sources of drinking water (river or well), the ratio of the 97.5th percentile-to 2.5th percentile estimates can be a factor of 20 to 30. For villages with mixed sources of drinking water (river and well), the ratio of the range can be over two orders of magnitude

  4. Impacts on river systems under 2 °C warming: Bangladesh Case Study

    Directory of Open Access Journals (Sweden)

    A.M. Zaman

    2017-08-01

    Full Text Available Bangladesh is particularly vulnerable due to the combined impacts of sea level rise, rainfall and runoff variability, and changes in cyclone patterns. This paper presents the application of an integrated modelling framework used to investigate climate change impacts when global averaged surface temperature increases by 2 °C from pre-industrial level. The modelling framework consists of four model types: Regional climate model (RCM, Ganges-Brahmaputra-Meghna (GBM Basin model, Southwest Region Hydrodynamic and Salinity models. Bias corrected climate results (temperature, precipitation and evapotranspiration from SMHI-RCA and CNRM-ARPEGE RCMs for (Representative Concentration Pathway RCP 8.5 scenario were used. The uniqueness of this research study was that the same GCM (General Circulation Model/RCM results were used across the whole modelling chain. In Bagerhat District, it was found that river salinity can increase by about 0.5 to 2 PPT (parts per thousand. Also, the duration of river salinity above 1 PPT can double in some locations. In Kushtia District, in the months of November and December river flows may increase but not sufficiently in other months due to lack of connectivity to the Ganges River. In the flood-prone Shariatpur District, average wet season water level increases up to 0.2 to 0.5 m. Also, duration of flood levels above the established danger level can double in some locations. Finally, this study found that dredging of the mouth of the Gorai River (in Kushtia District is an effective adaptation measure. The dredging ensures connectivity to the Ganges River, which allows freshwater to enter the Southwest region of Bangladesh, which not only alleviates drought conditions in Kushtia Distract but also helps push back saline intrusion.

  5. Daily river flow prediction based on Two-Phase Constructive Fuzzy Systems Modeling: A case of hydrological - meteorological measurements asymmetry

    Science.gov (United States)

    Bou-Fakhreddine, Bassam; Mougharbel, Imad; Faye, Alain; Abou Chakra, Sara; Pollet, Yann

    2018-03-01

    Accurate daily river flow forecast is essential in many applications of water resources such as hydropower operation, agricultural planning and flood control. This paper presents a forecasting approach to deal with a newly addressed situation where hydrological data exist for a period longer than that of meteorological data (measurements asymmetry). In fact, one of the potential solutions to resolve measurements asymmetry issue is data re-sampling. It is a matter of either considering only the hydrological data or the balanced part of the hydro-meteorological data set during the forecasting process. However, the main disadvantage is that we may lose potentially relevant information from the left-out data. In this research, the key output is a Two-Phase Constructive Fuzzy inference hybrid model that is implemented over the non re-sampled data. The introduced modeling approach must be capable of exploiting the available data efficiently with higher prediction efficiency relative to Constructive Fuzzy model trained over re-sampled data set. The study was applied to Litani River in the Bekaa Valley - Lebanon by using 4 years of rainfall and 24 years of river flow daily measurements. A Constructive Fuzzy System Model (C-FSM) and a Two-Phase Constructive Fuzzy System Model (TPC-FSM) are trained. Upon validating, the second model has shown a primarily competitive performance and accuracy with the ability to preserve a higher day-to-day variability for 1, 3 and 6 days ahead. In fact, for the longest lead period, the C-FSM and TPC-FSM were able of explaining respectively 84.6% and 86.5% of the actual river flow variation. Overall, the results indicate that TPC-FSM model has provided a better tool to capture extreme flows in the process of streamflow prediction.

  6. Assessing landscape and contaminant point-sources as spatial determinants of water quality in the Vermilion River System, Ontario, Canada.

    Science.gov (United States)

    Strangway, Carrie; Bowman, Michelle F; Kirkwood, Andrea E

    2017-10-01

    The Vermilion River and major tributaries (VRMT) are located in the Vermilion watershed (4272 km 2 ) in north-central Ontario, Canada. This watershed not only is dominated by natural land-cover but also has a legacy of mining and other development activities. The VRMT receive various point (e.g., sewage effluent) and non-point (e.g., mining activity runoff) inputs, in addition to flow regulation features. Further development in the Vermilion watershed has been proposed, raising concerns about cumulative impacts to ecosystem health in the VRMT. Due to the lack of historical assessments on riverine-health in the VRMT, a comprehensive suite of water quality parameters was collected monthly at 28 sites during the ice-free period of 2013 and 2014. Canadian water quality guidelines and objectives were not met by an assortment of water quality parameters, including nutrients and metals. This demonstrates that the VRMT is an impacted system with several pollution hotspots, particularly downstream of wastewater treatment facilities. Water quality throughout the river system appeared to be influenced by three distinct land-cover categories: forest, barren, and agriculture. Three spatial pathway models (geographical, topographical, and river network) were employed to assess the complex interactions between spatial pathways, stressors, and water quality condition. Topographical landscape analyses were performed at five different scales, where the strongest relationships between water quality and land-use occurred at the catchment scale. Sites on the main stem of Junction Creek, a tributary impacted by industrial and urban development, had above average concentrations for the majority of water quality parameters measured, including metals and nitrogen. The river network pathway (i.e., asymmetric eigenvector map (AEM)) and topographical feature (i.e., catchment land-use) models explained most of the variation in water quality (62.2%), indicating that they may be useful tools in

  7. Siphateles (Gila) sp. and Catostomus sp. from the Pleistocene OIS-6 Lake Gale, Panamint Valley, Owens River system, California

    Science.gov (United States)

    Jayko, A. S.; Forester, R. M.; Smith, G. R.

    2014-12-01

    Panamint Valley lies within the Owens River system which linked southeastern Sierra Nevada basins between Mono Lake and Death Valley during glacial-pluvial times. Previous work indicates that late Pleistocene glacial-pluvial Lake Gale, Panamint Valley was an open system during OIS-6, a closed ground water supported shallow lake during OIS-4, and the terminal lake basin for the Owens River system during OIS-2. We here report the first occurrence of fossil fish from the Plio-Pleistocene Panamint basin. Fish remains are present in late Pleistocene OIS-6 nearshore deposits associated with a highstand that was spillway limited at Wingate Wash. The deposits contain small minnow-sized remains from both Siphateles or Gila sp. (chubs) and Catostomus sp. (suckers) from at least four locations widely dispersed in the basin. Siphateles or Gila sp. and Catostomus are indigenous to the Pleistocene and modern Owens River system, in particular to the historic Owens Lake area. Cyprinodon (pupfish) and Rhinichthys (dace) are known from the modern Amargosa River and from Plio-Pleistocene deposits in Death Valley to the east. The late Pleistocene OIS-6 to OIS-2 lacustrine and paleohydrologic record in Panamint basin is interpreted from ostracod assemblages, relative abundance of Artemia sp. pellets, shallow water indicators including tufa fragments, ruppia sp. fragments and the relative abundance of charophyte gyrogonites obtained from archived core, as well as faunal assemblages from paleoshoreline and nearshore deposits. The OIS-4 groundwater supported shallow saline lake had sufficiently low ratios of alkalinity to calcium (alk/Ca) to support the occurrence of exotic Elphidium sp. (?) foraminfera which are not observed in either OIS-2 or OIS-6 lacustrine deposits. The arrival of Owens River surface water into Panamint Basin during OIS-2 is recorded by the first appearance of the ostracod Limnocythere sappaensis at ~27 m depth in an ~100 m archived core (Smith and Pratt, 1957) which

  8. Assessment of river plan changes in Terengganu River using RS ...

    African Journals Online (AJOL)

    River is one of the most multifarious regular systems. The database can help in the appropriate understanding of river plan change and know the stand of Terengganu River, Malaysia. The data collected from Geographic Information System (GIS) and Remote Sensing (RS) database. Analysis of Types of Lateral Activity ...

  9. A combined linear optimisation methodology for water resources allocation in Alfeios River Basin (Greece) under uncertain and vague system conditions

    Science.gov (United States)

    Bekri, Eleni; Yannopoulos, Panayotis; Disse, Markus

    2013-04-01

    In the present study, a combined linear programming methodology, based on Li et al. (2010) and Bekri et al. (2012), is employed for optimizing water allocation under uncertain system conditions in the Alfeios River Basin, in Greece. The Alfeios River is a water resources system of great natural, ecological, social and economic importance for Western Greece, since it has the longest and highest flow rate watercourse in the Peloponnisos region. Moreover, the river basin was exposed in the last decades to a plethora of environmental stresses (e.g. hydrogeological alterations, intensively irrigated agriculture, surface and groundwater overexploitation and infrastructure developments), resulting in the degradation of its quantitative and qualitative characteristics. As in most Mediterranean countries, water resource management in Alfeios River Basin has been focused up to now on an essentially supply-driven approach. It is still characterized by a lack of effective operational strategies. Authority responsibility relationships are fragmented, and law enforcement and policy implementation are weak. The present regulated water allocation puzzle entails a mixture of hydropower generation, irrigation, drinking water supply and recreational activities. Under these conditions its water resources management is characterised by high uncertainty and by vague and imprecise data. The considered methodology has been developed in order to deal with uncertainties expressed as either probability distributions, or/and fuzzy boundary intervals, derived by associated α-cut levels. In this framework a set of deterministic submodels is studied through linear programming. The ad hoc water resources management and alternative management patterns in an Alfeios subbasin are analyzed and evaluated under various scenarios, using the above mentioned methodology, aiming to promote a sustainable and equitable water management. Li, Y.P., Huang, G.H. and S.L., Nie, (2010), Planning water resources

  10. Characterising physical habitats and fluvial hydromorphology: A new system for the survey and classification of river geomorphic units

    Science.gov (United States)

    Belletti, Barbara; Rinaldi, Massimo; Bussettini, Martina; Comiti, Francesco; Gurnell, Angela M.; Mao, Luca; Nardi, Laura; Vezza, Paolo

    2017-04-01

    Geomorphic units are the elementary spatial physical features of the river mosaic at the reach scale that are nested within the overall hydromorphological structure of a river and its catchment. Geomorphic units also constitute the template of physical habitats for the biota. The assessment of river hydromorphological conditions is required by the European Water Framework Directive 2000/60 (WFD) for the classification and monitoring of water bodies and is useful for establishing links between their physical and biological conditions. The spatial scale of geomorphic units, incorporating their component elements and hydraulic patches, is the most appropriate to assess these links. Given the weakness of existing methods for the characterisation and assessment of geomorphic units and physical habitats (e.g., lack of a well-defined spatiotemporal framework, terminology issues, etc.), a new system for the survey and characterisation of river geomorphic units is needed that fits within a geomorphologically meaningful framework. This paper presents a system for the survey and classification of geomorphic units (GUS, geomorphic units survey and classification system) aimed at characterising physical habitats and stream morphology. The method is embedded into a multiscale, hierarchical framework for the analysis of river hydromorphological conditions. Three scales of geomorphic units are considered (i.e., macro-units, units, sub-units), organised within two spatial domains (i.e., bankfull channel and floodplain). Different levels of characterisation can be applied, depending on the aims of the survey: broad, basic, and detailed level. At each level, different, complementary information is collected. The method is applied by combining remote sensing analysis and field survey, according to the spatial scale and the level of description required. The method is applicable to most of fluvial conditions, and has been designed to be flexible and adaptable according to the

  11. Developing Permanent Vegetable Production Systems for the Red River Delta, Vietnam

    NARCIS (Netherlands)

    Pham Thi Thu Huong, Huong; Everaarts, A.P.; Neeteson, J.J.; Struik, P.C.

    2012-01-01

    The year-round demand for commercially produced vegetables in South-East Asia is growing rapidly because of ongoing population growth and urbanisation. Vegetable production plays an important role in the rural economy of the Red River Delta, the economic centre of northern Vietnam. Field vegetables,

  12. Ranging behaviour and socio-biology of Eurasian otters (Lutra lutra) on lowland mesotrophic river systems

    NARCIS (Netherlands)

    Neill, Lughaidh O.; Veldhuizen, Tijmen; de Jongh, Addy; Rochford, John

    We examined the spatial structure and sociobiology of a native wild population of Eurasian otters (Lutra lutra) on mesotrophic rivers in a mild temperate climate. Radio-tracking of 20 individuals revealed exclusive intra-sexual adult home-ranges. Adult female homeranges (7.5 km, SD = 1.5 km, n = 7)

  13. A Review of Flood-Related Storage and Remobilization of Heavy Metal Pollutants in River Systems

    Czech Academy of Sciences Publication Activity Database

    Ciszewski, D.; Matys Grygar, Tomáš

    2016-01-01

    Roč. 227, č. 7 (2016), s. 227-239 ISSN 0049-6979 R&D Projects: GA ČR(CZ) GA15-00340S Institutional support: RVO:61388980 Keywords : River * Sediment * Heavy metals * Mobilization * Pollution Subject RIV: DD - Geochemistry Impact factor: 1.702, year: 2016

  14. Ecological risk assessment of radionuclides in the Columbia River System ''a historical assessment''

    International Nuclear Information System (INIS)

    Friant, S.L.; Brandt, C.A.; Probasco, K.M.

    1993-01-01

    The US Department of Energy's (DOE) Hanford Site in southcentral Washington State has been the location of nuclear production activities since 1943. Radioactive effluents were discharged to the Columbia River, which runs through the northern portion of the Site and borders it on the east (the Hanford Reach). The assessment was conducted using historical Hanford Site monitoring data for the aquatic environment of the Columbia River over the time period from 1963 to 1964. The time period was chosen because it was then that peak production of nuclear material was occurring and the maximum number of reactors were operational. Exposure characterization consisted of measured radioactivity in water, sediments, and biota. Two approaches were used in assessing ecological risk to Columbia River organisms. In the first approach, environmental exposure data were used to calculate internal dose to a variety of aquatic organisms, including the most sensitive receptors (fish). In the second approach, measured tissue concentrations were used for selected aquatic organisms to calculate organism internal dose directly. Organism dose was used to assess potential toxic effects and assess regulatory compliance. Risk characterization was developed by comparing dose levels in fish and other organisms found in the Columbia River to known concentrations through a hazard quotient for acute dose and developmental effects

  15. Comparison of index systems for rating water quality in intermittent rivers.

    Science.gov (United States)

    Perrin, Jean-Louis; Salles, Christian; Bancon-Montigny, Chrystelle; Raïs, Naoual; Chahinian, Nanée; Dowse, Lauryan; Rodier, Claire; Tournoud, Marie-George

    2018-01-08

    Water quality indexes (WQI) are a practical way to evaluate and compare the level of chemical contamination of different water bodies and to spatially and temporally compare levels of pollution. The purpose of this study was to check if these indexes are appropriate for intermittent rivers under arid and semi-arid climates. A literature review enabled the comparison of 25 water quality indexes to discern their capability to evaluate spatial (inter and intra catchment) and temporal (high and low water flow conditions) variations in water quality in three Mediterranean intermittent rivers: the River Vène (France) and the Oued Fez and the River Sebou (Morocco). Hierarchical cluster analysis identified groups of WQI with similar behavior and brought to light the 6 most distinguishing indexes. Whatever the hydrological conditions at the two sites, both the ME-MCATUHE and NCS indexes, which were developed for Morocco and Greece, and the CCMEWQI and BCWQI indexes, which were developed for non-arid or semi-arid zones, gave appropriate water quality evaluations.

  16. Securing the Value of the Federal Columbia River Power System, Keeping Current, June 1998, Issue 98.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1998-06-01

    This report focuses on issues which will enhance the value of the Columbia River for the future. Many important decisions must be made about the Bonneville Power Administration in the coming months. These issues include the following: cost management; future fish and wildlife funding; power markets, revenues and subscription; transmission issues; and risk management.

  17. Characterising the hydrological regime of an ungauged temporary river system: a case study.

    Science.gov (United States)

    D'Ambrosio, Ersilia; De Girolamo, Anna Maria; Barca, Emanuele; Ielpo, Pierina; Rulli, Maria Cristina

    2017-06-01

    Temporary streams are characterised by specific hydrological regimes, which influence ecosystem processes, groundwater and surface water interactions, sediment regime, nutrient delivery, water quality and ecological status. This paper presents a methodology to characterise and classify the regime of a temporary river in Southern Italy based on hydrological indicators (HIs) computed with long-term daily flow records. By using a principal component analysis (PCA), a set of non-redundant indices were identified describing the main characteristics of the hydrological regime in the study area. The indicators identified were the annual maximum 30- and 90-day mean (DH4 and DH5), the number of zero flow days (DL6), flow permanence (MF) and the 6-month seasonal predictability of dry periods (SD6). A methodology was also tested to estimate selected HIs in ungauged river reaches. Watershed characteristics such as catchment area, gauging station elevation, mean watershed slope, mean annual rainfall, land use, soil hydraulic conductivity and available water content were derived for each site. Selected indicators were then linked to the catchment characteristics using a regression analysis. Finally, MF and SD6 were used to classify the river reaches on the basis of their degree of intermittency. The methodology presented in this paper constitutes a useful tool for ecologists and water resource managers in the Water Framework Directive implementation process, which requires a characterisation of the hydrological regime and a 'river type' classification for all water bodies.

  18. Catchment2Coast: A systems approach to coupled river-coastal ecosystem science and management

    CSIR Research Space (South Africa)

    Monteiro, PMS (ed.)

    2009-07-01

    Full Text Available European and three southern African countries, including Mozambique, where the project was conducted. Catchment2Coast has tackled a problem which is at the interface of many different domains: between river and the sea, between bay and ocean, between water...

  19. Keeping current, June 1998. Issues 98: Securing the value of the federal Columbia River power system

    International Nuclear Information System (INIS)

    1998-06-01

    This report focuses on issues which will enhance the value of the Columbia River for the future. Many important decisions must be made about the Bonneville Power Administration in the coming months. These issues include the following: cost management; future fish and wildlife funding; power markets, revenues and subscription; transmission issues; and risk management

  20. Structural Control and Human Impacts on the Opava River Fluvial System, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Hrádek, Mojmír; Loučková, B.

    -, č. 6 (2009), s. 23-30 ISSN 1897-5100 R&D Projects: GA AV ČR IAA300860903 Institutional research plan: CEZ:AV0Z30860518 Keywords : structural control * gold mining * alluvial placers * floods * wandering river Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  1. Evaluation of an operational water cycle prediction system for the Laurentian Great Lakes and St. Lawrence River

    Science.gov (United States)

    Fortin, Vincent; Durnford, Dorothy; Smith, Gregory; Dyck, Sarah; Martinez, Yosvany; Mackay, Murray; Winter, Barbara

    2017-04-01

    Environment and Climate Change Canada (ECCC) is implementing new numerical guidance products based on fully coupled numerical models to better inform the public as well as specialized users on the current and future state of various components of the water cycle, including stream flow and water levels. Outputs from this new system, named the Water Cycle Prediction System (WCPS), have been available for the Great Lakes and St. Lawrence River watershed since June 2016. WCPS links together ECCC's weather forecasting model, GEM, the 2-D ice model C-ICE, the 3-D lake and ocean model NEMO, and a 2-D hydrological model, WATROUTE. Information concerning the water cycle is passed between the models at intervals varying from a few minutes to one hour. It currently produces two forecasts per day for the next three days of the complete water cycle in the Great Lakes region, the largest freshwater lake system in the world. Products include spatially-varying precipitation, evaporation, river discharge, water level anomalies, surface water temperatures, ice coverage, and surface currents. These new products are of interest to water resources and management authority, flood forecasters, hydroelectricity producers, navigation, environmental disaster managers, search and rescue teams, agriculture, and the general public. This presentation focuses on the evaluation of various elements forecasted by the system, and weighs the advantages and disadvantages of running the system fully coupled.

  2. River engineering

    NARCIS (Netherlands)

    De Vries, M.

    1993-01-01

    One dimension models - basic eauations, analytical models, numberical models. One dimensional models -suspended load, roughness and resistance of river beds. Solving river problems - tools, flood mitigation, bank protection.

  3. Comparison of seven water quality assessment methods for the characterization and management of highly impaired river systems.

    Science.gov (United States)

    Ji, Xiaoliang; Dahlgren, Randy A; Zhang, Minghua

    2016-01-01

    In the context of water resource management and pollution control, the characterization of water quality impairments and identification of dominant pollutants are of critical importance. In this study, water quality impairment was assessed on the basis of 7 hydrochemical variables that were monitored bimonthly at 17 sites in 2010 along the rural-suburban-urban portion of the Wen-Rui Tang River in eastern China. Seven methods were used to assess water quality in the river system. These methods included single-factor assessment, water quality grading, comprehensive pollution index, the Nemerow pollution index, principle component analysis, fuzzy comprehensive evaluation, and comprehensive water quality identification index. Our analysis showed that the comprehensive water quality identification index was the best method for assessing water quality in the Wen-Rui Tang River due to its ability to effectively characterize highly polluted waters with multiple impairments. Furthermore, a guideline for the applications of these methods was presented based on their characteristics and efficacy. Results indicated that the dominant pollutant impairing water quality was total nitrogen comprised mainly of ammonium. The temporal variation of water quality was closely related to precipitation as a result of dilution. The spatial variation of water quality was associated with anthropogenic influences (urban, industrial, and agriculture activities) and water flow direction (downstream segments experiencing cumulative effects of upstream inputs). These findings provide valuable information and guidance for water pollution control and water resource management in highly polluted surface waters with multiple water quality impairments in areas with rapid industrial growth and urbanization.

  4. Raman spectroscopy of the system iron(III)-sulfuric acid-water: an approach to Tinto River's (Spain) hydrogeochemistry.

    Science.gov (United States)

    Sobron, P; Rull, F; Sobron, F; Sanz, A; Medina, J; Nielsen, C J

    2007-12-15

    Acid mine drainage is formed when pyrite (FeS(2)) is exposed and reacts with air and water to form sulfuric acid and dissolved iron. Tinto River (Huelva, Spain) is an example of this phenomenon. In this study, Raman spectroscopy has been used to investigate the speciation of the system iron(III)-sulfuric acid-water as an approach to Tinto River's aqueous solutions. The molalities of sulfuric acid (0.09 mol/kg) and iron(III) (0.01-1.5 mol/kg) were chosen to mimic the concentration of the species in Tinto River waters. Raman spectra of the solutions reveal a strong iron(III)-sulfate inner-sphere interaction through the nu(1) sulfate band at 981 cm(-1) and its shoulder at 1005 cm(-1). Iron(III)-sulfate interaction may also be facilitated by hydrogen bonds and monitored in the Raman spectra through the symmetric stretching band of bisulfate at 1052 cm(-1) and a shoulder at 1040 cm(-1). Other bands in the low-frequency region of the Raman spectra are attributed to the hydrogen-bonded complexes formation as well.

  5. Modeling of Regionalized Emissions (MoRE into Water Bodies: An Open-Source River Basin Management System

    Directory of Open Access Journals (Sweden)

    Stephan Fuchs

    2017-03-01

    Full Text Available An accurate budget of substance emissions is fundamental for protecting freshwater resources. In this context, the European Union asks all member states to report an emission inventory of substances for river basins. The river basin management system MoRE (Modeling of Regionalized Emissions was developed as a flexible open-source instrument which is able to model pathway-specific emissions and river loads on a catchment scale. As the reporting tool for the Federal Republic of Germany, MoRE is used to model annual emissions of nutrients, heavy metals, micropollutants like polycyclic aromatic hydrocarbons (PAH, Bis(2-ethylhexylphthalate (DEHP, and certain pharmaceuticals. Observed loads at gauging stations are used to validate the calculated emissions. In addition to its balancing capabilities, MoRE can consider different variants of input data and quantification approaches, in order to improve the robustness of different modeling approaches and to evaluate the quality of different input data. No programming skills are required to set up and run the model. Due to its flexible modeling base, the effect of reduction measures can be assessed. Within strategic planning processes, this is relevant for the allocation of investments or the implementation of specific measures to reduce the overall pollutant emissions into surface water bodies and therefore to meet the requirements of water policy.

  6. Digital Mapping and Environmental Characterization of National Wild and Scenic River Systems

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A [ORNL; Bosnall, Peter [National Park Service; Hetrick, Shelaine L [ORNL; Smith, Brennan T [ORNL

    2013-09-01

    Spatially accurate geospatial information is required to support decision-making regarding sustainable future hydropower development. Under a memorandum of understanding among several federal agencies, a pilot study was conducted to map a subset of National Wild and Scenic Rivers (WSRs) at a higher resolution and provide a consistent methodology for mapping WSRs across the United States and across agency jurisdictions. A subset of rivers (segments falling under the jurisdiction of the National Park Service) were mapped at a high resolution using the National Hydrography Dataset (NHD). The spatial extent and representation of river segments mapped at NHD scale were compared with the prevailing geospatial coverage mapped at a coarser scale. Accurately digitized river segments were linked to environmental attribution datasets housed within the Oak Ridge National Laboratory s National Hydropower Asset Assessment Program database to characterize the environmental context of WSR segments. The results suggest that both the spatial scale of hydrography datasets and the adherence to written policy descriptions are critical to accurately mapping WSRs. The environmental characterization provided information to deduce generalized trends in either the uniqueness or the commonness of environmental variables associated with WSRs. Although WSRs occur in a wide range of human-modified landscapes, environmental data layers suggest that they provide habitats important to terrestrial and aquatic organisms and recreation important to humans. Ultimately, the research findings herein suggest that there is a need for accurate, consistent, mapping of the National WSRs across the agencies responsible for administering each river. Geospatial applications examining potential landscape and energy development require accurate sources of information, such as data layers that portray realistic spatial representations.

  7. A data assimilation system combining CryoSat-2 data and hydrodynamic river models

    Science.gov (United States)

    Schneider, Raphael; Ridler, Marc-Etienne; Godiksen, Peter Nygaard; Madsen, Henrik; Bauer-Gottwein, Peter

    2018-02-01

    There are numerous hydrologic studies using satellite altimetry data from repeat-orbit missions such as Envisat or Jason over rivers. This study is one of the first examples for the combination of altimetry from drifting-ground track satellite missions, namely CryoSat-2, with a river model. CryoSat-2 SARIn Level 2 data is used to improve a 1D hydrodynamic model of the Brahmaputra River in South Asia, which is based on the Saint-Venant equations for unsteady flow and set up in the MIKE HYDRO River software. After calibration of discharge and water level the hydrodynamic model can accurately and bias-free represent the spatio-temporal variations of water levels. A data assimilation framework has been developed and linked with the model. It is a flexible framework that can assimilate water level data which are arbitrarily distributed in time and space. The setup has been used to assimilate CryoSat-2 water level observations over the Assam valley for the years 2010-2015, using an Ensemble Transform Kalman Filter (ETKF). Performance improvement in terms of discharge forecasting skill was then evaluated. For experiments with synthetic CryoSat-2 data the continuous ranked probability score (CRPS) was improved by up to 32%, whilst for experiments assimilating real data it could be improved by up to 10%. The developed methods are expected to be transferable to other rivers and altimeter missions. The model setup and calibration is based almost entirely on globally available remote sensing data.

  8. Spatial variation of macroinvertebrate community structure and associated environmental conditions in a subtropical river system of southeastern China

    Directory of Open Access Journals (Sweden)

    Fu L.

    2015-01-01

    Full Text Available Knowledge of macroinvertebrate distributions and associated environmental drivers in subtropical Asian rivers is relatively scarce. To fill this knowledge gap, we examined the spatial variation of macroinvertebrate community structure and associated environmental conditions in a subtropical river system, the Dongjiang River Basin, in southeastern China. A total of 70 families and 9 classes of macroinvertebrates were identified from 74 sites sampled in January 2013. Our study has the following findings: (1 a distinct spatial differentiation of macroinvertebrate communities was present in the Dongjiang River Basin indicated by non-metric multidimensional scaling (NMDS, which corresponded to the northern region (NR, middle region (MR, and southern region (SR gradient; (2 ANOVAs showed that diversity indices (total taxa, Margalef index and the Shannon diversity index, biotic indices (richness of EPT, percentage of EPT, and family biotic index and most of the studied environmental conditions (elevation, slope, steam order, water temperature, electrical conductivity, dissolved oxygen, pH, substrates, ammoniacal nitrogen, total phosphorus, percentage of urban land, percentage of rural land, and percentage of forest land differed significantly among the three regions and a degradation gradient was observed in the NR–MR–SR direction; (3 Canonical correspondence analysis (CCA revealed that NR sites were characterized by steep slope and coarse substrate, MR sites were characterized by high water temperatures and shallow slopes, and SR sites were primarily characterized by high total phosphorus and ammoniacal nitrogen concentrations; and (4 the Indicator Species Analysis, in conjunction with CCA analysis indicated that the most representative indicator taxon is Tipulidae for NR, Semisulcospira sp. for MR, and Branchiura sp. for SR.

  9. Decision support system for optimally managing water resources to meet multiple objectives in the Savannah River Basin

    Science.gov (United States)

    Roehl, Edwin A.; Conrads, Paul

    2015-01-01

    Managers of large river basins face conflicting demands for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin, for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting dependent economies for years. The Savannah River estuary contains two municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor to expand ship traffic since the 1970s have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent. A planned deepening of the harbor includes flow-alteration features to minimize further migration of salinity, whose effectiveness will only be known after all construction is completed.One of the challenges of large basin management is the optimization of water use through ongoing regional economic development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to substantially reduce salinity intrusions in the Savannah National Wildlife Refuge, while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of

  10. Scienti fi c Approaches and Methods in the Investigation of the Formation and Stability of Hydromorphic Natural Complexes of the Irtysh River Valley System (The Kazakhstan Part

    Directory of Open Access Journals (Sweden)

    A. G. Tsaregorodtseva

    2006-12-01

    Full Text Available The current geo-environmental situation of the Irtysh River valley system is connected with the high degree of control of the river drainage, which affects the functioning of its entire ecosystem and determines some morphological features of its channel. In the present work, the methodological approaches in the study of formation of the valley’s hydromorphic natural complexes are discussed, and the results of studies on the channel processes in the middle course of the Irtysh River are given.

  11. Longitudinal sediment-connectivity in a dammed river system using fine sediment analyses - a case study in the Kaja river, Lower Austria

    Science.gov (United States)

    Bertsch, R.; Poeppl, R. E.; Glade, T.

    2012-04-01

    In the recent past the concept of connectivity gained increased significance for the understanding of the linkage between different subsystems within river channels and catchments. Based on fine sediment (reservation in this fraction.

  12. Assessing the impacts of climate change and socio-economic changes on flow and phosphorus flux in the Ganga river system.

    Science.gov (United States)

    Jin, L; Whitehead, P G; Sarkar, S; Sinha, R; Futter, M N; Butterfield, D; Caesar, J; Crossman, J

    2015-06-01

    Anthropogenic climate change has impacted and will continue to impact the natural environment and people around the world. Increasing temperatures and altered rainfall patterns combined with socio-economic factors such as population changes, land use changes and water transfers will affect flows and nutrient fluxes in river systems. The Ganga river, one of the largest river systems in the world, supports approximately 10% global population and more than 700 cities. Changes in the Ganga river system are likely to have a significant impact on water availability, water quality, aquatic habitats and people. In order to investigate these potential changes on the flow and water quality of the Ganga river, a multi-branch version of INCA Phosphorus (INCA-P) model has been applied to the entire river system. The model is used to quantify the impacts from a changing climate, population growth, additional agricultural land, pollution control and water transfers for 2041-2060 and 2080-2099. The results provide valuable information about potential effects of different management strategies on catchment water quality.

  13. Effects of the Operation of Hungry Horse Dam on the Kokanee Fishery in the Flathead River System, 1984 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fraley, John J.

    1984-12-01

    This study assessed the effects of the operation of Hungry Horse Dam on the kokanee fishery in the Flathead River system. This report covers the 1983-84 field season concerning the effects of Hungry Horse operations on kokanee abundance and reproductive success in the upper Flathead River system. This report also addresses the projected recovery of the main stem kokanee run under the flow regime recommended by the Department of Fish, Wildlife and Parks and implemented by the Bureau of Reclamation and Bonneville Power Administration in 1982. An estimated 58,775 kokanee reached spawning grounds in the Flathead River System in 1983. The 1983 spawning run was composed of 92% age III + fish, as compared to an average of 80% from 1972-1983. A total of 6883 kokanee redds were enumerated in the main stem Flathead River in 1983. A total of 2366 man-days of angling pressure was estimated during the 1983 kokanee lure fishery in the Flathead River system. Estimated numbers of fry emigrating from McDonald Creek, the Whitefish River and Brenneman's Slough were 13,100,000, 66,254 and 37,198, yielding egg to fry survival rates of 76%, 10.4% and 19.2%.

  14. Conceptual model of the uppermost principal aquifer systems in the Williston and Powder River structural basins, United States and Canada

    Science.gov (United States)

    Long, Andrew J.; Aurand, Katherine R.; Bednar, Jennifer M.; Davis, Kyle W.; McKaskey, Jonathan D.R.G.; Thamke, Joanna N.

    2014-01-01

    The three uppermost principal aquifer systems of the Northern Great Plains—the glacial, lower Tertiary, and Upper Cretaceous aquifer systems—are described in this report and provide water for irrigation, mining, public and domestic supply, livestock, and industrial uses. These aquifer systems primarily are present in two nationally important fossil-fuelproducing areas: the Williston and Powder River structural basins in the United States and Canada. The glacial aquifer system is contained within glacial deposits that overlie the lower Tertiary and Upper Cretaceous aquifer systems in the northeastern part of the Williston structural basin. Productive sand and gravel aquifers exist within this aquifer system. The Upper Cretaceous aquifer system is contained within bedrock lithostratigraphic units as deep as 2,850 and 8,500 feet below land surface in the Williston and Powder River structural basins, respectively. Petroleum extraction from much deeper formations, such as the Bakken Formation, is rapidly increasing because of recently improved hydraulic fracturing methods that require large volumes of relatively freshwater from shallow aquifers or surface water. Extraction of coalbed natural gas from within the lower Tertiary aquifer system requires removal of large volumes of groundwater to allow degasification. Recognizing the importance of understanding water resources in these energy-rich basins, the U.S. Geological Survey (USGS) Groundwater Resources Program (http://water.usgs.gov/ogw/gwrp/) began a groundwater study of the Williston and Powder River structural basins in 2011 to quantify this groundwater resource, the results of which are described in this report. The overall objective of this study was to characterize, quantify, and provide an improved conceptual understanding of the three uppermost and principal aquifer systems in energy-resource areas of the Northern Great Plains to assist in groundwater-resource management for multiple uses. The study area

  15. Ground-water flow directions and estimation of aquifer hydraulic properties in the lower Great Miami River Buried Valley aquifer system, Hamilton Area, Ohio

    Science.gov (United States)

    Sheets, Rodney A.; Bossenbroek, Karen E.

    2005-01-01

    The Great Miami River Buried Valley Aquifer System is one of the most productive sources of potable water in the Midwest, yielding as much as 3,000 gallons per minute to wells. Many water-supply wells tapping this aquifer system are purposely placed near rivers to take advantage of induced infiltration from the rivers. The City of Hamilton's North Well Field consists of 10 wells near the Great Miami River, all completed in the lower Great Miami River Buried Valley Aquifer System. A well-drilling program and a multiple-well aquifer test were done to investigate ground-water flow directions and to estimate aquifer hydraulic properties in the lower part of the Great Miami River Buried Valley Aquifer System. Descriptions of lithology from 10 well borings indicate varying amounts and thickness of clay or till, and therefore, varying levels of potential aquifer confinement. Borings also indicate that the aquifer properties can change dramatically over relatively short distances. Grain-size analyses indicate an average bulk hydraulic conductivity value of aquifer materials of 240 feet per day; the geometric mean of hydraulic conductivity values of aquifer material was 89 feet per day. Median grain sizes of aquifer material and clay units were 1.3 millimeters and 0.1 millimeters, respectively. Water levels in the Hamilton North Well Field are affected by stream stage in the Great Miami River and barometric pressure. Bank storage in response to stream stage is evident. Results from a multiple-well aquifer test at the well field indicate, as do the lithologic descriptions, that the aquifer is semiconfined in some areas and unconfined in others. Transmissivity and storage coefficient of the semiconfined part of the aquifer were 50,000 feet squared per day and 5x10-4, respectively. The average hydraulic conductivity (450 feet per day) based on the aquifer test is reasonable for glacial outwash but is higher than calculated from grain-size analyses, implying a scale effect

  16. Development and Application of a Decision Support System for Water Management Investigations in the Upper Yakima River, Washington

    Science.gov (United States)

    Bovee, Ken D.; Waddle, Terry J.; Talbert, Colin; Hatten, James R.; Batt, Thomas R.

    2008-01-01

    The Yakima River Decision Support System (YRDSS) was designed to quantify and display the consequences of different water management scenarios for a variety of state variables in the upper Yakima River Basin, located in central Washington. The impetus for the YRDSS was the Yakima River Basin Water Storage Feasibility Study, which investigated alternatives for providing additional water in the basin for threatened and endangered fish, irrigated agriculture, and municipal water supply. The additional water supplies would be provided by combinations of water exchanges, pumping stations, and off-channel storage facilities, each of which could affect the operations of the Bureau of Reclamation's (BOR) five headwaters reservoirs in the basin. The driver for the YRDSS is RiverWare, a systems-operations model used by BOR to calculate reservoir storage, irrigation deliveries, and streamflow at downstream locations resulting from changes in water supply and reservoir operations. The YRDSS uses output from RiverWare to calculate and summarize changes at 5 important flood plain reaches in the basin to 14 state variables: (1) habitat availability for selected life stages of four salmonid species, (2) spawning-incubation habitat persistence, (3) potential redd scour, (4) maximum water temperatures, (5) outmigration for bull trout (Salvelinus confluentus) from headwaters reservoirs, (6) outmigration of salmon smolts from Cle Elum Reservoir, (7) frequency of beneficial overbank flooding, (8) frequency of damaging flood events, (9) total deliverable water supply, (10) total water supply deliverable to junior water rights holders, (11) end-of-year reservoir carryover, (12) potential fine sediment transport rates, (13) frequency of events capable of armor layer disruption, and (14) geomorphic work performed during each water year. Output of the YRDSS consists of a series of conditionally formatted scoring tables, wherein the changes to a state variable resulting from an operational

  17. River basins as social-ecological systems: linking levels of societal and ecosystem water metabolism in a semiarid watershed

    Directory of Open Access Journals (Sweden)

    Violeta Cabello

    2015-09-01

    Full Text Available River basin modeling under complexity requires analytical frameworks capable of dealing with the multiple scales and dimensions of environmental problems as well as uncertainty in the evolution of social systems. Conceptual and methodological developments can now be framed using the wide socio-eco-hydrological approach. We add hierarchy theory into the mix to discuss the conceptualization of river basins as complex, holarchic social-ecological systems. We operationalize the social-ecological systems water metabolism framework in a semiarid watershed in Spain, and add the governance dimension that shapes human-environment reciprocity. To this purpose, we integrate an eco-hydrological model with the societal metabolism accounting scheme for land use, human activity, and water use. We explore four types of interactions: between societal organization and water uses/demands, between ecosystem organization and their water requirements/supplies, between societal metabolism and aquatic ecosystem health, and between water demand and availability. Our results reveal a metabolic pattern of a high mountain rural system striving to face exodus and agricultural land abandonment with a multifunctional economy. Centuries of social-ecological evolution shaping waterscapes through traditional water management practices have influenced the eco-hydrological functioning of the basin, enabling adaptation to aridity. We found a marked spatial gradient on water supply, use pattern, and impact on water bodies from the head to the mouth of the basin. Management challenges posed by the European water regulatory framework as a new driver of social-ecological change are highlighted.

  18. Hydrologic controls and anthropogenic drivers of the zebra mussel invasion of the Mississippi-Missouri river system

    Science.gov (United States)

    Mari, L.; Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Levin, S. A.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2011-03-01

    We propose a novel ecohydrological model for the invasion of inland waters by the zebra mussel Dreissena polymorpha and test it against field data gathered within the Mississippi-Missouri river system in North America. This biological invasion poses major ecological and economic threats, especially due to the huge population densities reached by local zebra mussel colonies and the species' unparalleled dispersal abilities within fluvial systems. We focus on a quantitative evaluation, attempted here for the first time, of the individual roles and the mutual interactions of drivers and controls of the Mississippi-Missouri invasion. To this end, we use a multilayer network model accounting explicitly for zebra mussel demographic dynamics, hydrologic transport, and dispersal due to anthropic activities. By testing our results against observations, we show that hydrologic transport alone is not sufficient to explain the spread of the species at the basin scale. We also quantify the role played by commercial navigation in promoting the initial, selective colonization of the river system, and show how recreational boating may have determined the capillary penetration of the species into the water system. The role of post-establishment dispersal mechanisms and the effectiveness of possible prevention measures are also discussed in the context of model sensitivity and robustness to reparametrization.

  19. Preliminary delineation of natural geochemical reactions, Snake River Plain aquifer system, Idaho National Engineering Laboratory and vicinity, Idaho

    International Nuclear Information System (INIS)

    Knobel, L.L.; Bartholomay, R.C.; Orr, B.R.

    1997-05-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, is conducting a study to determine the natural geochemistry of the Snake River Plain aquifer system at the Idaho National Engineering Laboratory (INEL), Idaho. As part of this study, a group of geochemical reactions that partially control the natural chemistry of ground water at the INEL were identified. Mineralogy of the aquifer matrix was determined using X-ray diffraction and thin-section analysis and theoretical stabilities of the minerals were used to identify potential solid-phase reactants and products of the reactions. The reactants and products that have an important contribution to the natural geochemistry include labradorite, olivine, pyroxene, smectite, calcite, ferric oxyhydroxide, and several silica phases. To further identify the reactions, analyses of 22 representative water samples from sites tapping the Snake River Plain aquifer system were used to determine the thermodynamic condition of the ground water relative to the minerals in the framework of the aquifer system. Principal reactions modifying the natural geochemical system include congruent dissolution of olivine, diopside, amorphous silica, and anhydrite; incongruent dissolution of labradorite with calcium montmorillonite as a residual product; precipitation of calcite and ferric oxyhydroxide; and oxidation of ferrous iron to ferric iron. Cation exchange reactions retard the downward movement of heavy, multivalent waste constituents where infiltration ponds are used for waste disposal

  20. Assessment of the warning system against floods on a rural area: the case of the lower Siret River (Romania

    Directory of Open Access Journals (Sweden)

    F. Salit

    2013-02-01

    Full Text Available The development of non-structural measures such as an early warning system, across the Europe, in flood risk management, requires a better understanding of the public involved and of the territory threatened. This paper aims to conduct an assessment of early warning and information to people with an analysis of the population's behaviour, presented in a form of an event tree. The objective is to understand the strengths and weaknesses of the warning system during a deadly flood in the lower Siret River (Romania in 2005 and to demonstrate that each warning system has to be adapted to the territory in which it is effective. The behavioural model aims to determine to what extent the warning system can be improved but also to suggest ways to adapt risk education to the study area.

  1. Assessment of the warning system against floods on a rural area: the case of the lower Siret River (Romania)

    Science.gov (United States)

    Salit, F.; Zaharia, L.; Beltrando, G.

    2013-02-01

    The development of non-structural measures such as an early warning system, across the Europe, in flood risk management, requires a better understanding of the public involved and of the territory threatened. This paper aims to conduct an assessment of early warning and information to people with an analysis of the population's behaviour, presented in a form of an event tree. The objective is to understand the strengths and weaknesses of the warning system during a deadly flood in the lower Siret River (Romania) in 2005 and to demonstrate that each warning system has to be adapted to the territory in which it is effective. The behavioural model aims to determine to what extent the warning system can be improved but also to suggest ways to adapt risk education to the study area.

  2. Linking Flow Regime, Floodplain Lake Connectivity and Fish Catch in a Large River-Floodplain System, the Volga–Akhtuba Floodplain (Russian Federation)

    NARCIS (Netherlands)

    Wolfshaar, K.E. van de; Middelkoop, H.; Addink, E.A.; Winter, H.V.; Nagelkerke, L.A.J.

    2011-01-01

    River-floodplain systems are amongst the most productive—but often severely impacted—aquatic systems worldwide. We explored the ecological response of fish to flow regime in a large riverfloodplain system by studying the relationships between (1) discharge and inundated floodplain area, with a

  3. Geology, selected geophysics, and hydrogeology of the White River and parts of the Great Salt Lake Desert regional groundwater flow systems, Utah and Nevada

    Science.gov (United States)

    Rowley, Peter D.; Dixon, Gary L.; Watrus , James M.; Burns, Andrews G.; Mankinen, Edward A.; McKee, Edwin H.; Pari, Keith T.; Ekren, E. Bartlett; Patrick , William G.; Comer, John B.; Inkenbrandt, Paul C.; Krahulec, K.A.; Pinnell, Michael L.

    2016-01-01

    The east-central Great Basin near the Utah-Nevada border contains two great groundwater flow systems. The first, the White River regional groundwater flow system, consists of a string of hydraulically connected hydrographic basins in Nevada spanning about 270 miles from north to south. The northernmost basin is Long Valley and the southernmost basin is the Black Mountain area, a valley bordering the Colorado River. The general regional groundwater flow direction is north to south. The second flow system, the Great Salt Lake Desert regional groundwater flow system, consists of hydrographic basins that straddle

  4. Dating recent floodplain sediments in the Hawkesbury-Nepean River system, eastern Australia using single-grain quartz OSL

    DEFF Research Database (Denmark)

    Sim, Anna K.; Thomsen, Kristina J