Multidisciplinary System Reliability Analysis
Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)
2001-01-01
The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.
Integrated system reliability analysis
DEFF Research Database (Denmark)
Gintautas, Tomas; Sørensen, John Dalsgaard
Specific targets: 1) The report shall describe the state of the art of reliability and risk-based assessment of wind turbine components. 2) Development of methodology for reliability and risk-based assessment of the wind turbine at system level. 3) Describe quantitative and qualitative measures...
Structural systems reliability analysis
International Nuclear Information System (INIS)
Frangopol, D.
1975-01-01
For an exact evaluation of the reliability of a structure it appears necessary to determine the distribution densities of the loads and resistances and to calculate the correlation coefficients between loads and between resistances. These statistical characteristics can be obtained only on the basis of a long activity period. In case that such studies are missing the statistical properties formulated here give upper and lower bounds of the reliability. (orig./HP) [de
Reliability analysis of shutdown system
International Nuclear Information System (INIS)
Kumar, C. Senthil; John Arul, A.; Pal Singh, Om; Suryaprakasa Rao, K.
2005-01-01
This paper presents the results of reliability analysis of Shutdown System (SDS) of Indian Prototype Fast Breeder Reactor. Reliability analysis carried out using Fault Tree Analysis predicts a value of 3.5 x 10 -8 /de for failure of shutdown function in case of global faults and 4.4 x 10 -8 /de for local faults. Based on 20 de/y, the frequency of shutdown function failure is 0.7 x 10 -6 /ry, which meets the reliability target, set by the Indian Atomic Energy Regulatory Board. The reliability is limited by Common Cause Failure (CCF) of actuation part of SDS and to a lesser extent CCF of electronic components. The failure frequency of individual systems is -3 /ry, which also meets the safety criteria. Uncertainty analysis indicates a maximum error factor of 5 for the top event unavailability
On Bayesian System Reliability Analysis
Energy Technology Data Exchange (ETDEWEB)
Soerensen Ringi, M
1995-05-01
The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person`s state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs.
On Bayesian System Reliability Analysis
International Nuclear Information System (INIS)
Soerensen Ringi, M.
1995-01-01
The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person's state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs
Fundamentals and applications of systems reliability analysis
International Nuclear Information System (INIS)
Boesebeck, K.; Heuser, F.W.; Kotthoff, K.
1976-01-01
The lecture gives a survey on the application of methods of reliability analysis to assess the safety of nuclear power plants. Possible statements of reliability analysis in connection with specifications of the atomic licensing procedure are especially dealt with. Existing specifications of safety criteria are additionally discussed with the help of reliability analysis by the example of the reliability analysis of a reactor protection system. Beyond the limited application to single safety systems, the significance of reliability analysis for a closed risk concept is explained in the last part of the lecture. (orig./LH) [de
Power system reliability analysis using fault trees
International Nuclear Information System (INIS)
Volkanovski, A.; Cepin, M.; Mavko, B.
2006-01-01
The power system reliability analysis method is developed from the aspect of reliable delivery of electrical energy to customers. The method is developed based on the fault tree analysis, which is widely applied in the Probabilistic Safety Assessment (PSA). The method is adapted for the power system reliability analysis. The method is developed in a way that only the basic reliability parameters of the analysed power system are necessary as an input for the calculation of reliability indices of the system. The modeling and analysis was performed on an example power system consisting of eight substations. The results include the level of reliability of current power system configuration, the combinations of component failures resulting in a failed power delivery to loads, and the importance factors for components and subsystems. (author)
System Reliability Analysis Considering Correlation of Performances
Energy Technology Data Exchange (ETDEWEB)
Kim, Saekyeol; Lee, Tae Hee [Hanyang Univ., Seoul (Korea, Republic of); Lim, Woochul [Mando Corporation, Seongnam (Korea, Republic of)
2017-04-15
Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.
System Reliability Analysis Considering Correlation of Performances
International Nuclear Information System (INIS)
Kim, Saekyeol; Lee, Tae Hee; Lim, Woochul
2017-01-01
Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.
Multi-Disciplinary System Reliability Analysis
Mahadevan, Sankaran; Han, Song
1997-01-01
The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.
Reliability analysis of Angra I safety systems
International Nuclear Information System (INIS)
Oliveira, L.F.S. de; Soto, J.B.; Maciel, C.C.; Gibelli, S.M.O.; Fleming, P.V.; Arrieta, L.A.
1980-07-01
An extensive reliability analysis of some safety systems of Angra I, are presented. The fault tree technique, which has been successfully used in most reliability studies of nuclear safety systems performed to date is employed. Results of a quantitative determination of the unvailability of the accumulator and the containment spray injection systems are presented. These results are also compared to those reported in WASH-1400. (E.G.) [pt
Reliability analysis in interdependent smart grid systems
Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong
2018-06-01
Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.
Reliability analysis and assessment of structural systems
International Nuclear Information System (INIS)
Yao, J.T.P.; Anderson, C.A.
1977-01-01
The study of structural reliability deals with the probability of having satisfactory performance of the structure under consideration within any specific time period. To pursue this study, it is necessary to apply available knowledge and methodology in structural analysis (including dynamics) and design, behavior of materials and structures, experimental mechanics, and the theory of probability and statistics. In addition, various severe loading phenomena such as strong motion earthquakes and wind storms are important considerations. For three decades now, much work has been done on reliability analysis of structures, and during this past decade, certain so-called 'Level I' reliability-based design codes have been proposed and are in various stages of implementation. These contributions will be critically reviewed and summarized in this paper. Because of the undesirable consequences resulting from the failure of nuclear structures, it is important and desirable to consider the structural reliability in the analysis and design of these structures. Moreover, after these nuclear structures are constructed, it is desirable for engineers to be able to assess the structural reliability periodically as well as immediately following the occurrence of severe loading conditions such as a strong-motion earthquake. During this past decade, increasing use has been made of techniques of system identification in structural engineering. On the basis of non-destructive test results, various methods have been developed to obtain an adequate mathematical model (such as the equations of motion with more realistic parameters) to represent the structural system
Reliability analysis of containment isolation systems
International Nuclear Information System (INIS)
Pelto, P.J.; Counts, C.A.
1984-06-01
The Pacific Northwest Laboratory (PNL) is reviewing available information on containment systems design, operating experience, and related research as part of a project being conducted by the Division of Systems Integration, US Nuclear Regulatory Commission. The basic objective of this work is to collect and consolidate data relevant to assessing the functional performance of containment isolation systems and to use this data to the extent possible to characterize containment isolation system reliability for selected reference designs. This paper summarizes the results from initial efforts which focused on collection of data from available documents and briefly describes detailed review and analysis efforts which commenced recently. 5 references
Reliability Analysis of Structural Timber Systems
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Hoffmeyer, P.
2000-01-01
Structural systems like timber trussed rafters and roof elements made of timber can be expected to have some degree of redundancy and nonlinear/plastic behaviour when the loading consists of for example snow or imposed load. In this paper this system effect is modelled and the statistic...... of variation. In the paper a stochastic model is described for the strength of a single piece of timber taking into account the stochastic variation of the strength and stiffness with length. Also stochastic models for different types of loads are formulated. First, simple representative systems with different...... types of redundancy and non-linearity are considered. The statistical characteristics of the load bearing capacity are determined by reliability analysis. Next, more complex systems are considered modelling the mechanical behaviour of timber roof elements I stressed skin panels made of timber. Using...
RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEMS
Directory of Open Access Journals (Sweden)
Popescu V.S.
2012-04-01
Full Text Available Power distribution systems are basic parts of power systems and reliability of these systems at present is a key issue for power engineering development and requires special attention. Operation of distribution systems is accompanied by a number of factors that produce random data a large number of unplanned interruptions. Research has shown that the predominant factors that have a significant influence on the reliability of distribution systems are: weather conditions (39.7%, defects in equipment(25% and unknown random factors (20.1%. In the article is studied the influence of random behavior and are presented estimations of reliability of predominantly rural electrical distribution systems.
Integrated Reliability and Risk Analysis System (IRRAS)
International Nuclear Information System (INIS)
Russell, K.D.; McKay, M.K.; Sattison, M.B.; Skinner, N.L.; Wood, S.T.; Rasmuson, D.M.
1992-01-01
The Integrated Reliability and Risk Analysis System (IRRAS) is a state-of-the-art, microcomputer-based probabilistic risk assessment (PRA) model development and analysis tool to address key nuclear plant safety issues. IRRAS is an integrated software tool that gives the user the ability to create and analyze fault trees and accident sequences using a microcomputer. This program provides functions that range from graphical fault tree construction to cut set generation and quantification. Version 1.0 of the IRRAS program was released in February of 1987. Since that time, many user comments and enhancements have been incorporated into the program providing a much more powerful and user-friendly system. This version has been designated IRRAS 4.0 and is the subject of this Reference Manual. Version 4.0 of IRRAS provides the same capabilities as Version 1.0 and adds a relational data base facility for managing the data, improved functionality, and improved algorithm performance
Reliability analysis of containment isolation systems
International Nuclear Information System (INIS)
Pelto, P.J.; Ames, K.R.; Gallucci, R.H.
1985-06-01
This report summarizes the results of the Reliability Analysis of Containment Isolation System Project. Work was performed in five basic areas: design review, operating experience review, related research review, generic analysis and plant specific analysis. Licensee Event Reports (LERs) and Integrated Leak Rate Test (ILRT) reports provided the major sources of containment performance information used in this study. Data extracted from LERs were assembled into a computer data base. Qualitative and quantitative information developed for containment performance under normal operating conditions and design basis accidents indicate that there is room for improvement. A rough estimate of overall containment unavailability for relatively small leaks which violate plant technical specifications is 0.3. An estimate of containment unavailability due to large leakage events is in the range of 0.001 to 0.01. These estimates are dependent on several assumptions (particularly on event duration times) which are documented in the report
Diakoptical reliability analysis of transistorized systems
International Nuclear Information System (INIS)
Kontoleon, J.M.; Lynn, J.W.; Green, A.E.
1975-01-01
Limitations both on high-speed core availability and computation time required for assessing the reliability of large-sized and complex electronic systems, such as used for the protection of nuclear reactors, are very serious restrictions which continuously confront the reliability analyst. Diakoptic methods simplify the solution of the electrical-network problem by subdividing a given network into a number of independent subnetworks and then interconnecting the solutions of these smaller parts by a systematic process involving transformations based on connection-matrix elements associated with the interconnecting links. However, the interconnection process is very complicated and it may be used only if the original system has been cut in such a manner that a relation can be established between the constraints appearing at both sides of the cut. Also, in dealing with transistorized systems, one of the difficulties encountered is that of modelling adequately their performance under various operating conditions, since their parameters are strongly affected by the imposed voltage and current levels. In this paper a new interconnection approach is presented which may be of use in the reliability analysis of large-sized transistorized systems. This is based on the partial optimization of the subdivisions of the torn network as well as on the optimization of the torn paths. The solution of the subdivisions is based on the principles of algebraic topology, with an algebraic structure relating the physical variables in a topological structure which defines the interconnection of the discrete elements. Transistors, and other nonlinear devices, are modelled using their actual characteristics, under normal and abnormal operating conditions. Use of so-called k factors is made to facilitate accounting for use of electrical stresses. The approach is demonstrated by way of an example. (author)
System reliability analysis with natural language and expert's subjectivity
International Nuclear Information System (INIS)
Onisawa, T.
1996-01-01
This paper introduces natural language expressions and expert's subjectivity to system reliability analysis. To this end, this paper defines a subjective measure of reliability and presents the method of the system reliability analysis using the measure. The subjective measure of reliability corresponds to natural language expressions of reliability estimation, which is represented by a fuzzy set defined on [0,1]. The presented method deals with the dependence among subsystems and employs parametrized operations of subjective measures of reliability which can reflect expert 's subjectivity towards the analyzed system. The analysis results are also expressed by linguistic terms. Finally this paper gives an example of the system reliability analysis by the presented method
Reliability analysis of reactor protection systems
International Nuclear Information System (INIS)
Alsan, S.
1976-07-01
A theoretical mathematical study of reliability is presented and the concepts subsequently defined applied to the study of nuclear reactor safety systems. The theory is applied to investigations of the operational reliability of the Siloe reactor from the point of view of rod drop. A statistical study conducted between 1964 and 1971 demonstrated that most rod drop incidents arose from circumstances associated with experimental equipment (new set-ups). The reliability of the most suitable safety system for some recently developed experimental equipment is discussed. Calculations indicate that if all experimental equipment were equipped with these new systems, only 1.75 rod drop accidents would be expected to occur per year on average. It is suggested that all experimental equipment should be equipped with these new safety systems and tested every 21 days. The reliability of the new safety system currently being studied for the Siloe reactor was also investigated. The following results were obtained: definite failures must be detected immediately as a result of the disturbances produced; the repair time must not exceed a few hours; the equipment must be tested every week. Under such conditions, the rate of accidental rod drops is about 0.013 on average per year. The level of nondefinite failures is less than 10 -6 per hour and the level of nonprotection 1 hour per year. (author)
International Nuclear Information System (INIS)
Lofgren, E.V.
1985-08-01
This course in System Reliability and Analysis Techniques focuses on the quantitative estimation of reliability at the systems level. Various methods are reviewed, but the structure provided by the fault tree method is used as the basis for system reliability estimates. The principles of fault tree analysis are briefly reviewed. Contributors to system unreliability and unavailability are reviewed, models are given for quantitative evaluation, and the requirements for both generic and plant-specific data are discussed. Also covered are issues of quantifying component faults that relate to the systems context in which the components are embedded. All reliability terms are carefully defined. 44 figs., 22 tabs
Reliability analysis of wind embedded power generation system for ...
African Journals Online (AJOL)
This paper presents a method for Reliability Analysis of wind energy embedded in power generation system for Indian scenario. This is done by evaluating the reliability index, loss of load expectation, for the power generation system with and without integration of wind energy sources in the overall electric power system.
Systems reliability analysis for the national ignition facility
International Nuclear Information System (INIS)
Majumdar, K.C.; Annese, C.E.; MacIntyre, A.T.; Sicherman, A.
1996-01-01
A Reliability, Availability and Maintainability (RAM) analysis was initiated for the National Ignition Facility (NIF). The NIF is an inertial confinement fusion research facility designed to achieve controlled thermonuclear reaction; the preferred site for the NIF is the Lawrence Livermore National Laboratory (LLNL). The NIF RAM analysis has three purposes: (1) to allocate top level reliability and availability goals for the systems, (2) to develop an operability model for optimum maintainability, and (3) to determine the achievability of the allocated goals of the RAM parameters for the NIF systems and the facility operation as a whole. An allocation model assigns the reliability and availability goals for front line and support systems by a top-down approach; reliability analysis uses a bottom-up approach to determine the system reliability and availability from component level to system level
Reliability analysis of digital safety systems at nuclear power plants
International Nuclear Information System (INIS)
Sopira Vladimir; Kovacs, Zoltan
2015-01-01
Reliability analysis of digital reactor protection systems built on the basis of TELEPERM XS is described, and experience gained by the Slovak RELKO company during the past 20 years in this domain is highlighted. (orig.)
Discrete event simulation versus conventional system reliability analysis approaches
DEFF Research Database (Denmark)
Kozine, Igor
2010-01-01
Discrete Event Simulation (DES) environments are rapidly developing and appear to be promising tools for building reliability and risk analysis models of safety-critical systems and human operators. If properly developed, they are an alternative to the conventional human reliability analysis models...... and systems analysis methods such as fault and event trees and Bayesian networks. As one part, the paper describes briefly the author’s experience in applying DES models to the analysis of safety-critical systems in different domains. The other part of the paper is devoted to comparing conventional approaches...
Reliability analysis of digital based I and C system
Energy Technology Data Exchange (ETDEWEB)
Kang, I. S.; Cho, B. S.; Choi, M. J. [KOPEC, Yongin (Korea, Republic of)
1999-10-01
Rapidly, digital technology is being widely applied in replacing analog component installed in existing plant and designing new nuclear power plant for control and monitoring system in Korea as well as in foreign countries. Even though many merits of digital technology, it is being faced with a new problem of reliability assurance. The studies for solving this problem are being performed vigorously in foreign countries. The reliability of KNGR Engineered Safety Features Component Control System (ESF-CCS), digital based I and C system, was analyzed to verify fulfillment of the ALWR EPRI-URD requirement for reliability analysis and eliminate hazards in design applied new technology. The qualitative analysis using FMEA and quantitative analysis using reliability block diagram were performed. The results of analyses are shown in this paper.
Reliability analysis and initial requirements for FC systems and stacks
Åström, K.; Fontell, E.; Virtanen, S.
In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.
Reliability Analysis of a Two Dissimilar Unit Cold Standby System ...
African Journals Online (AJOL)
(2009) using linear first order differential equation evaluated the reliability and availability characteristics of two-dissimilar-unit cold standby system with three mode for which no cost benefit analysis was considered. El-said (1994) contributed on stochastic analysis of a two-dissimilar-unit standby redundant system.
Reliability analysis of the reactor protection system with fault diagnosis
International Nuclear Information System (INIS)
Lee, D.Y.; Han, J.B.; Lyou, J.
2004-01-01
The main function of a reactor protection system (RPS) is to maintain the reactor core integrity and reactor coolant system pressure boundary. The RPS consists of the 2-out-of-m redundant architecture to assure a reliable operation. The system reliability of the RPS is a very important factor for the probability safety assessment (PSA) evaluation in the nuclear field. To evaluate the system failure rate of the k-out-of-m redundant system is not so easy with the deterministic method. In this paper, the reliability analysis method using the binomial process is suggested to calculate the failure rate of the RPS system with a fault diagnosis function. The suggested method is compared with the result of the Markov process to verify the validation of the suggested method, and applied to the several kinds of RPS architectures for a comparative evaluation of the reliability. (orig.)
Reliability analysis and updating of deteriorating systems with subset simulation
DEFF Research Database (Denmark)
Schneider, Ronald; Thöns, Sebastian; Straub, Daniel
2017-01-01
An efficient approach to reliability analysis of deteriorating structural systems is presented, which considers stochastic dependence among element deterioration. Information on a deteriorating structure obtained through inspection or monitoring is included in the reliability assessment through B...... is an efficient and robust sampling-based algorithm suitable for such analyses. The approach is demonstrated in two case studies considering a steel frame structure and a Daniels system subjected to high-cycle fatigue....
Use of COMCAN III in system design and reliability analysis
International Nuclear Information System (INIS)
Rasmuson, D.M.; Shepherd, J.C.; Marshall, N.H.; Fitch, L.R.
1982-03-01
This manual describes the COMCAN III computer program and its use. COMCAN III is a tool that can be used by the reliability analyst performing a probabilistic risk assessment or by the designer of a system desiring improved performance and efficiency. COMCAN III can be used to determine minimal cut sets of a fault tree, to calculate system reliability characteristics, and to perform qualitative common cause failure analysis
Reliability analysis of digital I and C systems at KAERI
International Nuclear Information System (INIS)
Kim, Man Cheol
2013-01-01
This paper provides an overview of the ongoing research activities on a reliability analysis of digital instrumentation and control (I and C) systems of nuclear power plants (NPPs) performed by the Korea Atomic Energy Research Institute (KAERI). The research activities include the development of a new safety-critical software reliability analysis method by integrating the advantages of existing software reliability analysis methods, a fault coverage estimation method based on fault injection experiments, and a new human reliability analysis method for computer-based main control rooms (MCRs) based on human performance data from the APR-1400 full-scope simulator. The research results are expected to be used to address various issues such as the licensing issues related to digital I and C probabilistic safety assessment (PSA) for advanced digital-based NPPs. (author)
Reliability analysis framework for computer-assisted medical decision systems
International Nuclear Information System (INIS)
Habas, Piotr A.; Zurada, Jacek M.; Elmaghraby, Adel S.; Tourassi, Georgia D.
2007-01-01
We present a technique that enhances computer-assisted decision (CAD) systems with the ability to assess the reliability of each individual decision they make. Reliability assessment is achieved by measuring the accuracy of a CAD system with known cases similar to the one in question. The proposed technique analyzes the feature space neighborhood of the query case to dynamically select an input-dependent set of known cases relevant to the query. This set is used to assess the local (query-specific) accuracy of the CAD system. The estimated local accuracy is utilized as a reliability measure of the CAD response to the query case. The underlying hypothesis of the study is that CAD decisions with higher reliability are more accurate. The above hypothesis was tested using a mammographic database of 1337 regions of interest (ROIs) with biopsy-proven ground truth (681 with masses, 656 with normal parenchyma). Three types of decision models, (i) a back-propagation neural network (BPNN), (ii) a generalized regression neural network (GRNN), and (iii) a support vector machine (SVM), were developed to detect masses based on eight morphological features automatically extracted from each ROI. The performance of all decision models was evaluated using the Receiver Operating Characteristic (ROC) analysis. The study showed that the proposed reliability measure is a strong predictor of the CAD system's case-specific accuracy. Specifically, the ROC area index for CAD predictions with high reliability was significantly better than for those with low reliability values. This result was consistent across all decision models investigated in the study. The proposed case-specific reliability analysis technique could be used to alert the CAD user when an opinion that is unlikely to be reliable is offered. The technique can be easily deployed in the clinical environment because it is applicable with a wide range of classifiers regardless of their structure and it requires neither additional
Distribution System Reliability Analysis for Smart Grid Applications
Aljohani, Tawfiq Masad
Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. To address its reliability concerns, the power utilities and interested parties have spent extensive amount of time and effort to analyze and study the reliability of the generation and transmission sectors of the power grid. Only recently has attention shifted to be focused on improving the reliability of the distribution network, the connection joint between the power providers and the consumers where most of the electricity problems occur. In this work, we will examine the effect of the smart grid applications in improving the reliability of the power distribution networks. The test system used in conducting this thesis is the IEEE 34 node test feeder, released in 2003 by the Distribution System Analysis Subcommittee of the IEEE Power Engineering Society. The objective is to analyze the feeder for the optimal placement of the automatic switching devices and quantify their proper installation based on the performance of the distribution system. The measures will be the changes in the reliability system indices including SAIDI, SAIFI, and EUE. The goal is to design and simulate the effect of the installation of the Distributed Generators (DGs) on the utility's distribution system and measure the potential improvement of its reliability. The software used in this work is DISREL, which is intelligent power distribution software that is developed by General Reliability Co.
Reliability analysis of service water system under earthquake
International Nuclear Information System (INIS)
Yu Yu; Qian Xiaoming; Lu Xuefeng; Wang Shengfei; Niu Fenglei
2013-01-01
Service water system is one of the important safety systems in nuclear power plant, whose failure probability is always gained by system reliability analysis. The probability of equipment failure under the earthquake is the function of the peak acceleration of earthquake motion, while the occurrence of earthquake is of randomicity, thus the traditional fault tree method in current probability safety assessment is not powerful enough to deal with such case of conditional probability problem. An analysis frame was put forward for system reliability evaluation in seismic condition in this paper, in which Monte Carlo simulation was used to deal with conditional probability problem. Annual failure probability of service water system was calculated, and failure probability of 1.46X10 -4 per year was obtained. The analysis result is in accordance with the data which indicate equipment seismic resistance capability, and the rationality of the model is validated. (authors)
International Nuclear Information System (INIS)
Locks, M.O.
1978-01-01
SPARCS-2 (Simulation Program for Assessing the Reliabilities of Complex Systems, Version 2) is a PL/1 computer program for assessing (establishing interval estimates for) the reliability and the MTBF of a large and complex s-coherent system of any modular configuration. The system can consist of a complex logical assembly of independently failing attribute (binomial-Bernoulli) and time-to-failure (Poisson-exponential) components, without regard to their placement. Alternatively, it can be a configuration of independently failing modules, where each module has either or both attribute and time-to-failure components. SPARCS-2 also has an improved super modularity feature. Modules with minimal-cut unreliabiliy calculations can be mixed with those having minimal-path reliability calculations. All output has been standardized to system reliability or probability of success, regardless of the form in which the input data is presented, and whatever the configuration of modules or elements within modules
Reliability analysis for Atucha II reactor protection system signals
International Nuclear Information System (INIS)
Roca, Jose Luis
1996-01-01
Atucha II is a 745 MW Argentine Power Nuclear Reactor constructed by ENACE SA, Nuclear Argentine Company for Electrical Power Generation and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed
Reliability analysis for Atucha II reactor protection system signals
International Nuclear Information System (INIS)
Roca, Jose L.
2000-01-01
Atucha II is a 745 MW Argentine power nuclear reactor constructed by Nuclear Argentine Company for Electric Power Generation S.A. (ENACE S.A.) and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed. (author)
Systems reliability/structural reliability
International Nuclear Information System (INIS)
Green, A.E.
1980-01-01
The question of reliability technology using quantified techniques is considered for systems and structures. Systems reliability analysis has progressed to a viable and proven methodology whereas this has yet to be fully achieved for large scale structures. Structural loading variants over the half-time of the plant are considered to be more difficult to analyse than for systems, even though a relatively crude model may be a necessary starting point. Various reliability characteristics and environmental conditions are considered which enter this problem. The rare event situation is briefly mentioned together with aspects of proof testing and normal and upset loading conditions. (orig.)
Analysis of the Reliability of the "Alternator- Alternator Belt" System
Directory of Open Access Journals (Sweden)
Ivan Mavrin
2012-10-01
Full Text Available Before starting and also during the exploitation of va1ioussystems, it is vety imp011ant to know how the system and itsparts will behave during operation regarding breakdowns, i.e.failures. It is possible to predict the service behaviour of a systemby determining the functions of reliability, as well as frequencyand intensity of failures.The paper considers the theoretical basics of the functionsof reliability, frequency and intensity of failures for the twomain approaches. One includes 6 equal intetvals and the other13 unequal intetvals for the concrete case taken from practice.The reliability of the "alternator- alternator belt" system installedin the buses, has been analysed, according to the empiricaldata on failures.The empitical data on failures provide empirical functionsof reliability and frequency and intensity of failures, that arepresented in tables and graphically. The first analysis perfO!med by dividing the mean time between failures into 6 equaltime intervals has given the forms of empirical functions of fa ilurefrequency and intensity that approximately cotTespond totypical functions. By dividing the failure phase into 13 unequalintetvals with two failures in each interval, these functions indicateexplicit transitions from early failure inte1val into the randomfailure interval, i.e. into the ageing intetval. Functions thusobtained are more accurate and represent a better solution forthe given case.In order to estimate reliability of these systems with greateraccuracy, a greater number of failures needs to be analysed.
System Reliability Engineering
International Nuclear Information System (INIS)
Lim, Tae Jin
2005-02-01
This book tells of reliability engineering, which includes quality and reliability, reliability data, importance of reliability engineering, reliability and measure, the poisson process like goodness of fit test and the poisson arrival model, reliability estimation like exponential distribution, reliability of systems, availability, preventive maintenance such as replacement policies, minimal repair policy, shock models, spares, group maintenance and periodic inspection, analysis of common cause failure, and analysis model of repair effect.
User's manual of a support system for human reliability analysis
International Nuclear Information System (INIS)
Yokobayashi, Masao; Tamura, Kazuo.
1995-10-01
Many kinds of human reliability analysis (HRA) methods have been developed. However, users are required to be skillful so as to use them, and also required complicated works such as drawing event tree (ET) and calculation of uncertainty bounds. Moreover, each method is not so complete that only one method of them is not enough to evaluate human reliability. Therefore, a personal computer (PC) based support system for HRA has been developed to execute HRA practically and efficiently. The system consists of two methods, namely, simple method and detailed one. The former uses ASEP that is a simplified THERP-technique, and combined method of OAT and HRA-ET/DeBDA is used for the latter. Users can select a suitable method for their purpose. Human error probability (HEP) data were collected and a database of them was built to use for the support system. This paper describes outline of the HRA methods, support functions and user's guide of the system. (author)
Review of the treat upgrade reactor scram system reliability analysis
International Nuclear Information System (INIS)
Montague, D.F.; Fussell, J.B.; Krois, P.A.; Morelock, T.C.; Knee, H.E.; Manning, J.J.; Haas, P.M.; West, K.W.
1984-10-01
In order to resolve some key LMFBR safety issues, ANL personnel are modifying the TREAT reactor to handle much larger experiments. As a result of these modifications, the upgraded Treat reactor will not always operate in a self-limited mode. During certain experiments in the upgraded TREAT reactor, it is possible that the fuel could be damaged by overheating if, once the computer systems fail, the reactor scram system (RSS) fails on demand. To help ensure that the upgraded TREAT reactor is shut down when required, ANL personnel have designed a triply redundant RSS for the facility. The RSS is designed to meet three reliability goals: (1) a loss of capability failure probability of 10 -9 /demand (independent failures only); (2) an inadvertent shutdown probability of 10 -3 /experiment; and (3) protection agaist any known potential common cause failures. According to ANL's reliability analysis of the RSS, this system substantially meets these goals
Failure and Reliability Analysis for the Master Pump Shutdown System
International Nuclear Information System (INIS)
BEVINS, R.R.
2000-01-01
The Master Pump Shutdown System (MPSS) will be installed in the 200 Areas of the Hanford Site to monitor and control the transfer of liquid waste between tank farms and between the 200 West and 200 East areas through the Cross-Site Transfer Line. The Safety Function provided by the MPSS is to shutdown any waste transfer process within or between tank farms if a waste leak should occur along the selected transfer route. The MPSS, which provides this Safety Class Function, is composed of Programmable Logic Controllers (PLCs), interconnecting wires, relays, Human to Machine Interfaces (HMI), and software. These components are defined as providing a Safety Class Function and will be designated in this report as MPSS/PLC. Input signals to the MPSS/PLC are provided by leak detection systems from each of the tank farm leak detector locations along the waste transfer route. The combination of the MPSS/PLC, leak detection system, and transfer pump controller system will be referred to as MPSS/SYS. The components addressed in this analysis are associated with the MPSS/SYS. The purpose of this failure and reliability analysis is to address the following design issues of the Project Development Specification (PDS) for the MPSS/SYS (HNF 2000a): (1) Single Component Failure Criterion, (2) System Status Upon Loss of Electrical Power, (3) Physical Separation of Safety Class cables, (4) Physical Isolation of Safety Class Wiring from General Service Wiring, and (5) Meeting the MPSS/PLC Option 1b (RPP 1999) Reliability estimate. The failure and reliability analysis examined the system on a component level basis and identified any hardware or software elements that could fail and/or prevent the system from performing its intended safety function
The DYLAM approach for the dynamic reliability analysis of systems
International Nuclear Information System (INIS)
Cojazzi, Giacomo
1996-01-01
In many real systems, failures occurring to the components, control failures and human interventions often interact with the physical system evolution in such a way that a simple reliability analysis, de-coupled from process dynamics, is very difficult or even impossible. In the last ten years many dynamic reliability approaches have been proposed to properly assess the reliability of these systems characterized by dynamic interactions. The DYLAM methodology, now implemented in its latest version, DYLAM-3, offers a powerful tool for integrating deterministic and failure events. This paper describes the main features of the DYLAM-3 code with reference to the classic fault-tree and event-tree techniques. Some aspects connected to the practical problems underlying dynamic event-trees are also discussed. A simple system, already analyzed with other dynamic methods is used as a reference for the numerical applications. The same system is also studied with a time-dependent fault-tree approach in order to show some features of dynamic methods vs classical techniques. Examples including stochastic failures, without and with repair, failures on demand and time dependent failure rates give an extensive overview of DYLAM-3 capabilities
Reliability analysis of neutron flux monitoring system for PFBR
International Nuclear Information System (INIS)
Rajesh, M.G.; Bhatnagar, P.V.; Das, D.; Pithawa, C.K.; Vinod, Gopika; Rao, V.V.S.S.
2010-01-01
The Neutron Flux Monitoring System (NFMS) measures reactor power, rate of change of power and reactivity changes in the core in all states of operation and shutdown. The system consists of instrument channels that are designed and built to have high reliability. All channels are required to have a Mean Time Between Failures (MTBF) of 150000 hours minimum. Failure Mode and Effects Analysis (FMEA) and failure rate estimation of NFMS channels has been carried out. FMEA is carried out in compliance with MIL-STD-338B. Reliability estimation of the channels is done according to MIL-HDBK-217FN2. Paper discusses the methodology followed for FMEA and failure rate estimation of two safety channels and results. (author)
Reliability Analysis of the CERN Radiation Monitoring Electronic System CROME
AUTHOR|(CDS)2126870
For the new in-house developed CERN Radiation Monitoring Electronic System (CROME) a reliability analysis is necessary to ensure compliance with the statu-tory requirements regarding the Safety Integrity Level. The required Safety Integrity Level by IEC 60532 standard is SIL 2 (for the Safety Integrated Functions Measurement, Alarm Triggering and Interlock Triggering). The ﬁrst step of the reliability analysis was a system and functional analysis which served as basis for the implementation of the CROME system in the software “Iso-graph”. In the “Prediction” module of Isograph the failure rates of all components were calculated. Failure rates for passive components were calculated by the Military Standard 217 and failure rates for active components were obtained from lifetime tests by the manufacturers. The FMEA was carried out together with the board designers and implemented in the “FMECA” module of Isograph. The FMEA served as basis for the Fault Tree Analysis and the detection of weak points...
Reliability analysis of self-actuated shutdown system
International Nuclear Information System (INIS)
Itooka, S.; Kumasaka, K.; Okabe, A.; Satoh, K.; Tsukui, Y.
1991-01-01
An analytical study was performed for the reliability of a self-actuated shutdown system (SASS) under the unprotected loss of flow (ULOF) event in a typical loop-type liquid metal fast breeder reactor (LMFBR) by the use of the response surface Monte Carlo analysis method. Dominant parameters for the SASS, such as Curie point characteristics, subassembly outlet coolant temperature, electromagnetic surface condition, etc., were selected and their probability density functions (PDFs) were determined by the design study information and experimental data. To get the response surface function (RSF) for the maximum coolant temperature, transient analyses of ULOF were performed by utilizing the experimental design method in the determination of analytical cases. Then, the RSF was derived by the multi-variable regression analysis. The unreliability of the SASS was evaluated as a probability that the maximum coolant temperature exceeded an acceptable level, employing the Monte Carlo calculation using the above PDFs and RSF. In this study, sensitivities to the dominant parameter were compared. The dispersion of subassembly outlet coolant temperature near the SASS-was found to be one of the most sensitive parameters. Fault tree analysis was performed using this value for the SASS in order to evaluate the shutdown system reliability. As a result of this study, the effectiveness of the SASS on the reliability improvement in the LMFBR shutdown system was analytically confirmed. This study has been performed as a part of joint research and development projects for DFBR under the sponsorship of the nine Japanese electric power companies, Electric Power Development Company and the Japan Atomic Power Company. (author)
Reliability and availability requirements analysis for DEMO: fuel cycle system
International Nuclear Information System (INIS)
Pinna, T.; Borgognoni, F.
2015-01-01
The Demonstration Power Plant (DEMO) will be a fusion reactor prototype designed to demonstrate the capability to produce electrical power in a commercially acceptable way. Two of the key elements of the engineering development of the DEMO reactor are the definitions of reliability and availability requirements (or targets). The availability target for a hypothesized Fuel Cycle has been analysed as a test case. The analysis has been done on the basis of the experience gained in operating existing tokamak fusion reactors and developing the ITER design. Plant Breakdown Structure (PBS) and Functional Breakdown Structure (FBS) related to the DEMO Fuel Cycle and correlations between PBS and FBS have been identified. At first, a set of availability targets has been allocated to the various systems on the basis of their operating, protection and safety functions. 75% and 85% of availability has been allocated to the operating functions of fuelling system and tritium plant respectively. 99% of availability has been allocated to the overall systems in executing their safety functions. The chances of the systems to achieve the allocated targets have then been investigated through a Failure Mode and Effect Analysis and Reliability Block Diagram analysis. The following results have been obtained: 1) the target of 75% for the operations of the fuelling system looks reasonable, while the target of 85% for the operations of the whole tritium plant should be reduced to 80%, even though all the tritium plant systems can individually reach quite high availability targets, over 90% - 95%; 2) all the DEMO Fuel Cycle systems can reach the target of 99% in accomplishing their safety functions. (authors)
RELOSS, Reliability of Safety System by Fault Tree Analysis
International Nuclear Information System (INIS)
Allan, R.N.; Rondiris, I.L.; Adraktas, A.
1981-01-01
1 - Description of problem or function: Program RELOSS is used in the reliability/safety assessment of any complex system with predetermined operational logic in qualitative and (if required) quantitative terms. The program calculates the possible system outcomes following an abnormal operating condition and the probability of occurrence, if required. Furthermore, the program deduces the minimal cut or tie sets of the system outcomes and identifies the potential common mode failures. 4. Method of solution: The reliability analysis performed by the program is based on the event tree methodology. Using this methodology, the program develops the event tree of a system or a module of that system and relates each path of this tree to its qualitative and/or quantitative impact on specified system or module outcomes. If the system being analysed is subdivided into modules the program assesses each module in turn as described previously and then combines the module information to obtain results for the overall system. Having developed the event tree of a module or a system, the program identifies which paths lead or do not lead to various outcomes depending on whether the cut or the tie sets of the outcomes are required and deduces the corresponding sets. Furthermore the program identifies for a specific system outcome, the potential common mode failures and the cut or tie sets containing potential dependent failures of some components. 5. Restrictions on the complexity of the problem: The present dimensions of the program are as follows. They can however be easily modified: Maximum number of modules (equivalent components): 25; Maximum number of components in a module: 15; Maximum number of levels of parentheses in a logical statement: 10 Maximum number of system outcomes: 3; Maximum number of module outcomes: 2; Maximum number of points in time for which quantitative analysis is required: 5; Maximum order of any cut or tie set: 10; Maximum order of a cut or tie of any
International Nuclear Information System (INIS)
Dougherty, E.M.; Fragola, J.R.
1988-01-01
The authors present a treatment of human reliability analysis incorporating an introduction to probabilistic risk assessment for nuclear power generating stations. They treat the subject according to the framework established for general systems theory. Draws upon reliability analysis, psychology, human factors engineering, and statistics, integrating elements of these fields within a systems framework. Provides a history of human reliability analysis, and includes examples of the application of the systems approach
Development of the integrated system reliability analysis code MODULE
International Nuclear Information System (INIS)
Han, S.H.; Yoo, K.J.; Kim, T.W.
1987-01-01
The major components in a system reliability analysis are the determination of cut sets, importance measure, and uncertainty analysis. Various computer codes have been used for these purposes. For example, SETS and FTAP are used to determine cut sets; Importance for importance calculations; and Sample, CONINT, and MOCUP for uncertainty analysis. There have been problems when the codes run each other and the input and output are not linked, which could result in errors when preparing input for each code. The code MODULE was developed to carry out the above calculations simultaneously without linking input and outputs to other codes. MODULE can also prepare input for SETS for the case of a large fault tree that cannot be handled by MODULE. The flow diagram of the MODULE code is shown. To verify the MODULE code, two examples are selected and the results and computation times are compared with those of SETS, FTAP, CONINT, and MOCUP on both Cyber 170-875 and IBM PC/AT. Two examples are fault trees of the auxiliary feedwater system (AFWS) of Korea Nuclear Units (KNU)-1 and -2, which have 54 gates and 115 events, 39 gates and 92 events, respectively. The MODULE code has the advantage that it can calculate the cut sets, importances, and uncertainties in a single run with little increase in computing time over other codes and that it can be used in personal computers
Reliability modeling and analysis of smart power systems
Karki, Rajesh; Verma, Ajit Kumar
2014-01-01
The volume presents the research work in understanding, modeling and quantifying the risks associated with different ways of implementing smart grid technology in power systems in order to plan and operate a modern power system with an acceptable level of reliability. Power systems throughout the world are undergoing significant changes creating new challenges to system planning and operation in order to provide reliable and efficient use of electrical energy. The appropriate use of smart grid technology is an important drive in mitigating these problems and requires considerable research acti
Embedded mechatronic systems 1 analysis of failures, predictive reliability
El Hami, Abdelkhalak
2015-01-01
In operation, mechatronics embedded systems are stressed by loads of different causes: climate (temperature, humidity), vibration, electrical and electromagnetic. These stresses in components which induce failure mechanisms should be identified and modeled for better control. AUDACE is a collaborative project of the cluster Mov'eo that address issues specific to mechatronic reliability embedded systems. AUDACE means analyzing the causes of failure of components of mechatronic systems onboard. The goal of the project is to optimize the design of mechatronic devices by reliability. The projec
Windfarm Generation Assessment for ReliabilityAnalysis of Power Systems
DEFF Research Database (Denmark)
Negra, Nicola Barberis; Holmstrøm, Ole; Bak-Jensen, Birgitte
2007-01-01
Due to the fast development of wind generation in the past ten years, increasing interest has been paid to techniques for assessing different aspects of power systems with a large amount of installed wind generation. One of these aspects concerns power system reliability. Windfarm modelling plays...
Windfarm generation assessment for reliability analysis of power systems
DEFF Research Database (Denmark)
Negra, N.B.; Holmstrøm, O.; Bak-Jensen, B.
2007-01-01
Due to the fast development of wind generation in the past ten years, increasing interest has been paid to techniques for assessing different aspects of power systems with a large amount of installed wind generation. One of these aspects concerns power system reliability. Windfarm modelling plays...
Monte Carlo methods for the reliability analysis of Markov systems
International Nuclear Information System (INIS)
Buslik, A.J.
1985-01-01
This paper presents Monte Carlo methods for the reliability analysis of Markov systems. Markov models are useful in treating dependencies between components. The present paper shows how the adjoint Monte Carlo method for the continuous time Markov process can be derived from the method for the discrete-time Markov process by a limiting process. The straightforward extensions to the treatment of mean unavailability (over a time interval) are given. System unavailabilities can also be estimated; this is done by making the system failed states absorbing, and not permitting repair from them. A forward Monte Carlo method is presented in which the weighting functions are related to the adjoint function. In particular, if the exact adjoint function is known then weighting factors can be constructed such that the exact answer can be obtained with a single Monte Carlo trial. Of course, if the exact adjoint function is known, there is no need to perform the Monte Carlo calculation. However, the formulation is useful since it gives insight into choices of the weight factors which will reduce the variance of the estimator
Reliability analysis of load-sharing systems with memory.
Wang, Dewei; Jiang, Chendi; Park, Chanseok
2018-02-22
The load-sharing model has been studied since the early 1940s to account for the stochastic dependence of components in a parallel system. It assumes that, as components fail one by one, the total workload applied to the system is shared by the remaining components and thus affects their performance. Such dependent systems have been studied in many engineering applications which include but are not limited to fiber composites, manufacturing, power plants, workload analysis of computing, software and hardware reliability, etc. Many statistical models have been proposed to analyze the impact of each redistribution of the workload; i.e., the changes on the hazard rate of each remaining component. However, they do not consider how long a surviving component has worked for prior to the redistribution. We name such load-sharing models as memoryless. To remedy this potential limitation, we propose a general framework for load-sharing models that account for the work history. Through simulation studies, we show that an inappropriate use of the memoryless assumption could lead to inaccurate inference on the impact of redistribution. Further, a real-data example of plasma display devices is analyzed to illustrate our methods.
Reliability analysis of the service water system of Angra 1 reactor
International Nuclear Information System (INIS)
Tayt-Sohn, L.C.; Oliveira, L.F.S. de.
1984-01-01
A reliability analysis of the service water system is done aiming to use in the evaluation of the non reliability of the Component Cooling System (SRC) for great loss of cooling accidents in nuclear power plants. (E.G.) [pt
Reliability analysis of the service water system of Angra 1 reactor
International Nuclear Information System (INIS)
Oliveira, L.F.S. de; Fleming, P.V.; Frutuoso e Melo, P.F.F.; Tayt-Sohn, L.C.
1983-01-01
A reliability analysis of the service water system is done aiming to use in the evaluation of the non reliability of the component cooling system (SRC) for great loss of cooling accidents in nuclear power plants. (E.G.) [pt
Reliability analysis of water distribution systems under uncertainty
International Nuclear Information System (INIS)
Kansal, M.L.; Kumar, Arun; Sharma, P.B.
1995-01-01
In most of the developing countries, the Water Distribution Networks (WDN) are of intermittent type because of the shortage of safe drinking water. Failure of a pipeline(s) in such cases will cause not only the fall in one or more nodal heads but also the poor connectivity of source with various demand nodes of the system. Most of the previous works have used the two-step algorithm based on pathset or cutset approach for connectivity analysis. The computations become more cumbersome when connectivity of all demand nodes taken together with that of supply is carried out. In the present paper, network connectivity based on the concept of Appended Spanning Tree (AST) is suggested to compute global network connectivity which is defined as the probability of the source node being connected with all the demand nodes simultaneously. The concept of AST has distinct advantages as it attacks the problem directly rather than in an indirect way as most of the studies so far have done. Since the water distribution system is a repairable one, a general expression for pipeline avialability using the failure/repair rate is considered. Furthermore, the sensitivity of global reliability estimates due to the likely error in the estimation of failure/repair rates of various pipelines is also studied
Reliability analysis of Airbus A-330 computer flight management system
Fajmut, Metod
2010-01-01
Diploma thesis deals with digitized, computerized flight control system »Fly-by-wire« and security aspects of the computer system of an aircraft Airbus A330. As for space and military aircraft structures is also in commercial airplanes, much of the financial contribution devoted to reliability. Conventional aircraft control systems have, and some are still, to rely on mechanical and hydraulic connections between the controls on aircraft operated by the pilot and control surfaces. But newer a...
System Reliability Analysis Capability and Surrogate Model Application in RAVEN
Energy Technology Data Exchange (ETDEWEB)
Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Dongli [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Bei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adbel-Khalik, Hany S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pascucci, Valerio [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-11-01
This report collect the effort performed to improve the reliability analysis capabilities of the RAVEN code and explore new opportunity in the usage of surrogate model by extending the current RAVEN capabilities to multi physics surrogate models and construction of surrogate models for high dimensionality fields.
Analysis and Application of Reliability
International Nuclear Information System (INIS)
Jeong, Hae Seong; Park, Dong Ho; Kim, Jae Ju
1999-05-01
This book tells of analysis and application of reliability, which includes definition, importance and historical background of reliability, function of reliability and failure rate, life distribution and assumption of reliability, reliability of unrepaired system, reliability of repairable system, sampling test of reliability, failure analysis like failure analysis by FEMA and FTA, and cases, accelerated life testing such as basic conception, acceleration and acceleration factor, and analysis of accelerated life testing data, maintenance policy about alternation and inspection.
Power electronics reliability analysis.
Energy Technology Data Exchange (ETDEWEB)
Smith, Mark A.; Atcitty, Stanley
2009-12-01
This report provides the DOE and industry with a general process for analyzing power electronics reliability. The analysis can help with understanding the main causes of failures, downtime, and cost and how to reduce them. One approach is to collect field maintenance data and use it directly to calculate reliability metrics related to each cause. Another approach is to model the functional structure of the equipment using a fault tree to derive system reliability from component reliability. Analysis of a fictitious device demonstrates the latter process. Optimization can use the resulting baseline model to decide how to improve reliability and/or lower costs. It is recommended that both electric utilities and equipment manufacturers make provisions to collect and share data in order to lay the groundwork for improving reliability into the future. Reliability analysis helps guide reliability improvements in hardware and software technology including condition monitoring and prognostics and health management.
Reliability Analysis Multiple Redundancy Controller for Nuclear Safety Systems
International Nuclear Information System (INIS)
Son, Gwangseop; Kim, Donghoon; Son, Choulwoong
2013-01-01
This controller is configured for multiple modular redundancy (MMR) composed of dual modular redundancy (DMR) and triple modular redundancy (TMR). The architecture of MRC is briefly described, and the Markov model is developed. Based on the model, the reliability and Mean Time To Failure (MTTF) are analyzed. In this paper, the architecture of MRC for nuclear safety systems is described. The MRC is configured for multiple modular redundancy (MMR) composed of dual modular redundancy (DMR) and triple modular redundancy (TMR). Markov models for MRC architecture was developed, and then the reliability was analyzed by using the model. From the reliability analyses for the MRC, it is obtained that the failure rate of each module in the MRC should be less than 2 Χ 10 -4 /hour and the MTTF average increase rate depending on FCF increment, i. e. ΔMTTF/ΔFCF, is 4 months/0.1
Reliability analysis of a complex standby redundant systems
International Nuclear Information System (INIS)
Subramanian, R.; Anantharaman, V.
1995-01-01
In any redundant system, the state of the standby unit is usually taken to be hot, warm or cold. In this paper, we present a new model of a two unit standby system wherein the standby unit is put in cold state for a certain amount of time before it is allowed to become warm. Upon failure of the online unit, the standby unit, if in warm state, instantaneously starts operating online; if it is in cold state, an emergency switching is made which takes it to warm state (and hence online) either instantaneously or non-instantaneously--each with some probability; if it is under repair, the system breaks down. Assuming all the associated distributions to be general except that of the life time of the standby unit in the warm state, various reliability characteristics that are of interest to reliability engineers and system designers are derived. A comprehensive cost function is also constructed and is then optimized with respect to three different control parameters numerically. In addition numerical results are presented to illustrate the behaviour of the various reliability characteristics derived
Reliability Analysis Study of Digital Reactor Protection System in Nuclear Power Plant
International Nuclear Information System (INIS)
Guo, Xiao Ming; Liu, Tao; Tong, Jie Juan; Zhao, Jun
2011-01-01
The Digital I and C systems are believed to improve a plants safety and reliability generally. The reliability analysis of digital I and C system has become one research hotspot. Traditional fault tree method is one of means to quantify the digital I and C system reliability. Review of advanced nuclear power plant AP1000 digital protection system evaluation makes clear both the fault tree application and analysis process to the digital system reliability. One typical digital protection system special for advanced reactor has been developed, which reliability evaluation is necessary for design demonstration. The typical digital protection system construction is introduced in the paper, and the process of FMEA and fault tree application to the digital protection system reliability evaluation are described. Reliability data and bypass logic modeling are two points giving special attention in the paper. Because the factors about time sequence and feedback not exist in reactor protection system obviously, the dynamic feature of digital system is not discussed
Development of RBDGG Solver and Its Application to System Reliability Analysis
International Nuclear Information System (INIS)
Kim, Man Cheol
2010-01-01
For the purpose of making system reliability analysis easier and more intuitive, RBDGG (Reliability Block diagram with General Gates) methodology was introduced as an extension of the conventional reliability block diagram. The advantage of the RBDGG methodology is that the structure of a RBDGG model is very similar to the actual structure of the analyzed system, and therefore the modeling of a system for system reliability and unavailability analysis becomes very intuitive and easy. The main idea of the development of the RBDGG methodology is similar with that of the development of the RGGG (Reliability Graph with General Gates) methodology, which is an extension of a conventional reliability graph. The newly proposed methodology is now implemented into a software tool, RBDGG Solver. RBDGG Solver was developed as a WIN32 console application. RBDGG Solver receives information on the failure modes and failure probabilities of each component in the system, along with the connection structure and connection logics among the components in the system. Based on the received information, RBDGG Solver automatically generates a system reliability analysis model for the system, and then provides the analysis results. In this paper, application of RBDGG Solver to the reliability analysis of an example system, and verification of the calculation results are provided for the purpose of demonstrating how RBDGG Solver is used for system reliability analysis
Basic aspects of stochastic reliability analysis for redundancy systems
International Nuclear Information System (INIS)
Doerre, P.
1989-01-01
Much confusion has been created by trying to establish common cause failure (CCF) as an extra phenomenon which has to be treated with extra methods in reliability and data analysis. This paper takes another approach which can be roughly described by the statement that dependent failure is the basic phenomenon, while 'independent failure' refers to a special limiting case, namely the perfectly homogeneous population. This approach is motivated by examples demonstrating that common causes do not lead to dependent failure, so far as physical dependencies like shared components are excluded, and that stochastic dependencies are not related to common causes. The possibility to select more than one failure behaviour from an inhomogeneous population is identified as an additional random process which creates stochastic dependence. However, this source of randomness is usually treated in the deterministic limit, which destroys dependence and hence yields incorrect multiple failure frequencies for redundancy structures, thus creating the need for applying corrective CCF models. (author)
Energy Technology Data Exchange (ETDEWEB)
Milivojevic, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)
1974-12-15
Probability method was chosen for analysing the reactor system reliability is considered realistic since it is based on verified experimental data. In fact this is a statistical method. The probability method developed takes into account the probability distribution of permitted levels of relevant parameters and their particular influence on the reliability of the system as a whole. The proposed method is rather general, and was used for problem of thermal safety analysis of reactor system. This analysis enables to analyze basic properties of the system under different operation conditions, expressed in form of probability they show the reliability of the system on the whole as well as reliability of each component.
International Nuclear Information System (INIS)
Snaith, E.R.
1975-01-01
Following a reactor trip various reactor emergency systems, e.g. essential power supplies, emergency core cooling and boiler feed water arrangements are required to operate with a high degree of reliability. These systems must therefore be critically assessed to confirm their capability of operation and determine their reliability of performance. The use of probability analysis techniques enables the potential operating reliability of the systems to be calculated and this can then be compared with the overall reliability requirements. However, a system reliability analysis does much more than calculate an overall reliability value for the system. It establishes the reliability of all parts of the system and thus identifies the most sensitive areas of unreliability. This indicates the areas where any required improvements should be made and enables the overall systems' designs and modes of operation to be optimized, to meet the system and hence the overall reactor safety criteria. This paper gives specific examples of sensitive areas of unreliability that were identified as a result of a reliability analysis that was carried out on a reactor emergency core cooling system. Details are given of modifications to design and operation that were implemented with a resulting improvement in reliability of various reactor sub-systems. The report concludes that an initial calculation of system reliability should represent only the beginning of continuing process of system assessment. Data on equipment and system performance, particularly in those areas shown to be sensitive in their effect on the overall nuclear power plant reliability, should be collected and processed to give reliability data. These data should then be applied in further probabilistic analyses and the results correlated with the original analysis. This will demonstrate whether the required and the originally predicted system reliability is likely to be achieved, in the light of the actual history to date of
Reliability importance analysis of Markovian systems at steady state using perturbation analysis
Energy Technology Data Exchange (ETDEWEB)
Phuc Do Van [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France); Barros, Anne [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France)], E-mail: anne.barros@utt.fr; Berenguer, Christophe [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France)
2008-11-15
Sensitivity analysis has been primarily defined for static systems, i.e. systems described by combinatorial reliability models (fault or event trees). Several structural and probabilistic measures have been proposed to assess the components importance. For dynamic systems including inter-component and functional dependencies (cold spare, shared load, shared resources, etc.), and described by Markov models or, more generally, by discrete events dynamic systems models, the problem of sensitivity analysis remains widely open. In this paper, the perturbation method is used to estimate an importance factor, called multi-directional sensitivity measure, in the framework of Markovian systems. Some numerical examples are introduced to show why this method offers a promising tool for steady-state sensitivity analysis of Markov processes in reliability studies.
Reliability importance analysis of Markovian systems at steady state using perturbation analysis
International Nuclear Information System (INIS)
Phuc Do Van; Barros, Anne; Berenguer, Christophe
2008-01-01
Sensitivity analysis has been primarily defined for static systems, i.e. systems described by combinatorial reliability models (fault or event trees). Several structural and probabilistic measures have been proposed to assess the components importance. For dynamic systems including inter-component and functional dependencies (cold spare, shared load, shared resources, etc.), and described by Markov models or, more generally, by discrete events dynamic systems models, the problem of sensitivity analysis remains widely open. In this paper, the perturbation method is used to estimate an importance factor, called multi-directional sensitivity measure, in the framework of Markovian systems. Some numerical examples are introduced to show why this method offers a promising tool for steady-state sensitivity analysis of Markov processes in reliability studies
Use of computer codes for system reliability analysis
International Nuclear Information System (INIS)
Sabek, M.; Gaafar, M.; Poucet, A.
1988-01-01
This paper gives a collective summary of the studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRANTIC, FTAP, computer code package RALLY, and BOUNDS codes. Two reference study cases were executed by each code. The results obtained logic/probabilistic analysis as well as computation time are compared
International Nuclear Information System (INIS)
Matsuoka, Takeshi
1984-01-01
A reliability analysis is given for the emergency decay heat removal system of the Nuclear Ship ''Mutsu'' and the emergency sea water cooling system of the Nuclear Ship ''Savannah'', under ten typical nuclear ship accident conditions. Basic event probabilities under these accident conditions are estimated from literature survey. These systems of Mutsu and Savannah have almost the same reliability under the normal condition. The dispersive arrangement of a system is useful to prevent the reduction of the system reliability under the condition of an accident restricted in one room. As for the reliability of these two systems under various accident conditions, it is seen that the configuration and the environmental condition of a system are two main factors which determine the reliability of the system. Furthermore, it was found that, for the evaluation of the effectiveness of safety system of a nuclear ship, it is necessary to evaluate its reliability under various accident conditions. (author)
Use of computer codes for system reliability analysis
International Nuclear Information System (INIS)
Sabek, M.; Gaafar, M.; Poucet, A.
1989-01-01
This paper gives a summary of studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRACTIC, FTAP, computer code package RALLY, and BOUNDS. Two reference case studies were executed by each code. The probabilistic results obtained, as well as the computation times are compared. The two cases studied are the auxiliary feedwater system of a 1300 MW PWR reactor and the emergency electrical power supply system. (author)
Use of computer codes for system reliability analysis
Energy Technology Data Exchange (ETDEWEB)
Sabek, M.; Gaafar, M. (Nuclear Regulatory and Safety Centre, Atomic Energy Authority, Cairo (Egypt)); Poucet, A. (Commission of the European Communities, Ispra (Italy). Joint Research Centre)
1989-01-01
This paper gives a summary of studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRACTIC, FTAP, computer code package RALLY, and BOUNDS. Two reference case studies were executed by each code. The probabilistic results obtained, as well as the computation times are compared. The two cases studied are the auxiliary feedwater system of a 1300 MW PWR reactor and the emergency electrical power supply system. (author).
A survey on reliability and safety analysis techniques of robot systems in nuclear power plants
Energy Technology Data Exchange (ETDEWEB)
Eom, H S; Kim, J H; Lee, J C; Choi, Y R; Moon, S S
2000-12-01
The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system.
A survey on reliability and safety analysis techniques of robot systems in nuclear power plants
International Nuclear Information System (INIS)
Eom, H.S.; Kim, J.H.; Lee, J.C.; Choi, Y.R.; Moon, S.S.
2000-12-01
The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system
Hawaii Electric System Reliability
Energy Technology Data Exchange (ETDEWEB)
Loose, Verne William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silva Monroy, Cesar Augusto [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2012-08-01
This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers’ views of reliability “worth” and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers’ views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.
Hawaii electric system reliability.
Energy Technology Data Exchange (ETDEWEB)
Silva Monroy, Cesar Augusto; Loose, Verne William
2012-09-01
This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.
Analysis of complete logical structures in system reliability assessment
International Nuclear Information System (INIS)
Amendola, A.; Clarotti, C.A.; Contini, S.; Spizzichino, F.
1980-01-01
The application field of the fault-tree techniques has been explored in order to assess whether the AND-OR structures covered all possible actual binary systems. This resulted in the identification of various situations requiring the complete AND-OR-NOT structures for their analysis. We do not use the term non-coherent for such cases, since the monotonicity or not of a structure function is not a characteristic of a system, but of the particular top event being examined. The report presents different examples of complete fault-trees, which can be examined according to different degrees of approximation. In fact, the exact analysis for the determination of the smallest irredundant bases is very time consuming and actually necessary only in some particular cases (multi-state systems, incidental situations). Therefore, together with the exact procedure, the report shows two different methods of logical analysis that permit the reduction of complete fault-trees to AND-OR structures. Moreover, it discusses the problems concerning the evaluation of the probability distribution of the time to first top event occurrence, once the hypothesis of structure function monotonicity is removed
Summary of the preparation of methodology for digital system reliability analysis for PSA purposes
International Nuclear Information System (INIS)
Hustak, S.; Babic, P.
2001-12-01
The report is structured as follows: Specific features of and requirements for the digital part of NPP Instrumentation and Control (I and C) systems (Computer-controlled digital technologies and systems of the NPP I and C system; Specific types of digital technology failures and preventive provisions; Reliability requirements for the digital parts of I and C systems; Safety requirements for the digital parts of I and C systems; Defence-in-depth). Qualitative analyses of NPP I and C system reliability and safety (Introductory system analysis; Qualitative requirements for and proof of NPP I and C system reliability and safety). Quantitative reliability analyses of the digital parts of I and C systems (Selection of a suitable quantitative measure of digital system reliability; Selected qualitative and quantitative findings regarding digital system reliability; Use of relations among the occurrences of the various types of failure). Mathematical section in support of the calculation of the various types of indices (Boolean reliability models, Markovian reliability models). Example of digital system analysis (Description of a selected protective function and the relevant digital part of the I and C system; Functional chain examined, its components and fault tree). (P.A.)
Zhang, Ding; Zhang, Yingjie
2017-09-01
A framework for reliability and maintenance analysis of job shop manufacturing systems is proposed in this paper. An efficient preventive maintenance (PM) policy in terms of failure effects analysis (FEA) is proposed. Subsequently, reliability evaluation and component importance measure based on FEA are performed under the PM policy. A job shop manufacturing system is applied to validate the reliability evaluation and dynamic maintenance policy. Obtained results are compared with existed methods and the effectiveness is validated. Some vague understandings for issues such as network modelling, vulnerabilities identification, the evaluation criteria of repairable systems, as well as PM policy during manufacturing system reliability analysis are elaborated. This framework can help for reliability optimisation and rational maintenance resources allocation of job shop manufacturing systems.
Reliability and life-cycle analysis of deteriorating systems
Sánchez-Silva, Mauricio
2016-01-01
This book compiles and critically discusses modern engineering system degradation models and their impact on engineering decisions. In particular, the authors focus on modeling the uncertain nature of degradation considering both conceptual discussions and formal mathematical formulations. It also describes the basics concepts and the various modeling aspects of life-cycle analysis (LCA). It highlights the role of degradation in LCA and defines optimum design and operation parameters. Given the relationship between operational decisions and the performance of the system’s condition over time, maintenance models are also discussed. The concepts and models presented have applications in a large variety of engineering fields such as Civil, Environmental, Industrial, Electrical and Mechanical engineering. However, special emphasis is given to problems related to large infrastructure systems. The book is intended to be used both as a reference resource for researchers and practitioners and as an academic text ...
Inter comparison of REPAS and APSRA methodologies for passive system reliability analysis
International Nuclear Information System (INIS)
Solanki, R.B.; Krishnamurthy, P.R.; Singh, Suneet; Varde, P.V.; Verma, A.K.
2014-01-01
The increasing use of passive systems in the innovative nuclear reactors puts demand on the estimation of the reliability assessment of these passive systems. The passive systems operate on the driving forces such as natural circulation, gravity, internal stored energy etc. which are moderately weaker than that of active components. Hence, phenomenological failures (virtual components) are equally important as that of equipment failures (real components) in the evaluation of passive systems reliability. The contribution of the mechanical components to the passive system reliability can be evaluated in a classical way using the available component reliability database and well known methods. On the other hand, different methods are required to evaluate the reliability of processes like thermohydraulics due to lack of adequate failure data. The research is ongoing worldwide on the reliability assessment of the passive systems and their integration into PSA, however consensus is not reached. Two of the most widely used methods are Reliability Evaluation of Passive Systems (REPAS) and Assessment of Passive System Reliability (APSRA). Both these methods characterize the uncertainties involved in the design and process parameters governing the function of the passive system. However, these methods differ in the quantification of passive system reliability. Inter comparison among different available methods provides useful insights into the strength and weakness of different methods. This paper highlights the results of the thermal hydraulic analysis of a typical passive isolation condenser system carried out using RELAP mode 3.2 computer code applying REPAS and APSRA methodologies. The failure surface is established for the passive system under consideration and system reliability has also been evaluated using these methods. Challenges involved in passive system reliabilities are identified, which require further attention in order to overcome the shortcomings of these
Reliability analysis of diverse safety logic systems of fast breeder reactor
International Nuclear Information System (INIS)
Ravi Kumar, Bh.; Apte, P.R.; Srivani, L.; Ilango Sambasivan, S.; Swaminathan, P.
2006-01-01
Safety Logic for Fast Breeder Reactor (FBR) is designed to initiate safety action against Design Basis Events. Based on the outputs of various processing circuits, Safety logic system drives the control rods of the shutdown system. So, Safety Logic system is classified as safety critical system. Therefore, reliability analysis has to be performed. This paper discusses the Reliability analysis of Diverse Safety logic systems of FBRs. For this literature survey on safety critical systems, system reliability approach and standards to be followed like IEC-61508 are discussed in detail. For Programmable Logic device based systems, Hardware Description Languages (HDL) are used. So this paper also discusses the Verification and Validation for HDLs. Finally a case study for the Reliability analysis of Safety logic is discussed. (author)
Directory of Open Access Journals (Sweden)
I. S. Shumilov
2017-01-01
Full Text Available The paper deals with design requirements for an aviation fuel system (AFS, AFS basic design requirements, reliability, and design precautions to avoid AFS failure. Compares the reliability and fail-safety of AFS and aircraft hydraulic system (AHS, considers the promising alternative ways to raise reliability of fuel systems, as well as elaborates recommendations to improve reliability of the pipeline system components and pipeline systems, in general, based on the selection of design solutions.It is extremely advisable to design the AFS and AHS in accordance with Aviation Regulations АП25 and Accident Prevention Guidelines, ICAO (International Civil Aviation Association, which will reduce risk of emergency situations, and in some cases even avoid heavy disasters.ATS and AHS designs should be based on the uniform principles to ensure the highest reliability and safety. However, currently, this principle is not enough kept, and AFS looses in reliability and fail-safety as compared with AHS. When there are the examined failures (single and their combinations the guidelines to ensure the AFS efficiency should be the same as those of norm-adopted in the Regulations АП25 for AHS. This will significantly increase reliability and fail-safety of the fuel systems and aircraft flights, in general, despite a slight increase in AFS mass.The proposed improvements through the use of components redundancy of the fuel system will greatly raise reliability of the fuel system of a passenger aircraft, which will, without serious consequences for the flight, withstand up to 2 failures, its reliability and fail-safety design will be similar to those of the AHS, however, above improvement measures will lead to a slightly increasing total mass of the fuel system.It is advisable to set a second pump on the engine in parallel with the first one. It will run in case the first one fails for some reasons. The second pump, like the first pump, can be driven from the
An algorithm for reliability analysis of phased-mission systems
International Nuclear Information System (INIS)
Ma, Y.; Trivedi, K.S.
1999-01-01
The purpose of this paper is to describe an efficient Boolean algebraic algorithm that provides exact solution to the unreliability of a multi-phase mission system where the configurations are described through fault trees. The algorithm extends and improves the Boolean method originally proposed by Somani and Trivedi. By using the Boolean algebraic method, we provide an efficient modeling approach which avoids the state space explosion and the mapping problems that are encountered by the Markov chain approach. To calculate the exact solution of the phased-mission system with deterministic phase durations, we introduce the sum of disjoint phase products (SDPP) formula, which is a phased-extension of the sum of disjoint products (SDP) formula. Computationally, the algorithm is quite efficient because it calls an SDP generation algorithm in the early stage of the SDPP computation. In this way, the phase products generated in the early stage of the SDPP formula are guaranteed to be disjoint. Consequently, the number of the intermediate phase products is greatly reduced. In this paper, we also consider the transient analysis of the phased-mission system. Special care is needed to account for the possible latent failures at the mission phase change times. If there are more stringent success criteria just after a mission phase change time, an unreliability jump would occur at that time. Finally, the algorithm has been implemented in the software package SHARPE. With SHARPE, the complexities of the phased-mission system is made transparent to the potential users. The user can conveniently specify a phased-mission model at a high level (through fault trees) and analyze the system quantitatively
Reliability Analysis Of Fire System On The Industry Facility By Use Fameca Method
International Nuclear Information System (INIS)
Sony T, D.T.; Situmorang, Johnny; Ismu W, Puradwi; Demon H; Mulyanto, Dwijo; Kusmono, Slamet; Santa, Sigit Asmara
2000-01-01
FAMECA is one of the analysis method to determine system reliability on the industry facility. Analysis is done by some procedure that is identification of component function, determination of failure mode, severity level and effect of their failure. Reliability value is determined by three combinations that is severity level, component failure value and critical component. Reliability of analysis has been done for fire system on the industry by FAMECA method. Critical component which identified is pump, air release valve, check valve, manual test valve, isolation valve, control system etc
International Nuclear Information System (INIS)
Shrikhande, S.V.; Patil, V.K.; Ganesh, G.; Biswas, B.; Patil, R.K.
2010-01-01
Computer Based Systems (CBS) are employed in Indian nuclear plants for protection, control and monitoring purpose. For forthcoming CBS, Reactor Control Division has designed and developed a new standardized family of microcomputer boards qualified to stringent requirements of nuclear industry. These boards form the basic building blocks of CBS. Reliability analysis of these boards is being carried out using analysis package based on MIL-STD-217Plus methodology. The estimated failure rate values of these standardized microcomputer boards will be useful for reliability assessment of these systems. The paper presents reliability analysis of microcomputer boards and case study of a CBS system built using these boards. (author)
International Nuclear Information System (INIS)
Anon.
1975-01-01
Presented is the Institute of Electrical and Electronics Engineers, Inc. (IEEE) guide for general principles of reliability analysis of nuclear power generating station protection systems. The document has been prepared to provide the basic principles needed to conduct a reliability analysis of protection systems. Included is information on qualitative and quantitative analysis, guides for failure data acquisition and use, and guide for establishment of intervals
International Nuclear Information System (INIS)
Schaefer, H.
1987-01-01
GRS has been engaged in safety analysises of the German Reprocessing Plant for several years. The development and verification of appropriate reliability analysis methods, the generation of data as well as the search for an adequate structural presentation of the results to form a basis of recommendations for technical or administrative measures or contributions to risk oriented evaluations have been or are in the process of being established. In contrast to NPP-studies, the reliability assessment of safety systems of a reprocessing plant is applied to repairable and often relatively small systems allowing for tolerable system downtimes. A sketch of the diverse cooling systems of a vessel containing a selfheating solution is given. The interruption of the cooling function for about one day might be tolerable before boiling will be reached. This interval is suitable for transfer of the solution to a spare vessel or for repairing the failed components, thus restoring the cooling function
An application of the fault tree analysis for the power system reliability estimation
International Nuclear Information System (INIS)
Volkanovski, A.; Cepin, M.; Mavko, B.
2007-01-01
The power system is a complex system with its main function to produce, transfer and provide consumers with electrical energy. Combinations of failures of components in the system can result in a failure of power delivery to certain load points and in some cases in a full blackout of power system. The power system reliability directly affects safe and reliable operation of nuclear power plants because the loss of offsite power is a significant contributor to the core damage frequency in probabilistic safety assessments of nuclear power plants. The method, which is based on the integration of the fault tree analysis with the analysis of the power flows in the power system, was developed and implemented for power system reliability assessment. The main contributors to the power system reliability are identified, both quantitatively and qualitatively. (author)
Applying reliability analysis to design electric power systems for More-electric aircraft
Zhang, Baozhu
The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered components. These changes have significantly challenged the aircraft electric power system design. This thesis investigates how reliability analysis can be applied to automatically generate system topologies for the MEA electric power system. We first use a traditional method of reliability block diagrams to analyze the reliability level on different system topologies. We next propose a new methodology in which system topologies, constrained by a set reliability level, are automatically generated. The path-set method is used for analysis. Finally, we interface these sets of system topologies with control synthesis tools to automatically create correct-by-construction control logic for the electric power system.
International Nuclear Information System (INIS)
Balfanz, H.P.
1989-01-01
The paper gives an outline of the methods applied for reliability analysis of safety systems in nuclear power plant. The main tasks are to check the system design for detection of weak points, and to find possibilities of optimizing the strategies for inspection, inspection intervals, maintenance periods. Reliability safeguarding measures include the determination and verification of the broundary conditions of the analysis with regard to the reliability parameters and maintenance parameters used in the analysis, and the analysis of data feedback reflecting the plant response during operation. (orig.) [de
Problems Related to Use of Some Terms in System Reliability Analysis
Directory of Open Access Journals (Sweden)
Nadezda Hanusova
2004-01-01
Full Text Available The paper deals with problems of using dependability terms, defined in actual standard STN IEC 50 (191: International electrotechnical dictionary, chap. 191: Dependability and quality of service (1993, in a technical systems dependability analysis. The goal of the paper is to find a relation between terms introduced in the mentioned standard and used in the technical systems dependability analysis and rules and practices used in a system analysis of the system theory. Description of a part of the system life cycle related to reliability is used as a starting point. The part of a system life cycle is described by the state diagram and reliability relevant therms are assigned.
A Review: Passive System Reliability Analysis – Accomplishments and Unresolved Issues
Energy Technology Data Exchange (ETDEWEB)
Nayak, Arun Kumar, E-mail: arunths@barc.gov.in [Reactor Engineering Division, Reactor Design and Development Group, Bhabha Atomic Research Centre, Mumbai (India); Chandrakar, Amit [Homi Bhabha National Institute, Mumbai (India); Vinod, Gopika [Reactor Safety Division, Reactor Design and Development Group, Bhabha Atomic Research Centre, Mumbai (India)
2014-10-10
Reliability assessment of passive safety systems is one of the important issues, since safety of advanced nuclear reactors rely on several passive features. In this context, a few methodologies such as reliability evaluation of passive safety system (REPAS), reliability methods for passive safety functions (RMPS), and analysis of passive systems reliability (APSRA) have been developed in the past. These methodologies have been used to assess reliability of various passive safety systems. While these methodologies have certain features in common, but they differ in considering certain issues; for example, treatment of model uncertainties, deviation of geometric, and process parameters from their nominal values. This paper presents the state of the art on passive system reliability assessment methodologies, the accomplishments, and remaining issues. In this review, three critical issues pertaining to passive systems performance and reliability have been identified. The first issue is applicability of best estimate codes and model uncertainty. The best estimate codes based phenomenological simulations of natural convection passive systems could have significant amount of uncertainties, these uncertainties must be incorporated in appropriate manner in the performance and reliability analysis of such systems. The second issue is the treatment of dynamic failure characteristics of components of passive systems. REPAS, RMPS, and APSRA methodologies do not consider dynamic failures of components or process, which may have strong influence on the failure of passive systems. The influence of dynamic failure characteristics of components on system failure probability is presented with the help of a dynamic reliability methodology based on Monte Carlo simulation. The analysis of a benchmark problem of Hold-up tank shows the error in failure probability estimation by not considering the dynamism of components. It is thus suggested that dynamic reliability methodologies must be
International Nuclear Information System (INIS)
Lofgren, E.V.
1985-08-01
This course in System Reliability and Analysis Techniques focuses on the probabilistic quantification of accident sequences and the link between accident sequences and consequences. Other sessions in this series focus on the quantification of system reliability and the development of event trees and fault trees. This course takes the viewpoint that event tree sequences or combinations of system failures and success are available and that Boolean equations for system fault trees have been developed and are available. 93 figs., 11 tabs
IRRAS, Integrated Reliability and Risk Analysis System for PC
International Nuclear Information System (INIS)
Russell, K.D.
1995-01-01
1 - Description of program or function: IRRAS4.16 is a program developed for the purpose of performing those functions necessary to create and analyze a complete Probabilistic Risk Assessment (PRA). This program includes functions to allow the user to create event trees and fault trees, to define accident sequences and basic event failure data, to solve system and accident sequence fault trees, to quantify cut sets, and to perform uncertainty analysis on the results. Also included in this program are features to allow the analyst to generate reports and displays that can be used to document the results of an analysis. Since this software is a very detailed technical tool, the user of this program should be familiar with PRA concepts and the methods used to perform these analyses. 2 - Method of solution: IRRAS4.16 is written entirely in MODULA-2 and uses an integrated commercial graphics package to interactively construct and edit fault trees. The fault tree solving methods used are industry recognized top down algorithms. For quantification, the program uses standard methods to propagate the failure information through the generated cut sets. 3 - Restrictions on the complexity of the problem: Due to the complexity of and the variety of ways a fault tree can be defined it is difficult to define limits on the complexity of the problem solved by this software. It is, however, capable of solving a substantial fault tree due to efficient methods. At this time, the software can efficiently solve problems as large as other software currently used on mainframe computers. Does not include source code
Reliability Worth Analysis of Distribution Systems Using Cascade Correlation Neural Networks
DEFF Research Database (Denmark)
Heidari, Alireza; Agelidis, Vassilios; Pou, Josep
2018-01-01
Reliability worth analysis is of great importance in the area of distribution network planning and operation. The reliability worth's precision can be affected greatly by the customer interruption cost model used. The choice of the cost models can change system and load point reliability indices....... In this study, a cascade correlation neural network is adopted to further develop two cost models comprising a probabilistic distribution model and an average or aggregate model. A contingency-based analytical technique is adopted to conduct the reliability worth analysis. Furthermore, the possible effects...
Reliability analysis of protection system of advanced pressurized water reactor - APR 1400
International Nuclear Information System (INIS)
Varde, P. V.; Choi, J. G.; Lee, D. Y.; Han, J. B.
2003-04-01
Reliability analysis was carried out for the protection system of the Korean Advanced Pressurized Water Reactor - APR 1400. The main focus of this study was the reliability analysis of digital protection system, however, towards giving an integrated statement of complete protection reliability an attempt has been made to include the shutdown devices and other related aspects based on the information available to date. The sensitivity analysis has been carried out for the critical components / functions in the system. Other aspects like importance analysis and human error reliability for the critical human actions form part of this work. The framework provided by this study and the results obtained shows that this analysis has potential to be utilized as part of risk informed approach for future design / regulatory applications
Using reliability analysis to support decision making\\ud in phased mission systems
Zhang, Yang; Prescott, Darren
2017-01-01
Due to the environments in which they will operate, future autonomous systems must be capable of reconfiguring quickly and safely following faults or environmental changes. Past research has shown how, by considering autonomous systems to perform phased missions, reliability analysis can support decision making by allowing comparison of the probability of success of different missions following reconfiguration. Binary Decision Diagrams (BDDs) offer fast, accurate reliability analysis that cou...
Mechanical system reliability analysis using a combination of graph theory and Boolean function
International Nuclear Information System (INIS)
Tang, J.
2001-01-01
A new method based on graph theory and Boolean function for assessing reliability of mechanical systems is proposed. The procedure for this approach consists of two parts. By using the graph theory, the formula for the reliability of a mechanical system that considers the interrelations of subsystems or components is generated. Use of the Boolean function to examine the failure interactions of two particular elements of the system, followed with demonstrations of how to incorporate such failure dependencies into the analysis of larger systems, a constructive algorithm for quantifying the genuine interconnections between the subsystems or components is provided. The combination of graph theory and Boolean function provides an effective way to evaluate the reliability of a large, complex mechanical system. A numerical example demonstrates that this method an effective approaches in system reliability analysis
Juhasz, Albert J.; Bloomfield, Harvey S.
1987-01-01
A combinatorial reliability approach was used to identify potential dynamic power conversion systems for space mission applications. A reliability and mass analysis was also performed, specifically for a 100-kWe nuclear Brayton power conversion system with parallel redundancy. Although this study was done for a reactor outlet temperature of 1100 K, preliminary system mass estimates are also included for reactor outlet temperatures ranging up to 1500 K.
Juhasz, A. J.; Bloomfield, H. S.
1985-01-01
A combinatorial reliability approach is used to identify potential dynamic power conversion systems for space mission applications. A reliability and mass analysis is also performed, specifically for a 100 kWe nuclear Brayton power conversion system with parallel redundancy. Although this study is done for a reactor outlet temperature of 1100K, preliminary system mass estimates are also included for reactor outlet temperatures ranging up to 1500 K.
Trends in probabilistic power system reliability analysis - a survey
Tuinema, B.W.; Gibescu, M.; vd Meijden, M.A.M.M.; Kling, W.L.; Sluis, van der L.
2011-01-01
The electric power system is continually in development. Many of the developments will lead to an increase in the stress on the power system. For example, the increasing need for electrical energy, the transition to a sustainable energy supply and the liberalization of the electricity market all put
Reliable systems : fault tree analysis via Markov reward automata
Guck, Dennis
2017-01-01
Today's society is characterised by the ubiquitousness of hardware and software systems on which we rely on day in, day out. They reach from transportation systems like cars, trains and planes over medical devices at a hospital to nuclear power plants. Moreover, we can observe a trend of automation
Preliminary Analysis of LORAN-C System Reliability for Civil Aviation.
1981-09-01
overviev of the analysis technique. Section 3 describes the computerized LORAN-C coverage model which is used extensively in the reliability analysis...Xth Plenary Assembly, Geneva, 1963, published by International Telecomunications Union. S. Braff, R., Computer program to calculate a Karkov Chain Reliability Model, unpublished york, MITRE Corporation. A-1 I.° , 44J Ili *Y 0E 00 ...F i8 1110 Prelim inary Analysis of Program Engineering & LORAN’C System ReliabilityMaintenance Service i ~Washington. D.C.
Qualitative and quantitative reliability analysis of safety systems
International Nuclear Information System (INIS)
Karimi, R.; Rasmussen, N.; Wolf, L.
1980-05-01
A code has been developed for the comprehensive analysis of a fault tree. The code designated UNRAC (UNReliability Analysis Code) calculates the following characteristics of an input fault tree: (1) minimal cut sets; (2) top event unavailability as point estimate and/or in time dependent form; (3) quantitative importance of each component involved; and, (4) error bound on the top event unavailability. UNRAC can analyze fault trees, with any kind of gates (EOR, NAND, NOR, AND, OR), up to a maximum of 250 components and/or gates. The code is benchmarked against WAMCUT, MODCUT, KITT, BIT-FRANTIC, and PL-MODT. The results showed that UNRAC produces results more consistent with the KITT results than either BIT-FRANTIC or PL-MODT. Overall it is demonstrated that UNRAC is an efficient easy-to-use code and has the advantage of being able to do a complete fault tree analysis with this single code. Applications of fault tree analysis to safety studies of nuclear reactors are considered
Small nuclear power reactor emergency electric power supply system reliability comparative analysis
International Nuclear Information System (INIS)
Bonfietti, Gerson
2003-01-01
This work presents an analysis of the reliability of the emergency power supply system, of a small size nuclear power reactor. Three different configurations are investigated and their reliability analyzed. The fault tree method is used as the main tool of analysis. The work includes a bibliographic review of emergency diesel generator reliability and a discussion of the design requirements applicable to emergency electrical systems. The influence of common cause failure influences is considered using the beta factor model. The operator action is considered using human failure probabilities. A parametric analysis shows the strong dependence between the reactor safety and the loss of offsite electric power supply. It is also shown that common cause failures can be a major contributor to the system reliability. (author)
Analysis of the reliability of the active injection safety systems of Angra I
International Nuclear Information System (INIS)
Frutuoso e Melo, P.F.F.
1981-01-01
The reliability of the active emergency core cooling systems of Angra I nuclear power plant is evaluated. The fault tree analysis is employed. The unavailability of the above cited systems, is calculated. A parametric sensitivity analysis has been performed, due to the existing scattering in the failure and repair rate data of these system's components. The minimal cut sets were determined and, as a final step, a reliability importance analysis has been performed. This final step has required the development of a computer program. The methodology and data from the 'Reactor Safety Study' (Wash-1400) (in which the reliability of safety systems of a tipical PWR plant is calculated), is employed. The unavailability values for the safety systems analysed are too low, thus showing that in most cases the systems analysed are available to mitigate the effects of a loss-of-coolant accident. (Author) [pt
The Monte Carlo Simulation Method for System Reliability and Risk Analysis
Zio, Enrico
2013-01-01
Monte Carlo simulation is one of the best tools for performing realistic analysis of complex systems as it allows most of the limiting assumptions on system behavior to be relaxed. The Monte Carlo Simulation Method for System Reliability and Risk Analysis comprehensively illustrates the Monte Carlo simulation method and its application to reliability and system engineering. Readers are given a sound understanding of the fundamentals of Monte Carlo sampling and simulation and its application for realistic system modeling. Whilst many of the topics rely on a high-level understanding of calculus, probability and statistics, simple academic examples will be provided in support to the explanation of the theoretical foundations to facilitate comprehension of the subject matter. Case studies will be introduced to provide the practical value of the most advanced techniques. This detailed approach makes The Monte Carlo Simulation Method for System Reliability and Risk Analysis a key reference for senior undergra...
Reliability analysis for power supply system in a reprocessing facility based on GO methodology
International Nuclear Information System (INIS)
Wang Renze
2014-01-01
GO methodology was applied to analyze the reliability of power supply system in a typical reprocessing facility. Based on the fact that tie breakers are set in the system, tie breaker operator was defined. Then GO methodology modeling and quantitative analysis were performed sequently, minimal cut sets and average unavailability of the system were obtained. Parallel analysis between GO methodology and fault tree methodology was also performed. The results showed that setup of tie breakers was rational and necessary and that the modeling was much easier and the chart was much more succinct for GO methodology parallel with fault tree methodology to analyze the reliability of the power supply system. (author)
Wear, L L; Pinkert, J R
1993-11-01
In this article, we looked at some decisions that apply to the design of reliable computer systems. We began with a discussion of several terms such as testability, then described some systems that call for highly reliable hardware and software. The article concluded with a discussion of methods that can be used to achieve higher reliability in computer systems. Reliability and fault tolerance in computers probably will continue to grow in importance. As more and more systems are computerized, people will want assurances about the reliability of these systems, and their ability to work properly even when sub-systems fail.
Gharouni-Nik, Morteza; Naeimi, Meysam; Ahadi, Sodayf; Alimoradi, Zahra
2014-06-01
In order to determine the overall safety of a tunnel support lining, a reliability-based approach is presented in this paper. Support elements in jointed rock tunnels are provided to control the ground movement caused by stress redistribution during the tunnel drive. Main support elements contribute to stability of the tunnel structure are recognized owing to identify various aspects of reliability and sustainability in the system. The selection of efficient support methods for rock tunneling is a key factor in order to reduce the number of problems during construction and maintain the project cost and time within the limited budget and planned schedule. This paper introduces a smart approach by which decision-makers will be able to find the overall reliability of tunnel support system before selecting the final scheme of the lining system. Due to this research focus, engineering reliability which is a branch of statistics and probability is being appropriately applied to the field and much effort has been made to use it in tunneling while investigating the reliability of the lining support system for the tunnel structure. Therefore, reliability analysis for evaluating the tunnel support performance is the main idea used in this research. Decomposition approaches are used for producing system block diagram and determining the failure probability of the whole system. Effectiveness of the proposed reliability model of tunnel lining together with the recommended approaches is examined using several case studies and the final value of reliability obtained for different designing scenarios. Considering the idea of linear correlation between safety factors and reliability parameters, the values of isolated reliabilities determined for different structural components of tunnel support system. In order to determine individual safety factors, finite element modeling is employed for different structural subsystems and the results of numerical analyses are obtained in
Development of the GO-FLOW reliability analysis methodology for nuclear reactor system
International Nuclear Information System (INIS)
Matsuoka, Takeshi; Kobayashi, Michiyuki
1994-01-01
Probabilistic Safety Assessment (PSA) is important in the safety analysis of technological systems and processes, such as, nuclear plants, chemical and petroleum facilities, aerospace systems. Event trees and fault trees are the basic analytical tools that have been most frequently used for PSAs. Several system analysis methods can be used in addition to, or in support of, the event- and fault-tree analysis. The need for more advanced methods of system reliability analysis has grown with the increased complexity of engineered systems. The Ship Research Institute has been developing a new reliability analysis methodology, GO-FLOW, which is a success-oriented system analysis technique, and is capable of evaluating a large system with complex operational sequences. The research has been supported by the special research fund for Nuclear Technology, Science and Technology Agency, from 1989 to 1994. This paper describes the concept of the Probabilistic Safety Assessment (PSA), an overview of various system analysis techniques, an overview of the GO-FLOW methodology, the GO-FLOW analysis support system, procedure of treating a phased mission problem, a function of common cause failure analysis, a function of uncertainty analysis, a function of common cause failure analysis with uncertainty, and printing out system of the results of GO-FLOW analysis in the form of figure or table. Above functions are explained by analyzing sample systems, such as PWR AFWS, BWR ECCS. In the appendices, the structure of the GO-FLOW analysis programs and the meaning of the main variables defined in the GO-FLOW programs are described. The GO-FLOW methodology is a valuable and useful tool for system reliability analysis, and has a wide range of applications. With the development of the total system of the GO-FLOW, this methodology has became a powerful tool in a living PSA. (author) 54 refs
Integrating reliability analysis and design
International Nuclear Information System (INIS)
Rasmuson, D.M.
1980-10-01
This report describes the Interactive Reliability Analysis Project and demonstrates the advantages of using computer-aided design systems (CADS) in reliability analysis. Common cause failure problems require presentations of systems, analysis of fault trees, and evaluation of solutions to these. Results have to be communicated between the reliability analyst and the system designer. Using a computer-aided design system saves time and money in the analysis of design. Computer-aided design systems lend themselves to cable routing, valve and switch lists, pipe routing, and other component studies. At EG and G Idaho, Inc., the Applicon CADS is being applied to the study of water reactor safety systems
International Nuclear Information System (INIS)
Russell, K.D.; Sattison, M.B.; Rasmuson, D.M.
1989-01-01
The Integrated Reliability and Risk Analysis System (IRRAS) is an integrated PRA software tool that gives the user the ability to create and analyze fault trees and accident sequences using an IBM-compatible microcomputer. This program provides functions that range from graphical fault tree and event tree construction to cut set generation and quantification. IRRAS contains all the capabilities and functions required to create, modify, reduce, and analyze event tree and fault tree models used in the analysis of complex systems and processes. IRRAS uses advanced graphic and analytical techniques to achieve the greatest possible realization of the potential of the microcomputer. When the needs of the user exceed this potential, IRRAS can call upon the power of the mainframe computer. The role of the Idaho National Engineering Laboratory if the IRRAS program is that of software developer and interface to the user community. Version 1.0 of the IRRAS program was released in February 1987 to prove the concept of performing this kind of analysis on microcomputers. This version contained many of the basic features needed for fault tree analysis and was received very well by the PRA community. Since the release of Version 1.0, many user comments and enhancements have been incorporated into the program providing a much more powerful and user-friendly system. This version is designated ''IRRAS 2.0''. Version 3.0 will contain all of the features required for efficient event tree and fault tree construction and analysis. 5 refs., 26 figs
ANALYSIS OF POWER SYSTEM RELIABILITY IMPROVEMENT FOR 74-BUS RADIAL DISTRIBUTION SYSTEM
Su Mon Myint*
2018-01-01
In Myanmar, electric power system planning is widely constructed because of more and more load growth and facing with failure of electricity, outage problems and system shut-down. Thus, not only making new power system network but also improving reliability of the existing system using suitable methods is very important to provide an adequate supply of electrical energy to its customers as economically and reliably as possible with an acceptable degree of continuity and quality that is design...
Guidelines for reliability analysis of digital systems in PSA context. Phase 1 status report
International Nuclear Information System (INIS)
Authen, S.; Larsson, J.; Bjoerkman, K.; Holmberg, J.-E.
2010-12-01
Digital protection and control systems are appearing as upgrades in older nuclear power plants (NPPs) and are commonplace in new NPPs. To assess the risk of NPP operation and to determine the risk impact of digital system upgrades on NPPs, quantitative reliability models are needed for digital systems. Due to the many unique attributes of these systems, challenges exist in systems analysis, modeling and in data collection. Currently there is no consensus on reliability analysis approaches. Traditional methods have clearly limitations, but more dynamic approaches are still in trial stage and can be difficult to apply in full scale probabilistic safety assessments (PSA). The number of PSAs worldwide including reliability models of digital I and C systems are few. A comparison of Nordic experiences and a literature review on main international references have been performed in this pre-study project. The study shows a wide range of approaches, and also indicates that no state-of-the-art currently exists. The study shows areas where the different PSAs agree and gives the basis for development of a common taxonomy for reliability analysis of digital systems. It is still an open matter whether software reliability needs to be explicitly modelled in the PSA. The most important issue concerning software reliability is proper descriptions of the impact that software-based systems has on the dependence between the safety functions and the structure of accident sequences. In general the conventional fault tree approach seems to be sufficient for modelling reactor protection system kind of functions. The following focus areas have been identified for further activities: 1. Common taxonomy of hardware and software failure modes of digital components for common use 2. Guidelines regarding level of detail in system analysis and screening of components, failure modes and dependencies 3. Approach for modelling of CCF between components (including software). (Author)
Guidelines for reliability analysis of digital systems in PSA context. Phase 1 status report
Energy Technology Data Exchange (ETDEWEB)
Authen, S.; Larsson, J. (Risk Pilot AB, Stockholm (Sweden)); Bjoerkman, K.; Holmberg, J.-E. (VTT, Helsingfors (Finland))
2010-12-15
Digital protection and control systems are appearing as upgrades in older nuclear power plants (NPPs) and are commonplace in new NPPs. To assess the risk of NPP operation and to determine the risk impact of digital system upgrades on NPPs, quantitative reliability models are needed for digital systems. Due to the many unique attributes of these systems, challenges exist in systems analysis, modeling and in data collection. Currently there is no consensus on reliability analysis approaches. Traditional methods have clearly limitations, but more dynamic approaches are still in trial stage and can be difficult to apply in full scale probabilistic safety assessments (PSA). The number of PSAs worldwide including reliability models of digital I and C systems are few. A comparison of Nordic experiences and a literature review on main international references have been performed in this pre-study project. The study shows a wide range of approaches, and also indicates that no state-of-the-art currently exists. The study shows areas where the different PSAs agree and gives the basis for development of a common taxonomy for reliability analysis of digital systems. It is still an open matter whether software reliability needs to be explicitly modelled in the PSA. The most important issue concerning software reliability is proper descriptions of the impact that software-based systems has on the dependence between the safety functions and the structure of accident sequences. In general the conventional fault tree approach seems to be sufficient for modelling reactor protection system kind of functions. The following focus areas have been identified for further activities: 1. Common taxonomy of hardware and software failure modes of digital components for common use 2. Guidelines regarding level of detail in system analysis and screening of components, failure modes and dependencies 3. Approach for modelling of CCF between components (including software). (Author)
Reliability analysis of scram system of a critical nuclear power plant
International Nuclear Information System (INIS)
Vieira Neto, A.S.; Souza Borges, W. de
1986-01-01
The object of this paper is to show the relevancy of reliability analysis of nuclear systems as a mean of evaluating their prospect performance in design phase. For this purpose a typical scram system design for light water cooled critical facilities is analized to verify the effects of alternative maintenance procedure and design redundancies in realibility characteristics. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Susnik, J; Dusic, M [Institut Jozef Stefan, Ljubljana (Yugoslavia)
1984-07-01
The reliability of a NPP auxiliary feedwater system is evaluated using the fault tree analysis. The system is analyzed during the time interval 0 to 6 hours with the computer package program PREP/KITT which is described in more detail. (author)
Energy Technology Data Exchange (ETDEWEB)
Kim, I. S.; Kim, T. K.; Kim, M. C.; Kim, B. S.; Hwang, S. W.; Ryu, K. C. [Hanyang Univ., Seoul (Korea, Republic of)
2000-11-15
Of the many items that should be checked out during a review stage of the licensing application for the I and C system of Ulchin 5 and 6 units, this report relates to a suitability review of the reliability analysis of Digital Plant Protection System (DPPS) and Digital Engineered Safety Features Actuation System (DESFAS). In the reliability analysis performed by the system designer, ABB-CE, fault tree analysis was used as the main methods along with Failure Modes and Effect Analysis (FMEA). However, the present regulatory technique dose not allow the system reliability analysis and its results to be appropriately evaluated. Hence, this study was carried out focusing on the following four items ; development of general review items by which to check the validity of a reliability analysis, and the subsequent review of suitability of the reliability analysis for Ulchin 5 and 6 DPPS and DESFAS L development of detailed review items by which to check the validity of an FMEA, and the subsequent review of suitability of the FMEA for Ulchin 5 and 6 DPPS and DESFAS ; development of detailed review items by which to check the validity of a fault tree analysis, and the subsequent review of suitability of the fault tree for Ulchin 5 and 6 DPPS and DESFAS ; an integrated review of the safety and reliability of the Ulchin 5 and 6 DPPS and DESFAS based on the results of the various reviews above and also of a reliability comparison between the digital systems and the comparable analog systems, i.e., and analog Plant Protection System (PPS) and and analog Engineered Safety Features Actuation System (ESFAS). According to the review mentioned above, the reliability analysis of Ulchin 5 and 6 DPPS and DESFAS generally satisfies the review requirements. However, some shortcomings of the analysis were identified in our review such that the assumed test periods for several equipment were not properly incorporated in the analysis, and failures of some equipment were not included in the
International Nuclear Information System (INIS)
Russell, K.D.; Kvarfordt, K.J.; Skinner, N.L.; Wood, S.T.; Rasmuson, D.M.
1994-07-01
The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs), primarily for nuclear power plants. The Integrated Reliability and Risk Analysis System (IRRAS) is a state-of-the-art, microcomputer-based probabilistic risk assessment (PRA) model development and analysis tool to address key nuclear plant safety issues. IRRAS is an integrated software tool that gives the use the ability to create and analyze fault trees and accident sequences using a microcomputer. This program provides functions that range from graphical fault tree construction to cut set generation and quantification to report generation. Version 1.0 of the IRRAS program was released in February of 1987. Since then, many user comments and enhancements have been incorporated into the program providing a much more powerful and user-friendly system. This version has been designated IRRAS 5.0 and is the subject of this Reference Manual. Version 5.0 of IRRAS provides the same capabilities as earlier versions and ads the ability to perform location transformations, seismic analysis, and provides enhancements to the user interface as well as improved algorithm performance. Additionally, version 5.0 contains new alphanumeric fault tree and event used for event tree rules, recovery rules, and end state partitioning
Gilmanshin, I. R.; Kirpichnikov, A. P.
2017-09-01
In the result of study of the algorithm of the functioning of the early detection module of excessive losses, it is proven the ability to model it by using absorbing Markov chains. The particular interest is in the study of probability characteristics of early detection module functioning algorithm of losses in order to identify the relationship of indicators of reliability of individual elements, or the probability of occurrence of certain events and the likelihood of transmission of reliable information. The identified relations during the analysis allow to set thresholds reliability characteristics of the system components.
Efficient surrogate models for reliability analysis of systems with multiple failure modes
International Nuclear Information System (INIS)
Bichon, Barron J.; McFarland, John M.; Mahadevan, Sankaran
2011-01-01
Despite many advances in the field of computational reliability analysis, the efficient estimation of the reliability of a system with multiple failure modes remains a persistent challenge. Various sampling and analytical methods are available, but they typically require accepting a tradeoff between accuracy and computational efficiency. In this work, a surrogate-based approach is presented that simultaneously addresses the issues of accuracy, efficiency, and unimportant failure modes. The method is based on the creation of Gaussian process surrogate models that are required to be locally accurate only in the regions of the component limit states that contribute to system failure. This approach to constructing surrogate models is demonstrated to be both an efficient and accurate method for system-level reliability analysis. - Highlights: → Extends efficient global reliability analysis to systems with multiple failure modes. → Constructs locally accurate Gaussian process models of each response. → Highly efficient and accurate method for assessing system reliability. → Effectiveness is demonstrated on several test problems from the literature.
Reliability analysis of Markov history-dependent repairable systems with neglected failures
International Nuclear Information System (INIS)
Du, Shijia; Zeng, Zhiguo; Cui, Lirong; Kang, Rui
2017-01-01
Markov history-dependent repairable systems refer to the Markov repairable systems in which some states are changeable and dependent on recent evolutional history of the system. In practice, many Markov history-dependent repairable systems are subjected to neglected failures, i.e., some failures do not affect system performances if they can be repaired promptly. In this paper, we develop a model based on the theory of aggregated stochastic processes to describe the history-dependent behavior and the effect of neglected failures on the Markov history-dependent repairable systems. Based on the developed model, instantaneous and steady-state availabilities are derived to characterize the reliability of the system. Four reliability-related time distributions, i.e., distribution for the k th working period, distribution for the k th failure period, distribution for the real working time in an effective working period, distribution for the neglected failure time in an effective working period, are also derived to provide a more comprehensive description of the system's reliability. Thanks to the power of the theory of aggregated stochastic processes, closed-form expressions are obtained for all the reliability indexes and time distributions. Finally, the developed indexes and analysis methods are demonstrated by a numerical example. - Highlights: • Markovian history-dependent repairable systems with neglected failures is modeled. • Aggregated stochastic processes are used to derive reliability indexes and time distributions. • Closed-form expressions are derived for the considered indexes and distributions.
International Nuclear Information System (INIS)
Okaro, Ikenna Anthony; Tao, Longbin
2016-01-01
This paper proposes an enhanced Weibull-Corrosion Covariate model for reliability assessment of a system facing operational stresses. The newly developed model is applied to a Subsea Gas Compression System planned for offshore West Africa to predict its reliability index. System technical failure was modelled by developing a Weibull failure model incorporating a physically tested corrosion profile as stress in order to quantify the survival rate of the system under additional operational covariates including marine pH, temperature and pressure. Using Reliability Block Diagrams and enhanced Fusell-Vesely formulations, the whole system was systematically decomposed to sub-systems to analyse the criticality of each component and optimise them. Human reliability was addressed using an enhanced barrier weighting method. A rapid degradation curve is obtained on a subsea system relative to the base case subjected to a time-dependent corrosion stress factor. It reveals that subsea system components failed faster than their Mean time to failure specifications from Offshore Reliability Database as a result of cumulative marine stresses exertion. The case study demonstrated that the reliability of a subsea system can be systematically optimised by modelling the system under higher technical and organisational stresses, prioritising the critical sub-systems and making befitting provisions for redundancy and tolerances. - Highlights: • Novel Weibull Corrosion-Covariate model for reliability analysis of subsea assets. • Predict the accelerated degradation profile of a subsea gas compression. • An enhanced optimisation method based on Fusell-Vesely decomposition process. • New optimisation approach for smoothening of over- and under-designed components. • Demonstrated a significant improvement in producing more realistic failure rate.
Reliability And Maintenance Analysis Of CCTV Systems Used In Rail Transport
Siergiejczyk Mirosław; Paś Jacek; Rosiński Adam
2015-01-01
CCTV systems are widely used across plethora of industrial areas including transport, where their function is to support transport telematics systems. Among others, they are used to ensure travel safety. This paper presented a reliability and maintenance analysis of CCTV. It led to building a relationships graph and then Chapman–Kolmogorov system of equations was derived to describe it. Drawing on those equations, relationships for calculating probability of system staying in state of full ab...
A fast approximation method for reliability analysis of cold-standby systems
International Nuclear Information System (INIS)
Wang, Chaonan; Xing, Liudong; Amari, Suprasad V.
2012-01-01
Analyzing reliability of large cold-standby systems has been a complicated and time-consuming task, especially for systems with components having non-exponential time-to-failure distributions. In this paper, an approximation model, which is based on the central limit theorem, is presented for the reliability analysis of binary cold-standby systems. The proposed model can estimate the reliability of large cold-standby systems with binary-state components having arbitrary time-to-failure distributions in an efficient and easy way. The accuracy and efficiency of the proposed method are illustrated using several different types of distributions for both 1-out-of-n and k-out-of-n cold-standby systems.
Structural system reliability calculation using a probabilistic fault tree analysis method
Torng, T. Y.; Wu, Y.-T.; Millwater, H. R.
1992-01-01
The development of a new probabilistic fault tree analysis (PFTA) method for calculating structural system reliability is summarized. The proposed PFTA procedure includes: developing a fault tree to represent the complex structural system, constructing an approximation function for each bottom event, determining a dominant sampling sequence for all bottom events, and calculating the system reliability using an adaptive importance sampling method. PFTA is suitable for complicated structural problems that require computer-intensive computer calculations. A computer program has been developed to implement the PFTA.
Development and Reliability Analysis of HTR-PM Reactor Protection System
International Nuclear Information System (INIS)
Li Duo; Guo Chao; Xiong Huasheng
2014-01-01
High Temperature Gas-Cooled Reactor-Pebble bed Module (HTR-PM) digital Reactor Protection System (RPS) is a dedicated system, which is designed and developed according to HTR-PM NPP protection specifications. To decrease the probability of accident trips and increase the system reliability, HTR-PM RPS has such features as a framework of four redundant channels, two diverse sub-systems in each channel, and two level two-out-of-four logic voters. Reliability analysis of HTR-PM RPS is based on fault tree model. A fault tree is built based on HTR-PM RPS Failure Modes and Effects Analysis (FMEA), and special analysis is focused on the sub-tree of redundant channel ''2-out-of-4'' logic and the fault tree under one channel is bypassed. The qualitative analysis of fault tree, such as RPS weakness according to minimal cut sets, is summarized in the paper. (author)
System reliability assessment via sensitivity analysis in the Markov chain scheme
International Nuclear Information System (INIS)
Gandini, A.
1988-01-01
Methods for reliability sensitivity analysis in the Markov chain scheme are presented, together with a new formulation which makes use of Generalized Perturbation Theory (GPT) methods. As well known, sensitivity methods are fundamental in system risk analysis, since they allow to identify important components, so to assist the analyst in finding weaknesses in design and operation and in suggesting optimal modifications for system upgrade. The relationship between the GPT sensitivity expression and the Birnbaum importance is also given [fr
Reliability Approach of a Compressor System using Reliability Block ...
African Journals Online (AJOL)
pc
2018-03-05
Mar 5, 2018 ... This paper presents a reliability analysis of such a system using reliability ... Keywords-compressor system, reliability, reliability block diagram, RBD .... the same structure has been kept with the three subsystems: air flow, oil flow and .... and Safety in Engineering Design", Springer, 2009. [3] P. O'Connor ...
Advanced reactor passive system reliability demonstration analysis for an external event
International Nuclear Information System (INIS)
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; Grelle, Austin
2017-01-01
Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
Directory of Open Access Journals (Sweden)
Matthew Bucknor
2017-03-01
Full Text Available Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general for the postulated transient event.
Advanced reactor passive system reliability demonstration analysis for an external event
Energy Technology Data Exchange (ETDEWEB)
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; Grelle, Austin [Argonne National Laboratory, Argonne (United States)
2017-03-15
Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.
Waste package reliability analysis
International Nuclear Information System (INIS)
Pescatore, C.; Sastre, C.
1983-01-01
Proof of future performance of a complex system such as a high-level nuclear waste package over a period of hundreds to thousands of years cannot be had in the ordinary sense of the word. The general method of probabilistic reliability analysis could provide an acceptable framework to identify, organize, and convey the information necessary to satisfy the criterion of reasonable assurance of waste package performance according to the regulatory requirements set forth in 10 CFR 60. General principles which may be used to evaluate the qualitative and quantitative reliability of a waste package design are indicated and illustrated with a sample calculation of a repository concept in basalt. 8 references, 1 table
A Report on Simulation-Driven Reliability and Failure Analysis of Large-Scale Storage Systems
Energy Technology Data Exchange (ETDEWEB)
Wan, Lipeng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Feiyi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oral, H. Sarp [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vazhkudai, Sudharshan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cao, Qing [Univ. of Tennessee, Knoxville, TN (United States)
2014-11-01
High-performance computing (HPC) storage systems provide data availability and reliability using various hardware and software fault tolerance techniques. Usually, reliability and availability are calculated at the subsystem or component level using limited metrics such as, mean time to failure (MTTF) or mean time to data loss (MTTDL). This often means settling on simple and disconnected failure models (such as exponential failure rate) to achieve tractable and close-formed solutions. However, such models have been shown to be insufficient in assessing end-to-end storage system reliability and availability. We propose a generic simulation framework aimed at analyzing the reliability and availability of storage systems at scale, and investigating what-if scenarios. The framework is designed for an end-to-end storage system, accommodating the various components and subsystems, their interconnections, failure patterns and propagation, and performs dependency analysis to capture a wide-range of failure cases. We evaluate the framework against a large-scale storage system that is in production and analyze its failure projections toward and beyond the end of lifecycle. We also examine the potential operational impact by studying how different types of components affect the overall system reliability and availability, and present the preliminary results
Driel, W.D. van; Yuan, C.A.; Koh, S.; Zhang, G.Q.
2011-01-01
This paper presents our effort to predict the system reliability of Solid State Lighting (SSL) applications. A SSL system is composed of a LED engine with micro-electronic driver(s) that supplies power to the optic design. Knowledge of system level reliability is not only a challenging scientific
Study and application of human reliability analysis for digital human-system interface
International Nuclear Information System (INIS)
Jia Ming; Liu Yanzi; Zhang Jianbo
2014-01-01
The knowledge of human-orientated abilities and limitations could be used to digital human-system interface (HSI) design by human reliability analysis (HRA) technology. Further, control room system design could achieve the perfect match of man-machine-environment. This research was conducted to establish an integrated HRA method. This method identified HSI potential design flaws which may affect human performance and cause human error. Then a systematic approach was adopted to optimize HSI. It turns out that this method is practical and objective, and effectively improves the safety, reliability and economy of nuclear power plant. This method was applied to CRP1000 projects under construction successfully with great potential. (authors)
Reliability Analysis of Sealing Structure of Electromechanical System Based on Kriging Model
Zhang, F.; Wang, Y. M.; Chen, R. W.; Deng, W. W.; Gao, Y.
2018-05-01
The sealing performance of aircraft electromechanical system has a great influence on flight safety, and the reliability of its typical seal structure is analyzed by researcher. In this paper, we regard reciprocating seal structure as a research object to study structural reliability. Having been based on the finite element numerical simulation method, the contact stress between the rubber sealing ring and the cylinder wall is calculated, and the relationship between the contact stress and the pressure of the hydraulic medium is built, and the friction force on different working conditions are compared. Through the co-simulation, the adaptive Kriging model obtained by EFF learning mechanism is used to describe the failure probability of the seal ring, so as to evaluate the reliability of the sealing structure. This article proposes a new idea of numerical evaluation for the reliability analysis of sealing structure, and also provides a theoretical basis for the optimal design of sealing structure.
System reliability analysis using dominant failure modes identified by selective searching technique
International Nuclear Information System (INIS)
Kim, Dong-Seok; Ok, Seung-Yong; Song, Junho; Koh, Hyun-Moo
2013-01-01
The failure of a redundant structural system is often described by innumerable system failure modes such as combinations or sequences of local failures. An efficient approach is proposed to identify dominant failure modes in the space of random variables, and then perform system reliability analysis to compute the system failure probability. To identify dominant failure modes in the decreasing order of their contributions to the system failure probability, a new simulation-based selective searching technique is developed using a genetic algorithm. The system failure probability is computed by a multi-scale matrix-based system reliability (MSR) method. Lower-scale MSR analyses evaluate the probabilities of the identified failure modes and their statistical dependence. A higher-scale MSR analysis evaluates the system failure probability based on the results of the lower-scale analyses. Three illustrative examples demonstrate the efficiency and accuracy of the approach through comparison with existing methods and Monte Carlo simulations. The results show that the proposed method skillfully identifies the dominant failure modes, including those neglected by existing approaches. The multi-scale MSR method accurately evaluates the system failure probability with statistical dependence fully considered. The decoupling between the failure mode identification and the system reliability evaluation allows for effective applications to larger structural systems
Reliability Analysis of Load-Sharing K-out-of-N System Considering Component Degradation
Directory of Open Access Journals (Sweden)
Chunbo Yang
2015-01-01
Full Text Available The K-out-of-N configuration is a typical form of redundancy techniques to improve system reliability, where at least K-out-of-N components must work for successful operation of system. When the components are degraded, more components are needed to meet the system requirement, which means that the value of K has to increase. The current reliability analysis methods overestimate the reliability, because using constant K ignores the degradation effect. In a load-sharing system with degrading components, the workload shared on each surviving component will increase after a random component failure, resulting in higher failure rate and increased performance degradation rate. This paper proposes a method combining a tampered failure rate model with a performance degradation model to analyze the reliability of load-sharing K-out-of-N system with degrading components. The proposed method considers the value of K as a variable which is derived by the performance degradation model. Also, the load-sharing effect is evaluated by the tampered failure rate model. Monte-Carlo simulation procedure is used to estimate the discrete probability distribution of K. The case of a solar panel is studied in this paper, and the result shows that the reliability considering component degradation is less than that ignoring component degradation.
On the resolution of ECG acquisition systems for the reliable analysis of the P-wave
International Nuclear Information System (INIS)
Censi, Federica; Calcagnini, Giovanni; Mattei, Eugenio; Triventi, Michele; Bartolini, Pietro; Corazza, Ivan; Boriani, Giuseppe
2012-01-01
The analysis of the P-wave on surface ECG is widely used to assess the risk of atrial arrhythmias. In order to provide reliable results, the automatic analysis of the P-wave must be precise and reliable and must take into account technical aspects, one of those being the resolution of the acquisition system. The aim of this note is to investigate the effects of the amplitude resolution of ECG acquisition systems on the P-wave analysis. Starting from ECG recorded by an acquisition system with a less significant bit (LSB) of 31 nV (24 bit on an input range of 524 mVpp), we reproduced an ECG signal as acquired by systems with lower resolution (16, 15, 14, 13 and 12 bit). We found that, when the LSB is of the order of 128 µV (12 bit), a single P-wave is not recognizable on ECG. However, when averaging is applied, a P-wave template can be extracted, apparently suitable for the P-wave analysis. Results obtained in terms of P-wave duration and morphology revealed that the analysis of ECG at lowest resolutions (from 12 to 14 bit, LSB higher than 30 µV) could lead to misleading results. However, the resolution used nowadays in modern electrocardiographs (15 and 16 bit, LSB <10 µV) is sufficient for the reliable analysis of the P-wave. (note)
International Nuclear Information System (INIS)
Kontogiannis, Tom
1997-01-01
Managing complex industrial systems requires reliable performance of cognitive tasks undertaken by operating crews. The infrequent practice of cognitive skills and the reliance on operator performance for novel situations raised cognitive reliability into an urgent and essential aspect in system design and risk analysis. The aim of this article is to contribute to the development of methods for the analysis of cognitive tasks in complex man-machine interactions. A practical framework is proposed for analysing cognitive errors and enhancing error recovery through interface design. Cognitive errors are viewed as failures in problem solving which are difficult to recover under the task constrains imposed by complex systems. In this sense, the interaction between context and cognition, on the one hand, and the process of error recovery, on the other hand, become the focal points of the proposed framework which is illustrated in an analysis of a simulated emergency
Institute of Scientific and Technical Information of China (English)
Ping TAN; Wei-ting HE; Jia LIN; Hong-ming ZHAO; Jian CHU
2011-01-01
With the development of high-speed railways in China,more than 2000 high-speed trains will be put into use.Safety and efficiency of railway transportation is increasingly important.We have designed a high availability quadruple vital computer (HAQVC) system based on the analysis of the architecture of the traditional double 2-out-of-2 system and 2-out-of-3 system.The HAQVC system is a system with high availability and safety,with prominent characteristics such as fire-new internal architecture,high efficiency,reliable data interaction mechanism,and operation state change mechanism.The hardware of the vital CPU is based on ARM7 with the real-time embedded safe operation system (ES-OS).The Markov modeling method is designed to evaluate the reliability,availability,maintainability,and safety (RAMS) of the system.In this paper,we demonstrate that the HAQVC system is more reliable than the all voting triple modular redundancy (AVTMR) system and double 2-out-of-2 system.Thus,the design can be used for a specific application system,such as an airplane or high-speed railway system.
International Nuclear Information System (INIS)
Marques, M.; Bassi, C.; Bentivoglio, F.
2012-01-01
In support to a PSA (Probability Safety Assessment) performed at the design level on the 2400 MWth Gas-cooled Fast Reactor, the functional reliability of the decay heat removal system (DHR) working in natural circulation has been estimated in two transient situations corresponding to an 'aggravated' Loss of Flow Accident (LOFA) and a Loss of Coolant Accident (LOCA). The reliability analysis was based on the RMPS methodology. Reliability and global sensitivity analyses use uncertainty propagation by Monte Carlo techniques. The DHR system consists of 1) 3 dedicated DHR loops: the choice of 3 loops (3*100% redundancy) is made in assuming that one could be lost due to the accident initiating event (break for example) and that another one must be supposed unavailable (single failure criterion); 2) a metallic guard containment enclosing the primary system (referred as close containment), not pressurized in normal operation, having a free volume such as the fast primary helium expansion gives an equilibrium pressure of 1.0 MPa, in the first part of the transient (few hours). Each dedicated DHR loop designed to work in forced circulation with blowers or in natural circulation, is composed of 1) a primary loop (cross-duct connected to the core vessel), with a driving height of 10 meters between core and DHX mid-plan; 2) a secondary circuit filled with pressurized water at 1.0 MPa (driving height of 5 meters for natural circulation DHR); 3) a ternary pool, initially at 50 C. degrees, whose volume is determined to handle one day heat extraction (after this time delay, additional measures are foreseen to fill up the pool). The results obtained on the reliability of the DHR system and on the most important input parameters are very different from one scenario to the other showing the necessity for the PSA to perform specific reliability analysis of the passive system for each considered scenario. The analysis shows that the DHR system working in natural circulation is
ANALYSIS OF RELIABILITY OF RESERVED AUTOMATIC CONTROL SYSTEMS OF INDUSTRIAL POWER PROCESSES
Directory of Open Access Journals (Sweden)
V. A. Anishchenko
2014-01-01
Full Text Available This paper describes the comparative analysis of the main structural schemes for reserved automatic control and regulation devices of important objects of power supply with increased reliability requirements. There were analyzed schemes of passive and active doubling with control device, passive and active tripling, combined redundancy and majority redundancy according to schemes: “two from three” and “three from five”. On the results of calculations fulfilled there was made comparison of these schemes for ideal devices of built-in control and ideal majority elements. Scales of preferences of systems according to criterion of average time maximum and average probability of no-failure operation were built. These scales have variable character, depending on intervals in which there is a parameter obtained by multiplication of failure rate and time. The sequence of systems’ preferences is changing and is depending on each system failures and in moments of curves crossing of average probability of no-failure operation of systems. Analysis of calculation results showed the advantages of tripling systems and combined redundancy in reliability and this is achieved by a great amount of expenses for these systems creation. Under definite conditions the reliability of system of passive tripling is higher compared to system of active doubling. The majority schemes allow determining not only the full but also single (metrological failures. Boundary value of unreliability of built-in control device is determined, and this allows making a perfect choice between systems of active and passive redundancy.
Operational present status and reliability analysis of the upgraded EAST cryogenic system
Zhou, Z. W.; Y Zhang, Q.; Lu, X. F.; Hu, L. B.; Zhu, P.
2017-12-01
Since the first commissioning in 2005, the cryogenic system for EAST (Experimental Advanced Superconducting Tokamak) has been cooled down and warmed up for thirteen experimental campaigns. In order to promote the refrigeration efficiencies and reliability, the EAST cryogenic system was upgraded gradually with new helium screw compressors and new dynamic gas bearing helium turbine expanders with eddy current brake to improve the original poor mechanical and operational performance from 2012 to 2015. Then the totally upgraded cryogenic system was put into operation in the eleventh cool-down experiment, and has been operated for the latest several experimental campaigns. The upgraded system has successfully coped with various normal operational modes during cool-down and 4.5 K steady-state operation under pulsed heat load from the tokamak as well as the abnormal fault modes including turbines protection stop. In this paper, the upgraded EAST cryogenic system including its functional analysis and new cryogenic control networks will be presented in detail. Also, its operational present status in the latest cool-down experiments will be presented and the system reliability will be analyzed, which shows a high reliability and low fault rate after upgrade. In the end, some future necessary work to meet the higher reliability requirement for future uninterrupted long-term experimental operation will also be proposed.
Analysis of fault tolerance and reliability in distributed real-time system architectures
International Nuclear Information System (INIS)
Philippi, Stephan
2003-01-01
Safety critical real-time systems are becoming ubiquitous in many areas of our everyday life. Failures of such systems potentially have catastrophic consequences on different scales, in the worst case even the loss of human life. Therefore, safety critical systems have to meet maximum fault tolerance and reliability requirements. As the design of such systems is far from being trivial, this article focuses on concepts to specifically support the early architectural design. In detail, a simulation based approach for the analysis of fault tolerance and reliability in distributed real-time system architectures is presented. With this approach, safety related features can be evaluated in the early development stages and thus prevent costly redesigns in later ones
International Nuclear Information System (INIS)
Iskandar, Ismed; Gondokaryono, Yudi Satria
2016-01-01
In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range
Reliability analysis of a consecutive r-out-of-n: F system based on neural networks
International Nuclear Information System (INIS)
Habib, Aziz; Alsieidi, Ragab; Youssef, Ghada
2009-01-01
In this paper, we present a generalized Markov reliability and fault-tolerant model, which includes the effects of permanent fault and intermittent fault for reliability evaluations based on neural network techniques. The reliability of a consecutive r-out-of-n: F system was obtained with a three-layer connected neural network represents a discrete time state reliability Markov model of the system. Such that we fed the neural network with the desired reliability of the system under design. Then we extracted the parameters of the system from the neural weights at the convergence of the neural network to the desired reliability. Finally, we obtain simulation results.
Reliability Analysis of Core Protection Calculator System by Combining Petri Net and Fault Tree
International Nuclear Information System (INIS)
Kim, Hyejin; Kim, Jonghyun
2013-01-01
This paper proposes an approach to analyzing the reliability of digital systems by combining Petri net (PN) and Fault tree. The Petri net allows modeling event dependencies and interaction, to represent the time sequence, and to model assumptions for dynamic events. The Petri net model can be straightforwardly transformed to fault tree using the gate. Then, the FT can be integrated into the existing PSA. This paper applies the approach to the reliability analysis of Core Protection Calculator System (CPCS). Digital technology is replacing the analog instrumentation and control (I and C) systems in both new and upgraded nuclear power plants. As digital systems are introduced to nuclear power plants, issues related with reliability analyses of these digital systems are being raised. One of these issues is that static fault tree (FT) and event tree (ET) approach cannot properly account for dynamic interactions in the digital systems, such as multiple top events, logic loops and time delay. Many methods have been proposed to solve the problems, but there is no single method that is universally accepted for the application to the current generation probabilistic safety analysis (PSA)
Reliability Analysis of Core Protection Calculator System by Combining Petri Net and Fault Tree
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyejin; Kim, Jonghyun [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)
2013-10-15
This paper proposes an approach to analyzing the reliability of digital systems by combining Petri net (PN) and Fault tree. The Petri net allows modeling event dependencies and interaction, to represent the time sequence, and to model assumptions for dynamic events. The Petri net model can be straightforwardly transformed to fault tree using the gate. Then, the FT can be integrated into the existing PSA. This paper applies the approach to the reliability analysis of Core Protection Calculator System (CPCS). Digital technology is replacing the analog instrumentation and control (I and C) systems in both new and upgraded nuclear power plants. As digital systems are introduced to nuclear power plants, issues related with reliability analyses of these digital systems are being raised. One of these issues is that static fault tree (FT) and event tree (ET) approach cannot properly account for dynamic interactions in the digital systems, such as multiple top events, logic loops and time delay. Many methods have been proposed to solve the problems, but there is no single method that is universally accepted for the application to the current generation probabilistic safety analysis (PSA)
Exact combinatorial reliability analysis of dynamic systems with sequence-dependent failures
International Nuclear Information System (INIS)
Xing Liudong; Shrestha, Akhilesh; Dai Yuanshun
2011-01-01
Many real-life fault-tolerant systems are subjected to sequence-dependent failure behavior, in which the order in which the fault events occur is important to the system reliability. Such systems can be modeled by dynamic fault trees (DFT) with priority-AND (pAND) gates. Existing approaches for the reliability analysis of systems subjected to sequence-dependent failures are typically state-space-based, simulation-based or inclusion-exclusion-based methods. Those methods either suffer from the state-space explosion problem or require long computation time especially when results with high degree of accuracy are desired. In this paper, an analytical method based on sequential binary decision diagrams is proposed. The proposed approach can analyze the exact reliability of non-repairable dynamic systems subjected to the sequence-dependent failure behavior. Also, the proposed approach is combinatorial and is applicable for analyzing systems with any arbitrary component time-to-failure distributions. The application and advantages of the proposed approach are illustrated through analysis of several examples. - Highlights: → We analyze the sequence-dependent failure behavior using combinatorial models. → The method has no limitation on the type of time-to-failure distributions. → The method is analytical and based on sequential binary decision diagrams (SBDD). → The method is computationally more efficient than existing methods.
Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant
Aggarwal, Anil Kr.; Kumar, Sanjeev; Singh, Vikram; Garg, Tarun Kr.
2015-12-01
This paper deals with the Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant. This system was modeled using Markov birth-death process with the assumption that the failure and repair rates of each subsystem follow exponential distribution. The first-order Chapman-Kolmogorov differential equations are developed with the use of mnemonic rule and these equations are solved with Runga-Kutta fourth-order method. The long-run availability, reliability and mean time between failures are computed for various choices of failure and repair rates of subsystems of the system. The findings of the paper are discussed with the plant personnel to adopt and practice suitable maintenance policies/strategies to enhance the performance of the urea synthesis system of the fertilizer plant.
Reliability And Maintenance Analysis Of CCTV Systems Used In Rail Transport
Directory of Open Access Journals (Sweden)
Siergiejczyk Mirosław
2015-11-01
Full Text Available CCTV systems are widely used across plethora of industrial areas including transport, where their function is to support transport telematics systems. Among others, they are used to ensure travel safety. This paper presented a reliability and maintenance analysis of CCTV. It led to building a relationships graph and then Chapman–Kolmogorov system of equations was derived to describe it. Drawing on those equations, relationships for calculating probability of system staying in state of full ability SPZ, state of the impendency over safety SZB1 as well as state of unreliability of safety SB were derived.
Reliability of electronic systems
International Nuclear Information System (INIS)
Roca, Jose L.
2001-01-01
Reliability techniques have been developed subsequently as a need of the diverse engineering disciplines, nevertheless they are not few those that think they have been work a lot on reliability before the same word was used in the current context. Military, space and nuclear industries were the first ones that have been involved in this topic, however not only in these environments it is that it has been carried out this small great revolution in benefit of the increase of the reliability figures of the products of those industries, but rather it has extended to the whole industry. The fact of the massive production, characteristic of the current industries, drove four decades ago, to the fall of the reliability of its products, on one hand, because the massively itself and, for other, to the recently discovered and even not stabilized industrial techniques. Industry should be changed according to those two new requirements, creating products of medium complexity and assuring an enough reliability appropriated to production costs and controls. Reliability began to be integral part of the manufactured product. Facing this philosophy, the book describes reliability techniques applied to electronics systems and provides a coherent and rigorous framework for these diverse activities providing a unifying scientific basis for the entire subject. It consists of eight chapters plus a lot of statistical tables and an extensive annotated bibliography. Chapters embrace the following topics: 1- Introduction to Reliability; 2- Basic Mathematical Concepts; 3- Catastrophic Failure Models; 4-Parametric Failure Models; 5- Systems Reliability; 6- Reliability in Design and Project; 7- Reliability Tests; 8- Software Reliability. This book is in Spanish language and has a potentially diverse audience as a text book from academic to industrial courses. (author)
Reliability analysis of nuclear component cooling water system using semi-Markov process model
International Nuclear Information System (INIS)
Veeramany, Arun; Pandey, Mahesh D.
2011-01-01
Research highlights: → Semi-Markov process (SMP) model is used to evaluate system failure probability of the nuclear component cooling water (NCCW) system. → SMP is used because it can solve reliability block diagram with a mixture of redundant repairable and non-repairable components. → The primary objective is to demonstrate that SMP can consider Weibull failure time distribution for components while a Markov model cannot → Result: the variability in component failure time is directly proportional to the NCCW system failure probability. → The result can be utilized as an initiating event probability in probabilistic safety assessment projects. - Abstract: A reliability analysis of nuclear component cooling water (NCCW) system is carried out. Semi-Markov process model is used in the analysis because it has potential to solve a reliability block diagram with a mixture of repairable and non-repairable components. With Markov models it is only possible to assume an exponential profile for component failure times. An advantage of the proposed model is the ability to assume Weibull distribution for the failure time of components. In an attempt to reduce the number of states in the model, it is shown that usage of poly-Weibull distribution arises. The objective of the paper is to determine system failure probability under these assumptions. Monte Carlo simulation is used to validate the model result. This result can be utilized as an initiating event probability in probabilistic safety assessment projects.
Reliability analysis of the reconstructed safety systems of the Kozloduy-2 WWER-440/V-230 reactor
International Nuclear Information System (INIS)
Kalchev, B.
1995-01-01
The Unit 2 of the Kozloduy NPP started operations in 1975. As it is designed according to safety standards of the middle sixties, it needs reconstruction in order to prolong its operational life up to the design age of 30 years, in agreement with the increased safety requirements in Bulgaria. The reliability analyses of front line systems of the unit are performed to this end. The approach taken in the study is the fault tree methodology to determine the unavailability of each system. Common mode failures are considered for the pumps and valves using the beta factor method. The mission time for each system is 24 hours and the test period is 720 hours. Support systems and human errors are also included. All the systems control and instrumentation signals are modelled explicitly in the fault trees. The generic IDEA reliability data base is used for all quantifications. The initiating events that would require the system operation are presented and on this basis the thermohydraulic analysis success criteria for each system are determined. The code for probabilistic safety assessment PSAPACK is used. Fault trees for the following front line safety systems are constructed: the high pressure injection system, the spray system and the auxiliary feed water system. The analysis consider some proposed decisions for reconstruction. The results show that the reliability of these systems has increased after reconstruction and the safety has been upgraded. This decrease the core damage frequency from 3.53E -3 , 1/RY to 1.07E -3 , 1/RY. 5 refs., 2 tabs., 5 figs
Reliability analysis of the reconstructed safety systems of the Kozloduy-2 WWER-440/V-230 reactor
Energy Technology Data Exchange (ETDEWEB)
Kalchev, B [Energoproekt, Sofia (Bulgaria)
1996-12-31
The Unit 2 of the Kozloduy NPP started operations in 1975. As it is designed according to safety standards of the middle sixties, it needs reconstruction in order to prolong its operational life up to the design age of 30 years, in agreement with the increased safety requirements in Bulgaria. The reliability analyses of front line systems of the unit are performed to this end. The approach taken in the study is the fault tree methodology to determine the unavailability of each system. Common mode failures are considered for the pumps and valves using the beta factor method. The mission time for each system is 24 hours and the test period is 720 hours. Support systems and human errors are also included. All the systems control and instrumentation signals are modelled explicitly in the fault trees. The generic IDEA reliability data base is used for all quantifications. The initiating events that would require the system operation are presented and on this basis the thermohydraulic analysis success criteria for each system are determined. The code for probabilistic safety assessment PSAPACK is used. Fault trees for the following front line safety systems are constructed: the high pressure injection system, the spray system and the auxiliary feed water system. The analysis consider some proposed decisions for reconstruction. The results show that the reliability of these systems has increased after reconstruction and the safety has been upgraded. This decrease the core damage frequency from 3.53E{sup -3}, 1/RY to 1.07E{sup -3}, 1/RY. 5 refs., 2 tabs., 5 figs.
Reliability analysis of the recirculation phase of the safety injection system of Angra-1
International Nuclear Information System (INIS)
Rivera, R.R.J.M.
1981-09-01
The calculation of several reliability parameters-failure probability, unavailability and unreliability - of the recirculation phase of the safety injection system of Angra-1, was done. This system has two distinct modes of operation (short term and long term) which were fault tree analysed both separately and as a whole. To obtain quantitative results the computer codes SAMPLE and PRET-KITT were utilized. The former was used to consider the uncertainties in the failure data (drawn integrally from WASH-1400) and the latter to obtain time dependent unreliability values. Hardware failures and common-mode failures were considered. Altough the analysis methods employed here differ somewhat from those used in WASH-1400, the results which could be compared were found to have the order of magnitude. A viability study of some suggestions of system's modifications was performed, and it has shown that some significant reliability improvements can be achieved with reasonably simple changes. (Author) [pt
Reliability Analysis of a Cold Standby System with Imperfect Repair and under Poisson Shocks
Directory of Open Access Journals (Sweden)
Yutian Chen
2014-01-01
Full Text Available This paper considers the reliability analysis of a two-component cold standby system with a repairman who may have vacation. The system may fail due to intrinsic factors like aging or deteriorating, or external factors such as Poisson shocks. The arrival time of the shocks follows a Poisson process with the intensity λ>0. Whenever the magnitude of a shock is larger than the prespecified threshold of the operating component, the operating component will fail. The paper assumes that the intrinsic lifetime and the repair time on the component are an extended Poisson process, the magnitude of the shock and the threshold of the operating component are nonnegative random variables, and the vacation time of the repairman obeys the general continuous probability distribution. By using the vector Markov process theory, the supplementary variable method, Laplace transform, and Tauberian theory, the paper derives a number of reliability indices: system availability, system reliability, the rate of occurrence of the system failure, and the mean time to the first failure of the system. Finally, a numerical example is given to validate the derived indices.
International Nuclear Information System (INIS)
Astolfi, M.; Mancini, G.; Volta, G.; Van Den Muyzenberg, C.L.; Contini, S.; Garribba, S.
1978-01-01
A computerized technique which allows the modelling by AND, OR, NOT binary trees, of various complex situations encountered in safety and reliability assessment, is described. By the use of list-processing, numerical and non-numerical types of information are used together. By proper marking of gates and primary events, stand-by systems, common cause failure and multiphase systems can be analyzed. The basic algorithms used in this technique are shown in detail. Application to a stand-by and multiphase system is then illustrated
User's manual of SECOM2: a computer code for seismic system reliability analysis
International Nuclear Information System (INIS)
Uchiyama, Tomoaki; Oikawa, Tetsukuni; Kondo, Masaaki; Tamura, Kazuo
2002-03-01
This report is the user's manual of seismic system reliability analysis code SECOM2 (Seismic Core Melt Frequency Evaluation Code Ver.2) developed at the Japan Atomic Energy Research Institute for systems reliability analysis, which is one of the tasks of seismic probabilistic safety assessment (PSA) of nuclear power plants (NPPs). The SECOM2 code has many functions such as: Calculation of component failure probabilities based on the response factor method, Extraction of minimal cut sets (MCSs), Calculation of conditional system failure probabilities for given seismic motion levels at the site of an NPP, Calculation of accident sequence frequencies and the core damage frequency (CDF) with use of the seismic hazard curve, Importance analysis using various indicators, Uncertainty analysis, Calculation of the CDF taking into account the effect of the correlations of responses and capacities of components, and Efficient sensitivity analysis by changing parameters on responses and capacities of components. These analyses require the fault tree (FT) representing the occurrence condition of the system failures and core damage, information about response and capacity of components and seismic hazard curve for the NPP site as inputs. This report presents the models and methods applied in the SECOM2 code and how to use those functions. (author)
Go-flow: a reliability analysis methodology applicable to piping system
International Nuclear Information System (INIS)
Matsuoka, T.; Kobayashi, M.
1985-01-01
Since the completion of the Reactor Safety Study, the use of probabilistic risk assessment technique has been becoming more widespread in the nuclear community. Several analytical methods are used for the reliability analysis of nuclear power plants. The GO methodology is one of these methods. Using the GO methodology, the authors performed a reliability analysis of the emergency decay heat removal system of the nuclear ship Mutsu, in order to examine its applicability to piping systems. By this analysis, the authors have found out some disadvantages of the GO methodology. In the GO methodology, the signal is on-to-off or off-to-on signal, therefore the GO finds out the time point at which the state of a system changes, and can not treat a system which state changes as off-on-off. Several computer runs are required to obtain the time dependent failure probability of a system. In order to overcome these disadvantages, the authors propose a new analytical methodology: GO-FLOW. In GO-FLOW, the modeling method (chart) and the calculation procedure are similar to those in the GO methodology, but the meaning of signal and time point, and the definitions of operators are essentially different. In the paper, the GO-FLOW methodology is explained and two examples of the analysis by GO-FLOW are given
Calculating system reliability with SRFYDO
Energy Technology Data Exchange (ETDEWEB)
Morzinski, Jerome [Los Alamos National Laboratory; Anderson - Cook, Christine M [Los Alamos National Laboratory; Klamann, Richard M [Los Alamos National Laboratory
2010-01-01
SRFYDO is a process for estimating reliability of complex systems. Using information from all applicable sources, including full-system (flight) data, component test data, and expert (engineering) judgment, SRFYDO produces reliability estimates and predictions. It is appropriate for series systems with possibly several versions of the system which share some common components. It models reliability as a function of age and up to 2 other lifecycle (usage) covariates. Initial output from its Exploratory Data Analysis mode consists of plots and numerical summaries so that the user can check data entry and model assumptions, and help determine a final form for the system model. The System Reliability mode runs a complete reliability calculation using Bayesian methodology. This mode produces results that estimate reliability at the component, sub-system, and system level. The results include estimates of uncertainty, and can predict reliability at some not-too-distant time in the future. This paper presents an overview of the underlying statistical model for the analysis, discusses model assumptions, and demonstrates usage of SRFYDO.
A reliability simulation language for reliability analysis
International Nuclear Information System (INIS)
Deans, N.D.; Miller, A.J.; Mann, D.P.
1986-01-01
The results of work being undertaken to develop a Reliability Description Language (RDL) which will enable reliability analysts to describe complex reliability problems in a simple, clear and unambiguous way are described. Component and system features can be stated in a formal manner and subsequently used, along with control statements to form a structured program. The program can be compiled and executed on a general-purpose computer or special-purpose simulator. (DG)
International Nuclear Information System (INIS)
Roenty, V.; Keski-Rahkonen, O.; Hassinen, J.P.
2004-12-01
Sprinkler systems are an important part of fire safety of nuclear installations. As a part of effort to make fire-PSA of our utilities more quantitative a literature survey from open sources worldwide of available reliability data on sprinkler systems was carried out. Since the result of the survey was rather poor quantitatively, it was decided to mine available original Finnish nuclear and non-nuclear data, since nuclear power plants present a rather small device population. Sprinklers are becoming a key element for the fire safety in modern, open non-nuclear buildings. Therefore, the study included both nuclear power plants and non-nuclear buildings protected by sprinkler installations. Data needed for estimating of reliability of sprinkler systems were collected from available sources in Finnish nuclear and non-nuclear installations. Population sizes on sprinkler system installations and components therein as well as covered floor areas were counted individually from Finnish nuclear power plants. From non-nuclear installations corresponding data were estimated by counting relevant things from drawings of 102 buildings, and plotting from that sample needed probability distributions. The total populations of sprinkler systems and components were compiled based on available direct data and these distributions. From nuclear power plants electronic maintenance reports were obtained, observed failures and other reliability relevant data were selected, classified according to failure severity, and stored on spreadsheets for further analysis. A short summary of failures was made, which was hampered by a small sample size. From non-nuclear buildings inspection statistics from years 1985.1997 were surveyed, and observed failures were classified and stored on spreadsheets. Finally, a reliability model is proposed based on earlier formal work, and failure frequencies obtained by preliminary data analysis of this work. For a model utilising available information in the non
Reliability analysis of protection systems in NPP applying fault-tree analysis method
International Nuclear Information System (INIS)
Bokor, J.; Gaspar, P.; Hetthessy, J.; Szabo, G.
1998-01-01
This paper demonstrates the applicability and limits of dependability analysis in nuclear power plants (NPPS) based on the reactor protection refurbishment project (RRP) in NPP Paks. This paper illustrates case studies from the reliability analysis for NPP Paks. It also investigates the solutions for the connection between the data acquisition and subsystem control units (TSs) and the voter units (VTs), it analyzes the influence of the voting in the VT computer level, it studies the effects of the testing procedures to the dependability parameters. (author)
International Nuclear Information System (INIS)
Clark, L.L.; Myers, R.S.
1989-04-01
This is one of nine studies undertaken by contractors to the US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), to provide a technical basis for re-evaluating the role of a monitored retrievable storage (MRS) facility. The study evaluates the relative reliabilities of systems with and without an MRS facility using current facility design bases. The principal finding of this report is that the MRS system has several operational advantages that enhance system reliability. These are: (1) the MRS system is likely to encounter fewer technical issues, (2) the MRS would assure adequate system surface storage capacity to accommodate repository construction and startup delays of up to five years or longer if the Nuclear Waste Policy Amendments Act (NWPAA) were amended, (3) the system with an MRS has two federal acceptance facilities with parallel transportation routing and surface storage capacity, and (4) the MRS system would allow continued waste acceptance for up to a year after a major disruption of emplacement operations at the repository
Network reliability analysis of complex systems using a non-simulation-based method
International Nuclear Information System (INIS)
Kim, Youngsuk; Kang, Won-Hee
2013-01-01
Civil infrastructures such as transportation, water supply, sewers, telecommunications, and electrical and gas networks often establish highly complex networks, due to their multiple source and distribution nodes, complex topology, and functional interdependence between network components. To understand the reliability of such complex network system under catastrophic events such as earthquakes and to provide proper emergency management actions under such situation, efficient and accurate reliability analysis methods are necessary. In this paper, a non-simulation-based network reliability analysis method is developed based on the Recursive Decomposition Algorithm (RDA) for risk assessment of generic networks whose operation is defined by the connections of multiple initial and terminal node pairs. The proposed method has two separate decomposition processes for two logical functions, intersection and union, and combinations of these processes are used for the decomposition of any general system event with multiple node pairs. The proposed method is illustrated through numerical network examples with a variety of system definitions, and is applied to a benchmark gas transmission pipe network in Memphis TN to estimate the seismic performance and functional degradation of the network under a set of earthquake scenarios.
International Nuclear Information System (INIS)
Hustak, S.; Patrik, M.; Babic, P.
2000-12-01
The report is structured as follows: (i) Introduction; (ii) Important notions relating to the safety and dependability of software systems for nuclear power plants (selected notions from IAEA Technical Report No. 397; safety aspects of software application; reliability/dependability aspects of digital systems); (iii) Peculiarities of digital systems and ways to a dependable performance of the required function (failures in the system and principles of defence against them; ensuring resistance of digital systems against failures at various hardware and software levels); (iv) The issue of analytical procedures to assess the safety and reliability of safety-related digital systems (safety and reliability assessment at an early stage of the project; general framework of reliability analysis of complex systems; choice of an appropriate quantitative measure of software reliability); (v) Selected qualitative and quantitative information about the reliability of digital systems; the use of relations between the incidence of various types of faults); and (vi) Conclusions and recommendations. (P.A.)
Reliability analysis of air recirculation and-refrigeration systems of Angra-1 reactor containment
International Nuclear Information System (INIS)
Fernandes Filho, T.L.
1982-10-01
A reliability analysis of the air refrigeration and recirculation containment systems (ARRCS) of Angra-1 nuclear power plants, were done. The fault tree analysis was used. The failure primary data were taken out of Wash-1400 and IEEE. These data were processed by these following computer codes : Prep-Kitt, Sample, Trebil, Cressex and Streusl for the two stages of ARRCS operation. The design bases accident studied was a LOCA (loss of coolant). The component that more contribution give to the non-availability of ARRCS is the motor of the ARRCS. (E.G.) [pt
International Nuclear Information System (INIS)
Lin, Yanhui
2016-01-01
Components of nuclear safety systems are in general highly reliable, which leads to a difficulty in modeling their degradation and failure behaviors due to the limited amount of data available. Besides, the complexity of such modeling task is increased by the fact that these systems are often subject to multiple competing degradation processes and that these can be dependent under certain circumstances, and influenced by a number of external factors (e.g. temperature, stress, mechanical shocks, etc.). In this complicated problem setting, this PhD work aims to develop a holistic framework of models and computational methods for the reliability-based analysis and maintenance optimization of nuclear safety systems taking into account the available knowledge on the systems, degradation and failure behaviors, their dependencies, the external influencing factors and the associated uncertainties.The original scientific contributions of the work are: (1) For single components, we integrate random shocks into multi-state physics models for component reliability analysis, considering general dependencies between the degradation and two types of random shocks. (2) For multi-component systems (with a limited number of components):(a) a piecewise-deterministic Markov process modeling framework is developed to treat degradation dependency in a system whose degradation processes are modeled by physics-based models and multi-state models; (b) epistemic uncertainty due to incomplete or imprecise knowledge is considered and a finite-volume scheme is extended to assess the (fuzzy) system reliability; (c) the mean absolute deviation importance measures are extended for components with multiple dependent competing degradation processes and subject to maintenance; (d) the optimal maintenance policy considering epistemic uncertainty and degradation dependency is derived by combining finite-volume scheme, differential evolution and non-dominated sorting differential evolution; (e) the
Energy Technology Data Exchange (ETDEWEB)
C. L. Smith; R. Nims; K. J. Kvarfordt; C. Wharton
2008-08-01
The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment using a personal computer running the Microsoft Windows operating system. SAPHIRE is primarily funded by the U.S. Nuclear Regulatory Commission (NRC). The role of the INL in this project is that of software developer and tester. This development takes place using formal software development procedures and is subject to quality assurance (QA) processes. The purpose of this document is to describe how the SAPHIRE software QA is performed for Version 6 and 7, what constitutes its parts, and limitations of those processes.
Review of the Shearon Harris Unit 1 auxiliary feedwater system reliability analysis
International Nuclear Information System (INIS)
Fresco, A.; Youngblood, R.; Papazoglou, I.A.
1986-02-01
This report presents the results of a review of the Auxiliary Feedwater System Reliability Analysis for the Shearon Harris Nuclear Power Plant (SHNPP) Unit 1. The objective of this report is to estimate the probability that the Auxiliary Feedwater System will fail to perform its mission for each of three different initiators: (1) loss of main feedwater with offsite power available, (2) loss of offsite power, (3) loss of all ac power except vital instrumentation and control 125-V dc/120-V ac power. The scope, methodology, and failure data are prescribed by NUREG-0611 for other Westinghouse plants
ANALYSIS OF RELIABILITY OF NONRECTORABLE REDUNDANT POWER SYSTEMS TAKING INTO ACCOUNT COMMON FAILURES
Directory of Open Access Journals (Sweden)
V. A. Anischenko
2014-01-01
Full Text Available Reliability Analysis of nonrestorable redundant power Systems of industrial plants and other consumers of electric energy was carried out. The main attention was paid to numbers failures influence, caused by failures of all elements of System due to one general reason. Noted the main possible reasons of common failures formation. Two main indicators of reliability of non-restorable systems are considered: average time of no-failure operation and mean probability of no-failure operation. Modeling of failures were carried out by mean of division of investigated system into two in-series connected subsystems, one of them indicated independent failures, but the other indicated common failures. Due to joined modeling of single and common failures resulting intensity of failures is the amount incompatible components: intensity statistically independent failures and intensity of common failures of elements and system in total.It is shown the influence of common failures of elements on average time of no-failure operation of system. There is built the scale of preference of systems according to criterion of average time maximum of no-failure operation, depending on portion of common failures. It is noticed that such common failures don’t influence on the scale of preference, but change intervals of time, determining the moments of systems failures and excepting them from the number of comparators. There were discussed two problems of conditionally optimization of systems’ reservation choice, taking into account their reliability and cost. The first problem is solved due to criterion of minimum cost of system providing mean probability of no-failure operation, the second problem is solved due to criterion of maximum of mean probability of no-failure operation with cost limitation of system.
Mullin, Daniel Richard
2013-09-01
The majority of space programs whether manned or unmanned for science or exploration require that a Failure Modes Effects and Criticality Analysis (FMECA) be performed as part of their safety and reliability activities. This comes as no surprise given that FMECAs have been an integral part of the reliability engineer's toolkit since the 1950s. The reasons for performing a FMECA are well known including fleshing out system single point failures, system hazards and critical components and functions. However, in the author's ten years' experience as a space systems safety and reliability engineer, findings demonstrate that the FMECA is often performed as an afterthought, simply to meet contract deliverable requirements and is often started long after the system requirements allocation and preliminary design have been completed. There are also important qualitative and quantitative components often missing which can provide useful data to all of project stakeholders. These include; probability of occurrence, probability of detection, time to effect and time to detect and, finally, the Risk Priority Number. This is unfortunate as the FMECA is a powerful system design tool that when used effectively, can help optimize system function while minimizing the risk of failure. When performed as early as possible in conjunction with writing the top level system requirements, the FMECA can provide instant feedback on the viability of the requirements while providing a valuable sanity check early in the design process. It can indicate which areas of the system will require redundancy and which areas are inherently the most risky from the onset. Based on historical and practical examples, it is this author's contention that FMECAs are an immense source of important information for all involved stakeholders in a given project and can provide several benefits including, efficient project management with respect to cost and schedule, system engineering and requirements management
Uncertainty analysis of nonlinear systems employing the first-order reliability method
International Nuclear Information System (INIS)
Choi, Chan Kyu; Yoo, Hong Hee
2012-01-01
In most mechanical systems, properties of the system elements have uncertainties due to several reasons. For example, mass, stiffness coefficient of a spring, damping coefficient of a damper or friction coefficients have uncertain characteristics. The uncertain characteristics of the elements have a direct effect on the system performance uncertainty. It is very important to estimate the performance uncertainty since the performance uncertainty is directly related to manufacturing yield and consumer satisfaction. Due to this reason, the performance uncertainty should be estimated accurately and considered in the system design. In this paper, performance measures are defined for nonlinear vibration systems and the performance measure uncertainties are estimated employing the first order reliability method (FORM). It was found that the FORM could provide good results in spite of the system nonlinear characteristics. Comparing to the results obtained by Monte Carlo Simulation (MCS), the accuracy of the uncertainty analysis results obtained by the FORM is validated
Use of eye tracking equipment for human reliability analysis applied to complex system operations
International Nuclear Information System (INIS)
Pinheiro, Andre Ricardo Mendonça; Prado, Eugenio Anselmo Pessoa do; Martins, Marcelo Ramos
2017-01-01
This article will discuss the preliminary results of an evaluation methodology for the analysis and quantification of manual character errors (human), by monitoring cognitive parameters and skill levels in the operation of a complex control system based on parameters provided by a eye monitoring equipment (Eye Tracker). The research was conducted using a simulator (game) that plays concepts of operation of a nuclear reactor with a split sample for evaluation of aspects of learning, knowledge and standard operating within the context addressed. bridge operators were monitored using the EYE TRACKING, eliminating the presence of the analyst in the evaluation of the operation, allowing the analysis of the results by means of multivariate statistical techniques within the scope of system reliability. The experiments aim to observe state change situations such as stops and scheduled departures, incidents assumptions and common operating characteristics. Preliminary results of this research object indicate that technical and cognitive aspects can contribute to improving the reliability of the available techniques in human reliability, making them more realistic both in the context of quantitative approaches to regulatory and training purposes, as well as reduced incidence of human error. (author)
Huang, Zhi-Hui; Tang, Ying-Chun; Dai, Kai
2016-05-01
Semiconductor materials and Product qualified rate are directly related to the manufacturing costs and survival of the enterprise. Application a dynamic reliability growth analysis method studies manufacturing execution system reliability growth to improve product quality. Refer to classical Duane model assumptions and tracking growth forecasts the TGP programming model, through the failure data, established the Weibull distribution model. Combining with the median rank of average rank method, through linear regression and least squares estimation method, match respectively weibull information fusion reliability growth curve. This assumption model overcome Duane model a weakness which is MTBF point estimation accuracy is not high, through the analysis of the failure data show that the method is an instance of the test and evaluation modeling process are basically identical. Median rank in the statistics is used to determine the method of random variable distribution function, which is a good way to solve the problem of complex systems such as the limited sample size. Therefore this method has great engineering application value.
Use of eye tracking equipment for human reliability analysis applied to complex system operations
Energy Technology Data Exchange (ETDEWEB)
Pinheiro, Andre Ricardo Mendonça; Prado, Eugenio Anselmo Pessoa do; Martins, Marcelo Ramos, E-mail: andrericardopinheiro@usp.br, E-mail: eugenio.prado@labrisco.usp.br, E-mail: mrmatins@usp.br [Universidade de Sao Paulo (LABRISCO/USP), Sao Paulo, SP (Brazil). Lab. de Análise, Avaliação e Gerenciamento de Risco
2017-07-01
This article will discuss the preliminary results of an evaluation methodology for the analysis and quantification of manual character errors (human), by monitoring cognitive parameters and skill levels in the operation of a complex control system based on parameters provided by a eye monitoring equipment (Eye Tracker). The research was conducted using a simulator (game) that plays concepts of operation of a nuclear reactor with a split sample for evaluation of aspects of learning, knowledge and standard operating within the context addressed. bridge operators were monitored using the EYE TRACKING, eliminating the presence of the analyst in the evaluation of the operation, allowing the analysis of the results by means of multivariate statistical techniques within the scope of system reliability. The experiments aim to observe state change situations such as stops and scheduled departures, incidents assumptions and common operating characteristics. Preliminary results of this research object indicate that technical and cognitive aspects can contribute to improving the reliability of the available techniques in human reliability, making them more realistic both in the context of quantitative approaches to regulatory and training purposes, as well as reduced incidence of human error. (author)
Analysis of Parking Reliability Guidance of Urban Parking Variable Message Sign System
Zhenyu Mei; Ye Tian; Dongping Li
2012-01-01
Operators of parking guidance and information systems (PGIS) often encounter difficulty in determining when and how to provide reliable car park availability information to drivers. Reliability has become a key factor to ensure the benefits of urban PGIS. The present paper is the first to define the guiding parking reliability of urban parking variable message signs (VMSs). By analyzing the parking choice under guiding and optional parking lots, a guiding parking reliability model was constru...
Reliability of segmental accelerations measured using a new wireless gait analysis system.
Kavanagh, Justin J; Morrison, Steven; James, Daniel A; Barrett, Rod
2006-01-01
The purpose of this study was to determine the inter- and intra-examiner reliability, and stride-to-stride reliability, of an accelerometer-based gait analysis system which measured 3D accelerations of the upper and lower body during self-selected slow, preferred and fast walking speeds. Eight subjects attended two testing sessions in which accelerometers were attached to the head, neck, lower trunk, and right shank. In the initial testing session, two different examiners attached the accelerometers and performed the same testing procedures. A single examiner repeated the procedure in a subsequent testing session. All data were collected using a new wireless gait analysis system, which features near real-time data transmission via a Bluetooth network. Reliability for each testing condition (4 locations, 3 directions, 3 speeds) was quantified using a waveform similarity statistic known as the coefficient of multiple determination (CMD). CMD's ranged from 0.60 to 0.98 across all test conditions and were not significantly different for inter-examiner (0.86), intra-examiner (0.87), and stride-to-stride reliability (0.86). The highest repeatability for the effect of location, direction and walking speed were for the shank segment (0.94), the vertical direction (0.91) and the fast walking speed (0.91), respectively. Overall, these results indicate that a high degree of waveform repeatability was obtained using a new gait system under test-retest conditions involving single and dual examiners. Furthermore, differences in acceleration waveform repeatability associated with the reapplication of accelerometers were small in relation to normal motor variability.
Field reliability of electronic systems
International Nuclear Information System (INIS)
Elm, T.
1984-02-01
This report investigates, through several examples from the field, the reliability of electronic units in a broader sense. That is, it treats not just random parts failure, but also inadequate reliability design and (externally and internally) induced failures. The report is not meant to be merely an indication of the state of the art for the reliability prediction methods we know, but also as a contribution to the investigation of man-machine interplay in the operation and repair of electronic equipment. The report firmly links electronics reliability to safety and risk analyses approaches with a broader, system oriented view of reliability prediction and with postfailure stress analysis. It is intended to reveal, in a qualitative manner, the existence of symptom and cause patterns. It provides a background for further investigations to identify the detailed mechanisms of the faults and the remedical actions and precautions for achieving cost effective reliability. (author)
Reliability modeling and analysis for a novel design of modular converter system of wind turbines
International Nuclear Information System (INIS)
Zhang, Cai Wen; Zhang, Tieling; Chen, Nan; Jin, Tongdan
2013-01-01
Converters play a vital role in wind turbines. The concept of modularity is gaining in popularity in converter design for modern wind turbines in order to achieve high reliability as well as cost-effectiveness. In this study, we are concerned with a novel topology of modular converter invented by Hjort, Modular converter system with interchangeable converter modules. World Intellectual Property Organization, Pub. No. WO29027520 A2; 5 March 2009, in this architecture, the converter comprises a number of identical and interchangeable basic modules. Each module can operate in either AC/DC or DC/AC mode, depending on whether it functions on the generator or the grid side. Moreover, each module can be reconfigured from one side to the other, depending on the system’s operational requirements. This is a shining example of full-modular design. This paper aims to model and analyze the reliability of such a modular converter. A Markov modeling approach is applied to the system reliability analysis. In particular, six feasible converter system models based on Hjort’s architecture are investigated. Through numerical analyses and comparison, we provide insights and guidance for converter designers in their decision-making.
Reliability analysis of multi-trigger binary systems subject to competing failures
International Nuclear Information System (INIS)
Wang, Chaonan; Xing, Liudong; Levitin, Gregory
2013-01-01
This paper suggests two combinatorial algorithms for the reliability analysis of multi-trigger binary systems subject to competing failure propagation and failure isolation effects. Propagated failure with global effect (PFGE) is referred to as a failure that not only causes outage to the component from which the failure originates, but also propagates through all other system components causing the entire system failure. However, the propagation effect from the PFGE can be isolated in systems with functional dependence (FDEP) behavior. This paper studies two distinct consequences of PFGE resulting from a competition in the time domain between the failure isolation and failure propagation effects. As compared to existing works on competing failures that are limited to systems with a single FDEP group, this paper considers more complicated cases where the systems have multiple dependent FDEP groups. Analysis of such systems is more challenging because both the occurrence order between the trigger failure event and PFGE from the dependent components and the occurrence order among the multiple trigger failure events have to be considered. Two combinatorial and analytical algorithms are proposed. Both of them have no limitation on the type of time-to-failure distributions for the system components. Their correctness is verified using a Markov-based method. An example of memory systems is analyzed to demonstrate and compare the applications and advantages of the two proposed algorithms. - Highlights: ► Reliability of binary systems with multiple dependent functional dependence groups is analyzed. ► Competing failure propagation and failure isolation effect is considered. ► The proposed algorithms are combinatorial and applicable to any arbitrary type of time-to-failure distributions for system components.
Analysis and recommendations for a reliable programming of software based safety systems
International Nuclear Information System (INIS)
Nunez McLeod, J.; Nunez McLeod, J.E.; Rivera, S.S.
1997-01-01
The present paper summarizes the results of several studies performed for the development of high software on i486 microprocessors, towards its utilization for control and safety systems for nuclear power plants. The work is based on software programmed in C language. Several recommendations oriented to high reliability software are analyzed, relating the requirements on high level language to its influence on assembler level. Several metrics are implemented, that allow for the quantification of the results achieved. New metrics were developed and other were adapted, in order to obtain more efficient indexes for the software description. Such metrics are helpful to visualize the adaptation of the software under development to the quality rules under use. A specific program developed to assist the reliability analyst on this quantification is also present in the paper. It performs the analysis of an executable program written in C language, disassembling it and evaluating its inter al structures. (author)
Reliability analysis of self-supply system of V-1 nuclear power plant
International Nuclear Information System (INIS)
Kuklik, B.
The results are summarized of the fault tree analysis of the V-1 power plant self-consumption system. The 6 kV busbars providing power for the main circulating pumps, the steam generator feed pumps and other important components including the 0.4 kV busbars are of the highest importance for nuclear safety. A fault tree analysis was also made of the emergency core cooling system of the reactor. Dangerous faults are defined and fault trees are developed. A brief description is given of the calculation algorithm for a digital computer. Some results are discussed. The calculated reliability of the emergency core cooling system is 10 5 years, of the 6 kV busbars it is 6.6x10 4 years. In case of a permanent or a long-term outage of the 220 kV stand-bye power supply, the system reliability is reduced to 7x10 2 years. (Z.M.)
Architecture for interlock systems: reliability analysis with regard to safety and availability
International Nuclear Information System (INIS)
Wagner, S.; Apollonio, A.; Schmidt, R.; Zerlauth, M.; Vergara-Fernandez, A.
2012-01-01
For particle accelerators like LHC and other large experimental physics facilities like ITER, the machine protection relies on complex interlock systems. In the design of interlock loops for the signal exchange in machine protection systems, the choice of the hardware architecture impacts on machine safety and availability. The reliable performance of a machine stop (leaving the machine in a safe state) in case of an emergency, is an inherent requirement. The constraints in terms of machine availability on the other hand may differ from one facility to another. Spurious machine stops, lowering machine availability, may to a certain extent be tolerated in facilities where they do not cause undue equipment wear-out. In order to compare various interlock loop architectures in terms of safety and availability, the occurrence frequencies of related scenarios have been calculated in a reliability analysis, using a generic analytical model. This paper presents the results and illustrates the potential of the analysis method for supporting the choice of interlock system architectures. The results show the advantages of a 2003 (3 redundant lines with 2-out-of-3 voting) over the 6 architectures under consideration for systems with high requirements in both safety and availability
Konnik, Mikhail V.
2012-04-01
Wavefront coding paradigm can be used not only for compensation of aberrations and depth-of-field improvement but also for an optical encryption. An optical convolution of the image with the PSF occurs when a diffractive optical element (DOE) with a known point spread function (PSF) is placed in the optical path. In this case, an optically encoded image is registered instead of the true image. Decoding of the registered image can be performed using standard digital deconvolution methods. In such class of optical-digital systems, the PSF of the DOE is used as an encryption key. Therefore, a reliability and cryptographic resistance of such an encryption method depends on the size and complexity of the PSF used for optical encoding. This paper gives a preliminary analysis on reliability and possible vulnerabilities of such an encryption method. Experimental results on brute-force attack on the optically encrypted images are presented. Reliability estimation of optical coding based on wavefront coding paradigm is evaluated. An analysis of possible vulnerabilities is provided.
International Nuclear Information System (INIS)
Rocco Sanseverino, Claudio M.; Ramirez-Marquez, José Emmanuel
2014-01-01
The reliability of a system, notwithstanding it intended function, can be significantly affected by the uncertainty in the reliability estimate of the components that define the system. This paper implements the Unscented Transformation to quantify the effects of the uncertainty of component reliability through two approaches. The first approach is based on the concept of uncertainty propagation, which is the assessment of the effect that the variability of the component reliabilities produces on the variance of the system reliability. This assessment based on UT has been previously considered in the literature but only for system represented through series/parallel configuration. In this paper the assessment is extended to systems whose reliability cannot be represented through analytical expressions and require, for example, Monte Carlo Simulation. The second approach consists on the evaluation of the importance of components, i.e., the evaluation of the components that most contribute to the variance of the system reliability. An extension of the UT is proposed to evaluate the so called “main effects” of each component, as well to assess high order component interaction. Several examples with excellent results illustrate the proposed approach. - Highlights: • Simulation based approach for computing reliability estimates. • Computation of reliability variance via 2n+1 points. • Immediate computation of component importance. • Application to network systems
Reliability analysis of Diesel Generator power supply system of Prototype Fast Breeder Reactor
Energy Technology Data Exchange (ETDEWEB)
Sharma, Pramod Kumar, E-mail: pramodks@igcar.gov.in; Bhuvana, V.; Ramakrishnan, M.
2016-12-15
Highlights: • The unavailability of DG success is 4.75E−3 for 2/4 and 1.47E−3 for 1/4. • Modeling includes sub systems like CB, SSWS, Fuel oil system & 220 V DC. • DG-FR, DG-FR-CCF and DG maintenance is major contributors of DG unavailability. • Uncertainty analysis has been carried out through Monte Carlo simulations. • Sensitivity analysis identifies DG mechanical FR as most sensitive part. - Abstract: The unavailability of Diesel Generator power supply system has been evaluated using Fault tree method with ISOGRAPH reliability software and is found to be 4.75E−3 for 2/4 (DG success) and 1.47E−3 for 1/4 (DG success). Common cause failures contribute significantly to the unavailability of the system. Statistical analysis indicates that the DG unavailability is uncertain by Error Factor 4.4 (90% confidence bound) for 2 out of 4 DG system (system success) and by Error Factor 4.1 (90% confidence bound) for 1 out of 4 DG system (system success). Support systems namely Safety related service water system, Fuel oil system and circuit breaker control power supply dependency have been modeled. Results of importance analysis and sensitivity study are used to identify significant contributors to unavailability. DG fails to run, DG fails to run due to CCF and DG maintenance out of service is identified as dominant and important contributors of DG unavailability. Uncertainty analysis has been carried out through Monte Carlo simulations.
System reliability analysis and introduction to modelisation by means of Markov chains
International Nuclear Information System (INIS)
Doyon, L.R.
1977-01-01
A new method to solve simultaneously all models of availability, reliability and maintenaibility for a complex system is described. This analysis is obtained more exactly by using time-intervals between failures and times to repare with probability laws and maintenance policies most adapted to the problem. The expression of this computation, using MARKOV chains corresponds perfectly to computer-language and results very short machine operation times. The procedure necessary for the use of APAFS program operationnal at the CISI (Compagnie Internationale de Services en Informatique) is also described. Thus, a very important tool is now available to designers without any requirement in programming knowledge [fr
Failure and Maintenance Analysis Using Web-Based Reliability Database System
International Nuclear Information System (INIS)
Hwang, Seok Won; Kim, Myoung Su; Seong, Ki Yeoul; Na, Jang Hwan; Jerng, Dong Wook
2007-01-01
Korea Hydro and Nuclear Power Company has lunched the development of a database system for PSA and Maintenance Rule implementation. It focuses on the easy processing of raw data into a credible and useful database for the risk-informed environment of nuclear power plant operation and maintenance. Even though KHNP had recently completed the PSA for all domestic NPPs as a requirement of the severe accident mitigation strategy, the component failure data were only gathered as a means of quantification purposes for the relevant project. So, the data were not efficient enough for the Living PSA or other generic purposes. Another reason to build a real time database is for the newly adopted Maintenance Rule, which requests the utility to continuously monitor the plant risk based on its operation and maintenance performance. Furthermore, as one of the pre-condition for the Risk Informed Regulation and Application, the nuclear regulatory agency of Korea requests the development and management of domestic database system. KHNP is stacking up data of operation and maintenance on the Enterprise Resource Planning (ERP) system since its first opening on July, 2003. But, so far a systematic review has not been performed to apply the component failure and maintenance history for PSA and other reliability analysis. The data stored in PUMAS before the ERP system is introduced also need to be converted and managed into the new database structure and methodology. This reliability database system is a web-based interface on a UNIX server with Oracle relational database. It is designed to be applicable for all domestic NPPs with a common database structure and the web interfaces, therefore additional program development would not be necessary for data acquisition and processing in the near future. Categorization standards for systems and components have been implemented to analyze all domestic NPPs. For example, SysCode (for a system code) and CpCode (for a component code) were newly
Scyllac equipment reliability analysis
International Nuclear Information System (INIS)
Gutscher, W.D.; Johnson, K.J.
1975-01-01
Most of the failures in Scyllac can be related to crowbar trigger cable faults. A new cable has been designed, procured, and is currently undergoing evaluation. When the new cable has been proven, it will be worked into the system as quickly as possible without causing too much additional down time. The cable-tip problem may not be easy or even desirable to solve. A tightly fastened permanent connection that maximizes contact area would be more reliable than the plug-in type of connection in use now, but it would make system changes and repairs much more difficult. The balance of the failures have such a low occurrence rate that they do not cause much down time and no major effort is underway to eliminate them. Even though Scyllac was built as an experimental system and has many thousands of components, its reliability is very good. Because of this the experiment has been able to progress at a reasonable pace
FURAX: assistance tools for the qualitative and quantitative analysis of systems reliability
International Nuclear Information System (INIS)
Moureau, R.
1995-01-01
FURAX is a set of tools for the qualitative and quantitative safety analysis of systems functioning. It is particularly well adapted to the study of networks (fluids, electrical..), i.e. systems in which importance is functionally given to a flux. The analysis is based on modeling which privileges these fluxes (skeleton representation of the system for a network, functional diagram for a non single-flux system) and on the representation of components support systems. Qualitative analyses are based on the research for possible flux ways and on the technical domain knowledge. The results obtained correspond to a simplified failure mode analysis, to fault-trees relative to the events expected by the user and to minimum sections. The possible calculations on these models are: tree calculations, Markov diagram calculations of the system reliability, and probabilistic calculation of a section viewed as a tree, as a well-ordered sequence of failures, or as the absorbing state of a Markov diagram. (J.S.). 6 refs
User`s manual of a support system for human reliability analysis
Energy Technology Data Exchange (ETDEWEB)
Yokobayashi, Masao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tamura, Kazuo
1995-10-01
Many kinds of human reliability analysis (HRA) methods have been developed. However, users are required to be skillful so as to use them, and also required complicated works such as drawing event tree (ET) and calculation of uncertainty bounds. Moreover, each method is not so complete that only one method of them is not enough to evaluate human reliability. Therefore, a personal computer (PC) based support system for HRA has been developed to execute HRA practically and efficiently. The system consists of two methods, namely, simple method and detailed one. The former uses ASEP that is a simplified THERP-technique, and combined method of OAT and HRA-ET/DeBDA is used for the latter. Users can select a suitable method for their purpose. Human error probability (HEP) data were collected and a database of them was built to use for the support system. This paper describes outline of the HRA methods, support functions and user`s guide of the system. (author).
Reliability Analysis of RSG-GAS Primary Cooling System to Support Aging Management Program
Deswandri; Subekti, M.; Sunaryo, Geni Rina
2018-02-01
Multipurpose Research Reactor G.A. Siwabessy (RSG-GAS) which has been operating since 1987 is one of the main facilities on supporting research, development and application of nuclear energy programs in BATAN. Until now, the RSG-GAS research reactor has been successfully operated safely and securely. However, because it has been operating for nearly 30 years, the structures, systems and components (SSCs) from the reactor would have started experiencing an aging phase. The process of aging certainly causes a decrease in reliability and safe performances of the reactor, therefore the aging management program is needed to resolve the issues. One of the programs in the aging management is to evaluate the safety and reliability of the system and also screening the critical components to be managed.One method that can be used for such purposes is the Fault Tree Analysis (FTA). In this papers FTA method is used to screening the critical components in the RSG-GAS Primary Cooling System. The evaluation results showed that the primary isolation valves are the basic events which are dominant against the system failure.
Reliability of steam-turbine rotors. Task 1. Lifetime prediction analysis system. Final report
International Nuclear Information System (INIS)
Nair, P.K.; Pennick, H.G.; Peters, J.E.; Wells, C.H.
1982-12-01
Task 1 of RP 502, Reliability of Steam Turbine Rotors, resulted in the development of a computerized lifetime prediction analysis system (STRAP) for the automatic evaluation of rotor integrity based upon the results of a boresonic examination of near-bore defects. Concurrently an advanced boresonic examination system (TREES), designed to acquire data automatically for lifetime analysis, was developed and delivered to the maintenance shop of a major utility. This system and a semi-automated, state-of-the-art system (BUCS) were evaluated on two retired rotors as part of the Task 2 effort. A modified nonproprietary version of STRAP, called SAFER, is now available for rotor lifetime prediction analysis. STRAP and SAFER share a common fracture analysis postprocessor for rapid evaluation of either conventional boresonic amplitude data or TREES cell data. The final version of this postprocessor contains general stress intensity correlations for elliptical cracks in a radial stress gradient and provision for elastic-plastic instability of the ligament between an imbedded crack and the bore surface. Both linear elastic and ligament rupture models were developed for rapid analysis of linkup within three-dimensional clusters of defects. Bore stress-rupture criteria are included, but a creep-fatigue crack growth data base is not available. Physical and mechanical properties of air-melt 1CrMoV forgings are built into the program; however, only bounding values of fracture toughness versus temperature are available. Owing to the lack of data regarding the probability of flaw detection for the boresonic systems and of quantitative verification of the flaw linkup analysis, automatic evlauation of boresonic results is not recommended, and the lifetime prediction system is currently restricted to conservative, deterministic analysis of specified flaw geometries
Reliability Analysis of 6-Component Star Markov Repairable System with Spatial Dependence
Directory of Open Access Journals (Sweden)
Liying Wang
2017-01-01
Full Text Available Star repairable systems with spatial dependence consist of a center component and several peripheral components. The peripheral components are arranged around the center component, and the performance of each component depends on its spatial “neighbors.” Vector-Markov process is adapted to describe the performance of the system. The state space and transition rate matrix corresponding to the 6-component star Markov repairable system with spatial dependence are presented via probability analysis method. Several reliability indices, such as the availability, the probabilities of visiting the safety, the degradation, the alert, and the failed state sets, are obtained by Laplace transform method and a numerical example is provided to illustrate the results.
Reliability analysis and operator modelling
International Nuclear Information System (INIS)
Hollnagel, Erik
1996-01-01
The paper considers the state of operator modelling in reliability analysis. Operator models are needed in reliability analysis because operators are needed in process control systems. HRA methods must therefore be able to account both for human performance variability and for the dynamics of the interaction. A selected set of first generation HRA approaches is briefly described in terms of the operator model they use, their classification principle, and the actual method they propose. In addition, two examples of second generation methods are also considered. It is concluded that first generation HRA methods generally have very simplistic operator models, either referring to the time-reliability relationship or to elementary information processing concepts. It is argued that second generation HRA methods must recognise that cognition is embedded in a context, and be able to account for that in the way human reliability is analysed and assessed
Phased mission analysis of maintained systems: a study in reliability risk analysis
International Nuclear Information System (INIS)
Terpstra, K.
1984-01-01
The present study develops a general theory that treats the probability of occurrence of each branch of an event tree and that takes correctly into account the dependencies between systems; incorporates within the general theory the solution of the problem of phased mission analysis. It also includes the general model components, that may or may not be repairable, with general lifetime and repairtime distribution, i.e. in the model repairable systems should be taken into account. Finally a computer program is developed that is based on this general theory, i.e. a computer program that is able to perform fully the probabilistic calculations of a risk analysis and that can handle in a correct way phased mission analysis of repairable systems. The theory is applied to a boiling water reactor accident. (Auth.)
Directory of Open Access Journals (Sweden)
Abdelbaki Laidoune
2016-09-01
Conclusion: The explored sociocultural factors influence the human reliability both in qualitative and quantitative manners. The proposed model shows how reliability can be enhanced by some measures such as experience feedback based on, for example, safety improvements, training, and information. With that is added the continuous systems improvements to improve sociocultural reality and to reduce negative behaviors.
Reliability analysis for dynamic configurations of systems with three failure modes
International Nuclear Information System (INIS)
Pham, Hoang
1999-01-01
Analytical models for computing the reliability of dynamic configurations of systems, such as majority and k-out-of-n, assuming that units and systems are subject to three types of failures: stuck-at-0, stuck-at-1, and stuck-at-x are presented in this paper. Formulas for determining the optimal design policies that maximize the reliability of dynamic k-out-of-n configurations subject to three types of failures are defined. The comparisons of the reliability modeling functions are also obtained. The optimum system size and threshold value k that minimize the expected cost of dynamic k-out-of-n configurations are also determined
Photovoltaic power system reliability considerations
Lalli, V. R.
1980-01-01
This paper describes an example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems. This particular application was for a solar cell power system demonstration project in Tangaye, Upper Volta, Africa. The techniques involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of a fail-safe and planned spare parts engineering philosophy.
Fundamental concepts and relations for reliability analysis of multi-state systems
International Nuclear Information System (INIS)
Murchland, J.D.
1975-01-01
The fundamental concepts and relations that should be used in the reliability analysis of systems with numerous components are discussed, with an emphasis on calculable quantities. These are: (1) the average probability of being in a state, (2) the average transition rates between states, in the long run or as time functions, and (3) the integrals of the transition rates, which are the expected numbers of transitions. These quantities are related by the net transition relations, and the calculationally vital transition rate relation when the inputs of an item are statistically independent. Assumptions necessary for the existence of these quantities and for the relations are listed, and proofs given. The importance of exploiting the closeness to ''simple'' structure which systems may possess, and the versatility for different problems of a computational technique of ''reduction'' and ''expansion'' are discussed. The key relations for the latter are formally derived. Applications are made to fault trees, structure networks, undirected and directed communication networks
International Nuclear Information System (INIS)
Danielsen, A.; Snaith, E.R.
1975-01-01
A reliability investigation carried out by the Safety and Reliability Services of the UKAEA, and the SSEB, of the essential system/reactor coolant system for a large nuclear power station is described. In AGR type reactors, after all reactor shutdown conditions, it is necessary to restore forced gas circulation and sufficient boiler feed to maintain the heat removal capacity of the boilers. The coolant requirements are provided by several independent mechanical systems of primary coolant fans, feedwater pumps, and valves integrated with electrical power sources, switchgear, and automatic control equipment. Reliability is treated as one aspect of system performance and quantified in terms of failure to meet a specific objective. Based on the reliability performance of the constituent components the optimum system configuration is determined together with the preferred plant operating procedures and maintenance requirements. (author)
Reliability analysis for the facility data acquisition interface system upgrade at TA-55
International Nuclear Information System (INIS)
Turner, W.J.; Pope, N.G.; Brown, R.E.
1995-05-01
Because replacement parts for the existing facility data acquisition interface system at TA-55 have become scarce and are no longer being manufactured, reliability studies were conducted to assess various possible replacement systems. A new control system, based on Allen-Bradley Programmable Logic Controllers (PLCs), was found to have a likely reliability 10 times that of the present system, if the existing Continuous Air Monitors (CAMS) were used. Replacement of the old CAMs with new CAMs will result in even greater reliability as these are gradually phased in. The new PLC-based system would provide for hot standby processors, redundant communications paths, and redundant power supplies, and would be expandable and easily maintained, as well as much more reliable. TA-55 is the Plutonium Processing Facility which processes and recovers Pu-239 from scrap materials
Load Control System Reliability
Energy Technology Data Exchange (ETDEWEB)
Trudnowski, Daniel [Montana Tech of the Univ. of Montana, Butte, MT (United States)
2015-04-03
This report summarizes the results of the Load Control System Reliability project (DOE Award DE-FC26-06NT42750). The original grant was awarded to Montana Tech April 2006. Follow-on DOE awards and expansions to the project scope occurred August 2007, January 2009, April 2011, and April 2013. In addition to the DOE monies, the project also consisted of matching funds from the states of Montana and Wyoming. Project participants included Montana Tech; the University of Wyoming; Montana State University; NorthWestern Energy, Inc., and MSE. Research focused on two areas: real-time power-system load control methodologies; and, power-system measurement-based stability-assessment operation and control tools. The majority of effort was focused on area 2. Results from the research includes: development of fundamental power-system dynamic concepts, control schemes, and signal-processing algorithms; many papers (including two prize papers) in leading journals and conferences and leadership of IEEE activities; one patent; participation in major actual-system testing in the western North American power system; prototype power-system operation and control software installed and tested at three major North American control centers; and, the incubation of a new commercial-grade operation and control software tool. Work under this grant certainly supported the DOE-OE goals in the area of “Real Time Grid Reliability Management.”
International Nuclear Information System (INIS)
Abdul Rahman, Fariz; Varuttamaseni, Athi; Kintner-Meyer, Michael; Lee, John C.
2013-01-01
A new method is developed for predicting customer reliability of a distribution power system using the fault tree approach with customer weighted values of component failure frequencies and downtimes. Conventional customer reliability prediction of the electric grid employs the system average (SA) component failure frequency and downtime that are weighted by only the quantity of the components in the system. These SA parameters are then used to calculate the reliability and availability of components in the system, and eventually to find the effect on customer reliability. Although this approach is intuitive, information is lost regarding customer disturbance experiences when customer information is not utilized in the SA parameter calculations, contributing to inaccuracies when predicting customer reliability indices in our study. Hence our new approach directly incorporates customer disturbance information in component failure frequency and downtime calculations by weighting these parameters with information of customer interruptions. This customer weighted (CW) approach significantly improves the prediction of customer reliability indices when applied to our reliability model with fault tree and two-state Markov chain formulations. Our method has been successfully applied to an actual distribution power system that serves over 2.1 million customers. Our results show an improved benchmarking performance on the system average interruption frequency index (SAIFI) by 26% between the SA-based and CW-based reliability calculations. - Highlights: ► We model the reliability of a power system with fault tree and two-state Markov chain. ► We propose using customer weighted component failure frequencies and downtimes. ► Results show customer weighted values perform superior to component average values. ► This method successfully incorporates customer disturbance information into the model.
Reliability Analysis of Wind Turbines
DEFF Research Database (Denmark)
Toft, Henrik Stensgaard; Sørensen, John Dalsgaard
2008-01-01
In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...
International Nuclear Information System (INIS)
Kim, Man Cheol; Smidts, Carol S.
2015-01-01
As digital instrumentation and control systems are being progressively introduced into nuclear power plants, a growing number of related technical issues are coming to light needing to be resolved. As a result, an understanding of relevant terms and basic concepts becomes increasingly important. Under the framework of the OECD/NEA WGRISK DIGREL Task Group, the authors were involved in reviewing definitions of terms forming the supporting vocabulary for addressing issues related to the safety and reliability analysis of digital instrumentation and control (SRA of DI and C). These definitions were extracted from various standards regulating the disciplines that form the technical and scientific basis of SRA DI and C. The authors discovered that different definitions are provided by different standards within a common discipline and used differently across various disciplines. This paper raises the concern that a common understanding of terms and basic concepts has not yet been established to address the very specific technical issues facing SRA DI and C. Based on the lessons learned from the review of the definitions of interest and the analysis of dependency relationships existing between these definitions, this paper establishes a set of recommendations for the development of a consistent terminology for SRA DI and C. - Highlights: ●We reviewed definitions of terms used in reliability analysis of digital systems. ●Different definitions are provided by different standards within a common discipline. ●Acyclic and cyclic structures of dependency in defining terms are compared. ●Three recommendations for the development of a consistent terminology provided
Integrated Reliability and Risk Analysis System (IRRAS) Version 2.0 user's guide
International Nuclear Information System (INIS)
Russell, K.D.; Sattison, M.B.; Rasmuson, D.M.
1990-06-01
The Integrated Reliability and Risk Analysis System (IRRAS) is a state-of-the-art, microcomputer-based probabilistic risk assessment (PRA) model development and analysis tool to address key nuclear plant safety issues. IRRAS is an integrated software tool that gives the user the ability to create and analyze fault trees and accident sequences using a microcomputer. This program provides functions that range from graphical fault tree construction to cut set generation and quantification. Also provided in the system is an integrated full-screen editor for use when interfacing with remote mainframe computer systems. Version 1.0 of the IRRAS program was released in February of 1987. Since that time, many user comments and enhancements have been incorporated into the program providing a much more powerful and user-friendly system. This version has been designated IRRAS 2.0 and is the subject of this user's guide. Version 2.0 of IRRAS provides all of the same capabilities as Version 1.0 and adds a relational data base facility for managing the data, improved functionality, and improved algorithm performance. 9 refs., 292 figs., 4 tabs
Beato, Marco; Jamil, Mikael
2017-05-09
The correct evaluation of external load parameters is a key factor in professional football. The instrumentations usually utilised to quantify the external load parameters during official matches are Video-Tracking Systems (VTS). VTS is a technology that records two- dimensional position data (x and y) at high sampling rates (over 25 Hz). The aim of this study was to evaluate the intra-system reliability of Digital.Stadium® VTS. 28 professional male football players taking part in the Italian Serie A (age 24 ± 6 years, body mass 79.5 ± 7.8 kg, stature 1.83 ± 0.05 m) during the 2015/16 season were enrolled in this study (Team A and Team B). Video-analysis was done during an official match and data analysis was performed immediately after the game ended and then replicated a week later. This study reported a near perfect relationship between the initial analysis (analysis 1) and the replicated analysis undertaken a week later (analysis 2). R2 coefficients were highly significant for each of the performance parameters, p power of 9.65 ± 1.64 w kg-1 and 9.58 ± 1.61 w kg-1, in analysis 1 and analysis 2, respectively. The findings reported in this study underlined that all data reported by Digital.Stadium® VTS showed high levels of absolute and relative reliability.
Reliability and Maintainability Analysis for the Amine Swingbed Carbon Dioxide Removal System
Dunbar, Tyler
2016-01-01
I have performed a reliability & maintainability analysis for the Amine Swingbed payload system. The Amine Swingbed is a carbon dioxide removal technology that has gone through 2,400 hours of International Space Station on-orbit use between 2013 and 2016. While the Amine Swingbed is currently an experimental payload system, the Amine Swingbed may be converted to system hardware. If the Amine Swingbed becomes system hardware, it will supplement the Carbon Dioxide Removal Assembly (CDRA) as the primary CO2 removal technology on the International Space Station. NASA is also considering using the Amine Swingbed as the primary carbon dioxide removal technology for future extravehicular mobility units and for the Orion, which will be used for the Asteroid Redirect and Journey to Mars missions. The qualitative component of the reliability and maintainability analysis is a Failure Modes and Effects Analysis (FMEA). In the FMEA, I have investigated how individual components in the Amine Swingbed may fail, and what the worst case scenario is should a failure occur. The significant failure effects are the loss of ability to remove carbon dioxide, the formation of ammonia due to chemical degradation of the amine, and loss of atmosphere because the Amine Swingbed uses the vacuum of space to regenerate the Amine Swingbed. In the quantitative component of the reliability and maintainability analysis, I have assumed a constant failure rate for both electronic and nonelectronic parts. Using this data, I have created a Poisson distribution to predict the failure rate of the Amine Swingbed as a whole. I have determined a mean time to failure for the Amine Swingbed to be approximately 1,400 hours. The observed mean time to failure for the system is between 600 and 1,200 hours. This range includes initial testing of the Amine Swingbed, as well as software faults that are understood to be non-critical. If many of the commercial parts were switched to military-grade parts, the expected
Advanced Reactor PSA Methodologies for System Reliability Analysis and Source Term Assessment
Energy Technology Data Exchange (ETDEWEB)
Grabaskas, D.; Brunett, A.; Passerini, S.; Grelle, A.; Bucknor, M.
2017-06-26
Beginning in 2015, a project was initiated to update and modernize the probabilistic safety assessment (PSA) of the GE-Hitachi PRISM sodium fast reactor. This project is a collaboration between GE-Hitachi and Argonne National Laboratory (Argonne), and funded in part by the U.S. Department of Energy. Specifically, the role of Argonne is to assess the reliability of passive safety systems, complete a mechanistic source term calculation, and provide component reliability estimates. The assessment of passive system reliability focused on the performance of the Reactor Vessel Auxiliary Cooling System (RVACS) and the inherent reactivity feedback mechanisms of the metal fuel core. The mechanistic source term assessment attempted to provide a sequence specific source term evaluation to quantify offsite consequences. Lastly, the reliability assessment focused on components specific to the sodium fast reactor, including electromagnetic pumps, intermediate heat exchangers, the steam generator, and sodium valves and piping.
Morehouse, Dennis V.
2006-01-01
In order to perform public risk analyses for vehicles containing Flight Termination Systems (FTS), it is necessary for the analyst to know the reliability of each of the components of the FTS. These systems are typically divided into two segments; a transmitter system and associated equipment, typically in a ground station or on a support aircraft, and a receiver system and associated equipment on the target vehicle. This analysis attempts to analyze the reliability of the NASA DFRC flight termination system ground transmitter segment for use in the larger risk analysis and to compare the results against two established Department of Defense availability standards for such equipment.
International Nuclear Information System (INIS)
Anon.
1976-01-01
The purpose of this standard is to provide uniform, minimum acceptable requirements for the performance of reliability analyses for safety-related systems found in nuclear-power generating stations, but not to define the need for an analysis. The need for reliability analysis has been identified in other standards which expand the requirements of regulations (e.g., IEEE Std 379-1972 (ANSI N41.2-1972), ''Guide for the Application of the Single-Failure Criterion to Nuclear Power Generating Station Protection System,'' which describes the application of the single-failure criterion). IEEE Std 352-1975, ''Guide for General Principles of Reliability Analysis of Nuclear Power Generating Station Protection Systems,'' provides guidance in the application and use of reliability techniques referred to in this standard
Tapia, Moiez A.
1993-01-01
The study of a comparative analysis of distinct multiplex and fault-tolerant configurations for a PLC-based safety system from a reliability point of view is presented. It considers simplex, duplex and fault-tolerant triple redundancy configurations. The standby unit in case of a duplex configuration has a failure rate which is k times the failure rate of the standby unit, the value of k varying from 0 to 1. For distinct values of MTTR and MTTF of the main unit, MTBF and availability for these configurations are calculated. The effect of duplexing only the PLC module or only the sensors and the actuators module, on the MTBF of the configuration, is also presented. The results are summarized and merits and demerits of various configurations under distinct environments are discussed.
Reliability analysis of an LCL tuned track segmented bi-directional inductive power transfer system
DEFF Research Database (Denmark)
Asif Iqbal, S. M.; Madawala, U. K.; Thrimawithana, D. J.
2013-01-01
Bi-directional Inductive Power Transfer (BDIPT) technique is suitable for renewable energy based applications such as electric vehicles (EVs), for the implementation of vehicle-to-grid (V2G) systems. Recently, more efforts have been made by researchers to improve both efficiency and reliability...... of renewable energy systems to further enhance their economical sustainability. This paper presents a comparative reliability study between a typical BDIPT system and an individually controlled segmented BDIPT system. Steady state thermal simulation results are provided for different output power levels...... for a 1.5 kW BDIPT system in a MATLAB/Simulink environment. Reliability parameters such as failure rate and mean time between failures (MTBF) are compared between the two systems. A nonlinear programming (NP) model is developed for optimizing charging schedule for a stationery EV. A case study of EV...
International Nuclear Information System (INIS)
Ramirez, N.
2004-01-01
A design requirement probability of 0.01 or less in a 4-hour period ensures that the nuclear heating, ventilation, and air-conditioning (HVAC) system in the primary confinement areas of the Dry Transfer Facilities (DTFs) and Fuel Handling Facility (FHF) is working during a Category 1 drop event involving commercial spent nuclear fuel (CSNF) assemblies (BSC 2004a , Section 5.1.1.48). This corresponds to an hourly HVAC failure rate of 2.5E-3 per hour or less, which is contributed to by two dominant causes: equipment failure and loss of electrical power. Meeting this minimum threshold ensures that a Category 1 initiating event followed by the failure of HVAC is a Category 2 event sequence. The two causes for the loss of electrical power include the loss of offsite power and the loss of onsite power distribution. Thus, in order to meet the threshold requirement aforementioned, the failure rate of mechanical equipment, loss of offsite power, and loss of onsite power distribution must be less than or equal to 2.5E-3 per hour for the nuclear HVAC system in the primary confinement areas of the DTFs and FHF. The loss of offsite power occurs at a frequency of 1.1E-5 per hour (BSC 2004a, Section 5.1.1.48). The purpose of this analysis is to determine the probability of occurrence of the unavailability of the nuclear HVAC system in the primary confinement areas of the DTFs and FHF due to loss of electrical power. In addition, this analysis provides insights on the contribution to the unavailability of the HVAC system due to equipment failure. The scope of this analysis is limited to finding the frequency of loss of electrical power to the nuclear HVAC system in the primary confinement areas of the DTFs and FHF
Directory of Open Access Journals (Sweden)
Hadi Heidari Gharehbolagh
2016-01-01
Full Text Available This study investigates a multiowner maximum-flow network problem, which suffers from risky events. Uncertain conditions effect on proper estimation and ignoring them may mislead decision makers by overestimation. A key question is how self-governing owners in the network can cooperate with each other to maintain a reliable flow. Hence, the question is answered by providing a mathematical programming model based on applying the triangular reliability function in the decentralized networks. The proposed method concentrates on multiowner networks which suffer from risky time, cost, and capacity parameters for each network’s arcs. Some cooperative game methods such as τ-value, Shapley, and core center are presented to fairly distribute extra profit of cooperation. A numerical example including sensitivity analysis and the results of comparisons are presented. Indeed, the proposed method provides more reality in decision-making for risky systems, hence leading to significant profits in terms of real cost estimation when compared with unforeseen effects.
International Nuclear Information System (INIS)
Stern, R.E.; Song, J.; Work, D.B.
2017-01-01
The two-terminal reliability problem in system reliability analysis is known to be computationally intractable for large infrastructure graphs. Monte Carlo techniques can estimate the probability of a disconnection between two points in a network by selecting a representative sample of network component failure realizations and determining the source-terminal connectivity of each realization. To reduce the runtime required for the Monte Carlo approximation, this article proposes an approximate framework in which the connectivity check of each sample is estimated using a machine-learning-based classifier. The framework is implemented using both a support vector machine (SVM) and a logistic regression based surrogate model. Numerical experiments are performed on the California gas distribution network using the epicenter and magnitude of the 1989 Loma Prieta earthquake as well as randomly-generated earthquakes. It is shown that the SVM and logistic regression surrogate models are able to predict network connectivity with accuracies of 99% for both methods, and are 1–2 orders of magnitude faster than using a Monte Carlo method with an exact connectivity check. - Highlights: • Surrogate models of network connectivity are developed by machine-learning algorithms. • Developed surrogate models can reduce the runtime required for Monte Carlo simulations. • Support vector machine and logistic regressions are employed to develop surrogate models. • Numerical example of California gas distribution network demonstrate the proposed approach. • The developed models have accuracies 99%, and are 1–2 orders of magnitude faster than MCS.
Systems analysis programs for hands-on integrated reliability evaluations (SAPHIRE) version 5.0
International Nuclear Information System (INIS)
Russell, K.D.; Kvarfordt, K.J.; Skinner, N.L.; Wood, S.T.
1994-07-01
The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs), primarily for nuclear power plants. This volume is the reference manual for the Systems Analysis and Risk Assessment (SARA) System Version 5.0, a microcomputer-based system used to analyze the safety issues of a open-quotes familyclose quotes [i.e., a power plant, a manufacturing facility, any facility on which a probabilistic risk assessment (PRA) might be performed]. The SARA database contains PRA data primarily for the dominant accident sequences of a family and descriptive information about the family including event trees, fault trees, and system model diagrams. The number of facility databases that can be accessed is limited only by the amount of disk storage available. To simulate changes to family systems, SARA users change the failure rates of initiating and basic events and/or modify the structure of the cut sets that make up the event trees, fault trees, and systems. The user then evaluates the effects of these changes through the recalculation of the resultant accident sequence probabilities and importance measures. The results are displayed in tables and graphs that may be printed for reports. A preliminary version of the SARA program was completed in August 1985 and has undergone several updates in response to user suggestions and to maintain compatibility with the other SAPHIRE programs. Version 5.0 of SARA provides the same capability as earlier versions and adds the ability to process unlimited cut sets; display fire, flood, and seismic data; and perform more powerful cut set editing
Analysis of Parking Reliability Guidance of Urban Parking Variable Message Sign System
Directory of Open Access Journals (Sweden)
Zhenyu Mei
2012-01-01
Full Text Available Operators of parking guidance and information systems (PGIS often encounter difficulty in determining when and how to provide reliable car park availability information to drivers. Reliability has become a key factor to ensure the benefits of urban PGIS. The present paper is the first to define the guiding parking reliability of urban parking variable message signs (VMSs. By analyzing the parking choice under guiding and optional parking lots, a guiding parking reliability model was constructed. A mathematical program was formulated to determine the guiding parking reliability of VMS. The procedures were applied to a numerical example, and the factors that affect guiding reliability were analyzed. The quantitative changes of the parking berths and the display conditions of VMS were found to be the most important factors influencing guiding reliability. The parking guiding VMS achieved the best benefit when the parking supply was close to or was less than the demand. The combination of a guiding parking reliability model and parking choice behavior offers potential for PGIS operators to reduce traffic congestion in central city areas.
International Nuclear Information System (INIS)
Varde, P. V.; Lee, D. Y.; Han, J. B.
2003-03-01
A case of study on human reliability analysis has been performed as part of reliability analysis of digital protection system of the reactor automatically actuates the shutdown system of the reactor when demanded. However, the safety analysis takes credit for operator action as a diverse mean for tripping the reactor for, though a low probability, ATWS scenario. Based on the available information two cases, viz., human error in tripping the reactor and calibration error for instrumentations in protection system, have been analyzed. Wherever applicable a parametric study has also been performed
Reliability analysis under epistemic uncertainty
International Nuclear Information System (INIS)
Nannapaneni, Saideep; Mahadevan, Sankaran
2016-01-01
This paper proposes a probabilistic framework to include both aleatory and epistemic uncertainty within model-based reliability estimation of engineering systems for individual limit states. Epistemic uncertainty is considered due to both data and model sources. Sparse point and/or interval data regarding the input random variables leads to uncertainty regarding their distribution types, distribution parameters, and correlations; this statistical uncertainty is included in the reliability analysis through a combination of likelihood-based representation, Bayesian hypothesis testing, and Bayesian model averaging techniques. Model errors, which include numerical solution errors and model form errors, are quantified through Gaussian process models and included in the reliability analysis. The probability integral transform is used to develop an auxiliary variable approach that facilitates a single-level representation of both aleatory and epistemic uncertainty. This strategy results in an efficient single-loop implementation of Monte Carlo simulation (MCS) and FORM/SORM techniques for reliability estimation under both aleatory and epistemic uncertainty. Two engineering examples are used to demonstrate the proposed methodology. - Highlights: • Epistemic uncertainty due to data and model included in reliability analysis. • A novel FORM-based approach proposed to include aleatory and epistemic uncertainty. • A single-loop Monte Carlo approach proposed to include both types of uncertainties. • Two engineering examples used for illustration.
Integrated Reliability and Risk Analysis System (IRRAS), Version 2.5: Reference manual
International Nuclear Information System (INIS)
Russell, K.D.; McKay, M.K.; Sattison, M.B.; Skinner, N.L.; Wood, S.T.; Rasmuson, D.M.
1991-03-01
The Integrated Reliability and Risk Analysis System (IRRAS) is a state-of-the-art, microcomputer-based probabilistic risk assessment (PRA) model development and analysis tool to address key nuclear plant safety issues. IRRAS is an integrated software tool that gives the user the ability to create and analyze fault trees and accident sequences using a microcomputer. This program provides functions that range from graphical fault tree construction to cut set generation and quantification. Version 1.0 of the IRRAS program was released in February of 1987. Since that time, many user comments and enhancements have been incorporated into the program providing a much more powerful and user-friendly system. This version has been designated IRRAS 2.5 and is the subject of this Reference Manual. Version 2.5 of IRRAS provides the same capabilities as Version 1.0 and adds a relational data base facility for managing the data, improved functionality, and improved algorithm performance. 7 refs., 348 figs
The reliability of the Manchester Triage System (MTS): a meta-analysis.
Mirhaghi, Amir; Mazlom, Reza; Heydari, Abbas; Ebrahimi, Mohsen
2017-05-01
Although the Manchester Triage System (MTS) was first developed two decades ago, the reliability of the MTS has not been questioned through comparison with a moderating variable; therefore, the aim of this study is to determine the extent of the reliability of MTS using a meta-analytic review. Electronic databases were searched up to 1 March 2014. Studies were only included if they had reported sample sizes, reliability coefficients, and adequate description of the reliability assessment. The Guidelines for Reporting Reliability and Agreement Studies was used. Two reviewers independently examined abstracts and extracted data. The effect size was obtained by the z-transformation of reliability coefficients. Data were pooled with random-effects models, and meta-regression was performed based on the method-of-moments estimator. Seven studies were included. The pooled coefficient for the MTS was substantial at 0.751 (CI 95%: 0.677 to 0.810); the incidence of mistriage is greater than 50%. Agreement is higher for the latest version of MTS (for adults) among nurse-experts and in countries in closer proximity to the country of MTS origin (the UK, in Manchester) than for the oldest (pediatric) version, nurse-nurse raters, and countries at a greater distance from the UK. The MTS showed an acceptable level of overall reliability in the emergency department, but more development is required to attain almost perfect agreement. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.
Cheng, Jie; Liu, Peng; Sun, Dong; Qin, Tingzheng; Ma, Zikun; Liu, Jingpei
2017-05-01
The objective of this study was to analyze the interobserver reliability and intraobserver reproducibility of the new AOSpine thoracolumbar spine injury classification system in young Chinese orthopedic surgeons with different levels of experience in spinal trauma. Previous reports suggest that the new AOSpine thoracolumbar spine injury classification system demonstrates acceptable interobserver reliability and intraobserver reproducibility. However, there are few studies in Asia, especially in China. The AOSpine thoracolumbar spine injury classification system was applied to 109 patients with acute, traumatic thoracolumbar spinal injuries by two groups of spinal surgeons with different levels of clinical experience. The Kappa coefficient was used to determine interobserver reliability and intraobserver reproducibility. The overall Kappa coefficient for all cases was 0.362, which represents fair reliability. The Kappa statistic was 0.385 for A-type injuries and 0.292 for B-type injuries, which represents fair reliability, and 0.552 for C-type injuries, which represents moderate reliability. The Kappa coefficient for intraobserver reproducibility was 0.442 for A-type injuries, 0.485 for B-type injuries, and 0.412 for C-type injuries. These values represent moderate reproducibility for all injury types. The raters in Group A provided significantly better interobserver reliability than Group B (P < 0.05). There were no between-group differences in intraobserver reproducibility. This study suggests that the new AO spine injury classification system may be applied in day-to-day clinical practice in China following extensive training of healthcare providers. Further prospective studies in different healthcare providers and clinical settings are essential for validation of this classification system and to assess its utility.
International Nuclear Information System (INIS)
Basdekas, D.L.
1989-05-01
Generic Issue 115 addresses a concern related to the reliability of the Westinghouse reactor protection system for plants using the Westinghouse Solid State Protection System (SSPS). Several options for improving the reliability of the Westinghouse reactor trip function for these plants and their effect on core damage frequency (CDF) and overall risk were evaluated. This regulatory analysis includes a quantitative assessment of the costs and benefits associated with the various options for enhancing the reliability of the Westinghouse SSPS and provides insights for consideration and industry initiatives. No new regulatory requirements are proposed. 25 refs., 11 tabs
Reliable and Efficient Procedure for Steady-State Analysis of Nonautonomous and Autonomous Systems
Directory of Open Access Journals (Sweden)
J. Dobes
2012-04-01
Full Text Available The majority of contemporary design tools do not still contain steady-state algorithms, especially for the autonomous systems. This is mainly caused by insufficient accuracy of the algorithm for numerical integration, but also by unreliable steady-state algorithms themselves. Therefore, in the paper, a very stable and efficient procedure for the numerical integration of nonlinear differential-algebraic systems is defined first. Afterwards, two improved methods are defined for finding the steady state, which use this integration algorithm in their iteration loops. The first is based on the idea of extrapolation, and the second utilizes nonstandard time-domain sensitivity analysis. The two steady-state algorithms are compared by analyses of a rectifier and a C-class amplifier, and the extrapolation algorithm is primarily selected as a more reliable alternative. Finally, the method based on the extrapolation naturally cooperating with the algorithm for solving the differential-algebraic systems is thoroughly tested on various electronic circuits: Van der Pol and Colpitts oscillators, fragment of a large bipolar logical circuit, feedback and distributed microwave oscillators, and power amplifier. The results confirm that the extrapolation method is faster than a classical plain numerical integration, especially for larger circuits with complicated transients.
Analysis on Sealing Reliability of Bolted Joint Ball Head Component of Satellite Propulsion System
Guo, Tao; Fan, Yougao; Gao, Feng; Gu, Shixin; Wang, Wei
2018-01-01
Propulsion system is one of the important subsystems of satellite, and its performance directly affects the service life, attitude control and reliability of the satellite. The Paper analyzes the sealing principle of bolted joint ball head component of satellite propulsion system and discuss from the compatibility of hydrazine anhydrous and bolted joint ball head component, influence of ground environment on the sealing performance of bolted joint ball heads, and material failure caused by environment, showing that the sealing reliability of bolted joint ball head component is good and the influence of above three aspects on sealing of bolted joint ball head component can be ignored.
System reliability of corroding pipelines
International Nuclear Information System (INIS)
Zhou Wenxing
2010-01-01
A methodology is presented in this paper to evaluate the time-dependent system reliability of a pipeline segment that contains multiple active corrosion defects and is subjected to stochastic internal pressure loading. The pipeline segment is modeled as a series system with three distinctive failure modes due to corrosion, namely small leak, large leak and rupture. The internal pressure is characterized as a simple discrete stochastic process that consists of a sequence of independent and identically distributed random variables each acting over a period of one year. The magnitude of a given sequence follows the annual maximum pressure distribution. The methodology is illustrated through a hypothetical example. Furthermore, the impact of the spatial variability of the pressure loading and pipe resistances associated with different defects on the system reliability is investigated. The analysis results suggest that the spatial variability of pipe properties has a negligible impact on the system reliability. On the other hand, the spatial variability of the internal pressure, initial defect sizes and defect growth rates can have a significant impact on the system reliability.
International Nuclear Information System (INIS)
Uppuluri, V.R.R.
1979-01-01
Mathematical foundations of risk analysis are addressed. The importance of having the same probability space in order to compare different experiments is pointed out. Then the following topics are discussed: consequences as random variables with infinite expectations; the phenomenon of rare events; series-parallel systems and different kinds of randomness that could be imposed on such systems; and the problem of consensus of estimates of expert opinion
Overview of system reliability analyses for PSA
International Nuclear Information System (INIS)
Matsuoka, Takeshi
2012-01-01
Overall explanations are given for many matters relating to system reliability analysis. Systems engineering, Operations research, Industrial engineering, Quality control are briefly explained. Many system reliability analysis methods including advanced methods are introduced. Discussions are given for FMEA, reliability block diagram, Markov model, Petri net, Bayesian network, goal tree success tree, dynamic flow graph methodology, cell-to-cell mapping technique, the GO-FLOW and others. (author)
Laidoune, Abdelbaki; Rahal Gharbi, Med El Hadi
2016-09-01
The influence of sociocultural factors on human reliability within an open sociotechnical systems is highlighted. The design of such systems is enhanced by experience feedback. The study was focused on a survey related to the observation of working cases, and by processing of incident/accident statistics and semistructured interviews in the qualitative part. In order to consolidate the study approach, we considered a schedule for the purpose of standard statistical measurements. We tried to be unbiased by supporting an exhaustive list of all worker categories including age, sex, educational level, prescribed task, accountability level, etc. The survey was reinforced by a schedule distributed to 300 workers belonging to two oil companies. This schedule comprises 30 items related to six main factors that influence human reliability. Qualitative observations and schedule data processing had shown that the sociocultural factors can negatively and positively influence operator behaviors. The explored sociocultural factors influence the human reliability both in qualitative and quantitative manners. The proposed model shows how reliability can be enhanced by some measures such as experience feedback based on, for example, safety improvements, training, and information. With that is added the continuous systems improvements to improve sociocultural reality and to reduce negative behaviors.
Systems analysis programs for hands-on integrated reliability evaluations (SAPHIRE), Version 5.0
International Nuclear Information System (INIS)
Russell, K.D.; Kvarfordt, K.J.; Hoffman, C.L.
1995-10-01
The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs), primarily for nuclear power plants. The Graphical Evaluation Module (GEM) is a special application tool designed for evaluation of operational occurrences using the Accident Sequence Precursor (ASP) program methods. GEM provides the capability for an analyst to quickly and easily perform conditional core damage probability (CCDP) calculations. The analyst can then use the CCDP calculations to determine if the occurrence of an initiating event or a condition adversely impacts safety. It uses models and data developed in the SAPHIRE specially for the ASP program. GEM requires more data than that normally provided in SAPHIRE and will not perform properly with other models or data bases. This is the first release of GEM and the developers of GEM welcome user comments and feedback that will generate ideas for improvements to future versions. GEM is designated as version 5.0 to track GEM codes along with the other SAPHIRE codes as the GEM relies on the same, shared database structure
GP preferences for information systems: conjoint analysis of speed, reliability, access and users.
Wyatt, Jeremy C; Batley, Richard P; Keen, Justin
2010-10-01
To elicit the preferences and trade-offs of UK general practitioners about key features of health information systems, to help inform the design of such systems in future. A stated choice study to uncover implicit preferences based on a binary choice between scenarios presented in random order. were all 303 general practice members of the UK Internet service provider, Medix who were approached by email to participate. The main outcome measure was the number of seconds delay in system response that general practitioners were willing to trade off for each key system feature: the reliability of the system, the sites from which the system could be accessed and which staff are able to view patient data. Doctors valued speed of response most in information systems but would be prepared to wait 28 seconds to access a system in exchange for improved reliability from 95% to 99%, a further 2 seconds for an improvement to 99.9% and 27 seconds for access to data from anywhere including their own home compared with one place in a single health care premises. However, they would require a system that was 14 seconds faster to compensate for allowing social care as well as National Health Service staff to read patient data. These results provide important new evidence about which system characteristics doctors value highly, and hence which characteristics designers need to focus on when large scale health information systems are planned. © 2010 Blackwell Publishing Ltd.
Reliability analysis of multicellular system architectures for low-cost satellites
Erlank, A. O.; Bridges, C. P.
2018-06-01
Multicellular system architectures are proposed as a solution to the problem of low reliability currently seen amongst small, low cost satellites. In a multicellular architecture, a set of independent k-out-of-n systems mimic the cells of a biological organism. In order to be beneficial, a multicellular architecture must provide more reliability per unit of overhead than traditional forms of redundancy. The overheads include power consumption, volume and mass. This paper describes the derivation of an analytical model for predicting a multicellular system's lifetime. The performance of such architectures is compared against that of several common forms of redundancy and proven to be beneficial under certain circumstances. In addition, the problem of peripheral interfaces and cross-strapping is investigated using a purpose-developed, multicellular simulation environment. Finally, two case studies are presented based on a prototype cell implementation, which demonstrate the feasibility of the proposed architecture.
SAPHIRE6.64, System Analysis Programs for Hands-on Integrated Reliability
International Nuclear Information System (INIS)
2001-01-01
1 - Description of program or function: SAPHIRE is a collection of programs developed for the purpose of performing those functions necessary to create and analyze a complete Probabilistic Risk Assessment (PRA) primarily for nuclear power plants. The programs included in this suite are the Integrated Reliability and Risk Analysis System (IRRAS), the System Analysis and Risk Assessment (SARA) system, the Models And Results Database (MAR-D) system, and the Fault tree, Event tree and P and ID (FEP) editors. Previously these programs were released as separate packages. These programs include functions to allow the user to create event trees and fault trees, to define accident sequences and basic event failure data, to solve system and accident sequence fault trees, to quantify cut sets, and to perform uncertainty analysis on the results. Also included in this program are features to allow the analyst to generate reports and displays that can be used to document the results of an analysis. Since this software is a very detailed technical tool, the user of this program should be familiar with PRA concepts and the methods used to perform these analyses. 2 - Methods: SAPHIRE is written in MODULA-2 and uses an integrated commercial graphics package to interactively construct and edit fault trees. The fault tree solving methods used are industry recognized top down algorithms. For quantification, the program uses standard methods to propagate the failure information through the generated cut sets. SAPHIRE includes a separate module called the Graphical Evaluation Module (GEM). GEM provides a highly specialized user interface with SAPHIRE which automates the process for evaluating operational events at commercial nuclear power plants. Using GEM an analyst can estimate the risk associated with operational events (that is, perform a Level 1, Level 2, and Level 3 analysis for operational events) in a very efficient and expeditious manner. This on-line reference guide will
Regression analysis of the structure function for reliability evaluation of continuous-state system
International Nuclear Information System (INIS)
Gamiz, M.L.; Martinez Miranda, M.D.
2010-01-01
Technical systems are designed to perform an intended task with an admissible range of efficiency. According to this idea, it is permissible that the system runs among different levels of performance, in addition to complete failure and the perfect functioning one. As a consequence, reliability theory has evolved from binary-state systems to the most general case of continuous-state system, in which the state of the system changes over time through some interval on the real number line. In this context, obtaining an expression for the structure function becomes difficult, compared to the discrete case, with difficulty increasing as the number of components of the system increases. In this work, we propose a method to build a structure function for a continuum system by using multivariate nonparametric regression techniques, in which certain analytical restrictions on the variable of interest must be taken into account. Once the structure function is obtained, some reliability indices of the system are estimated. We illustrate our method via several numerical examples.
Regression analysis of the structure function for reliability evaluation of continuous-state system
Energy Technology Data Exchange (ETDEWEB)
Gamiz, M.L., E-mail: mgamiz@ugr.e [Departamento de Estadistica e I.O., Facultad de Ciencias, Universidad de Granada, Granada 18071 (Spain); Martinez Miranda, M.D. [Departamento de Estadistica e I.O., Facultad de Ciencias, Universidad de Granada, Granada 18071 (Spain)
2010-02-15
Technical systems are designed to perform an intended task with an admissible range of efficiency. According to this idea, it is permissible that the system runs among different levels of performance, in addition to complete failure and the perfect functioning one. As a consequence, reliability theory has evolved from binary-state systems to the most general case of continuous-state system, in which the state of the system changes over time through some interval on the real number line. In this context, obtaining an expression for the structure function becomes difficult, compared to the discrete case, with difficulty increasing as the number of components of the system increases. In this work, we propose a method to build a structure function for a continuum system by using multivariate nonparametric regression techniques, in which certain analytical restrictions on the variable of interest must be taken into account. Once the structure function is obtained, some reliability indices of the system are estimated. We illustrate our method via several numerical examples.
Development of the design and reliability analysis of a seabed repository system
International Nuclear Information System (INIS)
1987-06-01
This study examines the seabed repository scheme proposed in 1979 for the long term disposal of heat generating radio-active waste and develops it to a standard sufficient to compare its reliability with the drilled emplacement and penetrator schemes. The reinforced concrete repositories contain 324 waste canisters and weigh 982 tonnes fully loaded in water. The repositories are transported up to 6000 km to the disposal area by a special purpose ship and lowered 5.5 km to the seabed on six braided nylon ropes by traction winches. Reliability of the seabed repository system, measured in terms of accidents per year involving loss of one or more canisters, was comparable with the other systems. (author)
Reliability of Power Electronic Converter Systems
DEFF Research Database (Denmark)
-link capacitance in power electronic converter systems; wind turbine systems; smart control strategies for improved reliability of power electronics system; lifetime modelling; power module lifetime test and state monitoring; tools for performance and reliability analysis of power electronics systems; fault...... for advancing the reliability, availability, system robustness, and maintainability of PECS at different levels of complexity. Drawing on the experience of an international team of experts, this book explores the reliability of PECS covering topics including an introduction to reliability engineering in power...... electronic converter systems; anomaly detection and remaining-life prediction for power electronics; reliability of DC-link capacitors in power electronic converters; reliability of power electronics packaging; modeling for life-time prediction of power semiconductor modules; minimization of DC...
Energy Technology Data Exchange (ETDEWEB)
Balan, I.
2005-05-01
This work presents the implementation of the Adjoint Sensitivity Analysis Procedure (ASAP) for the Continuous Time, Discrete Space Markov chains (CTMC), as an alternative to the other computational expensive methods. In order to develop this procedure as an end product in reliability studies, the reliability of the physical systems is analyzed using a coupled Fault-Tree - Markov chain technique, i.e. the abstraction of the physical system is performed using as the high level interface the Fault-Tree and afterwards this one is automatically converted into a Markov chain. The resulting differential equations based on the Markov chain model are solved in order to evaluate the system reliability. Further sensitivity analyses using ASAP applied to CTMC equations are performed to study the influence of uncertainties in input data to the reliability measures and to get the confidence in the final reliability results. The methods to generate the Markov chain and the ASAP for the Markov chain equations have been implemented into the new computer code system QUEFT/MARKOMAGS/MCADJSEN for reliability and sensitivity analysis of physical systems. The validation of this code system has been carried out by using simple problems for which analytical solutions can be obtained. Typical sensitivity results show that the numerical solution using ASAP is robust, stable and accurate. The method and the code system developed during this work can be used further as an efficient and flexible tool to evaluate the sensitivities of reliability measures for any physical system analyzed using the Markov chain. Reliability and sensitivity analyses using these methods have been performed during this work for the IFMIF Accelerator System Facilities. The reliability studies using Markov chain have been concentrated around the availability of the main subsystems of this complex physical system for a typical mission time. The sensitivity studies for two typical responses using ASAP have been
Energy Technology Data Exchange (ETDEWEB)
CARLSON, A.B.
1999-11-11
The document presents updated results of the preliminary reliability, availability, maintainability analysis performed for delivery of waste feed from tanks 241-AZ-101 and 241-AN-105 to British Nuclear Fuels Limited, inc. under the Tank Waste Remediation System Privatization Contract. The operational schedule delay risk is estimated and contributing factors are discussed.
International Nuclear Information System (INIS)
CARLSON, A.B.
1999-01-01
The document presents updated results of the preliminary reliability, availability, maintainability analysis performed for delivery of waste feed from tanks 241-AZ-101 and 241-AN-105 to British Nuclear Fuels Limited, inc. under the Tank Waste Remediation System Privatization Contract. The operational schedule delay risk is estimated and contributing factors are discussed
International Nuclear Information System (INIS)
Kim, Man Woong; Choi, Yong Seog; Sin, Chul; Kim, Hyun Koon; Kim, Hho Jung; Hwang, Su Hyun; Hong, In Seob; Kim, Chang Hyo
2005-01-01
In LOCA analysis of the CANDU reactor, the system thermal-hydraulic code, RELAP-CANDU, alone cannot predict the transient behavior accurately. Therefore, the best estimate neutronics and system thermal-hydraulic coupled code system is necessary to describe the transient behavior with higher accuracy and reliability. To perform on-line calculation of safety analysis for CANDU reactor, a coupled thermal hydraulics-neutronics code system was developed in such a way that the best-estimate thermal-hydraulic system code for CANDU reactor, RELAP-CANDU, is coupled with the full three-dimensional reactor core kinetic code
Unavailability Analysis of the Reactor Core Protection System using Reliability Block Diagram
International Nuclear Information System (INIS)
Shin, Hyun Kook; Kim, Sung Ho; Choi, Woong Suk; Kim, Jae Hack
2006-01-01
The reactor core of nuclear power plants needs to be monitored for the early detection of core abnormal conditions to protect plants from a severe accident. The core protection calculator system (CPCS) has been provided to calculate the departure from nucleate boiling ratio (DNBR) and the local power density (LPD) based on measured parameters of reactor and coolant system. The original CPCS for OPR 1000 has been designed and implemented based on the concurrent 3205 computer system whose components are obsolete. The CPCS based on Westinghouse Common-Q system has recently been implemented for the Shin-Kori Nuclear Power Plant, Units 1 and 2(SKN 1 and 2). An R and D project has been launched to develop new core protection system called as RCOPS (Reactor Core Protection System) with the partnership of KOPEC and Doosan Heavy Industries and Construction Co. RCOPS is implemented on the HFC-6000 safety class programmable logic controller (PLC). In this paper, the reliability of RCOPS is analyzed using the reliability block diagram (RBD) method. The calculated results are compared with that of the CPCS for SKN 1 and 2
Reliability analysis of 2 types of auxiliary feedwater system for PWR
International Nuclear Information System (INIS)
Ekariansyah, Andi Sofrany
2002-01-01
This paper will explain the application of Fault Three Method for analyzing the system reliability of Auxiliary Feedwater System with 2 different configurations taken from PWR type nuclear power plant (NPP) in the USA. The first configuration of Braidwood NPP (design A) basically consists of 1 motor driven pump and 1 diesel driven pump. The second configuration of Haddam Neck NPP (Design B) consists of 2 turbine driven pumps. Based on the P and ID and success criteria the fault trees are constructed to estimate the system failure probabilities quantified from software code PIRAS 1.0. The result shows the second configuration (Design B) with 2 turbine driven pumps have the higher failure probability of 1,06 x 10 - 2 compared with design A of 1,09 x 10 - 3 . The modification of both systems are also tried to analyze its effect to the end result. Qualitatively, the common cause failures of 2 turbine driven pumps contribute to the highest risk of system failure probability. Combination with 1 turbine driven pump and 1 motor driven pump or 1 diesel driven pump will increase the system reliability about 80% and 50% without considering if this configuration is possible to realize in a real plant
Uncertainty analysis methods for estimation of reliability of passive system of VHTR
International Nuclear Information System (INIS)
Han, S.J.
2012-01-01
An estimation of reliability of passive system for the probabilistic safety assessment (PSA) of a very high temperature reactor (VHTR) is under development in Korea. The essential approach of this estimation is to measure the uncertainty of the system performance under a specific accident condition. The uncertainty propagation approach according to the simulation of phenomenological models (computer codes) is adopted as a typical method to estimate the uncertainty for this purpose. This presentation introduced the uncertainty propagation and discussed the related issues focusing on the propagation object and its surrogates. To achieve a sufficient level of depth of uncertainty results, the applicability of the propagation should be carefully reviewed. For an example study, Latin-hypercube sampling (LHS) method as a direct propagation was tested for a specific accident sequence of VHTR. The reactor cavity cooling system (RCCS) developed by KAERI was considered for this example study. This is an air-cooled type passive system that has no active components for its operation. The accident sequence is a low pressure conduction cooling (LPCC) accident that is considered as a design basis accident for the safety design of VHTR. This sequence is due to a large failure of the pressure boundary of the reactor system such as a guillotine break of coolant pipe lines. The presentation discussed the obtained insights (benefit and weakness) to apply an estimation of reliability of passive system
Energy Technology Data Exchange (ETDEWEB)
C. L. Smith; K. J. Kvarfordt; S. T. Wood
2008-08-01
The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer. SAPHIRE is funded by the U.S. Nuclear Regulatory Commission (NRC) and developed by the Idaho National Laboratory (INL). The INL's primary role in this project is that of software developer. However, the INL also plays an important role in technology transfer by interfacing and supporting SAPHIRE users comprised of a wide range of PRA practitioners from the NRC, national laboratories, the private sector, and foreign countries. SAPHIRE can be used to model a complex system’s response to initiating events, quantify associated damage outcome frequencies, and identify important contributors to this damage (Level 1 PRA) and to analyze containment performance during a severe accident and quantify radioactive releases (Level 2 PRA). It can be used for a PRA evaluating a variety of operating conditions, for example, for a nuclear reactor at full power, low power, or at shutdown conditions. Furthermore, SAPHIRE can be used to analyze both internal and external initiating events and has special features for transforming models built for internal event analysis to models for external event analysis. It can also be used in a limited manner to quantify risk in terms of release consequences to both the public and the environment (Level 3 PRA). SAPHIRE includes a separate module called the Graphical Evaluation Module (GEM). GEM provides a highly specialized user interface with SAPHIRE that automates SAPHIRE process steps for evaluating operational events at commercial nuclear power plants. Using GEM, an analyst can estimate the risk associated with operational events in a very efficient and expeditious manner. This reference guide will introduce the SAPHIRE Version 7.0 software. A brief discussion of the purpose and history of the software is included along with
Energy Technology Data Exchange (ETDEWEB)
C. L. Smith; K. J. Kvarfordt; S. T. Wood
2006-07-01
The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer. SAPHIRE is funded by the U.S. Nuclear Regulatory Commission (NRC) and developed by the Idaho National Laboratory (INL). The INL's primary role in this project is that of software developer. However, the INL also plays an important role in technology transfer by interfacing and supporting SAPHIRE users comprised of a wide range of PRA practitioners from the NRC, national laboratories, the private sector, and foreign countries. SAPHIRE can be used to model a complex system’s response to initiating events, quantify associated damage outcome frequencies, and identify important contributors to this damage (Level 1 PRA) and to analyze containment performance during a severe accident and quantify radioactive releases (Level 2 PRA). It can be used for a PRA evaluating a variety of operating conditions, for example, for a nuclear reactor at full power, low power, or at shutdown conditions. Furthermore, SAPHIRE can be used to analyze both internal and external initiating events and has special features for ansforming models built for internal event analysis to models for external event analysis. It can also be used in a limited manner to quantify risk in terms of release consequences to both the public and the environment (Level 3 PRA). SAPHIRE includes a separate module called the Graphical Evaluation Module (GEM). GEM provides a highly specialized user interface with SAPHIRE that automates SAPHIRE process steps for evaluating operational events at commercial nuclear power plants. Using GEM, an analyst can estimate the risk associated with operational events in a very efficient and expeditious manner. This reference guide will introduce the SAPHIRE Version 7.0 software. A brief discussion of the purpose and history of the software is included along with
Energy Technology Data Exchange (ETDEWEB)
Oozeki, Takashi; Yamada, Takao; Kato, Kazuhiko [National Institute of Advanced Industrial Science and Technology (AIST), Research center for photovoltaic (RCPV), Tsukuba (Japan); Yamamoto, Taiji [New Energy and Industrial Technology Development Organization, MUZA Kawasaki Central Tower, Kanagawa (Japan)
2008-07-01
To develop a Photovoltaic (PV) module and cell efficiency are not only important, but also improving PV system performances is the significant technology. The long term reliability is one of the most important in PV systems' performances. In Japan, NEDO (New Energy and Industrial Technology Development Organization) has organized ''Field test (FT) project in Japan'' from FY 1992 up to now. The user of PV systems in the project cooperates for collecting monitoring data and reports the information of maintenance and some failures of PV systems for four years. In this paper, the failures and maintenance information are reported by using MTBF, MTTR, and so on. Moreover, the power conditioner is suspended by some protection or other reason - it is not failure, and the power conditioner can be restarted-which are obtained by PV system user's reports. (orig.)
Operator reliability assessment system (OPERAS)
International Nuclear Information System (INIS)
Spurgin, A.J.; Hallam, J.W.; Spurgin, J.P.; Singh, A.
1991-01-01
The paper gives an overview of the OPERAS project. It discusses the background which led to the design of the PC-based data collection and analysis system connected to plant training simulators including those used for nuclear power plants. The usefulness of a system like OPERAS was perceived during an earlier EPRI project, the Operator Reliability Experiments project, by EPRI and PG and E. The data collection and analysis approaches used in OPERAS were developed during the ORE project. The paper not only discusses the design of OPERAS but discusses the functions performed and the current experiences with the two prototype systems. Also listed are potential uses of OPERAS by utility personnel in Operations, Training and PRA groups
Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE)
International Nuclear Information System (INIS)
C. L. Smith
2006-01-01
The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer (PC) running the Microsoft Windows operating system. SAPHIRE is primarily funded by the U.S. Nuclear Regulatory Commission (NRC) and developed by the Idaho National Laboratory (INL). INL's primary role in this project is that of software developer and tester. However, INL also plays an important role in technology transfer by interfacing and supporting SAPHIRE users, who constitute a wide range of PRA practitioners from the NRC, national laboratories, the private sector, and foreign countries. SAPHIRE can be used to model a complex system's response to initiating events and quantify associated consequential outcome frequencies. Specifically, for nuclear power plant applications, SAPHIRE can identify important contributors to core damage (Level 1 PRA) and containment failure during a severe accident which lead to releases (Level 2 PRA). It can be used for a PRA where the reactor is at full power, low power, or at shutdown conditions. Furthermore, it can be used to analyze both internal and external initiating events and has special features for transforming an internal events model to a model for external events, such as flooding and fire analysis. It can also be used in a limited manner to quantify risk in terms of release consequences to the public and environment (Level 3 PRA). SAPHIRE also includes a separate module called the Graphical Evaluation Module (GEM). GEM is a special user interface linked to SAPHIRE that automates the SAPHIRE process steps for evaluating operational events at commercial nuclear power plants. Using GEM, an analyst can estimate the risk associated with operational events (for example, to calculate a conditional core damage probability) very efficiently and expeditiously. This report provides an overview of the functions
Wild, Christian; Eckhardt, Dave
1987-01-01
The development of a methodology for the production of highly reliable software is one of the greatest challenges facing the computer industry. Meeting this challenge will undoubtably involve the integration of many technologies. This paper describes the use of Artificial Intelligence technologies in the automated analysis of the formal algebraic specifications of abstract data types. These technologies include symbolic execution of specifications using techniques of automated deduction and machine learning through the use of examples. On-going research into the role of knowledge representation and problem solving in the process of developing software is also discussed.
Operator reliability assessment system (OPERAS)
International Nuclear Information System (INIS)
Singh, A.; Spurgin, A.J.; Martin, T.; Welsch, J.; Hallam, J.W.
1991-01-01
OPERAS is a personal-computer (PC) based software to collect and process simulator data on control-room operators responses during requalification training scenarios. The data collection scheme is based upon approach developed earlier during the EPRI Operator Reliability Experiments project. The software allows automated data collection from simulator, thus minimizing simulator staff time and resources to collect, maintain and process data which can be useful in monitoring, assessing and enhancing the progress of crew reliability and effectiveness. The system is designed to provide the data and output information in the form of user-friendly charts, tables and figures for use by plant staff. OPERAS prototype software has been implemented at the Diablo Canyon (PWR) and Millstone (BWR) plants and is currently being used to collect operator response data. Data collected from similator include plant-state variables such as reactor pressure and temperature, malfunction, times at which annunciators are activated, operator actions and observations of crew behavior by training staff. The data and systematic analytical results provided by the OPERAS system can contribute to increase objectivity by the utility probabilistic risk analysis (PRA) and training staff in monitoring and assessing reliability of their crews
Reliability-Based Optimization of Series Systems of Parallel Systems
DEFF Research Database (Denmark)
Enevoldsen, I.; Sørensen, John Dalsgaard
1993-01-01
Reliability-based design of structural systems is considered. In particular, systems where the reliability model is a series system of parallel systems are treated. A sensitivity analysis for this class of problems is presented. Optimization problems with series systems of parallel systems...... optimization of series systems of parallel systems, but it is also efficient in reliability-based optimization of series systems in general....
International Nuclear Information System (INIS)
Hosseini, M.H.; Nematollahi, M.R.; Sepanloo, K.
2004-01-01
Probabilistic safety assessment application is found to be a practical tool for research reactor safety due to intense involvement of human interactions in an experimental facility. In this document the application of the probabilistic safety assessment to the Tehran Research Reactor is presented. The level 1 practicabilities safety assessment application involved: Familiarization with the plant, selection of accident initiators, mitigating functions and system definitions, event tree constructions and quantifications, fault tree constructions and quantification, human reliability, component failure data base development and dependent failure analysis. Each of the steps of the analysis given above is discussed with highlights from the selected results. Quantification of the constructed models is done using systems analysis programs for hands-on integrated reliability evaluations software
Energy Technology Data Exchange (ETDEWEB)
Grabaskas, David; Bucknor, Matthew; Brunett, Acacia; Grelle, Austin
2015-06-28
Many advanced small modular reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize with a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper describes the most promising options: mechanistic techniques, which share qualities with conventional probabilistic methods, and simulation-based techniques, which explicitly account for time-dependent processes. The primary intention of this paper is to describe the strengths and weaknesses of each methodology and highlight the lessons learned while applying the two techniques while providing high-level results. This includes the global benefits and deficiencies of the methods and practical problems encountered during the implementation of each technique.
Reliability analysis of software based safety functions
International Nuclear Information System (INIS)
Pulkkinen, U.
1993-05-01
The methods applicable in the reliability analysis of software based safety functions are described in the report. Although the safety functions also include other components, the main emphasis in the report is on the reliability analysis of software. The check list type qualitative reliability analysis methods, such as failure mode and effects analysis (FMEA), are described, as well as the software fault tree analysis. The safety analysis based on the Petri nets is discussed. The most essential concepts and models of quantitative software reliability analysis are described. The most common software metrics and their combined use with software reliability models are discussed. The application of software reliability models in PSA is evaluated; it is observed that the recent software reliability models do not produce the estimates needed in PSA directly. As a result from the study some recommendations and conclusions are drawn. The need of formal methods in the analysis and development of software based systems, the applicability of qualitative reliability engineering methods in connection to PSA and the need to make more precise the requirements for software based systems and their analyses in the regulatory guides should be mentioned. (orig.). (46 refs., 13 figs., 1 tab.)
Time-Varying, Multi-Scale Adaptive System Reliability Analysis of Lifeline Infrastructure Networks
Energy Technology Data Exchange (ETDEWEB)
Gearhart, Jared Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kurtz, Nolan Scot [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-09-01
The majority of current societal and economic needs world-wide are met by the existing networked, civil infrastructure. Because the cost of managing such infrastructure is high and increases with time, risk-informed decision making is essential for those with management responsibilities for these systems. To address such concerns, a methodology that accounts for new information, deterioration, component models, component importance, group importance, network reliability, hierarchical structure organization, and efficiency concerns has been developed. This methodology analyzes the use of new information through the lens of adaptive Importance Sampling for structural reliability problems. Deterioration, multi-scale bridge models, and time-variant component importance are investigated for a specific network. Furthermore, both bridge and pipeline networks are studied for group and component importance, as well as for hierarchical structures in the context of specific networks. Efficiency is the primary driver throughout this study. With this risk-informed approach, those responsible for management can address deteriorating infrastructure networks in an organized manner.
Analysis of information security reliability: A tutorial
International Nuclear Information System (INIS)
Kondakci, Suleyman
2015-01-01
This article presents a concise reliability analysis of network security abstracted from stochastic modeling, reliability, and queuing theories. Network security analysis is composed of threats, their impacts, and recovery of the failed systems. A unique framework with a collection of the key reliability models is presented here to guide the determination of the system reliability based on the strength of malicious acts and performance of the recovery processes. A unique model, called Attack-obstacle model, is also proposed here for analyzing systems with immunity growth features. Most computer science curricula do not contain courses in reliability modeling applicable to different areas of computer engineering. Hence, the topic of reliability analysis is often too diffuse to most computer engineers and researchers dealing with network security. This work is thus aimed at shedding some light on this issue, which can be useful in identifying models, their assumptions and practical parameters for estimating the reliability of threatened systems and for assessing the performance of recovery facilities. It can also be useful for the classification of processes and states regarding the reliability of information systems. Systems with stochastic behaviors undergoing queue operations and random state transitions can also benefit from the approaches presented here. - Highlights: • A concise survey and tutorial in model-based reliability analysis applicable to information security. • A framework of key modeling approaches for assessing reliability of networked systems. • The framework facilitates quantitative risk assessment tasks guided by stochastic modeling and queuing theory. • Evaluation of approaches and models for modeling threats, failures, impacts, and recovery analysis of information systems
International Nuclear Information System (INIS)
Oliveira, L.F.S. de; Fleming, P.V.; Frutuoso e Melo, P.F.F.
1983-01-01
A realiability analysis of the air refrigeration and recirculation containment systems (ARRCS) of Angra-1 nuclear power plants, were done, aiming to evaluate the probabilities of occurence of a several accident. The systems were analysed for a 24 hours accident, including time failures and demand failures [pt
Piskunov, Maksim V.; Voytkov, Ivan S.; Vysokomornaya, Olga V.; Vysokomorny, Vladimir S.
2015-01-01
The new approach was developed to analyze the failure causes in operation of linear facilities independent power supply sources (mini-CHP-plants) of gas-transmission system in Eastern part of Russia. Triggering conditions of ceiling operation substance temperature at condenser output were determined with mathematical simulation use of unsteady heat and mass transfer processes in condenser of mini-CHP-plants. Under these conditions the failure probability in operation of independent power supply sources is increased. Influence of environmental factors (in particular, ambient temperature) as well as output electric capability values of power plant on mini-CHP-plant operation reliability was analyzed. Values of mean time to failure and power plant failure density during operation in different regions of Eastern Siberia and Far East of Russia were received with use of numerical simulation results of heat and mass transfer processes at operation substance condensation.
International Nuclear Information System (INIS)
Sattison, M.B.; Russell, K.D.; Skinner, N.L.
1994-07-01
The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs) primarily for nuclear power plants. This volume is the tutorial manual for the Systems Analysis and Risk Assessment (SARA) System Version 5.0, a microcomputer-based system used to analyze the safety issues of a open-quotes familyclose quotes [i.e., a power plant, a manufacturing facility, any facility on which a probabilistic risk assessment (PRA) might be performed]. A series of lessons is provided that guides the user through some basic steps common to most analyses performed with SARA. The example problems presented in the lessons build on one another, and in combination, lead the user through all aspects of SARA sensitivity analysis capabilities
French power system reliability report 2008
International Nuclear Information System (INIS)
Tesseron, J.M.
2009-06-01
/ consumption), structure of the system and its design rules, other material measures contributing to operation; 5 - Evolution of measures contributing to reliability in the organizational and human domain: reliability culture, management of the human factor, training, iso 9001 certification - management system, feedback (organisation of feedback, evolution of the ESS scale), performance monitoring, crisis organisation, other organizational measures contributing to reliability; 6 - Lessons drawn from the year's events: lessons drawn from the ESS and from their analysis, feedback other than ESS, noteworthy facts concerning other power systems; 7 - reliability-related indicators: CRE chart of key indicators, RTE internal indicators, indicators for external communication on reliability; 8 - Progress actions underway: actions with the partners concerned (TSOS, users, etc.), main lines of research; 9 - RTE regulation and monitoring system: reliability audit programme, reliability audits; 10 - Conclusion and recommendations
Reliability evaluation of power systems
Billinton, Roy
1996-01-01
The Second Edition of this well-received textbook presents over a decade of new research in power system reliability-while maintaining the general concept, structure, and style of the original volume. This edition features new chapters on the growing areas of Monte Carlo simulation and reliability economics. In addition, chapters cover the latest developments in techniques and their application to real problems. The text also explores the progress occurring in the structure, planning, and operation of real power systems due to changing ownership, regulation, and access. This work serves as a companion volume to Reliability Evaluation of Engineering Systems: Second Edition (1992).
An application of modulated poisson processes to the reliability analysis of repairable systems
Energy Technology Data Exchange (ETDEWEB)
Saldanha, Pedro L.C. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao de Reatores]. E-mail: saldanha@cnen.gov.br; Melo, P.F. Frutuoso e [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: frutuoso@con.ufrj.br; Noriega, Hector C. [Universidad Austral de Chile (UACh), Valdivia (Chile). Faculdad de Ciencias de la Ingeniaria]. E-mail: hnoriega@uach.cl
2005-07-01
This paper discusses the application of the modulated power law process (MPLP) model to the rate of occurrence of failures of active repairable systems in reliability engineering. Traditionally, two ways of modeling repairable systems, in what concerns maintenance policies, are: a pessimistic approach (non-homogeneous process - NHPP), and a very optimistic approach (renewal processes - RP). It is important to build a generalized model that might consider characteristics and properties both of the NHPP and of the RP models as particular cases. In practice, by considering the pattern of times between failures, the MPLP appears to be more realistic to represent the occurrence of failures of repairable systems in order to define whether they can be modeled by a homogeneous or a non-homogeneous process. The study has shown that the model can be used to make decisions concerning the evaluation of the qualified life of plant equipment. By controlling and monitoring two of the three parameters of the MPLP model during the equipment operation, it is possible to check whether and how the equipment is following the basis of its qualification process, and so identify how the effects of time, degradation and operation modes are influencing the equipment performance. The discussion is illustrated by an application to the service water pumps of a typical PWR plant. (author)
International Nuclear Information System (INIS)
Lapa, Celso Marcelo Franklin.
1996-05-01
The use of redundancy to increase the reliability of industrial systems make them subject to the occurrence of common cause events. The industrial experience and the results of safety analysis studies have indicated that common cause failures are the main contributors to the unreliability of plants that have redundant systems, specially in nuclear power plants. In this Thesis procedures are developed in order to include the impact of common cause failures in the calculation of the top event occurrence probability of the Auxiliary Feedwater System in a typical two-loop Nuclear Power Plant (PWR). For this purpose the Multiple Greek Letter Model is used. (author). 14 refs., 10 figs., 11 tabs
Nagano, S.
1979-01-01
Base driver with common-load-current feedback protects paralleled inverter systems from open or short circuits. Circuit eliminates total system oscillation that can occur in conventional inverters because of open circuit in primary transformer winding. Common feedback signal produced by functioning modules forces operating frequency of failed module to coincide with clock drive so module resumes normal operating frequency in spite of open circuit.
Guidelines for reliability analysis of digital systems in PSA context. Phase 3. Status report
Energy Technology Data Exchange (ETDEWEB)
Authen, S. [Risk Pilot AB, Stockholm (Sweden); Holmberg, J.-E. [VTT Technical Research Centre of Finland, Espoo (Finland)
2013-03-15
Digital protection and control systems appear as upgrades in older plants, and are commonplace in new nuclear power plants. To assess the risk of nuclear power plant operation and to determine the risk impact of digital systems, there is a need to quantitatively assess the reliability of the digital systems in a justifiable manner. In 2007, the OECD/NEA CSNI directed the Working Group on Risk Assessment (WGRisk) to set up a task group to coordinate an activity in this field. One of the recommendations was to develop a taxonomy of failure modes of digital components for the purposes of probabilistic safety assessment (PSA), resulting in a follow-up task group called DIGREL. The taxonomy will be the basis of future modelling and quantification efforts. It will also help define a structure for data collection and to review PSA studies. This an interim report of the project. A draft guidelines document on the failure modes taxonomy has been developed. The taxonomy is rather complete covering all levels from the system level down to module and basic component level failure modes, including hardware and software aspects. There are still open issues to be resolved by the task group, especially related to I and C unit and module level taxonomy. In a parallel Nordic activity, a comparison of Nordic experiences and a literature review on main international references has been performed. The study showed a wide range of approaches and solutions to the challenges given by digital I and C, and also indicated that no state-of-the-art currently exists. An existing simplified PSA model has been complemented with fault tree models for a four-redundant distributed protection system in order to study and demonstrate the effect of design features and modelling approaches. The model has been used to test the effect of CCF modelling, fail-safe principle and voting logic. A comparison has been made between unit-level and module-level modelling. (Author)
Guidelines for reliability analysis of digital systems in PSA context. Phase 3. Status report
International Nuclear Information System (INIS)
Authen, S.; Holmberg, J.-E.
2013-03-01
Digital protection and control systems appear as upgrades in older plants, and are commonplace in new nuclear power plants. To assess the risk of nuclear power plant operation and to determine the risk impact of digital systems, there is a need to quantitatively assess the reliability of the digital systems in a justifiable manner. In 2007, the OECD/NEA CSNI directed the Working Group on Risk Assessment (WGRisk) to set up a task group to coordinate an activity in this field. One of the recommendations was to develop a taxonomy of failure modes of digital components for the purposes of probabilistic safety assessment (PSA), resulting in a follow-up task group called DIGREL. The taxonomy will be the basis of future modelling and quantification efforts. It will also help define a structure for data collection and to review PSA studies. This an interim report of the project. A draft guidelines document on the failure modes taxonomy has been developed. The taxonomy is rather complete covering all levels from the system level down to module and basic component level failure modes, including hardware and software aspects. There are still open issues to be resolved by the task group, especially related to I and C unit and module level taxonomy. In a parallel Nordic activity, a comparison of Nordic experiences and a literature review on main international references has been performed. The study showed a wide range of approaches and solutions to the challenges given by digital I and C, and also indicated that no state-of-the-art currently exists. An existing simplified PSA model has been complemented with fault tree models for a four-redundant distributed protection system in order to study and demonstrate the effect of design features and modelling approaches. The model has been used to test the effect of CCF modelling, fail-safe principle and voting logic. A comparison has been made between unit-level and module-level modelling. (Author)
Design for Reliability of Power Electronic Systems
DEFF Research Database (Denmark)
Wang, Huai; Ma, Ke; Blaabjerg, Frede
2012-01-01
Advances in power electronics enable efficient and flexible processing of electric power in the application of renewable energy sources, electric vehicles, adjustable-speed drives, etc. More and more efforts are devoted to better power electronic systems in terms of reliability to ensure high......). A collection of methodologies based on Physics-of-Failure (PoF) approach and mission profile analysis are presented in this paper to perform reliability-oriented design of power electronic systems. The corresponding design procedures and reliability prediction models are provided. Further on, a case study...... on a 2.3 MW wind power converter is discussed with emphasis on the reliability critical components IGBTs. Different aspects of improving the reliability of the power converter are mapped. Finally, the challenges and opportunities to achieve more reliable power electronic systems are addressed....
Reliability Based Optimization of Structural Systems
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard
1987-01-01
The optimization problem to design structural systems such that the reliability is satisfactory during the whole lifetime of the structure is considered in this paper. Some of the quantities modelling the loads and the strength of the structure are modelled as random variables. The reliability...... is estimated using first. order reliability methods ( FORM ). The design problem is formulated as the optimization problem to minimize a given cost function such that the reliability of the single elements satisfies given requirements or such that the systems reliability satisfies a given requirement....... For these optimization problems it is described how a sensitivity analysis can be performed. Next, new optimization procedures to solve the optimization problems are presented. Two of these procedures solve the system reliability based optimization problem sequentially using quasi-analytical derivatives. Finally...
Systems reliability in high risk situations
International Nuclear Information System (INIS)
Hunns, D.M.
1974-12-01
A summary is given of five papers and the discussion of a seminar promoted by the newly-formed National Centre of Systems Reliability. The topics covered include hazard analysis, reliability assessment, and risk assessment in both nuclear and non-nuclear industries. (U.K.)
Innovations in power systems reliability
Santora, Albert H; Vaccaro, Alfredo
2011-01-01
Electrical grids are among the world's most reliable systems, yet they still face a host of issues, from aging infrastructure to questions of resource distribution. Here is a comprehensive and systematic approach to tackling these contemporary challenges.
Latency Analysis of Systems with Multiple Interfaces for Ultra-Reliable M2M Communication
DEFF Research Database (Denmark)
Nielsen, Jimmy Jessen; Popovski, Petar
2016-01-01
One of the ways to satisfy the requirements of ultra-reliable low latency communication for mission critical Machine-type Communications (MTC) applications is to integrate multiple communication interfaces. In order to estimate the performance in terms of latency and reliability of such an integr...
International Nuclear Information System (INIS)
Russell, K.D.; Atwood, C.L.; Galyean, W.J.; Sattison, M.B.; Rasmuson, D.M.
1994-07-01
The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs), primarily for nuclear power plants. This volume provides information on the principles used in the construction and operation of Version 5.0 of the Integrated Reliability and Risk Analysis System (IRRAS) and the System Analysis and Risk Assessment (SARA) system. It summarizes the fundamental mathematical concepts of sets and logic, fault trees, and probability. This volume then describes the algorithms that these programs use to construct a fault tree and to obtain the minimal cut sets. It gives the formulas used to obtain the probability of the top event from the minimal cut sets, and the formulas for probabilities that are appropriate under various assumptions concerning repairability and mission time. It defines the measures of basic event importance that these programs can calculate. This volume gives an overview of uncertainty analysis using simple Monte Carlo sampling or Latin Hypercube sampling, and states the algorithms used by these programs to generate random basic event probabilities from various distributions. Further references are given, and a detailed example of the reduction and quantification of a simple fault tree is provided in an appendix
Reliability Growth in Space Life Support Systems
Jones, Harry W.
2014-01-01
A hardware system's failure rate often increases over time due to wear and aging, but not always. Some systems instead show reliability growth, a decreasing failure rate with time, due to effective failure analysis and remedial hardware upgrades. Reliability grows when failure causes are removed by improved design. A mathematical reliability growth model allows the reliability growth rate to be computed from the failure data. The space shuttle was extensively maintained, refurbished, and upgraded after each flight and it experienced significant reliability growth during its operational life. In contrast, the International Space Station (ISS) is much more difficult to maintain and upgrade and its failure rate has been constant over time. The ISS Carbon Dioxide Removal Assembly (CDRA) reliability has slightly decreased. Failures on ISS and with the ISS CDRA continue to be a challenge.
Analysis of Balancing Requirements in Future Sustainable and Reliable Power Systems
Energy Technology Data Exchange (ETDEWEB)
Frunt, J.
2011-06-01
This thesis elaborates on the rules for power balancing, provides a method for quantifying balancing requirements and examines the effect of future changes on balancing. Chapter 2 elaborates on system balancing and the different actors and entities in the electricity delivery system. The necessity and implementation of power balancing are explained. Also different subsequent markets (i.e., day-ahead markets, intraday markets and imbalance settlement systems) and options to trade electricity are discussed. As the research focusses mainly on the Netherlands, properties of the Dutch imbalance settlement system are analyzed. Based on this framework an in-depth analysis of imbalances and calls for balancing capacity with the corresponding prices is given. This shows the incentives to minimize the amount of imbalance in the system and to participate in the imbalance settlement system. Chapter 3 elaborates on the level of aggregation that the entities, involved in the imbalance settlement system, in electricity markets can have. Based on current market rules, incentives to either grow or shrink and by aggregating more or less entities are discussed. The level of aggregation will directly influence the functioning of the imbalance settlement system. It is shown that larger aggregations benefit more from the canceling out of imbalances. The imbalances of the Netherlands and Belgium have been aggregated to illustrate the possible benefits of aggregating multiple national imbalance settlement systems. The increased penetration of renewable generation strongly influences the planning and operation of the power system. As many renewable energy generators have a fluctuating power output, several methods are discussed in chapter 4 that can be used to classify and quantify the balancing requirements to counteract these fluctuations. Chapter 4 discusses the multiple existing classes of balancing capacity and the corresponding methods to quantify their needs. Due to the
Analysis of Balancing Requirements in Future Sustainable and Reliable Power Systems
International Nuclear Information System (INIS)
Frunt, J.
2011-01-01
This thesis elaborates on the rules for power balancing, provides a method for quantifying balancing requirements and examines the effect of future changes on balancing. Chapter 2 elaborates on system balancing and the different actors and entities in the electricity delivery system. The necessity and implementation of power balancing are explained. Also different subsequent markets (i.e., day-ahead markets, intraday markets and imbalance settlement systems) and options to trade electricity are discussed. As the research focusses mainly on the Netherlands, properties of the Dutch imbalance settlement system are analyzed. Based on this framework an in-depth analysis of imbalances and calls for balancing capacity with the corresponding prices is given. This shows the incentives to minimize the amount of imbalance in the system and to participate in the imbalance settlement system. Chapter 3 elaborates on the level of aggregation that the entities, involved in the imbalance settlement system, in electricity markets can have. Based on current market rules, incentives to either grow or shrink and by aggregating more or less entities are discussed. The level of aggregation will directly influence the functioning of the imbalance settlement system. It is shown that larger aggregations benefit more from the canceling out of imbalances. The imbalances of the Netherlands and Belgium have been aggregated to illustrate the possible benefits of aggregating multiple national imbalance settlement systems. The increased penetration of renewable generation strongly influences the planning and operation of the power system. As many renewable energy generators have a fluctuating power output, several methods are discussed in chapter 4 that can be used to classify and quantify the balancing requirements to counteract these fluctuations. Chapter 4 discusses the multiple existing classes of balancing capacity and the corresponding methods to quantify their needs. Due to the
International Nuclear Information System (INIS)
1979-01-01
The primary purposes of the information in these reports are the following: to provide operating statistics of safety-related systems within a unit which may be used to compare and evaluate reliability performance and to provide failure mode and failure rate statistics on components which may be used in failure mode effects analysis, fault hazard analysis, probabilistic reliability analysis, and so forth
Reliable in their failure: an analysis of healthcare reform policies in public systems.
Contandriopoulos, Damien; Brousselle, Astrid
2010-05-01
In this paper, we analyze recommendations of past governmental commissions and their implementation in Quebec as a case to discuss the obstacles that litter the road to healthcare system reform. Our analysis shows that the obstacles to tackling the healthcare system's main problems may have less to do with programmatic (what to do) than with political and governance (how to do it) questions. We then draw on neo-institutional theory to discuss the causes and effects of this situation. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Bullock, Sally Lawrence; Craypo, Lisa; Clark, Sarah E; Barry, Jason; Samuels, Sarah E
2010-07-01
States and school districts around the country are developing policies that set nutrition standards for competitive foods and beverages sold outside of the US Department of Agriculture's reimbursable school lunch program. However, few tools exist for monitoring the implementation of these new policies. The objective of this research was to develop a computerized assessment tool, the Food and Beverage Environment Analysis and Monitoring System (FoodBEAMS), to collect data on the competitive school food environment and to test the inter-rater reliability of the tool among research and nonresearch professionals. FoodBEAMS was used to collect data in spring 2007 on the competitive foods and beverages sold in 21 California high schools. Adherence of the foods and beverages to California's competitive food and beverage nutrition policies for schools (Senate Bills 12 and 965) was determined using the data collected by both research and nonresearch professionals. The inter-rater reliability between the data collectors was assessed using the intraclass correlation coefficient. Researcher vs researcher and researcher vs nonresearcher inter-rater reliability was high for both foods and beverages, with intraclass correlation coefficients ranging from .972 to .987. Results of this study provide evidence that FoodBEAMS is a promising tool for assessing and monitoring adherence to nutrition standards for competitive foods sold on school campuses and can be used reliably by both research and nonresearch professionals. Copyright 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
Reliability analysis in intelligent machines
Mcinroy, John E.; Saridis, George N.
1990-01-01
Given an explicit task to be executed, an intelligent machine must be able to find the probability of success, or reliability, of alternative control and sensing strategies. By using concepts for information theory and reliability theory, new techniques for finding the reliability corresponding to alternative subsets of control and sensing strategies are proposed such that a desired set of specifications can be satisfied. The analysis is straightforward, provided that a set of Gaussian random state variables is available. An example problem illustrates the technique, and general reliability results are presented for visual servoing with a computed torque-control algorithm. Moreover, the example illustrates the principle of increasing precision with decreasing intelligence at the execution level of an intelligent machine.
Reliability-Based Optimization of Series Systems of Parallel Systems
DEFF Research Database (Denmark)
Enevoldsen, I.; Sørensen, John Dalsgaard
Reliability-based design of structural systems is considered. Especially systems where the reliability model is a series system of parallel systems are analysed. A sensitivity analysis for this class of problems is presented. Direct and sequential optimization procedures to solve the optimization...
RELIABILITY ANALYSIS OF BENDING ELIABILITY ANALYSIS OF ...
African Journals Online (AJOL)
eobe
Reliability analysis of the safety levels of the criteria slabs, have been .... was also noted [2] that if the risk level or β < 3.1), the ... reliability analysis. A study [6] has shown that all geometric variables, ..... Germany, 1988. 12. Hasofer, A. M and ...
Component reliability for electronic systems
Bajenescu, Titu-Marius I
2010-01-01
The main reason for the premature breakdown of today's electronic products (computers, cars, tools, appliances, etc.) is the failure of the components used to build these products. Today professionals are looking for effective ways to minimize the degradation of electronic components to help ensure longer-lasting, more technically sound products and systems. This practical book offers engineers specific guidance on how to design more reliable components and build more reliable electronic systems. Professionals learn how to optimize a virtual component prototype, accurately monitor product reliability during the entire production process, and add the burn-in and selection procedures that are the most appropriate for the intended applications. Moreover, the book helps system designers ensure that all components are correctly applied, margins are adequate, wear-out failure modes are prevented during the expected duration of life, and system interfaces cannot lead to failure.
International Nuclear Information System (INIS)
Tang, M.X.; Dharmavasan, S.; Peers, S.M.C.
1994-01-01
The structural integrity of fixed offshore platforms is ensured by periodic inspections. In the past, decisions made as to when, where and how to inspect have been made by engineers using rules-of-thumb and general planning heuristics. It is now hoped that more rational inspection and maintenance scheduling may be carried out by applying recently developed techniques based on structural reliability methods. However, one of the problems associated with a theoretical approach is that it is not always possible to incorporate all the constraints that are present in a practical situation. These constraints modify the decisions made for analysis data input and the interpretation of the analysis results. Knowledge based systems provide a mean of encapsulating several different forms of information and knowledge within a computer system and hence can overcome this problem. In this paper, a prototype system being developed for integrating reliability based analysis with other constraints for inspection scheduling will be described. In addition, the scheduling model and the algorithms to carry out the scheduling will be explained. Furthermore, implementation details are also given
International Nuclear Information System (INIS)
Baraldi, Piero; Podofillini, Luca; Mkrtchyan, Lusine; Zio, Enrico; Dang, Vinh N.
2015-01-01
The use of expert systems can be helpful to improve the transparency and repeatability of assessments in areas of risk analysis with limited data available. In this field, human reliability analysis (HRA) is no exception, and, in particular, dependence analysis is an HRA task strongly based on analyst judgement. The analysis of dependence among Human Failure Events refers to the assessment of the effect of an earlier human failure on the probability of the subsequent ones. This paper analyses and compares two expert systems, based on Bayesian Belief Networks and Fuzzy Logic (a Fuzzy Expert System, FES), respectively. The comparison shows that a BBN approach should be preferred in all the cases characterized by quantifiable uncertainty in the input (i.e. when probability distributions can be assigned to describe the input parameters uncertainty), since it provides a satisfactory representation of the uncertainty and its output is directly interpretable for use within PSA. On the other hand, in cases characterized by very limited knowledge, an analyst may feel constrained by the probabilistic framework, which requires assigning probability distributions for describing uncertainty. In these cases, the FES seems to lead to a more transparent representation of the input and output uncertainty. - Highlights: • We analyse treatment of uncertainty in two expert systems. • We compare a Bayesian Belief Network (BBN) and a Fuzzy Expert System (FES). • We focus on the input assessment, inference engines and output assessment. • We focus on an application problem of interest for human reliability analysis. • We emphasize the application rather than math to reach non-BBN or FES specialists
Reliability analysis techniques for the design engineer
International Nuclear Information System (INIS)
Corran, E.R.; Witt, H.H.
1980-01-01
A fault tree analysis package is described that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage, and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and projects delays. The package operates interactively allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis system data can be derived automatically from a generic data bank. As the analysis procedes improved estimates of critical failure rates and test and maintenance schedules can be inserted. The computations are standard, - identification of minimal cut-sets, estimation of reliability parameters, and ranking of the effect of the individual component failure modes and system failure modes on these parameters. The user can vary the fault trees and data on-line, and print selected data for preferred systems in a form suitable for inclusion in safety reports. A case history is given - that of HIFAR containment isolation system. (author)
Toward formal analysis of ultra-reliable computers: A total systems approach
International Nuclear Information System (INIS)
Chisholm, G.H.; Kljaich, J.; Smith, B.T.; Wojcik, A.S.
1986-01-01
This paper describes the application of modeling and analysis techniques to software that is designed to execute on four channel version of the the Charles Stark Draper Laboratory (CSDL) Fault-Tolerant Processor, referred to as the Draper FTP. The software performs sensor validation of four independent measures (singlas) from the primary pumps of the Experimental Breeder Reactor-II operated by Argonne National Laboratory-West, and from the validated signals formulates a flow trip signal for the reactor safety system. 11 refs., 4 figs
Bayesian Reliability Analysis of Non-Stationarity in Multi-agent Systems
Directory of Open Access Journals (Sweden)
TONT Gabriela
2013-05-01
Full Text Available The Bayesian methods provide information about the meaningful parameters in a statistical analysis obtained by combining the prior and sampling distributions to form the posterior distribution of theparameters. The desired inferences are obtained from this joint posterior. An estimation strategy for hierarchical models, where the resulting joint distribution of the associated model parameters cannotbe evaluated analytically, is to use sampling algorithms, known as Markov Chain Monte Carlo (MCMC methods, from which approximate solutions can be obtained. Both serial and parallel configurations of subcomponents are permitted. The capability of time-dependent method to describe a multi-state system is based on a case study, assessingthe operatial situation of studied system. The rationality and validity of the presented model are demonstrated via a case of study. The effect of randomness of the structural parameters is alsoexamined.
Proposal of a concept and reliability analysis for a fusion plant magnet protection system
International Nuclear Information System (INIS)
Schnauder, H.; Pamfilie, E.
1993-05-01
The unavailability for the current switch down in case of a demand in the magnet coils of a fusion demonstration plant must be decreased by a few orders of magnitude as compared to the one of experimental facilities. The safety requirements to prevent initiation of event sequences which might lead to the release of radioactivity and energy by the plant must be fulfilled with the same standards as applied in a normally applicable plant. On the basis of this proven technology a general usable magnet protection system will be proposed, which achieves some considerable improvements in the failure detectability as compared to the conventional protection systems. It will be demonstrated by fault tree analysis that the principal demands on safety can be satisfied by that approach. The improvements are achieved by the use of an additional microprocessor supported system for failure detection without being used for initiation of any safety related actions. An influence on a safety action by the additional system therefore is excluded. (orig.) [de
Reliability analysis techniques in power plant design
International Nuclear Information System (INIS)
Chang, N.E.
1981-01-01
An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)
Gharouni-Nik, M.; Naeimi, M.; Ahadi, S.; Alimoradi, Z.
2014-01-01
In order to determine the overall safety of a tunnel support lining, a reliability-based approach is presented in this paper. Support elements in jointed rock tunnels are provided to control the ground movement caused by stress redistribution during the tunnel drive. Main support elements contribute
Use of F.M.E.A. for reliability analysis of safety systems in nuclear power plants
International Nuclear Information System (INIS)
Barbet, J.F.; Llory, M.; Villemeur, A.
1982-01-01
In the framework of the French nuclear power plant program, reliability studies of safety systems have been carried out at the Electricite de France since 1975. The main results of the studies are examined; about the methodological aspects it appears useful to develop an inductive approach such as the Failure Modes and Effects Analysis (F.M.E.A.). The method is described with its advantages and limitations; the possibilities of use of F.M.E.A. to solve specific safety problems are investigated. To conclude, the future trends of research and development in this field at Electricite de France are pointed out [fr
Cushion, Christopher; Harvey, Stephen; Muir, Bob; Nelson, Lee
2012-01-01
We outline the evolution of a computerised systematic observation tool and describe the process for establishing the validity and reliability of this new instrument. The Coach Analysis and Interventions System (CAIS) has 23 primary behaviours related to physical behaviour, feedback/reinforcement, instruction, verbal/non-verbal, questioning and management. The instrument also analyses secondary coach behaviour related to performance states, recipient, timing, content and questioning/silence. The CAIS is a multi-dimensional and multi-level mechanism able to provide detailed and contextualised data about specific coaching behaviours occurring in complex and nuanced coaching interventions and environments that can be applied to both practice sessions and competition.
Reliability analysis techniques for the design engineer
International Nuclear Information System (INIS)
Corran, E.R.; Witt, H.H.
1982-01-01
This paper describes a fault tree analysis package that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and project delays. The package operates interactively, allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis, system data can be derived automatically from a generic data bank. As the analysis proceeds, improved estimates of critical failure rates and test and maintenance schedules can be inserted. The technique is applied to the reliability analysis of the recently upgraded HIFAR Containment Isolation System. (author)
Reliability analysis of digital radiography systems in the testing of real material defects
International Nuclear Information System (INIS)
Kanzler, Daniel
2016-01-01
-POD cannot be used due to the small amount of available data. After the smoothing, the data will be used for an advanced POD method. The method will be verified by simulated data, before applying it on real data. 2. Even after introducing a new method - to be able to include real defects - the amount of real defect data may not be sufficient for a statistical evaluation. Therefore, it is necessary to use also artificial defects. However, the artificial defects may lead to an overestimation of the ndt system. To combine the different types of defects a weighted combination will be introduced. This approach helps to acknowledge the importance as well as the costs and the work done for the real defects, and leads to a useful estimation of the POD for the system. The investigation was carried out on an example of radiographic testing system for an electron-beam weld. The weld is a critical part of the copper canister for the deposit of spent nuclear fuel. Data were measured and evaluated at Posiva Oy, the company responsible for the spent nuclear fuel disposal in Finland. The POD analysis is an important element of the risk assessment for the final deposit system.
International Nuclear Information System (INIS)
Mo, Hua-Dong; Li, Yan-Fu; Zio, Enrico
2016-01-01
Highlights: • A system-of-systems framework is proposed for reliability analysis of DG system. • The impact of degraded communication networks is included and quantified. • Various uncertainties and contingencies in the DG system are considered. • A Monte Carlo simulation-optimal power flow computational framework is developed. • The results of the application study show the power of the proposed framework. - Abstract: Distributed generation (DG) systems install communication networks for managing real-time energy imbalance. Different from previous research, which typically assumes perfect communication networks, this work aims to quantitatively account for the impact of degraded communication networks on DG systems performance. The degraded behavior of communication networks is modeled by stochastic continuous time transmission delays and packet dropouts. On the DG systems side, we consider the inherent uncertainties of renewable energy sources, loads and energy prices. We develop a Monte Carlo simulation-optimal power flow (MCS-OPF) computational framework that is capable of generating consecutive time-dependent operating scenarios of the integrated system. Quantitative analysis is carried out to measure the impact of communication networks degradation onto the DG systems. For illustration, the framework is applied to a modified IEEE 13 nodes test feeder. The results demonstrate that the degraded communication networks can significantly deteriorate the performance of the integrated system. A grey differential model-based prediction method for reconstructing missing data is effective in mitigating the influence of the degraded communication networks.
International Nuclear Information System (INIS)
Sinha, Purnendu
2011-01-01
Next generation drive-by-wire automotive systems enabling autonomous driving will build on the fail-operational capabilities of electronics, control and software (ECS) architectural solutions. Developing such architectural designs that would meet dependability requirements and satisfy other system constraints is a challenging task and will possibly lead to a paradigm shift in automotive ECS architecture design and development activities. This aspect is becoming quite relevant while designing battery-driven electric vehicles with integrated in-wheel drive-train and chassis subsystems. In such highly integrated dependable systems, many of the primary features and functions are attributed to the highest safety critical ratings. Brake-by-wire is one such system that interfaces with active safety features built into an automobile, and which in turn is expected to provide fail-operational capabilities. In this paper, building up on the basic concepts of fail-silent and fail-operational systems design we propose a system-architecture for a brake-by-wire system with fail-operational capabilities. The design choices are supported with proper rationale and design trade-offs. Safety and reliability analysis of the proposed system architecture is performed as per the ISO 26262 standard for functional safety of electrical/electronic systems in road vehicles.
Dependent systems reliability estimation by structural reliability approach
DEFF Research Database (Denmark)
Kostandyan, Erik; Sørensen, John Dalsgaard
2014-01-01
Estimation of system reliability by classical system reliability methods generally assumes that the components are statistically independent, thus limiting its applicability in many practical situations. A method is proposed for estimation of the system reliability with dependent components, where...... the leading failure mechanism(s) is described by physics of failure model(s). The proposed method is based on structural reliability techniques and accounts for both statistical and failure effect correlations. It is assumed that failure of any component is due to increasing damage (fatigue phenomena...... identification. Application of the proposed method can be found in many real world systems....
International Nuclear Information System (INIS)
Borsky, M.; Kreim, R.; Stanicek, J.
1997-01-01
General safety criteria are specified, and nuclear power plant equipment is classified into systems either important or unimportant for nuclear safety. The former class is subdivided into safety systems and safety related systems. The safety requirements concern earthquakes, storms, fires, floods, man-induced events, and equipment failures. The actual state of systems important for safety is described. (M.D.)
Swimming pool reactor reliability and safety analysis
International Nuclear Information System (INIS)
Li Zhaohuan
1997-01-01
A reliability and safety analysis of Swimming Pool Reactor in China Institute of Atomic Energy is done by use of event/fault tree technique. The paper briefly describes the analysis model, analysis code and main results. Meanwhile it also describes the impact of unassigned operation status on safety, the estimation of effectiveness of defense tactics in maintenance against common cause failure, the effectiveness of recovering actions on the system reliability, the comparison of occurrence frequencies of the core damage by use of generic and specific data
Energy Technology Data Exchange (ETDEWEB)
Oxstrand, J. (Vattenfall Ringhals AB, Stockholm (Sweden))
2010-12-15
The main goal of this Nordic Nuclear Safety Research Council (NKS) project is to produce guidance for how to use human reliability analysis (HRA) to strengthen overall safety. The project consists of two substudies: The Nordic Point of View - A User Needs Analysis, and The American Point of View - Insights of How the US Nuclear Industry Works with HRA. The purpose of the Nordic Point of View study was a user needs analysis that aimed to survey current HRA practices in the Nordic nuclear industry, with the main focus being to connect HRA to system design. In this study, 26 Nordic (Swedish and Finnish) nuclear power plant specialists with research, practitioner, and regulatory expertise in HRA, PRA, HSI, and human performance were interviewed. This study was completed in 2009. This study concludes that HRA is an important tool when dealing with human factors in control room design or modernizations. The Nordic Point of View study showed areas where the use of HRA in the Nordic nuclear industry could be improved. To gain more knowledge about how these improvements could be made, and what improvements to focus on, the second study was conducted. The second study is focused on the American nuclear industry, which has many more years of experience with risk assessment and human reliability than the Nordic nuclear industry. Interviews were conducted to collect information to help the author understand the similarities and differences between the American and the Nordic nuclear industries, and to find data regarding the findings from the first study. The main focus of this report is to identify potential HRA improvements based on the data collected in the American Point of View survey. (Author)
International Nuclear Information System (INIS)
Oxstrand, J.
2010-12-01
The main goal of this Nordic Nuclear Safety Research Council (NKS) project is to produce guidance for how to use human reliability analysis (HRA) to strengthen overall safety. The project consists of two substudies: The Nordic Point of View - A User Needs Analysis, and The American Point of View - Insights of How the US Nuclear Industry Works with HRA. The purpose of the Nordic Point of View study was a user needs analysis that aimed to survey current HRA practices in the Nordic nuclear industry, with the main focus being to connect HRA to system design. In this study, 26 Nordic (Swedish and Finnish) nuclear power plant specialists with research, practitioner, and regulatory expertise in HRA, PRA, HSI, and human performance were interviewed. This study was completed in 2009. This study concludes that HRA is an important tool when dealing with human factors in control room design or modernizations. The Nordic Point of View study showed areas where the use of HRA in the Nordic nuclear industry could be improved. To gain more knowledge about how these improvements could be made, and what improvements to focus on, the second study was conducted. The second study is focused on the American nuclear industry, which has many more years of experience with risk assessment and human reliability than the Nordic nuclear industry. Interviews were conducted to collect information to help the author understand the similarities and differences between the American and the Nordic nuclear industries, and to find data regarding the findings from the first study. The main focus of this report is to identify potential HRA improvements based on the data collected in the American Point of View survey. (Author)
A reavaluation of the reliability analysis of the low pressure injection system for Angra-1
International Nuclear Information System (INIS)
Oliveira, L.F.S. de; Fleming, P.V.; Frutuoso e Melo, P.F.F.; Tayt-Sohn, L.C.
1983-01-01
The emergency core cooling system of Angra 1 is analysed aiming at the low pressure injection systems, using the fault tree technique. All the failure mode of the components are considered for this analyse. (author) [pt
Directory of Open Access Journals (Sweden)
Lei Wang
2014-01-01
Full Text Available A dynamic model of gear transmission system of wind turbine is built with consideration of randomness of loads and parameters. The dynamic response of the system is obtained using the theory of random sampling and the Runge-Kutta method. According to rain flow counting principle, the dynamic meshing forces are converted into a series of luffing fatigue load spectra. The amplitude and frequency of the equivalent stress are obtained using equivalent method of Geber quadratic curve. Moreover, the dynamic reliability model of components and system is built according to the theory of probability of cumulative fatigue damage. The system reliability with the random variation of parameters is calculated and the influence of random parameters on dynamic reliability of components is analyzed. In the end, the results of the proposed method are compared with that of Monte Carlo method. This paper can be instrumental in the design of wind turbine gear transmission system with more advantageous dynamic reliability.
Reliability Analysis of Large Commercial Vessel Engine Room Automation Systems. Volume 1. Results
1982-11-01
analyzing the engine room automiations systems on two steam vessels and one diesel vessel, conducting a criticality evaluation, pre- paring...of automated engine room systems,° the effect of *. maintenance was also to be considered, as was the human inter- face and backup. Besides being...designed to replace the human element, the systems periorm more efficiently than the human watchstander. But as with any system, there is no such thing as
International Nuclear Information System (INIS)
Mikadze, I.; Namchevadze, T.; Gobiani, I.
2007-01-01
There is proposed a generalized mathematical model of the queuing system with time redundancy without preliminary checking of the queuing system at transition from the free state into the engaged one. The model accounts for various failures of the queuing system detected by continuous instrument control, periodic control, control during recovery and the failures revealed immediately after accumulation of a certain number of failures. The generating function of queue length in both stationary and nonstationary modes was determined. (author)
PWR system reliability improvement activities
International Nuclear Information System (INIS)
Yoshikawa, Yuichiro
1985-01-01
In Japan lacking in energy resources, it is our basic energy policy to accelerate the development program of nuclear power, thereby reducing our dependence. As referred to in the foregoing, every effort has been exerted on our part to improve the PWR system reliability by dint of the so-called 'HOMEMADE' TQC activities, which is our brain-child as a result of applying to the energy industry the quality control philosophy developed in the field of manufacturing industry
Reliability analysis of repairable multi-state system with common bus performance sharing
International Nuclear Information System (INIS)
Yu, Huan; Yang, Jun; Mo, Huadong
2014-01-01
In this paper, an instantaneous availability model for repairable multi-state system (MSS) with common bus performance sharing is proposed. The repairable MSS consists of some multi-state units and a common bus performance redistribution system. Each unit in the system has several performance levels and must satisfy its individual random demand. A unit can transmit the surplus performance to other units in real time through the common bus performance redistribution system, if it has a performance that exceeds its demand. The entire system fails if the demand of any unit is not satisfied. A new method based on the combination of the stochastic process method and the universal generating function technique is suggested to evaluate the instantaneous availability and the mean instantaneous performance deficiency of the proposed repairable MSS. Two examples are given for applications in the end
Culture Representation in Human Reliability Analysis
Energy Technology Data Exchange (ETDEWEB)
David Gertman; Julie Marble; Steven Novack
2006-12-01
Understanding human-system response is critical to being able to plan and predict mission success in the modern battlespace. Commonly, human reliability analysis has been used to predict failures of human performance in complex, critical systems. However, most human reliability methods fail to take culture into account. This paper takes an easily understood state of the art human reliability analysis method and extends that method to account for the influence of culture, including acceptance of new technology, upon performance. The cultural parameters used to modify the human reliability analysis were determined from two standard industry approaches to cultural assessment: Hofstede’s (1991) cultural factors and Davis’ (1989) technology acceptance model (TAM). The result is called the Culture Adjustment Method (CAM). An example is presented that (1) reviews human reliability assessment with and without cultural attributes for a Supervisory Control and Data Acquisition (SCADA) system attack, (2) demonstrates how country specific information can be used to increase the realism of HRA modeling, and (3) discusses the differences in human error probability estimates arising from cultural differences.
Validation study on reliability analysis of main safety system in Nuclear Power Plant
Energy Technology Data Exchange (ETDEWEB)
Cho, Nam Jin; Cho, Chang Keun; Kim, Yong Hui; Kim, Tae Hyeong; Hong, Seo Kee; Park, Keon Woo; Park, Chang Jea [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Cheong, Woo Sik [Institute for Advanced Engineering, Yongin (Korea, Republic of); Park, Moon Kyu [KEPRI, Taejon (Korea, Republic of)
1993-12-15
The scope and contents of this validation study are to review the design changes of the four main safety systems in Wolsong 2/3/4 Nuclear Power Plants, to review the consideration of the above design changes in the AECL reports, the structure of fault trees, and the data base used in the quantification of the fault trees, to quantify the unavailabilities of main safety systems and check them if they meet the requirements, and to recommend desirable design changes in the emergency core cooling system to reduce the unavailability.
Reliability evaluation of a natural circulation system
International Nuclear Information System (INIS)
Jafari, Jalil; D'Auria, Francesco; Kazeminejad, Hossein; Davilu, Hadi
2003-01-01
This paper discusses a reliability study performed with reference to a passive thermohydraulic natural circulation (NC) system, named TTL-1. A methodology based on probabilistic techniques has been applied with the main purpose to optimize the system design. The obtained results have been adopted to estimate the thermal-hydraulic reliability (TH-R) of the same system. A total of 29 relevant parameters (including nominal values and plausible ranges of variations) affecting the design and the NC performance of the TTL-1 loop are identified and a probability of occurrence is assigned for each value based on expert judgment. Following procedures established for the uncertainty evaluation of thermal-hydraulic system codes results, 137 system configurations have been selected and each configuration has been analyzed via the Relap5 best-estimate code. The reference system configuration and the failure criteria derived from the 'mission' of the passive system are adopted for the evaluation of the system TH-R. Four different definitions of a less-than-unity 'reliability-values' (where unity represents the maximum achievable reliability) are proposed for the performance of the selected passive system. This is normally considered fully reliable, i.e. reliability-value equal one, in typical Probabilistic Safety Assessment (PSA) applications in nuclear reactor safety. The two 'point' TH-R values for the considered NC system were found equal to 0.70 and 0.85, i.e. values comparable with the reliability of a pump installed in an 'equivalent' forced circulation (active) system having the same 'mission'. The design optimization study was completed by a regression analysis addressing the output of the 137 calculations: heat losses, undetected leakage, loop length, riser diameter, and equivalent diameter of the test section have been found as the most important parameters bringing to the optimal system design and affecting the TH-R. As added values for this work, the comparison has
Reliability Analysis of Elasto-Plastic Structures
DEFF Research Database (Denmark)
Thoft-Christensen, Palle; Sørensen, John Dalsgaard
1984-01-01
. Failure of this type of system is defined either as formation of a mechanism or by failure of a prescribed number of elements. In the first case failure is independent of the order in which the elements fail, but this is not so by the second definition. The reliability analysis consists of two parts...... are described and the two definitions of failure can be used by the first formulation, but only the failure definition based on formation of a mechanism by the second formulation. The second part of the reliability analysis is an estimate of the failure probability for the structure on the basis...
Reliability Analysis of Tubular Joints in Offshore Structures
DEFF Research Database (Denmark)
Thoft-Christensen, Palle; Sørensen, John Dalsgaard
1987-01-01
Reliability analysis of single tubular joints and offshore platforms with tubular joints is" presented. The failure modes considered are yielding, punching, buckling and fatigue failure. Element reliability as well as systems reliability approaches are used and illustrated by several examples....... Finally, optimal design of tubular.joints with reliability constraints is discussed and illustrated by an example....
Directory of Open Access Journals (Sweden)
V. S.S. Yadavalli
2002-09-01
Full Text Available Bayesian estimation is presented for the stationary rate of disappointments, D∞, for two models (with different specifications of intermittently used systems. The random variables in the system are considered to be independently exponentially distributed. Jeffreys’ prior is assumed for the unknown parameters in the system. Inference about D∞ is being restrained in both models by the complex and non-linear definition of D∞. Monte Carlo simulation is used to derive the posterior distribution of D∞ and subsequently the highest posterior density (HPD intervals. A numerical example where Bayes estimates and the HPD intervals are determined illustrates these results. This illustration is extended to determine the frequentistical properties of this Bayes procedure, by calculating covering proportions for each of these HPD intervals, assuming fixed values for the parameters.
MARAS - a computer code for semi-Markov reliability analysis of alternating systems
International Nuclear Information System (INIS)
Lee, Kwang Nam; Cho, Nam Zin
1989-01-01
It is now recognized that current testing and maintenance requirements invoke too many inadvertent reactor trips and that operating staff must devote significant amount of time and effort to comply with the requirements. With this recognition, the value and the impact of the proposed changes in the allowed outage time (AOT) and surveillance test interval(STI) are evaluated for the alternating system. Because of the testing and AOT requirements, the alternating system exhibits semi-Markovian characteristics which change states in accordance with a Markov chain but take a nonexponentially distributed amount of time between changes. It is observed from the results that there is an optimal point that gives lowest core damage probability and that the optimal point depends on input parameters. With these results, we can conclude that the methodology developed in this study can be applied to the existing alternating systems to evaluate accurately the various alternatives in the technical specifications
International Nuclear Information System (INIS)
Manchev, B.; Marinova, B.; Nenkova, B.
2001-01-01
The method described on this report provides a set of simple, easily understood 'approximate' models applicable to a large class of system architectures. Constructing a Markov model of each redundant subsystem and its replacement after that by a pseudo-component develops the approximation models. Of equal importance, the models can be easily understood even of non-experts, including managers, high-level decision-makers and unsophisticated consumers. A necessary requirement for their application is the systems to be repairable and the mean time to repair to be much smaller than the mean time to failure. This ia a case most often met in the real practice. Results of the 'approximate' model application on a technological system of Kozloduy NPP are also presented. The results obtained can be compared quite favorably with the results obtained by using SAPHIRE software
International Nuclear Information System (INIS)
VanHorn, R.L.; Wolfram, L.M.; Fowler, R.D.; Beck, S.T.; Smith, C.L.
1995-04-01
The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) suite of programs can be used to organize and standardize in an electronic format information from probabilistic risk assessments or individual plant examinations. The Models and Results Database (MAR-D) program of the SAPHIRE suite serves as the repository for probabilistic risk assessment and individual plant examination data and information. This report demonstrates by examples the common electronic and manual methods used to load these types of data. It is not a stand alone document but references documents that contribute information relative to the data loading process. This document provides a more detailed discussion and instructions for using SAPHIRE 5.0 only when enough information on a specific topic is not provided by another available source
Directory of Open Access Journals (Sweden)
Peng Wang
2018-01-01
Full Text Available In recent years, the integrated modular avionics (IMA concept has been introduced to replace the traditional federated avionics. Different avionics functions are hosted in a shared IMA platform, and IMA adopts partition technologies to provide a logical isolation among different functions. The IMA architecture can provide more sophisticated and powerful avionics functionality; meanwhile, the failure propagation patterns in IMA are more complex. The feature of resource sharing introduces some unintended interconnections among different functions, which makes the failure propagation modes more complex. Therefore, this paper proposes an architecture analysis and design language- (AADL- based method to establish the reliability model of IMA platform. The single software and hardware error behavior in IMA system is modeled. The corresponding AADL error model of failure propagation among components, between software and hardware, is given. Finally, the display function of IMA platform is taken as an example to illustrate the effectiveness of the proposed method.
Kepler, Christopher K; Vaccaro, Alexander R; Koerner, John D; Dvorak, Marcel F; Kandziora, Frank; Rajasekaran, Shanmuganathan; Aarabi, Bizhan; Vialle, Luiz R; Fehlings, Michael G; Schroeder, Gregory D; Reinhold, Maximilian; Schnake, Klaus John; Bellabarba, Carlo; Cumhur Öner, F
2016-04-01
The aims of this study were (1) to demonstrate the AOSpine thoracolumbar spine injury classification system can be reliably applied by an international group of surgeons and (2) to delineate those injury types which are difficult for spine surgeons to classify reliably. A previously described classification system of thoracolumbar injuries which consists of a morphologic classification of the fracture, a grading system for the neurologic status and relevant patient-specific modifiers was applied to 25 cases by 100 spinal surgeons from across the world twice independently, in grading sessions 1 month apart. The results were analyzed for classification reliability using the Kappa coefficient (κ). The overall Kappa coefficient for all cases was 0.56, which represents moderate reliability. Kappa values describing interobserver agreement were 0.80 for type A injuries, 0.68 for type B injuries and 0.72 for type C injuries, all representing substantial reliability. The lowest level of agreement for specific subtypes was for fracture subtype A4 (Kappa = 0.19). Intraobserver analysis demonstrated overall average Kappa statistic for subtype grading of 0.68 also representing substantial reproducibility. In a worldwide sample of spinal surgeons without previous exposure to the recently described AOSpine Thoracolumbar Spine Injury Classification System, we demonstrated moderate interobserver and substantial intraobserver reliability. These results suggest that most spine surgeons can reliably apply this system to spine trauma patients as or more reliably than previously described systems.
Energy Technology Data Exchange (ETDEWEB)
Emmanuel Ohene Opare, Jr.; Charles V. Park
2011-06-01
The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is authored by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype fourth generation nuclear reactor to meet the needs of the 21st Century. A section in this document proposes that the NGNP will provide heat for process heat applications. As with all large projects developing and deploying new technologies, the NGNP is expected to meet high performance and availability targets relative to current state of the art systems and technology. One requirement for the NGNP is to provide heat for the generation of hydrogen for large scale productions and this process heat application is required to be at least 90% or more available relative to other technologies currently on the market. To reach this goal, a RAM Roadmap was developed highlighting the actions to be taken to ensure that various milestones in system development and maturation concurrently meet required availability requirements. Integral to the RAM Roadmap was the use of a RAM analytical/simulation tool which was used to estimate the availability of the system when deployed based on current design configuration and the maturation level of the system.
Analysis of balancing requirements in future sustainable and reliable power systems
Frunt, J.
2011-01-01
In today's societies, electricity is considered essential for welfare and economic growth. Due to political and climatological reasons as well as the depletion of fossil fuels, there is a tendency to use more renewable energy sources. For electricity delivery systems, this means that ever more
International Nuclear Information System (INIS)
Paula, H.M.
1984-01-01
The work presented here is of direct use in probabilistic risk assessment (PRA) and is of value to utilities as well as the Nuclear Regulatory Commission (NRC). Specifically, this report presents a methodology and a computer program to calculate the expected number of occurrences for each accident sequence in an event tree. The methodology evaluates the time-dependent (instantaneous) and the average behavior of the accident sequence. The methodology accounts for standby safety system and component failures that occur (a) before they are demanded, (b) upon demand, and (c) during the mission (system operation). With respect to failures that occur during the mission, this methodology is unique in the sense that it models components that can be repaired during the mission. The expected number of system failures during the mission provides an upper bound for the probability of a system failure to run - the mission unreliability. The basic event modeling includes components that are continuously monitored, periodically tested, and those that are not tested or are otherwise nonrepairable. The computer program ASA allows practical applications of the method developed. This work represents a required extension of the presently available methodology and allows a more realistic PRA of nuclear power plants
Statistical analysis of the reliability of complex systems for maintenance planning
DEFF Research Database (Denmark)
Pedersen, Thomas Espelund
2003-01-01
planning. This overview is structured to highlight the process of choosing a proper model for a given data set, focusing on different measures of time and the data requirements for the different models. The second part of the report describes the analysis of two data sets from the Danish Defence. The data...... sets are analyzed using a graphical method, Nelson-Aalen plots, as well as multiplicative intensities models with proportional intensities regression, which is a parametric model....
A reliability analysis tool for SpaceWire network
Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou
2017-04-01
A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.
Reliability analysis of the containment spray system of Angra-1 : the injection phase
International Nuclear Information System (INIS)
Gibelli, S.M.O.; Oliveira, L.F.S. de.
1981-12-01
The system studied is projected to perform two basic functions : to reduce the pressure and temperature in the containment after a LOCA (loss of coolant accident), to break the main steam line or the main feed line in the containment after a LOCA (loss of coolant accident), to break the main steam line or the main feed line in the containment and to remove the fission products, mainly the iodine of the containment atmosphere. The spray system was analyzed concerning the probability of non-acomplishment of both functions at the same time; therefore the failure of the components of the chemical aditions subsystem are included in the failure tree shown here. (E.G.) [pt
Semi-Markov reliability analysis of alternating systems in a nuclear power plant
International Nuclear Information System (INIS)
Lee, K.N.; Cho, N.Z.
1992-01-01
Nuclear power plant operations that follow current testing and maintenance requirements sometimes result in inadvertent reactor trips, and operating staffs devote a significant amount of time and effort in complying with these requirements. Significant benefits could result from changes in current technical specifications. In this paper the benefits and impacts of changes in allowed outage times (AOTs) and surveillance test intervals (STIs) are evaluated for an alternative system that consists of multiple trains and whose operation is alternated train by train. because of testing and AOT requirements, the alternating system exhibits semi-Markovian characteristics that change states in accordance with a Markov process but take an arbitrarily distributed amount of time between changes. The state probabilities are quantified by memorizing the necessary number of past state probabilities. Two measures of plant performance, namely, core damage probability and plant unavailability (reactor downtime), were calculated for the evaluation of AOT and STI. Results indicate that there is an optimal point that gives the lowest core damage probability and that the methodology developed in this study can be applied to existing alternating systems to evaluate accurately the various alternatives in the technical specifications
System evaluations by means of reliability analyses
International Nuclear Information System (INIS)
Breiling, G.
1976-01-01
The objective of this study is to show which analysis requirements are associated with the claim that a reliability analysis, as practised at present, can provide a quantitative risk assessment in absolute terms. The question arises of whether this claim can be substantiated without direct access to the specialist technical departments of a manufacturer and to the multifarious detail information available in these departments. The individual problems arising in the course of such an analysis are discussed on the example of a reliability analysis of a core flooding system. The questions discussed relate to analysis organisation, sequence analysis, fault-tree analysis, and the treatment of operational processes superimposed on the failure and repair processes. (orig.) [de
An Analysis of Operational Suitability for Test and Evaluation of Highly Reliable Systems
1994-03-04
Exposition," Journal of the American Statistical A iation-59: 353-375 (June 1964). 17. SYS 229, Test and Evaluation Management Coursebook , School of Systems...in hours, 0 is 2-5 the desired MTBCF in hours, R is the number of critical failures, and a is the P[type-I error] of the X2 statistic with 2*R+2...design of experiments (DOE) tables and the use of Bayesian statistics to increase the confidence level of the test results that will be obtained from
Guidelines for reliability analysis of digital systems in PSA context - Phase 2 Status report
International Nuclear Information System (INIS)
Authen, S.; Gustafsson, J.; Holmberg, J.-E.
2012-02-01
The OECD/NEA CSNI Working Group on Risk Assessment (WGRisk) has set up a task group called DIGREL to develop a taxonomy of failure modes of digital components for the purposes of probabilistic safety assessment (PSA). A parallel Nordic activity carried out a pre-study where a comparison of Nordic experiences and a literature review were performed. The study showed a wide range of approaches and solutions to the challenges given by digital I and C. In 2011, a proposal for the failure modes taxonomy was defined. This is based on a set of requirements agreed on the purpose of the taxonomy. The following levels of details can be distinguished from the hardware point of view: (1) the entire system, (2) a division, (3) processing units (and cabinets), (4) modules, i.e. subcomponents of processing units and (5) generic components, i.e. subcomponents of modules. Module level seems to be the most appropriate from the PSA modelling point of view. The software failure modes taxonomy is still an open issue. An existing simplified PSA model has been complemented with fault tree models for a four-redundant distributed protection system in order to study and demonstrate the effect of design features and modelling approaches. The example shows that even rather simple I and C design leads to rather complex model despite of the fact that many things have been simplified and only a few protection signals are considered. One lesson from the example is that the Alpha factor model should be used to model common cause failures instead of the Beta factor model. Two options were developed to the comparison of different fail-safe principles. The role of detectable and undetectable failure modes with respect to the failed versus spurious actuations can be clearly seen in the results, showing the importance to model these features in PSA. (Author)
Guidelines for reliability analysis of digital systems in PSA context - Phase 2 Status report
Energy Technology Data Exchange (ETDEWEB)
Authen, S. (Risk Pilot AB, Stockholm (Sweden)); Gustafsson, J. (Royal Institute of Technology (Sweden)); Holmberg, J.-E. (VTT Technical Research Centre of Finland (Finland))
2012-02-15
The OECD/NEA CSNI Working Group on Risk Assessment (WGRisk) has set up a task group called DIGREL to develop a taxonomy of failure modes of digital components for the purposes of probabilistic safety assessment (PSA). A parallel Nordic activity carried out a pre-study where a comparison of Nordic experiences and a literature review were performed. The study showed a wide range of approaches and solutions to the challenges given by digital I and C. In 2011, a proposal for the failure modes taxonomy was defined. This is based on a set of requirements agreed on the purpose of the taxonomy. The following levels of details can be distinguished from the hardware point of view: (1) the entire system, (2) a division, (3) processing units (and cabinets), (4) modules, i.e. subcomponents of processing units and (5) generic components, i.e. subcomponents of modules. Module level seems to be the most appropriate from the PSA modelling point of view. The software failure modes taxonomy is still an open issue. An existing simplified PSA model has been complemented with fault tree models for a four-redundant distributed protection system in order to study and demonstrate the effect of design features and modelling approaches. The example shows that even rather simple I and C design leads to rather complex model despite of the fact that many things have been simplified and only a few protection signals are considered. One lesson from the example is that the Alpha factor model should be used to model common cause failures instead of the Beta factor model. Two options were developed to the comparison of different fail-safe principles. The role of detectable and undetectable failure modes with respect to the failed versus spurious actuations can be clearly seen in the results, showing the importance to model these features in PSA. (Author)
Structural Reliability Analysis of Wind Turbines: A Review
Directory of Open Access Journals (Sweden)
Zhiyu Jiang
2017-12-01
Full Text Available The paper presents a detailed review of the state-of-the-art research activities on structural reliability analysis of wind turbines between the 1990s and 2017. We describe the reliability methods including the first- and second-order reliability methods and the simulation reliability methods and show the procedure for and application areas of structural reliability analysis of wind turbines. Further, we critically review the various structural reliability studies on rotor blades, bottom-fixed support structures, floating systems and mechanical and electrical components. Finally, future applications of structural reliability methods to wind turbine designs are discussed.
STARS software tool for analysis of reliability and safety
International Nuclear Information System (INIS)
Poucet, A.; Guagnini, E.
1989-01-01
This paper reports on the STARS (Software Tool for the Analysis of Reliability and Safety) project aims at developing an integrated set of Computer Aided Reliability Analysis tools for the various tasks involved in systems safety and reliability analysis including hazard identification, qualitative analysis, logic model construction and evaluation. The expert system technology offers the most promising perspective for developing a Computer Aided Reliability Analysis tool. Combined with graphics and analysis capabilities, it can provide a natural engineering oriented environment for computer assisted reliability and safety modelling and analysis. For hazard identification and fault tree construction, a frame/rule based expert system is used, in which the deductive (goal driven) reasoning and the heuristic, applied during manual fault tree construction, is modelled. Expert system can explain their reasoning so that the analyst can become aware of the why and the how results are being obtained. Hence, the learning aspect involved in manual reliability and safety analysis can be maintained and improved
CADRIGS--computer aided design reliability interactive graphics system
International Nuclear Information System (INIS)
Kwik, R.J.; Polizzi, L.M.; Sticco, S.; Gerrard, P.B.; Yeater, M.L.; Hockenbury, R.W.; Phillips, M.A.
1982-01-01
An integrated reliability analysis program combining graphic representation of fault trees, automated data base loadings and reference, and automated construction of reliability code input files was developed. The functional specifications for CADRIGS, the computer aided design reliability interactive graphics system, are presented. Previously developed fault tree segments used in auxiliary feedwater system safety analysis were constructed on CADRIGS and, when combined, yielded results identical to those resulting from manual input to the same reliability codes
System Reliability of Timber Structures
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Sørensen, John Dalsgaard
2010-01-01
elements, alternate load path(s) etc. in the structural design. In general these characteristics can have a positive influence on system reliability of a structure however, in Eurocodes ductility is only awarded for concrete and steel structures but not for timber structures. It is well......-know that structural systems can redistribute internal forces due to ductility of a connection, i.e. some additional loads can be carried by the structure. The same effect is also possible for reinforced concrete structures and structures of steel. However, for timber structures codes do not award that ductility......For reduction of the risk of collapse in the event of loss of structural element(s), a structural engineer may take necessary steps to design a collapse-resistant structure that is insensitive to accidental circumstances e.g. by incorporating characteristics like redundancy, ties, ductility, key...
Human Reliability Analysis: session summary
International Nuclear Information System (INIS)
Hall, R.E.
1985-01-01
The use of Human Reliability Analysis (HRA) to identify and resolve human factors issues has significantly increased over the past two years. Today, utilities, research institutions, consulting firms, and the regulatory agency have found a common application of HRA tools and Probabilistic Risk Assessment (PRA). The ''1985 IEEE Third Conference on Human Factors and Power Plants'' devoted three sessions to the discussion of these applications and a review of the insights so gained. This paper summarizes the three sessions and presents those common conclusions that were discussed during the meeting. The paper concludes that session participants supported the use of an adequately documented ''living PRA'' to address human factors issues in design and procedural changes, regulatory compliance, and training and that the techniques can produce cost effective qualitative results that are complementary to more classical human factors methods
Qualitative analysis in reliability and safety studies
International Nuclear Information System (INIS)
Worrell, R.B.; Burdick, G.R.
1976-01-01
The qualitative evaluation of system logic models is described as it pertains to assessing the reliability and safety characteristics of nuclear systems. Qualitative analysis of system logic models, i.e., models couched in an event (Boolean) algebra, is defined, and the advantages inherent in qualitative analysis are explained. Certain qualitative procedures that were developed as a part of fault-tree analysis are presented for illustration. Five fault-tree analysis computer-programs that contain a qualitative procedure for determining minimal cut sets are surveyed. For each program the minimal cut-set algorithm and limitations on its use are described. The recently developed common-cause analysis for studying the effect of common-causes of failure on system behavior is explained. This qualitative procedure does not require altering the fault tree, but does use minimal cut sets from the fault tree as part of its input. The method is applied using two different computer programs. 25 refs
Prime implicants in dynamic reliability analysis
International Nuclear Information System (INIS)
Tyrväinen, Tero
2016-01-01
This paper develops an improved definition of a prime implicant for the needs of dynamic reliability analysis. Reliability analyses often aim to identify minimal cut sets or prime implicants, which are minimal conditions that cause an undesired top event, such as a system's failure. Dynamic reliability analysis methods take the time-dependent behaviour of a system into account. This means that the state of a component can change in the analysed time frame and prime implicants can include the failure of a component at different time points. There can also be dynamic constraints on a component's behaviour. For example, a component can be non-repairable in the given time frame. If a non-repairable component needs to be failed at a certain time point to cause the top event, we consider that the condition that it is failed at the latest possible time point is minimal, and the condition in which it fails earlier non-minimal. The traditional definition of a prime implicant does not account for this type of time-related minimality. In this paper, a new definition is introduced and illustrated using a dynamic flowgraph methodology model. - Highlights: • A new definition of a prime implicant is developed for dynamic reliability analysis. • The new definition takes time-related minimality into account. • The new definition is needed in dynamic flowgraph methodology. • Results can be represented by a smaller number of prime implicants.
Gao, Zhongyang; Song, Hui; Ren, Fenggang; Li, Yuhuan; Wang, Dong; He, Xijing
2017-12-01
The aim of the present study was to evaluate the reliability of the Cartesian Optoelectronic Dynamic Anthropometer (CODA) motion system in measuring the cervical range of motion (ROM) and verify the construct validity of the CODA motion system. A total of 26 patients with cervical spondylosis and 22 patients with anterior cervical fusion were enrolled and the CODA motion analysis system was used to measure the three-dimensional cervical ROM. Intra- and inter-rater reliability was assessed by interclass correlation coefficients (ICCs), standard error of measurement (SEm), Limits of Agreements (LOA) and minimal detectable change (MDC). Independent samples t-tests were performed to examine the differences of cervical ROM between cervical spondylosis and anterior cervical fusion patients. The results revealed that in the cervical spondylosis group, the reliability was almost perfect (intra-rater reliability: ICC, 0.87-0.95; LOA, -12.86-13.70; SEm, 2.97-4.58; inter-rater reliability: ICC, 0.84-0.95; LOA, -13.09-13.48; SEm, 3.13-4.32). In the anterior cervical fusion group, the reliability was high (intra-rater reliability: ICC, 0.88-0.97; LOA, -10.65-11.08; SEm, 2.10-3.77; inter-rater reliability: ICC, 0.86-0.96; LOA, -10.91-13.66; SEm, 2.20-4.45). The cervical ROM in the cervical spondylosis group was significantly higher than that in the anterior cervical fusion group in all directions except for left rotation. In conclusion, the CODA motion analysis system is highly reliable in measuring cervical ROM and the construct validity was verified, as the system was sufficiently sensitive to distinguish between the cervical spondylosis and anterior cervical fusion groups based on their ROM.
Human reliability analysis of control room operators
Energy Technology Data Exchange (ETDEWEB)
Santos, Isaac J.A.L.; Carvalho, Paulo Victor R.; Grecco, Claudio H.S. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)
2005-07-01
Human reliability is the probability that a person correctly performs some system required action in a required time period and performs no extraneous action that can degrade the system Human reliability analysis (HRA) is the analysis, prediction and evaluation of work-oriented human performance using some indices as human error likelihood and probability of task accomplishment. Significant progress has been made in the HRA field during the last years, mainly in nuclear area. Some first-generation HRA methods were developed, as THERP (Technique for human error rate prediction). Now, an array of called second-generation methods are emerging as alternatives, for instance ATHEANA (A Technique for human event analysis). The ergonomics approach has as tool the ergonomic work analysis. It focus on the study of operator's activities in physical and mental form, considering at the same time the observed characteristics of operator and the elements of the work environment as they are presented to and perceived by the operators. The aim of this paper is to propose a methodology to analyze the human reliability of the operators of industrial plant control room, using a framework that includes the approach used by ATHEANA, THERP and the work ergonomics analysis. (author)
International Nuclear Information System (INIS)
Vesely, W.E.; Narum, R.E.
1997-01-01
1 - Description of problem or function: The PREP/KITT computer program package obtains system reliability information from a system fault tree. The PREP program finds the minimal cut sets and/or the minimal path sets of the system fault tree. (A minimal cut set is a smallest set of components such that if all the components are simultaneously failed the system is failed. A minimal path set is a smallest set of components such that if all of the components are simultaneously functioning the system is functioning.) The KITT programs determine reliability information for the components of each minimal cut or path set, for each minimal cut or path set, and for the system. Exact, time-dependent reliability information is determined for each component and for each minimal cut set or path set. For the system, reliability results are obtained by upper bound approximations or by a bracketing procedure in which various upper and lower bounds may be obtained as close to one another as desired. The KITT programs can handle independent components which are non-repairable or which have a constant repair time. Any assortment of non-repairable components and components having constant repair times can be considered. Any inhibit conditions having constant probabilities of occurrence can be handled. The failure intensity of each component is assumed to be constant with respect to time. The KITT2 program can also handle components which during different time intervals, called phases, may have different reliability properties. 2 - Method of solution: The PREP program obtains minimal cut sets by either direct deterministic testing or by an efficient Monte Carlo algorithm. The minimal path sets are obtained using the Monte Carlo algorithm. The reliability information is obtained by the KITT programs from numerical solution of the simple integral balance equations of kinetic tree theory. 3 - Restrictions on the complexity of the problem: The PREP program will obtain the minimal cut and
Reliability models for Space Station power system
Singh, C.; Patton, A. D.; Kim, Y.; Wagner, H.
1987-01-01
This paper presents a methodology for the reliability evaluation of Space Station power system. The two options considered are the photovoltaic system and the solar dynamic system. Reliability models for both of these options are described along with the methodology for calculating the reliability indices.
The quantitative failure of human reliability analysis
Energy Technology Data Exchange (ETDEWEB)
Bennett, C.T.
1995-07-01
This philosophical treatise argues the merits of Human Reliability Analysis (HRA) in the context of the nuclear power industry. Actually, the author attacks historic and current HRA as having failed in informing policy makers who make decisions based on risk that humans contribute to systems performance. He argues for an HRA based on Bayesian (fact-based) inferential statistics, which advocates a systems analysis process that employs cogent heuristics when using opinion, and tempers itself with a rational debate over the weight given subjective and empirical probabilities.
Doğramac, Sera N; Watsford, Mark L; Murphy, Aron J
2011-03-01
Subjective notational analysis can be used to track players and analyse movement patterns during match-play of team sports such as futsal. The purpose of this study was to establish the validity and reliability of the Event Recorder for subjective notational analysis. A course was designed, replicating ten minutes of futsal match-play movement patterns, where ten participants undertook the course. The course allowed a comparison of data derived from subjective notational analysis, to the known distances of the course, and to GPS data. The study analysed six locomotor activity categories, focusing on total distance covered, total duration of activities and total frequency of activities. The values between the known measurements and the Event Recorder were similar, whereas the majority of significant differences were found between the Event Recorder and GPS values. The reliability of subjective notational analysis was established with all ten participants being analysed on two occasions, as well as analysing five random futsal players twice during match-play. Subjective notational analysis is a valid and reliable method of tracking player movements, and may be a preferred and more effective method than GPS, particularly for indoor sports such as futsal, and field sports where short distances and changes in direction are observed.
Towards Reliable Integrated Services for Dependable Systems
DEFF Research Database (Denmark)
Schiøler, Henrik; Ravn, Anders Peter; Izadi-Zamanabadi, Roozbeh
Reliability issues for various technical systems are discussed and focus is directed towards distributed systems, where communication facilities are vital to maintain system functionality. Reliability in communication subsystems is considered as a resource to be shared among a number of logical c...... applications residing on alternative routes. Details are provided for the operation of RRRSVP based on reliability slack calculus. Conclusions summarize the considerations and give directions for future research....... connections and a reliability management framework is suggested. We suggest a network layer level reliability management protocol RRSVP (Reliability Resource Reservation Protocol) as a counterpart of the RSVP for bandwidth and time resource management. Active and passive standby redundancy by background...
Towards Reliable Integrated Services for Dependable Systems
DEFF Research Database (Denmark)
Schiøler, Henrik; Ravn, Anders Peter; Izadi-Zamanabadi, Roozbeh
2003-01-01
Reliability issues for various technical systems are discussed and focus is directed towards distributed systems, where communication facilities are vital to maintain system functionality. Reliability in communication subsystems is considered as a resource to be shared among a number of logical c...... applications residing on alternative routes. Details are provided for the operation of RRRSVP based on reliability slack calculus. Conclusions summarize the considerations and give directions for future research....... connections and a reliability management framework is suggested. We suggest a network layer level reliability management protocol RRSVP (Reliability Resource Reservation Protocol) as a counterpart of the RSVP for bandwidth and time resource management. Active and passive standby redundancy by background...
International Nuclear Information System (INIS)
Zhang Yuanlin; Zuo, Ming J.; Yam, Richard C.M.
2000-01-01
A circular consecutive-2-out-of-n:F repairable system with one repairman is studied in this paper. When there are more than one failed component, priorities are assigned to the failed components. Both the working time and the repair time of each component is assumed to be exponentially distributed. Every component after repair is as good as new. By using the definition of generalized transition probability and the concept of critical component, we derive the state transition probability matrix of the system. Methodologies are then presented for the derivation of system reliability indexes such as availability, rate of occurrence of failure, mean time between failures, reliability, and mean time to first failure
International Nuclear Information System (INIS)
Benko, Pedro Luiz
1997-01-01
A study of digital hardware architectures, including experience in many countries, topologies and solutions to interface circuits for protection systems of nuclear reactors is presented. Methods for developing digital systems architectures based on fault tolerant and safety requirements is proposed. Directives for assessing such conditions are suggested. Techniques and the most common tools employed in reliability, safety evaluation and modeling of hardware architectures is also presented. Markov chain modeling is used to evaluate the reliability of redundant architectures. In order to estimate software quality, several mechanisms to be used in design, specification, and validation and verification (V and V) procedures are suggested. A digital protection system architecture has been analyzed as a case study. (author)
Reliability assessment of nuclear structural systems
International Nuclear Information System (INIS)
Reich, M.; Hwang, H.
1983-01-01
Reliability assessment of nuclear structural systems has been receiving more emphasis over the last few years. This paper deals with the recent progress made by the Structural Analysis Division of Brookhaven National Laboratory (BNL), in the development of a probability-based reliability analysis methodology for safety evaluation of reactor containments and other seismic category I structures. An important feature of this methodology is the incorporation of finite element analysis and random vibration theory. By utilizing this method, it is possible to evaluate the safety of nuclear structures under various static and dynamic loads in terms of limit state probability. Progress in other related areas, such as the establishment of probabilistic characteristics for various loads and structural resistance, are also described. Results of an application of the methodology to a realistic reinforced concrete containment subjected to dead and live loads, accidental internal pressures and earthquake ground accelerations are presented
Weibull distribution in reliability data analysis in nuclear power plant
International Nuclear Information System (INIS)
Ma Yingfei; Zhang Zhijian; Zhang Min; Zheng Gangyang
2015-01-01
Reliability is an important issue affecting each stage of the life cycle ranging from birth to death of a product or a system. The reliability engineering includes the equipment failure data processing, quantitative assessment of system reliability and maintenance, etc. Reliability data refers to the variety of data that describe the reliability of system or component during its operation. These data may be in the form of numbers, graphics, symbols, texts and curves. Quantitative reliability assessment is the task of the reliability data analysis. It provides the information related to preventing, detect, and correct the defects of the reliability design. Reliability data analysis under proceed with the various stages of product life cycle and reliability activities. Reliability data of Systems Structures and Components (SSCs) in Nuclear Power Plants is the key factor of probabilistic safety assessment (PSA); reliability centered maintenance and life cycle management. The Weibull distribution is widely used in reliability engineering, failure analysis, industrial engineering to represent manufacturing and delivery times. It is commonly used to model time to fail, time to repair and material strength. In this paper, an improved Weibull distribution is introduced to analyze the reliability data of the SSCs in Nuclear Power Plants. An example is given in the paper to present the result of the new method. The Weibull distribution of mechanical equipment for reliability data fitting ability is very strong in nuclear power plant. It's a widely used mathematical model for reliability analysis. The current commonly used methods are two-parameter and three-parameter Weibull distribution. Through comparison and analysis, the three-parameter Weibull distribution fits the data better. It can reflect the reliability characteristics of the equipment and it is more realistic to the actual situation. (author)
Charlton, Paula C; Mentiplay, Benjamin F; Pua, Yong-Hao; Clark, Ross A
2015-05-01
Traditional methods of assessing joint range of motion (ROM) involve specialized tools that may not be widely available to clinicians. This study assesses the reliability and validity of a custom Smartphone application for assessing hip joint range of motion. Intra-tester reliability with concurrent validity. Passive hip joint range of motion was recorded for seven different movements in 20 males on two separate occasions. Data from a Smartphone, bubble inclinometer and a three dimensional motion analysis (3DMA) system were collected simultaneously. Intraclass correlation coefficients (ICCs), coefficients of variation (CV) and standard error of measurement (SEM) were used to assess reliability. To assess validity of the Smartphone application and the bubble inclinometer against the three dimensional motion analysis system, intraclass correlation coefficients and fixed and proportional biases were used. The Smartphone demonstrated good to excellent reliability (ICCs>0.75) for four out of the seven movements, and moderate to good reliability for the remaining three movements (ICC=0.63-0.68). Additionally, the Smartphone application displayed comparable reliability to the bubble inclinometer. The Smartphone application displayed excellent validity when compared to the three dimensional motion analysis system for all movements (ICCs>0.88) except one, which displayed moderate to good validity (ICC=0.71). Smartphones are portable and widely available tools that are mostly reliable and valid for assessing passive hip range of motion, with potential for large-scale use when a bubble inclinometer is not available. However, caution must be taken in its implementation as some movement axes demonstrated only moderate reliability. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Reliability analysis using network simulation
International Nuclear Information System (INIS)
Engi, D.
1985-01-01
The models that can be used to provide estimates of the reliability of nuclear power systems operate at many different levels of sophistication. The least-sophisticated models treat failure processes that entail only time-independent phenomena (such as demand failure). More advanced models treat processes that also include time-dependent phenomena such as run failure and possibly repair. However, many of these dynamic models are deficient in some respects because they either disregard the time-dependent phenomena that cannot be expressed in closed-form analytic terms or because they treat these phenomena in quasi-static terms. The next level of modeling requires a dynamic approach that incorporates not only procedures for treating all significant time-dependent phenomena but also procedures for treating these phenomena when they are conditionally linked or characterized by arbitrarily selected probability distributions. The level of sophistication that is required is provided by a dynamic, Monte Carlo modeling approach. A computer code that uses a dynamic, Monte Carlo modeling approach is Q-GERT (Graphical Evaluation and Review Technique - with Queueing), and the present study had demonstrated the feasibility of using Q-GERT for modeling time-dependent, unconditionally and conditionally linked phenomena that are characterized by arbitrarily selected probability distributions
Directory of Open Access Journals (Sweden)
Muhammad Taher Abuelma'atti
1999-01-01
Full Text Available The effectiveness of SPICE circuit simulation program in calculating probabilities, reliability, steady-state availability and mean-time to failure of repairable systems described by Markov models is demonstrated. Two examples are presented. The first example is a warm standby system with common-cause failures and human errors. The second example is a non-identical unit parallel system with common-cause failures. In both cases recourse to numerical solution is inevitable to obtain the Laplace transforms of the probabilities. Results obtained using SPICE are compared with previously published results obtained using the Laplace transform method. Full SPICE listings are included.
Advances in reliability and system engineering
Davim, J
2017-01-01
This book presents original studies describing the latest research and developments in the area of reliability and systems engineering. It helps the reader identifying gaps in the current knowledge and presents fruitful areas for further research in the field. Among others, this book covers reliability measures, reliability assessment of multi-state systems, optimization of multi-state systems, continuous multi-state systems, new computational techniques applied to multi-state systems and probabilistic and non-probabilistic safety assessment.
Cost analysis of reliability investigations
International Nuclear Information System (INIS)
Schmidt, F.
1981-01-01
Taking Epsteins testing theory as a basis, premisses are formulated for the selection of cost-optimized reliability inspection plans. Using an example, the expected testing costs and inspection time periods of various inspection plan types, standardized on the basis of the exponential distribution, are compared. It can be shown that sequential reliability tests usually involve lower costs than failure or time-fixed tests. The most 'costly' test is to be expected with the inspection plan type NOt. (orig.) [de
Distribution system reliability evaluation using credibility theory | Xu ...
African Journals Online (AJOL)
In this paper, a hybrid algorithm based on fuzzy simulation and Failure Mode and Effect Analysis (FMEA) is applied to determine fuzzy reliability indices of distribution system. This approach can obtain fuzzy expected values and their variances of reliability indices, and the credibilities of reliability indices meeting specified ...
Improvement of standards on functional reliability of electric power systems
International Nuclear Information System (INIS)
Barinov, V.A.; Volkov, G.A.; Kalita, V.V.; Kogan, F.L.; Makarov, S.F.; Manevich, A.S.; Mogirev, V.V.; Sin'chugov, F.I.; Skopintsev, V.A.; Khvoshchinskaya, Z.G.
1993-01-01
Analysis of the most principal aspects of the existing standards and requirements on assuring safety and stability of electric power systems (EPS) and effective (reliable and economical) power supply of consumers is given. The reliability is determined as ability to accomplish the assigned functions. Basic recommendations on improving the standards regulating the safety and reliability of the NPP functioning are formulated
Reliability and optimization of structural systems
International Nuclear Information System (INIS)
Thoft-Christensen, P.
1987-01-01
The proceedings contain 28 papers presented at the 1st working conference. The working conference was organized by the IFIP Working Group 7.5. The proceedings also include 4 papers which were submitted, but for various reasons not presented at the working conference. The working conference was attended by 50 participants from 18 countries. The conference was the first scientific meeting of the new IFIP Working Group 7.5 on 'Reliability and Optimization of Structural Systems'. The purpose of the Working Group 7.5 is to promote modern structural system optimization and reliability theory, to advance international cooperation in the field of structural system optimization and reliability theory, to stimulate research, development and application of structural system optimization and reliability theory, to further the dissemination and exchange of information on reliability and optimization of structural system optimization and reliability theory, and to encourage education in structural system optimization and reliability theory. (orig./HP)
Sensitivity analysis in a structural reliability context
International Nuclear Information System (INIS)
Lemaitre, Paul
2014-01-01
This thesis' subject is sensitivity analysis in a structural reliability context. The general framework is the study of a deterministic numerical model that allows to reproduce a complex physical phenomenon. The aim of a reliability study is to estimate the failure probability of the system from the numerical model and the uncertainties of the inputs. In this context, the quantification of the impact of the uncertainty of each input parameter on the output might be of interest. This step is called sensitivity analysis. Many scientific works deal with this topic but not in the reliability scope. This thesis' aim is to test existing sensitivity analysis methods, and to propose more efficient original methods. A bibliographical step on sensitivity analysis on one hand and on the estimation of small failure probabilities on the other hand is first proposed. This step raises the need to develop appropriate techniques. Two variables ranking methods are then explored. The first one proposes to make use of binary classifiers (random forests). The second one measures the departure, at each step of a subset method, between each input original density and the density given the subset reached. A more general and original methodology reflecting the impact of the input density modification on the failure probability is then explored. The proposed methods are then applied on the CWNR case, which motivates this thesis. (author)
Human reliability analysis using event trees
International Nuclear Information System (INIS)
Heslinga, G.
1983-01-01
The shut-down procedure of a technologically complex installation as a nuclear power plant consists of a lot of human actions, some of which have to be performed several times. The procedure is regarded as a chain of modules of specific actions, some of which are analyzed separately. The analysis is carried out by making a Human Reliability Analysis event tree (HRA event tree) of each action, breaking down each action into small elementary steps. The application of event trees in human reliability analysis implies more difficulties than in the case of technical systems where event trees were mainly used until now. The most important reason is that the operator is able to recover a wrong performance; memory influences play a significant role. In this study these difficulties are dealt with theoretically. The following conclusions can be drawn: (1) in principle event trees may be used in human reliability analysis; (2) although in practice the operator will recover his fault partly, theoretically this can be described as starting the whole event tree again; (3) compact formulas have been derived, by which the probability of reaching a specific failure consequence on passing through the HRA event tree after several times of recovery is to be calculated. (orig.)
Jiang, Changlong; Ma, Cheng; He, Ning; Zhang, Xugang; Wang, Chongyang; Jia, Huibo
2002-12-01
In many real-time fields the sustained high-speed data recording system is required. This paper proposes a high-speed and sustained data recording system based on the complex-RAID 3+0. The system consists of Array Controller Module (ACM), String Controller Module (SCM) and Main Controller Module (MCM). ACM implemented by an FPGA chip is used to split the high-speed incoming data stream into several lower-speed streams and generate one parity code stream synchronously. It also can inversely recover the original data stream while reading. SCMs record lower-speed streams from the ACM into the SCSI disk drivers. In the SCM, the dual-page buffer technology is adopted to implement speed-matching function and satisfy the need of sustainable recording. MCM monitors the whole system, controls ACM and SCMs to realize the data stripping, reconstruction, and recovery functions. The method of how to determine the system scale is presented. At the end, two new ways Floating Parity Group (FPG) and full 2D-Parity Group (full 2D-PG) are proposed to improve the system reliability and compared with the Traditional Parity Group (TPG). This recording system can be used conveniently in many areas of data recording, storing, playback and remote backup with its high-reliability.
Infusing Reliability Techniques into Software Safety Analysis
Shi, Ying
2015-01-01
Software safety analysis for a large software intensive system is always a challenge. Software safety practitioners need to ensure that software related hazards are completely identified, controlled, and tracked. This paper discusses in detail how to incorporate the traditional reliability techniques into the entire software safety analysis process. In addition, this paper addresses how information can be effectively shared between the various practitioners involved in the software safety analyses. The author has successfully applied the approach to several aerospace applications. Examples are provided to illustrate the key steps of the proposed approach.
Reliable actuators for twin rotor MIMO system
Rao, Vidya S.; V. I, George; Kamath, Surekha; Shreesha, C.
2017-11-01
Twin Rotor MIMO System (TRMS) is a bench mark system to test flight control algorithms. One of the perturbations on TRMS which is likely to affect the control system is actuator failure. Therefore, there is a need for a reliable control system, which includes H infinity controller along with redundant actuators. Reliable control refers to the design of a control system to tolerate failures of a certain set of actuators or sensors while retaining desired control system properties. Output of reliable controller has to be transferred to the redundant actuator effectively to make the TRMS reliable even under actual actuator failure.
International Nuclear Information System (INIS)
Blot, M.
1987-06-01
The reliability analysis of complex sequential systems, in which the order of arrival of the events must be taken into account, can be very difficult, because the use of the classical modelling technique of Markov diagrams leads to an important limitation on the number of components which can be handled. The desk-top apparatus S.ESCAF, which electronically simulates very closely the behaviour of the system being studied, and is very easy to use, even by a non specialist in electronics, allows one to avoid these inconveniences and to enlarge considerably the analysis possibilities. This paper shows the application of the S.ESCAF method to the electrical power supply system of a nuclear reactor. This system requires the simulation of more than forty components with about sixty events such as failure, repair and refusal to start. A comparison of times necessary to perform the analysis by these means and by other methods is described, and the advantages of S.ESCAF are presented
International Nuclear Information System (INIS)
Mays, S.E.; Poloski, J.P.; Sullivan, W.H.; Trainer, J.E.; Bertucio, R.C.; Leahy, T.J.
1982-07-01
This report describes a risk study of the Browns Ferry, Unit 1, nuclear plant. The study is one of four such studies sponsored by the NRC Office of Research, Division of Risk Assessment, as part of its Interim Reliability Evaluation Program (IREP), Phase II. This report is contained in four volumes: a main report and three appendixes. Appendix B provides a description of Browns Ferry, Unit 1, plant systems and the failure evaluation of those systems as they apply to accidents at Browns Ferry. Information is presented concerning front-line system fault analysis; support system fault analysis; human error models and probabilities; and generic control circuit analyses
Mass and Reliability System (MaRS)
Barnes, Sarah
2016-01-01
The Safety and Mission Assurance (S&MA) Directorate is responsible for mitigating risk, providing system safety, and lowering risk for space programs from ground to space. The S&MA is divided into 4 divisions: The Space Exploration Division (NC), the International Space Station Division (NE), the Safety & Test Operations Division (NS), and the Quality and Flight Equipment Division (NT). The interns, myself and Arun Aruljothi, will be working with the Risk & Reliability Analysis Branch under the NC Division's. The mission of this division is to identify, characterize, diminish, and communicate risk by implementing an efficient and effective assurance model. The team utilizes Reliability and Maintainability (R&M) and Probabilistic Risk Assessment (PRA) to ensure decisions concerning risks are informed, vehicles are safe and reliable, and program/project requirements are realistic and realized. This project pertains to the Orion mission, so it is geared toward a long duration Human Space Flight Program(s). For space missions, payload is a critical concept; balancing what hardware can be replaced by components verse by Orbital Replacement Units (ORU) or subassemblies is key. For this effort a database was created that combines mass and reliability data, called Mass and Reliability System or MaRS. The U.S. International Space Station (ISS) components are used as reference parts in the MaRS database. Using ISS components as a platform is beneficial because of the historical context and the environment similarities to a space flight mission. MaRS uses a combination of systems: International Space Station PART for failure data, Vehicle Master Database (VMDB) for ORU & components, Maintenance & Analysis Data Set (MADS) for operation hours and other pertinent data, & Hardware History Retrieval System (HHRS) for unit weights. MaRS is populated using a Visual Basic Application. Once populated, the excel spreadsheet is comprised of information on ISS components including
Reliability Analysis of Money Habitudes
Delgadillo, Lucy M.; Bushman, Brittani S.
2015-01-01
Use of the Money Habitudes exercise has gained popularity among various financial professionals. This article reports on the reliability of this resource. A survey administered to young adults at a western state university was conducted, and each Habitude or "domain" was analyzed using Cronbach's alpha procedures. Results showed all six…
Subset simulation for structural reliability sensitivity analysis
International Nuclear Information System (INIS)
Song Shufang; Lu Zhenzhou; Qiao Hongwei
2009-01-01
Based on two procedures for efficiently generating conditional samples, i.e. Markov chain Monte Carlo (MCMC) simulation and importance sampling (IS), two reliability sensitivity (RS) algorithms are presented. On the basis of reliability analysis of Subset simulation (Subsim), the RS of the failure probability with respect to the distribution parameter of the basic variable is transformed as a set of RS of conditional failure probabilities with respect to the distribution parameter of the basic variable. By use of the conditional samples generated by MCMC simulation and IS, procedures are established to estimate the RS of the conditional failure probabilities. The formulae of the RS estimator, its variance and its coefficient of variation are derived in detail. The results of the illustrations show high efficiency and high precision of the presented algorithms, and it is suitable for highly nonlinear limit state equation and structural system with single and multiple failure modes
Reliability and Cost Impacts for Attritable Systems
2017-03-23
on reliability and cost: a probabilistic model. Electric Power Systems Research, 72(3), 213-224. Kalbfleisch, J.D. & Prentice, R.L. (1980). The...copyright protection in the United States. AFIT-ENV-MS-17-M-172 RELIABILITY AND COST IMPACTS FOR ATTRITABLE SYSTEMS THESIS Presented to... power of discrete time Markov chains, whether homogeneous or non-homogeneous, to model the reliability and dependability of repairable systems should
System reliability effects in wind turbine blades
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov; Friis-Hansen, Peter; Berggreen, Christian
2012-01-01
from reliability point of view. The present paper discusses the specifics of system reliability behavior of laminated composite sandwich panels, and solves an example system reliability problem for a glass fiber-reinforced composite sandwich structure subjected to in-plane compression.......Laminated composite sandwich panels have a layered structure, where individual layers have randomly varying stiffness and strength properties. The presence of multiple failure modes and load redistribution following partial failures are the reason for laminated composites to exhibit system behavior...
power system reliability in supplying nuclear reactors
International Nuclear Information System (INIS)
Gad, M.M.M.
2007-01-01
this thesis presents a simple technique for deducing minimal cut set (MCS) from the defined minimal path set (MPS) of generic distribution system and this technique have been used to evaluate the basic reliability indices of Egypt's second research reactor (ETRR-2) electrical distribution network. the alternative system configurations are then studied to evaluate their impact on service reliability. the proposed MCS approach considers both sustained and temporary outage. the temporary outage constitutes an important parameter in characterizing the system reliability indices for critical load point in distribution system. it is also consider the power quality impact on the reliability indices
Reliability of structural systems subject to fatigue
International Nuclear Information System (INIS)
Rackwitz, R.
1984-01-01
Concepts and computational procedures for the reliability calculation of structural systems subject to fatigue are outlined. Systems are dealt with by approximately computing componential times to first failure. So-called first-order reliability methods are then used to formulate dependencies between componential failures and to evaluate the system failure probability. (Author) [pt
75 FR 71625 - System Restoration Reliability Standards
2010-11-24
... to start operating and delivering electric power without assistance from the electric system... and system restoration and reporting following disturbances. \\3\\ North American Electric Reliability... Reliability Standards for the Bulk-Power System and determined that the proposed requirements are necessary to...
76 FR 16277 - System Restoration Reliability Standards
2011-03-23
... electric system. Blackstart units are essential to restart generation and restore power to the grid in the... Standard EOP-007-0. \\2\\ Mandatory Reliability Standards for the Bulk-Power System, Order No. 693, 72 FR... = $5,894,624. Title: Mandatory Reliability Standards for the Bulk-Power System. Action: FERC 725A...
Human reliability in complex systems: an overview
International Nuclear Information System (INIS)
Embrey, D.E.
1976-07-01
A detailed analysis is presented of the main conceptual background underlying the areas of human reliability and human error. The concept of error is examined and generalized to that of human reliability, and some of the practical and methodological difficulties of reconciling the different standpoints of the human factors specialist and the engineer discussed. Following a survey of general reviews available on human reliability, quantitative techniques for prediction of human reliability are considered. An in-depth critical analysis of the various quantitative methods is then presented, together with the data bank requirements for human reliability prediction. Reliability considerations in process control and nuclear plant, and also areas of design, maintenance, testing and emergency situations are discussed. The effects of stress on human reliability are analysed and methods of minimizing these effects discussed. Finally, a summary is presented and proposals for further research are set out. (author)
Exact reliability quantification of highly reliable systems with maintenance
Energy Technology Data Exchange (ETDEWEB)
Bris, Radim, E-mail: radim.bris@vsb.c [VSB-Technical University Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Applied Mathematics, 17. listopadu 15, 70833 Ostrava-Poruba (Czech Republic)
2010-12-15
When a system is composed of highly reliable elements, exact reliability quantification may be problematic, because computer accuracy is limited. Inaccuracy can be due to different aspects. For example, an error may be made when subtracting two numbers that are very close to each other, or at the process of summation of many very different numbers, etc. The basic objective of this paper is to find a procedure, which eliminates errors made by PC when calculations close to an error limit are executed. Highly reliable system is represented by the use of directed acyclic graph which is composed from terminal nodes, i.e. highly reliable input elements, internal nodes representing subsystems and edges that bind all of these nodes. Three admissible unavailability models of terminal nodes are introduced, including both corrective and preventive maintenance. The algorithm for exact unavailability calculation of terminal nodes is based on merits of a high-performance language for technical computing MATLAB. System unavailability quantification procedure applied to a graph structure, which considers both independent and dependent (i.e. repeatedly occurring) terminal nodes is based on combinatorial principle. This principle requires summation of a lot of very different non-negative numbers, which may be a source of an inaccuracy. That is why another algorithm for exact summation of such numbers is designed in the paper. The summation procedure uses benefits from a special number system with the base represented by the value 2{sup 32}. Computational efficiency of the new computing methodology is compared with advanced simulation software. Various calculations on systems from references are performed to emphasize merits of the methodology.
Solid State Lighting Reliability Components to Systems
Fan, XJ
2013-01-01
Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. This book also: Covers the essential reliability theories and practices for current and future development of Solid State Lighting components and systems Provides a systematic overview for not only the state-of-the-art, but also future roadmap and perspectives of Solid State Lighting r...
PV Systems Reliability Final Technical Report.
Energy Technology Data Exchange (ETDEWEB)
Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schindelholz, Eric John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yang, Benjamin Bing-Yeh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
The continued exponential growth of photovoltaic technologies paves a path to a solar-powered world, but requires continued progress toward low-cost, high-reliability, high-performance photovoltaic (PV) systems. High reliability is an essential element in achieving low-cost solar electricity by reducing operation and maintenance (O&M) costs and extending system lifetime and availability, but these attributes are difficult to verify at the time of installation. Utilities, financiers, homeowners, and planners are demanding this information in order to evaluate their financial risk as a prerequisite to large investments. Reliability research and development (R&D) is needed to build market confidence by improving product reliability and by improving predictions of system availability, O&M cost, and lifetime. This project is focused on understanding, predicting, and improving the reliability of PV systems. The two areas being pursued include PV arc-fault and ground fault issues, and inverter reliability.
Reliability analysis of reactor pressure vessel intensity
International Nuclear Information System (INIS)
Zheng Liangang; Lu Yongbo
2012-01-01
This paper performs the reliability analysis of reactor pressure vessel (RPV) with ANSYS. The analysis method include direct Monte Carlo Simulation method, Latin Hypercube Sampling, central composite design and Box-Behnken Matrix design. The RPV integrity reliability under given input condition is proposed. The result shows that the effects on the RPV base material reliability are internal press, allowable basic stress and elasticity modulus of base material in descending order, and the effects on the bolt reliability are allowable basic stress of bolt material, preload of bolt and internal press in descending order. (authors)
Reliability analysis of grid connected small wind turbine power electronics
International Nuclear Information System (INIS)
Arifujjaman, Md.; Iqbal, M.T.; Quaicoe, J.E.
2009-01-01
Grid connection of small permanent magnet generator (PMG) based wind turbines requires a power conditioning system comprising a bridge rectifier, a dc-dc converter and a grid-tie inverter. This work presents a reliability analysis and an identification of the least reliable component of the power conditioning system of such grid connection arrangements. Reliability of the configuration is analyzed for the worst case scenario of maximum conversion losses at a particular wind speed. The analysis reveals that the reliability of the power conditioning system of such PMG based wind turbines is fairly low and it reduces to 84% of initial value within one year. The investigation is further enhanced by identifying the least reliable component within the power conditioning system and found that the inverter has the dominant effect on the system reliability, while the dc-dc converter has the least significant effect. The reliability analysis demonstrates that a permanent magnet generator based wind energy conversion system is not the best option from the point of view of power conditioning system reliability. The analysis also reveals that new research is required to determine a robust power electronics configuration for small wind turbine conversion systems.
Reliability of large and complex systems
Kolowrocki, Krzysztof
2014-01-01
Reliability of Large and Complex Systems, previously titled Reliability of Large Systems, is an innovative guide to the current state and reliability of large and complex systems. In addition to revised and updated content on the complexity and safety of large and complex mechanisms, this new edition looks at the reliability of nanosystems, a key research topic in nanotechnology science. The author discusses the importance of safety investigation of critical infrastructures that have aged or have been exposed to varying operational conditions. This reference provides an asympt
Extrapolation Method for System Reliability Assessment
DEFF Research Database (Denmark)
Qin, Jianjun; Nishijima, Kazuyoshi; Faber, Michael Havbro
2012-01-01
of integrals with scaled domains. The performance of this class of approximation depends on the approach applied for the scaling and the functional form utilized for the extrapolation. A scheme for this task is derived here taking basis in the theory of asymptotic solutions to multinormal probability integrals......The present paper presents a new scheme for probability integral solution for system reliability analysis, which takes basis in the approaches by Naess et al. (2009) and Bucher (2009). The idea is to evaluate the probability integral by extrapolation, based on a sequence of MC approximations...... that the proposed scheme is efficient and adds to generality for this class of approximations for probability integrals....
Reliability Analysis of Adhesive Bonded Scarf Joints
DEFF Research Database (Denmark)
Kimiaeifar, Amin; Toft, Henrik Stensgaard; Lund, Erik
2012-01-01
element analysis (FEA). For the reliability analysis a design equation is considered which is related to a deterministic code-based design equation where reliability is secured by partial safety factors together with characteristic values for the material properties and loads. The failure criteria......A probabilistic model for the reliability analysis of adhesive bonded scarfed lap joints subjected to static loading is developed. It is representative for the main laminate in a wind turbine blade subjected to flapwise bending. The structural analysis is based on a three dimensional (3D) finite...... are formulated using a von Mises, a modified von Mises and a maximum stress failure criterion. The reliability level is estimated for the scarfed lap joint and this is compared with the target reliability level implicitly used in the wind turbine standard IEC 61400-1. A convergence study is performed to validate...
Reliability of dynamic systems under limited information.
Energy Technology Data Exchange (ETDEWEB)
Field, Richard V., Jr. (.,; .); Grigoriu, Mircea
2006-09-01
A method is developed for reliability analysis of dynamic systems under limited information. The available information includes one or more samples of the system output; any known information on features of the output can be used if available. The method is based on the theory of non-Gaussian translation processes and is shown to be particularly suitable for problems of practical interest. For illustration, we apply the proposed method to a series of simple example problems and compare with results given by traditional statistical estimators in order to establish the accuracy of the method. It is demonstrated that the method delivers accurate results for the case of linear and nonlinear dynamic systems, and can be applied to analyze experimental data and/or mathematical model outputs. Two complex applications of direct interest to Sandia are also considered. First, we apply the proposed method to assess design reliability of a MEMS inertial switch. Second, we consider re-entry body (RB) component vibration response during normal re-entry, where the objective is to estimate the time-dependent probability of component failure. This last application is directly relevant to re-entry random vibration analysis at Sandia, and may provide insights on test-based and/or model-based qualification of weapon components for random vibration environments.
Digital Processor Module Reliability Analysis of Nuclear Power Plant
International Nuclear Information System (INIS)
Lee, Sang Yong; Jung, Jae Hyun; Kim, Jae Ho; Kim, Sung Hun
2005-01-01
The system used in plant, military equipment, satellite, etc. consists of many electronic parts as control module, which requires relatively high reliability than other commercial electronic products. Specially, Nuclear power plant related to the radiation safety requires high safety and reliability, so most parts apply to Military-Standard level. Reliability prediction method provides the rational basis of system designs and also provides the safety significance of system operations. Thus various reliability prediction tools have been developed in recent decades, among of them, the MI-HDBK-217 method has been widely used as a powerful tool for the prediction. In this work, It is explained that reliability analysis work for Digital Processor Module (DPM, control module of SMART) is performed by Parts Stress Method based on MIL-HDBK-217F NOTICE2. We are using the Relex 7.6 of Relex software corporation, because reliability analysis process requires enormous part libraries and data for failure rate calculation
A taxonomy for human reliability analysis
International Nuclear Information System (INIS)
Beattie, J.D.; Iwasa-Madge, K.M.
1984-01-01
A human interaction taxonomy (classification scheme) was developed to facilitate human reliability analysis in a probabilistic safety evaluation of a nuclear power plant, being performed at Ontario Hydro. A human interaction occurs, by definition, when operators or maintainers manipulate, or respond to indication from, a plant component or system. The taxonomy aids the fault tree analyst by acting as a heuristic device. It helps define the range and type of human errors to be identified in the construction of fault trees, while keeping the identification by different analysts consistent. It decreases the workload associated with preliminary quantification of the large number of identified interactions by including a category called 'simple interactions'. Fault tree analysts quantify these according to a procedure developed by a team of human reliability specialists. The interactions which do not fit into this category are called 'complex' and are quantified by the human reliability team. The taxonomy is currently being used in fault tree construction in a probabilistic safety evaluation. As far as can be determined at this early stage, the potential benefits of consistency and completeness in identifying human interactions and streamlining the initial quantification are being realized
User's guide to the Reliability Estimation System Testbed (REST)
Nicol, David M.; Palumbo, Daniel L.; Rifkin, Adam
1992-01-01
The Reliability Estimation System Testbed is an X-window based reliability modeling tool that was created to explore the use of the Reliability Modeling Language (RML). RML was defined to support several reliability analysis techniques including modularization, graphical representation, Failure Mode Effects Simulation (FMES), and parallel processing. These techniques are most useful in modeling large systems. Using modularization, an analyst can create reliability models for individual system components. The modules can be tested separately and then combined to compute the total system reliability. Because a one-to-one relationship can be established between system components and the reliability modules, a graphical user interface may be used to describe the system model. RML was designed to permit message passing between modules. This feature enables reliability modeling based on a run time simulation of the system wide effects of a component's failure modes. The use of failure modes effects simulation enhances the analyst's ability to correctly express system behavior when using the modularization approach to reliability modeling. To alleviate the computation bottleneck often found in large reliability models, REST was designed to take advantage of parallel processing on hypercube processors.
Time domain series system definition and gear set reliability modeling
International Nuclear Information System (INIS)
Xie, Liyang; Wu, Ningxiang; Qian, Wenxue
2016-01-01
Time-dependent multi-configuration is a typical feature for mechanical systems such as gear trains and chain drives. As a series system, a gear train is distinct from a traditional series system, such as a chain, in load transmission path, system-component relationship, system functioning manner, as well as time-dependent system configuration. Firstly, the present paper defines time-domain series system to which the traditional series system reliability model is not adequate. Then, system specific reliability modeling technique is proposed for gear sets, including component (tooth) and subsystem (tooth-pair) load history description, material priori/posterior strength expression, time-dependent and system specific load-strength interference analysis, as well as statistically dependent failure events treatment. Consequently, several system reliability models are developed for gear sets with different tooth numbers in the scenario of tooth root material ultimate tensile strength failure. The application of the models is discussed in the last part, and the differences between the system specific reliability model and the traditional series system reliability model are illustrated by virtue of several numerical examples. - Highlights: • A new type of series system, i.e. time-domain multi-configuration series system is defined, that is of great significance to reliability modeling. • Multi-level statistical analysis based reliability modeling method is presented for gear transmission system. • Several system specific reliability models are established for gear set reliability estimation. • The differences between the traditional series system reliability model and the new model are illustrated.
Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues
Energy Technology Data Exchange (ETDEWEB)
Ronald Laurids Boring
2010-11-01
This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.
Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues
International Nuclear Information System (INIS)
Boring, Ronald Laurids
2010-01-01
This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.
Reliability of power electronic converter systems
Chung, Henry Shu-hung; Blaabjerg, Frede; Pecht, Michael
2016-01-01
This book outlines current research into the scientific modeling, experimentation, and remedial measures for advancing the reliability, availability, system robustness, and maintainability of Power Electronic Converter Systems (PECS) at different levels of complexity.
International Nuclear Information System (INIS)
Amri, A.; Blundell, N.; ); Authen, S.; Betancourt, L.; Coyne, K.; Halverson, D.; Li, M.; Taylor, G.; Bjoerkman, K.; Brinkman, H.; Postma, W.; Bruneliere, H.; Chirila, M.; Gheorge, R.; Chu, L.; Yue, M.; Delache, J.; Georgescu, G.; Deleuze, G.; Quatrain, R.; Thuy, N.; Holmberg, J.-E.; Kim, M.C.; Kondo, K.; Mancini, F.; Piljugin, E.; Stiller, J.; Sedlak, J.; Smidts, C.; Sopira, V.
2015-01-01
Digital protection and control systems appear as upgrades in older nuclear power plants (NPP), and are commonplace in new NPPs. To assess the risk of NPP operation and to determine the risk impact of digital systems, there is a need to quantitatively assess the reliability of the digital systems in a justifiable manner. Due to the many unique attributes of digital systems (e.g., functions are implemented by software, units of the system interact in a communication network, faults can be identified and handled online), a number of modelling and data collection challenges exist, and international consensus on the reliability modelling has not yet been reached. The objective of the task group called DIGREL has been to develop a taxonomy of failure modes of digital components for the purposes of probabilistic risk analysis (PRA). An activity focused on the development of a common taxonomy of failure modes is seen as an important step towards standardised digital instrumentation and control (I and C) reliability assessment techniques for PRA. Needs from PRA has guided the work, meaning, e.g., that the I and C system and its failures are studied from the point of view of their functional significance point of view. The taxonomy will be the basis of future modelling and quantification efforts. It will also help to define a structure for data collection and to review PRA studies. The proposed failure modes taxonomy has been developed by first collecting examples of taxonomies provided by the task group organisations. This material showed some variety in the handling of I and C hardware failure modes, depending on the context where the failure modes have been defined. Regarding the software part of I and C, failure modes defined in NPP PRAs have been simple - typically a software CCF failing identical processing units. The DIGREL task group has defined a new failure modes taxonomy based on a hierarchical definition of five levels of abstraction: 1. system level (complete
Telecommunications system reliability engineering theory and practice
Ayers, Mark L
2012-01-01
"Increasing system complexity require new, more sophisticated tools for system modeling and metric calculation. Bringing the field up to date, this book provides telecommunications engineers with practical tools for analyzing, calculating, and reporting availability, reliability, and maintainability metrics. It gives the background in system reliability theory and covers in-depth applications in fiber optic networks, microwave networks, satellite networks, power systems, and facilities management. Computer programming tools for simulating the approaches presented, using the Matlab software suite, are also provided"
The contribution of instrumentation and control software to system reliability
International Nuclear Information System (INIS)
Fryer, M.O.
1984-01-01
Advanced instrumentation and control systems are usually implemented using computers that monitor the instrumentation and issue commands to control elements. The control commands are based on instrument readings and software control logic. The reliability of the total system will be affected by the software design. When comparing software designs, an evaluation of how each design can contribute to the reliability of the system is desirable. Unfortunately, the science of reliability assessment of combined hardware and software systems is in its infancy. Reliability assessment of combined hardware/software systems is often based on over-simplified assumptions about software behavior. A new method of reliability assessment of combined software/hardware systems is presented. The method is based on a procedure called fault tree analysis which determines how component failures can contribute to system failure. Fault tree analysis is a well developed method for reliability assessment of hardware systems and produces quantitative estimates of failure probability based on component failure rates. It is shown how software control logic can be mapped into a fault tree that depicts both software and hardware contributions to system failure. The new method is important because it provides a way for quantitatively evaluating the reliability contribution of software designs. In many applications, this can help guide designers in producing safer and more reliable systems. An application to the nuclear power research industry is discussed
International Nuclear Information System (INIS)
Fernandes Filho, T.L.
1982-11-01
The RALLY computer code pack (RALLY pack) is a set of computer codes destinate to the reliability of complex systems, aiming to a risk analysis. Three of the six codes, are commented, presenting their purpose, input description, calculation methods and results obtained with each one of those computer codes. The computer codes are: TREBIL, to obtain the fault tree logical equivalent; CRESSEX, to obtain the minimal cut and the punctual values of the non-reliability and non-availability of the system; and STREUSL, for the dispersion calculation of those values around the media. In spite of the CRESSEX, in its version available at CNEN, uses a little long method to obtain the minimal cut in an HB-CNEN system, the three computer programs show good results, mainly the STREUSL, which permits the simulation of various components. (E.G.) [pt
International Nuclear Information System (INIS)
Choi, Y.A.; Feltus, M.A.
1995-01-01
Reliability-centered maintenance (RCM) methods are applied to boiling water reactor plant-specific emergency core cooling system probabilistic risk assessment (PRA) fault trees. The RCM is a technique that is system function-based, for improving a preventive maintenance (PM) program, which is applied on a component basis. Many PM programs are based on time-directed maintenance tasks, while RCM methods focus on component condition-directed maintenance tasks. Stroke time test data for motor-operated valves (MOVs) are used to address three aspects concerning RCM: (a) to determine if MOV stroke time testing was useful as a condition-directed PM task; (b) to determine and compare the plant-specific MOV failure data from a broad RCM philosophy time period compared with a PM period and, also, compared with generic industry MOV failure data; and (c) to determine the effects and impact of the plant-specific MOV failure data on core damage frequency (CDF) and system unavailabilities for these emergency systems. The MOV stroke time test data from four emergency core cooling systems [i.e., high-pressure coolant injection (HPCI), reactor core isolation cooling (RCIC), low-pressure core spray (LPCS), and residual heat removal/low-pressure coolant injection (RHR/LPCI)] were gathered from Philadelphia Electric Company's Peach Bottom Atomic Power Station Units 2 and 3 between 1980 and 1992. The analyses showed that MOV stroke time testing was not a predictor for eminent failure and should be considered as a go/no-go test. The failure data from the broad RCM philosophy showed an improvement compared with the PM-period failure rates in the emergency core cooling system MOVs. Also, the plant-specific MOV failure rates for both maintenance philosophies were shown to be lower than the generic industry estimates
Space Mission Human Reliability Analysis (HRA) Project
National Aeronautics and Space Administration — The purpose of this project is to extend current ground-based Human Reliability Analysis (HRA) techniques to a long-duration, space-based tool to more effectively...
Simulation Approach to Mission Risk and Reliability Analysis, Phase I
National Aeronautics and Space Administration — It is proposed to develop and demonstrate an integrated total-system risk and reliability analysis approach that is based on dynamic, probabilistic simulation. This...
An artificial intelligence system for reliability studies
International Nuclear Information System (INIS)
Llory, M.; Ancelin, C.; Bannelier, M.; Bouhadana, H.; Bouissou, M.; Lucas, J.Y.; Magne, L.; Villate, N.
1990-01-01
The EDF (French Electricity Company) software developed for computer aided reliability studies is considered. Such software tools were applied in the study of the safety requirements of the Paluel nuclear power plant. The reliability models, based on IF-THEN type rules, and the generation of models by the expert system are described. The models are then processed applying algorithm structures [fr
Reliability and durability in solar energy systems
Energy Technology Data Exchange (ETDEWEB)
Godolphin, D.
1982-10-01
The reliability and durability in solar energy systems for residential buildings is discussed. It is concluded that although strides have been made in design and manufacturing over the past years, the reliability and durability of the equipment depends on the proper installation. (MJF)
Reliable computer systems design and evaluatuion
Siewiorek, Daniel
2014-01-01
Enhance your hardware/software reliabilityEnhancement of system reliability has been a major concern of computer users and designers ¦ and this major revision of the 1982 classic meets users' continuing need for practical information on this pressing topic. Included are case studies of reliablesystems from manufacturers such as Tandem, Stratus, IBM, and Digital, as well as coverage of special systems such as the Galileo Orbiter fault protection system and AT&T telephone switching processors.
International Nuclear Information System (INIS)
Yang Chihwei; Cheng Tsungchieh
2011-01-01
This study proposes the performance assessment in three-dimension virtual reality (3D-VR) main control room (MCR). The assessment is conducted for integrated system validation (ISV) purposes, and also for human reliability analyses (HRA). This paper describes the latest developments in 3D-VR applications, designated for the familiarization with MCR, specially taking into account the ISV and HRA. The experiences in 3D-VR application, the benefits and advantages of use of VR in training and maintenances of MCR operators in the target NPP are equally presented in this paper. Results gathered from the performance measurement lead to hazard mitigation and reduces the risk of human error in the operation and maintenance of nuclear equipments. The latest developments in simulation techniques, including 3D presentation enhances the above mentioned benefits, brings the MCR simulators closer to reality. In the near future, this type of 3D solutions should be applied more and more often in the design of MCR simulators. The presented 3D-VR are related to the MCR in NPPs, but the concept of composition and navigation through the system's elements can be easily applied for the purpose of any type of technical equipment and shall contribute in a similar manner to hazard prevention. (author)
Reliability analysis of stiff versus flexible piping
International Nuclear Information System (INIS)
Lu, S.C.
1985-01-01
The overall objective of this research project is to develop a technical basis for flexible piping designs which will improve piping reliability and minimize the use of pipe supports, snubbers, and pipe whip restraints. The current study was conducted to establish the necessary groundwork based on the piping reliability analysis. A confirmatory piping reliability assessment indicated that removing rigid supports and snubbers tends to either improve or affect very little the piping reliability. The authors then investigated a couple of changes to be implemented in Regulatory Guide (RG) 1.61 and RG 1.122 aimed at more flexible piping design. They concluded that these changes substantially reduce calculated piping responses and allow piping redesigns with significant reduction in number of supports and snubbers without violating ASME code requirements. Furthermore, the more flexible piping redesigns are capable of exhibiting reliability levels equal to or higher than the original stiffer design. An investigation of the malfunction of pipe whip restraints confirmed that the malfunction introduced higher thermal stresses and tended to reduce the overall piping reliability. Finally, support and component reliabilities were evaluated based on available fragility data. Results indicated that the support reliability usually exhibits a moderate decrease as the piping flexibility increases. Most on-line pumps and valves showed an insignificant reduction in reliability for a more flexible piping design
Interactive reliability analysis project. FY 80 progress report
International Nuclear Information System (INIS)
Rasmuson, D.M.; Shepherd, J.C.
1981-03-01
This report summarizes the progress to date in the interactive reliability analysis project. Purpose is to develop and demonstrate a reliability and safety technique that can be incorporated early in the design process. Details are illustrated in a simple example of a reactor safety system
System Reliability of Timber Structures with Ductile Behaviour
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Čizmar, Dean
2011-01-01
The present paper considers the evaluation of timber structures with the focus on robustness due to connection ductility. The robustness analysis is based on the structural reliability framework applied to a simplified mechanical system. The structural timber system is depicted as a parallel system....... An evaluation method of the ductile behaviour is introduced. For different ductile behaviours, the system reliability is estimated based on Monte Carlo simulation. A correlation between the strength of the structural elements is introduced. The results indicate that the reliability of a structural timber system...
International Nuclear Information System (INIS)
Li Xiaohu; Zuo, Ming J.; Yam, Richard C.M.
2006-01-01
A k-out-of-n system with independent exponential components is investigated. It is assumed that some working components are suspended as soon as the system is down, repair starts immediately when a component fails and repair times are independent and exponentially distributed. Formulas for various reliability indices of the system including mean time between failures, mean working time in a failure-repair cycle, and mean down time in a failure-repair cycle are derived
System reliability developments in structural engineering
International Nuclear Information System (INIS)
Moses, F.
1982-01-01
Two major limitations occur in present structural design code developments utilizing reliability theory. The notional system reliabilities may differ significantly from calibrated component reliabilities. Secondly, actual failures are often due to gross errors not reflected in most present code formats. A review is presented of system reliability methods and further new concepts are developed. The incremental load approach for identifying and expressing collapse modes is expanded by employing a strategy to identify and enumerate the significant structural collapse modes. It further isolates the importance of critical components in the system performance. Ductile and brittle component behavior and strength correlation is reflected in the system model and illustrated in several examples. Modal combinations for the system reliability are also reviewed. From these developments a system factor can be addended to component safety checking equations. Values may be derived from system behavior by substituting in a damage model which accounts for the response range from component failure to collapse. Other strategies are discussed which emphasize quality assurance during design and in-service inspection for components whose behavior is critical to the system reliability. (Auth.)
Reliability of power system with open access
International Nuclear Information System (INIS)
Ehsani, A.; Ranjbar, A. M.; Fotuhi Firuzabad, M.; Ehsani, M.
2003-01-01
Recently, in many countries, electric utility industry is undergoing considerable changes in regard to its structure and regulation. It can be clearly seen that the thrust towards privatization and deregulation or re regulation of the electric utility industry will introduce numerous reliability problems that will require new criteria and analytical tools that recognize the residual uncertainties in the new environment. In this paper, different risks and uncertainties in competitive electricity markets are briefly introduced; the approach of customers, operators, planners, generation bodies and network providers to the reliability of deregulated system is studied; the impact of dispersed generation on system reliability is evaluated; and finally, the reliability cost/reliability worth issues in the new competitive environment are considered
International Nuclear Information System (INIS)
Ding, Yi; Wang, Peng; Goel, Lalit; Billinton, Roy; Karki, Rajesh
2007-01-01
This paper presents a technique to evaluate reliability of a restructured power system with a bilateral market. The proposed technique is based on the combination of the reliability network equivalent and pseudo-sequential simulation approaches. The reliability network equivalent techniques have been implemented in the Monte Carlo simulation procedure to reduce the computational burden of the analysis. Pseudo-sequential simulation has been used to increase the computational efficiency of the non-sequential simulation method and to model the chronological aspects of market trading and system operation. Multi-state Markov models for generation and transmission systems are proposed and implemented in the simulation. A new load shedding scheme is proposed during generation inadequacy and network congestion to minimize the load curtailment. The IEEE reliability test system (RTS) is used to illustrate the technique. (author)
RELIABILITY OF TRANSPORTATION SYSTEMS OF ROCK HAPS
Directory of Open Access Journals (Sweden)
A. Stepanov
2009-01-01
Full Text Available The ways of increasing of exploitation reliability of dump trucks with the aim of increasing of effectiveness of exploitation of transportation systems of rock heaps at coal mines.
Reliability of microtechnology interconnects, devices and systems
Liu, Johan; Sarkka, Jussi; Tegehall, Per-Erik; Andersson, Cristina
2011-01-01
This text discusses the reliability of microtechnology products from the bottom up, beginning with devices and extending to systems. It covers many topics, and it addresses specific failure modes in solder and conductive adhesives at great length.
Reliability and validity of risk analysis
International Nuclear Information System (INIS)
Aven, Terje; Heide, Bjornar
2009-01-01
In this paper we investigate to what extent risk analysis meets the scientific quality requirements of reliability and validity. We distinguish between two types of approaches within risk analysis, relative frequency-based approaches and Bayesian approaches. The former category includes both traditional statistical inference methods and the so-called probability of frequency approach. Depending on the risk analysis approach, the aim of the analysis is different, the results are presented in different ways and consequently the meaning of the concepts reliability and validity are not the same.
Reliable Fluid Power Pitch Systems
DEFF Research Database (Denmark)
Liniger, Jesper; Pedersen, Henrik Clemmensen; Soltani, Mohsen
2015-01-01
The key objectives of wind turbine manufactures and buyers are to reduce the Total Cost of Ownership and Total Cost of Energy. Among others, low downtime of a wind turbine is important to increase the amount of energy produced during its lifetime. Historical data indicate that pitch systems accou...
International Nuclear Information System (INIS)
Saldanha, Pedro L.C.; Simone, Elaine A. de; Melo, Paulo Fernando F.F. e
1996-01-01
Aging is used to mean the continuous process which physical characteristics of a system, a structure or an equipment changes with time or use. Their effects are increases in failure probabilities of a system, a structure or an equipment, and their are calculated using time-dependent failure rate models. The purpose of this paper is to present an application of the nonhomogeneous Poisson process as a model to study rates of occurrence of failures when they are time-dependent. To this application, an analysis of reliability of service water pumps of a typical nuclear power plant is made, as long as the pumps are effectively repaired components. (author)
Design for Reliability in Renewable Energy Systems
DEFF Research Database (Denmark)
Blaabjerg, Frede; Zhou, Dao; Sangwongwanich, Ariya
2017-01-01
Power electronics are widely used in renewable energy systems to achieve lower cost of energy, higher efficiency and high power density. At the same time, the high reliability of the power electronics products is demanded, in order to reduce the failure rates and ensure cost-effective operation...... of the renewable energy systems. This paper thus describes the basic concepts used in reliability engineering, and presents the status and future trends of Design for Reliability (DfR) in power electronics, which is currently undergoing a paradigm shift to a physics-of-failure approach. Two case studies of a 2 MW...
Reliability and diagnostic of modular systems
Directory of Open Access Journals (Sweden)
J. Kohlas
2014-01-01
Full Text Available Reliability and diagnostic are in general two problems discussed separately. Yet the two problems are in fact closely related to each other. Here, this relation is considered in the simple case of modular systems. We show, how the computation of reliability and diagnostic can efficiently be done within the same Bayesian network induced by the modularity of the structure function of the system.
Human reliability analysis of dependent events
International Nuclear Information System (INIS)
Swain, A.D.; Guttmann, H.E.
1977-01-01
In the human reliability analysis in WASH-1400, the continuous variable of degree of interaction among human events was approximated by selecting four points on this continuum to represent the entire continuum. The four points selected were identified as zero coupling (i.e., zero dependence), complete coupling (i.e., complete dependence), and two intermediate points--loose coupling (a moderate level of dependence) and tight coupling (a high level of dependence). The paper expands the WASH-1400 treatment of common mode failure due to the interaction of human activities. Mathematical expressions for the above four levels of dependence are derived for parallel and series systems. The psychological meaning of each level of dependence is illustrated by examples, with probability tree diagrams to illustrate the use of conditional probabilities resulting from the interaction of human actions in nuclear power plant tasks
Recent Advances in System Reliability Signatures, Multi-state Systems and Statistical Inference
Frenkel, Ilia
2012-01-01
Recent Advances in System Reliability discusses developments in modern reliability theory such as signatures, multi-state systems and statistical inference. It describes the latest achievements in these fields, and covers the application of these achievements to reliability engineering practice. The chapters cover a wide range of new theoretical subjects and have been written by leading experts in reliability theory and its applications. The topics include: concepts and different definitions of signatures (D-spectra), their properties and applications to reliability of coherent systems and network-type structures; Lz-transform of Markov stochastic process and its application to multi-state system reliability analysis; methods for cost-reliability and cost-availability analysis of multi-state systems; optimal replacement and protection strategy; and statistical inference. Recent Advances in System Reliability presents many examples to illustrate the theoretical results. Real world multi-state systems...
TIGER reliability analysis in the DSN
Gunn, J. M.
1982-01-01
The TIGER algorithm, the inputs to the program and the output are described. TIGER is a computer program designed to simulate a system over a period of time to evaluate system reliability and availability. Results can be used in the Deep Space Network for initial spares provisioning and system evaluation.
Assessing reliability in energy supply systems
International Nuclear Information System (INIS)
McCarthy, Ryan W.; Ogden, Joan M.; Sperling, Daniel
2007-01-01
Reliability has always been a concern in the energy sector, but concerns are escalating as energy demand increases and the political stability of many energy supply regions becomes more questionable. But how does one define and measure reliability? We introduce a method to assess reliability in energy supply systems in terms of adequacy and security. It derives from reliability assessment frameworks developed for the electricity sector, which are extended to include qualitative considerations and to be applicable to new energy systems by incorporating decision-making processes based on expert opinion and multi-attribute utility theory. The method presented here is flexible and can be applied to any energy system. To illustrate its use, we apply the method to two hydrogen pathways: (1) centralized steam reforming of imported liquefied natural gas with pipeline distribution of hydrogen, and (2) on-site electrolysis of water using renewable electricity produced independently from the electricity grid
Reliability demonstration of imaging surveillance systems
International Nuclear Information System (INIS)
Sheridan, T.F.; Henderson, J.T.; MacDiarmid, P.R.
1979-01-01
Security surveillance systems which employ closed circuit television are being deployed with increasing frequency for the protection of property and other valuable assets. A need exists to demonstrate the reliability of such systems before their installation to assure that the deployed systems will operate when needed with only the scheduled amount of maintenance and support costs. An approach to the reliability demonstration of imaging surveillance systems which employ closed circuit television is described. Failure definitions based on industry television standards and imaging alarm assessment criteria for surveillance systems are discussed. Test methods which allow 24 hour a day operation without the need for numerous test scenarios, test personnel and elaborate test facilities are presented. Existing reliability demonstration standards are shown to apply which obviate the need for elaborate statistical tests. The demonstration methods employed are shown to have applications in other types of imaging surveillance systems besides closed circuit television
Energy Technology Data Exchange (ETDEWEB)
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia; Grelle, Austin
2015-04-26
Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), a systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.
Some aspects of the interaction between systems- and structural reliability
International Nuclear Information System (INIS)
Schueller, G.K.; Schmitt, W.
1979-01-01
The purpose of this paper is to study the interaction between systems- and structural reliability analysis with reference to the design of structural components of LWR. Presently the evaluation of systems reliability is carried out apart from structural reliability analysis. Moreover, two basically different methodologies are used for analysis. While in systems analysis the simplified binary approach is still generally accepted, in structural reliability one has to resort to more sophisticated procedures to obtain realistic results. The interactive effect may be illustrated as follows: For example, the integrity of the primary circuit interacts with the integrity of the containment structure. This means that the probability of occurrence of the pipe rupture which may cause a LOCA and consequently leads to a build-up of temperature and pressure within the containment affects directly its structural reliability. The piping system, particularly the primary piping, in turn interacts with the protective system, which is part of the safety system. This piping structure is also subjected to various operational loading conditions. In a numerical example dealing with leakage probabilities of pipes it is shown how methods of structural reliability may be used to gain more insight in the estimation of failure rates of system components. (orig.)
International Nuclear Information System (INIS)
Oxstrand, J.; Boring, R.L.
2010-12-01
The main goal of this Nordic Nuclear Safety Research (NKS) council project is to produce guidance for how to use human reliability analysis (HRA) to strengthen overall safety. This project is intended to work across (and hopefully diminish) the borders that exist between human reliability analysis (HRA) and human-system interaction, human performance, human factors, and probabilistic risk assessment at Nordic nuclear power plants. This project consists of two major phases, where the initial phase (phase 1) is a study of current practices in the Nordic region, which is presented in this report. Even though the project covers the synergies between HRA and all other relevant fields, the main focus for the phase is to bridge HRA and design. Interviews with 26 Swedish and Finnish plant experts are summarized the present report, and 10 principles to improve the utilization of HRA at plants are presented. A second study, which is not documented in this preliminary report, will chronicle insights into how the US nuclear industry works with HRA. To gain this knowledge the author will conduct interviews with the US regulator, research laboratories, and utilities. (Author)
Reliability of operating WWER monitoring systems
International Nuclear Information System (INIS)
Yastrebenetsky, M.A.; Goldrin, V.M.; Garagulya, A.V.
1996-01-01
The elaboration of WWER monitoring systems reliability measures is described in this paper. The evaluation is based on the statistical data about failures what have collected at the Ukrainian operating nuclear power plants (NPP). The main attention is devoted to radiation safety monitoring system and unit information computer system, what collects information from different sensors and system of the unit. Reliability measures were used for decision the problems, connected with life extension of the instruments, and for other purposes. (author). 6 refs, 6 figs
Reliability of operating WWER monitoring systems
Energy Technology Data Exchange (ETDEWEB)
Yastrebenetsky, M A; Goldrin, V M; Garagulya, A V [Ukrainian State Scientific Technical Center of Nuclear and Radiation Safety, Kharkov (Ukraine). Instrumentation and Control Systems Dept.
1997-12-31
The elaboration of WWER monitoring systems reliability measures is described in this paper. The evaluation is based on the statistical data about failures what have collected at the Ukrainian operating nuclear power plants (NPP). The main attention is devoted to radiation safety monitoring system and unit information computer system, what collects information from different sensors and system of the unit. Reliability measures were used for decision the problems, connected with life extension of the instruments, and for other purposes. (author). 6 refs, 6 figs.
International Nuclear Information System (INIS)
Jones, J.L.; Calley, M.B.; Capps, E.L.; Zeigler, S.L.; Galyean, W.J.; Novack, S.D.; Smith, C.L.; Wolfram, L.M.
1995-03-01
A verification and validation (V ampersand V) process has been performed for the System Analysis Programs for Hands-on Integrated Reliability Evaluation (SAPHIRE) Version 5.0. SAPHIRE is a set of four computer programs that NRC developed for performing probabilistic risk assessments. They allow an analyst to perform many of the functions necessary to create, quantify, and evaluate the risk associated with a facility or process being analyzed. The programs are Integrated Reliability and Risk Analysis System (IRRAS) System Analysis and Risk Assessment (SARA), Models And Results Database (MAR-D), and Fault tree, Event tree, and Piping and instrumentation diagram (FEP) graphical editor. Intent of this program is to perform a V ampersand V of successive versions of SAPHIRE. Previous efforts have been the V ampersand V of SAPHIRE Version 4.0. The SAPHIRE 5.0 V ampersand V plan is based on the SAPHIRE 4.0 V ampersand V plan with revisions to incorporate lessons learned from the previous effort. Also, the SAPHIRE 5.0 vital and nonvital test procedures are based on the test procedures from SAPHIRE 4.0 with revisions to include the new SAPHIRE 5.0 features as well as to incorporate lessons learned from the previous effort. Most results from the testing were acceptable; however, some discrepancies between expected code operation and actual code operation were identified. Modifications made to SAPHIRE are identified
Development in structural systems reliability theory
International Nuclear Information System (INIS)
Murotsu, Y.
1986-01-01
This paper is concerned with two topics on structural systems reliability theory. One covers automatic generation of failure mode equations, identifications of stochastically dominant failure modes, and reliability assessment of redundant structures. Reduced stiffness matrixes and equivalent nodal forces representing the failed elements are introduced for expressing the safety of the elements, using a matrix method. Dominant failure modes are systematically selected by a branch-and-bound technique and heuristic operations. The other discusses the various optimum design problems based on reliability concept. Those problems are interpreted through a solution to a multi-objective optimization problem. (orig.)
Development in structural systems reliability theory
Energy Technology Data Exchange (ETDEWEB)
Murotsu, Y
1986-07-01
This paper is concerned with two topics on structural systems reliability theory. One covers automatic generation of failure mode equations, identifications of stochastically dominant failure modes, and reliability assessment of redundant structures. Reduced stiffness matrixes and equivalent nodal forces representing the failed elements are introduced for expressing the safety of the elements, using a matrix method. Dominant failure modes are systematically selected by a branch-and-bound technique and heuristic operations. The other discusses the various optimum design problems based on reliability concept. Those problems are interpreted through a solution to a multi-objective optimization problem.
Human Reliability Analysis for Small Modular Reactors
Energy Technology Data Exchange (ETDEWEB)
Ronald L. Boring; David I. Gertman
2012-06-01
Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.
Energy Technology Data Exchange (ETDEWEB)
Poure, P. [Laboratoire d' Instrumentation Electronique de Nancy LIEN, EA 3440, Nancy-Universite, Faculte des Sciences et Techniques, BP 239, 54506 Vandoeuvre Cedex (France); Weber, P.; Theilliol, D. [Centre de Recherche en Automatique de Nancy UMR 7039, Nancy-Universite, CNRS, Faculte des Sciences et Techniques, BP 239, 54506 Vandoeuvre Cedex (France); Saadate, S. [Groupe de Recherches en Electrotechnique et Electronique de Nancy UMR 7037, Nancy-Universite, CNRS, Faculte des Sciences et Techniques, BP 239, 54506 Vandoeuvre Cedex (France)
2009-02-15
This paper deals with fault tolerant shunt three-phase three-wire active filter topologies for which reliability is very important in industry applications. The determination of the optimal reconfiguration structure among various ones with or without redundant components is discussed based on reliability criteria. First, the reconfiguration of the inverter is detailed and a fast fault diagnosis method for power semi-conductor or driver fault detection and compensation is presented. This method avoids false fault detection due to power semi-conductors switching. The control architecture and algorithm are studied and a fault tolerant control strategy is considered. Simulation results in open and short circuit cases validate the theoretical study. Finally, the reliability of the studied three-phase three-wire filter shunt active topologies is analyzed to determine the optimal one. (author)
System Reliability for LED-Based Products
Energy Technology Data Exchange (ETDEWEB)
Davis, J Lynn; Mills, Karmann; Lamvik, Michael; Yaga, Robert; Shepherd, Sarah D; Bittle, James; Baldasaro, Nick; Solano, Eric; Bobashev, Georgiy; Johnson, Cortina; Evans, Amy
2014-04-07
Results from accelerated life tests (ALT) on mass-produced commercially available 6” downlights are reported along with results from commercial LEDs. The luminaires capture many of the design features found in modern luminaires. In general, a systems perspective is required to understand the reliability of these devices since LED failure is rare. In contrast, components such as drivers, lenses, and reflector are more likely to impact luminaire reliability than LEDs.
Reliability testing of failed fuel location system
International Nuclear Information System (INIS)
Vieru, G.
1996-01-01
This paper presents the experimental reliability tests performed in order to prove the reliability parameters for Failed Fuel Location System (FFLS), equipment used to detect in which channel of a particular heat transport loop a fuel failure is located, and to find in which channel what particular bundle pair is failed. To do so, D20 samples from each reactor channel are sequentially monitored to detect a comparatively high level of delayed neutron activity. 15 refs, 8 figs, 2 tabs
Analysis of sodium valve reliability data at CREDO
International Nuclear Information System (INIS)
Bott, T.F.; Haas, P.M.
1979-01-01
The Centralized Reliability Data Organization (CREDO) has been established at Oak Ridge National Laboratory (ORNL) by the Department of Energy to provide a centralized source of data for reliability/maintainabilty analysis of advanced reactor systems. The current schedule calls for develoment of the data system at a moderate pace, with the first major distribution of data in late FY-1980. Continuous long-term collection of engineering, operating, and event data has been initiated at EBR-II and FFTF
Software engineering practices for control system reliability
International Nuclear Information System (INIS)
S. K. Schaffner; K. S White
1999-01-01
This paper will discuss software engineering practices used to improve Control System reliability. The authors begin with a brief discussion of the Software Engineering Institute's Capability Maturity Model (CMM) which is a framework for evaluating and improving key practices used to enhance software development and maintenance capabilities. The software engineering processes developed and used by the Controls Group at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), using the Experimental Physics and Industrial Control System (EPICS) for accelerator control, are described. Examples are given of how their procedures have been used to minimized control system downtime and improve reliability. While their examples are primarily drawn from their experience with EPICS, these practices are equally applicable to any control system. Specific issues addressed include resource allocation, developing reliable software lifecycle processes and risk management
Reliability demonstration test planning using bayesian analysis
International Nuclear Information System (INIS)
Chandran, Senthil Kumar; Arul, John A.
2003-01-01
In Nuclear Power Plants, the reliability of all the safety systems is very critical from the safety viewpoint and it is very essential that the required reliability requirements be met while satisfying the design constraints. From practical experience, it is found that the reliability of complex systems such as Safety Rod Drive Mechanism is of the order of 10 -4 with an uncertainty factor of 10. To demonstrate the reliability of such systems is prohibitive in terms of cost and time as the number of tests needed is very large. The purpose of this paper is to develop a Bayesian reliability demonstrating testing procedure for exponentially distributed failure times with gamma prior distribution on the failure rate which can be easily and effectively used to demonstrate component/subsystem/system reliability conformance to stated requirements. The important questions addressed in this paper are: With zero failures, how long one should perform the tests and how many components are required to conclude with a given degree of confidence, that the component under test, meets the reliability requirement. The procedure is explained with an example. This procedure can also be extended to demonstrate with more number of failures. The approach presented is applicable for deriving test plans for demonstrating component failure rates of nuclear power plants, as the failure data for similar components are becoming available in existing plants elsewhere. The advantages of this procedure are the criterion upon which the procedure is based is simple and pertinent, the fitting of the prior distribution is an integral part of the procedure and is based on the use of information regarding two percentiles of this distribution and finally, the procedure is straightforward and easy to apply in practice. (author)
Evolving Reliability and Maintainability Allocations for NASA Ground Systems
Munoz, Gisela; Toon, T.; Toon, J.; Conner, A.; Adams, T.; Miranda, D.
2016-01-01
This paper describes the methodology and value of modifying allocations to reliability and maintainability requirements for the NASA Ground Systems Development and Operations (GSDO) programs subsystems. As systems progressed through their design life cycle and hardware data became available, it became necessary to reexamine the previously derived allocations. This iterative process provided an opportunity for the reliability engineering team to reevaluate allocations as systems moved beyond their conceptual and preliminary design phases. These new allocations are based on updated designs and maintainability characteristics of the components. It was found that trade-offs in reliability and maintainability were essential to ensuring the integrity of the reliability and maintainability analysis. This paper discusses the results of reliability and maintainability reallocations made for the GSDO subsystems as the program nears the end of its design phase.
Heroic Reliability Improvement in Manned Space Systems
Jones, Harry W.
2017-01-01
System reliability can be significantly improved by a strong continued effort to identify and remove all the causes of actual failures. Newly designed systems often have unexpected high failure rates which can be reduced by successive design improvements until the final operational system has an acceptable failure rate. There are many causes of failures and many ways to remove them. New systems may have poor specifications, design errors, or mistaken operations concepts. Correcting unexpected problems as they occur can produce large early gains in reliability. Improved technology in materials, components, and design approaches can increase reliability. The reliability growth is achieved by repeatedly operating the system until it fails, identifying the failure cause, and fixing the problem. The failure rate reduction that can be obtained depends on the number and the failure rates of the correctable failures. Under the strong assumption that the failure causes can be removed, the decline in overall failure rate can be predicted. If a failure occurs at the rate of lambda per unit time, the expected time before the failure occurs and can be corrected is 1/lambda, the Mean Time Before Failure (MTBF). Finding and fixing a less frequent failure with the rate of lambda/2 per unit time requires twice as long, time of 1/(2 lambda). Cutting the failure rate in half requires doubling the test and redesign time and finding and eliminating the failure causes.Reducing the failure rate significantly requires a heroic reliability improvement effort.
Vatansever, Volkan
The nominal stored energy in each LHC beam is 360 MJ, surpassing the beam energy of other accelerators by orders of magnitude. This energy threatens to damage accelerator components in case of uncontrolled beam losses To avoid damage of accelerator equipment due to impacting beam, the controlled removal of the LHC beams from the collider rings towards the dump block must be guaranteed at all times. Therefore, the LHC Beam Dumping System was built according to high reliability standards. To further reduce the risk of incapability to dump the beams in case of correlated failures in the redundant system, a new direct link from the LHC Beam Interlock System to the Re-triggering Lines of the LHC Beam Dumping System will be implemented for the startup with beam in 2015. This link represents a diverse redundancy to the current implementation, which should neither significantly increase the risk for so-called Asynchronous Beam Dumps nor compromise machine availability. Therefore, a reliability analysis down to the co...
Reliability Analysis of a Steel Frame
Directory of Open Access Journals (Sweden)
M. Sýkora
2002-01-01
Full Text Available A steel frame with haunches is designed according to Eurocodes. The frame is exposed to self-weight, snow, and wind actions. Lateral-torsional buckling appears to represent the most critical criterion, which is considered as a basis for the limit state function. In the reliability analysis, the probabilistic models proposed by the Joint Committee for Structural Safety (JCSS are used for basic variables. The uncertainty model coefficients take into account the inaccuracy of the resistance model for the haunched girder and the inaccuracy of the action effect model. The time invariant reliability analysis is based on Turkstra's rule for combinations of snow and wind actions. The time variant analysis describes snow and wind actions by jump processes with intermittencies. Assuming a 50-year lifetime, the obtained values of the reliability index b vary within the range from 3.95 up to 5.56. The cross-profile IPE 330 designed according to Eurocodes seems to be adequate. It appears that the time invariant reliability analysis based on Turkstra's rule provides considerably lower values of b than those obtained by the time variant analysis.
Analysis of operating reliability of WWER-1000 unit
International Nuclear Information System (INIS)
Bortlik, J.
1985-01-01
The nuclear power unit was divided into 33 technological units. Input data for reliability analysis were surveys of operating results obtained from the IAEA information system and certain indexes of the reliability of technological equipment determined using the Bayes formula. The missing reliability data for technological equipment were used from the basic variant. The fault tree of the WWER-1000 unit was determined for the peak event defined as the impossibility of reaching 100%, 75% and 50% of rated power. The period was observed of the nuclear power plant operation with reduced output owing to defect and the respective time needed for a repair of the equipment. The calculation of the availability of the WWER-1000 unit was made for different variant situations. Certain indexes of the operating reliability of the WWER-1000 unit which are the result of a detailed reliability analysis are tabulated for selected variants. (E.S.)
Modeling human reliability analysis using MIDAS
International Nuclear Information System (INIS)
Boring, R. L.
2006-01-01
This paper documents current efforts to infuse human reliability analysis (HRA) into human performance simulation. The Idaho National Laboratory is teamed with NASA Ames Research Center to bridge the SPAR-H HRA method with NASA's Man-machine Integration Design and Analysis System (MIDAS) for use in simulating and modeling the human contribution to risk in nuclear power plant control room operations. It is anticipated that the union of MIDAS and SPAR-H will pave the path for cost-effective, timely, and valid simulated control room operators for studying current and next generation control room configurations. This paper highlights considerations for creating the dynamic HRA framework necessary for simulation, including event dependency and granularity. This paper also highlights how the SPAR-H performance shaping factors can be modeled in MIDAS across static, dynamic, and initiator conditions common to control room scenarios. This paper concludes with a discussion of the relationship of the workload factors currently in MIDAS and the performance shaping factors in SPAR-H. (authors)
Reliability planning in distributed electric energy systems
Energy Technology Data Exchange (ETDEWEB)
Kahn, E.
1978-10-01
The goal of this paper is to develop tools for technology evaluation that address questions involving the economics of large-scale systems. The kind of cost discussed usually involves some dynamic aspect of the energy system. In particular, such properties as flexibility, stability, and resilience are features of entire systems. Special attention must be paid to the question of reliability, i.e., availability on demand. The storage problem and the planning for reliability in utility systems are the subjects of this paper. The introductory chapter addresses preliminary definitions--reliability planning, uncertainty, resilience, and other sensitivities. The study focuses on the contrast between conventional power generation technologies with controllable output and intermittent resources such as wind and solar electric conversion devices. The system studied is a stylized representation of California conditions. Significant differences were found in reliability planning requirements (and therefore costs) for systems dominated by central station plants as opposed to those dominated by intermittent resource technologies. It is argued that existing hydroelectric facilities need re-optimization. These plants provide the only currently existing bulk power storage in electric energy systems. 38 references. (MCW)
ARCHITECTURE AND RELIABILITY OF OPERATING SYSTEMS
Directory of Open Access Journals (Sweden)
Stanislav V. Nazarov
2018-03-01
Full Text Available Progress in the production technology of microprocessors significantly increased reliability and performance of the computer systems hardware. It cannot be told about the corresponding characteristics of the software and its basis – the operating system (OS. Some achievements of program engineering are more modest in this field. Both directions of OS improvement (increasing of productivity and reliability are connected with the development of effective structures of these systems. OS functional complexity leads to the multiplicity of the structure, which is further enhanced by the specialization of the operating system depending on scope of computer system (complex scientific calculations, real time, information retrieval systems, systems of the automated and automatic control, etc. The functional complexity of the OS leads to the complexity of its architecture, which is further enhanced by the specialization of the operating system, depending on the computer system application area (complex scientific calculations, real-time, information retrieval systems, automated and automatic control systems, etc.. That fact led to variety of modern OS. It is possible to estimate reliability of different OS structures only as results of long-term field experiment or simulation modeling. However it is most often unacceptable because of time and funds expenses for carrying out such research. This survey attempts to evaluate the reliability of two main OS architectures: large multi-layered modular core and a multiserver (client-server system. Represented by continuous Markov chains which are explored in the stationary mode on the basis of transition from systems of the differential equations of Kolmogorov to system of the linear algebraic equations, models of these systems are developed.
Energy Technology Data Exchange (ETDEWEB)
Han, Sang Hoon; Kim, Seung Hwan; Choi, Sun Young [Korea Atomic Energy Research Institute, Taejeon (Korea)
2002-03-01
A study was performed to develop the system for the component reliability database which consists of database system to store the reliability data and softwares to analyze the reliability data.This system is a part of KIND (Korea Information System for Nuclear Reliability Database).The MS-SQL database is used to stores the component population data, component maintenance history, and the results of reliability analysis. Two softwares were developed for the component reliability system. One is the KIND-InfoView for the data storing, retrieving and searching. The other is the KIND-CompRel for the statistical analysis of component reliability. 4 refs., 13 figs., 7 tabs. (Author)
Plant and control system reliability and risk model
International Nuclear Information System (INIS)
Niemelae, I.M.
1986-01-01
A new reliability modelling technique for control systems and plants is demonstrated. It is based on modified boolean algebra and it has been automated into an efficient computer code called RELVEC. The code is useful for getting an overall view of the reliability parameters or for an in-depth reliability analysis, which is essential in risk analysis, where the model must be capable of answering to specific questions like: 'What is the probability of this temperature limiter to provide a false alarm', or 'what is the probability of air pressure in this subsystem to drop below lower limit'. (orig./DG)
Influence Of Inspection Intervals On Mechanical System Reliability
International Nuclear Information System (INIS)
Zilberman, B.
1998-01-01
In this paper a methodology of reliability analysis of mechanical systems with latent failures is described. Reliability analysis of such systems must include appropriate usage of check intervals for latent failure detection. The methodology suggests, that based on system logic the analyst decides at the beginning if a system can fail actively or latently and propagates this approach through all system levels. All inspections are assumed to be perfect (all failures are detected and repaired and no new failures are introduced as a result of the maintenance). Additional assumptions are that mission time is much smaller, than check intervals and all components have constant failure rates. Analytical expressions for reliability calculates are provided, based on fault tree and Markov modeling techniques (for two and three redundant systems with inspection intervals). The proposed methodology yields more accurate results than are obtained by not using check intervals or using half check interval times. The conventional analysis assuming that at the beginning of each mission system is as new, give an optimistic prediction of system reliability. Some examples of reliability calculations of mechanical systems with latent failures and establishing optimum check intervals are provided
Representative Sampling for reliable data analysis
DEFF Research Database (Denmark)
Petersen, Lars; Esbensen, Kim Harry
2005-01-01
regime in order to secure the necessary reliability of: samples (which must be representative, from the primary sampling onwards), analysis (which will not mean anything outside the miniscule analytical volume without representativity ruling all mass reductions involved, also in the laboratory) and data...
Energy Technology Data Exchange (ETDEWEB)
Marinova, B [Risk Engineering Ltd., Sofia (Bulgaria)
1996-12-31
The purpose of the analysis is to assess the safety systems I/C equipment reliability of the Kozloduy-5 and the Kozloduy-6 reactors. The assessment of quantitative and qualitative effect of control systems unavailability on the safety systems unavailability is performed. The analysis is limited to the following systems: sprinkler management, low pressure emergency spray, emergency injection of boric acid, hydro accumulators, pressure compensator and compressed air. The code for probabilistic safety assessment PSAPACK has been used in analysis. Fault trees for all analysed safety systems have been constructed. Results indicates a high reliability of the safety systems management.
Reliability analysis of prestressed concrete containment structures
International Nuclear Information System (INIS)
Jiang, J.; Zhao, Y.; Sun, J.
1993-01-01
The reliability analysis of prestressed concrete containment structures subjected to combinations of static and dynamic loads with consideration of uncertainties of structural and load parameters is presented. Limit state probabilities for given parameters are calculated using the procedure developed at BNL, while that with consideration of parameter uncertainties are calculated by a fast integration for time variant structural reliability. The limit state surface of the prestressed concrete containment is constructed directly incorporating the prestress. The sensitivities of the Choleskey decomposition matrix and the natural vibration character are calculated by simplified procedures. (author)
Reliability-Based Robustness Analysis for a Croatian Sports Hall
DEFF Research Database (Denmark)
Čizmar, Dean; Kirkegaard, Poul Henning; Sørensen, John Dalsgaard
2011-01-01
This paper presents a probabilistic approach for structural robustness assessment for a timber structure built a few years ago. The robustness analysis is based on a structural reliability based framework for robustness and a simplified mechanical system modelling of a timber truss system....... A complex timber structure with a large number of failure modes is modelled with only a few dominant failure modes. First, a component based robustness analysis is performed based on the reliability indices of the remaining elements after the removal of selected critical elements. The robustness...... is expressed and evaluated by a robustness index. Next, the robustness is assessed using system reliability indices where the probabilistic failure model is modelled by a series system of parallel systems....
Sustainable, Reliable Mission-Systems Architecture
O'Neil, Graham; Orr, James K.; Watson, Steve
2007-01-01
A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.
International Nuclear Information System (INIS)
Meester, P. de; Poucet, A.
1978-01-01
An assement is made for the failure probability of the safety injection system of the Doel power plant. The SI system is composed of three subsystems: high pressure, low pressure and accumulator system. For each subsystem a fault tree is constructed and these fault trees are evaluated by a computer code which calculates the mean system failure probability and the error bounds. (author)
Reliability and risk analysis methods research plan
International Nuclear Information System (INIS)
1984-10-01
This document presents a plan for reliability and risk analysis methods research to be performed mainly by the Reactor Risk Branch (RRB), Division of Risk Analysis and Operations (DRAO), Office of Nuclear Regulatory Research. It includes those activities of other DRAO branches which are very closely related to those of the RRB. Related or interfacing programs of other divisions, offices and organizations are merely indicated. The primary use of this document is envisioned as an NRC working document, covering about a 3-year period, to foster better coordination in reliability and risk analysis methods development between the offices of Nuclear Regulatory Research and Nuclear Reactor Regulation. It will also serve as an information source for contractors and others to more clearly understand the objectives, needs, programmatic activities and interfaces together with the overall logical structure of the program
System-Reliability Cumulative-Binomial Program
Scheuer, Ernest M.; Bowerman, Paul N.
1989-01-01
Cumulative-binomial computer program, NEWTONP, one of set of three programs, calculates cumulative binomial probability distributions for arbitrary inputs. NEWTONP, CUMBIN (NPO-17555), and CROSSER (NPO-17557), used independently of one another. Program finds probability required to yield given system reliability. Used by statisticians and users of statistical procedures, test planners, designers, and numerical analysts. Program written in C.
Reliability analysis - systematic approach based on limited data
International Nuclear Information System (INIS)
Bourne, A.J.
1975-11-01
The initial approaches required for reliability analysis are outlined. These approaches highlight the system boundaries, examine the conditions under which the system is required to operate, and define the overall performance requirements. The discussion is illustrated by a simple example of an automatic protective system for a nuclear reactor. It is then shown how the initial approach leads to a method of defining the system, establishing performance parameters of interest and determining the general form of reliability models to be used. The overall system model and the availability of reliability data at the system level are next examined. An iterative process is then described whereby the reliability model and data requirements are systematically refined at progressively lower hierarchic levels of the system. At each stage, the approach is illustrated with examples from the protective system previously described. The main advantages of the approach put forward are the systematic process of analysis, the concentration of assessment effort in the critical areas and the maximum use of limited reliability data. (author)
A Reliability Assessment Method for the VHTR Safety Systems
International Nuclear Information System (INIS)
Lee, Hyung Sok; Jae, Moo Sung; Kim, Yong Wan
2011-01-01
The Passive safety system by very high temperature reactor which has attracted worldwide attention in the last century is the reliability safety system introduced for the improvement in the safety of the next generation nuclear power plant design. The Passive system functionality does not rely on an external source of energy, but on an intelligent use of the natural phenomena, such as gravity, conduction and radiation, which are always present. Because of these features, it is difficult to evaluate the passive safety on the risk analysis methodology having considered the existing active system failure. Therefore new reliability methodology has to be considered. In this study, the preliminary evaluation and conceptualization are tried, applying the concept of the load and capacity from the reliability physics model, designing the new passive system analysis methodology, and the trial applying to paper plant.
International Nuclear Information System (INIS)
Russell, K.D.; Skinner, N.L.
1994-07-01
The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs), primarily for nuclear power plants. The primary function of MAR-D is to create a data repository for completed PRAs and Individual Plant Examinations (IPEs) by providing input, conversion, and output capabilities for data used by IRRAS, SARA, SETS, and FRANTIC software. As probabilistic risk assessments and individual plant examinations are submitted to the NRC for review, MAR-D can be used to convert the models and results from the study for use with IRRAS and SARA. Then, these data can be easily accessed by future studies and will be in a form that will enhance the analysis process. This reference manual provides an overview of the functions available within MAR-D and step-by-step operating instructions
FFTF [Fast Flux Test Facility] reactor shutdown system reliability reevaluation
International Nuclear Information System (INIS)
Pierce, B.F.
1986-07-01
The reliability analysis of the Fast Flux Test Facility reactor shutdown system was reevaluated. Failure information based on five years of plant operating experience was used to verify original reliability numbers or to establish new ones. Also, system modifications made subsequent to performance of the original analysis were incorporated into the reevaluation. Reliability calculations and sensitivity analyses were performed using a commercially available spreadsheet on a personal computer. The spreadsheet was configured so that future failures could be tracked and compared with expected failures. A number of recommendations resulted from the reevaluation including both increased and decreased surveillance intervals. All recommendations were based on meeting or exceeding existing reliability goals. Considerable cost savings will be incurred upon implementation of the recommendations
Reliability modeling of an engineered barrier system
International Nuclear Information System (INIS)
Ananda, M.M.A.; Singh, A.K.; Flueck, J.A.
1993-01-01
The Weibull distribution is widely used in reliability literature as a distribution of time to failure, as it allows for both increasing failure rate (IFR) and decreasing failure rate (DFR) models. It has also been used to develop models for an engineered barrier system (EBS), which is known to be one of the key components in a deep geological repository for high level radioactive waste (HLW). The EBS failure time can more realistically be modelled by an IFR distribution, since the failure rate for the EBS is not expected to decrease with time. In this paper, we use an IFR distribution to develop a reliability model for the EBS
Reliability modeling of an engineered barrier system
International Nuclear Information System (INIS)
Ananda, M.M.A.; Singh, A.K.; Flueck, J.A.
1993-01-01
The Weibull distribution is widely used in reliability literature as a distribution of time to failure, as it allows for both increasing failure rate (IFR) and decreasing failure rate (DFR) models. It has also been used to develop models for an engineered barrier system (EBS), which is known to be one of the key components in a deep geological repository for high level radioactive waste (HLW). The EBS failure time can more realistically be modelled by an IFR distribution, since the failure rate for the EBS is not expected to decrease with time. In this paper, an IFR distribution is used to develop a reliability model for the EBS
Making real-time reactive systems reliable
Marzullo, Keith; Wood, Mark
1990-01-01
A reactive system is characterized by a control program that interacts with an environment (or controlled program). The control program monitors the environment and reacts to significant events by sending commands to the environment. This structure is quite general. Not only are most embedded real time systems reactive systems, but so are monitoring and debugging systems and distributed application management systems. Since reactive systems are usually long running and may control physical equipment, fault tolerance is vital. The research tries to understand the principal issues of fault tolerance in real time reactive systems and to build tools that allow a programmer to design reliable, real time reactive systems. In order to make real time reactive systems reliable, several issues must be addressed: (1) How can a control program be built to tolerate failures of sensors and actuators. To achieve this, a methodology was developed for transforming a control program that references physical value into one that tolerates sensors that can fail and can return inaccurate values; (2) How can the real time reactive system be built to tolerate failures of the control program. Towards this goal, whether the techniques presented can be extended to real time reactive systems is investigated; and (3) How can the environment be specified in a way that is useful for writing a control program. Towards this goal, whether a system with real time constraints can be expressed as an equivalent system without such constraints is also investigated.
Highly reliable electro-hydraulic control system
International Nuclear Information System (INIS)
Mande, Morima; Hiyama, Hiroshi; Takahashi, Makoto
1984-01-01
The unscheduled shutdown of nuclear power stations disturbs power system, and exerts large influence on power generation cost due to the lowering of capacity ratio; therefore, high reliability is required for the control system of nuclear power stations. Toshiba Corp. has exerted effort to improve the reliability of the control system of power stations, and in this report, the electro-hydraulic control system for the turbines of nuclear power stations is described. The main functions of the electro-hydraulic control system are the control of main steam pressure with steam regulation valves and turbine bypass valves, the control of turbine speed and load, the prevention of turbine overspeed, the protection of turbines and so on. The system is composed of pressure sensors and a speed sensor, the control board containing the electronic circuits for control computation and protective sequence, the oil cylinders, servo valves and opening detectors of the valves for control, a high pressure oil hydraulic machine and piping, the operating panel and so on. The main features are the adoption of tripling intermediate value selection method, the multiplying of protection sensors and the adoption of 2 out of 3 trip logic, the multiplying of power sources, the improvement of the reliability of electronic circuit hardware and oil hydraulic system. (Kako, I.)
System Reliability for Offshore Wind Turbines
DEFF Research Database (Denmark)
Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard
2013-01-01
E). In consequence, a rational treatment of uncertainties is done in order to assess the reliability of critical details in OWTs. Limit state equations are formulated for fatigue critical details which are not influenced by wake effects generated in offshore wind farms. Furthermore, typical bi-linear S-N curves...... are considered for reliability verification according to international design standards of OWTs. System effects become important for each substructure with many potential fatigue hot spots. Therefore, in this paper a framework for system effects is presented. This information can be e.g. no detection of cracks...... in inspections or measurements from condition monitoring systems. Finally, an example is established to illustrate the practical application of this framework for jacket type wind turbine substructure considering system effects....
Reliability analysis of HVDC grid combined with power flow simulations
Energy Technology Data Exchange (ETDEWEB)
Yang, Yongtao; Langeland, Tore; Solvik, Johan [DNV AS, Hoevik (Norway); Stewart, Emma [DNV KEMA, Camino Ramon, CA (United States)
2012-07-01
Based on a DC grid power flow solver and the proposed GEIR, we carried out reliability analysis for a HVDC grid test system proposed by CIGRE working group B4-58, where the failure statistics are collected from literature survey. The proposed methodology is used to evaluate the impact of converter configuration on the overall reliability performance of the HVDC grid, where the symmetrical monopole configuration is compared with the bipole with metallic return wire configuration. The results quantify the improvement on reliability by using the later alternative. (orig.)
Reliability Issues in Stirling Radioisotope Power Systems
Schreiber, Jeffrey; Shah, Ashwin
2005-01-01
Stirling power conversion is a potential candidate for use in a Radioisotope Power System (RPS) for space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced requirement of radioactive material. Reliability of an RPS that utilizes Stirling power conversion technology is important in order to ascertain long term successful performance. Owing to long life time requirement (14 years), it is difficult to perform long-term tests that encompass all the uncertainties involved in the design variables of components and subsystems comprising the RPS. The requirement for uninterrupted performance reliability and related issues are discussed, and some of the critical areas of concern are identified. An overview of the current on-going efforts to understand component life, design variables at the component and system levels, and related sources and nature of uncertainties are also discussed. Current status of the 110 watt Stirling Radioisotope Generator (SRG110) reliability efforts is described. Additionally, an approach showing the use of past experience on other successfully used power systems to develop a reliability plan for the SRG110 design is outlined.
Reliability Standards of Complex Engineering Systems
Galperin, E. M.; Zayko, V. A.; Gorshkalev, P. A.
2017-11-01
Production and manufacture play an important role in today’s modern society. Industrial production is nowadays characterized by increased and complex communications between its parts. The problem of preventing accidents in a large industrial enterprise becomes especially relevant. In these circumstances, the reliability of enterprise functioning is of particular importance. Potential damage caused by an accident at such enterprise may lead to substantial material losses and, in some cases, can even cause a loss of human lives. That is why industrial enterprise functioning reliability is immensely important. In terms of their reliability, industrial facilities (objects) are divided into simple and complex. Simple objects are characterized by only two conditions: operable and non-operable. A complex object exists in more than two conditions. The main characteristic here is the stability of its operation. This paper develops the reliability indicator combining the set theory methodology and a state space method. Both are widely used to analyze dynamically developing probability processes. The research also introduces a set of reliability indicators for complex technical systems.
Reliability and accuracy of Crystaleye spectrophotometric system.
Chen, Li; Tan, Jian Guo; Zhou, Jian Feng; Yang, Xu; Du, Yang; Wang, Fang Ping
2010-01-01
to develop an in vitro shade-measuring model to evaluate the reliability and accuracy of the Crystaleye spectrophotometric system, a newly developed spectrophotometer. four shade guides, VITA Classical, VITA 3D-Master, Chromascop and Vintage Halo NCC, were measured with the Crystaleye spectrophotometer in a standardised model, ten times for 107 shade tabs. The shade-matching results and the CIE L*a*b* values of the cervical, body and incisal regions for each measurement were automatically analysed using the supporting software. Reliability and accuracy were calculated for each shade tab both in percentage and in colour difference (ΔE). Difference was analysed by one-way ANOVA in the cervical, body and incisal regions. range of reliability was 88.81% to 98.97% and 0.13 to 0.24 ΔE units, and that of accuracy was 44.05% to 91.25% and 1.03 to 1.89 ΔE units. Significant differences in reliability and accuracy were found between the body region and the cervical and incisal regions. Comparisons made among regions and shade guides revealed that evaluation in ΔE was prone to disclose the differences. measurements with the Crystaleye spectrophotometer had similar, high reliability in different shade guides and regions, indicating predictable repeated measurements. Accuracy in the body region was high and less variable compared with the cervical and incisal regions.
Reliability analysis of PLC safety equipment
Energy Technology Data Exchange (ETDEWEB)
Yu, J.; Kim, J. Y. [Chungnam Nat. Univ., Daejeon (Korea, Republic of)
2006-06-15
FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system.
Reliability analysis of PLC safety equipment
International Nuclear Information System (INIS)
Yu, J.; Kim, J. Y.
2006-06-01
FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system
Improvement on reliability of control system in power plant
International Nuclear Information System (INIS)
Taguchi, S.; Mizumoto, T.; Hirose, Y.; Kashiwai, J.; Takami, I.; Shono, M.; Roji, Y.; Kizaki, S.
1985-01-01
Studies made of Japanese PWR operating experiences have revealed that failures in the control system are the primary causes of unscheduled shutdowns. An attempt has, therefore, been made to improve the reliability of the control system in order to raise the plant reliability. The following are the procedures applied to solve the issue; study of operating experiences, fault tree analysis and failure mode and effects analysis. Improvement measures are developed for the control system whose failure threatens to cause the plant trip during the plant life. These systems are the main feedwater control system, rod control system, pressurizer control system and main steam control system in the primary control system. As a result, the plant unavailability is expected to be reduced significantly by applying the improvements. The improvements are applied to the plants under construction and the operating plants in co-operation with utilities and vendors. (author)
Structural reliability analysis and seismic risk assessment
International Nuclear Information System (INIS)
Hwang, H.; Reich, M.; Shinozuka, M.
1984-01-01
This paper presents a reliability analysis method for safety evaluation of nuclear structures. By utilizing this method, it is possible to estimate the limit state probability in the lifetime of structures and to generate analytically the fragility curves for PRA studies. The earthquake ground acceleration, in this approach, is represented by a segment of stationary Gaussian process with a zero mean and a Kanai-Tajimi Spectrum. All possible seismic hazard at a site represented by a hazard curve is also taken into consideration. Furthermore, the limit state of a structure is analytically defined and the corresponding limit state surface is then established. Finally, the fragility curve is generated and the limit state probability is evaluated. In this paper, using a realistic reinforced concrete containment as an example, results of the reliability analysis of the containment subjected to dead load, live load and ground earthquake acceleration are presented and a fragility curve for PRA studies is also constructed
Design for Reliability of Power Electronic Systems
DEFF Research Database (Denmark)
Yang, Yongheng; Wang, Huai; Sangwongwanich, Ariya
2018-01-01
Power density, efficiency, cost, and reliability are the major challenges when designing a power electronic system. Latest advancements in power semiconductor devices (e.g., silicon carbide devices) and topological innovations have vital contributions to power density and efficiency. Nevertheless......, dedicated heat sink systems for thermal management are required to dissipate the power losses in power electronic systems; otherwise, the power devices will be heated up and eventually fail to operate. In addition, in many mission critical applications (e.g., marine systems), the operating condition (i...
Computer Model to Estimate Reliability Engineering for Air Conditioning Systems
International Nuclear Information System (INIS)
Afrah Al-Bossly, A.; El-Berry, A.; El-Berry, A.
2012-01-01
Reliability engineering is used to predict the performance and optimize design and maintenance of air conditioning systems. Air conditioning systems are expose to a number of failures. The failures of an air conditioner such as turn on, loss of air conditioner cooling capacity, reduced air conditioning output temperatures, loss of cool air supply and loss of air flow entirely can be due to a variety of problems with one or more components of an air conditioner or air conditioning system. Forecasting for system failure rates are very important for maintenance. This paper focused on the reliability of the air conditioning systems. Statistical distributions that were commonly applied in reliability settings: the standard (2 parameter) Weibull and Gamma distributions. After distributions parameters had been estimated, reliability estimations and predictions were used for evaluations. To evaluate good operating condition in a building, the reliability of the air conditioning system that supplies conditioned air to the several The company's departments. This air conditioning system is divided into two, namely the main chilled water system and the ten air handling systems that serves the ten departments. In a chilled-water system the air conditioner cools water down to 40-45 degree F (4-7 degree C). The chilled water is distributed throughout the building in a piping system and connected to air condition cooling units wherever needed. Data analysis has been done with support a computer aided reliability software, this is due to the Weibull and Gamma distributions indicated that the reliability for the systems equal to 86.012% and 77.7% respectively. A comparison between the two important families of distribution functions, namely, the Weibull and Gamma families was studied. It was found that Weibull method performed for decision making.
Foundations for a time reliability correlation system to quantify human reliability
International Nuclear Information System (INIS)
Dougherty, E.M. Jr.; Fragola, J.R.
1988-01-01
Time reliability correlations (TRCs) have been used in human reliability analysis (HRA) in conjunction with probabilistic risk assessment (PRA) to quantify post-initiator human failure events. The first TRCs were judgmental but recent data taken from simulators have provided evidence for development of a system of TRCs. This system has the equational form: t = tau R X tau U , where the first factor is the lognormally distributed random variable of successful response time, derived from the simulator data, and the second factor is a unitary lognormal random variable to account for uncertainty in the model. The first random variable is further factored into a median response time and a factor to account for the dominant type of behavior assumed to be involved in the response and a second factor to account for other influences on the reliability of the response
International Nuclear Information System (INIS)
Sriyono; Ismu Wahyono, Puradwi; Mulyanto, Dwijo; Kusmono, Siamet
2001-01-01
The main component of Multipurpose G.A.Siwabessy had been analyzed by its failure rate curve. The main component ha'..e been analyzed namely, the pump of ''Fuel Storage Pool Purification System'' (AK-AP), ''Primary Cooling System'' (JE01-AP), ''Primary Pool Purification System'' (KBE01-AP), ''Warm Layer System'' (KBE02-AP), ''Cooling Tower'' (PA/D-AH), ''Secondary Cooling System'', and Diesel (BRV). The Failure Rate Curve is made by component database that was taken from 'log book' operation of RSG GAS. The total operation of that curve is 2500 hours. From that curve it concluded that the failure rate of components form of bathtub curve. The maintenance processing causes the curve anomaly
An approach for assessing ALWR passive safety system reliability
International Nuclear Information System (INIS)
Hake, T.M.
1991-01-01
Many of the advanced light water reactor (ALWR) concepts proposed for the next generation of nuclear power plants rely on passive rather than active systems to perform safety functions. Despite the reduced redundancy of the passive systems as compared to active systems in current plants, the assertion is that the overall safety of the plant is enhanced due to the much higher expected reliability of the passive systems. In order to investigate this assertion, a study is being conducted at Sandia National Laboratories to evaluate the reliability of ALWR passive safety features in the context of probabilistic risk assessment (PRA). The purpose of this paper is to provide a brief overview of the approach to this study. The quantification of passive system reliability is not as straightforward as for active systems, due to the lack of operating experience, and to the greater uncertainty in the governing physical phenomena. Thus, the adequacy of current methods for evaluating system reliability must be assessed, and alternatives proposed if necessary. For this study, the Westinghouse Advanced Passive 600 MWe reactor (AP600) was chosen as the advanced reactor for analysis, because of the availability of AP600 design information. This study compares the reliability of AP600 emergency cooling system with that of corresponding systems in a current generation reactor
Reliability analysis of reactor inspection robot(RIROB)
International Nuclear Information System (INIS)
Eom, H. S.; Kim, J. H.; Lee, J. C.; Choi, Y. R.; Moon, S. S.
2002-05-01
This report describes the method and the result of the reliability analysis of RIROB developed in Korea Atomic Energy Research Institute. There are many classic techniques and models for the reliability analysis. These techniques and models have been used widely and approved in other industries such as aviation and nuclear industry. Though these techniques and models have been approved in real fields they are still insufficient for the complicated systems such RIROB which are composed of computer, networks, electronic parts, mechanical parts, and software. Particularly the application of these analysis techniques to digital and software parts of complicated systems is immature at this time thus expert judgement plays important role in evaluating the reliability of the systems at these days. In this report we proposed a method which combines diverse evidences relevant to the reliability to evaluate the reliability of complicated systems such as RIROB. The proposed method combines diverse evidences and performs inference in formal and in quantitative way by using the benefits of Bayesian Belief Nets (BBN)
Sensitivity analysis in optimization and reliability problems
International Nuclear Information System (INIS)
Castillo, Enrique; Minguez, Roberto; Castillo, Carmen
2008-01-01
The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods
Sensitivity analysis in optimization and reliability problems
Energy Technology Data Exchange (ETDEWEB)
Castillo, Enrique [Department of Applied Mathematics and Computational Sciences, University of Cantabria, Avda. Castros s/n., 39005 Santander (Spain)], E-mail: castie@unican.es; Minguez, Roberto [Department of Applied Mathematics, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: roberto.minguez@uclm.es; Castillo, Carmen [Department of Civil Engineering, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: mariacarmen.castillo@uclm.es
2008-12-15
The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods.
System ergonomics as an approach to improve human reliability
International Nuclear Information System (INIS)
Bubb, H.
1988-01-01
The application of system technics on ergonomical problems is called system ergonomics. This enables improvements of human reliability by design measures. The precondition for this is the knowledge of how information processing is performed by man and machine. By a separate consideration of sensory processing, cognitive processing, and motory processing it is possible to have a more exact idea of the system element 'man'. The system element 'machine' is well described by differential equations which allow an ergonomical assessment of the manouverability. The knowledge of information processing of man and machine enables a task analysis. This makes appear on one hand the human boundaries depending on the different properties of the task and on the other hand suitable ergonomical solution proposals which improve the reliability of the total system. It is a disadvantage, however, that the change of human reliability by such measures may not be quoted numerically at the moment. (orig.)
DATMAN: A reliability data analysis program using Bayesian updating
International Nuclear Information System (INIS)
Becker, M.; Feltus, M.A.
1996-01-01
Preventive maintenance (PM) techniques focus on the prevention of failures, in particular, system components that are important to plant functions. Reliability-centered maintenance (RCM) improves on the PM techniques by introducing a set of guidelines by which to evaluate the system functions. It also minimizes intrusive maintenance, labor, and equipment downtime without sacrificing system performance when its function is essential for plant safety. Both the PM and RCM approaches require that system reliability data be updated as more component failures and operation time are acquired. Systems reliability and the likelihood of component failures can be calculated by Bayesian statistical methods, which can update these data. The DATMAN computer code has been developed at Penn State to simplify the Bayesian analysis by performing tedious calculations needed for RCM reliability analysis. DATMAN reads data for updating, fits a distribution that best fits the data, and calculates component reliability. DATMAN provides a user-friendly interface menu that allows the user to choose from several common prior and posterior distributions, insert new failure data, and visually select the distribution that matches the data most accurately
Energy Technology Data Exchange (ETDEWEB)
Bonfietti, Gerson
2003-07-01
This work presents an analysis of the reliability of the emergency power supply system, of a small size nuclear power reactor. Three different configurations are investigated and their reliability analyzed. The fault tree method is used as the main tool of analysis. The work includes a bibliographic review of emergency diesel generator reliability and a discussion of the design requirements applicable to emergency electrical systems. The influence of common cause failure influences is considered using the beta factor model. The operator action is considered using human failure probabilities. A parametric analysis shows the strong dependence between the reactor safety and the loss of offsite electric power supply. It is also shown that common cause failures can be a major contributor to the system reliability. (author)
Strategic defense and attack for reliability systems
International Nuclear Information System (INIS)
Hausken, Kjell
2008-01-01
This article illustrates a method by which arbitrarily complex series/parallel reliability systems can be analyzed. The method is illustrated with the series-parallel and parallel-series systems. Analytical expressions are determined for the investments and utilities of the defender and the attacker, depend on their unit costs of investment for each component, the contest intensity for each component, and their evaluations of the value of system functionality. For a series-parallel system, infinitely many components in parallel benefit the defender maximally regardless of the finite number of parallel subsystems in series. Conversely, infinitely many components in series benefit the attacker maximally regardless of the finite number of components in parallel in each subsystem. For a parallel-series system, the results are opposite. With equivalent components, equal unit costs for defender and attacker, equal intensity for all components, and equally many components in series and parallel, the defender always prefers the series-parallel system rather than the parallel-series system, and converse holds for the attacker. Hence from the defender's perspective, ceteris paribus, the series-parallel system is more reliable, and has fewer 'cut sets' or failure modes
Reliability analysis of pipe whip impacts
International Nuclear Information System (INIS)
Alzbutas, R.; Dundulis, G.; Kulak, R.F.; Marchertas, P.V.
2003-01-01
A probabilistic analysis of a group distribution header (GDH) guillotine break and the damage resulting from the failed GDH impacting against a neighbouring wall was carried out for the Ignalita RBMK-1500 reactor. The NEPTUNE software system was used for the deterministic transient analysis of a GDH guillotine break. Many deterministic analyses were performed using different values of the random variables that were specified by ProFES software. All the deterministic results were transferred to the ProFES system, which then performed probabilistic analyses of piping failure and wall damage. The Monte Carlo Simulation (MCS) method was used to study the sensitivity of the response variables and the effect of uncertainties of material properties and geometry parameters to the probability of limit states. The First Order Reliability Method (FORM) was used to study the probability of failure of the impacted-wall and the support-wall. The Response Surface (RS/MCS) method was used in order to express failure probability as function and to investigate the dependence between impact load and failure probability. The results of the probability analyses for a whipping GDH impacting onto an adjacent wall show that: (i) there is a 0.982 probability that after a GDH guillotine break contact between GDH and wall will occur; (ii) there is a probability of 0.013 that the ultimate tensile strength of concrete at the impact location will be reached, and a through-crack may open; (iii) there is a probability of 0.0126 that the ultimate compressive strength of concrete at the GDH support location will be reached, and the concrete may fail; (iv) at the impact location in the adjacent wall, there is a probability of 0.327 that the ultimate tensile strength of the rebars in the first layer will be reached and the rebars will fail; (v) at the GDH support location, there is a probability of 0.11 that the ultimate stress of the rebars in the first layer will be reached and the rebars will fail