WorldWideScience

Sample records for system nuclear a

  1. The double nuclear system is a new object of nuclear physics studies

    International Nuclear Information System (INIS)

    Volkov, V.V.

    1980-01-01

    Deep inelastic collisions of two complex nuclei result in formation of the specific nuclear complex - a double nuclear system which is a new unit of nuclear microworld. In this paper we consider the conditions under which the double nuclear system is formed, its properties, the statistical regularities of its disintegration, and the nuclear shell structure effect on its evolution. The possibility of using deep inelastic transfer reactions to produce nuclear far from the region of β-stability and nuclei with high angular momentum is discussed. (author)

  2. NCIS: a nuclear criticality information system

    International Nuclear Information System (INIS)

    Koponen, B.L.; Hampel, V.E.

    1984-01-01

    The NCIS is one of the developments carried out to meet the requirements in the field of criticality safety information. Its primary goal is to enhance nuclear criticality safety by dissemination of data, standards, and training material. This paper presents the ''NCIS'' progess since 1950: computer-searching, database management, nuclear critical experiments bibliography. American Nuclear Society transactions criticality safety publications compilation, edition of a personnel directory representing over 140 organizations located in 16 countries and showing a wide range of specialists involved in the field of nuclear criticality safety. The NCIS uses the information management and communication resources of TIS (Technology Information System): automated access procedures; creation of program-dependent information systems; communications. The NCIS is still in a growing, formative stage; it has concentrated first on collecting and organizing the nuclear criticality literature; nuclear critical data, calculational tools, standards, and training materials will follow. Finally the planned and contemplated resources are dealt with: expansion of bibliographic compilations; news database; fundamental criticality safety reference; criticality benchmarck database; user community; training resources; related resources; criticality accident database; dynamic databook; dynamic textbook; expert knowledge system; and, extraction of intelligence

  3. The national nuclear material tracking system. A Korea's countermeasure against nuclear terrorism

    International Nuclear Information System (INIS)

    Moon, Joo Hyun

    2011-01-01

    Since nuclear terrorism has been identified as a real threat, the Korean government has earnestly developed elementary technologies and sub-systems for establishing an integrated defensive system against nuclear terrorism, which is based on the concept of defense-in-depth. This paper introduces the gist and implications of the studies that have been conducted in building the national nuclear material tracking system for preventing and intercepting the illicit trafficking and transporting of nuclear material in Korea. (orig.)

  4. Understanding Nuclear Safety Culture: A Systemic Approach

    International Nuclear Information System (INIS)

    Afghan, A.N.

    2016-01-01

    The Fukushima accident was a systemic failure (Report by Director General IAEA on the Fukushima Daiichi Accident). Systemic failure is a failure at system level unlike the currently understood notion which regards it as the failure of component and equipment. Systemic failures are due to the interdependence, complexity and unpredictability within systems and that is why these systems are called complex adaptive systems (CAS), in which “attractors” play an important role. If we want to understand the systemic failures we need to understand CAS and the role of these attractors. The intent of this paper is to identify some typical attractors (including stakeholders) and their role within complex adaptive system. Attractors can be stakeholders, individuals, processes, rules and regulations, SOPs etc., towards which other agents and individuals are attracted. This paper will try to identify attractors in nuclear safety culture and influence of their assumptions on safety culture behavior by taking examples from nuclear industry in Pakistan. For example, if the nuclear regulator is an attractor within nuclear safety culture CAS then how basic assumptions of nuclear plant operators and shift in-charges about “regulator” affect their own safety behavior?

  5. Simulation of a Nuclear Steam Supply System (NSSS) of a PWR nuclear power plant

    International Nuclear Information System (INIS)

    Reis Martins Junior, L.L. dos.

    1980-01-01

    The following work intends to perform the digital simulation, of the Nuclear Steam Supply System (NSSS) of a PWR nuclear power plant for control systems design and analysis purposes. There are mathematical models for the reactor, the steam generator, the pressurizer and for transport lags of the coolant in the primary circuit. Nevertheless no one control system has been considered to permit any user the inclusion in the more convenient way of the desired control systems' models. The characteristics of the system in consideration are fundamentally equal to the ones of Almirante Alvaro Alberto Nuclear Power Plant, Unit I (Angra I) obtained in the Final Safety Analysis Report at Comissao Nacional de Energia Nuclear. (author)

  6. An approach to a self-consistent nuclear energy system

    International Nuclear Information System (INIS)

    Fujii-e, Yoichi; Arie, Kazuo; Endo, Hiroshi

    1992-01-01

    A nuclear energy system should provide a stable supply of energy without endangering the environment or humans. If there is fear about exhausting world energy resources, accumulating radionuclides, and nuclear reactor safety, tension is created in human society. Nuclear energy systems of the future should be able to eliminate fear from people's minds. In other words, the whole system, including the nuclear fuel cycle, should be self-consistent. This is the ultimate goal of nuclear energy. If it can be realized, public acceptance of nuclear energy will increase significantly. In a self-consistent nuclear energy system, misunderstandings between experts on nuclear energy and the public should be minimized. The way to achieve this goal is to explain using simple logic. This paper proposes specific targets for self-consistent nuclear energy systems and shows that the fast breeder reactor (FBR) lies on the route to attaining the final goal

  7. Approach for Establishing a National Nuclear Forensics System

    International Nuclear Information System (INIS)

    Kim, Jaekwang; Hyung, Sangcheol

    2014-01-01

    The increasing number could give rise to posing a potential threat to national infrastructure which is very vulnerable to radiological sabotage with the materials. International community has been emphasizing the importance of nuclear forensics through the Nuclear Security Summit process as a countermeasure against nuclear terrorism. Global Initiative to Combat Nuclear Terrorism(GICNT) and nuclear forensics International Technology Working Group(ITWG) suggest the establishment of national nuclear forensics system which has a law enforcement for forensic management and maintenance of nuclear forensics database including nuclear material and other radioactive materials. We suggest the legal and institutional system through this paper in an effort to set up a multi expert group and the nuclear forensics DB which can contribute to effective Core capabilities

  8. Approach for Establishing a National Nuclear Forensics System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaekwang; Hyung, Sangcheol [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2014-05-15

    The increasing number could give rise to posing a potential threat to national infrastructure which is very vulnerable to radiological sabotage with the materials. International community has been emphasizing the importance of nuclear forensics through the Nuclear Security Summit process as a countermeasure against nuclear terrorism. Global Initiative to Combat Nuclear Terrorism(GICNT) and nuclear forensics International Technology Working Group(ITWG) suggest the establishment of national nuclear forensics system which has a law enforcement for forensic management and maintenance of nuclear forensics database including nuclear material and other radioactive materials. We suggest the legal and institutional system through this paper in an effort to set up a multi expert group and the nuclear forensics DB which can contribute to effective Core capabilities.

  9. A philosophy for space nuclear systems safety

    International Nuclear Information System (INIS)

    Marshall, A.C.

    1992-01-01

    The unique requirements and contraints of space nuclear systems require careful consideration in the development of a safety policy. The Nuclear Safety Policy Working Group (NSPWG) for the Space Exploration Initiative has proposed a hierarchical approach with safety policy at the top of the hierarchy. This policy allows safety requirements to be tailored to specific applications while still providing reassurance to regulators and the general public that the necessary measures have been taken to assure safe application of space nuclear systems. The safety policy used by the NSPWG is recommended for all space nuclear programs and missions

  10. Soft systems methodology as a systemic approach to nuclear safety management

    International Nuclear Information System (INIS)

    Vieira Neto, Antonio S.; Guilhen, Sabine N.; Rubin, Gerson A.; Caldeira Filho, Jose S.; Camargo, Iara M.C.

    2017-01-01

    Safety approach currently adopted by nuclear installations is built almost exclusively upon analytical methodologies based, mainly, on the belief that the properties of a system, such as its safety, are given by its constituent parts. This approach, however, does not properly address the complex dynamic interactions between technical, human and organizational factors occurring within and outside the organization. After the accident at Fukushima Daiichi nuclear power plant in March 2011, experts of the International Atomic Energy Agency (IAEA) recommended a systemic approach as a complementary perspective to nuclear safety. The aim of this paper is to present an overview of the systems thinking approach and its potential use for structuring socio technical problems involved in the safety of nuclear installations, highlighting the methodologies related to the soft systems thinking, in particular the Soft Systems Methodology (SSM). The implementation of a systemic approach may thus result in a more holistic picture of the system by the complex dynamic interactions between technical, human and organizational factors. (author)

  11. Soft systems methodology as a systemic approach to nuclear safety management

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Neto, Antonio S.; Guilhen, Sabine N.; Rubin, Gerson A.; Caldeira Filho, Jose S.; Camargo, Iara M.C., E-mail: asvneto@ipen.br, E-mail: snguilhen@ipen.br, E-mail: garubin@ipen.br, E-mail: jscaldeira@ipen.br, E-mail: icamargo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Safety approach currently adopted by nuclear installations is built almost exclusively upon analytical methodologies based, mainly, on the belief that the properties of a system, such as its safety, are given by its constituent parts. This approach, however, does not properly address the complex dynamic interactions between technical, human and organizational factors occurring within and outside the organization. After the accident at Fukushima Daiichi nuclear power plant in March 2011, experts of the International Atomic Energy Agency (IAEA) recommended a systemic approach as a complementary perspective to nuclear safety. The aim of this paper is to present an overview of the systems thinking approach and its potential use for structuring socio technical problems involved in the safety of nuclear installations, highlighting the methodologies related to the soft systems thinking, in particular the Soft Systems Methodology (SSM). The implementation of a systemic approach may thus result in a more holistic picture of the system by the complex dynamic interactions between technical, human and organizational factors. (author)

  12. A nuclear power plant system engineering workstation

    International Nuclear Information System (INIS)

    Mason, J.H.; Crosby, J.W.

    1989-01-01

    System engineers offer an approach for effective technical support for operation and maintenance of nuclear power plants. System engineer groups are being set up by most utilities in the United States. Institute of Nuclear Power operations (INPO) and U.S. Nuclear Regulatory Commission (NRC) have endorsed the concept. The INPO Good Practice and a survey of system engineer programs in the southeastern United States provide descriptions of system engineering programs. The purpose of this paper is to describe a process for developing a design for a department-level information network of workstations for system engineering groups. The process includes the following: (1) application of a formal information engineering methodology, (2) analysis of system engineer functions and activities; (3) use of Electric Power Research Institute (EPRI) Plant Information Network (PIN) data; (4) application of the Information Engineering Workbench. The resulting design for this system engineer workstation can provide a reference for design of plant-specific systems

  13. NCIS - a Nuclear Criticality Information System (overview)

    International Nuclear Information System (INIS)

    Koponen, B.L.; Hampel, V.E.

    1983-07-01

    A Nuclear Criticality Information System (NCIS) is being established at the Lawrence Livermore National Laboratory (LLNL) in order to serve personnel responsible for safe storage, transport, and handling of fissile materials and those concerned with the evaluation and analysis of nuclear, critical experiments. Public concern for nuclear safety provides the incentive for improved access to nuclear safety information

  14. A future vision of nuclear material information systems

    International Nuclear Information System (INIS)

    Suski, N.; Wimple, C.

    1999-01-01

    To address the current and future needs for nuclear materials management and safeguards information, Lawrence Livermore National Laboratory envisions an integrated nuclear information system that will support several functions. The vision is to link distributed information systems via a common communications infrastructure designed to address the information interdependencies between two major elements: Domestic, with information about specific nuclear materials and their properties, and International, with information pertaining to foreign nuclear materials, facility design and operations. The communication infrastructure will enable data consistency, validation and reconciliation, as well as provide a common access point and user interface for a broad range of nuclear materials information. Information may be transmitted to, from, and within the system by a variety of linkage mechanisms, including the Internet. Strict access control will be employed as well as data encryption and user authentication to provide the necessary information assurance. The system can provide a mechanism not only for data storage and retrieval, but will eventually provide the analytical tools necessary to support the U.S. government's nuclear materials management needs and non-proliferation policy goals

  15. A study on optimization of the nuclear safety system

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Koh, Byung Joon; Kim, Jin Soo; Kim, Byoung Do; Cho, Seong Won; Kwon, Seog Kwon; Choi, Kwang Sik

    1986-12-01

    The number of nuclear facilities (nuclear power plants, research reactors, nuclear fuel facilities) under construction or in operation in Korea continues to increase and this has brought about increased importance and concerns toward nuclear safety in Korea. Also, domestic nuclear related organizations are increasingly carrying out the design/construction of nuclear power plants and the development /supply of nuclear fuels. In order to flexibly respond to these changes and to suggest direction to take, it is necessary to re-examine the current nuclear safety regulation system. This study is carried out in two stages and this report describes the results of the analysis and the assessment of the nuclear licencing system of such foreign countries as sweden and German, as the first of the two. In this regard, this study includes the analysis on the backgrounds on the choice of nuclear licensing system, the analysis on the licensing procedures, the analysis on the safety inspection system and the enforcement laws, the analysis on the structure and function of the regulatory, business and research organizations as well as the analysis on the relationship between the safety research and the regulatory duties. In this study, the German safety inspection system and the enforcement procedures and the Swedish nuclear licensing system are analyzed in detail. By comparing and assessing the finding with the current Korea Nuclear Licensing System, this study points out some reform measures of the Korean system that needs to improved. With the changing situations in mind, this study aims to develop the nuclear safety regulation system optimized for Korean situation by re-examining the current regulation system. (Author)

  16. SNAP: a tool for nuclear physical protection system modeling

    International Nuclear Information System (INIS)

    Engi, D.; Grant, F.H. III.

    1979-10-01

    Nuclear safeguards systems are concerned, in part, with the physical protection of nuclear materials. The function of a physical protection system is to define the facility against adversary activities which could lead to theft of nuclear material or sabotage resulting in a radiological release. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of physical protection system analysis. This paper describes a detailed application of SNAP to a hypothetical nuclear facility

  17. The national nuclear material tracking system. A Korea's countermeasure against nuclear terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyun [Dongguk Univ., Gyeongbuk (Korea, Republic of)

    2011-07-15

    Since nuclear terrorism has been identified as a real threat, the Korean government has earnestly developed elementary technologies and sub-systems for establishing an integrated defensive system against nuclear terrorism, which is based on the concept of defense-in-depth. This paper introduces the gist and implications of the studies that have been conducted in building the national nuclear material tracking system for preventing and intercepting the illicit trafficking and transporting of nuclear material in Korea. (orig.)

  18. Building a medical system for nuclear facilities

    International Nuclear Information System (INIS)

    Maeda, Mitsuya

    2016-01-01

    To build a medical system for nuclear facilities, I explained what kinds of actions were performed with the TEPCO Fukushima Daiichi Nuclear Power Plant Accident and what kinds of actions are going to be performed in the future. We examined the health and medical care of the emergency workers in nuclear facilities including TEPCO Fukushima Daiichi Nuclear Power Plant from 2014 to 2015 in the Ministry of Health, Labour and Welfare (MHLW). We carried out a detailed hearing from stakeholders of electric companies and medical institutions about the medical system in nuclear facilities carrying out urgent activities. It has been said that the electric company is responsible to maintain the medical system for affected workers in nuclear facilities. However, TEPCO could not find the medical staff, such as doctors, by their own effort at the TEPCO Fukushima Daiichi Nuclear Power Plant Accident. The network of doctors familiar with emergency medical care support dispatched the medical staff after July of 2011. The stakeholders indicated that the following six tasks must be resolved: (1) the fact that no electric company performs the action of bringing up medical staff who can be dispatched into nuclear facilities in emergencies in 2015; (2) bringing up personnel in charge of radiation management and logistics other than the medical staff, such as doctors; (3) cooperation with the community medicine system given the light and shade by nuclear facilities; (4) performing training for the many concurrent wounded based on the scenario of a severe accident; (5) indicating both the condition of the contract and the guarantee of status that is appropriate for dispatched medical staffs; and (6) clarifying the organization of the network of stakeholders. The stakeholders showed the future directionality as follows: (1) To recruit the medical staff expected to be dispatched into nuclear facilities, (2) to carry out the discussion and conveyance training to strengthen cooperation with

  19. A study on LAN applications in nuclear safety systems

    International Nuclear Information System (INIS)

    Kim, Sung; Lee, Young Ryul; Koo, Jun Mo; Han, Jai Bok

    1995-01-01

    It is a general tendency to digitalize the conventional relay based I and C systems in nuclear power plant. But, the digitalisation of nuclear safety systems has many a difficulty to surmount. The typical one thing of many difficulties is the data communication problem between local controllers and systems. The network architecture built with LAN (Local Area Network) in digital systems of the other industries are general. But in case of nuclear safety systems many considerations in point of safety and license are required to implement it in the field. In this parer, some considerations for applying LAN in nuclear safety systems were reviewed

  20. A CAMAC system for nuclear spectroscopy

    International Nuclear Information System (INIS)

    EL Araby, S.M.S.

    1983-01-01

    The thesis describes a computer based multichannel pulse height analyzer for acquiring, processing and displaying random signals coming from a nuclear detector for on - line γ- ray spectroscopy. The system is built around a Pdp - 11/ 04 Computer. Interfacing to the computer is carried out by CAMAC modules. The necessary hard- were required to interface the nuclear detector system to the computer- CAMAC system is developed together with the associated circuits needed to measure the dead time of the whole system. The software has been written Macro,FORTRAN and CATY languages. emphasis was placed on execution speed and it was found that accumulating a large number of data for later processing could improve the execution speed considerably thereby minimizing dead time fast FORTRAN - CAMAC callable subroutine have been developed and used in the software

  1. Nuclear Fuel Cycle Information System. A directory of nuclear fuel cycle facilities. 2009 ed

    International Nuclear Information System (INIS)

    2009-04-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities, published online as part of the Integrated Nuclear Fuel Cycle Information System (iNFCIS: http://www-nfcis.iaea.org/). This is the fourth hardcopy publication in almost 30 years and it represents a snapshot of the NFCIS database as of the end of 2008. Together with the attached CD-ROM, it provides information on 650 civilian nuclear fuel cycle facilities in 53 countries, thus helping to improve the transparency of global nuclear fuel cycle activities

  2. Systems aspects of a space nuclear reactor power system

    International Nuclear Information System (INIS)

    Jaffe, L.; Fujita, T.; Beatty, R.

    1988-01-01

    Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: Power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, attitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly

  3. Emerging nuclear energy systems and nuclear weapon proliferation

    International Nuclear Information System (INIS)

    Gsponer, A.; Sahin, S.; Jasani, B.

    1983-01-01

    Generally when considering problems of proliferation of nuclear weapons, discussions are focused on horizontal proliferation. However, the emerging nuclear energy systems currently have an impact mainly on vertical proliferation. The paper indicates that technologies connected with emerging nuclear energy systems, such as fusion reactors and accelerators, enhance the knowledge of thermonuclear weapon physics and will enable production of military useful nuclear materials (including some rare elements). At present such technologies are enhancing the arsenal of the nuclear weapon states. But one should not forget the future implications for horizontal proliferation of nuclear weapons as some of the techniques will in the near future be within the technological and economic capabilities of non-nuclear weapon states. Some of these systems are not under any international control. (orig.) [de

  4. Nuclear material control systems for nuclear power plants

    International Nuclear Information System (INIS)

    1975-06-01

    Paragraph 70.51(c) of 10 CFR Part 70 requires each licensee who is authorized to possess at any one time special nuclear material in a quantity exceeding one effective kilogram to establish, maintain, and follow written material control and accounting procedures that are sufficient to enable the licensee to account for the special nuclear material in his possession under license. While other paragraphs and sections of Part 70 provide specific requirements for nuclear material control systems for fuel cycle plants, such detailed requirements are not included for nuclear power reactors. This guide identifies elements acceptable to the NRC staff for a nuclear material control system for nuclear power reactors. (U.S.)

  5. A Nuclear Scale System Based on LabVIEW

    International Nuclear Information System (INIS)

    Liu Shixing; Gu Qindong

    2009-01-01

    Nuclear mass scales measure the weight of materials which absorb and attenuate the nuclear radiation when the low energy γ-ray through it and is a non-contact continuous measurement device with simple structure and reliable operation. LabVIEW as a graphical programming language is a standard data acquisition and instrument control software. Based on the principle of nuclear mass scale measuring system, monitoring software for nuclear scale system is designed using LabVIEW programming environment. Software architecture mainly composed of three basic modules which include the monitoring software, databases and Web services. It achieves measurement data acquisition, status monitoring, and data management and has networking functions. (authors)

  6. Nuclear safeguards - a system in transition

    International Nuclear Information System (INIS)

    Carlson, J.

    1999-01-01

    'Classical' safeguards have a strong emphasis on nuclear materials accountancy, and are primarily concerned with verifying nuclear activities as declared by the State - what has been termed the correctness of States' declarations. Following the Gulf War, failure to adequately address the possibility of undeclared nuclear activities - the issue of the completeness of States' declarations - has been recognised as a major shortcoming in the classical safeguards system, and major changes are in progress to strengthen the IAEA's capabilities in this regard. Agreement has been reached on a Model Protocol substantially extending the IAEA's authority, and there has been good progress in developing the new approaches and technologies required to ensure this authority is used effectively. IAEA safeguards are undergoing a major transition, towards greater emphasis on information collection and analysis, diversity of verification methods, incorporation of more qualitative judgments, and improved efficiency. These changes present major challenges to the IAEA and to the international community, but the end result will be a more effective safeguards system

  7. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  8. A novel nuclear-powered propulsion system for ship

    International Nuclear Information System (INIS)

    Liu Tao; Han Weishi

    2003-01-01

    A novel nuclear-powered propulsion system for ship is presented in this paper. In this system, a minitype liquid sodium-cooled reactor is used as power; alkali-metal thermal-to-electric conversion (AMTEC) cells are utilized to transform the heat energy to electric energy and superconducting magneto-hydrodynamic (MHD) work as propulsion. This nuclear-powered propulsion system has great advantages in low noise, high speed, long survivability and simple manipulation. It has great significance for the development of propulsion system. (author)

  9. A study on expert system applications for nuclear power plant

    International Nuclear Information System (INIS)

    Huh, Young Hwan; Kim, Yeong Jin; Park, Nam Seog; Dong, In Sook; Choi, In Seon

    1987-12-01

    The application of artificial intelligence techniques to nuclear power plants such as expert systems is rapidly emerging. expert systems can contribute significantly to the availability and the improved operation and safety of nuclear power plants. The objective of the project is to develop an expert system in a selected application area in the nuclear power plants. This project will last for 3 years. The first year's tasks are: - Information collection and literature survey on expert systems. - Analysis of several applicable areas for applying AI technologies to the nuclear power plants. - Conceptual design of a few selected domains. - Selection of hardware and software tools for the development of the expert system

  10. A method of short range system analysis for nuclear utilities

    International Nuclear Information System (INIS)

    Eng, R.; Mason, E.A.; Benedict, M.

    1976-01-01

    An optimization procedure has been formulated and tested that is capable of solving for the optimal generation schedule of several nuclear power reactors in an electric power utility system, under short-range, resource-limited, conditions. The optimization procedure utilizes a new concept called the Opportunity Cost of Nuclear Power (OCNP) to optimally assign the resource-limited nuclear energy to the different weeks and hours in the short-range planning horizon. OCNP is defined as the cost of displaced energy when optimally distributed nuclear energy is marginally increased. Under resource-limited conditions, the short-range 'value' of nuclear power to a utility system is not its actual generation cost, but the cost of the next best alternative supply of energy, the OCNP. OCNP is a function of a week's system reserve capacity, the system's economic loading order, the customer demand function, and the nature of the available utility system generating units. The optimized OCNP value of the short-range planning period represents the utility's short-range energy replacement cost incurred when selling nuclear energy to a neighbouring utility. (author)

  11. Development of a Virtual Reality (VR) system for nuclear security training

    International Nuclear Information System (INIS)

    Yamaguchi, Yasuo; Hanai, Tasuku

    2014-01-01

    The Integrated Support Center for Nuclear nonproliferation and Nuclear Security (ISCN) under the Japan Atomic Energy Agency (JAEA) began the development of Virtual Reality (VR) training system for the purpose of teaching trainees nuclear security. ISCN set up two VR training courses by 2013. One is for teaching a nuclear security system of nuclear plants. The VR training system allows trainees to have virtual experiences visiting a nuclear plant. Through these experiences, trainees are able to learn how physical protection systems work in the plant. The course focuses on learning fundamental knowledge and is suitable for trainees having little experiences in the field of nuclear security. The other is for teaching fundamental skills corresponding to a contingency plan in a Central Alarm Station (CAS) of nuclear power plant. Computers of the VR training system deploy an intrusion scenario in a virtual space. Trainees in a group sit in front of 3-D screens and play a role play game in a virtual CAS. Through the exercise, trainees are able to learn skills necessary to the contingency case of nuclear plants. In my presentation, I will introduce the two training courses, advantages and disadvantages of the VR training system, reactions of trainees and future plans. (author)

  12. Outline of a computerized nuclear material accounting system applicable to nuclear power reactors

    International Nuclear Information System (INIS)

    Handshuh, J.W.

    1975-01-01

    A computerized nuclear material accounting system is described which enables a utility to account for its material throughout the entire fuel cycle. From input of transactions, the system records and reports inventories and transactions by accounts which the user may establish for discrete locations, item control areas, further subdivisions, and material types. Account numbers are designed so that accounts and records are automatically sorted in the order desired. The system also generates the Material Status Reports for the Nuclear Regulatory Commission

  13. A lightning prevention system for nuclear operations

    International Nuclear Information System (INIS)

    Lanzoni, J.A.; Carpenter, R.B.; Tinsley, R.H.

    1994-01-01

    Lightning presents a significant threat to the uninterrupted operation of nuclear power generation facilities. There exists two categories of lightning protection systems-collectors and preventors. Collectors are air terminals, overhead shield wires and other devices designed to collect incoming lightning strikes. Preventors, on the other hand, lower the electrical potential between a thundercloud and ground to a level lower than that required to collect a strike. The Dissipation Array reg-sign Systems prevents lightning strikes from terminating in the protected area, consequently eliminating both the direct hazard and indirect effects of lightning. Over 1,600 Dissipation Array reg-sign Systems are currently in service, with more than 10,500 system-years of operating experience and a historical success rate of over ninety-nine percent. Lightning Eliminators ampersand Consultants has fulfilled 24 contracts for Dissipation Array reg-sign Systems at nuclear power generation facilities

  14. Development of a 1200 fine group nuclear data library for advanced nuclear systems

    Institute of Scientific and Technical Information of China (English)

    Jun Zou; Lei-Ming Shang; Fang Wang; Li-Juan Hao

    2017-01-01

    Accurate and reliable nuclear data libraries are essential for calculation and design of advanced nuclear systems.A 1200 fine group nuclear data library Hybrid Evaluated Nuclear Data Library/Fine Group (HENDL/FG) with neutrons of up to 150 MeV has been developed to improve the accuracy of neutronics calculations and analysis.Corrections of Doppler,resonance self-shielding,and thermal upscatter effects were done for HENDL/FG.Shielding and critical safety benchmarks were performed to test the accuracy and reliability of the library.The discrepancy between calculated and measured nuclear parameters fell into a reasonable range.

  15. Planning for a space infrastructure for disposal of nuclear space power systems

    International Nuclear Information System (INIS)

    Angelo, J. Jr.; Albert, T.E.; Lee, J.

    1989-01-01

    The development of safe, reliable, and compact power systems is vital to humanity's exploration, development, and, ultimately, civilization of space. Nuclear power systems appear to present to offer the only practical option of compact high-power systems. From the very beginning of US space nuclear power activities, safety has been a paramount requirement. Assurance of nuclear safety has included prelaunch ground handling operations, launch, and space operations of nuclear power sources, and more recently serious attention has been given to postoperational disposal of spent or errant nuclear reactor systems. The purpose of this paper is to describe the progress of a project to utilize the capabilities of an evolving space infrastructure for planning for disposal of space nuclear systems. Project SIREN (Search, Intercept, Retrieve, Expulsion - Nuclear) is a project that has been initiated to consider post-operational disposal options for nuclear space power systems. The key finding of Project SIREN was that although no system currently exists to affect the disposal of a nuclear space power system, the requisite technologies for such a system either exist or are planned for part of the evolving space infrastructure

  16. Nuclear steam supply system and method of installation

    International Nuclear Information System (INIS)

    Tower, S.N.; Christenson, J.A.; Braun, H.E.

    1989-01-01

    This patent describes a method of providing a nuclear reactor power plant at a predetermined use site accessible by predetermined navigable waterways. The method is practiced with apparatus including a nuclear reactor system. The system has a nuclear steam-supply section. The method consists of: constructing a nuclear reactor system at a manufacturing site remote from the predetermined use site but accessible to the predetermined waterways for transportation from the manufacturing site to the predetermined use site, the nuclear reactor system including a barge with the nuclear steam supply section constructed integrally with the barge. Simultaneously with the construction of the nuclear reactor system, constructing facilities at the use site to be integrated with the nuclear reactor system to form the nuclear-reactor power plant; transporting the nuclear reactor system along the waterways to the predetermined use site; at the use site joining the removal parts of the altered nuclear reactor system to the remainder of the altered nuclear reactor system to complete the nuclear reactor system; and installing the nuclear reactor system at the predetermined use site and integrating the nuclear reactor system to interact with the facilities constructed at the predetermined use site to form the nuclear-reactor power plant

  17. A Nuclear Safety System based on Industrial Computer

    International Nuclear Information System (INIS)

    Kim, Ji Hyeon; Oh, Do Young; Lee, Nam Hoon; Kim, Chang Ho; Kim, Jae Hack

    2011-01-01

    The Plant Protection System(PPS), a nuclear safety Instrumentation and Control (I and C) system for Nuclear Power Plants(NPPs), generates reactor trip on abnormal reactor condition. The Core Protection Calculator System (CPCS) is a safety system that generates and transmits the channel trip signal to the PPS on an abnormal condition. Currently, these systems are designed on the Programmable Logic Controller(PLC) based system and it is necessary to consider a new system platform to adapt simpler system configuration and improved software development process. The CPCS was the first implementation using a micro computer in a nuclear power plant safety protection system in 1980 which have been deployed in Ulchin units 3,4,5,6 and Younggwang units 3,4,5,6. The CPCS software was developed in the Concurrent Micro5 minicomputer using assembly language and embedded into the Concurrent 3205 computer. Following the micro computer based CPCS, PLC based Common-Q platform has been used for the ShinKori/ShinWolsong units 1,2 PPS and CPCS, and the POSAFE-Q PLC platform is used for the ShinUlchin units 1,2 PPS and CPCS. In developing the next generation safety system platform, several factors (e.g., hardware/software reliability, flexibility, licensibility and industrial support) can be considered. This paper suggests an Industrial Computer(IC) based protection system that can be developed with improved flexibility without losing system reliability. The IC based system has the advantage of a simple system configuration with optimized processor boards because of improved processor performance and unlimited interoperability between the target system and development system that use commercial CASE tools. This paper presents the background to selecting the IC based system with a case study design of the CPCS. Eventually, this kind of platform can be used for nuclear power plant safety systems like the PPS, CPCS, Qualified Indication and Alarm . Pami(QIAS-P), and Engineering Safety

  18. A Nuclear Safety System based on Industrial Computer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hyeon; Oh, Do Young; Lee, Nam Hoon; Kim, Chang Ho; Kim, Jae Hack [Korea Electric Power Corporation Engineering and Construction, Daejeon (Korea, Republic of)

    2011-05-15

    The Plant Protection System(PPS), a nuclear safety Instrumentation and Control (I and C) system for Nuclear Power Plants(NPPs), generates reactor trip on abnormal reactor condition. The Core Protection Calculator System (CPCS) is a safety system that generates and transmits the channel trip signal to the PPS on an abnormal condition. Currently, these systems are designed on the Programmable Logic Controller(PLC) based system and it is necessary to consider a new system platform to adapt simpler system configuration and improved software development process. The CPCS was the first implementation using a micro computer in a nuclear power plant safety protection system in 1980 which have been deployed in Ulchin units 3,4,5,6 and Younggwang units 3,4,5,6. The CPCS software was developed in the Concurrent Micro5 minicomputer using assembly language and embedded into the Concurrent 3205 computer. Following the micro computer based CPCS, PLC based Common-Q platform has been used for the ShinKori/ShinWolsong units 1,2 PPS and CPCS, and the POSAFE-Q PLC platform is used for the ShinUlchin units 1,2 PPS and CPCS. In developing the next generation safety system platform, several factors (e.g., hardware/software reliability, flexibility, licensibility and industrial support) can be considered. This paper suggests an Industrial Computer(IC) based protection system that can be developed with improved flexibility without losing system reliability. The IC based system has the advantage of a simple system configuration with optimized processor boards because of improved processor performance and unlimited interoperability between the target system and development system that use commercial CASE tools. This paper presents the background to selecting the IC based system with a case study design of the CPCS. Eventually, this kind of platform can be used for nuclear power plant safety systems like the PPS, CPCS, Qualified Indication and Alarm . Pami(QIAS-P), and Engineering Safety

  19. A nuclear data acquisition system flow control model

    International Nuclear Information System (INIS)

    Hack, S.N.

    1988-01-01

    A general Petri Net representation of a nuclear data acquisition system model is presented. This model provides for the unique requirements of a nuclear data acquisition system including the capabilities of concurrently acquiring asynchronous and synchronous data, of providing multiple priority levels of flow control arbitration, and of permitting multiple input sources to reside at the same priority without the problem of channel lockout caused by a high rate data source. Finally, a previously implemented gamma camera/physiological signal data acquisition system is described using the models presented

  20. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  1. Sustainable minireactors: A framework for decentralized nuclear energy systems

    International Nuclear Information System (INIS)

    Harms, A.A.; Sassin, W.W.

    1983-01-01

    The concept of a nuclear energy system consisting of numerous small, specialized nuclear reactors providing heat or electricity for localized/regional purposes is considered. It is envisaged that a ''parent'' nuclear facility would sustain the fuel needs of many small nuclear energy ''satellites'' and possibly provide other fuel-management services. The choice of fuel cycle and the operational features of these satellites may be determined by the form of energy required, public and social preferences, and institutional factors. Three distinct classes of distributed systems, each based on extensions of existing nuclear technology, are identified and discussed. In addition to the points emphasized concerning the types of minireactors and the fuel cycles chosen, it is important to recognize the potential for mass-production of these smaller facilities. Also, if the fuel-consuming part of the system is widely distributed geographically and if the fuel can be stored, the simultaneous failure of substantial parts of the energy supply system seems unlikely. Finally, if there were a local need for medium-power facilities, provision for the stacking of minireactors to attain a specified power level could be introduced

  2. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  3. Nuclear data processing using a database management system

    International Nuclear Information System (INIS)

    Castilla, V.; Gonzalez, L.

    1991-01-01

    A database management system that permits the design of relational models was used to create an integrated database with experimental and evaluated nuclear data.A system that reduces the time and cost of processing was created for computers type EC or compatibles.A set of programs for the conversion from nuclear calculated data output format to EXFOR format was developed.A dictionary to perform a retrospective search in the ENDF database was created too

  4. A new option for exploitage of future nuclear energy. Accelerator driven radioactive clean nuclear power system

    International Nuclear Information System (INIS)

    Ding Dazhao

    2000-01-01

    Nuclear energy is an effective, clean and safe energy resource. But some shortages of the nuclear energy system presently commercial available obstruct further development of the nuclear energy by heavy nuclear fission. Those are final disposal of the high level radioactive waste, inefficient use of the uranium resource and safety issue of the system. Innovative technical option is seeking for by the nuclear scientific community in recent ten years in aiming to overcome these obstacles, namely, accelerator driven sub-critical system (ADS). This hybrid system may bridge over the gap between presently commercial available nuclear power system and the full exploitation of the fusion energy. The basic principle of ADS is described and its capability in waste transmutation, conversion of the nuclear fuel are demonstrated by two examples--AD-fast reactor and AD-heavy water thermal reactor. The feasibility of ADS and some projects in US, Japan, etc are briefly discussed. The rationale in promoting the R and D of ADS in China is emphasized as China is at the beginning stage of its ambitious project in construction of the nuclear power

  5. Systems aspects of a space nuclear reactor power system

    Science.gov (United States)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    Various system aspects of a 300-kW nuclear reactor power system for spacecraft have been investigated. Special attention is given to the cases of a reusable OTV and a space-based radar. It is demonstrated that the stowed length of the power system is important to mission design, and that orbital storage for months to years may be needed for missions involving orbital assembly.

  6. Nuclear imaging system

    International Nuclear Information System (INIS)

    Barrett, H.H.; Horrigan, F.A.

    1975-01-01

    This invention relates to a nuclear imaging system for mapping the source of high energy nuclear particles from a living organ which has selectively absorbed a radioactive compound by spatially coding the energy from the source in a Fresnel pattern on a detector and decoding the detector output to prouce an image of the source. The coding is produced by a Fresnel zone plate interposed between the nuclear energy source and the detector whose position is adjustable with respect to the detector to focus the slices of the nuclear source on the detector. By adjusting the zone plate to a plurality of positions, data from a plurality of cross-sectional slices are produced from which a three-dimensional image of the nuclear source may be obtained. (Patent Office Record)

  7. Cooling system for auxiliary systems of a nuclear power plant

    International Nuclear Information System (INIS)

    Maerker, W.; Mueller, K.; Roller, W.

    1981-01-01

    From the reactor auxiliary and ancillary systems of a nuclear facility heat has to be removed without the hazard arising that radioactive liquids or gases may escape from the safe area of the nuclear facility. A cooling system is described allowing at every moment to make available cooling fluid at a temperature sufficiently low for heat exchangers to be able to remove the heat from such auxiliary systems without needing fresh water supply or water reservoirs. For this purpose a dry cooling tower is connected in series with a heat exchanger that is cooled on the secondary side by means of a refrigerating machine. The cooling pipes are filled with a nonfreezable fluid. By means of a bypass a minimum temperature is guaranteed at cold weather. (orig.) [de

  8. A prototype nuclear emergency response decision making expert system

    International Nuclear Information System (INIS)

    Chang, C.; Shih, C.; Hong, M.; Yu, W.; Su, M.; Wang, S.

    1990-01-01

    A prototype of emergency response expert system developed for nuclear power plants, has been fulfilled by Institute of Nuclear Energy Research. Key elements that have been implemented for emergency response include radioactive material dispersion assessment, dynamic transportation evacuation assessment, and meteorological parametric forecasting. A network system consists of five 80386 Personal Computers (PCs) has been installed to perform the system functions above. A further project is still continuing to achieve a more complicated and fanciful computer aid integral emergency response expert system

  9. Two-fluid equations for a nuclear system with arbitrary motions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Jae [Chungnam National University, Daejeon (Korea, Republic of); Kim, Kyung Doo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Ocean nuclear systems include a seabed-type plant, a floating-type plant, and a nuclear-propulsion ship. We asked ourselves, 'What governing equations should be used for ocean nuclear systems?' Since ocean nuclear systems are apt to move arbitrarily, the two-fluid model must be formulated in the non-inertial frame of reference that is undergoing acceleration with respect to an inertial frame. Two-phase flow systems with arbitrary motions are barely reported. Kim et al. (1996) added the centripetal and Euler acceleration forces to the homogeneous equilibrium momentum equation embedded in the RETRAN code. However, they did not look into the mass and energy equations. The purpose of this study is to derive general two-fluid equations in the non-inertial frame of reference, which can be used for safety analysis of ocean nuclear systems. The two-fluid equation forms for scalar properties such as mass, internal energy, and enthalpy equation in the moving frame are the same as those in the absolute frame. On the other hand, the fictitious effect must be included in the momentum equation.

  10. Future nuclear systems technology

    International Nuclear Information System (INIS)

    Brooks, H.

    1979-01-01

    Five directions can be identified for evolution of nuclear systems, possibly a sixth. These are, first, and perhaps most important, toward a means of extending fissile resources through improvement of the efficiency of their use; second, improvements in nuclear safety; third, reduction in the environmental impacts of nuclear electric power generation, particularly water requirements; fourth, improvements in proliferation resistance of the nuclear fuel cycle; and fifth, improvements in economics. And added in a sixth, and somewhat more speculative direction, the use of nuclear power for purposes other than the direct generation of electricity

  11. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  12. Nuclear Systems Kilopower Overview

    Science.gov (United States)

    Palac, Don; Gibson, Marc; Mason, Lee; Houts, Michael; McClure, Patrick; Robinson, Ross

    2016-01-01

    The Nuclear Systems Kilopower Project was initiated by NASAs Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project consists of two elements. The primary element is the Kilopower Prototype Test, also called the Kilopower Reactor Using Stirling Technology(KRUSTY) Test. This element consists of the development and testing of a fission ground technology demonstrator of a 1 kWe fission power system. A 1 kWe system matches requirements for some robotic precursor exploration systems and future potential deep space science missions, and also allows a nuclear ground technology demonstration in existing nuclear test facilities at low cost. The second element, the Mars Kilopower Scalability Study, consists of the analysis and design of a scaled-up version of the 1 kWe reference concept to 10 kWe for Mars surface power projected requirements, and validation of the applicability of the KRUSTY experiment to key technology challenges for a 10 kWe system. If successful, these two elements will lead to initiation of planning for a technology demonstration of a 10 kWe fission power capability for Mars surface outpost power.

  13. 21 CFR 892.1310 - Nuclear tomography system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear tomography system. 892.1310 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1310 Nuclear tomography system. (a) Identification. A nuclear tomography system is a device intended to detect nuclear radiation in the body and...

  14. A portable system for nuclear, chemical agent, and explosives identification

    International Nuclear Information System (INIS)

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.; Caffrey, A.J.

    2001-01-01

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electromechanically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine a prompt-gamma neutron-activation analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  15. Development of a quality management system for Brazilian nuclear installations

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Zouain, Desiree Moraes

    2005-01-01

    The present work is a proposal for developing a quality management system for Brazilian nuclear installations, based on applicable standards. The standard ISO 9001:2000 [4] establishes general requirements for the implementation of a quality management system in all kinds of organizations. The standard IAEA 50-C/SG-Q [1] establishes general requirements for the implementation of a quality assurance system in nuclear installations. The standard CNEN-NN- 1.16 [5] establishes the regulating requirements for the quality assurance systems and programs of nuclear installations, for licensing and authorization for operation of these installations in Brazil. The revision of standard IAEA 50-C/SG-Q [1], to be replaced by IAEA DS 338 [2] and IAEA DPP 349 [3], introduces the concept of 'Integrated Management System' for the nuclear area, in preference to the concept of 'Quality Assurance'. This approach is incorporated with the current tendency, because it guides the system to manage, in an integrated way, the requirements of quality, safety, health, environment, security and economics of the installation. The results of the characterization of the quality management systems established in the applicable standards are presented, with the determination of the common and conflicting points among them. Referring data to quality assurance program/quality management system in some nuclear installations of IAEA Member States are also presented. (author)

  16. Towards a new system of accounting of nuclear material

    International Nuclear Information System (INIS)

    Maceiras, Elena; Fernandez Moreno, Sonia; Castro, Laura B.; Saavedra, Analia D.; Mairal, M.L.; Valentino, Lucia I.; Vicens, Hugo E.; Llacer, Carlos D.

    1999-01-01

    The Nuclear Regulatory Authority (NRA) of Argentina has, among other functions, to ensure the fulfilment of national nuclear regulatory standards and all international safeguards commitments assumed by Argentina, particularly those related to the accounting and control of nuclear materials. To fulfil this responsibility, national inspections and audits of the operator's accounting and measurement systems are carried out, generating a great deal of data to be processed and evaluated. To manage this information in an efficient way, the RNA has implemented a control system composed by three database: SCMN, SIS and SOP, which interact amongst them. The objectives and functions of this integrated system and the achieved results to date are described in the present paper. (author)

  17. A Portable System for Nuclear, Chemical Agent and Explosives Identification

    International Nuclear Information System (INIS)

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Caffrey, A.J.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.

    2000-01-01

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electrochemically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine an active neutron interrogation and analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  18. Nuclear containment systems and in-service inspection status of Korea nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jihong, Park; Jaekeun, Hong; Banuk, Park [Korea Institute of Machinery and Materials, Dept. of Authorized Test and Evaluation, Kyungnam (Korea, Republic of)

    2007-07-01

    20 unit nuclear power plants in Korea have been operated and maintained since the first unit started in commercial service in 1978. Most recently 4 units were under construction and several units were planned to be constructed. by industries. 4 types of nuclear containment systems have been constructed until now: first, metal containments, then pre-stressed concrete containments with grouted tendon systems, followed by pre-stressed concrete containments with un-grouted tendon systems, and Korea standard nuclear containments. All the nuclear containments should be inspected periodically. Therefore for periodic in-service inspection, several appropriate technical requirements should be applied differently depending on the specific nuclear containment types. With the changes of times, nuclear containment systems have undergone a remarkable change, and finally nuclear containment system of Korea standard nuclear power plant was settled down, and as a matter of course it dominates the trend of present and future nuclear containment systems. Overall in-service inspection results of most Korea nuclear containments have not showed any serious evidence of degradation.

  19. Nuclear employee data system (NEDS), a pilot project

    International Nuclear Information System (INIS)

    Britz, W.L.

    1984-01-01

    This paper describes a pilot project being funded by six east coast nuclear utilities: the Nuclear Employee Data System (NEDS). The NEDS is to be a customized computer-based information management system that will receive, update, and maintain in-processing information among the NEDS participating utilities. A comprehensive set of data requirements has been preliminarily identified and characterized into areas of: personal information, security information, health physics information, respiratory protective equipment information, medical information, and training information. The NEDS is expected to become operational next summer

  20. NUClear: A Loosely Coupled Software Architecture for Humanoid Robot Systems

    Directory of Open Access Journals (Sweden)

    Trent eHouliston

    2016-04-01

    Full Text Available This paper discusses the design and interface of NUClear, a new hybrid message-passing architecture for embodied humanoid robotics. NUClear is modular, low latency and promotes functional and expandable software design. It greatly reduces the latency for messages passed between modules as the messages routes are established at compile time. It also reduces the number of functions that must be written using a system called co-messages which aids in dealing with multiple simultaneous data. NUClear has primarily been evaluated on a humanoid robotic soccer platform and on a robotic boat platform, with evaluations showing that NUClear requires fewer callbacks and cache variables over existing message-passing architectures. NUClear does have limitations when applying these techniques on multi-processed systems. It performs best in lower power systems where computational resources are limited. Future work will focus on applying the architecture to new platforms, including a larger form humanoid platform and a virtual reality platform and further evaluating the impact of the novel techniques introduced.

  1. A protection system of low temperature thermo-supply nuclear reactor

    International Nuclear Information System (INIS)

    Jiang Binsen

    1988-09-01

    A Protection system of low temperature thermo-supply nuclear reactor is introduced. It is the first protection system, which is designed and manufactred on the basis of Chinese National Standard GB 4083-83 'General Safety Principle of Nuclear Reactor Protection System', to be considered under the circumstances of industry level in China. Advantages of the protection system are as follows: 1)The single failure criteria can fully be fulfilled by the protection system. 2) On-line testing system can be used for detecting all of failure components and quick identifying the failure points in the system. 3) It is convenience for maintenacnce of the system. To complete this project is very important and helpful in promoting the development of the protection system and safety operation of nuclear reactor in China

  2. Advanced nuclear systems. Review study

    International Nuclear Information System (INIS)

    Liebert, Wolfgang; Glaser, Alexander; Pistner, Christoph; Baehr, Roland; Hahn, Lothar

    1999-04-01

    The task of this review study is to from provide an overview of the developments in the field of the various advanced nuclear systems, and to create the basis for more comprehensive studies of technology assessment. In an overview the concepts for advanced nuclear systems pursued worldwide are subdivided into eight subgroups. A coarse examination raster (set pattern) is developed to enable a detailed examination of the selected systems. In addition to a focus on enhanced safety features, further aspects are also taken into consideration, like the lowering of the proliferation risk, the enhancement of the economic competitiveness of the facilities and new usage possibilities (for instance concerning the relaxation of the waste disposal problem or the usage of alternative fuels to uranium). The question about the expected time span for realization and the discussion about the obstacles on the way to a commercially usable reactor also play a substantial role as well as disposal requirements as far as they can be presently recognized. In the central chapter of this study, the documentation of the representatively selected concepts is evaluated as well as existing technology assessment studies and expert opinions. In a few cases where this appears to be necessary, according technical literature, further policy advisory reports, expert statements as well as other relevant sources are taken into account. Contradictions, different assessments and dissents in the literature as well as a few unsettled questions are thus indicated. The potential of advanced nuclear systems with respect to economical and societal as well as environmental objectives cannot exclusively be measured by the corresponding intrinsic or in comparison remarkable technical improvements. The acceptability of novel or improved systems in nuclear technology will have to be judged by their convincing solutions for the crucial questions of safety, nuclear waste and risk of proliferation of nuclear weapons

  3. Human as a component of a nuclear material safeguard system

    International Nuclear Information System (INIS)

    Morgan, D.E.; Schechter, R.S.

    1978-01-01

    Many human vigilance experiments are summarized and principles are extracted which should be useful in designing and evaluating a nuclear material safeguard system. A human is a poor observer and is not a dependable part of any man-machine system when required to function as an observer. There are a few techniques which improve his performance by providing feedback. A conceptual model is presented which is helpful in design and evaluation of systems. There is some slight experimental support for the model. Finally, some techniques of time study and statistical control charting will be useful as a means of detecting nuclear diversion attempts

  4. Scenario-based roadmapping assessing nuclear technology development paths for future nuclear energy system scenarios

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Roelofs, Ferry; Yacout, Abdellatif

    2009-01-01

    Nuclear energy may play a significant role in a future sustainable energy mix. The transition from today's nuclear energy system towards a future more sustainable nuclear energy system will be dictated by technology availability, energy market competitiveness and capability to achieve sustainability through the nuclear fuel cycle. Various scenarios have been investigated worldwide each with a diverse set of assumptions on the timing and characteristics of new nuclear energy systems. Scenario-based roadmapping combines the dynamic scenario-analysis of nuclear energy systems' futures with the technology roadmap information published and analysed in various technology assessment reports though integrated within the nuclear technology roadmap Nuclear-Roadmap.net. The advantages of this combination is to allow mutual improvement of scenario analysis and nuclear technology roadmapping providing a higher degree of confidence in the assessment of nuclear energy system futures. This paper provides a description of scenario-based roadmapping based on DANESS and Nuclear-Roadmap.net. (author)

  5. WSPEEDI-II system user's manual for a nuclear or radiological emergency

    International Nuclear Information System (INIS)

    Nakanishi, Chika; Sato, Sohei; Muto, Shigeo; Furuno, Akiko; Terada, Hiroaki; Nagai, Haruyasu

    2011-03-01

    Nuclear Emergency Assistance and Training Center (NEAT) has developed the response system to evaluate the radiological consequences of an accident on a nuclear power plant or nuclear weapons testing around Japan and to support prediction of radioactive material distributions by using an atmospheric dispersion model on the framework of the Response Assistance Network (RANET) which is established by the International Atomic Energy Agency (IAEA). For the enhancement of assistance capability to external organizations at a nuclear or radiological emergency, NEAT will introduce a computer-based emergency response system, 'Worldwide version of System for Prediction of Environmental Emergency Dose Information: WSPEEDI 2nd version (WSPEEDI-II)' developed by Division of Environmental and Radiation Sciences. This manual covers the overview of the system and configuration parameters as the basic knowledge needed for operating the systems. (author)

  6. Simulation of a Nuclear Steam Supply System (NSSS) of a PWR nuclear power plant. Simulacao do sistema nuclear de geracao de vapor de uma central PWR

    Energy Technology Data Exchange (ETDEWEB)

    Reis Martins Junior, L.L. dos.

    1980-01-01

    The following work intends to perform the digital simulation, of the Nuclear Steam Supply System (NSSS) of a PWR nuclear power plant for control systems design and analysis purposes. There are mathematical models for the reactor, the steam generator, the pressurizer and for transport lags of the coolant in the primary circuit. Nevertheless no one control system has been considered to permit any user the inclusion in the more convenient way of the desired control systems' models. The characteristics of the system in consideration are fundamentally equal to the ones of Almirante Alvaro Alberto Nuclear Power Plant, Unit I (Angra I) obtained in the Final Safety Analysis Report at Comissao Nacional de Energia Nuclear. (author).

  7. Experience with Nuclear Medicine Information System

    Directory of Open Access Journals (Sweden)

    Bilge Volkan-Salanci

    2012-12-01

    Full Text Available Objective: Radiology information system (RIS is basically evolved for the need of radiologists and ignores the vital steps needed for a proper work flow of Nuclear Medicine Department. Moreover, CT/MRI oriented classical PACS systems are far from satisfying Nuclear Physicians like storing dynamic data for reprocessing and quantitative analysis of colored images. Our purpose was to develop a workflow based Nuclear Medicine Information System (NMIS that fulfills the needs of Nuclear Medicine Department and its integration to hospital PACS system. Material and Methods: Workflow in NMIS uses HL7 (health level seven and steps include, patient scheduling and retrieving information from HIS (hospital information system, radiopharmacy, acquisition, digital reporting and approval of the reports using Nuclear Medicine specific diagnostic codes. Images and dynamic data from cameras of are sent to and retrieved from PACS system (Corttex© for reprocessing and quantitative analysis. Results: NMIS has additional functions to the RIS such as radiopharmaceutical management program which includes stock recording of both radioactive and non-radioactive substances, calculation of the radiopharmaceutical dose for individual patient according to body weight and maximum permissible activity, and calculation of radioactivity left per unit volume for each radionuclide according their half lives. Patient scheduling and gamma camera patient work list settings were arranged according to specific Nuclear Medicine procedures. Nuclear Medicine images and reports can be retrieved and viewed from HIS. Conclusion: NMIS provides functionality to standard RIS and PACS system according to the needs of Nuclear Medicine. (MIRT 2012;21:97-102

  8. Nuclear propulsion systems engineering

    International Nuclear Information System (INIS)

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts

  9. Designing a Physical Security System for Risk Reduction in a Hypothetical Nuclear Facility

    International Nuclear Information System (INIS)

    Saleh, A.A.; Abd Elaziz, M.

    2017-01-01

    Physical security in a nuclear facility means detection, prevention and response to threat, the ft, sabotage, unauthorized access and illegal transfer involving radioactive and nuclear material. This paper proposes a physical security system designing concepts to reduce the risk associated with variant threats to a nuclear facility. This paper presents a study of the unauthorized removal and sabotage in a hypothetical nuclear facility considering deter, delay and response layers. More over, the study involves performing any required upgrading to the security system by investigating the nuclear facility layout and considering all physical security layers design to enhance the weakness for risk reduction

  10. Passive containment system for a nuclear reactor

    International Nuclear Information System (INIS)

    Kleimola, F.W.

    1976-01-01

    A containment system is described that provides complete protection entirely by passive means for the loss of coolant accident in a nuclear power plant and wherein all stored energy released in the coolant blowdown is contained and absorbed while the nuclear fuel is continuously maintained submerged in liquid. The primary containment vessel is restored to a high subatmospheric pressure within a few minutes after accident initiation and the decay heat is safely transferred to the environment while radiolytic hydrogen is contained by passive means

  11. Nuclear Space Power Systems Materials Requirements

    International Nuclear Information System (INIS)

    Buckman, R.W. Jr.

    2004-01-01

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited

  12. Applied Nuclear Accountability Systems: A Case Study in the System Architecture and Development of NuMAC

    International Nuclear Information System (INIS)

    Campbell, Andrea Beth

    2004-01-01

    This is a case study of the NuMAC nuclear accountability system developed at a private fuel fabrication facility. This paper investigates nuclear material accountability and safeguards by researching expert knowledge applied in the system design and development. Presented is a system developed to detect and deter the theft of weapons grade nuclear material. Examined is the system architecture that includes: issues for the design and development of the system; stakeholder issues; how the system was built and evolved; software design, database design, and development tool considerations; security and computing ethics. (author)

  13. Design concepts for a nuclear digital instrumentation and control system platform

    International Nuclear Information System (INIS)

    Ou, T. C.; Chen, C. K.; Chen, P. J.; Shyu, S. S.; Lee, C. L.; Hsieh, S. F.

    2010-10-01

    The objective of this paper is to present the development results of the nuclear instrumentation and control system in Taiwan. As the Taiwan nuclear power plants age, the need to consider upgrading of both their safety and non-safety-related instrumentation and control systems becomes more urgent. Meanwhile, the digital instrumentation and control system that is based on current fast evolving electronic and information technologies are difficult to maintain effectively. Therefore, Institute of Nuclear Energy Research was made a decision to promote the Taiwan Nuclear Instrumentation and Control System project to collaborate with domestic electronic industry to establish self-reliant capabilities on the design, manufacturing, and application of nuclear instrumentation and control systems with newer technology. In the case of safety-related applications like nuclear instrumentation and control, safety-oriented quality control is required. In order to establish a generic qualified digital platform, the world-wide licensing experience should be considered in the licensing process. This paper describes the qualification and certification tools by IEC 61508 for design and development of safety related equipment and explains the basis for many decisions made while performing the digital upgrade. (Author)

  14. The system of nuclear material control of Kazakhstan

    International Nuclear Information System (INIS)

    Yeligbayeva, G.Zh.

    2001-01-01

    Full text: The State system for nuclear material control consists of three integral components. The efficiency of each is to guarantee the non-proliferation regime in Kazakhstan. The components are the following: accounting, export and import control and physical protection of nuclear materials. First, the implementation of the goals of accounting and control bring into force, by the organization of the system for accounting and measurement of nuclear materials to determine present quantity. Organizing the accounting for nuclear material at facilities will ensure the efficiency of accountancy and reporting information. This defines the effectiveness of the state system for the accounting for the Kazakhstan's nuclear materials. Currently, Kazakhstan's nuclear material is fully safeguarded in designated secure locations. Kazakhstan has a nuclear power plant, 4 research reactors and a fuel fabrication plant. The governmental information system for nuclear materials control consist of two level: Governmental level - KAEA collects reports from facilities and prepares the reports for International Atomic Energy Agency, keeping of supporting documents and other necessary information, a data base of export and import, a data base of nuclear material inventory. Facility level - registration and processing information from key measurement points, formation the facility's nuclear materials accounting database. All facilities have computerized systems. Currently, all facilities are safeguarded under IAEA safeguarding standards, through IAEA inspections. Annually, IAEA verifies all nuclear materials at all Kazakhstan nuclear facilities. The government reporting system discloses the existence of all nuclear material and its transfer intended for interaction through the export control system and the nuclear control accounting system. Nuclear material export is regulated by the regulations of the Nuclear Export Control Law. The standard operating procedure is the primary means for

  15. Nuclear information access system

    International Nuclear Information System (INIS)

    Ham, C. H.; Yang, M. H.; Yoon, S. W.

    1998-01-01

    The energy supply in the countries, which have abundant energy resources, may not be affected by accepting the assertion of anti-nuclear and environment groups. Anti-nuclear movements in the countries which have little energy resources may cause serious problem in securing energy supply. Especially, it is distinct in Korea because she heavily depends on nuclear energy in electricity supply(nuclear share in total electricity supply is about 40%).The cause of social trouble surrounding nuclear energy is being involved with various circumstances. However, it is very important that we are not aware of the importance of information access and prepared for such a situation from the early stage of nuclear energy's development. In those matter, this paper analyzes the contents of nuclear information access system in France and Japan which have dynamic nuclear development program and presents the direction of the nuclear access regime through comparing Korean status and referring to progresses of the regime

  16. Approach to a generalized real-time nuclear materials control system

    International Nuclear Information System (INIS)

    Jarsch, V.; Onnen, S.; Polster, F.J.; Woit, J.

    1978-01-01

    Untrained users and a large amount of--at first glance incompatible--processes and materials are the environment of computer-aided nuclear materials control systems. To find an efficient model of the real processes and materials descriptions and to allow the operating personnel to communicate with the system in his everyday symbolism are goals in the development of the concept presented in this paper. According to this concept a real-time minicomputer-based materials control system is being implemented in the Nuclear Research Center of Karlsruhe. The chosen approach satisfies the heterogeneous requirements of the various institutes of the Center and is also applicable to other nuclear plants

  17. Green technology into nuclear industry Eligibility of Ambidexter nuclear complex for a generation IV nuclear power system

    International Nuclear Information System (INIS)

    Park, Kwangheon; Koh, Moosung; Ryu, Jeongdong; Kim, Yangeun; Lee, Bumsik; Park, Hyuntack

    2000-01-01

    Green power is being developed up to a point that is feasible not only in an environmental sense, but also in an economical viewpoint. This paper introduces two case studies that applied green technology into nuclear industry. 1) Nuclear laundry: A laundry machine that uses liquid and supercritical Co 2 as a solvent for decontamination of contaminated working dresses in nuclear power plants was developed. The machine consists of a 16 liter reactor, a recovery system with compressors, and storage tanks. All CO 2 used in cleaning is fully recovered and reused in next cleaning, resulting in no production

  18. The nuclear disaster management system in Taiwan: a case study of the third (Maanshan) nuclear power plant.

    Science.gov (United States)

    Yang, Yung-Nane

    2016-07-01

    This paper explores the effectiveness of the nuclear disaster management system in Taiwan via a review of the third (Maanshan) nuclear power plant. In doing so, the Fukushima Daiichi nuclear disaster in Japan on 11 March 2011 is reviewed and compared with the situation in Taiwan. The latter's nuclear disaster management system is examined with respect to three key variables: information; mobilisation; and inter-organisational cooperation. In-depth interviews with 10 policy stakeholders with different backgrounds serve as the research method. The results point up the need for improvement in all dimensions. In addition, they highlight three principal problems with the nuclear disaster management system: (i) it might not be possible to provide first-hand nuclear disaster information immediately to the communities surrounding the Maanshan facility in Pingtung County, southern Taiwan; (ii) the availability of medical resources for treating radiation in Hengchun Township is limited; and (iii) the inter-organisational relationships for addressing nuclear disasters need to be strengthened. Hence, cooperation among related organisations is necessary. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.

  19. Nuclear fuel element leak detection system

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1978-01-01

    Disclosed is a leak detection system integral with a wall of a building used to fabricate nuclear fuel elements for detecting radiation leakage from the nuclear fuel elements as the fuel elements exit the building. The leak detecting system comprises a shielded compartment constructed to withstand environmental hazards extending into a similarly constructed building and having sealed doors on both ends along with leak detecting apparatus connected to the compartment. The leak detecting system provides a system for removing a nuclear fuel element from its fabrication building while testing for radiation leaks in the fuel element

  20. NMC and A and nuclear criticality safety systems integration: A prospective way for enhancement of the nuclear industry facilities safety

    International Nuclear Information System (INIS)

    Ryazanov, Boris G.; Sviridov, Victor I.; Frolov, Vladimir V.; Shvedov, Maxim O.; Mclaughlin, Thomas P.; Pruvost, Norman L.

    2003-01-01

    A considerable body of data has now been acquired about the principles, parameters and consequences of nuclear (criticality) accidents at facilities of the atomic industry in Russia, the United States, Great Britain and Japan. The total number of such accidents stands at 22. Russian and US specialists have prepared a rather extensive survey and analysis of these accidents. The final and important section of this survey is the lessons implied by the results of analysis of these 22 accidents. Among these lessons is the necessity of unconditional enforcement of control over the movement and transformations of special nuclear materials (SNM), and in particular fissile materials, (those SNMs with criticality accident concerns) during production and processing. Inadequacies in such control have been among the causes of most of the accidents that have occurred. Nuclear materials control and accounting (MC and A) for the purpose of ensuring storage reliability and nonproliferation safeguards is a major task of nuclear facilities in any nation. MC and A systems use the latest techniques and hardware for periodic control of SNM in specifically organized material balance areas. Immediate checking, periodic inventory of SNM, and measurements of the parameters of SNM at key points are the main sources of data for these systems. Data about the presence and sites of location of SNM in material balance areas that are acquired in inventories can be used for objective assessment of the status of nuclear safety. On the other hand, the inventory itself involves performance of operations that are unlike routine process engineering, and require special consideration of nuclear safety. Use of the techniques and hardware of MC and A systems not only for purposes of storage reliability, but also to ensure nuclear safety, will reduce the risk of nuclear accidents. This paper gives a concise overview of nuclear accidents that have occurred due to inadequacies in MC and A, and demonstrates

  1. For establishment on nuclear disaster prevention system

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    For increasing requirement of peoples for review of nuclear disaster countermeasure at a chance of the JCO critical accident, the Japanese Government newly established the 'Special Measure Act on Nuclear Disaster Countermeasure', which was enacted on July 16, 2000. The nuclear business relatives such as electric power company and so forth established the Business program on nuclear disaster prevention in nuclear business relatives' after their consultation with local communities at their construction, under their co-operation. Simultaneously, the electric power industry field decided to intend to provide some sufficient countermeasures to incidental formation of nuclear accident such as start of the Co-operative agreement on nuclear disaster prevention among the nuclear business relatives' and so forth. Here were described on nuclear safety and disaster prevention, nuclear disaster prevention systems at the electric power industry field, abstract on 'Business program on nuclear disaster prevention in nuclear business relatives', preparation of technical assistance system for nuclear disaster prevention, executive methods and subjects on nuclear disaster prevention at construction areas, recent business on nuclear disaster prevention at the Nuclear Technical Center, and subjects on establishment of nuclear disaster prevention system. (G.K.)

  2. Integrated nuclear and radiation protection systems

    International Nuclear Information System (INIS)

    Oprea, I.; Oprea, M.; Stoica, V.; Cerga, V.; Pirvu, V.; Badea, E.

    1993-01-01

    A multifunctional radiation monitoring equipment, flexible and capable to meet virtually environmental radiation monitoring, activity measurement and computational requirements, for nuclear laboratories has been designed. It can be used as a radiation protection system, for radionuclide measurement in isotope laboratories, nuclear technology, health physics and nuclear medicine, nuclear power stations and nuclear industry. The equipment is able to measure, transmit and record gamma dose rate and isotope activities. Other parameters and functions are optionally available, such as: self-contained alarm level, system self-test, dose integrator, syringe volume calculation for a given dose corrected for decay, calibration factor, 99 Mo assays performing and background subtraction

  3. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond L; Murphy, Arthur T; Rosenthal, Daniel I

    1987-01-01

    Nuclear Energy: An Introduction to the Concepts, Systems, and Applications of Nuclear Processes introduces the reader to the concepts, systems, and applications of nuclear processes. It provides a factual description of basic nuclear phenomena, as well as devices and processes that involve nuclear reactions. The problems and opportunities that are inherent in a nuclear age are also highlighted.Comprised of 27 chapters, this book begins with an overview of fundamental facts and principles, with emphasis on energy and states of matter, atoms and nuclei, and nuclear reactions. Radioactivi

  4. Preinspection of nuclear power plant systems

    International Nuclear Information System (INIS)

    1975-01-01

    The general plans of the systems affecting the safety of the nuclear power plants are accepted by the Institute of Radiation Protection (IRP) on the basis of the preinspection of the systems. This is the prerequisite of the preinspection of the structures and components belonging to these systems. Exceptionally, when separately agreed, the IRP may perform the preinspection of a separate structure or component, although the preinspection documentation of the whole system, e.g. the nuclear heat generating system, has not been accepted. This guide applies to the nuclear power plant systems that have been defined to be preinspected in the classification document accepted by the IRP

  5. A remote maintenance robot system for a pulsed nuclear reactor

    International Nuclear Information System (INIS)

    Thunborg, S.

    1987-01-01

    This paper presents a remote maintenance robot system for use in a hazardous environment. The system consists of turntable, robot and hoist subsystems which operate under the control of a supervisory computer to perform coordinated programmed maintenance operations on a pulsed nuclear reactor. The system is operational

  6. Conceptual design of a digital control system for nuclear criticality experiments

    International Nuclear Information System (INIS)

    Rojas, S.P.

    1994-04-01

    Nuclear criticality is a concern in many areas of nuclear engineering including waste management, nuclear weapons testing and design, basic nuclear research, and nuclear reactor design and analysis. As in many areas of science and engineering, experimental work conducted in this field has provided a wealth of data and insight essential to the formulation of theory and the advancement in knowledge of fissioning systems. In light of the many diverse applications of nuclear criticality, there is a continuing interest to learn and understand more about the fundamental physical processes through continued experimentation. This thesis addresses the problem of setting up and programming a microprocessor-based digital control system (PLC) for a proposed critical experiment using, among other devices, a stepper motor, a joystick control mechanism, and switches. This experiment represents a revised configuration to test cylindrical nuclear waste packages. A Monte Carlo numerical study for the proposed critical assembly has been performed in order to illustrate how results from numerical calculations are used in the process of assembling the control system and to corroborate previous experimental data. In summary, a control system utilizing some common devices necessary to perform a critical experiment (stepper motor, push-buttons, etc.) has been assembled. Control components were sized using the results of a probabilistic computer code (MCNP). Finally, a program was written that illustrates the coupling between the hardware and the devices being controlled in the new test fixture

  7. Development of a new-generation system for reloading of nuclear fuel

    International Nuclear Information System (INIS)

    Maksimov, M.; Maslov, O.; Maisyan, I.

    1995-01-01

    The modern concept of development of nuclear power, which is also reflected in the new scientific and technical documentation, moves to the forefront the general systems aspects of performing operations with nuclear fuel. It is suggested that the organizational questions of delivering, accounting for, storing, monitoring, moving, calculating overloads and mechanisms, and devices which perform manipulation with nuclear fuel, be treated as a single system

  8. Thermal coupling system analysis of a nuclear desalination plant

    International Nuclear Information System (INIS)

    Adak, A.K.; Srivastava, V.K.; Tewari, P.K.

    2010-01-01

    When a nuclear reactor is used to supply steam for desalination plant, the method of coupling has a significant technical and economic impact. The exact method of coupling depends upon the type of reactor and type of desalination plant. As a part of Nuclear Desalination Demonstration Project (NDDP), BARC has successfully commissioned a 4500 m 3 /day MSF desalination plant coupled to Madras Atomic Power Station (MAPS) at Kalpakkam. Desalination plant coupled to nuclear power plant of Pressurized Heavy Water Reactor (PHWR) type is a good example of dual-purpose nuclear desalination plant. This paper presents the thermal coupling system analysis of this plant along with technical and safety aspects. (author)

  9. Modernizing computerized nuclear material accounting systems

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Claborn, J.

    1995-01-01

    DOE Orders and draft orders for nuclear material control and accountability address a complete material control and accountability (MC and A) program for all DOE contractors processing, using, or storing nuclear materials. A critical element of an MC and A program is the accounting system used to track and record all inventories of nuclear material and movements of materials in those inventories. Most DOE facilities use computerized accounting systems to facilitate the task of accounting for all their inventory of nuclear materials. Many facilities still use a mixture of a manual paper system with a computerized system. Also, facilities may use multiple systems to support information needed for MC and A. For real-time accounting it is desirable to implement a single integrated data base management system for a variety of users. In addition to accountability needs, waste management, material management, and production operations must be supported. Information in these systems can also support criticality safety and other safety issues. Modern networked microcomputers provide extensive processing and reporting capabilities that single mainframe computer systems struggle with. This paper describes an approach being developed at Los Alamos to address these problems

  10. Development of nuclear material accountancy control system

    International Nuclear Information System (INIS)

    Hirosawa, Naonori; Kashima, Sadamitsu; Akiba, Mitsunori

    1992-01-01

    PNC is developing a wide area of nuclear fuel cycle. Therefore, much nuclear material with a various form exists at each facility in the Works, and the controls of the inventory changes and the physical inventories of nuclear material are important. Nuclear material accountancy is a basic measure in safeguards system based on Non-Proliferation Treaty (NPT). In the light of such importance of material accountancy, the data base of nuclear material control and the material accountancy report system for all facilities has been developed by using the computer. By this system, accountancy report to STA is being presented certainly and timely. Property management and rapid corresponding to various inquiries can be carried out by the data base system which has free item searching procedure. (author)

  11. A study on the nuclear computer codes installation and management system

    International Nuclear Information System (INIS)

    Kim, Yeon Seung; Huh, Young Hwan; Kim, Hee Kyung; Kang, Byung Heon; Kim, Ko Ryeo; Suh, Soong Hyok; Choi, Young Gil; Lee, Jong Bok

    1990-12-01

    From 1987 a number of technical transfer related to nuclear power plant had been performed from C-E for YGN 3 and 4 construction. Among them, installation and management of the computer codes for YGN 3 and 4 fuel and nuclear steam supply system was one of the most important project. Main objectives of this project are to establish the nuclear computer code management system, to develop QA procedure for nuclear codes, to secure the nuclear code reliability and to extend techanical applicabilities including the user-oriented utility programs for nuclear codes. Contents of performing the project in this year was to produce 215 transmittal packages of nuclear codes installation including making backup magnetic tape and microfiche for software quality assurance. Lastly, for easy reference about the nuclear codes information we presented list of code names and information on the codes which were introduced from C-E. (Author)

  12. Ventilation-air conditioner system in nuclear power plant

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Sugisaki, Toshihiko.

    1989-01-01

    This invention concerns a ventilation-air conditioner system which enables, upon occurrence of accidents in a nuclear power plant, continuous operation for other adjacent nuclear power plants with no effect of accidents. Air supply system and exhaust system are operated during usual operaiton. If loss of coolants accidents should occur in an adjacent nuclear power plants, operation is switched from ventilation operaiton to the operation of re-cycling system based on an AND logic of three signals, that is, a pressure HIGH signal for the reactor container, a water level LOW signal for the reactor and a radioactivity signal of the ventilation-air conditioner sytem on the side of air supply in the nuclear power plant. Thus, nuclear reactor buildings of the nuclear power plant are from the external atmosphere. Therefore, the radioactivity HIGH signal for switching to the emergency air conditioner system of the nuclear power plant is not actuated due to the loss of coolant accidents in the adjacent nuclear power plant. In addition, since the atmospheric temperature in the nuclear reactor building can be maintained by a cooling device disposed to the recycling system, reactor shutdown can be prevented. (I.S.)

  13. A mobile gamma ray spectrometer system for nuclear hazard mapping

    CERN Document Server

    Smethurst, M A

    2000-01-01

    The Geological Survey of Norway has developed a system for mobile gamma ray spectrometer surveying suitable for use in nuclear emergencies where potentially dangerous radioactive materials have been released into the environment. The measuring system has been designed for use with different kinds of transportation platforms. These include fixed-wing aircraft, helicopters and vans. The choice of transportation platform depends on the nature of the nuclear emergency. Widespread fallout from a distant source can be mapped quickly from the air while local sources of radiation can be delineated by a car-borne system. The measuring system processes gamma ray spectra in real time. The operator of the system is therefore able to guide surveying in accordance with meaningful data values and immediately report these values to decision making The operator is presented with a number of different displays suited to different kinds of nuclear emergencies that lead to more efficient surveying. Real time processing of data m...

  14. Nuclear-fueled circulatory support systems

    Energy Technology Data Exchange (ETDEWEB)

    Norman, J C [Texas Heart Inst. (USA)

    1975-08-01

    Experiments on calves using two types of systems for nuclear left ventricular assist pumps are described. These two systems use a nuclear heat source containing 120 g, 1600 Ci Pu-238 in the form of plutonium oxide. The heat source for the first system is the tidal regenerator engine with no valve or seal and is controlled using a hall effect displacement sensor. The second left ventricular assist system uses heat generated by nuclear decay for producing high gas pressure which is converted into a high hydraulic pressure for pumping. The engine efficiency amounts to 7 to 16%, and the measurement value of the pump efficiency obtained is 85%. How these two systems are synchronized with the left ventricle of vital body is described. IN a transplant experiment for a short period (175 hours) in the initial stage, the possibility of the present method was demonstrated. A long-term performance experiment and improvement of the systems are anticipated. However, there still remain many problems, such as improvement of efficiency, reliability, and performance and diminution of the size.

  15. Nuclear data information system for nuclear materials

    International Nuclear Information System (INIS)

    Fujita, Mitsutane; Noda, Tetsuji; Utsumi, Misako

    1996-01-01

    The conceptual system for nuclear material design is considered and some trials on WWW server with functions of the easily accessible simulation of nuclear reactions are introduced. Moreover, as an example of the simulation on the system using nuclear data, transmutation calculation was made for candidate first wall materials such as 9Cr-2W steel, V-5Cr-5Ti and SiC in SUS316/Li 2 O/H 2 O(SUS), 9Cr-2W/Li 2 O/H 2 O(RAF), V alloy/Li/Be(V), and SiC/Li 2 ZrO 3 /He(SiC) blanket/shield systems based on ITER design model. Neutron spectrum varies with different blanket/shield compositions. The flux of low energy neutrons decreases in order of V< SiC< RAF< SUS blanket/shield systems. Fair amounts of W depletion in 9Cr-2W steel and the increase of Cr content in V-5Cr-5Ti were predicted in SUS or RAF systems. Concentration change in W and Cr is estimated to be suppressed if Li coolant is used in place of water. Helium and hydrogen production are not strongly affected by the different blanket/shield compositions. (author)

  16. A study on the development and application of expert system for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hee Gon; Kim, Seong Bok [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1995-12-31

    It is a final report of the research that is a study on the development and application of expert system for nuclear power plants and development of the schemes computing environments and user interfaces for the expert system, which is a systematic and efficient development of expert system for nuclear power plants in the future. This report is consisted of -Development trends of expert system for nuclear power plants. -Classification of expert system applications for nuclear power plants. -Systematic and efficient developments schemes of expert system for nuclear power plants, and -Suitable computing environments and user interfaces for the expert systems. (author). 113 refs., 85 figs.

  17. A study on the development and application of expert system for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hee Gon; Kim, Seong Bok [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-12-31

    It is a final report of the research that is a study on the development and application of expert system for nuclear power plants and development of the schemes computing environments and user interfaces for the expert system, which is a systematic and efficient development of expert system for nuclear power plants in the future. This report is consisted of -Development trends of expert system for nuclear power plants. -Classification of expert system applications for nuclear power plants. -Systematic and efficient developments schemes of expert system for nuclear power plants, and -Suitable computing environments and user interfaces for the expert systems. (author). 113 refs., 85 figs.

  18. Study on HVAC system in nuclear facility

    International Nuclear Information System (INIS)

    Baeg, S. Y.; Song, W. S.; Oh, Y. O.; Ju, Y. S.; Hong, K. P.

    2003-01-01

    Heating, Ventilation and Air Conditioning (HVAC) system in nuclear facility should be equipped and constructed more stable and allowable than that in common facility. The purpose of HVAC system is the maintenance of optimum working environment, the protection of worker against a contaminated air and the prevention of atmospheric contamination due to an outward ventilation, etc.. The basic scheme of a safety operation of nuclear facility is to prevent the atmospheric contamination even in low level. The adaptability of HVAC system which is in operation. In this study, the design requirements of HVAC system in nuclear facility and the HVAC systems in foreign countries are reviewed, and the results can be utilized in the design of HVAC system in nuclear facility

  19. Demonstration of a transportable storage system for spent nuclear fuel

    International Nuclear Information System (INIS)

    Shetler, J.R.; Miller, K.R.; Jones, R.E.

    1993-01-01

    The purpose of this paper is to discuss the joint demonstration project between the Sacramento Municipal Utility District (SMUD) and the US Department of Energy (DOE) regarding the use of a transportable storage system for the long-term storage and subsequent transport of spent nuclear fuel. SMUD's Rancho Seco nuclear generating station was shut down permanently in June 1989. After the shutdown, SMUD began planning the decommissioning process, including the disposition of the spent nuclear fuel. Concurrently, Congress had directed the Secretary of Energy to develop a plan for the use of dual-purpose casks. Licensing and demonstrating a dual-purpose cask, or transportable storage system, would be a step toward achieving Congress's goal of demonstrating a technology that can be used to minimize the handling of spent nuclear fuel from the time the fuel is permanently removed from the reactor through to its ultimate disposal at a DOE facility. For SMUD, using a transportable storage system at the Rancho Seco Independent Spent-Fuel Storage Installation supports the goal of abandoning Rancho Seco's spent-fuel pool as decommissioning proceeds

  20. Establishment of nuclear data evaluation system (I)

    International Nuclear Information System (INIS)

    Chang, Jong Hwa; Lee, Chang Kun; Kim, Jeong Do; Kim, Young Sik; Kim, Young Jin; Kim, Hyung Guk; Kil, Chung Sup; Kim, Kang Suk

    1994-08-01

    Nuclear data is fundamental data for development of new type of nuclear, upgrade of nuclear fuel, treatment of radwaste, research on fusion reactor, radioisotope usage, and nuclear medical therapy. Nuclear data is produced with experiments. However rack of experimental data for thousands of nuclides and various reaction types makes it essential to do statistical evaluation and theoretical interpolation. This study is intended to join international cooperation after establishing domestic basis for nuclear data evaluation work. This project is the first year of five year plan to do followings: 1) Establishment of database system to collect experimental data, 2) Setup of computer assistance system for evaluation work, 3) Verification of established system by test evaluation of selected nuclide reaction. The system has a collection of mass data of nuclides, computer codes for test evaluation of total cross section of 0-16 and collection of EXFOR format data for 0-16. This system will be improved continuously on next years. (Author)

  1. Fuel cycle of nuclear power plants and safeguards system of nuclear weapon nonproliferation

    International Nuclear Information System (INIS)

    Malek, Z.

    1980-10-01

    The international safeguard system of nuclear weapon nonproliferation and the IAEA safeguard system are briefly described. In Czechoslovakia, a decree was issued in 1977 governing the accounting for and control of nuclear materials. The contents of the decree are presented. Described are computer processing of accounting data, technical criteria for the safeguard system application, containment and inspection in the IAEA safeguard system. The method is shown of the control of and accounting for nuclear materials in nuclear power plants and in fuel manufacturing, reprocessing and enrichment plants. Nondestructive and destructive methods of nuclear materials analysis are discussed. Nondestructive methods used include gamma spectrometry, neutron techniques, X-ray fluores--cence techniques. (J.P.)

  2. The protection system to Brazilian Nuclear Program

    International Nuclear Information System (INIS)

    Andreuzza, Mario Giussepp Santezzi Bertottelli

    1997-01-01

    The Sistema de Protecao ao Programa Nuclear Brasileiro-SIPRON (Protection System to Brazilian Nuclear Program) was established in 1980. It is intended to accomplish in only one system, all the actions related to security and protection for Nuclear Facilities in Brazil. The author presents in detail the protection system SIPRON, describing the system structure and organization, the functions and obligations of the system involved main organizations, as well as, the system operation and behaviour during an postulated occurrence of a nuclear emergency. It is also described an Exercise that happened in June of 1997 at the Nuclear Power Plant (NPP) Angra I, after two simulated tests in December of 1996 and April of 1997. The NPP Angra I Emergency Plan Exercise was a good opportunity to test the SIPRON structure and preparedness program. It was verified, included by International Atomic Energy Agency observers, the system involved organizations effectiveness and the procedures efficacy to protect the public and the environmental. Finally, it is shown the SIPRON activities of routine, the system obstacles and the expected future performances. (author)

  3. International Nuclear Information System in Malaysia

    International Nuclear Information System (INIS)

    Samsurdin Ahamad

    1984-01-01

    Practice of the International Nuclear Information System (INIS) in Malaysia is reviewed. The Nuclear Energy Unit, a participating representative of Malaysia, holds the responsibilities of disseminating information through this system. Its available services relevant to the aims of INIS are discussed

  4. Quality assurance as a system of management control in nuclear power plants

    International Nuclear Information System (INIS)

    Raisic, N.

    1986-04-01

    Quality assurance is considered as a management control system which the owner of a nuclear power plant has to establish for a nuclear power project for ensuring that a plant is built as designed and that defects are corrected. The building up of such a system should start early enough in project activities and before the plant design and construction, in order to ensure correct performance of all activities related to selection of the site for the nuclear power plant, bid specification and evaluation and procurement of services. The QA is a regulatory requirement, but the prudent plant management would create such a system as part of their total project management systems irrespective of formulation of requirement. In fact regulatory requirement should be considered as the criteria to be used by the regulatory organization for evaluation of licensee's QA system and not as an objective to be reached. In this paper the needs for QA system are justified as part of the development of industrial infrastructure for the nuclear power project. Elements of the system are described such as documented QA programme and organizational structures with defined responsibility and functions of individual organizational units, and with control of information flow across the interfaces. The goals and objectives or the project organizations related to achievement and verification of quality are defined as well as system functions in attaining these objectives. This includes the feedback of information to the management on monitoring of performance in project activities, identifying deficiencies and initiating corrective actions. Domestic participation in the nuclear power plant construction will depend on the ability of local construction and manufacturing organizations to achieve high quality standards of products and services that can affect safety and performance of the nuclear power plant. Introduction of QA systems in project organizations, development of QA programme and

  5. Nuclear data evaluation method and evaluation system

    International Nuclear Information System (INIS)

    Liu Tingjin

    1995-01-01

    The evaluation methods and Nuclear Data Evaluation System have been developed in China. A new version of the system has been established on Micro-VAX2 computer, which is supported by IAEA under the technology assistance program. The flow chart of Chinese Nuclear Data Evaluation System is shown out. For last ten years, the main efforts have been put on the double differential cross section, covariance data and evaluated data library validation. The developed evaluation method and Chinese Nuclear Data Evaluation System have been widely used at CNDC and in Chinese Nuclear Data Network for CENDL. (1 tab., 15 figs.)

  6. Integrated engineering system for nuclear facilities building

    International Nuclear Information System (INIS)

    Tomura, H.; Miyamoto, A.; Futami, F.; Yasuda, S.; Ohtomo, T.

    1995-01-01

    In the construction of buildings for nuclear facilities in Japan, construction companies are generally in charge of the building engineering work, coordinating with plant engineering. An integrated system for buildings (PROMOTE: PROductive MOdeling system for Total nuclear Engineering) described here is a building engineering system including the entire life cycle of buildings for nuclear facilities. A Three-dimensional (3D) building model (PRO-model) is to be in the core of the system (PROMOTE). Data sharing in the PROMOTE is also done with plant engineering systems. By providing these basic technical foundations, PROMOTE is oriented toward offering rational, highquality engineering for the projects. The aim of the system is to provide a technical foundation in building engineering. This paper discusses the characteristics of buildings for nuclear facilities and the outline of the PROMOTE. (author)

  7. Development for a multi-purpose nuclear energy supply system

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Shimazu, Yoichiro; Sato, Kotaro; Imamura, Mitsuru; Tsuji, Masashi

    2009-01-01

    Hokkaido is one of the four largest island of Japan located in the northern, most of the area, where the atmospheric temperature goes lower than the other area in winter. Thus, an average energy consumption per capita is larger in amount during cold seasons. Nowadays this energy is supplied by fossil fuels. On the other hand, problem of the green house gas emission should be controlled as much as possible in order to avoid global warming. From this point of view, the authors have discussed with local people on the possibility to utilize nuclear clean energy in the daily life in Hokkaido district. Recently some leaders in local towns become interested to such activities and they want information about nuclear energy and related systems. It is a very good chance for us to exchange information on nuclear energy with regards to public acceptance, fears of nuclear power or radiation, the extent of satisfaction to be sure for construction of urban nuclear plants and requirements for such plants. We prepared technical presentation materials and visited a selected towns and continued discussion in various aspects. For example, proposal of a proto type design concept of a small reactor, safety, heat energy supply system. The audience was mainly representatives of the towns firstly and gradually ordinal people also attended the meetings. Based on the information, it could be expected to establish a concept for such district energy supply system. In this paper, some examples and results through these activities are presented. (author)

  8. Why nuclear geostorage systems for petroleum?

    Energy Technology Data Exchange (ETDEWEB)

    Harst, L van der; Knutson, C F [CER Geonuclear Corporation, Las Vegas, Nevada (United States)

    1970-05-15

    The objective of any kind of storage system in general is to act as a buffer between cyclical changes in supply and demand of the stored commodities. Since the advent of nuclear explosives engineering the possibility of constructing large-scale underground storage systems by means of contained nuclear explosions, for which the name nuclear geostorage has been coined, should be regarded as a valid alternative to the conventional storage systems currently in existence. Limiting this discussion to systems for storing crude oil, various options are available. The choice of any particular storage method depends, of course, on the circumstances surrounding each particular storage requirement; however, in many cases and for a variety of reasons, nuclear geostorage can be preferable to conventional solutions. Economic considerations are clearly among the most important ones. In this respect an increase in storage capacity will tend to favor the nuclear approach. Besides the economics, however, other considerations are important and may in some cases swing the balance in favor of nuclear geostorage plants, for instance: safety and strategic values, aesthetics, ease of access, lack of suitable tank farm space or lack of suitable geologic conditions for natural reservoirs. It should be borne in mind that the decision to use the nuclear approach to solve a storage problem can only be taken after satisfactory evaluation of the geological and geographical characteristics of the site, and when the technical, safety, political, and public relations factors can be handled adequately. (author)

  9. Why nuclear geostorage systems for petroleum?

    International Nuclear Information System (INIS)

    Harst, L. van der; Knutson, C.F.

    1970-01-01

    The objective of any kind of storage system in general is to act as a buffer between cyclical changes in supply and demand of the stored commodities. Since the advent of nuclear explosives engineering the possibility of constructing large-scale underground storage systems by means of contained nuclear explosions, for which the name nuclear geostorage has been coined, should be regarded as a valid alternative to the conventional storage systems currently in existence. Limiting this discussion to systems for storing crude oil, various options are available. The choice of any particular storage method depends, of course, on the circumstances surrounding each particular storage requirement; however, in many cases and for a variety of reasons, nuclear geostorage can be preferable to conventional solutions. Economic considerations are clearly among the most important ones. In this respect an increase in storage capacity will tend to favor the nuclear approach. Besides the economics, however, other considerations are important and may in some cases swing the balance in favor of nuclear geostorage plants, for instance: safety and strategic values, aesthetics, ease of access, lack of suitable tank farm space or lack of suitable geologic conditions for natural reservoirs. It should be borne in mind that the decision to use the nuclear approach to solve a storage problem can only be taken after satisfactory evaluation of the geological and geographical characteristics of the site, and when the technical, safety, political, and public relations factors can be handled adequately. (author)

  10. Virtual-Reality training system for nuclear security

    International Nuclear Information System (INIS)

    Nonaka, Nobuyuki

    2012-01-01

    At the Integrated Support Center for Nuclear Nonproliferation and Nuclear Security (ISCN) of the Japan Atomic Energy Agency, the virtual reality (VR) training system is under development for providing a practical training environment to implement experience-oriented and interactive lessons on nuclear security for wide range of participants in human resource development assistance program mainly to Asian emerging nuclear-power countries. This system electrically recreates and visualizes nuclear facilities and training conditions in stereoscopic (3D) view on a large-scale display (CAVE system) as virtual reality training facility (VR facility) and it provides training participants with effective environments to learn installation and layout of security equipment in the facility testing and verifying visually the protection performances under various situations such as changes in day-night lighting and weather conditions, which may lead to practical exercise in the design and evaluation of the physical protection system. This paper introduces basic concept of the system and outline of training programs as well as featured aspects in using the VR technology for the nuclear security. (author)

  11. Study on interface between nuclear material accounting system and national nuclear forensic library

    International Nuclear Information System (INIS)

    Jeong, Yonhong; Han, Jae-Jun; Chang, Sunyoung; Shim, Hye-Won; Ahn, Seungho

    2016-01-01

    The implementation of nuclear forensics requires physical, chemical and radiological characteristics with transport history to unravel properties of seized nuclear materials. For timely assessment provided in the ITWG guideline, development of national response system (e.g., national nuclear forensic library) is strongly recommended. Nuclear material accounting is essential to obtain basic data in the nuclear forensic implementation phase from the perspective of nuclear non-proliferation related to the IAEA Safeguards and nuclear security. In this study, the nuclear material accounting reports were chosen due to its well-established procedure, and reviewed how to efficiently utilize the existing material accounting system to the nuclear forensic implementation phase In conclusion, limits and improvements in implementing the nuclear forensics were discussed. This study reviewed how to utilize the existing material accounting system for implementing nuclear forensics. Concerning item counting facility, nuclear material properties can be obtained based on nuclear material accounting information. Nuclear fuel assembly data being reported for the IAEA Safeguards can be utilized as unique identifier within the back-end fuel cycle. Depending upon the compulsory accountability report period, there exist time gaps. If national capabilities ensure that history information within the front-end nuclear fuel cycle is traceable particularly for the bulk handling facility, the entire cycle of national nuclear fuel would be managed in the framework of developing a national nuclear forensic library

  12. Study on interface between nuclear material accounting system and national nuclear forensic library

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yonhong; Han, Jae-Jun; Chang, Sunyoung; Shim, Hye-Won; Ahn, Seungho [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-10-15

    The implementation of nuclear forensics requires physical, chemical and radiological characteristics with transport history to unravel properties of seized nuclear materials. For timely assessment provided in the ITWG guideline, development of national response system (e.g., national nuclear forensic library) is strongly recommended. Nuclear material accounting is essential to obtain basic data in the nuclear forensic implementation phase from the perspective of nuclear non-proliferation related to the IAEA Safeguards and nuclear security. In this study, the nuclear material accounting reports were chosen due to its well-established procedure, and reviewed how to efficiently utilize the existing material accounting system to the nuclear forensic implementation phase In conclusion, limits and improvements in implementing the nuclear forensics were discussed. This study reviewed how to utilize the existing material accounting system for implementing nuclear forensics. Concerning item counting facility, nuclear material properties can be obtained based on nuclear material accounting information. Nuclear fuel assembly data being reported for the IAEA Safeguards can be utilized as unique identifier within the back-end fuel cycle. Depending upon the compulsory accountability report period, there exist time gaps. If national capabilities ensure that history information within the front-end nuclear fuel cycle is traceable particularly for the bulk handling facility, the entire cycle of national nuclear fuel would be managed in the framework of developing a national nuclear forensic library.

  13. Nuclear technologies for local energy systems

    International Nuclear Information System (INIS)

    McDonnell, F.N.; Lynch, G.F.

    1990-03-01

    If nuclear energy is to realize its full potential as a safe and cost-effective alternative to fossil fuels, applications beyond those that are currently being serviced by large, central nuclear power stations must be identified and appropriate reactors developed. The Canadian program on reactor systems for local energy supply is at the forefront of these developments. This program emphasizes design simplicity, low power density and fuel rating, reliance on natural processes, passive systems, and reduced reliance on operator action. The first product, the SLOWPOKE Energy System, is a 10 MW heat source specifically designed to provide hot water to satisfy the needs of local heating systems for building complexes, institutions and municipal district heating systems. A demonstration heating reactor has been constructed at the Whiteshell Nuclear Research Establishment in Manitoba and has been undergoing an extensive test program since first operation in 1987 July. Based on the knowledge learned from the design, construction, licensing and operational testing of this facility, the design of the 10 MW commercial-size unit is well advanced, and Atomic Energy of Canada Limited is prepared to commit the construction of the first commercial unit. Although the technical demonstration of the concept is important, it is recognized that another crucial element is the public and regulatory acceptance of small nuclear systems in urban areas. The decision by a community to commit the construction of a SLOWPOKE Energy System brings to a sharp focus the current public apprehension about nuclear technologies

  14. A hybrid approach to quantify software reliability in nuclear safety systems

    International Nuclear Information System (INIS)

    Arun Babu, P.; Senthil Kumar, C.; Murali, N.

    2012-01-01

    Highlights: ► A novel method to quantify software reliability using software verification and mutation testing in nuclear safety systems. ► Contributing factors that influence software reliability estimate. ► Approach to help regulators verify the reliability of safety critical software system during software licensing process. -- Abstract: Technological advancements have led to the use of computer based systems in safety critical applications. As computer based systems are being introduced in nuclear power plants, effective and efficient methods are needed to ensure dependability and compliance to high reliability requirements of systems important to safety. Even after several years of research, quantification of software reliability remains controversial and unresolved issue. Also, existing approaches have assumptions and limitations, which are not acceptable for safety applications. This paper proposes a theoretical approach combining software verification and mutation testing to quantify the software reliability in nuclear safety systems. The theoretical results obtained suggest that the software reliability depends on three factors: the test adequacy, the amount of software verification carried out and the reusability of verified code in the software. The proposed approach may help regulators in licensing computer based safety systems in nuclear reactors.

  15. Design of a requirements system for decommissioning of a nuclear power plant based on systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Seong; Park, Seung Kook; Jin, Hyung Gon; Song, Chan Ho; Choi, Jong won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The nuclear industry has required an advanced system that can manage decommissioning information ever since the Korean government decide to decommission the Gori No.1 nuclear power plant. The D and D division at KAERI has been developing a system that can secure the reliability and sustainability of the decommissioning project based on the engineering system of the KRR-2 (Korean Research Reactor-2). To establish a decommissioning information system, a WBS that needs to be managed for the decommissioning of an NPP has been extracted, and requirements management research composed of system engineering technology has progressed. This paper propose a new type of system based on systems engineering technology. Even though a decommissioning engineering system was developed through the KRR-2, we are now developing an advanced decommissioning information system because it is not easy to apply this system to a commercial nuclear power plant. An NPP decommissioning is a project requiring a high degree of safety and economic feasibility. Therefore, we have to use a systematic project management at the initial phase of the decommissioning. An advanced system can manage the decommissioning information from preparation to remediation by applying a previous system to the systems engineering technology that has been widely used in large-scale government projects. The first phase of the system has progressed the requirements needed for a decommissioning project for a full life cycle. The defined requirements will be used in various types of documents during the decommissioning preparation phase.

  16. Control Systems for a Dynamic Multi-Physics Model of a Nuclear Hybrid Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [ORNL; Fugate, David W [ORNL; Cetiner, Sacit M [ORNL

    2017-01-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as either thermal power, electrical power, or both. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different local markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  17. Renovated Korean nuclear safety and security system: A review and suggestions to successful settlement

    Energy Technology Data Exchange (ETDEWEB)

    Chung, W. S.; Yun, S. W.; Lee, D. S. [Korea Atomic Energy Research Inst., Dukjin-dong 150, Yusung-gu, Daejon, R.O., 305-353 (Korea, Republic of); Go, D. Y. [Kyung Hee Univ., Kyung Hee daero 26, Dongdaemoon-gu, Seoul, R.O., 130-701 (Korea, Republic of)

    2012-07-01

    Questions of whether past nuclear regulatory body of Korea is not a proper system to monitor and check the country's nuclear energy policy and utilization have been raised. Moreover, a feeling of insecurity regarding nuclear safety after the nuclear accident in Japan has spread across the public. This has stimulated a renovation of the nuclear safety regime in Korea. The Nuclear Safety and Security Commission (NSSC) was launched on October 26, 2011 as a regulatory body directly under the President in charge of strengthening independence and nuclear safety. This was a meaningful event as the NSSC it is a much more independent regulatory system for Korea. However, the NSSC itself does not guarantee an enhanced public acceptance of the nuclear policy and stable use nuclear energy. This study introduces the new NSSC system and its details in terms of organization structure, appropriateness of specialty, budget stability, and management system. (authors)

  18. Fuel transfer system for a nuclear reactor

    International Nuclear Information System (INIS)

    Katz, L.R.; Marshall, J.R.; Desmarchais, W.E.

    1977-01-01

    Disclosed is a fuel transfer system for moving nuclear reactor fuel assemblies from a new fuel storage pit to a containment area containing the nuclear reactor, and for transferring spent fuel assemblies under water from the reactor to a spent fuel storage area. The system includes an underwater track which extends through a wall dividing the fuel building from the reactor containment and a car on the track serves as the vehicle for moving fuel assemblies between these two areas. The car is driven by a motor and linkage extending from an operating deck to a chain belt drive on the car. A housing pivotally mounted at its center on the car is hydraulically actuated to vertically receive a fuel assembly which then is rotated to a horizontal position to permit movement through the wall between the containment and fuel building areas. Return to the vertical position provides for fuel assembly removal and the reverse process is repeated when transferring an assembly in the opposite direction. Limit switches used in controlling operation of the system are designed to be replaced from the operating deck when necessary by tools designed for this purpose. 5 claims, 8 figures

  19. TOSHIBA CAE system for nuclear power plant

    International Nuclear Information System (INIS)

    Machiba, Hiroshi; Sasaki, Norio

    1990-01-01

    TOSHIBA aims to secure safety, increase reliability and improve efficiency through the engineering for nuclear power plant using Computer Aided Engineering (CAE). TOSHIBA CAE system for nuclear power plant consists of numbers of sub-systems which had been integrated centering around the Nuclear Power Plant Engineering Data Base (PDBMS) and covers all stage of engineering for nuclear power plant from project management, design, manufacturing, construction to operating plant service and preventive maintenance as it were 'Plant Life-Cycle CAE System'. In recent years, TOSHIBA has been devoting to extend the system for integrated intelligent CAE system with state-of-the-art computer technologies such as computer graphics and artificial intelligence. This paper shows the outline of CAE system for nuclear power plant in TOSHIBA. (author)

  20. A regulatory frame for safety digital systems in nuclear power plants

    International Nuclear Information System (INIS)

    Mozas Garcia, A.

    1998-01-01

    The paper focuses on Spanish experience regarding software based systems for safety applications from the regulator's point of view. It describes the actual situation in Spain, number and models of reactors, modernization projects, digital systems implemented and licensing documentation and processes already followed by some upgrading projects. The paper wonders what documents should be required for safety and reliability demonstration of a safety system, when they should be reviewed, and what other activities may be necessary to acquire confidence on a particular system. It describes Spanish laws regarding nuclear safety under which, national standards from the NPP design original country apply to nuclear reactors in Spain. It finally suggests that an international standard jointly used by system manufacturers, nuclear licensees and nuclear safety authorities, both from the country where the NPP is installed, and from the original design country, should be developed so that rapid and easy agreement on licensing issues is reached among all parties. The last part of the paper describes the licensing approach proposed by CSN (Spanish Nuclear Safety Authority). It is still under development and it is based on previous experience on digital systems for non-safety applications. It consists of constructing several frames: 1) databases of existing software based systems, 2) guides for inspection and 3) questionnaires for helping in verification and validation activities evaluation. The scope is to establish a well defined procedure that helps in evaluating the particular system. However, in order for such a procedure to be useful, both regulators and utilities and, perhaps also system manufacturers, should agree on it. Joint CSN-utilities working groups may be suitable for such a purpose. (author)

  1. Supplier quality assurance systems: a study in the nuclear industry

    International Nuclear Information System (INIS)

    Singer, A.J.; Churchill, G.F.; Dale, B.G.

    1988-01-01

    The results are reported of a study which investigated the impact of quality assurance on 13 suppliers to the nuclear industry. The purpose of the study was to determine the benefits and problems of applying quality assurance in the supply of high risk plant items and material for nuclear installations. The paper discusses the problems facing the industry including: multiple audits and inspections, the irritation with having to contend with two quality system standards (namely BS 5750 and BS 5882) and the cost effectiveness of the more stringent quality system and quality control surveillance requirements imposed by the nuclear industry. It is also pointed out that companies supplying non-nuclear industrial customers were dissatisfied with the qualifications, experience and professional competence of some auditors and many inspectors. (author)

  2. Heat resistant materials and their feasibility issues for a space nuclear transportation system

    International Nuclear Information System (INIS)

    Olsen, C.S.

    1991-01-01

    A number of nuclear propulsion concepts based on solid-core nuclear propulsion are being evaluated for a nuclear propulsion transportation system to support the Space Exploration Initiative (SEI) involving the reestablishment of a manned lunar base and the subsequent exploration of Mars. These systems will require high-temperature materials to meet the operating conditions with appropriate reliability and safety built into these systems through the selection and testing of appropriate materials. The application of materials for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems and the feasibility issues identified for their use will be discussed. Some mechanical property measurements have been obtained, and compatibility tests were conducted to help identify feasibility issues. 3 refs., 1 fig., 4 tabs

  3. A study on the nuclear computer code maintenance and management system

    International Nuclear Information System (INIS)

    Kim, Yeon Seung; Huh, Young Hwan; Lee, Jong Bok; Choi, Young Gil; Suh, Soong Hyok; Kang, Byong Heon; Kim, Hee Kyung; Kim, Ko Ryeo; Park, Soo Jin

    1990-12-01

    According to current software development and quality assurance trends. It is necessary to develop computer code management system for nuclear programs. For this reason, the project started in 1987. Main objectives of the project are to establish a nuclear computer code management system, to secure software reliability, and to develop nuclear computer code packages. Contents of performing the project in this year were to operate and maintain computer code information system of KAERI computer codes, to develop application tool, AUTO-i, for solving the 1st and 2nd moments of inertia on polygon or circle, and to research nuclear computer code conversion between different machines. For better supporting the nuclear code availability and reliability, assistance from users who are using codes is required. Lastly, for easy reference about the codes information, we presented list of code names and information on the codes which were introduced or developed during this year. (Author)

  4. Development of a utility system for nuclear reaction data file: WinNRDF

    International Nuclear Information System (INIS)

    Aoyama, Shigeyoshi; Ohbayasi, Yosihide; Masui, Hiroshi; Chiba, Masaki; Kato, Kiyoshi; Ohnishi, Akira

    2000-01-01

    A utility system, WinNRDF, is developed for charged particle nuclear reaction data of NRDF (Nuclear Reaction Data File) on the Windows interface. By using this system, we can easily search the experimental data of a charged particle nuclear reaction in NRDF than old retrieval systems on the mainframe and also see graphically the experimental data on GUI (Graphical User Interface). We adopted a mechanism of making a new index of keywords to put to practical use of the time dependent properties of the NRDF database. (author)

  5. Scottish Nuclear's information systems strategy

    International Nuclear Information System (INIS)

    Inglis, P.

    1991-01-01

    Scottish Nuclear, the company which has owned and operated Scotland's nuclear power generating capacity since privatization, inherited a substantial amount of computer hardware and software from its predecessor, the South of Scotland Electricity Board. Each of the two power stations, Torness and Hunterston, were using Digital Vax clusters as the Scottish Nuclear company was formed. This had a major influence on the information systems strategy which has subsequently been adopted. (UK)

  6. Remote system for counting of nuclear pulses

    International Nuclear Information System (INIS)

    Nieves V, J.A.; Garcia H, J.M.; Aguilar B, M.A.

    1999-01-01

    In this work, it is describe technically the remote system for counting of nuclear pulses, an integral system of the project radiological monitoring in a petroleum distillation tower. The system acquires the counting of incident nuclear particles in a nuclear detector which process this information and send it in serial form, using the RS-485 toward a remote receiver, which can be a Personal computer or any other device capable to interpret the communication protocol. (Author)

  7. Containments for consolidated nuclear steam systems

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1978-01-01

    A containment system for a consolidated nuclear steam system incorporating a nuclear core, steam generator and reactor coolant pumps within a single pressure vessel is described which is designed to provide radiation shielding and pressure suppression. Design details, including those for the dry well and wet well of the containment, are given. (UK)

  8. A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.

    2013-09-18

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  9. Defense nuclear energy systems selection methodology for civil nuclear power applications

    International Nuclear Information System (INIS)

    Scarborough, J.C.

    1986-01-01

    A methodology developed to select a preferred nuclear power system for a US Department of Defense (DOD) application has been used to evaluate preferred nuclear power systems for a remote island community in Southeast Asia. The plant would provide ∼10 MW of electric power, possibly low-temperature process heat for the local community, and would supplement existing island diesel electric capacity. The nuclear power system evaluation procedure was evolved from a disciplined methodology for ranking ten nuclear power designs under joint development by the US Department of Energy (DOE) and DOD. These included six designs proposed by industry for the Secure Military Power Plant Program (now termed Multimegawatt Terrestrial Reactor Program), the SP-100 Program, the North Warning System Program, and the Modular Advanced High-Temperature Gas-Cooled Reactor (HTGR) and Liquid-Metal Reactor (LMR) programs. The 15 evaluation criteria established for the civil application were generally similar to those developed and used for the defense energy systems evaluation, except that the weighting factor applied to each individual criterion differed. The criteria and their weighting (importance) functions for the civil application are described

  10. Systems integration processes for space nuclear electric propulsion systems

    International Nuclear Information System (INIS)

    Olsen, C.S.; Rice, J.W.; Stanley, M.L.

    1991-01-01

    The various components and subsystems that comprise a nuclear electric propulsion system should be developed and integrated so that each functions ideally and so that each is properly integrated with the other components and subsystems in the optimum way. This paper discusses how processes similar to those used in the development and intergration of the subsystems that comprise the Multimegawatt Space Nuclear Power System concepts can be and are being efficiently and effectively utilized for these purposes. The processes discussed include the development of functional and operational requirements at the system and subsystem level; the assessment of individual nuclear power supply and thruster concepts and their associated technologies; the conduct of systems integration efforts including the evaluation of the mission benefits for each system; the identification and resolution of concepts development, technology development, and systems integration feasibility issues; subsystem, system, and technology development and integration; and ground and flight subsystem and integrated system testing

  11. Software Quality Assurance for Nuclear Safety Systems

    International Nuclear Information System (INIS)

    Sparkman, D R; Lagdon, R

    2004-01-01

    The US Department of Energy has undertaken an initiative to improve the quality of software used to design and operate their nuclear facilities across the United States. One aspect of this initiative is to revise or create new directives and guides associated with quality practices for the safety software in its nuclear facilities. Safety software includes the safety structures, systems, and components software and firmware, support software and design and analysis software used to ensure the safety of the facility. DOE nuclear facilities are unique when compared to commercial nuclear or other industrial activities in terms of the types and quantities of hazards that must be controlled to protect workers, public and the environment. Because of these differences, DOE must develop an approach to software quality assurance that ensures appropriate risk mitigation by developing a framework of requirements that accomplishes the following goals: (sm b ullet) Ensures the software processes developed to address nuclear safety in design, operation, construction and maintenance of its facilities are safe (sm b ullet) Considers the larger system that uses the software and its impacts (sm b ullet) Ensures that the software failures do not create unsafe conditions Software designers for nuclear systems and processes must reduce risks in software applications by incorporating processes that recognize, detect, and mitigate software failure in safety related systems. It must also ensure that fail safe modes and component testing are incorporated into software design. For nuclear facilities, the consideration of risk is not necessarily sufficient to ensure safety. Systematic evaluation, independent verification and system safety analysis must be considered for software design, implementation, and operation. The software industry primarily uses risk analysis to determine the appropriate level of rigor applied to software practices. This risk-based approach distinguishes safety

  12. Basic study for development of nuclear heat application systems

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Yoshitomo; Fumizawa, Motoo; Hishida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1996-05-01

    We need to intensely investigate real possibilities of nuclear heat application systems which exploit high potential of nuclear energy as a promising candidate of the future energy resource in the world. In this report, special interest was placed on coal reforming systems because we thought a compact heat source of nuclear power with a very high energy density might compensate the environmental problem caused by burning a great amount of coal. First, we reviewed state-of-the-art technologies for coal reforming technology with a special attention on coal gasification technologies. Based on these basic data, we proposed several nuclear coal reforming systems and discussed advantages and disadvantages of the systems. We also explored a model with which we could analyze nuclear heat application systems all together. In addition, we investigated possibility and effects of nuclear heat utilization systems producing chemical materials from carbon dioxide in flue gas of fossil fuel power plant. As a result, we showed nuclear heat application systems were useful. (author).

  13. Data bank applications of a nuclear medical computer system

    International Nuclear Information System (INIS)

    Hale, T.I.; Jucker, A.; Haering, W.; Schmid, B.

    1980-01-01

    Computer systems in nuclear medicine are normally not used for data bank applications. A concept for a PDP-11-34 with RK 05 disc is presented, which serves the needs of data manipulations of a medium sized hospital including management of patient data, pharma stock control etc. besides specific use for nuclear medical work with absolute priority. The program is available upon request. (orig.) [de

  14. Process information systems in nuclear reprocessing

    International Nuclear Information System (INIS)

    Jaeschke, A.; Keller, H.; Orth, H.

    1987-01-01

    On a production management level, a process information system in a nuclear reprocessing plant (NRP) has to fulfill conventional operating functions and functions for nuclear material surveillance (safeguards). Based on today's state of the art of on-line process control technology, the progress in hardware and software technology allows to introduce more process-specific intelligence into process information systems. Exemplified by an expert-system-aided laboratory management system as component of a NRP process information system, the paper demonstrates that these technologies can be applied already. (DG) [de

  15. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2013-06-27

    ... Systems for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants... material control and accounting. This guide applies to all nuclear power plants. ADDRESSES: Please refer to...

  16. A system of nuclear material accountancy in the JAERI

    International Nuclear Information System (INIS)

    Kase, Toshio; Nishizawa, Satoshi; Takahashi, Yoshindo

    1983-05-01

    Pursuant to the domestic law and regulations revised in 1978 as to be conformed to the requirements specified in the Safeguards Agreement under the Non-Proliferation Treaty (NPT), the JAERI's system of nuclear material accountancy has been effectively developed. The system of accountancy in the JAERI is based on the information treatment by the computer. The data of nuclear material are retained batchwisely together with their complicate history reflected the inventory changes and other transactions. The reports represented these data are prepared and submitted to the IAEA through the Government every month. The inspections are frequently conducted to the JAERI to verify the material appeared in the reports. Item counting, item identification and non-destructive assay technique are brought to the verification. In some cases, seals of the Government and the IAEA are applied to the nuclear material at the inspections, as their containment measures. The surveillance camera is also installed in the facility to look whole view of reactor room and spent fuel pond. In this paper, the general safeguards application and its corresponding accountancy system on JAERI's nuclear facility are described. (author)

  17. Future development of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Nuclear energy development in Japan has passed about 30 years, and reaches to a step to supply about 35 % of total electric power demand. However, together with globalization of economic and technical development, its future progressing method is required for its new efforts. Among such conditions, when considering a state of future type nuclear energy application, its contribution to further environmental conservation and international cooperation is essential, and it is required for adoption to such requirement how it is made an energy source with excellent economics.The Research Committee on 'Engineering Design on Nuclear Energy Systems' established under recognition in 1998 has been carried out some discussions on present and future status of nuclear energy development. And so forth under participation of outer specialists. Here were summarized on two year's committee actions containing them and viewpoints of nuclear industries, popularization of nuclear system technology, and so forth. (G.K.)

  18. Simulation for transient stability study of the Taiwan power system - a nuclear majority system

    International Nuclear Information System (INIS)

    Huang, J.C.C.

    1984-01-01

    A transient stability program was developed for the Taiwan Power Company, which has a high proportion of nuclear generation in its power system. This program offers a new territory to investigate nuclear plant effects on the power system transient stability. This program also provides a high speed tool for the Taipower system operational planning. A generalized procedure of synchronous machine modeling for a large-scale stability study is presented. The merits and weaknesses of machine modeling can be comprehended through each item of this procedure. Three types of nonlinear synchronous machine modeling implemented into this stability program are derived by following this procedure. A robust subroutine was derived to perform the fourth order Runge-Kutta integration method, making the software programming neat and systematical. For simulating the nuclear plant influence on the system, this program implemented an additional four functions: load-limit operation simulated by a low-value gate in the governor model, bypass valve capacity monitored by sending out a warning message, rotor overspeed protection relay, and generator anti-motoring relay

  19. Development of the Advanced Nuclear Safety Information Management (ANSIM) System

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jae Min; Ko, Young Cheol; Song, Tai Gil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Korea has become a technically independent nuclear country and has grown into an exporter of nuclear technologies. Thus, nuclear facilities are increasing in significance at KAERI (Korea Atomic Energy Research Institute), and it is time to address the nuclear safety. The importance of nuclear safety cannot be overemphasized. Therefore, a management system is needed urgently to manage the safety of nuclear facilities and to enhance the efficiency of nuclear information. We have established ISP (Information Strategy Planning) for the Integrated Information System of nuclear facility and safety management. The purpose of this paper is to develop a management system for nuclear safety. Therefore, we developed the Advanced Nuclear Safety Information Management system (hereinafter referred to as the 'ANSIM system'). The ANSIM system has been designed and implemented to computerize nuclear safety information for standardization, integration, and sharing in real-time. Figure 1 shows the main home page of the ANSIM system. In this paper, we describe the design requirements, contents, configurations, and utilizations of the ANSIM system

  20. Expert system for nuclear power plant feedwater system diagnosis

    International Nuclear Information System (INIS)

    Meguro, R.; Kinoshita, Y.; Sato, T.; Yokota, Y.; Yokota, M.

    1987-01-01

    The Expert System for Nuclear Power Plant Feedwater System Diagnosis has been developed to assist maintenance engineers in nuclear power plants. This system adopts the latest process computer TOSBAC G8050 and the expert system developing tool TDES2, and has a large scale knowledge base which consists of the expert knowledge and experience of engineers in many fields. The man-machine system, which has been developed exclusively for diagnosis, improves the man-machine interface and realizes the graphic displays of diagnostic process and path, stores diagnostic results and searches past reference

  1. International Nuclear Information System 25 years

    International Nuclear Information System (INIS)

    Behrens, H.; Prinz, H.

    1996-01-01

    In May 1970, the first information was published in the International Nuclear Information System (Inis). This makes Inis the first system in the world to establish a decentralized international database. In creating Inis, the International Atomic Energy Agency wanted to promote the exchange of information about the peaceful uses of nuclear energy among its members. References to the nuclear literature were to be compiled in the most complete way possible. The number of IAEA member countries participating in Inis has increased from an original 38 to 90, that of international organizations, from 12 to 17. The database holds more than 1.8 million documentation units; stocks grow by some 75,000 units annually. The German literature about nuclear research and nuclear technology is collected, evaluated and entered into Inis by the Fachinformationszentrum Karlsruhe. (orig.) [de

  2. FRENDY: A new nuclear data processing system being developed at JAEA

    Directory of Open Access Journals (Sweden)

    Tada Kenichi

    2017-01-01

    Full Text Available JAEA has provided an evaluated nuclear data library JENDL and nuclear application codes such as MARBLE, SRAC, MVP and PHITS. These domestic codes have been widely used in many universities and industrial companies in Japan. However, we sometimes find problems in imported processing systems and need to revise them when the new JENDL is released. To overcome such problems and immediately process the nuclear data when it is released, JAEA started developing a new nuclear data processing system, FRENDY in 2013. This paper describes the outline of the development of FRENDY and both its capabilities and performances by the analyses of criticality experiments. The verification results indicate that FRENDY properly generates ACE files.

  3. FRENDY: A new nuclear data processing system being developed at JAEA

    Science.gov (United States)

    Tada, Kenichi; Nagaya, Yasunobu; Kunieda, Satoshi; Suyama, Kenya; Fukahori, Tokio

    2017-09-01

    JAEA has provided an evaluated nuclear data library JENDL and nuclear application codes such as MARBLE, SRAC, MVP and PHITS. These domestic codes have been widely used in many universities and industrial companies in Japan. However, we sometimes find problems in imported processing systems and need to revise them when the new JENDL is released. To overcome such problems and immediately process the nuclear data when it is released, JAEA started developing a new nuclear data processing system, FRENDY in 2013. This paper describes the outline of the development of FRENDY and both its capabilities and performances by the analyses of criticality experiments. The verification results indicate that FRENDY properly generates ACE files.

  4. Development of TIG Welding System for a Nuclear Fuel Test Rig

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Changyoung; Ahn, Sungho; Hong, Jintae; Kim, Kahye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rig and rods. To manufacture the nuclear fuel test rig, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rig and rods jointing the various sensors and end caps on a fuel cladding tube, which is charged with fuel pellets and component parts. Thus, we designed and fabricated the precision welding system consisting of an orbital TIG welder, a low-pressure chamber, and a high-pressure chamber. Using this system, the performance tests were performed with the round and seal spot welds for each welding condition. This paper describes not only the contents for the fabrication of precision TIG welding system but also some results from weld tests using the low-pressure and high-pressure chambers to verify the performance of this system. The TIG welding system was developed to manufacture the nuclear fuel test rig and rods. It has been configured to be able to weld the nuclear fuel test rigs and rods by applying the TIG welder using a low-pressure chamber and a high-pressure chamber. The performance tests using this system were performed with the round and seal spot welds for the welding conditions. The soundness of the orbital TIG welding system was confirmed through performance tests in the low-pressure and high-pressure chambers.

  5. Development of TIG Welding System for a Nuclear Fuel Test Rig

    International Nuclear Information System (INIS)

    Joung, Changyoung; Ahn, Sungho; Hong, Jintae; Kim, Kahye

    2013-01-01

    The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rig and rods. To manufacture the nuclear fuel test rig, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rig and rods jointing the various sensors and end caps on a fuel cladding tube, which is charged with fuel pellets and component parts. Thus, we designed and fabricated the precision welding system consisting of an orbital TIG welder, a low-pressure chamber, and a high-pressure chamber. Using this system, the performance tests were performed with the round and seal spot welds for each welding condition. This paper describes not only the contents for the fabrication of precision TIG welding system but also some results from weld tests using the low-pressure and high-pressure chambers to verify the performance of this system. The TIG welding system was developed to manufacture the nuclear fuel test rig and rods. It has been configured to be able to weld the nuclear fuel test rigs and rods by applying the TIG welder using a low-pressure chamber and a high-pressure chamber. The performance tests using this system were performed with the round and seal spot welds for the welding conditions. The soundness of the orbital TIG welding system was confirmed through performance tests in the low-pressure and high-pressure chambers

  6. System for cooling the containment vessel of a nuclear reactor

    International Nuclear Information System (INIS)

    Costes, Didier.

    1982-01-01

    The invention concerns a post-accidental cooling system for a nuclear reactor containment vessel. This system includes in series a turbine fed by the moist air contained in the vessel, a condenser in which the air is dried and cooled, a compressor actuated by the turbine and a cooling exchanger. The cold water flowing through the condenser and in the exchanger is taken from a tank outside the vessel and injected by a pump actuated by the turbine. The application is for nuclear reactors under pressure [fr

  7. The Status of Development on a Web-Based Nuclear Material Accounting System at KAERI

    International Nuclear Information System (INIS)

    Lee, Byungdoo; Kim, Inchul; Lee, Seungho; Kim, Hyunjo

    2014-01-01

    The Integrated Safeguards (IS) has been applied to 10 nuclear facilities and 1 location outside facility (LOF) at the Korea Atomic Energy Research Institute (KAERI) since July 2008. One of the major changes in the implementation of safeguards under the IS is to apply the concept of a Random Interim Inspection (RII) instead of an interim inspection. The RII plan is notified within a few hours under the IS. It is thus difficult for facility operators to prepare the inspection documents within a short time if they do not periodically manage and process the nuclear material accounting data at each facility. To resolve these issues, KAERI developed a Web-based accounting system with the function of a near real-time accounting (NRTA) system to effectively and efficiently manage the nuclear material accounting data produced at the nuclear facilities and cope with a short notice inspection under the IS, called KASIS (KAeri Safeguards Information treatment System). The facility operators must input the accounting data on the inventory changes, which are the transfers of nuclear materials among the nuclear facilities and the chemical/physical composition changes, into the KASIS. KAERI also established an RFID system for controlling and managing the transfer of nuclear material and/or radioactive materials between the nuclear facilities for the purpose of nuclear safety management, and developed the nuclear material accounting system with the functions of inventory management of nuclear material at the facility level

  8. The Status of Development on a Web-Based Nuclear Material Accounting System at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byungdoo; Kim, Inchul; Lee, Seungho; Kim, Hyunjo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The Integrated Safeguards (IS) has been applied to 10 nuclear facilities and 1 location outside facility (LOF) at the Korea Atomic Energy Research Institute (KAERI) since July 2008. One of the major changes in the implementation of safeguards under the IS is to apply the concept of a Random Interim Inspection (RII) instead of an interim inspection. The RII plan is notified within a few hours under the IS. It is thus difficult for facility operators to prepare the inspection documents within a short time if they do not periodically manage and process the nuclear material accounting data at each facility. To resolve these issues, KAERI developed a Web-based accounting system with the function of a near real-time accounting (NRTA) system to effectively and efficiently manage the nuclear material accounting data produced at the nuclear facilities and cope with a short notice inspection under the IS, called KASIS (KAeri Safeguards Information treatment System). The facility operators must input the accounting data on the inventory changes, which are the transfers of nuclear materials among the nuclear facilities and the chemical/physical composition changes, into the KASIS. KAERI also established an RFID system for controlling and managing the transfer of nuclear material and/or radioactive materials between the nuclear facilities for the purpose of nuclear safety management, and developed the nuclear material accounting system with the functions of inventory management of nuclear material at the facility level.

  9. An integrated methodology to evaluate a spent nuclear fuel storage system

    International Nuclear Information System (INIS)

    Yoon, Jeong Hyoun

    2008-02-01

    This study introduced a methodology that can be applied for development of a dry storage system for spent nuclear fuels. It consisted of several design activities that includes development of a simplified program to analyze the amount of spent nuclear fuels from reflecting the practical situation in spent nuclear fuel management and a simplified program to evaluate the cost of 4 types of representing storage system to choose the most competitive option considering economic factor. As verification of the implementation of the reference module to practical purpose, a simplified thermal analysis code was suggested that can see fulfillment of limitation of temperature in long term storage and oxidation analysis. From the thermal related results, the reference module can accommodate full range of PHWR spent nuclear fuels and significant portion of PWR ones too. From the results, the reference storage system can be concluded that has fulfilled the important requirements in terms of long term integrity and radiological safety. Also for the purpose of solving scattered radiation along with deep penetration problems in cooling storage system, small but efficient design alternation was suggested together with its efficiency that can reduce scattered radiation by 1/3 from the original design. Along with the countermeasure for the shielding problem, in consideration of PWR spent nuclear fuels, simplified criticality analysis methodology retaining conservativeness was proposed. The results show the reference module is efficient low enrichment PWR spent nuclear fuel and even relatively high enrichment fuels too if burnup credit is taken. As conclusive remark, the methodology is simple but efficient to plan a concept design of convective cooling type of spent nuclear fuels storage. It can be also concluded that the methodology derived in this study and the reference module has feasibility in practical implementation to mitigate the current complex situation in spent fuel

  10. Recent space nuclear power systems

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Yasuda, Hideshi; Hishida, Makoto

    1991-01-01

    For the advance of mankind into the space, the power sources of large output are indispensable, and it has been considered that atomic energy is promising as compared with solar energy and others. Accordingly in USA and USSR, the development of the nuclear power generation systems for space use has been carried out since considerable years ago. In this report, the general features of space nuclear reactors are shown, and by taking the system for the SP-100 project being carried out in USA as the example, the contents of the recent design regarding the safety as an important factor are discussed. Moreover, as the examples of utilizing space nuclear reactors, the concepts of the power source for the base on the moon, the sources of propulsive power for the rockets used for Mars exploration and others, the remote power transmission system by laser in the space and so on are explained. In September, 1988, the launching of a space shuttle of USA was resumed, and the Jupiter explorer 'Galileo' and the space telescope 'Hubble' were successfully launched. The space station 'Mir' of USSR has been used since February, 1986. The history of the development of the nuclear power generation systems for space use is described. (K.I.)

  11. European nuclear data studies for fast systems

    International Nuclear Information System (INIS)

    Rullhusen, P.; Hambsch, F.-J.; Mondelaers, W.; Plompen, A.J.M.; Schillebeeckx, P.

    2010-01-01

    Nuclear data needs for fast systems are highlighted and the following projects are described: Joint European research projects: MUSE Experiments for Sub-critical Neutronics Validation; High- and Intermediate Energy Nuclear Data for ADS (HINDAS); and the Time-Of-Flight facility for Nuclear Data Measurements for ADS (n T OF N D A DS); European Research Programme for the Transmutation of High Level Nuclear Waste in an Accelerator Driven System (EUROTRANS-NUDATRA); and CANDIDE; Programmes for transnational access to experimental facilities in Europe: European Facilities for Nuclear Data Measurements (EFNUDAT); Neutron Data Measurements at IRMM (NUDAME); European facility for innovative reactor and transmutation neutron data (EUFRAT) (P.A.)

  12. U.S. national nuclear material control and accounting system

    International Nuclear Information System (INIS)

    Taylor, S; Terentiev, V G

    1998-01-01

    Issues related to nuclear material control and accounting and illegal dealing in these materials were discussed at the April 19--20, 1996 Moscow summit meeting (G7 + Russia). The declaration from this meeting reaffirmed that governments are responsible for the safety of all nuclear materials in their possession and for the effectiveness of the national control and accounting system for these materials. The Russian delegation at this meeting stated that ''the creation of a nuclear materials accounting, control, and physical protection system has become a government priority''. Therefore, in order to create a government nuclear material control and accounting system for the Russian Federation, it is critical to study the structure, operating principles, and regulations supporting the control and accounting of nuclear materials in the national systems of nuclear powers. In particular, Russian specialists have a definite interest in learning about the National Nuclear Material Control and Accounting System of the US, which has been operating successfully as an automated system since 1968

  13. Nuclear power reactors and hydrogen storage systems

    International Nuclear Information System (INIS)

    Ibrahim Aly Mahmoud El Osery.

    1980-01-01

    Among conclusions and results come by, a nuclear-electric-hydrogen integrated power system was suggested as a way to prevent the energy crisis. It was shown that the hydrogen power system using nuclear power as a leading energy resource would hold an advantage in the current international situation as well as for the long-term future. Results reported provide designers of integrated nuclear-electric-hydrogen systems with computation models and routines which will allow them to explore the optimal solution in coupling power reactors to hydrogen producing systems, taking into account the specific characters of hydrogen storage systems. The models were meant for average computers of a type easily available in developing countries. (author)

  14. US Army Nuclear Burst Detection System (NBDS)

    International Nuclear Information System (INIS)

    Glaser, R.F.

    1980-07-01

    The Nuclear Burst Detection System (NBDS) was developed to meet the Army requirements of an unattended, automatic nuclear burst reporting system. It provides pertinent data for battlefield commanders on a timely basis with high reliability

  15. A nuclear source term analysis for spacecraft power systems

    International Nuclear Information System (INIS)

    McCulloch, W.H.

    1998-01-01

    All US space missions involving on board nuclear material must be approved by the Office of the President. To be approved the mission and the hardware systems must undergo evaluations of the associated nuclear health and safety risk. One part of these evaluations is the characterization of the source terms, i.e., the estimate of the amount, physical form, and location of nuclear material, which might be released into the environment in the event of credible accidents. This paper presents a brief overview of the source term analysis by the Interagency Nuclear Safety Review Panel for the NASA Cassini Space Mission launched in October 1997. Included is a description of the Energy Interaction Model, an innovative approach to the analysis of potential releases from high velocity impacts resulting from launch aborts and reentries

  16. A study in improvement of administrative system in the nuclear safety regulation

    International Nuclear Information System (INIS)

    Yook, Dong Il; Kuk, Doe Hyeong; Lee, Seong Min; Kim, Jong Sam; Hwang, Sun Ho

    2001-03-01

    One of the most important tasks to improve nuclear safety regulation system is to separate nuclear regulatory institutes from public agencies which promote the development nuclear power. Moreover, nuclear safety regulation should be not only specialized but optimized to be adapted for new environments such as high-tech information age. Especially, it is necessary to reform the current nuclear safety regulation systems both to be effective under the local self-administration which began to operate in recent years and to be supported by local residents

  17. A study in improvement of administrative system in the nuclear safety regulation

    Energy Technology Data Exchange (ETDEWEB)

    Yook, Dong Il; Kuk, Doe Hyeong; Lee, Seong Min; Kim, Jong Sam; Hwang, Sun Ho [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-03-15

    One of the most important tasks to improve nuclear safety regulation system is to separate nuclear regulatory institutes from public agencies which promote the development nuclear power. Moreover, nuclear safety regulation should be not only specialized but optimized to be adapted for new environments such as high-tech information age. Especially, it is necessary to reform the current nuclear safety regulation systems both to be effective under the local self-administration which began to operate in recent years and to be supported by local residents.

  18. Nuclear power systems: Their safety

    International Nuclear Information System (INIS)

    Myers, L.C.

    1993-01-01

    Mankind utilizes energy in many forms and from a variety of sources. Canada is one of a growing number of countries which have chosen to embrace nuclear-electric generation as a component of their energy systems. As of August 1992 there were 433 power reactors operating in 35 countries and accounting for more than 15% of the world's production of electricity. In 1992, thirteen countries derived at least 25% of their electricity from nuclear units, with France leading at nearly 70%. In the same year, Canada produced about 16% of its electricity from nuclear units. Some 68 power reactors are under construction in 16 countries, enough to expand present generating capacity by close to 20%. No human endeavour carries the guarantee of perfect safety and the question of whether or not nuclear-electric generation represents an 'acceptable' risk to society has long been vigorously debated. Until the events of late April 1986, nuclear safety had indeed been an issue for discussion, for some concern, but not for alarm. The accident at the Chernobyl reactor in the USSR has irrevocably changed all that. This disaster brought the matter of nuclear safety back into the public mind in a dramatic fashion. This paper discusses the issue of safety in complex energy systems and provides brief accounts of some of the most serious reactor accidents which have occurred to date. (author). 7 refs

  19. Nuclear criticality information system

    International Nuclear Information System (INIS)

    Koponen, B.L.; Hampel, V.E.

    1981-01-01

    The nuclear criticality safety program at LLNL began in the 1950's with a critical measurements program which produced benchmark data until the late 1960's. This same time period saw the rapid development of computer technology useful for both computer modeling of fissile systems and for computer-aided management and display of the computational benchmark data. Database management grew in importance as the amount of information increased and as experimental programs were terminated. Within the criticality safety program at LLNL we began at that time to develop a computer library of benchmark data for validation of computer codes and cross sections. As part of this effort, we prepared a computer-based bibliography of criticality measurements on relatively simple systems. However, it is only now that some of these computer-based resources can be made available to the nuclear criticality safety community at large. This technology transfer is being accomplished by the DOE Technology Information System (TIS), a dedicated, advanced information system. The NCIS database is described

  20. A nuclear fuel cycle system dynamic model for spent fuel storage options

    International Nuclear Information System (INIS)

    Brinton, Samuel; Kazimi, Mujid

    2013-01-01

    Highlights: • Used nuclear fuel management requires a dynamic system analysis study due to its socio-technical complexity. • Economic comparison of local, regional, and national storage options is limited due to the public financial information. • Local and regional options of used nuclear fuel management are found to be the most economic means of storage. - Abstract: The options for used nuclear fuel storage location and affected parameters such as economic liabilities are currently a focus of several high level studies. A variety of nuclear fuel cycle system analysis models are available for such a task. The application of nuclear fuel cycle system dynamics models for waste management options is important to life-cycle impact assessment. The recommendations of the Blue Ribbon Committee on America’s Nuclear Future led to increased focus on long periods of spent fuel storage [1]. This motivated further investigation of the location dependency of used nuclear fuel in the parameters of economics, environmental impact, and proliferation risk. Through a review of available literature and interactions with each of the programs available, comparisons of post-reactor fuel storage and handling options will be evaluated based on the aforementioned parameters and a consensus of preferred system metrics and boundary conditions will be provided. Specifically, three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module (WMM) which provides an easy to use interface for education on fuel cycle waste management economic impacts. Initial results of baseline cases point to positive benefits of regional storage locations with local regional storage options continuing to offer the lowest cost

  1. A radiation monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Iwai, Masaru; Nakamori, S.; Ikeda, H.; Oda, M.

    1974-01-01

    Safety with respect to radiation is vital factor, particularly in view of the increasing number of nuclear power plants. For this purpose, a radiation monitoring system is provided to perform constant supervision. This article describes the purpose, installation location, specifications and circuitry of a system which is divided into three units: the process monitor, area monitor and off-site monitor. (auth.)

  2. Reliability of sprinkler systems. Exploration and analysis of data from nuclear and non-nuclear installations

    International Nuclear Information System (INIS)

    Roenty, V.; Keski-Rahkonen, O.; Hassinen, J.P.

    2004-12-01

    Sprinkler systems are an important part of fire safety of nuclear installations. As a part of effort to make fire-PSA of our utilities more quantitative a literature survey from open sources worldwide of available reliability data on sprinkler systems was carried out. Since the result of the survey was rather poor quantitatively, it was decided to mine available original Finnish nuclear and non-nuclear data, since nuclear power plants present a rather small device population. Sprinklers are becoming a key element for the fire safety in modern, open non-nuclear buildings. Therefore, the study included both nuclear power plants and non-nuclear buildings protected by sprinkler installations. Data needed for estimating of reliability of sprinkler systems were collected from available sources in Finnish nuclear and non-nuclear installations. Population sizes on sprinkler system installations and components therein as well as covered floor areas were counted individually from Finnish nuclear power plants. From non-nuclear installations corresponding data were estimated by counting relevant things from drawings of 102 buildings, and plotting from that sample needed probability distributions. The total populations of sprinkler systems and components were compiled based on available direct data and these distributions. From nuclear power plants electronic maintenance reports were obtained, observed failures and other reliability relevant data were selected, classified according to failure severity, and stored on spreadsheets for further analysis. A short summary of failures was made, which was hampered by a small sample size. From non-nuclear buildings inspection statistics from years 1985.1997 were surveyed, and observed failures were classified and stored on spreadsheets. Finally, a reliability model is proposed based on earlier formal work, and failure frequencies obtained by preliminary data analysis of this work. For a model utilising available information in the non-nuclear

  3. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major US Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed in this paper. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. Finally, a list of measures is given for assessing overall physical protection system performance. (author)

  4. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1975-10-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely-activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. A list of measures is given for assessing overall physical protection system performance. (auth)

  5. Quality assurance system in nuclear engineering

    International Nuclear Information System (INIS)

    Adams, H.W.; Hoensch, V.

    1985-01-01

    Due to the close connection between the German Atomic Energy Law and the nuclear control regulations, quality systems in nuclear engineering have taken on a special form. Quality assurance systems as a stipulated organisation of structure and procedure to assure quality have implications for the organisation of the electric supply company at the planning, erection and commissioning stage and for the organisation of the nuclear power station facility. To supervise the application and effectiveness of the stipulated organisation of structure and procedure internally and externally among contractors, special organisation units have been set up at the plant suppliers, manufactures, electric supply companies and nuclear power station facilities, which in the electric supply field go by the name of Quality Assurance Supervision. (orig.) [de

  6. Nuclear excited power generation system

    International Nuclear Information System (INIS)

    Parker, R.Z.; Cox, J.D.

    1989-01-01

    A power generation system is described, comprising: a gaseous core nuclear reactor; means for passing helium through the reactor, the helium being excited and forming alpha particles by high frequency radiation from the core of the gaseous core nuclear reactor; a reaction chamber; means for coupling chlorine and hydrogen to the reaction chamber, the helium and alpha particles energizing the chlorine and hydrogen to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for coupling the helium back to the gaseous core nuclear reactor; and means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, to be coupled back to the reaction chamber in a closed loop. The patent also describes a power generation system comprising: a gaseous core nuclear reactor; means for passing hydrogen through the reactor, the hydrogen being excited by high frequency radiation from the core; means for coupling chlorine to a reaction chamber, the hydrogen energizing the chlorine in the chamber to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, and means for coupling the hydrogen back to the gaseous core nuclear reactor in a closed loop

  7. Remote nuclear green pellet processing system

    International Nuclear Information System (INIS)

    Cellier, Francis.

    1980-01-01

    An automated system for manufacturing nuclear fuel pellets for use in nuclear fuel elements of nuclear power reactors is described. The system comprises process components arranged vertically but not directly under each other within a single enclosure. The vertical-lateral arrangement provides for gravity flow of the product from one component to the next and for removal of each component without interference with the other components. The single enclosure eliminates time consuming transfer between separate enclosures of each component while providing three-sided access to the component through glove ports. (auth)

  8. Space nuclear power systems for extraterrestrial basing

    International Nuclear Information System (INIS)

    Lance, J.R.; Chi, J.W.H.

    1989-01-01

    Previous studies of nuclear and non-nuclear power systems for lunar bases are compared with recent studies by others. Power levels from tens of kW e for early base operation up to 2000 kW e for a self-sustaining base with a Closed Environment Life Support System (CELSS) are considered. Permanent lunar or Martian bases will require the use of multiple nuclear units connected to loads with a power transmission and distribution system analogous to earth-based electric utility systems. A methodology used for such systems is applied to the lunar base system to examine the effects of adding 100 kW e SP-100 class and/or larger nuclear units when a reliability criterion is imposed. The results show that resource and logistic burdens can be reduced by using 1000 kW e units early in the base growth scenario without compromising system reliability. Therefore, both technologies being developed in two current programs (SP-100 and NERVA Derivative Reactor (NDR) technology for space power) can be used effectively for extraterrestrial base power systems. Recent developments in NDR design that result in major reductions in reactor mass are also described. (author)

  9. Nuclear fuel cycle simulation system (VISTA)

    International Nuclear Information System (INIS)

    2007-02-01

    The Nuclear Fuel Cycle Simulation System (VISTA) is a simulation system which estimates long term nuclear fuel cycle material and service requirements as well as the material arising from the operation of nuclear fuel cycle facilities and nuclear power reactors. The VISTA model needs isotopic composition of spent nuclear fuel in order to make estimations of the material arisings from the nuclear reactor operation. For this purpose, in accordance with the requirements of the VISTA code, a new module called Calculating Actinide Inventory (CAIN) was developed. CAIN is a simple fuel depletion model which requires a small number of input parameters and gives results in a very short time. VISTA has been used internally by the IAEA for the estimation of: spent fuel discharge from the reactors worldwide, Pu accumulation in the discharged spent fuel, minor actinides (MA) accumulation in the spent fuel, and in the high level waste (HLW) since its development. The IAEA decided to disseminate the VISTA tool to Member States using internet capabilities in 2003. The improvement and expansion of the simulation code and the development of the internet version was started in 2004. A website was developed to introduce the simulation system to the visitors providing a simple nuclear material flow calculation tool. This website has been made available to Member States in 2005. The development work for the full internet version is expected to be fully available to the interested parties from IAEA Member States in 2007 on its website. This publication is the accompanying text which gives details of the modelling and an example scenario

  10. Management review of nuclear material control and accounting systems

    International Nuclear Information System (INIS)

    1975-06-01

    Section 70.58, ''Fundamental Nuclear Material Controls,'' of 10 CFR Part 70, ''Special Nuclear Materials,'' requires, in paragraph 70.58(c), that certain licensees authorized to possess more than one effective kilogram of special nuclear material establish a management system to provide for the development, revision, implementation, and enforcement of nuclear material control and accounting procedures. Such a system must provide for a review of the nuclear material control system at least every 12 months. This guide describes the purpose and scope, personnel qualifications, depth of detail, and procedures that are acceptable to the NRC staff for the management review of nuclear material control systems required under paragraph 70.58(c) of 10 CFR Part 70. (U.S.)

  11. Nuclear Material Control and Accountability System Effectiveness Tool (MSET)

    International Nuclear Information System (INIS)

    Powell, Danny H.; Elwood, Robert H. Jr.; Roche, Charles T.; Campbell, Billy J.; Hammond, Glenn A.; Meppen, Bruce W.; Brown, Richard F.

    2011-01-01

    A nuclear material control and accountability (MC and A) system effectiveness tool (MSET) has been developed in the United States for use in evaluating material protection, control, and accountability (MPC and A) systems in nuclear facilities. The project was commissioned by the National Nuclear Security Administration's Office of International Material Protection and Cooperation. MSET was developed by personnel with experience spanning more than six decades in both the U.S. and international nuclear programs and with experience in probabilistic risk assessment (PRA) in the nuclear power industry. MSET offers significant potential benefits for improving nuclear safeguards and security in any nation with a nuclear program. MSET provides a design basis for developing an MC and A system at a nuclear facility that functions to protect against insider theft or diversion of nuclear materials. MSET analyzes the system and identifies several risk importance factors that show where sustainability is essential for optimal performance and where performance degradation has the greatest impact on total system risk. MSET contains five major components: (1) A functional model that shows how to design, build, implement, and operate a robust nuclear MC and A system (2) A fault tree of the operating MC and A system that adapts PRA methodology to analyze system effectiveness and give a relative risk of failure assessment of the system (3) A questionnaire used to document the facility's current MPC and A system (provides data to evaluate the quality of the system and the level of performance of each basic task performed throughout the material balance area (MBA)) (4) A formal process of applying expert judgment to convert the facility questionnaire data into numeric values representing the performance level of each basic event for use in the fault tree risk assessment calculations (5) PRA software that performs the fault tree risk assessment calculations and produces risk importance

  12. A study on the revision of nuclear safety act to build the foundation of nuclear export and import control system in Korea

    International Nuclear Information System (INIS)

    Yang, Seung Hyo; Choi, Sun Do

    2012-01-01

    Nuclear related items require export and import control beyond the multilateral export control system according to Safeguard Agreement, Additional Protocol and bilateral agreements. Besides Korea as a nuclear supplier is needed to actively cope with its export control system, which is being reinforced internationally. In regard to this trend, this study drew the revision plan of present Nuclear Safety Act to found the nuclear export and import control system in Korea by examining the related legislations and analyzing the implementation status of nuclear export and import control

  13. A study on the revision of nuclear safety act to build the foundation of nuclear export and import control system in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Hyo; Choi, Sun Do [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2012-10-15

    Nuclear related items require export and import control beyond the multilateral export control system according to Safeguard Agreement, Additional Protocol and bilateral agreements. Besides Korea as a nuclear supplier is needed to actively cope with its export control system, which is being reinforced internationally. In regard to this trend, this study drew the revision plan of present Nuclear Safety Act to found the nuclear export and import control system in Korea by examining the related legislations and analyzing the implementation status of nuclear export and import control.

  14. Deliberations on nuclear safety regulatory system in a changing industrial environment

    International Nuclear Information System (INIS)

    Kim, H.J.

    2001-01-01

    Nuclear safety concern, which may accompany such external environmental factors as privatization and restructuring of the electric power industry, is emerging as an international issue. In order to cope with the concern about nuclear safety, it is important to feedback valuable experiences of advanced countries that restructured their electric power industries earlier and further to reflect the current safety issues, which are raised internationally, fully into the nuclear safety regulatory system. This paper is to review the safety issues that might take place in the process of increasing competition in the nuclear power industry, and further to present a basic direction and effective measures for ensuring nuclear safety in response thereto from the viewpoint of safety regulation. It includes a political direction for a regulatory body's efforts to rationalize and enforce efficiently its regulation. It proposes to ensure that regulatory specialty and regulatory cost are stably secured. Also, this paper proposes maintaining a sound nuclear safety regulatory system to monitor thoroughly the safety management activities of the industry, which might be neglected as a result of focusing on reduction of the cost for producing electric power. (author)

  15. Nuclear power project management information system

    International Nuclear Information System (INIS)

    Zou Lailong; Zhang Peng; Xiao Ziyan; Chun Zengjun; Huang Futong

    2001-01-01

    Project Management Information System is an important infrastructure facility for the construction and operation of Nuclear Power Station. Based on the practice of Lingao nuclear power project management information system (NPMIS), the author describes the NPMIS design goals, system architecture and software functionality, points out the outline issues during the development and deployment of NPMIS

  16. Multifragment disintegrations of expanding nuclear systems

    International Nuclear Information System (INIS)

    Gelbke, K.

    1993-01-01

    Two phase transitions are expected to exist in bulk nuclear matter: a liquid-gas phase transition and a deconfinement transition to a quark-gluon plasma. In studies of nucleus-nucleus collisions, conditions similar to those pertaining to phase transitions in infinite systems can be created, but the fundamental problem yet to be solved is the identification of remnant signatures uniquely related to either of these phase transitions. Nuclear systems at densities and temperatures corresponding to the liquid-gas coexistence region can be produced in intermediate energy nucleus-nucleus collisions; they are expected to decay into many intermediate mass fragments (IMF's: Z=3-20). Recent investigations with low-threshold electronic 4π detector arrays have firmly established the occurrence of multifragment disintegrations of hot nuclear systems and allowed to challenge various theoretical approaches. In this talk, an overview of pertinent experimental results on multifragmentation will be presented and discussed. it will be shown that current microscopic transport theories designed to treat the growth of density fluctuations predict fragment multiplicities much smaller than observed experimentally. Measurements of the time scales of fragment formation are consistent with statistical model calculations for expanding hot nuclear system which indicate that fragments may form during a rather narrow time interval after the system has cooled and expanded to a density below that of normal nuclear matter. The expansion rate (and hence the fragment multiplicity) is sensitive to the equation of state (EOS). However, a number of recent results provide increasing evidence that current theoretical treatments need to be refined to allow an experimental determination of the EOS

  17. A framework for AI-based nuclear design support system

    International Nuclear Information System (INIS)

    Furuta, Kazuo; Kondo, Shunsuke

    1991-01-01

    Nowadays many computer programs are being developed and used for the analytic tasks in nuclear reactor design, but experienced designers are still responsible for most of the synthetic tasks which are not amenable to algorithmic computer processes. Artificial intelligence (AI) is a promising technology to deal with these intractable tasks in design. In development of AI-based design support systems, it is desirable to choose a comprehensive framework based on the scientific theory of design. In this work a framework for AI-based design support systems for nuclear reactor design will be proposed based on an exploration model of design. The fundamental architectures of this framework will be described especially on knowledge representation, context management and design planning. (author)

  18. Nuclear energy in Canada: the CANDU system

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1979-10-01

    Nuclear electricity in Canada is generated by CANDU nuclear power stations. The CANDU reactor - a unique Canadian design - is fuelled by natural uranium and moderated by heavy water. The system has consistently outperformed other comparable nuclear power systems in the western world, and has an outstanding record of reliability, safety and economy. As a source of energy it provides the opportunity for decreasing our dependence on dwindling supplies of conventional fossil fuels. (auth)

  19. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission-free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.

  20. Nuclear electric propulsion: A better, safer, cheaper transportation system for human exploration of Mars

    International Nuclear Information System (INIS)

    Clark, J.S.; George, J.A.; Gefert, L.P.; Doherty, M.P.; Sefcik, R.J.

    1994-03-01

    NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for 'split-sprint' human exploration and related robotic cargo missions to Mars. This paper describes the study, the mission architecture selected, the NEP system and technology development needs, proposed development schedules, and estimated development costs. Since current administration policy makers have delayed funding for key technology development activities that could make Mars exploration missions a reality in the near future, NASA will have time to evaluate various alternate mission options, and it appears prudent to ensure that Mars mission plans focus on astronaut and mission safety, while reducing costs to acceptable levels. The split-sprint nuclear electric propulsion system offers trip times comparable to nuclear thermal propulsion (NTP) systems, while providing mission abort opportunities that are not possible with 'reference' mission architectures. Thus, NEP systems offer short transit times for the astronauts, reducing the exposure of the crew to intergalactic cosmic radiation. The high specific impulse of the NEP system, which leads to very low propellant requirements, results in significantly lower 'initial mass in low earth orbit' (IMLEO). Launch vehicle packaging studies show that the NEP system can be launched, assembled, and deployed, with about one less 240-metric-ton heavy lift launch vehicle (HLLV) per mission opportunity - a very Technology development cost of the nuclear reactor for an NEP system would be shared with the proposed nuclear surface power systems, since nuclear systems will be required to provide substantial electrical power on the surface of Mars. The NEP development project plan proposed includes evolutionary technology development for nuclear electric propulsion systems that expands upon SP-100 (Space Power - 100 kw(e)) technology that has been developed for lunar and Mars surface nuclear power

  1. Remote system for counting of nuclear pulses; Sistema remoto de conteo de pulsos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Nieves V, J.A.; Garcia H, J.M.; Aguilar B, M.A. [Instituto Nacional de Investigaciones Nucleares, Ingenieria Electronica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    In this work, it is describe technically the remote system for counting of nuclear pulses, an integral system of the project radiological monitoring in a petroleum distillation tower. The system acquires the counting of incident nuclear particles in a nuclear detector which process this information and send it in serial form, using the RS-485 toward a remote receiver, which can be a Personal computer or any other device capable to interpret the communication protocol. (Author)

  2. Computer systems and nuclear industry

    International Nuclear Information System (INIS)

    Nkaoua, Th.; Poizat, F.; Augueres, M.J.

    1999-01-01

    This article deals with computer systems in nuclear industry. In most nuclear facilities it is necessary to handle a great deal of data and of actions in order to help plant operator to drive, to control physical processes and to assure the safety. The designing of reactors requires reliable computer codes able to simulate neutronic or mechanical or thermo-hydraulic behaviours. Calculations and simulations play an important role in safety analysis. In each of these domains, computer systems have progressively appeared as efficient tools to challenge and master complexity. (A.C.)

  3. DIMOS: a new generation of nuclear power plant process monitoring systems

    International Nuclear Information System (INIS)

    Vlaminck, M. de; Gilliot, B.; Remacle, J.

    1993-01-01

    A new generation of nuclear power plant supervision systems is described, called DIMOS (DIstributed MOnitoring System). It was installed in August 1991 at the Doel nuclear power plant and is now monitoring reactors 1 and 2. The system represents one of the largest and most advanced process monitoring systems in operation. DIMOS has successfully provided the solution to the old system's limitations such as functional deficiencies, low response time, management and coherence of the data, maintenance costs, spare parts, and system availability. The use of the software development methodologies HOOD and ADA have not only allowed a rapid integration and installation of a robust system, but will also make further developments and improvements possible with maximum flexibility. (Z.S.) 2 figs

  4. Economic principles of optimizing mixed nuclear and non-nuclear electricity systems

    International Nuclear Information System (INIS)

    Gouni, L.

    1984-01-01

    In this chapter, an attempt will be made to show how and why, viewed from the economic angle, nuclear energy and electricity systems supplement each other, since the former requires large size facilities, and the latter provide already existing networks for the supply of all users. Consequently, it is primarily through the electric vector that the rational development of the nuclear industry may be ensured. Section 2.1 sets forth the essential rules for economic calculation. In Section 2.2 we discuss the competitive factors among final-use forms of energy in regard to utilization, and we attempt to show how nuclear energy transmitted through electricity systems may meet such terms. Finally, Section 2.3 deals with, and specifies the characteristics of, electricity systems based on nuclear energy and, in particular, the rates to which they lead. (author)

  5. Nuclear plant-aging research on reactor protection systems

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed

  6. Energy System Expectations for Nuclear in the 21. Century: A Plausible Range

    International Nuclear Information System (INIS)

    Langlois, Lucille M.; McDonald, Alan; Rogner, Hans-Holger; Vera, Ivan

    2002-01-01

    This paper outlines a range of scenarios describing what the world's energy system might look like in the middle of the century, and what nuclear energy's most profitable role might be. The starting point is the 40 non-greenhouse-gas-mitigation scenarios in the Special Report on Emissions Scenarios (SRES) of the Intergovernmental Panel on Climate Change (IPCC, 2000). Given their international authorship and comprehensive review by governments and scientific experts, the SRES scenarios are the state of the art in long-term energy scenarios. However, they do not present the underlying energy system structures in enough detail for specific energy technology and infrastructure analyses. This paper therefore describes initial steps within INPRO (The International Project on Innovative Nuclear Reactors and Fuel Cycles of the International Atomic Energy Agency) to translate the SRES results into a range of possible nuclear energy technology requirements for mid-century. The paper summarizes the four SRES scenarios that will be used in INPRO and the reasons for their selection. It provides illustrative examples of the sort of additional detail that is being developed about the overall energy system implied by each scenario, and about specific scenario features particularly relevant to nuclear energy. As recommended in SRES, the selected scenarios cover all four SRES 'story-line families'. The energy system translations being developed in INPRO are intended to indicate how energy services may be provided in mid-century and to delineate likely technology and infrastructure implications. They will indicate answers to questions like the following. The list is illustrative, not comprehensive. - What kind of nuclear power plants will best fit the mid-century energy system? - What energy forms and other products and services provided by nuclear reactors will best fit the mid-century energy system? - What would be their market shares? - How difficult will it be to site new nuclear

  7. Electrical and electronic subsystems of a nuclear waste tank annulus inspection system

    International Nuclear Information System (INIS)

    Evenson, R.J.

    1981-06-01

    The nuclear waste tank annulus inspection system is designed specifically for use at the Nuclear Regulatory Commission's Nuclear Fuel Services Facility at West Valley, New York. This system sends a television and photographic camera into the space between the walls of a double-shell nuclear waste tank to obtain images of the inner and outer walls at precisely known locations. The system is capable of inspecting a wall section 14 ft wide by 27 ft high. Due to the high temperature and radiation of the annulus environment, the operating life for the inspection device is uncertain, but is expected to be at least 100 h, with 1000 R/h at 82 0 C. The film camera is shielded with 1/2 in. of lead to minimize radiation fogging of the film during a 25-min picture taking excursion. The operation of the inspection system is semiautomated with remote manual prepositioning of the camera, followed by a computer controlled wall scan. This apparatus is currently set up to take an array of contiguous pictures, but is adaptable to other modes of operation

  8. Nuclear systems of level measurement

    International Nuclear Information System (INIS)

    Lara, A.J.; Cabrera, M.J.

    1992-01-01

    In the industry there are processes in which is necessary to maintain the products level controlled which are handled for their transformation. The majority of such processes and by the operation conditions, they do not admit measure systems of level of invasive type then the application of nuclear techniques for level measurement results a big aid in these cases, since all the system installation is situated beyond frontiers of vessels that contain the product for measuring. In the Department of Nuclear Technology Applications of Mexican Petroleum Institute was developed a level measurement system by gamma rays transmission which operates in the Low Density Polyethylene plant of Petrochemical Complex Escolin at Poza Rica, Veracruz, Mexico. (Author)

  9. The Nuclear Criticality Information System: An update

    International Nuclear Information System (INIS)

    Koponen, B.L.

    1991-07-01

    The US Department of Energy's Nuclear Criticality Information System (NCIS) has served the criticality community for the past ten years with publications and with an online information system. NCIS provides a mean for widely distributed nuclear criticality specialists to communicate and work together instantly. Users of the system may receive assistance from all members of the NCIS community, which provides a much broader base of support than is available at any single site. When unified by NCIS, these diverse specialists provide a resource that has proven to be very useful in the safe handling of fissile material. NCIS also is a source of current nuclear criticality safety information; the rapid access of such up-to-date information on the handling of fissile materials outside of nuclear reactors is international in scope, extending beyond political and geographical boundaries

  10. Nuclear renaissance in Asia. Energy security and development of nuclear power generation system

    International Nuclear Information System (INIS)

    Nakasugi, Hideo

    2009-01-01

    The energy policy and strategy of development of nuclear power generation system of China, India and Korea are stated on the basis of use of light water reactors (LWRs). The conditions of power generation and introduction plans of nuclear energy of other Asian countries such as Vietnam, Thailand, Indonesia, Malaysia and Philippines are described. The power plant capacity of China increased from 50,500 MW in 2004, to 65,000 MW in 2005, and the target value is 40,000 MW of operating nuclear plants and 18,000 MW in building in 2020. China is lagging behind in peaceful use of nuclear energy technologies. A plan for the reform of nuclear industry and nuclear power generation projects of China are summarized. Total power plant capacity of India is 145,000 MW, but the nuclear plant capacity is 4,120 MW in 2008 and 63,000 MW of the target in 2032. Development of nuclear power, circumstance, and cooperation with other countries' industries are explained. 17,716 MW of nuclear power is in operation, 6,800 MW in building and 2,800 MW in the planning stage in Korea. History of development of national reactors and the subjects of development of the fourth generation reactor of Korea are stated. Management system of nuclear power plants in China, technical bases of nuclear power plants in China, development system of nuclear power generation in India, the conditions of power production of Korea in 2008, the capacity factor of Korea, Japan and world from 1998 to 2008, and comparison of nuclear industries in China, India and Korea are illustrated. (S.Y.)

  11. Automatic motion inhibit system for a nuclear power generating system

    International Nuclear Information System (INIS)

    Musick, C.R.; Torres, J.M.

    1977-01-01

    Disclosed is an automatic motion inhibit system for a nuclear power generating system for inhibiting automatic motion of the control elements to reduce reactor power in response to a turbine load reduction. The system generates a final reactor power level setpoint signal which is continuously compared with a reactor power signal. The final reactor power level setpoint is a setpoint within the capacity of the bypass valves to bypass steam which in no event is lower in value than the lower limit of automatic control of the reactor. If the final reactor power level setpoint is greater than the reactor power, an inhibit signal is generated to inhibit automatic control of the reactor. 6 claims, 5 figures

  12. A system design for the nuclear material accounting reports control based on the intra-net

    International Nuclear Information System (INIS)

    Jeon, I.; Park, S. J.; Min, K. S.

    2003-01-01

    The 34 nuclear facilities, including the nuclear power plants, were on operating in Korea and the Technology Center for Nuclear Control(TCNC) has been submit the nuclear material accounting reports to the government and IAEA. At the start point of this work, all reports were controlled via manually and at now, they were controlled based on the client/server system. The fast progress of the computer and internet communication changes the environment of computing from disk operating system to web based system using internet. So, a new system to access the safeguards information and nuclear material accounting system more convenient was needed. In this thesis, a safeguards information control system including the nuclear material accounting reports at the state level based on the web was designed. The oracle RDBMS (Relational Data Base Management System) was adopted for data base management. And all users can access this program via inter-net using their own computer

  13. Nuclear engine system simulation (NESS) program update

    International Nuclear Information System (INIS)

    Scheil, C.M.; Pelaccio, D.G.; Petrosky, L.J.

    1993-01-01

    The second phase of development of a Nuclear Thermal Propulsion (NTP) engine system design analysis code has been completed. The standalone, versatile Nuclear Engine System Simulation (NESS) code provides an accurate, detailed assessment of engine system operating performance, weight, and sizes. The critical information is required to support ongoing and future engine system and stage design study efforts. This recent development effort included incorporation of an updated solid-core nuclear thermal reactor model that yields a reduced core weight and higher fuel power density when compared to a NERVA type reactor. NESS can now analyze expander, gas generator, and bleed cycles, along with multi-redundant propellant pump feed systems. Performance and weight of efficient multi-stage axial turbopump can now be determined, in addition to the traditional centrifugal pump

  14. Development of a comprehensive nuclear materials accountancy system at JAEA

    International Nuclear Information System (INIS)

    Takeda, Hideyuki; Usami, Masayuki; Hirosawa, Naonori; Fujita, Yoshihisa; Kodani, Yoshiki; Komata, Kazuhiro

    2007-01-01

    The Japan Atomic Energy Agency (JAEA) is submitting various types of accounting reports of international controlled materials to the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) based on domestic laws and regulations. JAEA developed a comprehensive Nuclear Material Accountancy System to achieve uniform management of the data of each facility by using a company-wide database. Personal computers in each facility are connected throughout the company using an in-house network to create the comprehensive Nuclear Material Accountancy System. This System uses personal computers to facilitate timely communication and for easy maintenance and operation. Efficient data processing and quality control functions for accountancy reporting are also realized by this System. In addition, the System has the ability to extract and summarize data about Plutonium Management in the company for public announcement. This report introduces and describes the details and functions of this System. (author)

  15. The protection system to Brazilian Nuclear Program; O sistema de protecao ao Programa Nuclear Brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Andreuzza, Mario Giussepp Santezzi Bertottelli [Secretaria de Assuntos Estrategicos (SAE), Brasilia, DF (Brazil)

    1997-12-31

    The Sistema de Protecao ao Programa Nuclear Brasileiro-SIPRON (Protection System to Brazilian Nuclear Program) was established in 1980. It is intended to accomplish in only one system, all the actions related to security and protection for Nuclear Facilities in Brazil. The author presents in detail the protection system SIPRON, describing the system structure and organization, the functions and obligations of the system involved main organizations, as well as, the system operation and behaviour during an postulated occurrence of a nuclear emergency. It is also described an Exercise that happened in June of 1997 at the Nuclear Power Plant (NPP) Angra I, after two simulated tests in December of 1996 and April of 1997. The NPP Angra I Emergency Plan Exercise was a good opportunity to test the SIPRON structure and preparedness program. It was verified, included by International Atomic Energy Agency observers, the system involved organizations effectiveness and the procedures efficacy to protect the public and the environmental. Finally, it is shown the SIPRON activities of routine, the system obstacles and the expected future performances. (author) 3 refs., 3 figs.

  16. Expert systems and nuclear safety

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1990-01-01

    The US Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute have initiated a broad-based exploration of means to evaluate the potential applications of expert systems in the nuclear industry. This exploratory effort will assess the use of expert systems to augment the diagnostic and decision-making capabilities of personnel with the goal of enhancing productivity, reliability, and performance. The initial research effort is the development and documentation of guidelines for verifying and validating (V and V) expert systems. An initial application of expert systems in the nuclear industry is to aid operations and maintenance personnel in decision-making tasks. The scope of the decision aiding covers all types of cognitive behavior consisting of skill, rule, and knowledge-based behavior. For example, procedure trackers were designed and tested to support rule-based behavior. Further, these systems automate many of the tedious, error-prone human monitoring tasks, thereby reducing the potential for human error. The paper version of the procedure contains the knowledge base and the rules and thus serves as the basis of the design verification of the procedure tracker. Person-in-the-loop tests serve as the basis for the validation of a procedure tracker. When conducting validation tests, it is important to ascertain that the human retains the locus of control in the use of the expert system

  17. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  18. Implementation of a geographical information system in nuclear emergencies

    International Nuclear Information System (INIS)

    Sadaniowski, I.; Telleria, D.; Jordan, O.; Bruno, H.; Boutet, L.; Hernandez, D.

    2006-01-01

    From 2003, the Nuclear Regulatory Authority (RNA) has worked in the implementation of a Geographical Information System (SIG) for the planning and the intervention in emergencies, with special emphasis in the nuclear emergencies. The main objective of the SIG developed in the ARN is to give the necessary support for the planning, training and application of the actions of radiological protection necessary in front of a nuclear emergency, offering the geo referenced cartographic base, the readiness of logistical resources in the whole country, incorporating results of models of forecast of consequences and environmental measurements during the emergency, facilitating the analysis of this information in real time and facilitating the presentation of results for the decision making. The cartographic base is constituted of demographic, social, economic data identification of main actors interveners in the emergency, vial infrastructure and natural characteristics of the area in question. In this work the main characteristics of the implemented SIG are presented including the conceptual standards of design that contemplate the international requirements for the planning and answer in the event of nuclear emergencies, the current state of the system and the foreseen evolution. A description of the opposing problems during its implementation that can be common to many countries of the region is also presented, as well as the obtained experience of its use in preparation tasks for emergencies and in mocks. (Author)

  19. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    International Nuclear Information System (INIS)

    2014-01-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a ''hybrid system'' that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear - Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to

  20. Proposal of a national system to supervise nuclear installations out of international safeguards

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1990-01-01

    It is proposed a national system to safeguard, supervise and inspect nuclear facilities in Brazil, apart from international safeguards. It discusses also the military nuclear activities and the uranium enrichment plants. The system should be controlled by Brazilian CNEN. (A.C.A.S.)

  1. Remote multiplexing system application to a nuclear generating station--An update

    International Nuclear Information System (INIS)

    Mazzoni, O.S.; Cava, A.L.; Bijoor, G.D.; Wiitala, M.F.

    1979-01-01

    Washington Public Power Supply System's Nuclear Power Plant WNP-2 is a 1200 MW, boiling water reactor (BWR) nuclear generating facility now under construction at Hanford, Washington. An early study indicated that substantial savings in cost could be obtained by the substitution of the Remote Multiplexing System (RMS) for the control and signal wiring between the Control Building and the outside facilities, which required long cable runs. It is a high speed, data system providing time-sharing digital communication. The purpose of this paper is to give the details of the RMS used in the WNP-2 project. It discusses the qualification requirements for Class IE systems and includes the description of the tests on the system

  2. Nuclear plants gain integrated information systems

    International Nuclear Information System (INIS)

    Villavicencio-Ramirez, A.; Rodriquez-Alvarez, J.M.

    1994-01-01

    With the objective of simplifying the complex mesh of computing devices employed within nuclear power plants, modern technology and integration techniques are being used to form centralized (but backed up) databases and distributed processing and display networks. Benefits are immediate as a result of the integration and the use of standards. The use of a unique data acquisition and database subsystem optimizes the high costs of engineering, as this task is done only once for the life span of the system. This also contributes towards a uniform user interface and allows for graceful expansion and maintenance. This article features an integrated information system, Sistema Integral de Informacion de Proceso (SIIP). The development of this system enabled the Laguna Verde Nuclear Power plant to fully use the already existing universe of signals and its related engineering during all plant conditions, namely, start up, normal operation, transient analysis, and emergency operation. Integrated systems offer many advantages over segregated systems, and this experience should benefit similar development efforts in other electric power utilities, not only for nuclear but also for other types of generating plants

  3. A self-consistent nuclear energy supply system

    International Nuclear Information System (INIS)

    Fujii-e, Y.; Morita, T.; Kawakami, H.; Arie, K.; Suzuki, M.; Iida, M.; Yamazaki, H.

    1992-01-01

    A self-consistent nuclear energy supply system (SCNESS) is investigated for a Fast Reactor. SCNESS is proposed as a future stable energy supplier with no harmful influence on humans or environment for the ultimate goal of nuclear energy development. SCNESS should be inherently safe, be able to breed fissionable material, and transmute long-lived radioactive nuclides (i.e., minor actinides and long-lived fission products). The relationship between these characteristics and the spatial assignment of excess neutrons (v-1) for each characteristic are analyzed. The analysis shows that excess neutrons play an intrinsic role in realizing SCNESS. The reactor concept of SCNESS is investigated by considering utilization of excess neutrons. Results show that a small-size axially double-layered annular core with metal fuel is a choice candidate for SCNESS. SCNESS is concluded feasible. (author). 4 refs., 9 figs

  4. A simulation-based expert system for nuclear power plant diagnostics

    International Nuclear Information System (INIS)

    Hassberger, J.A.; Lee, J.C.

    1989-01-01

    An expert system for diagnosing operational transients in a nuclear power plant is discussed. Hypothesis and test is used as the problem-solving strategy with hypotheses generated by an expert system that monitors the plant for patterns of data symptomatic of known failure modes. Fuzzy logic is employed as the inferencing mechanism with two complementary implication schemes to handle scenarios involving competing failures. Hypothesis testing is performed. An artificial intelligence framework based on a critical functions approach is used to deal with the complexity of a nuclear plant. A prototype system for diagnosing transients in the reactor coolant system of a pressurized water reactor has been developed to test the algorithms described here. Results are presented for the diagnosis of data from the Three Mile Island Unit 2 loss-of-feedwater/small-break loss-of-collant accident

  5. Proliferation resistance assessment of nuclear systems

    International Nuclear Information System (INIS)

    1978-09-01

    The paper focuses on examining the degree to which nuclear systems could be used to acquire nuclear weapons material. It establishes a framework for proliferation resistance assessment and illustrates its applicability through an analysis of reference systems for once-through cycles, breeder cycles and thermal recycle. On a more tentative basis, the approach is applied to various alternative technical and institutional measures. This paper was also submitted to Working Groups 5 and 8

  6. Operator support system for nuclear power plants

    International Nuclear Information System (INIS)

    Mori, Nobuyuki; Tai, Ichiro; Sudo, Osamu; Naito, Norio.

    1987-01-01

    The nuclear power generation in Japan maintains the high capacity factor, and its proportion taken in the total generated electric power exceeded 1/4, thus it has become the indispensable energy source. Recently moreover, the nuclear power plants which are harmonious with operators and easy to operate are demanded. For realizing this, the technical development such as the heightening of operation watching performance, the adoption of automation, and the improvement of various man-machine systems for reducing the burden of operators has been advanced by utilizing electronic techniques. In this paper, the trend of the man-machine systems in nuclear power plants, the positioning of operation support system, the support in the aspects of information, action and knowledge, the example of a new central control board, the operation support system using a computer, an operation support expert system and the problems hereafter are described. As the development of the man-machine system in nuclear power plants, the upgrading from a present new central control board system PODIA through A-PODIA, in which the operational function to deal with various phenomena arising in plants and safety control function are added, to 1-PODIA, in which knowledge engineering technology is adopted, is expected. (Kako, I.)

  7. Quality assurance systems - a means for an integrating organization of nuclear power plants

    International Nuclear Information System (INIS)

    Adams, H.W.

    1984-01-01

    The operators of nuclear power plants are in the process of introducing quality assurance systems of the type required in Rule 1401 by the German Kerntechnischer Ausschuss (Nuclear Technology Committee). These systems as a cross sectional function cover most of the organizational areas of a nuclear power plant. Their introduction offers an opportunity to harmonize and supplement existing systems where necessary. Integrated quality assurance systems built up on a data base allow existing DP data and other logical data to be organized in such a way that certain sequences of events can be managed by enforced control. This relieves the personnel responsible for the safety of a nuclear power plant of routine jobs and routine decisions. Greater flexibility is created for personal decisions. Organized sequences of events can be monitored by having lists printed out in which the necessary data are combined into data sets. (orig.) [de

  8. Croatian National System of Nuclear Materials Control

    International Nuclear Information System (INIS)

    Biscan, R.

    1998-01-01

    In the process of economic and technological development of Croatia by using or introducing nuclear power or in the case of international co-operation in the field of peaceful nuclear activities, including international exchange of nuclear material, Croatia should establish and implement National System of Nuclear Materials Control. Croatian National System of accounting for and control of all nuclear material will be subjected to safeguards under requirements of Agreement and Additional Protocol between the Republic of Croatia and the International Atomic Energy Agency (IAEA) for the Application of Safeguards in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The decision by NPT parties at the 1995 NPT Review and Extension Conference to endorse the Fullscope IAEA Safeguards Standard (FSS) as a necessary precondition of nuclear supply means that states are obliged to ensure that the recipient country has a FSS agreement in place before any nuclear transfer can take place (Ref. 1). The FSS standard of nuclear supply is a central element of the Nuclear Suppliers Group (NSG) Guidelines which the NSG adopted in 1992 and should be applied to members and non-members of the NSG. The FSS standard of nuclear supply in general allows for NPT parties or countries which have undertaken the same obligations through other treaty arrangements, to receive favourable treatment in nuclear supply arrangements. However, the Iraqi experience demonstrate that trade in nuclear and dual-use items, if not properly monitored, can contribute to a nuclear weapons program in countries acting contrary to their non-proliferation obligation. Multilateral nuclear export control mechanisms, including the FSS supply standard, provide the basis for co-ordination and standardisation of export control measures. (author)

  9. The Management System for Nuclear Installations (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a)To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b)As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c)To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a)Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b)Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c)Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d)Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e)Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear installation. (f

  10. The Management System for Nuclear Installations Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a)To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b)As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c)To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a)Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b)Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c)Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d)Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e)Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear installation. (f

  11. Emerging nuclear energy systems: Economic challenge: Revision 1

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    1986-01-01

    Future nuclear energy systems may achieve substantially lower energy costs than those of existing fossil energy systems and comparable capital costs. Such low cost nuclear energy would provide a strong economic incentive to minimize the use of fossil fuels. If these low cost nuclear energy systems emerge in the next few decades, 21st century civilization may be able to avert potentially disastrous CO 2 induced global climate changes. 12 refs., 1 fig

  12. Computer System Analysis for Decommissioning Management of Nuclear Reactor

    International Nuclear Information System (INIS)

    Nurokhim; Sumarbagiono

    2008-01-01

    Nuclear reactor decommissioning is a complex activity that should be planed and implemented carefully. A system based on computer need to be developed to support nuclear reactor decommissioning. Some computer systems have been studied for management of nuclear power reactor. Software system COSMARD and DEXUS that have been developed in Japan and IDMT in Italy used as models for analysis and discussion. Its can be concluded that a computer system for nuclear reactor decommissioning management is quite complex that involved some computer code for radioactive inventory database calculation, calculation module on the stages of decommissioning phase, and spatial data system development for virtual reality. (author)

  13. Structural materials for innovative nuclear systems (SMINS)

    International Nuclear Information System (INIS)

    2008-01-01

    Structural materials research is a field of growing relevance in the nuclear sector, especially for the different innovative reactor systems being developed within the Generation IV International Forum (GIF), for critical and subcritical transmutation systems, and of interest to the Global Nuclear Energy Partnership (GNEP). Under the auspices of the NEA Nuclear Science Committee (NSC) the Workshop on Structural Materials for Innovative Nuclear Systems (SMINS) was organised in collaboration with the Forschungszentrum Karlsruhe in Germany. The objectives of the workshop were to exchange information on structural materials research issues and to discuss ongoing programmes, both experimental and in the field of advanced modelling. These proceedings include the papers and the poster session materials presented at the workshop, representing the international state of the art in this domain. (author)

  14. Seminar in Critical Inquiry Twenty-first Century Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    LeMone, D. V.

    2002-02-25

    Critical Inquiry, has not only been successful in increasing university student retention rate but also in improving student academic performance beyond the initial year of transition into the University. The seminar course herein reviewed is a balanced combination of student personal and academic skill development combined with a solid background in modern nuclear systems. It is a valid premise to assume that entering students as well as stakeholders of the general public demonstrate equal levels of capability. Nuclear systems is designed to give a broad and basic knowledge of nuclear power, medical, industrial, research, and military systems (nuclear systems) in 20-25 hours.

  15. Seminar in Critical Inquiry Twenty-first Century Nuclear Systems

    International Nuclear Information System (INIS)

    LeMone, D. V.

    2002-01-01

    Critical Inquiry, has not only been successful in increasing university student retention rate but also in improving student academic performance beyond the initial year of transition into the University. The seminar course herein reviewed is a balanced combination of student personal and academic skill development combined with a solid background in modern nuclear systems. It is a valid premise to assume that entering students as well as stakeholders of the general public demonstrate equal levels of capability. Nuclear systems is designed to give a broad and basic knowledge of nuclear power, medical, industrial, research, and military systems (nuclear systems) in 20-25 hours

  16. Nuclear Power Safety Reporting System. Final evaluation results

    International Nuclear Information System (INIS)

    Finlayson, F.C.; Newton, R.D.

    1986-02-01

    This document presents the results of a study conducted by the US Nuclear Regulatory Commission of an unobtrusive, voluntary, anonymous third-party managed, nonpunitive human factors data gathering system (the Nuclear power Safety Reporting System - NPSRS) for the nuclear electric power production industry. The data to be gathered by the NPSRS are intended for use in identifying and quantifying the factors that contribute to the occurrence of significant safety incidents involving humans in nuclear power plants. The NPSRS has been designed to encourage participation in the System through guarantees of reporter anonymity provided by a third-party organization that would be responsible for NPSRS management. As additional motivation to reporters for contributing data to the NPSRS, conditional waivers of NRC disciplinary action would be provided to individuals. These conditional waivers of immunity would apply to potential violations of NRC regulations that might be disclosed through reports submitted to the System about inadvertent, noncriminal incidents in nuclear plants. This document summarizes the overall results of the study of the NPSRS concept. In it, a functional description of the NPSRS is presented together with a review and assessment of potential problem areas that might be met if the System were implemented. Conclusions and recommendations resulting from the study are also presented. A companion volume (NUREG/CR-4133, Nuclear Power Safety Reporting System: Implementation and Operational Specifications'') presented in detail the elements, requirements, forms, and procedures for implementing and operating the System. 13 refs

  17. The regulatory system of nuclear safety in Russia

    International Nuclear Information System (INIS)

    Mizoguchi, Shuhei

    2013-01-01

    This article explains what type of mechanism the nuclear system has and how nuclear safety is regulated in Russia. There are two main organizations in this system : ROSATOM and ROSTEKHADZOR. ROSATOM, which was founded in 2007, incorporates all the nuclear industries in Russia, including civil nuclear companies as well as nuclear weapons complex facilities. ROSTEKHNADZOR is the federal body that secures and supervises the safety in using atomic energy. This article also reviews three laws on regulating nuclear safety. (author)

  18. Development of integrated nuclear data utilization system for innovative reactors

    International Nuclear Information System (INIS)

    Naoki, Yamano; Masayuki, Igashira; Akira, Hasegawa; Kiyoshi, Kato

    2005-01-01

    An integrated nuclear data utilization system has been developing for innovative nuclear energy systems such as innovative reactors and accelerator-driven systems. The system has been constructed as a modular code system, which consists of a managing system and two subsystems. The management system named CONDUCT controls system resource management of the PC Linux server and the user authentication through Internet access. A subsystem is the nuclear data search and plotting subsystem based on a SPES engine developed by Hokkaido University. Nuclear data such as EXFOR, JENDL-3.3, ENDF/B-VI and JEFF-3.1 can be searched and plotted in the subsystem. The other is the nuclear data processing and utilization subsystem, which is able to handle JENDL-3.3, ENDF/B-VI and JEFF-3.1 to generate point-wise and group cross sections in several formats, and perform various criticality and shielding benchmarks for verification of nuclear data and validation of design methods for innovative reactors. This paper presents an overview of the integrated nuclear data utilization system, describes the progress of the system development to examine the operability of the user interface and discuss specifications of the two subsystems. (authors)

  19. Application of expert system to nuclear power plant operation and guidance system

    International Nuclear Information System (INIS)

    Goto, M.; Takada, Y.

    1990-01-01

    For a nuclear power plant, it is important that an expert system supplies useful information to the operator to meet the increasing demand for high-level plant operation. It is difficult to build a user-friendly expert system that supplies useful information in real time using existing general-purpose expert system shells. Therefore a domain-specific expert system shell with a useful knowledge representation for problem-solving in nuclear power plant operation was selected. The Plant Table (P/T) representation format was developed for description of a production system for nuclear power plant operation knowledge. The P/T consists of plant condition representation designed to process multiple inputs and single output. A large number of operation inputs for several plant conditions are divided into 'timing conditions', 'preconditions' and 'completion conditions' to facilitate knowledge-base build-up. An expert system for a Nuclear Power Plant Operation and Guidance System utilizing the P/T was developed to assist automatic plant operation and surveillance test operation. In these systems, automatic plant operation signals to the plant equipment and operation guidance messages to the operators are both output based on the processing and assessment of plant operation conditions by the P/T. A surveillance test procedure guide for major safety-related systems, such as those for emergency core cooling systems, is displayed on a CRT (Cathode Ray Tube) and test results are printed out. The expert system for a Nuclear Power Plant Operation and Guidance System has already been successfully applied to Japanese BWR plants

  20. Selection of nuclear power information database management system

    International Nuclear Information System (INIS)

    Zhang Shuxin; Wu Jianlei

    1996-01-01

    In the condition of the present database technology, in order to build the Chinese nuclear power information database (NPIDB) in the nuclear industry system efficiently at a high starting point, an important task is to select a proper database management system (DBMS), which is the hinge of the matter to build the database successfully. Therefore, this article explains how to build a practical information database about nuclear power, the functions of different database management systems, the reason of selecting relation database management system (RDBMS), the principles of selecting RDBMS, the recommendation of ORACLE management system as the software to build database and so on

  1. Energy accounting in nuclear power systems

    International Nuclear Information System (INIS)

    Symonds, J.L.; Essam, P.; Stocks, K.

    1976-01-01

    Energy analysis is a systematic way of tracing and accounting for the flows of energy through an industrial system and apportioning a quantity of the primary energy input to each of the goods and services sent out. The application of energy accounting to nuclear power stations and their growth in generating systems is discussed. Misunderstandings arising from discrepancies and weaknesses in some published simple analyses of hypothetical growth situations are outlined. Results of a more complex energy flow analysis are used to demonstrate that current nuclear energy programs are running at an energy profit. Large fossil fuel savings will occur in a real electrical grid system under anticipated nuclear power growth rates. These savings will give a new dimension in planning the use of fossil energy resources which will still be needed for transport and industrial processes, such as steelmaking, for some time to come. (author)

  2. Energy accounting in nuclear power systems

    International Nuclear Information System (INIS)

    Symonds, J.L.; Essam, P.; Stocks, K.

    1975-10-01

    Energy analysis is a systematic way of tracing and accounting for the flows of energy through an industrial system and apportioning a quantity of the primary energy input of the goods and services sent out. The application of energy accounting to nuclear power stations and their growth in generating systems is discussed. Misunderstandings arising from discrepancies and weaknesses in some published simple analyses of hypothetical growth situations are outlined. Results of a more complex energy flow analysis are used to demonstrate that current nuclear energy programs are running at an energy profit. Large fossil fuel savings will occur in a real electrical grid system under anticipated nuclear power growth rates. These savings will give a new dimension in planning the use of fossil energy resources which will still be needed for transport and industrial processes, such as steel-making, for some time to come. (author)

  3. Research on export system of marine nuclear power device

    International Nuclear Information System (INIS)

    Fu Mingyu; Bian Xinqian; Shi Ji; Xin Chengdong; Wei Dong

    2002-01-01

    A marine nuclear power plant simulation system is founded, and a management expert system, which can administer and diagnose the typical faults, is constituted by the intelligent expert theory. This real-time expert system can analyze the reason of the typical fault caused by the nuclear power plant practically running and give the best solvent by the expert knowledge reasoning in the repository; a neural network fault inspection and diagnosis expert system which can inspect every equipment continually and give the faults diagnosis result based on the inspective dates is established. Based on the three hierarchical architecture, the operation performance is improved very much by using of the neural network fault inspection and diagnosis expert system to inspect and diagnose the nuclear power plant faults and the management expert system to supervise the nuclear power plant running. The expert system research can give guidance for the marine nuclear power plant safety operation

  4. Realistic effective interactions for nuclear systems

    International Nuclear Information System (INIS)

    Hjort-Jensen, M.; Osnes, E.; Kuo, T.T.S.

    1994-09-01

    A review of perturbative many-body descriptions of several nuclear systems is presented. Symmetric and asymmetric nuclear matter and finite nuclei with few valence particles are examples of systems considered. The many-body description starts with the most recent meson-exchange potential models for the nucleon-nucleon interaction, an interaction which in turn is used in perturbative schemes to evaluate the effective interaction for finite nuclei and infinite nuclear matter. A unified perturbative approach based on time-dependent perturbation theory is elaborated. For finite nuclei new results are presented for the effective interaction and the energy spectra in the mass areas of oxygen, calcium and tin. 166 refs., 83 refs., 21 tabs

  5. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zinaman, Owen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Forsberg, Charles [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Collins, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for

  6. A study on improvement of export control system for the nuclear facility

    International Nuclear Information System (INIS)

    Kim, Ok Joo; Shin, Dong Hoon; Yang, Seung Hyo

    2012-01-01

    The Republic of Korea joined Nuclear Suppliers Group(NSG) in 1995 and became a major nuclear supplier both in name and reality by contracting the Project of UAE Braka Nuclear Power Plant(BNPP) in 2009 and the Project of Jordan Research and Training Reactor(JRTR) in 2010. And ROK is currently negotiating with several countries such as Finland and Vietnam for more projects, so it is expected to obtain more orders of commercial and research reactor. At this point of time, we found that it is difficult to apply individual export licensing system as it is for the big nuclear project such as BNPP and JRTR Project. Because the nuclear project in foreign country contains transfer of thousands of items and technical documents, including a considerable number of strategic items, issuing individual licenses for all items and documents can cause the inefficiency of the project. So, an appropriate export control system which can support such a project is necessary. In this study, we focused on how to improve the export control system to guarantee not only time efficiency but careful management of strategic goods

  7. Monitoring the radioactivity in the secondary systems of a nuclear power plant

    International Nuclear Information System (INIS)

    Labno, L.

    1979-01-01

    The direct water/steam circuit and the waste water and exhaust air systems of a nuclear power plant with boiling water reactor are slightly contaminated with radioactive nuclides during normal operation. In addition some auxiliary and subsidiary systems may show evidence of radioactivity as a result of leakages between the systems. These radioactive substances and those which are discharged to the environment in exhaust air or waste water - although present in quantities far below the admissible limits - still require supervision by a comprehensive activity monitoring system. The article sets out the concept and the technical solution adopted for the activity monitoring system for the secondary section of a nuclear power station. The system is so designed that it provides the information and performs the safety functions important for highly reliable plant operation. Particular importance has been attached to the reliability and dependability of the system, so that incorrect interpretations or reports, such as have been experienced, for example, in the nuclear power plants 'Brunsbuettel' (Federal Republic of Germany) and 'Three Mile Island', near Harrisburg (USA), will not be repeated. (Auth.)

  8. Risk and safety analysis of nuclear systems

    National Research Council Canada - National Science Library

    Lee, John C; McCormick, Norman J

    2011-01-01

    ...), and failure modes of systems. All of this material is general enough that it could be used in non-nuclear applications, although there is an emphasis placed on the analysis of nuclear systems...

  9. Valve arrangement for a nuclear plant residual heat removal system

    International Nuclear Information System (INIS)

    Fidler, G.L.; Hill, R.A.; Carrera, J.P.

    1978-01-01

    Disclosed is an improved valve arrangement for a two-train Residual Heat Removal System (RHRS) of a nuclear reactor plant which ensures operational integrity of the system under single failure circumstances including loss of one of two electrical power sources

  10. Knowledge Based Help desk System in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Mohamad Safuan Sulaiman; Abdul Muin Abdul Rahman; Norzalina Nasirudin; Khairiel Adyani Abdul Ghani; Abdul Aziz Mhd Ramli; Mohd Ashhar Khalid

    2012-01-01

    Knowledge based (K-based) Help desk system is a knowledge oriented web based system that provides support to business process of the technical service providers. It is a multi-centric system which focuses on end-users, technical workers and higher level management through utilization of knowledge which resides and grows within the system. The objectives of the system are to be a user-friendly, capture technical knowledge for efficient performance and educating users for self reliance. These were achieved through the improvement of the help desk business process and better management of technical knowledge. This system has been tested and implemented in Information Technology Center (IT), Engineering Division (BKJ) and Instrumentation and Automation Center (IAC) at the Malaysian Nuclear Agency (Nuclear Malaysia). Higher levels of user satisfaction and faster growth in technical knowledge repository have been recorded in the system. This paper describes the help desk system in the perspective of management of its technical knowledge contributing to strengthening organizational knowledge asset of Nuclear Malaysia as national nuclear research institution. (Author)

  11. Application of a model-based fault detection system to nuclear plant signals

    International Nuclear Information System (INIS)

    Gross, K.C.; Singer, R.M.; Wegerich, S.W.; Herzog, J.P.; VanAlstine, R.; Bockhorst, F.

    1997-01-01

    To assure the continued safe and reliable operation of a nuclear power station, it is essential that accurate online information on the current state of the entire system be available to the operators. Such information is needed to determine the operability of safety and control systems, the condition of active components, the necessity of preventative maintenance, and the status of sensory systems. To this end, ANL has developed a new Multivariate State Estimation Technique (MSET) which utilizes advanced pattern recognition methods to enhance sensor and component operational validation for commercial nuclear reactors. Operational data from the Crystal River-3 (CR-3) nuclear power plant are used to illustrate the high sensitivity, accuracy, and the rapid response time of MSET for annunciation of a variety of signal disturbances

  12. Improvement of management systems for nuclear facilities

    International Nuclear Information System (INIS)

    2005-01-01

    The area of Quality Management/ Quality Assurance has been changed dramatically over the past years. The nuclear facilities moved from the 'traditional' Quality Assurance approach towards Quality Management Systems, and later a new concept of Integrated Management Systems was introduced. The IAEA is developing a new set of Standards on Integrated Management Systems, which will replace the current 50-C-Q/SG-Q1-Q14 Code. The new set of document will require the integration of all management areas into one coherent management system. The new set of standards on Management Systems promotes the concept of the Integrated Management Systems. Based on new set a big number of documents are under preparation. These documents will address the current issues in the management systems area, e.g. Management of Change, Continuous Improvement, Self-assessment, and Attributes of effective management, etc. Currently NPES is providing a number of TC projects and Extra Budgetary Programmes to assist Member States in this area. The new Standards on Management Systems will be published in 2006. A number of Regulatory bodies already indicated that they would take the new Management System Standards as a basis for the national regulation. This fact will motivate a considerable change in the management of nuclear utilities, requiring a new approach. This activity is suitable for all IAEA Members States with large or limited nuclear capabilities. The service is directed to provide assistance for the management of all organizations carrying on or regulating nuclear activities and facilities

  13. Chilean Nuclear Energy Commission dosimetric information system

    International Nuclear Information System (INIS)

    Guerrero Vallejos, Patricia Andrea

    1997-01-01

    This thesis discusses the nuclear radiation that people who work with radioactive material is exposed to and its control by the Chilean Nuclear Energy Commission. A full analysis of the System is presented with information about the Commission and the Department of Nuclear and Radiological Safety which runs the System. Ana analysis of the System is presented in order to obtain requirements. Management flow diagrams, the processes involved and current problems experienced by the users are described. A design logic is modeled producing Data Flow Diagrams (DFD). based on this physical design, or, Model of Physical Data, is prepared including tables, attributes, types of data, primary and foreign keys. A description is presented of how the System is implemented, the tools that are used and how the testing phase is carried out. The Dosimetry System meets the criteria for a Software Engineering project, where the basic cycle was used as a working methodology. The System developed supports the dosimetric control of people exposed to radioactive material. (author)

  14. Review of Current Nuclear Vacuum System Technologies

    International Nuclear Information System (INIS)

    Carroll, M.; McCracken, J.; Shope, T.

    2003-01-01

    Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested

  15. Knowledge acquisition for nuclear power plant unit diagnostic system

    International Nuclear Information System (INIS)

    Li Xiaodong; Xi Shuren

    2003-01-01

    The process of acquiring knowledge and building a knowledge base is critical to realize fault diagnostic system at unit level in a nuclear power plant. It directly determines whether the diagnostic system can be applied eventually in a commercial plant. A means to acquire knowledge and its procedures was presented in this paper for fault diagnostic system in a nuclear power plant. The work can be carried out step by step and it is feasible in a commercial nuclear power plant. The knowledge base of the fault diagnostic system for a nuclear power plant can be built after the staff finish the tasks according to the framework presented in this paper

  16. Nuclear instrumentation for the industrial measuring systems

    International Nuclear Information System (INIS)

    Normand, S.

    2010-01-01

    This work deals with nuclear instrumentation and its application to industry, power plant fuel reprocessing plant and finally with homeland security. The first part concerns the reactor instrumentation, in-core and ex-core measurement system. Ionization Uranium fission chamber will be introduced with their acquisition system especially Campbell mode system. Some progress have been done on regarding sensors failure foresee. The second part of this work deals with reprocessing plant and associated instrumentation for nuclear waste management. Proportional counters techniques will be discussed, especially Helium-3 counter, and new development on electronic concept for reprocessing nuclear waste plant (one electronic for multipurpose acquisition system). For nuclear safety and security for human and homeland will be introduce. First we will explain a new particular approach on operational dosimetric measurement and secondly, we will show new kind of organic scintillator material and associated electronics. Signal treatment with real time treatment is embedded, in order to make neutron gamma discrimination possible even in solid organic scintillator. Finally, the conclusion will point out future, with most trends in research and development on nuclear instrumentation for next years. (author) [fr

  17. Nuclear legislation system and nuclear program outlook in Thailand

    International Nuclear Information System (INIS)

    Charoensri, Apisara; Morev, Mikhail N.; Imazu, Hidenori; Kosako, Toshiso; Iimoto, Takeshi

    2009-01-01

    In Thailand, radioactive materials are widely used for the industry, medicine, research and development fields. Reported here are background and recent developments in the national nuclear legislation system, including regulation of radiation safety and current status of nuclear program in Thailand. Under the Atomic Energy for Peace Act, the Thai Atomic Energy Commission (Thai AEC) is authorized to approve regulations respecting, the conversion, enrichment, processing, reprocessing, possession, import, export, use, packaging, transport, management and storage of nuclear materials. The most recent developments are related to the New Ministerial Regulation on Licensing Requirements Procedures and Nuclear Material, By-Product or Atomic Energy Processing B. E 2550 (A. D. 2007) issued under the Atomic Energy for Peace Act, B. E. 2504 (A. D. 1961). Currently, the Thai Cabinet is discussing the draft new Atomic Energy for Peace Act which is to revise the Act. The draft Act is to sets forth criteria for protecting individuals, society and the environment from radiation hazards with the perspective for anticipated nuclear power sector development in Thailand. (author)

  18. A New Dynamic Model for Nuclear Fuel Cycle System Analysis

    International Nuclear Information System (INIS)

    Choi, Sungyeol; Ko, Won Il

    2014-01-01

    The evaluation of mass flow is a complex process where numerous parameters and their complex interaction are involved. Given that many nuclear power countries have light and heavy water reactors and associated fuel cycle technologies, the mass flow analysis has to consider a dynamic transition from the open fuel cycle to other cycles over decades or a century. Although an equilibrium analysis provides insight concerning the end-states of fuel cycle transitions, it cannot answer when we need specific management options, whether the current plan can deliver these options when needed, and how fast the equilibrium can be achieved. As a pilot application, the government brought several experts together to conduct preliminary evaluations for nuclear fuel cycle options in 2010. According to Table 1, they concluded that the closed nuclear fuel cycle has long-term advantages over the open fuel cycle. However, it is still necessary to assess these options in depth and to optimize transition paths of these long-term options with advanced dynamic fuel cycle models. A dynamic simulation model for nuclear fuel cycle systems was developed and its dynamic mass flow analysis capability was validated against the results of existing models. This model can reflects a complex combination of various fuel cycle processes and reactor types, from once-through to multiple recycling, within a single nuclear fuel cycle system. For the open fuel cycle, the results of the developed model are well matched with the results of other models

  19. Straight-Line: A nuclear material storage information management system

    International Nuclear Information System (INIS)

    Nilsen, C.; Mangan, D.

    1995-01-01

    Sandia National Laboratories is developing Straight-Line -- a pilot system to demonstrate comprehensive monitoring of nuclear material in storage. Straight-Line is an integrated system of sensors providing information that will enhance the safety, security, and international accountability of stored nuclear material. The goals of this effort are to: (1) Provide the right sensor information to the right user immediately. (2) Reduce the expenses, risks, and frequency of human inspection of the material. (3) Provide trustworthy data to international inspectors to minimize their need to make on site inspections. In pursuit of these goals, Straight-Line unites technology from Sandia's Authenticated Item Monitoring System (AIMS) and other programs to communicate the authenticated status of the monitored item back to central magazine receivers. Straight-Line, however, incorporates several important features not found in previous systems: (1) Information Security -- the ability to collect and safely disseminate both classified and unclassified sensor data to users on a need-to-know basis. (2) Integrate into a single system the monitoring needs of safety, security, and international accountability. (3) Incorporate the use of sensors providing analog or digital output. This paper will present the overall architecture and status of the Straight-Line project

  20. Straight-Line: A nuclear material storage information management system

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, C.; Mangan, D.

    1995-07-01

    Sandia National Laboratories is developing Straight-Line -- a pilot system to demonstrate comprehensive monitoring of nuclear material in storage. Straight-Line is an integrated system of sensors providing information that will enhance the safety, security, and international accountability of stored nuclear material. The goals of this effort are to: (1) Provide the right sensor information to the right user immediately. (2) Reduce the expenses, risks, and frequency of human inspection of the material. (3) Provide trustworthy data to international inspectors to minimize their need to make on site inspections. In pursuit of these goals, Straight-Line unites technology from Sandia`s Authenticated Item Monitoring System (AIMS) and other programs to communicate the authenticated status of the monitored item back to central magazine receivers. Straight-Line, however, incorporates several important features not found in previous systems: (1) Information Security -- the ability to collect and safely disseminate both classified and unclassified sensor data to users on a need-to-know basis. (2) Integrate into a single system the monitoring needs of safety, security, and international accountability. (3) Incorporate the use of sensors providing analog or digital output. This paper will present the overall architecture and status of the Straight-Line project.

  1. Evaluation of the improvement suggestion system in a nuclear facility

    International Nuclear Information System (INIS)

    Carnaval, Joao Paulo Rodrigues; Moraes, Geice Almeida

    2017-01-01

    This work evaluated methods for processing improvement suggestions of a nuclear factory, with the intention to verify those which best fits to the company purposes. Two methods for processing improvement suggestions were applied in the studied organization. The first one was guided to the processing suggestions by specific independent sectors of the company and the second one was conducted to the processing of suggestions by a multidisciplinary team. It has been concluded that a multidisciplinary team focused on research and development would be the best option to the implementation of improvement suggestions and technological innovation on this facility, instead of multi sector processing which revealed to be excessive bureaucratic before the expected goals. This study can be used by nuclear facilities to optimize an existing system of improvements analysis or even guide them for the implantation of a new one. It is more significant for the companies certified on ISO and OHSAS standards for the quality management, environmental and safety and occupational health systems which requires that the continuous improvement must exist and to be demonstrated. But it is also relevant for nuclear plants aiming to implement an Integrated Management System certified on ISO Standards. (author)

  2. Evaluation of the improvement suggestion system in a nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Carnaval, Joao Paulo Rodrigues; Moraes, Geice Almeida, E-mail: joaocarnaval@inb.gov.br, E-mail: geice@inb.gov.br [Industrias Nucleares do Brasil S.A (INB), Resende, RJ (Brazil)

    2017-11-01

    This work evaluated methods for processing improvement suggestions of a nuclear factory, with the intention to verify those which best fits to the company purposes. Two methods for processing improvement suggestions were applied in the studied organization. The first one was guided to the processing suggestions by specific independent sectors of the company and the second one was conducted to the processing of suggestions by a multidisciplinary team. It has been concluded that a multidisciplinary team focused on research and development would be the best option to the implementation of improvement suggestions and technological innovation on this facility, instead of multi sector processing which revealed to be excessive bureaucratic before the expected goals. This study can be used by nuclear facilities to optimize an existing system of improvements analysis or even guide them for the implantation of a new one. It is more significant for the companies certified on ISO and OHSAS standards for the quality management, environmental and safety and occupational health systems which requires that the continuous improvement must exist and to be demonstrated. But it is also relevant for nuclear plants aiming to implement an Integrated Management System certified on ISO Standards. (author)

  3. The knowledge-based off-site emergency response system for a nuclear power plant

    International Nuclear Information System (INIS)

    Ho, L.W.; Loa, W.W.; Wang, C.L.

    1987-01-01

    A knowledge-based expert system for a nuclear power plant off-site emergency response system is described. The system incorporates the knowledge about the nuclear power plant behaviours, site environment and site geographic factors, etc. The system is developed using Chinshan nuclear power station of Taipower Company, Taiwan, ROC as a representative model. The objectives of developing this system are to provide an automated intelligent system with functions of accident simulation, prediction and with learning capabilities to supplement the actions of the emergency planners and accident managers in order to protect the plant personnel and the surrounding population, and prevent or mitigate property damages resulting from the plant accident. The system is capable of providing local and national authorities with rapid retrieval data from the site characteristics and accident progression. The system can also provide the framework for allocation of available resources and can handle the uncertainties in data and models

  4. The development of a nuclear accident risk information system

    International Nuclear Information System (INIS)

    Jeong, J. T.; Jeong, W. D.

    2001-01-01

    The computerized system NARIS (Nuclear Accident Risk Information System) was developed in order to support the estimation of health effects and the establishment the effective risk reduction strategies. Using the system, we can analyze the distribution of health effects easily by displaying the results on the digital map of the site. Also, the thematic mapping allows the diverse analyses of the distribution of the health effects. The NARIS can be used in the emergency operation facilities in order to analyze the distribution of the health effects resulting from the severe accidents of a nuclear power plant. Also, the rapid analysis of the health effect is possible by storing the health effect results in the form of a database. Therefore, the staffs of the emergency operation facilities can establish the rapid and effective emergency response strategies. The module for the optimization of the costs and benefits and the decision making support will be added. The technical support for the establishment of the optimum and effective emergency response strategies will be possible using this system

  5. A Development Framework for Software Security in Nuclear Safety Systems: Integrating Secure Development and System Security Activities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaekwan; Suh, Yongsuk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-02-15

    The protection of nuclear safety software is essential in that a failure can result in significant economic loss and physical damage to the public. However, software security has often been ignored in nuclear safety software development. To enforce security considerations, nuclear regulator commission recently issued and revised the security regulations for nuclear computer-based systems. It is a great challenge for nuclear developers to comply with the security requirements. However, there is still no clear software development process regarding security activities. This paper proposes an integrated development process suitable for the secure development requirements and system security requirements described by various regulatory bodies. It provides a three-stage framework with eight security activities as the software development process. Detailed descriptions are useful for software developers and licensees to understand the regulatory requirements and to establish a detailed activity plan for software design and engineering.

  6. Database retrieval systems for nuclear and astronomical data

    International Nuclear Information System (INIS)

    Suda, Takuma; Korennov, Sergei; Otuka, Naohiko; Yamada, Shimako; Katsuta, Yutaka; Ohnishi, Akira; Kato, Kiyoshi; Fujimoto, Masayuki Y.

    2006-01-01

    Data retrieval and plot systems of nuclear and astronomical data are constructed on a common platform. Web-based systems will soon be opened to the users of both fields of nuclear physics and astronomy. (author)

  7. Fuzzy systems and soft computing in nuclear engineering

    International Nuclear Information System (INIS)

    Ruan, D.

    2000-01-01

    This book is an organized edited collection of twenty-one contributed chapters covering nuclear engineering applications of fuzzy systems, neural networks, genetic algorithms and other soft computing techniques. All chapters are either updated review or original contributions by leading researchers written exclusively for this volume. The volume highlights the advantages of applying fuzzy systems and soft computing in nuclear engineering, which can be viewed as complementary to traditional methods. As a result, fuzzy sets and soft computing provide a powerful tool for solving intricate problems pertaining in nuclear engineering. Each chapter of the book is self-contained and also indicates the future research direction on this topic of applications of fuzzy systems and soft computing in nuclear engineering. (orig.)

  8. Calculations to support design of a nuclear material tracking system

    International Nuclear Information System (INIS)

    Carter, L.L.; Eggers, R.F.; Williams, T.L.

    1991-01-01

    The Westinghouse Hanford Company is developing a nuclear material tracking system called NTRAK for the US Department of Energy at the Savannah River site. The NTRAK system is designed to determine the position and approximate magnitude of packages of special nuclear material (SNM) moving through a nuclear plant. The NTRAK accomplishes this by using special assemblies of detectors called modules to measure the gamma radiation emitted by the SNM. After measurement, raw data are processed to determine the direction to and position of the gamma-ray source. In order for the NTRAK method of SNM tracking to work, the gamma-ray signal at the detector modules must be at least four standard deviations above background. This paper addresses the use of the Monte Carlo computer code for neutron and photon transport (MCNP) to (a) predict the radiation emitted by plutonium oxide sources and (b) predict the counting rate of NaI detectors measuring those sources

  9. Innovation in the Safety of nuclear systems: fundamental aspects

    International Nuclear Information System (INIS)

    Herranz, L. E.

    2009-01-01

    Safety commercial nuclear reactors has been an indispensable condition for future enlargement of power generation based on nuclear technology. Its fundamental principle, defence in depth, far from being outdated, is still adopted as a key foundation in the advanced nuclear system (generations III and IV). Nevertheless, the cumulative experience gained in the operation and maintenance of nuclear reactors, the development of methodologies like the probabilistic safety analysis, the use of passive safety systems and, even, the inherent characteristics of some new design (which exclude accident scenarios), allow estimating safety figures of merit even more outstanding that those achieved in the second generation of nuclear reactors. This safety innovation of upcoming nuclear reactors has entailed a huge investigation program (generation III) that will be focused on optimizing and demonstrating the postulated safety of future nuclear systems (Generation IV). (Author)

  10. Parallel preprocessing in a nuclear data acquisition system

    International Nuclear Information System (INIS)

    Pichot, G.; Auriol, E.; Lemarchand, G.; Millaud, J.

    1977-01-01

    The appearance of microprocessors and large memory chips has somewhat modified the spectrum of tools usable by the data acquisition system designer. This is particular true in the nuclear research field where the data flow has been continuously growing as a consequence of the increasing capabilities of new detectors. This paper deals with the insertion, between a data acquisition system and a computer, of a preprocessing structure based on microprocessors and large capacity high speed memories. The results shows a significant improvement on several aspects in the operation of the system with returns paying back the investments in 18 months

  11. Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems : Method comments to a NEA report

    OpenAIRE

    Söder, Lennart

    2012-01-01

    OECD Nuclear Energy Agency (NEA) released a new report on 29 November 2012. The study recommends that decision-makers should take full electricity system costs into account in energy choices and that such costs should be internalised according to a “generator pays” principle. The study, entitled Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems, addresses the increasingly important interactions of variable renewables and dispatchable energy technologies, such as ...

  12. Nuclear technology databases and information network systems

    International Nuclear Information System (INIS)

    Iwata, Shuichi; Kikuchi, Yasuyuki; Minakuchi, Satoshi

    1993-01-01

    This paper describes the databases related to nuclear (science) technology, and information network. Following contents are collected in this paper: the database developed by JAERI, ENERGY NET, ATOM NET, NUCLEN nuclear information database, INIS, NUclear Code Information Service (NUCLIS), Social Application of Nuclear Technology Accumulation project (SANTA), Nuclear Information Database/Communication System (NICS), reactor materials database, radiation effects database, NucNet European nuclear information database, reactor dismantling database. (J.P.N.)

  13. A Study on the Safety Evaluation of Real-Time Operating System in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Hyung Tae; Jeong, Choong Heui; Kim, Dail Il

    2008-01-01

    Along with the digitalisation of the nuclear Instrumentation and Control (I and C) system, Real-Time Operating System (RTOS) is being widely used. The RTOS used in nuclear I and C system should satisfy strict performance requirements and resolve various technical issues under complicated conditions. In this regard a careful safety evaluation of RTOS is important for the safety of Nuclear Power Plants. The objective of this study is to provide a guideline for safety evaluation of RTOS appropriate to the nuclear I and C system. In this paper, we suggest evaluation approach for the RTOS

  14. A Study on the Safety Evaluation of Real-Time Operating System in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Tae; Jeong, Choong Heui; Kim, Dail Il [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2008-10-15

    Along with the digitalisation of the nuclear Instrumentation and Control (I and C) system, Real-Time Operating System (RTOS) is being widely used. The RTOS used in nuclear I and C system should satisfy strict performance requirements and resolve various technical issues under complicated conditions. In this regard a careful safety evaluation of RTOS is important for the safety of Nuclear Power Plants. The objective of this study is to provide a guideline for safety evaluation of RTOS appropriate to the nuclear I and C system. In this paper, we suggest evaluation approach for the RTOS.

  15. Analysis and design of nuclear energy information systems

    International Nuclear Information System (INIS)

    Yohanes Dwi Anggoro; Sriyana; Arief Tris Yuliyanto; Wiku Lulus Widodo

    2015-01-01

    Management of research reports and activities of the Center for Nuclear Energy System Assessment (PKSEN), either in the form of documents and the results of other activities, are important part of the series of activities PKSEN mission achievement. Management of good documents will facilitate the provision of improved inputs or use the maximum results. But over the past few years, there are still some problem in the management of research reports and activities performed by PKSEN. The purpose of this study is to analyze and design flow layout of the Nuclear Energy Information System to facilitate the implementation of the Nuclear Energy Information System. In addition to be used as a research management system and PKSEN activities, it can also be used as information media for the community. Nuclear Energy Information System package is expected to be ''one gate systems for PKSEN information. The research methodology used are: (i) analysis of organizational systems, (ii) the analysis and design of information systems; (iii) the analysis and design of software systems; (iv) the analysis and design of database systems. The results of this study are: had identified and resources throughout the organization PKSEN activation, had analyzed the application of SIEN using SWOT analysis, had identified several types of devices required, had been compiled hierarchy of SIEN, had determined that the database system used is a centralized database system and had elections MySQL as DBMS. The result is a basic design of the Nuclear Energy Information System) which will used as a research and activities management system of PKSEN and also can be used as a medium of information for the community. (author)

  16. Heat transfer and fluid flow in nuclear systems

    CERN Document Server

    Fenech, Henri

    1982-01-01

    Heat Transfer and Fluid in Flow Nuclear Systems discusses topics that bridge the gap between the fundamental principles and the designed practices. The book is comprised of six chapters that cover analysis of the predicting thermal-hydraulics performance of large nuclear reactors and associated heat-exchangers or steam generators of various nuclear systems. Chapter 1 tackles the general considerations on thermal design and performance requirements of nuclear reactor cores. The second chapter deals with pressurized subcooled light water systems, and the third chapter covers boiling water reacto

  17. EPRI expert system activities for nuclear utility industry application

    International Nuclear Information System (INIS)

    Naser, J.A.

    1990-01-01

    This paper reports on expert systems which have reached a level of maturity where they offer considerable benefits for the nuclear utility industry. The ability of expert systems to enhance expertise makes them an important tool for the nuclear utility industry in the areas of engineering, operations and maintenance. Benefits of expert system applications include comprehensive and consistent reasoning, reduction of time required for activities, retention of human expertise and ability to utilize multiple experts knowledge for an activity. The Electric Power Research Institute (EPRI) has been performing four basic activities to help the nuclear industry take advantage of this expert system technology. The first is the development of expert system building tools which are tailored to nuclear utility industry applications. The second is the development of expert system applications. The third is work in developing a methodology for verification and validation of expert systems. The last is technology transfer activities to help the nuclear utility industry benefit from expert systems. The purpose of this paper is to describe the EPRI activities

  18. REDNET: a distributed data acquisition system for a nuclear research reactor

    International Nuclear Information System (INIS)

    Shah, R.R.; Pensom, C.F.

    1984-05-01

    Experimental facilities such as those in the NRU nuclear research reactor at the Chalk River Nuclear Laboratories (CRNL) need a data acquisition system that combines high performance with flexibility. The REactor Data NETwork (REDNET) is a system being developed at CRNL that used distributed computer technology to meet demanding requirements. This paper describes the distributed architecture of REDNET, comprising 7 minicomputers, and presents an overview of the software configuration and data structures which have been designed to produce a versatile and interactive system that must gather and store data at rates ranging from 20 times a second to once every 30 minutes. Each experimenter is provided with a unique set of points that are referred to collectively, and manipulated together as a group. Facilities are provided to modify operating parameters for and view data values in a group without affecting other groups. Facilities incorporated for graceful degradation of REDNET and automatic recovery from failures are also described

  19. Evaluating physical protection systems of licensed nuclear facilities using systems engineered inspection guidance

    International Nuclear Information System (INIS)

    Bradley, R.T.; Olson, A.W.; Rogue, F.; Scala, S.; Richard, E.W.

    1980-01-01

    The Lawrence Livermore National Laboratory (LLNL) and the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) have applied a systems engineering approach to provide the NRC Office of Inspection and Enforcement (IE) with improved methods and guidance for evaluating the physical protection systems of licensed nuclear facilities

  20. Development of a computerized nuclear materials control and accounting system for a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Joseph, C.; Madeen, M.L.

    1979-07-01

    A computerized nuclear materials control and accounting system (CNMCAS) for a fuel reprocessing plant is being developed by Allied-General Nuclear Services at the Barnwell Nuclear Fuel Plant. Development work includes on-line demonstration of near real-time measurement, measurement control, accounting, and processing monitoring/process surveillance activities during test process runs using natural uranium. A technique for estimating in-process inventory is also being developed. This paper describes development work performed and planned, plus significant design features required to integrate CNMCAS into an advanced safeguards system

  1. Space nuclear power systems, Part 2

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Hoover, M.D.

    1992-01-01

    This volume, number two of three, contains the reviewed and edited papers were being presented at the Ninth Symposium in Albuquerque, New Mexico, 12--16 January 1992. The objective of the symposium, and hence these volumes, is to summarize the state of knowledge in the area of space nuclear power and propulsion and to provide a forum at which the most recent findings and important new developments can be presented and discussed. Topics included is this volume are: reactor and power systems control; thermionic energy conversion; space missions and power needs; key issues in nuclear and propulsion; nuclear thermal propulsion; manufacturing and processing; thermal management; space nuclear safety; and nuclear testing and production facilities

  2. Radio frequency system for nuclear fusion

    International Nuclear Information System (INIS)

    Kozeki, Shoichiro; Sagawa, Norimoto; Takizawa, Teruhiro

    1987-01-01

    The importance of radio frequency waves has been increasing in the area of nuclear fusion since they are indispensable for heating of plasma, etc. This report outlines radio frequency techniques used for nuclear fusion and describes the development of radio frequency systems (radio frequency plasma heating system and current drive system). Presently, in-depth studies are underway at various research institutes to achieve plasma heating by injection of radio frequency electric power. Three ranges of frequencies, ICRF (ion cyclotron range of frequency), LHRF (lower hybrid range of frequency) and ECRF (electron cyclotron range of frequency), are considered promissing for radio frequency heating. Candidate waves for plasma current driving include ECW (electron cyclotron wave), LHW (lower hybrid wave), MSW (magnetic sound wave), ICW (ion cyclotron wave) with minority component, and FW (fast wave). FW is the greatest in terms of current drive efficiency. In general, a radio frequency system for nuclear fusion consists of a radio frequency power source, transmission/matching circuit component and plasma connection component. (Nogami, K.)

  3. Hungarian national nuclear material control and accounting system

    International Nuclear Information System (INIS)

    Lendvai, O.

    1985-01-01

    The Hungarian system for nuclear materials control and accounting is briefly described. Sections include a historical overview, a description of nuclear activities and an outline of the organizational structure of the materials management system. Subsequent sections discuss accounting, verification and international relations

  4. A study on the international cooperation in the nuclear liability system related to the supply of nuclear power plants to North Korea

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Chul Hoon.; Kim, Tae Myeong [The Catholic University, Seoul (Korea)

    2001-12-01

    System of nuclear damage compensation was prepares to protect the interested parties in the implementation of nuclearenterprise and conciliate the conflicts of interests of them. The Light-water Reactor (LWR) Project to supply two units of light-water reactors to North Korea faced difficulties concerning nuclear damage compensation system due to decline of the international reliability and aggravation of economic condition of North Korea. It is necessary to study the special nuclear damage compensation system of the LWR Project to promote the Project and peaceful uses of atomic energy in northeast Asia. The contents and scope of the study is composed as follows; 1. Background of the LWR Project . the pending issues of them and the necessary of the special nuclear damage compensation system 2. Investigation of nuclear damage compensation system of United States, Japan, German, France and Korea 3. Account of conventions on liability for nuclear damage, especially Vienna Convention and its Protocols 4. Searching for issues of the nuclear damage compensation system of the LWR Project and its resolution 5. Comprehensive arrangement on the main issues through the study. 4 tabs. (Author)

  5. A study on environmental regulation and public inquiry system of nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Sang Hun; Kang, Chang Sun; Son, Ki Yon; Cho, Young Ho; Yang, Ji Won; Lee, Young Wook; Ko, Hyun Suk

    2000-03-01

    Public hearing system for domestic and foreign nuclear facilities are investigated and analyzed. As a result, Korean public hearing system are developed. Atomic Energy Act, Environmental Impact Assessment Act and Administrative Procedure Act of Korea are reviewed and appropriate acts, regulations, procedures and mandates of foreign countries including U.S.A are reviewed and analyzed. On the basis of these results the role of device to collect public opinion is identified for nuclear facility of Korea and the elementary principle of the system and recommendations are developed

  6. A study on environmental regulation and public inquiry system of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hun [Korea Association for Nuclear Technology, Taejon (Korea, Republic of); Kang, Chang Sun; Son, Ki Yon; Cho, Young Ho; Yang, Ji Won; Lee, Young Wook; Ko, Hyun Suk [Seoul National Univ., Seoul (Korea, Republic of)

    2000-03-15

    Public hearing system for domestic and foreign nuclear facilities are investigated and analyzed. As a result, Korean public hearing system are developed. Atomic Energy Act, Environmental Impact Assessment Act and Administrative Procedure Act of Korea are reviewed and appropriate acts, regulations, procedures and mandates of foreign countries including U.S.A are reviewed and analyzed. On the basis of these results the role of device to collect public opinion is identified for nuclear facility of Korea and the elementary principle of the system and recommendations are developed.

  7. A nuclear radiation multi-parameter measurement system based on pulse-shape sampling

    International Nuclear Information System (INIS)

    Qiu Xiaolin; Fang Guoming; Xu Peng; Di Yuming

    2007-01-01

    In this paper, A nuclear radiation multi-parameter measurement system based on pulse-shape sampling is introduced, including the system's characteristics, composition, operating principle, experiment data and analysis. Compared with conventional nuclear measuring apparatus, it has some remarkable advantages such as the synchronous detection using multi-parameter measurement in the same measurement platform and the general analysis of signal data by user-defined program. (authors)

  8. Information flow a data bank preparation in nuclear power plant reliability information system

    International Nuclear Information System (INIS)

    Kolesa, K.; Vejvodova, I.

    1983-01-01

    In the year 1981 the reliability information system for nuclear power plants (ISS-JE) was established. The objective of the system is to make a statistical evaluation of the operation of nuclear power plants and to obtain information on the reliability of the equipment of nuclear power plants and the transmission of this information to manufacturers with the aim of inducing them to take corrective measures. The HP 1000 computer with the data base system IMAGE 100 is used which allows to process single queries and periodical outputs. The content of periodical outputs designed for various groups of subcontractors is briefly described and trends of the further development of the system indicated. (Ha)

  9. Man--machine interface issues for space nuclear power systems

    International Nuclear Information System (INIS)

    Nelson, W.R.; Haugset, K.

    1991-01-01

    The deployment of nuclear reactors in space necessitates an entirely new set of guidelines for the design of the man--machine interface (MMI) when compared to earth-based applications such as commerical nuclear power plants. Although the design objectives of earth- and space-based nuclear power systems are the same, that is, to produce electrical power, the differences in the application environments mean that the operator's role will be significantly different for space-based systems. This paper explores the issues associated with establishing the necessary MMI guidelines for space nuclear power systems. The generic human performance requirements for space-based systems are described, and the operator roles that are utilized for the operation of current and advanced earth-based reactors are briefly summarized. The development of a prototype advanced control room, the Integrated Surveillance and Control System (ISACS) at the Organization for Economic Cooperation and Development (OECD) Halden Reactor Project is introduced. Finally, preliminary ideas for the use of the ISACS system as a test bed for establishing MMI guidelines for space nuclear systems are presented

  10. Development of a computerized nuclear materials control and accounting system for a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Joseph, C.; Madeen, M.L.

    1979-01-01

    A computerized nuclear materials control and accounting system (CNMCAS) for a fuel reprocessing plant is being developed by Allied-General Nuclear Services at the Barnwell Nuclear Fuel Plant. Development work includes on-line demonstration of near real-time measurement, measurement control, accounting, and processing monitoring/process surveillance activities during test process runs using natural uranium. A technique for estimating in-process inventory is also being developed. This paper describes development work performed and planned, plus significant design features required to integrate CNMCAS into an advanced safeguards system. 2 refs

  11. Nuclear power plant transient identification using a neuro-fuzzy inference system

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos de Abreu; Oliveira, Mauro Vitor de; Santos, Isaac Jose Antonio Luchetti dos; Carvalho, Paulo Victor Rodrigues de; Grecco, Claudio Henrique dos Santos; Auguto, Silas Cordeiro

    2005-01-01

    Transient identification in Nuclear Power Plant (NPP) is often a very hard task and may involve a great amount of human cognition. The early identification of unexpected departures from steady state behavior is an essential step for the operation, control and accident management in nuclear power plants. The basis for the identification of a change in the system is that different system faults and anomalies lead to different patterns of evolution of the involved process variables. During an abnormal event, the operator must monitor a great amount of information from the instruments, that represents a specific type of event. In this work, an approach for the identification of transients is presented, aiming at helping the operator to make a decision relative to the procedure to be followed in situations of accidents/transients at nuclear power plants. In this way, a diagnostic strategy based on hierarchical use artificial neural networks (ANN) for a first level transient diagnose. After the ANN has done a preliminary transient type identification, a fuzzy-logic system analyzes the results emitting reliability degree of it. In order to validate the method, a Nuclear Power Plant transient identification problem, comprising postulated accidents, is proposed. Noisy data was used to evaluate the method robustness. The results obtained reveal the ability of the method in dealing with dynamic identification of transients and its reliability degree. (author)

  12. Straight-Line -- A nuclear material storage information management system

    International Nuclear Information System (INIS)

    Nilsen, C.; Mangan, D.

    1995-01-01

    Sandia National Laboratories is developing Straight-Line -- a pilot system to demonstrate comprehensive monitoring of nuclear material in storage. Straight-Line is an integrated system of sensors providing information that will enhance the safety, security, and international accountability of stored nuclear material. The goals of this effort are to (1) Provide the right sensor information to the right user in a timely manner. (2) Reduce the expenses, risks, and frequency of human inspection of the material. (3) Provide trustworthy data to international inspectors to minimize their need to make on site inspections. In pursuit of these goals, Straight-Line unites technology from Sandia's Authenticated Item Monitoring System (AIMS) and other programs to communicate the authenticated status of the monitored item back to central magazine receivers. Straight-Line, however, incorporates several important features not found in previous systems: (1) Information Security -- the ability to collect and safely disseminate both classified and unclassified sensor data to users on a need-to-know basis. (2) Integrate into a single system the monitoring needs of safety, security, and international accountability. (3) Incorporate the use of sensors providing analog or digital output. This paper will present the overall architecture and status of the Straight-Line project

  13. Straight-Line -- A nuclear material storage information management system

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, C. [Sandia National Labs., Livermore, CA (United States); Mangan, D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-12-31

    Sandia National Laboratories is developing Straight-Line -- a pilot system to demonstrate comprehensive monitoring of nuclear material in storage. Straight-Line is an integrated system of sensors providing information that will enhance the safety, security, and international accountability of stored nuclear material. The goals of this effort are to (1) Provide the right sensor information to the right user in a timely manner. (2) Reduce the expenses, risks, and frequency of human inspection of the material. (3) Provide trustworthy data to international inspectors to minimize their need to make on site inspections. In pursuit of these goals, Straight-Line unites technology from Sandia`s Authenticated Item Monitoring System (AIMS) and other programs to communicate the authenticated status of the monitored item back to central magazine receivers. Straight-Line, however, incorporates several important features not found in previous systems: (1) Information Security -- the ability to collect and safely disseminate both classified and unclassified sensor data to users on a need-to-know basis. (2) Integrate into a single system the monitoring needs of safety, security, and international accountability. (3) Incorporate the use of sensors providing analog or digital output. This paper will present the overall architecture and status of the Straight-Line project.

  14. Distributing radiation management system of nuclear power plants

    International Nuclear Information System (INIS)

    Mihoya, Eiichi; Akashi, Michio

    1999-01-01

    The importance of radiation management for nuclear facilities including nuclear power plants has increased as the general public understanding has progressed, and necessary information for management must be processed exactly and quickly. In nuclear power plants, radiation management is performed by each individual operation, and collected information is managed by the system of each operation. The distributing radiation management system has been developed aiming to use a general-purpose LAN and make quick and efficient use of information managed by individual operations. This paper describes the system configuration and functions. (author)

  15. Knowledge-based full-automatic control system for a nuclear ship reactor

    International Nuclear Information System (INIS)

    Shimazaki, J.; Nakazawa, T.; Yabuuchi, N.

    2000-01-01

    Plant operations aboard nuclear ships require quick judgements and actions due to changing marine conditions such as wind, waves and currents. Furthermore, additional human support is not available for nuclear ship operation at sea, so advanced automatic operations are necessary to reduce the number of operators required finally. Therefore, an advanced automatic operating system has been developed based on operational knowledge of nuclear ship 'Mutsu' plant. The advanced automatic operating system includes both the automatic operation system and the operator-support system which assists operators in completing actions during plant accidents, anomaly diagnosis and plant supervision. These system are largely being developed using artificial intelligent techniques such as neural network, fuzzy logic and knowledge-based expert. The automatic operation system is fundamentally based upon application of an operator's knowledge of both normal (start-up to rated power level) and abnormal (after scram) operations. Comparing plant behaviors from start-up to power level by the automatic operation with by 'Mutsu' manual operation, stable automatic operation was obtained almost same as manual operation within all operating limits. The abnormal automatic system was for hard work of manual operations after scram or LOCA accidents. An integrating system with the normal and the abnormal automatic systems are being developed for interacting smoothly both systems. (author)

  16. Study of a nuclear energy supplied steelmaking system for near-term application

    International Nuclear Information System (INIS)

    Yan, Xing L.; Kasahara, Seiji; Tachibana, Yukio; Kunitomi, Kazuhiko

    2012-01-01

    Conventional steelmaking processes involve intensive fossil fuel consumption and CO 2 emission. The system resulting from this study ties a steelmaking plant to a nuclear plant. The latter supplies the former all energy and feedstock with the exception of iron ore. The actual design takes on a multi-disciplinary approach: The nuclear plant employs a proven next-generation technology of fission reactor with 950 °C outlet temperature to produce electricity and heat. The plant construction saving and high efficiency keep the cogeneration cost down. The steelmaking plant employs conventional furnaces but substitutes hydrogen and oxygen for hydrocarbons as reactant and fuel. Water decomposition through an experimentally-demonstrated thermochemical process manufactures the feedstock gases required. Through essential safety features, particular a fully-passive nuclear safety, the design achieves physical proximity and yet operational independence of the two plants to facilitate inter-plant energy transmission. Calculated energy and material balance of the integrated system yields slightly over 1000 t steel per 1 MWt yr nuclear thermal energy. The steel cost is estimated competitive. The CO 2 emission amounts to 1% of conventional processes. The sustainable performance, economical potential, robust safety, and use of verified technological bases attract near-term deployment of this nuclear steelmaking system. -- Highlights: ► A steelmaking concept is proposed based on multi-disciplinary approach. ► It ties advanced nuclear fission reactor and energy conversion to thermochemical manufacture and direct iron making. ► Technological strength of each area is exploited to integrate a final process. ► Heat and material balance of the process is made to predict performance and cost. ► The system rules out fossil fuel use and CO 2 emission, and is near-term deployable.

  17. Architectures of Remote Monitoring Systems for a Nuclear Power Plant

    International Nuclear Information System (INIS)

    Choi, Yoo Rark; Lee, Jae Cheol; Kim, Jae Hee

    2006-01-01

    Aina(Artificial Intelligence for Nuclear Applications) have developed remote monitoring systems since the 1990's. We have been interested in the safety of reactor vessel, steam generator, pipes, valves and pumps. We have developed several remote inspection systems and will develop some remote care systems for a nuclear power plant. There were critical problems for building remote monitoring systems for mass data processing and remote user interface techniques in the middle of the 1990's. The network capacity wasn't sufficient to transfer the monitoring data to a remote computer. Various computer operating systems require various remote user interfaces. Java provides convenient and powerful interface facilities and the network transfer speed was increased greatly in the 2000's. Java is a good solution for a remote user interface but it can't work standalone in remote monitoring applications. The restrictions of Java make it impossible to build real time based applications. We use Java and a traditional language to improve this problem. We separate the remote user interface and the monitoring application

  18. Performance Criteria of Nuclear Space Propulsion Systems

    Science.gov (United States)

    Shepherd, L. R.

    Future exploration of the solar system on a major scale will require propulsion systems capable of performance far greater than is achievable with the present generation of rocket engines using chemical propellants. Viable missions going deeper into interstellar space will be even more demanding. Propulsion systems based on nuclear energy sources, fission or (eventually) fusion offer the best prospect for meeting the requirements. The most obvious gain coming from the application of nuclear reactions is the possibility, at least in principle, of obtaining specific impulses a thousandfold greater than can be achieved in chemically energised rockets. However, practical considerations preclude the possibility of exploiting the full potential of nuclear energy sources in any engines conceivable in terms of presently known technology. Achievable propulsive power is a particularly limiting factor, since this determines the acceleration that may be obtained. Conventional chemical rocket engines have specific propulsive powers (power per unit engine mass) in the order of gigawatts per tonne. One cannot envisage the possibility of approaching such a level of performance by orders of magnitude in presently conceivable nuclear propulsive systems. The time taken, under power, to reach a given terminal velocity is proportional to the square of the engine's exhaust velocity and the inverse of its specific power. An assessment of various nuclear propulsion concepts suggests that, even with the most optimistic assumptions, it could take many hundreds of years to attain the velocities necessary to reach the nearest stars. Exploration within a range of the order of a thousand AU, however, would appear to offer viable prospects, even with the low levels of specific power of presently conceivable nuclear engines.

  19. A mobile gamma ray spectrometer system for nuclear hazard mapping

    International Nuclear Information System (INIS)

    Smethurst, Mark A.

    2000-12-01

    The Geological Survey of Norway has developed a system for mobile gamma ray spectrometer surveying suitable for use in nuclear emergencies where potentially dangerous radioactive materials have been released into the environment. The measuring system has been designed for use with different kinds of transportation platforms. These include fixed-wing aircraft, helicopters and vans. The choice of transportation platform depends on the nature of the nuclear emergency. Widespread fallout from a distant source can be mapped quickly from the air while local sources of radiation can be delineated by a car-borne system. The measuring system processes gamma ray spectra in real time. The operator of the system is therefore able to guide surveying in accordance with meaningful data values and immediately report these values to decision making authorities. The operator is presented with a number of different displays suited to different kinds of nuclear emergencies that lead to more efficient surveying. Real time processing of data means that the results of a survey can be delivered to decision makers immediately upon return to base. It is also possible to deliver data via a live mobile telephone link while surveying is underway. The measuring system can be adjusted to make measurements lasting between 1 second and 5 seconds. The spatial density of measuring positions depends on the duration of each measurement and the speed of travel of the measuring system. Measuring with 1 s intervals while travelling at 50 km/h in a car results in a measurement every 14 m along the road. Measuring with 1 s intervals in an aeroplane travelling at 250 km/h produces a measurement for every 70 m travelled. Eight hours surveying can produce up to 30000 measurements over a region hundreds of kilometres across. (Author)

  20. Design and realization of a dosimetry and radiology system for nuclear power plants

    International Nuclear Information System (INIS)

    Capelle, M.

    Computer-assisted acquisition of radiation exposure data and related tasks was established at an early stage at Biblis nuclear power plant of RWE. Due to the positive experience with this system a similar, more sophisticated system has been developed for the nuclear power plants at Grundremmingen, Muelheim-Kaerlich and Kalkar. This system, DORA (Dosimetry and radiological monitoring) is described in the article. (RW) [de

  1. Electrical cabling system associated at a nuclear reactor

    International Nuclear Information System (INIS)

    Dejeux, P.; Desfontaines, G.

    1988-01-01

    This cabling system for an electrical device in a nuclear reactor comprises at least a first cable issued of the device, a second cable comprising a first portion, a second portion and a third portion joining the second by a multiple quick fitting connector capable to connect at least ten second portions at ten other third portions of the second cable [fr

  2. Implications of inherent safe nuclear power system

    International Nuclear Information System (INIS)

    Song, Yo-Taik

    1987-01-01

    The safety of present day nuclear power reactors and research reactors depends on a combination of design features of passive and active systems, and the alert judgement of their operators. A few inherently safe designs of nuclear reactors for power plants are currently under development. In these designs, the passive systems are emphasized, and the active systems are minimized. Also efforts are made to eliminate the potential for human failures that initiate the series of accidents. If a major system fails in these designs, the core is flooded automatically with coolants that flow by gravity, not by mechanical pumps or electromagnetic actuators. Depending on the choice of the coolants--water, liquid metal and helium gas--there are three principal types of inherently safe reactors. In this paper, these inherently safe reactor designs are reviewed and their implications are discussed. Further, future perspectives of their acceptance by nuclear industries are discussed. (author)

  3. Configuration and technology implications of potential nuclear hydrogen system applications.

    Energy Technology Data Exchange (ETDEWEB)

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options

  4. Public concerns and alternative nuclear power systems

    International Nuclear Information System (INIS)

    Mayo, L.H.

    1980-02-01

    The basic task undertaken in this study was to assess the relative public acceptability of three general types of nuclear power systems as alternatives to the existing Light Water Reactor (LWR) system. Concerns registered toward nuclear power constituted the basic data for this assessment. The primary measure adopted for determining the significance of concerns was the degree of difficulty posed by the concern to the nuclear power decisional structure in the establishment and maintenance of norms to control risks or to advance intended energy objectives. Alleviations or exacerbations of concern resulting from particular attributes of alternative systems were measured from an LWR baseline

  5. Nuclear fuel preheating system

    International Nuclear Information System (INIS)

    Andrea, C.

    1975-01-01

    A nuclear reactor new fuel handling system which conveys new fuel from a fuel preparation room into the reactor containment boundary is described. The handling system is provided with a fuel preheating station which is adaptd to heat the new fuel to reactor refueling temperatures in such a way that the fuel is heated from the top down so that fuel element cladding failure due to thermal expansions is avoided. (U.S.)

  6. The nuclear materials control system: Safeguards - circa 1957

    International Nuclear Information System (INIS)

    Thomas, C.C. Jr.

    1992-01-01

    In the late 1950s, the Westinghouse Electric Corporation undertook a nuclear materials control study for the Division of International Affairs of the US Atomic Energy Commission (AEC). The objective of the study was to develop a Nuclear Materials Control System (NMCS) that could be used under the US bilateral agreements or by the International Atomic Energy Agency. Phase I was a system study to determine the requirements for an NMCS for an assumed nuclear fuel complex. This paper summarizes aspects of Phase I studies addressing facility types, measurement points, and instrumentation needs and Phase II studies covering chemistry/chemical engineering, nuclear, special devices, and security devices and techniques. 1 fig

  7. Systems to prevent nuclear material from re-entering the biosphere

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.A. Jr.; Lapin, S.

    1992-01-01

    Nuclear systems are key to the success of many space missions as we have witness in the Apollo science packages, Viking Mars landers, and Pioneer and Voyager planetary exploration missions. There is always a concern that nuclear materials will re-enter the biosphere from a mission abort. In fact, this has happened for radioisotope and reactor power systems. Until now, the emphasize has been an incorporating on-board means to protect the biosphere. With possible increased use of nuclear power and propulsion systems in space, Project SIREN (Search, Intercept, Retrieve, Expulsion, Nuclear) has determined that external means can be used as a back up to current on-board systems to provide assured prevention of nuclear materials from re-entry once in space. The technology base to implement a SIREN vehicle has been assessed and a data base and mission analysis program prepared (called THOR) to evaluate various missions. The degree of hazard from existing nuclear power systems in space has been assessed and found to be significant

  8. A comparative study on export control systems of nuclear technology in ROK and USA

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Jae Woong; Shin, Dong Hoon [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2013-10-15

    Perfect removal of transferred technology is impossible because it is impossible to find all copies of technologies such as files and documents. International community concerns about Terrorists' acquirement of nuclear technologies related to nuclear reactors, enrichment and reprocessing Facilities and heavy water production facilities, which can be used for production of nuclear weapons. Non-state actors as well as concerning countries have tried to possess nuclear technology for developing nuclear weapons. Non-state actors' activities threaten global nuclear security. Korea exported four nuclear power plants to UAE and a research reactor to Jordan. Non-state actors may try to procure nuclear equipment and technology from Korean nuclear industries. Therefore, the export control system should be enhanced for national nuclear security and safety. In this study, the export control system of Korea and the United States were compared concerning to nuclear technology. In summary, controlled activities related to nuclear technology are treated more variously and more diverse activities are controlled in the United States than In Korea. Catch-all control will lose its effectiveness without this. Related to the control of ITT (Intangible Technology Transfer), Korea and the United States are trying to amend the export control regulation. Both of them are trying to control intangible technology transfers effectively. Revised Foreign Trade Act in Korea is expected to introduce a more rigorous system of nuclear technology controls. It focuses on nationality rather than residence. The revised law may face into other problems such as dual nationals like as the United States. However, this satisfies legislative requirements for control of a deemed export. The revised law will enter into force in 2014. Accurate meanings of technology and export will be defined soon in the enforcement decree and the public notice before 2014. However, it is hard to revise the definition

  9. A comparative study on export control systems of nuclear technology in ROK and USA

    International Nuclear Information System (INIS)

    Tae, Jae Woong; Shin, Dong Hoon

    2013-01-01

    Perfect removal of transferred technology is impossible because it is impossible to find all copies of technologies such as files and documents. International community concerns about Terrorists' acquirement of nuclear technologies related to nuclear reactors, enrichment and reprocessing Facilities and heavy water production facilities, which can be used for production of nuclear weapons. Non-state actors as well as concerning countries have tried to possess nuclear technology for developing nuclear weapons. Non-state actors' activities threaten global nuclear security. Korea exported four nuclear power plants to UAE and a research reactor to Jordan. Non-state actors may try to procure nuclear equipment and technology from Korean nuclear industries. Therefore, the export control system should be enhanced for national nuclear security and safety. In this study, the export control system of Korea and the United States were compared concerning to nuclear technology. In summary, controlled activities related to nuclear technology are treated more variously and more diverse activities are controlled in the United States than In Korea. Catch-all control will lose its effectiveness without this. Related to the control of ITT (Intangible Technology Transfer), Korea and the United States are trying to amend the export control regulation. Both of them are trying to control intangible technology transfers effectively. Revised Foreign Trade Act in Korea is expected to introduce a more rigorous system of nuclear technology controls. It focuses on nationality rather than residence. The revised law may face into other problems such as dual nationals like as the United States. However, this satisfies legislative requirements for control of a deemed export. The revised law will enter into force in 2014. Accurate meanings of technology and export will be defined soon in the enforcement decree and the public notice before 2014. However, it is hard to revise the definition of export

  10. A multivariate statistical study on a diversified data gathering system for nuclear power plants

    International Nuclear Information System (INIS)

    Samanta, P.K.; Teichmann, T.; Levine, M.M.; Kato, W.Y.

    1989-02-01

    In this report, multivariate statistical methods are presented and applied to demonstrate their use in analyzing nuclear power plant operational data. For analyses of nuclear power plant events, approaches are presented for detecting malfunctions and degradations within the course of the event. At the system level, approaches are investigated as a means of diagnosis of system level performance. This involves the detection of deviations from normal performance of the system. The input data analyzed are the measurable physical parameters, such as steam generator level, pressurizer water level, auxiliary feedwater flow, etc. The study provides the methodology and illustrative examples based on data gathered from simulation of nuclear power plant transients and computer simulation of a plant system performance (due to lack of easily accessible operational data). Such an approach, once fully developed, can be used to explore statistically the detection of failure trends and patterns and prevention of conditions with serious safety implications. 33 refs., 18 figs., 9 tabs

  11. Performance analysis of nuclear materials accounting systems

    International Nuclear Information System (INIS)

    Cobb, D.D.; Shipley, J.P.

    1979-01-01

    Techniques for analyzing the level of performance of nuclear materials accounting systems in terms of the four performance measures, total amount of loss, loss-detection time, loss-detection probability, and false-alarm probability, are presented. These techniques are especially useful for analyzing the expected performance of near-real-time (dynamic) accounting systems. A conservative estimate of system performance is provided by the CUSUM (cumulative summation of materials balances) test. Graphical displays, called performance surfaces, are developed as convenient tools for representing systems performance, and examples from a recent safeguards study of a nuclear fuels reprocessing plant are given. 6 refs

  12. Referring to IAEA system to improve Chinese standards system on nuclear and radiation safety

    International Nuclear Information System (INIS)

    Shang Zhaorong; Wang Wenhai

    2010-01-01

    Referring to the standards system of IAEA, to build and improve the Chinese standards system of nuclear and radiation safety is a long term infrastructure work and an assurance to keep sustainable development of nuclear industry and nuclear technology application in China. The paper analyses the current main problem, and gives some suggestions on developing and improving the system. (authors)

  13. A distributed process monitoring system for nuclear powered electrical generating facilities

    International Nuclear Information System (INIS)

    Sweney, A.D.

    1991-01-01

    Duke Power Company is one of the largest investor owned utilities in the United States, with a service area of 20,000 square miles extending across North and South Carolina. Oconee Nuclear Station, one of Duke Power's three nuclear generating facilities, is a three unit pressurized water reactor site and has, over the course of its 15-year operating lifetime, effectively run out of plant processing capability. From a severely overcrowded cable spread room to an aging overtaxed Operator Aid Computer, the problems with trying to add additional process variables to the present centralized Operator Aid Computer are almost insurmountable obstacles. This paper reports that for this reason, and to realize the inherent benefits of a distributed process monitoring and control system, Oconee has embarked on a project to demonstrate the ability of a distributed system to perform in the nuclear power plant environment

  14. Safety study on nuclear heat utilization system - accident delineation and assessment on nuclear steelmaking pilot plant

    International Nuclear Information System (INIS)

    Yoshida, T.; Mizuno, M.; Tsuruoka, K.

    1982-01-01

    This paper presents accident delineation and assessment on a nuclear steelmaking pilot plant as an example of nuclear heat utilization systems. The reactor thermal energy from VHTR is transported to externally located chemical process plant employing helium-heated steam reformer by an intermediate heat transport loop. This paper on the nuclear steelmaking pilot plant will describe (1) system transients under accident conditions, (2) impact of explosion and fire on the nuclear reactor and the public and (3) radiation exposure on the public. The results presented in this paper will contribute considerably to understanding safety features of nuclear heat utilization system that employs the intermediate heat transport loop and the helium-heated steam reformer

  15. SEMPaC - an expert system prototype associated with safety parameter display system of a nuclear power plant

    International Nuclear Information System (INIS)

    Hirama, K.

    1989-01-01

    This work presents SEMPaC, an expert system prototype: it provides means to support diagnosis and to make decisions during abnormal transients that cause the trip of nuclear power plant. The system operation is associated with Safety Parameter Display System - SPDS that was recommended by U. S. Nuclear Regulatory Commission (NRC) after the Three-Mile Island (TMI) accident analysis. (author)

  16. A CAMAC based real-time noise analysis system for nuclear reactors

    International Nuclear Information System (INIS)

    Ciftcioglu, O.

    1987-01-01

    A CAMAC based real-time noise analysis system was designed for the TRIGA MARK II nuclear reactor at the Institute for Nuclear Energy, Istanbul. The input analog signals obtained from the radiation detectors are introduced to the system through CAMAC interface. The signals coverted into digital form are processed by a PDP-11 computer. The fast data processing based on auto/cross power spectral density computations is carried out by means of assembly written FFT algorithms in real-time and the spectra obtained are displayed on a CAMAC driven display system as an additional monitoring device. The system has the advantage of being software programmable and controlled by a CAMAC system so that it is operated under porgram control for reactor surveillance, anomaly detection and diagnosis. The system can also be used for the identification of nonstationary operational characteristics of the reactor in long term by comparing the noise power spectra with the corresponding reference noise patterns prepared in advance. (orig.)

  17. Nuclear systems of the future - generation 4. Proposals of strategic orientations for the nuclear systems of the future

    International Nuclear Information System (INIS)

    2007-01-01

    Several points, specific to France, must be taken into consideration for the long term strategic choice of future nuclear systems, in particular: taking the best profit of the progress potentialities of water reactors, optimizing the opportunities offered by the renewal of power plants in operation, integrating the consequences and the implementation of a strategy of optimized management of radioactive wastes, and looking for improvements that would make nuclear energy an active contributor to sustainable development. The prospective researches carried out by the CEA and its industrial partners have led to propose a R and D strategy with 3 complementary goals: search for innovations for water reactors, development of fast neutron reactors with closed fuel cycle (sodium fast reactor (SFR), gas fast reactor (GFR)), and development of key-technologies for nuclear hydrogen production (very high temperature reactor (VHTR)). The R and D effort concerns also the subcritical systems devoted to transmutation, the new cycle processes for a global management of actinides, and some other nuclear systems like the molten salt reactors (MSR) and the supercritical water reactors (SCWR). This paper presents the R and D strategy for each technology with its priorities, steps, financial means and collaborations. (J.S.)

  18. Interaction of electromagnetic pulse with commercial nuclear-power-plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.

    1983-02-01

    This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants.

  19. Interaction of electromagnetic pulse with commercial nuclear-power-plant systems

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.

    1983-02-01

    This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants

  20. The structure of nuclear safeguards systems

    International Nuclear Information System (INIS)

    Coulter, C.A.

    1989-01-01

    Safeguards systems for facilities that handle special nuclear material combine procedural, protective, and materials accounting elements to prevent and/or detect sabotage and diversion or theft of material. Because most of the discussion in this course is devoted to materials accounting topics only, this chapter provides a brief introduction to some of the procedural and protective elements of safeguards systems, placing the materials accounting system in its proper context. The chapter begins by reviewing certain pertinent DOE definitions and then surveys some protection requirements and technology - protective personnel, personnel identification systems, barriers, detectors, and communication systems. Considered next are the procedures of personnel selection and monitoring, definition and division of job functions, and operation. The chapter then describes the way the procedural, protective, and materials accounting elements can be combined, becoming a total safeguards system. Although such a system necessarily requires elements of procedure, protection, and materials accounting, only the materials accounting gives positive assurance that nuclear material is not diverted or stolen

  1. Nuclear power system

    International Nuclear Information System (INIS)

    Yampolsky, J.S.; Cavallaro, L.; Paulovich, K.F.; Schleicher, R.W.

    1989-01-01

    This patent describes an inherently safe modular nuclear power system for producing electrical power at acceptable efficiency levels using working fluids at relatively low temperatures and pressures. The system comprising: a reactor module for heating a first fluid; a heat exchanger module for transferring heat from the first fluid to a second fluid; a first piping system effecting flow of the first fluid in a first fluid circuit successively through the reactor module and the heat exchanger module; a power conversion module comprising a turbogenerator driven by the second fluid, and means for cooling the second fluid upon emergence thereof from the turbogenerator; a second piping system comprising means for effecting flow of the second fluid in a second fluid circuit successively through the heat exchanger module and the power conversion module; and a plurality of pits for receiving the modules

  2. An accountancy system for nuclear materials control in research centres

    International Nuclear Information System (INIS)

    Buttler, R.; Bueker, H.; Vallee, J.

    1979-01-01

    The Nuclear Accountancy and Control System (NACS) was developed at KFA Juelich in accordance with the requirements of the Non-Proliferation Treaty. The main features are (1) recording of nuclear material in inventory items. These are combined to form batches wherever suitable; (2) extrapolation of accounting data as a replacement for detailed measurement of inventory items data. Recording and control of nuclear material are carried out on two levels with access to a common data bank. The lower level deals with nuclear materials handling plus internal management while on the upper level there is a central control point which is responsible for nuclear safeguarding within the entire research centre. By keeping the organizational and technical infrastructure it was possible to develop a system which is both economical and operator-oriented. In this system the emphasis of nuclear safeguarding is placed on the acquisition of the nuclear material inventory. As much consideration has been given to the interests of the various operational levels and organizational units as to internal and national regulations. Since it is part of the safeguarding and control system, access to the NACS must be restricted to a limited number of users only. Furthermore, it must include facilities for manual control in the form of records. Authorization for access must correspond with the various tasks of different user groups. All necessary data are acquired decentrally in the organizational units and entered via a terminal. It is available to the user groups on both levels through a central data bank. To meet all requirements, the NACS has been designed as an integrated, computer-assisted information system for the automated processing of extensive and multi-level nuclear materials data. As part of the preventive measures entailed with nuclear safeguarding, the accountancy system enables the operator of a nuclear plant to furnish proof of non-diversion of nuclear material. (author)

  3. Prevent recurrence of nuclear disaster (2). Reconstruction of safety logic diagram of nuclear system

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Sekimura, Naoto; Nakamura, Takao; Narumiya, Yoshiyuki

    2012-01-01

    On March 11, 2011, severe accident occurred at multi units of nuclear power caused by natural disaster, which was the first of nuclear power in the world, and lead to nuclear disaster which contaminated a wide range of land and caused surrounding residents to evacuate for a long-term. Since Cyuetsu-oki earthquake and before this accident, Atomic Energy Society of Japan had activities to investigate 'safety of nuclear system' against earthquake beyond any expectation, identify research items and work out roadmap on future research activities. Correspondence against tsunami such as this accident was discussed but not included as proposal because of low tsunami hazards awareness. Based on this reflection and to prevent recurrence of nuclear disaster, reconsideration of nuclear safety from the standpoint of defense-in-depth against hazards beyond any expectation had been performed and proposed to establish roadmap for its realization. Basic principle of nuclear safety consisted of eleven principles so as to protect personnel and environment from harmful effects of radiation derived from nuclear facilities and their activities, which were categorized into three groups (responsibility and management system, personnel and environmental protection and prevention of accident initiation and effect mitigation). (T. Tanaka)

  4. Conceptual design of a system for nuclear material control in a research centre according to the IAEA safeguards requirements

    International Nuclear Information System (INIS)

    Bueker, H.; Kotte, U.; Stein, G.

    1976-01-01

    In comparison with other facilities handling nuclear material, a nuclear research centre is characterized by a wider spectrum of operations. This requires a number of installations within the centre such as research reactors, critical assemblies, research institutes and central departments, operating, in general, independently of each other. Nuclear material is stored and processed in small quantities and in different chemical and physical configurations within prescribed license areas. The conceptual design of a new system for nuclear material control in a research centre has to consider the operator's and IAEA's safeguards requirements. Using the example of the Juelich Nuclear Research Centre in the Federal Republic of Germany, these requirements are being examined in conjunction with the specified peculiarities of a nuclear research centre. Following this, a division of the research centre into material balance areas and key measurement points is being proposed, based on the existing facilities and licence areas. The essential characteristic of the concept is a far-reaching displayability of the inventory and flow of nuclear material. The availability of information is based on differentiated material accountancy in conjunction with adequate measurement of nuclear material data. For data processing and generation of data, a computerized record and report system is to be provided as well as a central measurement system. The design of an integrated accountancy system with a central computer and remote terminals is described; various measuring appliances, now being developed or tested, for the non-destructive assay of nuclear material are specified. The functions of a central department for nuclear material management for operating these systems are discussed and the planned verification of nuclear material in the different material balance areas illustrated. On applying the measures described in this paper, the conceptual design of a system for nuclear material

  5. Power source system for nuclear fusion

    International Nuclear Information System (INIS)

    Nakagawa, Satoshi.

    1975-01-01

    Object: When using an external system power source and an exclusive power source in a power source circuit for supplying power to the coils of a nuclear fusion apparatus, to minimize the capacity of the exclusive power source and provide an economical power source circuit construction. Structure: In the initial stage of the power supply, rectifying means provided in individual blocks are connected in parallel on the AC side, and power is supplied to the coils of the nuclear fusion apparatus from an external system power source with the exclusive power source held in the disconnected state. Further, at an instant when the limit of permissible input is reached, the afore-mentioned parallel circuit consisting of rectifying means is disconnected, while at the same time the exclusive power source is connected to the input side of the rectifying means provided in a block corresponding to the exclusive power source side, thereby supplying power to the coils of the nuclear fusion apparatus from both the external system power source and exclusive power source. (Kamimura, M.)

  6. Semiclassical description of hot nuclear systems

    International Nuclear Information System (INIS)

    Brack, M.

    1984-01-01

    We present semiclassical density variational calculations for highly excited nuclear systems. We employ the newly derived functionals tau[rho] and sigma[rho] of the extended Thomas-Fermi (ETF) model, generalized to finite temperatures. Excellent agreement is reached with Hartree-Fock (HF) results. We also calculated the fission barrier of 240 Pu as a function of the nuclear temperature

  7. Development of a coordinated control system for BWR nuclear power plant and HVDC transmission system

    International Nuclear Information System (INIS)

    Ishikawa, M.; Hara, T.; Hirayama, K.; Sekiya, K.

    1986-01-01

    The combined use of dc and ac transmissions or so-called hybrid transmission was under study, employing both dc and ac systems to enable stable transmission of 10,000 MW of electric power generated by the BWR nuclear plant, scheduled to be built about 800 km away from the center of the load. It was thus necessary to develop a hybrid power transmission control system, the hybrid power transmission system consisting of a high voltage dc transmission system (HVDC) and an ultrahigh ac transmission system (UHVAC). It was also necessary to develop a control system for HVDC transmission which protects the BWR nuclear power plant from being influenced by any change in transmission mode that occurs as a result of faults on the UHVAC side when the entire power of the BWR plant is being sent by the HVDC transmission. This paper clarifies the requirements for the HVDC system control during hybrid transmission and also during dc transmission. The control method that satisfies these requirements was studied to develop a control algorithm

  8. Using proliferation risk as a design metric in the development of nuclear systems

    International Nuclear Information System (INIS)

    Beard, C.; Lebouf, R.

    2001-01-01

    The necessity has arisen for newly proposed nuclear systems to be evaluated with regard to their potential aid to any proliferation. Thus, a mechanism is needed to introduce nonproliferation as a measure in the design phase of a new nuclear system. To accomplish this, a methodology for quantifying and measuring the proliferation risk of proposed system options is required. Such quantification has its difficulties due to inherent uncertainty, e.g. what is the probability that a quantity of material will be stolen in a given situation? Also, the lack of data on such occurrences makes the task of quantification nearly insurmountable. A systematic approach is necessary to estimate the proliferation risk. Currently, an advanced nuclear power system, the Accelerator Transmutation of Waste (ATW) program has been initiated to develop a system that will concurrently generate electricity while destroying long-lived radioactive isotopes. Therefore, because of the issues noted above, an effort to introduce proliferation risk into the design phase has been started. The purpose of this paper is to review previous work in quantification of proliferation risk in an effort to develop the proper basis for the current work. It should be noted that while proliferation on a national level has been studied extensively, efforts to quantify proliferation risk of individual nuclear systems or processes have been limited. Consequently, the available literature base is relatively sparse. (author)

  9. Using proliferation risk as a design metric in the development of nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Beard, C.; Lebouf, R. [Texas Univ., Austin, TX (United States). Nuclear Engineering Teaching Lab.

    2001-07-01

    The necessity has arisen for newly proposed nuclear systems to be evaluated with regard to their potential aid to any proliferation. Thus, a mechanism is needed to introduce nonproliferation as a measure in the design phase of a new nuclear system. To accomplish this, a methodology for quantifying and measuring the proliferation risk of proposed system options is required. Such quantification has its difficulties due to inherent uncertainty, e.g. what is the probability that a quantity of material will be stolen in a given situation? Also, the lack of data on such occurrences makes the task of quantification nearly insurmountable. A systematic approach is necessary to estimate the proliferation risk. Currently, an advanced nuclear power system, the Accelerator Transmutation of Waste (ATW) program has been initiated to develop a system that will concurrently generate electricity while destroying long-lived radioactive isotopes. Therefore, because of the issues noted above, an effort to introduce proliferation risk into the design phase has been started. The purpose of this paper is to review previous work in quantification of proliferation risk in an effort to develop the proper basis for the current work. It should be noted that while proliferation on a national level has been studied extensively, efforts to quantify proliferation risk of individual nuclear systems or processes have been limited. Consequently, the available literature base is relatively sparse. (author)

  10. Prototype of evaluation guidance system in Integrated Nuclear Data Evaluation System

    International Nuclear Information System (INIS)

    Fukahori, T.; Nakagawa, T.

    1992-01-01

    Integrated Nuclear Data Evaluation System (INDES) is being developed to keep experiences of nuclear data evaluation for JENDL-3 and to support new evaluations. One of the INDES functions is to set up input data of theoretical calculation codes automatically. In order to use INDES effectively, a prototype of nuclear data evaluation guidance system (E.T.; Evaluation Tutor) was made to help users in selecting a set of suitable theoretical calculation codes by applying knowledge engineering technology. E.T. consists of an inference engine, frames, a rule-base, two example-bases and calculating modules of certainty factors. The inference engine and the calculating modules are written in FORTRAN77. (author)

  11. Study on Korean Radiological Emergency System-Care System- and National Nuclear Emergency Preparedness System Development

    International Nuclear Information System (INIS)

    Akhmad Khusyairi; Yudi Pramono

    2008-01-01

    Care system; Radiological Emergency Supporting System. Environmental radiology level is the main aspect that should be concerned deal with the utilization of nuclear energy. The usage of informational technology in nuclear area gives significant contribution to anticipate and to protect human and environment. Since 1960, South Korea has developed environment monitoring system as the effort to protect the human and environment in the radiological emergency condition. Indonesia has possessed several nuclear installations and planned to build and operate nuclear power plants (PLTN) in the future. Therefore, Indonesia has to prepare the integrated system, technically enables to overcome the radiological emergency. Learning from the practice in South Korea, the system on the radiological emergency should be prepared and applied in Indonesia. However, the government regulation draft on National Radiological Emergency System, under construction, only touches the management aspect, not the technical matters. Consequently, when the regulation is implemented, it will need an additional regulation on technical aspect including the consideration on the system (TSS), the organization of operator and the preparation of human resources development of involved institution. For that purpose, BAPETEN should have a typical independence system in regulatory frame work. (author)

  12. Integrated spent nuclear fuel database system

    International Nuclear Information System (INIS)

    Henline, S.P.; Klingler, K.G.; Schierman, B.H.

    1994-01-01

    The Distributed Information Systems software Unit at the Idaho National Engineering Laboratory has designed and developed an Integrated Spent Nuclear Fuel Database System (ISNFDS), which maintains a computerized inventory of all US Department of Energy (DOE) spent nuclear fuel (SNF). Commercial SNF is not included in the ISNFDS unless it is owned or stored by DOE. The ISNFDS is an integrated, single data source containing accurate, traceable, and consistent data and provides extensive data for each fuel, extensive facility data for every facility, and numerous data reports and queries

  13. Nuclear facility safeguards systems modeling using discrete event simulation

    International Nuclear Information System (INIS)

    Engi, D.

    1977-01-01

    The threat of theft or dispersal of special nuclear material at a nuclear facility is treated by studying the temporal relationships between adversaries having authorized access to the facility (insiders) and safeguards system events by using a GASP IV discrete event simulation. The safeguards system events--detection, assessment, delay, communications, and neutralization--are modeled for the general insider adversary strategy which includes degradation of the safeguards system elements followed by an attempt to steal or disperse special nuclear material. The performance measure used in the analysis is the estimated probability of safeguards system success in countering the adversary based upon a predetermined set of adversary actions. An exemplary problem which includes generated results is presented for a hypothetical nuclear facility. The results illustrate representative information that could be utilized by safeguards decision-makers

  14. INPRO Methodology to evaluate the Mexico nuclear energy system

    International Nuclear Information System (INIS)

    Cruz S, R. R.; Martin del C, C.

    2016-09-01

    The International Atomic Energy Agency has developed the so-called International Project on Fuel Cycles and Innovative Nuclear Reactors (INPRO), in order to make nuclear energy available to meet the energy needs of the 21 century, in a sustainable way. One of the tasks of the project is the evaluation of the nuclear systems, to check whether they meet the objectives of the project and whether they are sustainable. This paper explains the rationale and general characteristics of the project in the evaluation of nuclear energy systems based on the concept of sustainable development. It describes the methodology developed to carry out this evaluation, divided into seven areas, such as economic, environmental, security, etc., which together make up the sustainable development of energy through nuclear systems. The economic area is analyzed and the evaluation criteria and parameters established by INPRO are discussed, in order to evaluate the Mexican nuclear energy system using Nest (software developed within the same project) as a tool to support the economic evaluation of nuclear systems. Based on the energy strategy proposed by the Energy Secretary of the Mexican Government which seeks to reduce the greenhouse gas emissions from the national electricity generation park, two types of reactor of currently available technology (A BWR and AP1000), were compared and these in turn with other alternative energy generation technologies, such as combined cycle, geothermal and wind plants. Also, the results of the application of the INPRO methodology are presented. Finally, the recommendations on actions that could lead the Mexican nuclear energy system towards sustainable development and conclusions on the application of the methodology to the Mexican case are mentioned. (Author)

  15. 11-th International conference Nuclear power safety and nuclear education - 2009. Abstracts. Part 1. Session: Safety of nuclear technology; Innovative nuclear systems and fuel cycle; Nuclear knowledge management

    International Nuclear Information System (INIS)

    2009-01-01

    The book includes abstracts of the 11-th International conference Nuclear power safety and nuclear education - 2009 (29 Sep - 2 Oct, 2009, Obninsk). Problems of safety of nuclear technology are discussed, innovative nuclear systems and fuel cycles are treated. Abstracts on professional education for nuclear power and industry are presented. Nuclear knowledge management are discussed

  16. Safety classification of nuclear power plant systems, structures and components

    International Nuclear Information System (INIS)

    1992-01-01

    The Safety Classification principles used for the systems, structures and components of a nuclear power plant are detailed in the guide. For classification, the nuclear power plant is divided into structural and operational units called systems. Every structure and component under control is included into some system. The Safety Classes are 1, 2 and 3 and the Class EYT (non-nuclear). Instructions how to assign each system, structure and component to an appropriate safety class are given in the guide. The guide applies to new nuclear power plants and to the safety classification of systems, structures and components designed for the refitting of old nuclear power plants. The classification principles and procedures applying to the classification document are also given

  17. Seismic attenuation system for a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liszkai, Tamas; Cadell, Seth

    2018-01-30

    A system for attenuating seismic forces includes a reactor pressure vessel containing nuclear fuel and a containment vessel that houses the reactor pressure vessel. Both the reactor pressure vessel and the containment vessel include a bottom head. Additionally, the system includes a base support to contact a support surface on which the containment vessel is positioned in a substantially vertical orientation. An attenuation device is located between the bottom head of the reactor pressure vessel and the bottom head of the containment vessel. Seismic forces that travel from the base support to the reactor pressure vessel via the containment vessel are attenuated by the attenuation device in a direction that is substantially lateral to the vertical orientation of the containment vessel.

  18. Productivity results of nuclear information systems

    International Nuclear Information System (INIS)

    Groves, J.E.

    1988-01-01

    The information necessary to manage a nuclear generation station and multiple stations is greater today than ever before. The management of the processes necessary to develop information from data requires professional management and a programmatic approach. The cost is not insignificant. But the cost of not facing this challenge squarely is greater. The San Onofre Nuclear Generation Plant has developed the Nuclear Information Services function to assist management and professionals at all levels with their information needs. Often, this is merely giving them the tools they need to do it themselves. Herein contains a selection of specific examples that urges officer and senior level management to review the concept of the Nuclear Information Services function in more depth to determine the appropriateness of such an approach within their organizations. The establishment of on line computerized systems for the majority of the work flow processes and administrative process has resulted in an estimate 190 less people needed. The Health Physics Automated Access Control System (AACS) implementation resulted in a savings of $800,000 a year. The implementation of a Site Procedures Information Network (SPIN) has saved $160,000 per year

  19. Design of an automatic control system of a district heating nuclear plant

    International Nuclear Information System (INIS)

    Zebiri, Abderrahim.

    1980-06-01

    This paper presents the synthesis of the control system of a nuclear/oil fuelled district heating plant. Operating criteria take into account the economical background of the problem. Nuclear reactor control loops were specially conceived, due to the specific perturbations to which is submitted a district heating plant [fr

  20. Security features of a nuclear material accounting system

    International Nuclear Information System (INIS)

    Erkkila, B.H.

    1988-01-01

    The Los Alamos Nuclear Material Accounting and Safeguards System (MASS) is a near-real-time accountability system for bulk materials, discrete items, and materials undergoing dynamic processing. MASS has evolved from a 80-column, card-based process control system to a very sophisticated computer system. Recently, the computer hardware was upgraded to a modern transaction oriented central computer system designed to accommodate extensive growth in the foreseeable future. The security of the MASS computer system is provided through various access controls. There are two kinds of access controls to be addressed. They are physical access control to the hardware which make up the system and access control to the software. There are many features which provide a measure of security to the hardware that are discussed. Access to the software is controlled by a security password. Access to various transaction activities in the system is controlled through the level of MASS under privilege. Details of MASS user privilege are discussed

  1. Safety assessment of a robotic system handling nuclear material

    International Nuclear Information System (INIS)

    Atcitty, C.B.; Robinson, D.G.

    1996-01-01

    This paper outlines the use of a Failure Modes and Effects Analysis for the safety assessment of a robotic system being developed at Sandia National Laboratories. The robotic system, The Weigh and Leak Check System, is to replace a manual process at the Department of Energy facility at Pantex by which nuclear material is inspected for weight and leakage. Failure Modes and Effects Analyses were completed for the robotics process to ensure that safety goals for the system had been meet. These analyses showed that the risks to people and the internal and external environment were acceptable

  2. Ventilation systems and components of nuclear power plants

    International Nuclear Information System (INIS)

    1997-01-01

    The most important radiation and nuclear safety requirements for the design and manufacture of nuclear power plant ventilation systems and components are presented in the guide. Also the regulatory activities of the Finnish Centre for Radiation and Nuclear Safety (STUK) as regards the ventilation systems and components are explained. Documents and data which shall be submitted to STUK during the various phases of the regulatory procedure relating to the design, construction, commissioning and operation of the nuclear power plants are presented. (13 refs.)

  3. A short history of the CANDU nuclear power system

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, G L

    1993-04-01

    This paper provides a short historical summary of the evolution of the CANDU nuclear power system with emphasis on the roles played by Ontario Hydro and private sector companies in Ontario in collaboration with Atomic Energy of Canada Limited (AECL). (author). 1 fig., 61 refs.

  4. A short history of the CANDU nuclear power system

    International Nuclear Information System (INIS)

    Brooks, G.L.

    1993-04-01

    This paper provides a short historical summary of the evolution of the CANDU nuclear power system with emphasis on the roles played by Ontario Hydro and private sector companies in Ontario in collaboration with Atomic Energy of Canada Limited (AECL). (author). 1 fig., 61 refs

  5. Increasing the effectiveness of the physical protection system on a nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, Antonio C.A.; Conti, Thadeu N., E-mail: acavaz@ipen.br, E-mail: tnconti@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    The malicious use of radioactive material could be devastating, particularly in the case of a nuclear explosive device, it could be unpredictably disruptive resulting in the dispersal of radioactive material, like it was in the Fukushima Daiichi Nuclear Power Plant disaster. Physical Protection System (PPS) plays an important role in ensuring that individuals, organizations and institutions remain vigilant and that sustained measures are taken to prevent and combat the threat of sabotage or of using radioactive material for malicious acts. PPS is an integrated system of people, equipment and procedures used to protect nuclear facilities and radioactive sources against threat, theft or sabotage. In the operator's perspective, this paper study factors influencing the performance of a PPS in a nuclear facility suggesting ways to increase the system effectiveness. The human factor, the physical and the psychological work environment has a large impact on how personnel perform their work and comply with nuclear security requirements. Apathy and corporatism are two human behaviors that collaborate negatively and make decrease the effectiveness of any PPS. Job satisfaction reduces the probability that personnel will become less reliable and/or obstructive in extreme cases an insider threat. Managers must recognize individual and group needs and the relationship among personnel so that they may motivate personnel by creating a supportive working environment that reduces workplace stress. An effective PPS can result in a significant increase in the effectiveness of the security of radioactive material and associated facilities. (author)

  6. Increasing the effectiveness of the physical protection system on a nuclear facility

    International Nuclear Information System (INIS)

    Vaz, Antonio C.A.; Conti, Thadeu N.

    2017-01-01

    The malicious use of radioactive material could be devastating, particularly in the case of a nuclear explosive device, it could be unpredictably disruptive resulting in the dispersal of radioactive material, like it was in the Fukushima Daiichi Nuclear Power Plant disaster. Physical Protection System (PPS) plays an important role in ensuring that individuals, organizations and institutions remain vigilant and that sustained measures are taken to prevent and combat the threat of sabotage or of using radioactive material for malicious acts. PPS is an integrated system of people, equipment and procedures used to protect nuclear facilities and radioactive sources against threat, theft or sabotage. In the operator's perspective, this paper study factors influencing the performance of a PPS in a nuclear facility suggesting ways to increase the system effectiveness. The human factor, the physical and the psychological work environment has a large impact on how personnel perform their work and comply with nuclear security requirements. Apathy and corporatism are two human behaviors that collaborate negatively and make decrease the effectiveness of any PPS. Job satisfaction reduces the probability that personnel will become less reliable and/or obstructive in extreme cases an insider threat. Managers must recognize individual and group needs and the relationship among personnel so that they may motivate personnel by creating a supportive working environment that reduces workplace stress. An effective PPS can result in a significant increase in the effectiveness of the security of radioactive material and associated facilities. (author)

  7. Experiences from maintaining the reliability of a nuclear standby diesel generator system

    International Nuclear Information System (INIS)

    Tammi, P.

    1982-01-01

    The nuclear standby diesel generator system is quite complicated comprising several mechanical and electrotechnical components, on which the reliability of the system is depending. It is an important support system of the plant safety system, and like the safety system it is composed of separate redundant units. The Loviisa nuclear power station has eight diesel generators. The first four of them were taken into operation in 1976. When the frequency of some mechanical failures showed increase, a project was started at the end of 1980 with the intention to find out potential failure possibilities and means for prevention of failures. The work has been mainly concentrated on improving the reliability of the diesel engines. (Auth.)

  8. Transactions of the fifth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  9. Design of a quality assurance system in the nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Garcia Rojas Palacios, L.

    1992-01-01

    A)For the first time a project on nuclear fuel fabrication is going to be lead in this country. For this reason the work is oriented to establish a quality assurance system for the different stages of fuel fabrication. C) The work of this thesis was developed first by means of an analysis of quality philosophies of Deming, Ishikawa, Juran and Crosby from which several important points were stracted to be used in the designed quality system. Metrology and normalization are so important for quality control that a study of them is made considering definitions, unit systems and type of errors (for Metrology) as well as standards for quality systems, qualification, destructive and non destructive tests, shipment, packing for nuclear power plants. With the standards as a basis, the working strategy for the system was reached, as well as the design of control cards and the design of documents for inspection control, personnel and its documentation and finally the diagrams for each one of the fabrication stages

  10. Establishment of nuclear knowledge and information infrastructure; establishment of web-based database system for nuclear events

    Energy Technology Data Exchange (ETDEWEB)

    Park, W. J.; Kim, K. J. [Korea Atomic Energy Research Institute , Taejeon (Korea); Lee, S. H. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2001-05-01

    Nuclear events data reported by nuclear power plants are useful to prevent nuclear accidents at the power plant by examine the cause of initiating events and removal of weak points in the aspects of operational safety, and to improve nuclear safety in design and operation stages by backfitting operational experiences and practices 'Nuclear Event Evaluation Database : NEED' system distributed by CD-ROM media are upgraded to the NEED-Web (Web-based Nuclear Event Evaluation Database) version to manage event data using database system on network basis and the event data and the statistics are provided to the authorized users in the Nuclear Portal Site and publics through Internet Web services. The efforts to establish the NEED-Web system will improve the integrity of events data occurred in Korean nuclear power plant and the usability of data services, and enhance the confidence building and the transparency to the public in nuclear safety. 11 refs., 27 figs. (Author)

  11. Development of nuclear power plants database system, (2)

    International Nuclear Information System (INIS)

    Izumi, Fumio; Ichikawa, Michio

    1984-06-01

    A nuclear power plant data base system has been developed. The data base involves a large amount of safety design informations for nuclear power plants on operating and planning stage in Japan. The informations, if necessary, can be searched for at high speed by use of this system. The present report is an user's guide for access to the informations utilizing display unit of the JAERI computer network system. (author)

  12. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Ho Dong; Kim, Sung Ki; Song, Kee Chan

    2010-04-01

    This report is aims to establish design requirements for constructing mock-up system of pyroprocess by 2011 to realize long-term goal of nuclear energy promotion comprehensive plan, which is construction of engineering scale pyroprocess integrated process demonstration facility. The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The detailed contents of research for these are as follows; - Design of Mock-up facility for demonstrate pyroprocess, Construction, Approval, Trial run, Performance test - Development of nuclear material accountancy technology for unit processes of pyroprocess and design of safeguards system - Remote operation of demonstrating pyroprocess / Development of maintenance technology and equipment - Establishment of transportation system and evaluation of pre-safety for interim storage system - Deriving and implementation of a method to improve nuclear transparency for commercialization proliferation resistance nuclear fuel cycle Spent fuel which is the most important pending problem of nuclear power development would be reduced and recycled by developing the system engineering technology of pyroprocess facility by 2010. This technology would contribute to obtain JD for the use of spent fuel between the ROK-US and to amend the ROK-US Atomic Energy Agreement scheduled in 2014

  13. Brief introduction of nuclear power plant emergency system EmInfoSys

    International Nuclear Information System (INIS)

    Xiao Yuhua; Zhao Zhigang

    2014-01-01

    Nuclear safety is the lifeline of nuclear energy and nuclear technology, nuclear accident emergency response is the last line of nuclear security defense, and is one of the important measures to ensure the healthy development of the nuclear energy safety. The establishment of complete function, sensitive reaction and efficient emergency management system for operation of nuclear and radiation accidents is an important task of nuclear security. From 2001 China Techenergy Co., Ltd. participated in the Qinshan, Tianwan, Ministry of Environmental Protection, Haiyang, Taishan, Fangchenggang, Sanmen, etc. nuclear emergency projects, and the nuclear emergency EmInfoSys (emergency management information system) platform was developed with independent intellectual property rights. A brief introduction about EmInfoSys system was performed in this paper. (authors)

  14. The ''Nuclear-Karlsruhe'' air-filter system

    International Nuclear Information System (INIS)

    Berliner, P.; Ohlmeyer, M.; Stotz, W.

    1976-01-01

    Increasing requirements for exhaust-air filter systems used in nuclear facilities induced the Gesellschaft fuer Kernforschung to develop the ''Nuclear-Karlsruhe'' HEPA filter system. This novel development has profited by experience gained in previous incidents as well as by maitenance and decontamination work performed with different HEPA filter systems. The proved ''Nuclear-Karlsruhe'' system takes equally into account the demands for optimum safety, maximum efficiency and economy, and is distinguished by the following features: (1) The air current is defected by 180 0 in the casing. Deflection causes quite a number of improvements, results in substantial reduction of space requirements, and avoids the dispersion of pollutants to the clean-air side. Besides, the HEPA filter is protected from damage by condensed particles or foreign materials entrained; (2) The ''Nuclear-Karlsruhe'' system allows gas-tight filter replacement. Special replacement collars have been provided at the casing, which allow the tight fastening of replacement bags which are self-locking. (3) In-place testing in the operating condition can be carried out very conveniently because the air is deflected. Minimum leaks in the filter medium or in the filter gasket can be detected by the high-sensitivity visual oil-thread test, which makes leaks distinctly visible as oil mist threads through a transparent front window provided on the clean-air side. The test takes only some minutes and its sensitivity is hardly matched by any other technique. (4) The clamping mechanism is installed outside the casing, i.e. outside the polluted or aggressive media. The contact force is spring-loaded absolutely uniformly to the circular filter gasket. (5) For practical and econmic reasons the filter casings can be locked individually so as to be gas-tight. (6) The entire system is made of stainless or coated steel and metal parts which are corrosion and fire-resistant. (author)

  15. System for chemical decontamination of nuclear reactor primary systems

    International Nuclear Information System (INIS)

    Schlonski, J.S.; McGiure, M.F.; Corpora, G.J.

    1992-01-01

    This patent describes a method of chemically decontaminating a nuclear reactor primary system, having a residual heat removal system with one or more residual heat removal heat exchangers, each having an upstream and a downstream side, at or above ambient pressure. It comprises: injecting decontamination chemicals using an injection means; circulating the injected decontamination chemicals throughout the primary system; directing the circulated decontamination chemicals and process fluids to a means for removing suspended solids and dissolved materials after the circulated chemicals and process fluids have passed through the residual heat removal heat exchanger; decontaminating the process fluids; and feeding the decontaminated process fluids to the injection means. This patent also describes a chemical decontamination system for use at, or above, ambient pressure in a nuclear reactor primary system having a residual heat removal system. It comprises: means for injecting decontamination chemicals into the primary system; means for removing dissolved and suspended materials and decontamination chemicals from the primary system; one or more residual heat removal pumps; means located downstream of one of the residual heat removal heat exchangers; and a return line connecting the means

  16. Chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Nagasawa, Katsumi; Maeda, Katsuji

    1998-01-01

    Recently, the chemistry management in the nuclear power plants has been changing from the problem solution to the predictive diagnosis and maintenance. It is important to maintain the integrity of plant operation by an adequate chemistry control. For these reasons, many plant operation data and chemistry analysis data should be collected and treated effectively to evaluate chemistry condition of the nuclear power plants. When some indications of chemistry anomalies occur, quick and effective root cause evaluation and countermeasures should be required. The chemistry management system has been developed as to provide sophisticate chemistry management in the nuclear power plants. This paper introduces the concept and functions of the chemistry management system for the nuclear power plants. (author)

  17. Nuclear Medicine National Headquarter System

    Data.gov (United States)

    Department of Veterans Affairs — The Nuclear Medicine National HQ System database is a series of MS Excel spreadsheets and Access Database Tables by fiscal year. They consist of information from all...

  18. Intelligent systems and soft computing for nuclear science and industry

    International Nuclear Information System (INIS)

    Ruan, D.; D'hondt, P.; Govaerts, P.; Kerre, E.E.

    1996-01-01

    The second international workshop on Fuzzy Logic and Intelligent Technologies in Nuclear Science (FLINS) addresses topics related to intelligent systems and soft computing for nuclear science and industry. The proceedings contain 52 papers in different fields such as radiation protection, nuclear safety (human factors and reliability), safeguards, nuclear reactor control, production processes in the fuel cycle, dismantling, waste and disposal, decision making, and nuclear reactor control. A clear link is made between theory and applications of fuzzy logic such as neural networks, expert systems, robotics, man-machine interfaces, and decision-support techniques by using modern and advanced technologies and tools. The papers are grouped in three sections. The first section (Soft computing techniques) deals with basic tools to treat fuzzy logic, neural networks, genetic algorithms, decision-making, and software used for general soft-computing aspects. The second section (Intelligent engineering systems) includes contributions on engineering problems such as knowledge-based engineering, expert systems, process control integration, diagnosis, measurements, and interpretation by soft computing. The third section (Nuclear applications) focusses on the application of soft computing and intelligent systems in nuclear science and industry

  19. Computer-based control systems of nuclear power plants

    International Nuclear Information System (INIS)

    Kalashnikov, V.K.; Shugam, R.A.; Ol'shevsky, Yu.N.

    1975-01-01

    Computer-based control systems of nuclear power plants may be classified into those using computers for data acquisition only, those using computers for data acquisition and data processing, and those using computers for process control. In the present paper a brief review is given of the functions the systems above mentioned perform, their applications in different nuclear power plants, and some of their characteristics. The trend towards hierarchic systems using control computers with reserves already becomes clear when consideration is made of the control systems applied in the Canadian nuclear power plants that pertain to the first ones equipped with process computers. The control system being now under development for the large Soviet reactors of WWER type will also be based on the use of control computers. That part of the system concerned with controlling the reactor assembly is described in detail

  20. Assessing nuclear power plant safety and recovery from earthquakes using a system-of-systems approach

    International Nuclear Information System (INIS)

    Ferrario, E.; Zio, E.

    2014-01-01

    We adopt asystem-of-systems’ framework of analysis, previously presented by the authors, to include the interdependent infrastructures which support a critical plant in the study of its safety with respect to the occurrence of an earthquake. We extend the framework to consider the recovery of the system of systems in which the plant is embedded. As a test system, we consider the impacts produced on a nuclear power plant (the critical plant) embedded in the connected power and water distribution, and transportation networks which support its operation. The Seismic Probabilistic Risk Assessment of such system of systems is carried out by Hierarchical modeling and Monte Carlo simulation. First, we perform a top-down analysis through a hierarchical model to identify the elements that at each level have most influence in restoring safety, adopting the criticality importance measure as a quantitative indicator. Then, we evaluate by Monte Carlo simulation the probability that the nuclear power plant enters in an unsafe state and the time needed to recover its safety. The results obtained allow the identification of those elements most critical for the safety and recovery of the nuclear power plant; this is relevant for determining improvements of their structural/functional responses and supporting the decision-making process on safety critical-issues. On the test system considered, under the given assumptions, the components of the external and internal water systems (i.e., pumps and pool) turn out to be the most critical for the safety and recovery of the plant. - Highlights: • We adopt a system-of-system framework to analyze the safety of a critical plant exposed to risk from external events, considering also the interdependent infrastructures that support the plant. • We develop a hierarchical modeling framework to represent the system of systems, accounting also for its recovery. • Monte Carlo simulation is used for the quantitative evaluation of the

  1. A CAMAC-VME-Macintosh data acquisition system for nuclear experiments

    Science.gov (United States)

    Anzalone, A.; Giustolisi, F.

    1989-10-01

    A multiprocessor system for data acquisition and analysis in low-energy nuclear physics has been realized. The system is built around CAMAC, the VMEbus, and the Macintosh PC. Multiprocessor software has been developed, using RTF, MACsys, and CERN cross-software. The execution of several programs that run on several VME CPUs and on an external PC is coordinated by a mailbox protocol. No operating system is used on the VME CPUs. The hardware, software, and system performance are described.

  2. Training programs for the systems approach to nuclear security

    International Nuclear Information System (INIS)

    Ellis, Doris E.

    2005-01-01

    In support of the US Government and the International Atomic Energy Agency (IAEA) Nuclear Security Programmes, Sandia National Laboratories (SNL) has advocated and practiced a risk-based, systematic approach to nuclear security. The risk equation has been implemented as the basis for a performance methodology for the design and evaluation of Physical Protection Systems against a Design Basis Threat (DBT) for theft or sabotage of nuclear and/or radiological materials. Since integrated systems must include people as well as technology and the man-machine interface, a critical aspect of the human element is to train all stakeholders in nuclear security on the systems approach. Current training courses have been beneficial but are still limited in scope. SNL has developed two primary international courses and is completing development of three new courses that will be offered and presented in the near term. In the long-term, SNL envisions establishing a comprehensive nuclear security training curriculum that will be developed along with a series of forthcoming IAEA Nuclear Security Series guidance documents.

  3. Review of nuclear power plant systems

    International Nuclear Information System (INIS)

    Doehler

    1980-01-01

    This presentation starts with a brief description of the Technischer Ueberwachungs-Verein (TUeV) and its main activities in the field of technical assessments. The TUeV-organisation is in general the assessor who performs the review if nuclear power plant systems, structures and equipment. All aspects relating to the safe operation of nuclear power plants are assessed by the TUeV. This paper stresses the review of the design of nuclear power plant systems and structures. It gives an outline on the procedure of an assessment, starting with the regulatory requirements, going into the papers of the applicant and finally ending with the TUeV-appraisal. This procedure is shown using settlement measuring requirements as an example. The review of the design of mechanical structures such as pipes, valves, pump and vessels is shown in detail. (RW)

  4. A study on the proliferation resistance evaluation methodology for nuclear energy system

    International Nuclear Information System (INIS)

    Kim, Min Su

    2007-02-01

    The framework of proliferation resistance evaluation methodology, based on attribute analysis and scenario analysis, for nuclear energy system is suggested in order to allow for the comprehensive assessment of proliferation resistance by addressing the intrinsic and extrinsic features of nuclear energy system. Proliferation resistance is viewed within the context of the success tree model of proliferator's diversion attempt and expressed by the value of top event probability of the success tree model. This study focused on the method that the value of top event is estimated. The methodology uses two different methods to quantify the likelihood of basic events constituting the top event. The likelihood of basic event success affected by intrinsic feature of nuclear energy system was assessed by using multi-attribute utility theory and likelihood of basic event related to the diversion detection measures was assessed by direct expert elicitation. The value of top event was calculated based on the intersection of probabilities of basic event success. Feasibility of the methodology was explored by applying it to selected reference nuclear energy systems. System-Integrated Modular Advanced Reactor (SMART) system and Light Water Reactor (LWR) were chosen as reference systems and the value proliferation resistance of SMART and LWR were evaluated. Characteristics of inherent features and hypothesized safeguards measures of both systems were identified and used as input data to evaluate proliferation resistance. The results and conclusions are applicable only within the context of subjectivity of this methodology

  5. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond L

    1993-01-01

    This expanded, revised, and updated fourth edition of Nuclear Energy maintains the tradition of providing clear and comprehensive coverage of all aspects of the subject, with emphasis on the explanation of trends and developments. As in earlier editions, the book is divided into three parts that achieve a natural flow of ideas: Basic Concepts, including the fundamentals of energy, particle interactions, fission, and fusion; Nuclear Systems, including accelerators, isotope separators, detectors, and nuclear reactors; and Nuclear Energy and Man, covering the many applications of radionuclides, r

  6. Transactions of the fourth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  7. The electron-nuclear spin system in (In,Ga)As quantum dots

    International Nuclear Information System (INIS)

    Auer, Thomas

    2008-01-01

    For a long time, the nuclear spins in quantum dots were virtually ignored. It was thought that the interaction strength was so small that the interaction between the nuclei and electrons could only be observed under very specific optical pumping conditions. Then, in the pursuit of long living electron spins as a building block for quantum information storage and processing, their destructive action on the lifetime of the electron spin became apparent. The nuclear spin system increasingly gained the attention of the quantum dot community. It seemed that the randomly oriented, fluctuating nuclear spins can only be counteracted by strong magnetic fields suppressing the depolarising effect of the random nuclear spin fluctuation fields on a single electron spin. Gradually, however, the work done thirty years before on the electron-nuclear spin system in bulk semiconductors attracted the notice of scientists again. Some of the old experiments could be performed with quantum dots as well. It could be shown that the nuclear spins in quantum dots may well be polarised by optical orientation and that their action is not always destructive at all. The nuclear spins in quantum dots are increasingly used in order to create and tailor a specific environment for a single electron in a quantum dot. In this way quantum dots contain their own ''nuclear nanomagnet''. This might be the future of the studies on the electron-nuclear spin system. The aim of this work is to shed some more light on the complex interdependent system formed of an electron spin and the nuclear spin ensemble in quantum dots. The effects are manifold, often unexpected, sometimes miraculous. Nevertheless, I believe that this work is another tiny step towards the understanding of this challenging system. I have shown that the randomly polarised nuclear spin system always affects the electron spin of a single electron in quantum dots. Further we have seen, however, that the nuclear spin system can easily be

  8. Radiation Detection System for Prevention of Radiological and Nuclear Terrorism

    International Nuclear Information System (INIS)

    Kwak, Sung-Woo; Yoo, Ho-Sik; Jang, Sung-Sun; Kim, Jae-Kwang; Kim, Jung-Soo

    2007-01-01

    After the September 11 terrorist attack, the threat of a potential for a radiological or nuclear terrorist attack became more apparent. The threats relating to radiological or nuclear materials include a Radiological Dispersion Device (RDD), an Improved Nuclear Device (IND) or a State Nuclear Device (such as a Soviet manufactured suitcase nuclear weapon). For more effective countermeasures against the disaster, multilayer protection concept - prevention of smuggling of radioactive or nuclear material into our country through seaports or airports, detection and prevention of the threat materials in transit on a road, and prevention of their entry into a target building - is recommended. Due to different surrounding circumstances of where detection system is deployed, different types of radiation detection systems are required. There have been no studies on characteristics of detection equipment required under Korean specific conditions. This paper provides information on technical requirements of radiation detection system to achieve multi-layer countermeasures for the purpose of protecting the public and environment against radiological and nuclear terrorism

  9. Nuclear space power systems for orbit raising and maneuvering

    International Nuclear Information System (INIS)

    Buden, D.; Sullivan, J.A.

    1984-01-01

    Reference is made to recent studies which have shown that direct thrust nuclear rockets for routine orbit raising and near-earth space tug missions are probably not cost-effective. The need for additional trade-off studies and comparisons of direct-thrust nuclear systems with chemical systems to clarify the role of nuclear rockets in missions requiring rapid orbit maneuvering is stressed. Attention is confined here to nuclear electric propulsion considerations. Low-mass nuclear power plants are constructed to optimize nuclear electric propulsion systems. Electric power levels from 100 kilowatts to as much as several megawatts are desirable. The goals for the power plant specific mass are 20-30 kg/kW at the lower powers to 2-4 kg/kW at the higher powers

  10. Investigation of human system interface design in nuclear power plant

    International Nuclear Information System (INIS)

    Feng Yan; Zhang Yunbo; Wang Zhongqiu

    2012-01-01

    The paper introduces the importance of HFE in designing nuclear power plant, and introduces briefly the content and scope of HFE, discusses human system interface design of new built nuclear power plants. This paper also describes human system interface design of foreign nuclear power plant, and describes in detail human system interface design of domestic nuclear power plant. (authors)

  11. Rodded shutdown system for a nuclear reactor

    International Nuclear Information System (INIS)

    Golden, M.P.; Govi, A.R.

    1978-01-01

    A top mounted nuclear reactor diverse rodded shutdown system utilizing gas fed into a pressure bearing bellows region sealed at the upper extremity to an armature is described. The armature is attached to a neutron absorber assembly by a series of shafts and connecting means. The armature is held in an uppermost position by an electromagnet assembly or by pressurized gas in a second embodiment. Deenergizing the electromagnet assembly, or venting the pressurized gas, causes the armature to fall by the force of gravity, thereby lowering the attached absorber assembly into the reactor core

  12. Poison and diluent system for nuclear power plants

    International Nuclear Information System (INIS)

    Parker, W.G.; Ravets, J.M.; Preble, B.S.

    1978-01-01

    A system to prevent supercriticality in nuclear power plants in the unlikely event of a core destructive accident terminating in the nuclear core meltdown is described. The system dilutes and poisons the molten core to maintain subcriticality, and is useful in mobile nuclear power plants, or in nuclear plants subject to seismic disturbances, where the orientation of the nuclear reactor after the accident is unknown. It is also applicable to alleviate the consequences of loss of coolant flow accidents from any cause. Aside from preventing supercriticality, the system serves the dual purpose of acting as a biological shield and/or structural member that reduces the deleterious effects of accidental core impaction, without compromising power plant weight and size constraints. A borated material, with a melting point greater than the fuel melting point, is inserted in the pressure vessel behind an inner wall. In the unlikely event of a core meltdown, the molten fuel melts through the inner wall and is diluted and poisoned by the borated material. In the event the molten fuel melts through the pressure vessel, additional borated material is provided to continue diluting and poisoning

  13. Nuclear-power-safety reporting system: feasibility analysis

    International Nuclear Information System (INIS)

    Finlayson, F.C.; Ims, J.

    1983-04-01

    The US Nuclear Regulatory Commission (NRC) is evaluating the possibility of instituting a data gathering system for identifying and quantifying the factors that contribute to the occurrence of significant safety problems involving humans in nuclear power plants. This report presents the results of a brief (6 months) study of the feasibility of developing a voluntary, nonpunitive Nuclear Power Safety Reporting System (NPSRS). Reports collected by the system would be used to create a data base for documenting, analyzing and assessing the significance of the incidents. Results of The Aerospace Corporation study are presented in two volumes. This document, Volume I, contains a summary of an assessment of the Aviation Safety Reporting System (ASRS). The FAA-sponsored, NASA-managed ASRS was found to be successful, relatively low in cost, generally acceptable to all facets of the aviation community, and the source of much useful data and valuable reports on human factor problems in the nation's airways. Several significant ASRS features were found to be pertinent and applicable for adoption into a NPSRS

  14. Modelling adversary actions against a nuclear material accounting system

    International Nuclear Information System (INIS)

    Lim, J.J.; Huebel, J.G.

    1979-01-01

    A typical nuclear material accounting system employing double-entry bookkeeping is described. A logic diagram is used to model the interactions of the accounting system and the adversary when he attempts to thwart it. Boolean equations are derived from the logic diagram; solution of these equations yields the accounts and records through which the adversary may disguise a SSNM theft and the collusion requirements needed to accomplish this feat. Some technical highlights of the logic diagram are also discussed

  15. The development of a nuclear accident risk information system(NARIS)

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Jung, Won Dea

    2001-03-01

    The computerized system, NARIS(Nuclear Accident Risk Information System) was developed in order to support the estimation of health effects and the establishment the effective risk reduction strategies. Using the system, we can analyze the distribution of health effects easily by displaying the results on the digital map of the site. Also, the thematic mapping allows the diverse analysis of the distribution of the health effects.The NARIS can be used in the emergency operation facilities in order to analyze the distribution of the health effects resulting from the severe accidents of a nuclear power plant. Also, the rapid analysis of the health effect is possible by storing the health effect results in the form of a database. Therefore, the staffs of the emergency operation facilities can establish the rapid and effective emergency response strategies. The module for the optimization of the costs and benefits and the decision making support will be added. The technical support for the establishment of the optimum and effective emergency response strategies will be possible using this system.

  16. The development of a nuclear accident risk information system(NARIS)

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Jung, Won Dea [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-03-01

    The computerized system, NARIS(Nuclear Accident Risk Information System) was developed in order to support the estimation of health effects and the establishment the effective risk reduction strategies. Using the system, we can analyze the distribution of health effects easily by displaying the results on the digital map of the site. Also, the thematic mapping allows the diverse analysis of the distribution of the health effects.The NARIS can be used in the emergency operation facilities in order to analyze the distribution of the health effects resulting from the severe accidents of a nuclear power plant. Also, the rapid analysis of the health effect is possible by storing the health effect results in the form of a database. Therefore, the staffs of the emergency operation facilities can establish the rapid and effective emergency response strategies. The module for the optimization of the costs and benefits and the decision making support will be added. The technical support for the establishment of the optimum and effective emergency response strategies will be possible using this system. 23 figs., 1 tab. (Author)

  17. The development of a nuclear accident risk information system(NARIS)

    International Nuclear Information System (INIS)

    Jeong, Jong Tae; Jung, Won Dea

    2001-03-01

    The computerized system, NARIS(Nuclear Accident Risk Information System) was developed in order to support the estimation of health effects and the establishment the effective risk reduction strategies. Using the system, we can analyze the distribution of health effects easily by displaying the results on the digital map of the site. Also, the thematic mapping allows the diverse analysis of the distribution of the health effects.The NARIS can be used in the emergency operation facilities in order to analyze the distribution of the health effects resulting from the severe accidents of a nuclear power plant. Also, the rapid analysis of the health effect is possible by storing the health effect results in the form of a database. Therefore, the staffs of the emergency operation facilities can establish the rapid and effective emergency response strategies. The module for the optimization of the costs and benefits and the decision making support will be added. The technical support for the establishment of the optimum and effective emergency response strategies will be possible using this system

  18. Characterizing noise in the global nuclear weapon monitoring system

    Science.gov (United States)

    Schultz, Colin

    2013-03-01

    Under the auspices of the Comprehensive Nuclear-Test-Ban Treaty Organization, a worldwide monitoring system designed to detect the illegal testing of nuclear weaponry has been under construction since 1999. The International Monitoring System is composed of a range of sensors, including detectors for hydroacoustic and seismic signals, and when completed, will include 60 infrasound measurement arrays set to detect low-frequency sound waves produced by an atmospheric nuclear detonation.

  19. Development of a web-based fatigue life evaluation system for primary components in a nuclear power plant

    International Nuclear Information System (INIS)

    Seo, Hyong Won; Lee, Sang Min; Choi, Jae Boong; Kim, Young Jin; Choi, Sung Nam; Jang, Ki Sang; Hong, Sung Yull

    2004-01-01

    A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including regular in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage the integrity issues on a nuclear power plant. In this paper, a web-based fatigue life evaluation system for primary components in nuclear power plant is proposed. This system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant

  20. Nuclear Systems (NS): Technology Demonstration Unit (TDU)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nuclear Systems Project demonstrates nuclear power technology readiness to support the goals of NASA's Space Technology Mission Directorate. To this end, the...

  1. Study of nuclear computer code maintenance and management system

    International Nuclear Information System (INIS)

    Ryu, Chang Mo; Kim, Yeon Seung; Eom, Heung Seop; Lee, Jong Bok; Kim, Ho Joon; Choi, Young Gil; Kim, Ko Ryeo

    1989-01-01

    Software maintenance is one of the most important problems since late 1970's.We wish to develop a nuclear computer code system to maintenance and manage KAERI's nuclear software. As a part of this system, we have developed three code management programs for use on CYBER and PC systems. They are used in systematic management of computer code in KAERI. The first program is embodied on the CYBER system to rapidly provide information on nuclear codes to the users. The second and the third programs were embodied on the PC system for the code manager and for the management of data in korean language, respectively. In the requirement analysis, we defined each code, magnetic tape, manual and abstract information data. In the conceptual design, we designed retrieval, update, and output functions. In the implementation design, we described the technical considerations of database programs, utilities, and directions for the use of databases. As a result of this research, we compiled the status of nuclear computer codes which belonged KAERI until September, 1988. Thus, by using these three database programs, we could provide the nuclear computer code information to the users more rapidly. (Author)

  2. Basic components of a national control system for nuclear materials

    International Nuclear Information System (INIS)

    Rabot, G.

    1986-01-01

    The paper presents the different aspects related to the organization and the functioning of a national control and accounting system for nuclear materials. The legal aspects and the relations with the IAEA are included

  3. Technical features to enhance proliferation resistance of nuclear energy systems

    International Nuclear Information System (INIS)

    2010-01-01

    It is generally accepted that proliferation resistance is an essential issue for the continued development and sustainability of nuclear energy. Several comprehensive assessment activities on the proliferation resistance of the nuclear fuel cycle have previously been completed, notably the International Nuclear Fuel Cycle Evaluation (INFCE) carried out under the auspices of the IAEA, and the Non-proliferation Alternative Systems Assessment Program (NASAP) review carried out by the USA. There have been, however, relatively few comprehensive treatments of the issue following these efforts in the 1970s. However, interest in and concern about this issue have increased recently, particularly because of greater interest in innovative nuclear fuel cycles and systems. In 2000, the IAEA initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) and the US Department of Energy initiated the Generation IV International Forum (GIF). These projects are aimed at the selection and development of concepts of innovative nuclear energy systems and fuel cycles. Proliferation resistance is one of the fundamental considerations for both projects. In this context, the IAEA in 2001 initiated a study entitled 'Technical Aspects of Increasing Proliferation Resistance of the Nuclear Fuel Cycle'. This task is not intended as an effort to assess the merits of a particular fuel cycle system for the future, but to describe a qualitative framework for an examination of the proliferation resistance provided by the intrinsic features of an innovative nuclear energy system and fuel cycle. This task also seeks to provide a high level survey of a variety of innovative nuclear energy systems and fuel cycles with respect to that framework. The concept of proliferation resistance is considered in terms of intrinsic features and extrinsic measures. The intrinsic features, sometimes referred to as the physical/technical aspects, are those features that result from the

  4. performance-based approach to design and evaluation of nuclear security systems for Brazilian nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Renato L. A.; Filho, Josélio S. M., E-mail: renato.tavares@cnen.gov.br, E-mail: joselio@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Diretoria de Radioproteção e Segurança Nuclear. Divisão de Normas e Segurança Física; Fontes, Gladson S.; Fiel, J.C.B., E-mail: gsfontes@hotmail.com, E-mail: fiel@ime.eb.br [Instituto Militar de Engenharia (SE-7/IME), Rio de Janeiro, RJ (Brazil). Seção de Engenharia Nuclear

    2017-07-01

    This study presents an application of a performance-based approach to definition of requirements, design and evaluation of physical protection systems for nuclear facilities. Such approach considers a probabilistic analysis of the threat, equipment, systems and response forces used to prevent, dissuade and detain malicious acts against the integrity of facilities and the nuclear materials inside them. Nowadays, in the context of Brazilian nuclear facilities licensing, a mostly prescriptive approach is adopted, which despite having advantages such as simplified inspections and homogeneous regulatory requisites amid different fuel cycle facility types, does not consider evolution, dynamism and capacities of external or internal threats to facilities and to Brazilian Nuclear Program itself, neither provides metrics to evaluate system performance facing such threats. In order to preserve actual plans and systems confidentiality, a facility hypothetical model is created, including a research reactor and a waste storage facility. It is expected that the methodology and results obtained in this study serve in the future as a basis to Brazilian nuclear operators, in elaboration process of their Physical Protection Plans, which must comply with future regulation CNEN-NN 2.01, a revision of CNEN-NE 2.01, once that regulation will include performance requisites. (author)

  5. performance-based approach to design and evaluation of nuclear security systems for Brazilian nuclear facilities

    International Nuclear Information System (INIS)

    Tavares, Renato L. A.; Filho, Josélio S. M.; Fontes, Gladson S.; Fiel, J.C.B.

    2017-01-01

    This study presents an application of a performance-based approach to definition of requirements, design and evaluation of physical protection systems for nuclear facilities. Such approach considers a probabilistic analysis of the threat, equipment, systems and response forces used to prevent, dissuade and detain malicious acts against the integrity of facilities and the nuclear materials inside them. Nowadays, in the context of Brazilian nuclear facilities licensing, a mostly prescriptive approach is adopted, which despite having advantages such as simplified inspections and homogeneous regulatory requisites amid different fuel cycle facility types, does not consider evolution, dynamism and capacities of external or internal threats to facilities and to Brazilian Nuclear Program itself, neither provides metrics to evaluate system performance facing such threats. In order to preserve actual plans and systems confidentiality, a facility hypothetical model is created, including a research reactor and a waste storage facility. It is expected that the methodology and results obtained in this study serve in the future as a basis to Brazilian nuclear operators, in elaboration process of their Physical Protection Plans, which must comply with future regulation CNEN-NN 2.01, a revision of CNEN-NE 2.01, once that regulation will include performance requisites. (author)

  6. Development of a spatial nuclear electric system: RESPA sub-project

    International Nuclear Information System (INIS)

    Ishiguro, Y.

    1989-04-01

    Basic design and characteristics of a nuclear-electric system selected for future applications in the Brazilian space program is summarized. Technological difficulties are discussed and a preliminary program of research and development at IEAv is presented. (author)

  7. Intelligent Automated Nuclear Fuel Pellet Inspection System

    International Nuclear Information System (INIS)

    Keyvan, S.

    1999-01-01

    At the present time, nuclear pellet inspection is performed manually using naked eyes for judgment and decisionmaking on accepting or rejecting pellets. This current practice of pellet inspection is tedious and subject to inconsistencies and error. Furthermore, unnecessary re-fabrication of pellets is costly and the presence of low quality pellets in a fuel assembly is unacceptable. To improve the quality control in nuclear fuel fabrication plants, an automated pellet inspection system based on advanced techniques is needed. Such a system addresses the following concerns of the current manual inspection method: (1) the reliability of inspection due to typical human errors, (2) radiation exposure to the workers, and (3) speed of inspection and its economical impact. The goal of this research is to develop an automated nuclear fuel pellet inspection system which is based on pellet video (photographic) images and uses artificial intelligence techniques

  8. Power systems with nuclear-electric generators - Modelling methods

    International Nuclear Information System (INIS)

    Valeca, Serban Constantin

    2002-01-01

    This is a vast analysis on the issue of sustainable nuclear power development with direct conclusions regarding the Nuclear Programme of Romania. The work is targeting specialists and decision making boards. Specific to the nuclear power development is its public implication, the public being most often misinformed by non-professional media. The following problems are debated thoroughly: - safety, nuclear risk, respectively, is treated in chapter 1 and 7 aiming at highlighting the quality of nuclear power and consequently paving the way to public acceptance; - the environment considered both as resource of raw materials and medium essential for life continuation, which should be appropriately protected to ensure healthy and sustainable development of human society; its analysis is also presented in chapter 1 and 7, where the problem of safe management of radioactive waste is addressed too; - investigation methods based on information science of nuclear systems, applied in carrying out the nuclear strategy and planning are widely analyzed in the chapter 2, 3 and 6; - optimizing the processes by following up the structure of investment and operation costs, and, generally, the management of nuclear units is treated in the chapter 5 and 7; - nuclear weapon proliferation as a possible consequence of nuclear power generation is treated as a legal issue. The development of Romanian NPP at Cernavoda, practically, the core of the National Nuclear Programme, is described in chapter 8. Actually, the originality of the present work consists in the selection and adaptation from a multitude of mathematical models applicable to the local and specific conditions of nuclear power plant at Cernavoda. The Romanian economy development and power development oriented towards reduction of fossil fuel consumption and protection of environment, most reliably ensured by the nuclear power, is discussed in the frame of the world trends of the energy production. Various scenarios are

  9. Nuclear proliferation and civilian nuclear power: report of the nonproliferation alternative systems assessment program. Volume V. Economics and systems analysis

    International Nuclear Information System (INIS)

    1979-12-01

    This NASAP assessment considers the economics of alternative nuclear reactor and fuel-cycle systems in the light of possible patterns of uranium supply and energy demand, as well as the economic implications of improving the proliferation resistance of the various systems. The assessment focuses on the costs of alternative nuclear technologies and the possible timing of their implementation, based on their economic attractiveness. The objectives of this assessment are to identify when economic incentives to deploy advanced nuclear power systems might exist, to estimate the costs of using technologies that would reduce the risk of proliferation, to assess the impact of major economic uncertainties on the transition to new technologies, and to compare the investments required for alternative systems

  10. A universal measuring and monitoring system for nuclear radiation

    International Nuclear Information System (INIS)

    Genrich, V.

    1988-01-01

    Genitron Instruments, Frankfurt/Main, committed themselves to revise the 'conventional' concept of counting tube metrology. The goal was to develop a modular system that would allow large-area measuring tasks. The contribution in hand explains this development, which consists of a highly integrated measuring head that can be combined with various detector types, and complemented by various system components, to form a universal measuring and monitoring system for nuclear radiation. This modular design concept is capable of fulfilling a multitude of tasks, ranging from single, specific applications to non-stop monitoring tasks within a large-area measuring network. (orig./DG) [de

  11. Cable handling system for use in a nuclear reactor

    International Nuclear Information System (INIS)

    Crosgrove, R.O.; Larson, E.M.; Moody, E.

    1982-01-01

    A cable handling system for use in an installation such as a nuclear reactor is disclosed herein along with relevant portions of the reactor which, in a preferred embodiment, is a liquid metal fast breeder reactor. The cable handling system provides a specific way of interconnecting certain internal reactor components with certain external components, through an assembly of rotatable plugs. Moreover, this is done without having to disconnect these components from one another during rotation of the plugs and yet without interfering with other reactor components in the vicinity of the rotating plugs and cable handling system

  12. Generation of a command language for nuclear signal and image processing on the basis of a general interactive system

    International Nuclear Information System (INIS)

    Pretschner, D.P.; Pfeiffer, G.; Deutsches Elektronen-Sychnchrotron

    1981-01-01

    In the field of nuclear medicine, BASIC and FORTRAN are currently being favoured as higher-level programming languages for computer-aided signal processing, and most operating systems of so-called ''freely programmable analyzers'' in nuclear wards have compilers for this purpose. However, FORTRAN is not an interactive language and thus not suited for conversational computing as a man-machine interface. BASIC, on the other hand, although a useful starting language for beginners, is not sufficiently sophisticated for complex nuclear medicine problems involving detailed calculations. Integration of new methods of signal acquisition, processing and presentation into an existing system or generation of new systems is difficult in FORTRAN, BASIC or ASSEMBLER and can only be done by system specialists, not by nuclear physicians. This problem may be solved by suitable interactive systems that are easy to learn, flexible, transparent and user-friendly. An interactive system of this type, XDS, was developed in the course of a project on evaluation of radiological image sequences. An XDS-generated command processing system for signal and image processing in nuclear medicine is described. The system is characterized by interactive program development and execution, problem-relevant data types, a flexible procedure concept and an integrated system implementation language for modern image processing algorithms. The advantages of the interactive system are illustrated by an example of diagnosis by nuclear methods. (orig.) [de

  13. Hungarian system for nuclear emergency preparedness

    International Nuclear Information System (INIS)

    Borsi, Laszlo; Szabo, Laszlo; Ronaky, Jozsef

    2000-01-01

    The Hungarian Government had established in 1989 on the basis of national and international experience the National System for Nuclear Emergency Preparedness (NSNEP). Its guidance is ad-ministered by the Governmental Commission for Nuclear Emergency Preparedness (GCNEP). The work of the Governmental Commission is designated to be assisted by the Secretariat, the Operational Staff and by the Technical Scientific Council. The leading and guiding duties of the relevant ministries and national agencies are performed by the Sectional Organisations for Nuclear Emergency Preparedness (SONEP), together with those of the Metropolitan Agencies and of the county agencies by the Metropolitan Local Committee (MLCNEP) and by County Local Committees. The chairman of the Governmental Commission is the Minister of the Interior whose authority covers the guidance of the NSNEP's activities. The Secretariat of the Governmental Commission (SGC) co-ordinates the activities of the bodies of the Governmental Commission, the sectional organisations, the local committees for nuclear emergency preparedness and those of the other bodies responsible for implementing action. The Emergency Information Centre (EIC) of GCNEP as the central body of the National Radiation Monitoring, Warning and Surveillance System provides the information needed for preparing decisions at Governmental Commission level. The technical-scientific establishment of the governmental decisions in preparation for nuclear emergency situations and the elimination of their consequences are tasks of the Technical-Scientific Council. The Centre for Emergency Response, Training and Analysis (CERTA) of the Hungarian Atomic Energy Authority (HAEA) may be treated as a body of the Governmental Commission as well. The National Radiation Monitoring, Warning and Surveillance System (NRMWSS) is integral part of the NSNEP. The NRMWSS consists of the elements operated by the ministries and the operation of nation-wide measuring network in

  14. A photomultiplier-based secondary electron imaging system for a nuclear microprobe

    International Nuclear Information System (INIS)

    Alves, L.C.; Breese, M.B.H.; Silva, M.F. da; Soares, J.C.

    2002-01-01

    The ability to define, or recognise particular regions of interest or surface features is vital to the analysis and interpretation of spatially-resolved images collected with a nuclear microprobe. However, good topographic image contrast is difficult to accomplish using PIXE or RBS images due to their inherent insensitivity to topography, lack of elemental variation or poor statistics. Topographic image contrast is commonly obtained in scanning electron microscopy (SEM) by detecting a large flux of secondary electrons produced by the focused keV electron beam. Similar systems have not been widely used on nuclear microprobes due to ion beam intensity fluctuations, which limit the minimum resolvable contrast and present a major limitation for this technique. This paper describes a secondary electron imaging system which has been developed on the Lisbon microprobe. It is based on a scintillator, a photomultiplier operated in a pulsed mode, a pulse shaping electronic chain and ADC, and requires no changes to the existing data acquisition system. Examples of the images obtained from materials such as patterned SiGe wafers and hydrogen-implanted silicon are given, and compared with SEM or optical images

  15. A study on national innovation system for the improvement of nuclear R and D performance

    Energy Technology Data Exchange (ETDEWEB)

    Yun, S. W.; Oh, K. B.; Kim, H. J.; Cheong, H. S.; Cheong, I.; Lee, J. H.; Won, B. C.; Cheong, C. E.; Lee, K. H.; Choi, H. M

    2006-01-15

    Review basic concept and analytical method concerned with technological innovation and NIS : concept and defition of technological innovation and NIS, background and evolution of the NIS theory, basic elements of NIS and their relationship. Identification on scientific-technological characteristics of the nuclear R and D and technological innovation : special aspect of the nuclear R and D and technological innovation, difficulty(or complexity) of the nuclear R and D and technological, innovation. Defining organizational-institutional elements of nuclear R and D and innovation allowing for nuclear scientific-technological peculiarity. Developing the model of national nuclear innovation system for analysis of the national R and D performance. Developing the analytical model including performance measure and procedure for national nuclear innovation system led mainly by national Rand D in Korea. Discussion about the national innovation system with other OECD/NEA member countries.

  16. A study on national innovation system for the improvement of nuclear R and D performance

    International Nuclear Information System (INIS)

    Yun, S. W.; Oh, K. B.; Kim, H. J.; Cheong, H. S.; Cheong, I.; Lee, J. H.; Won, B. C.; Cheong, C. E.; Lee, K. H.; Choi, H. M.

    2006-01-01

    Review basic concept and analytical method concerned with technological innovation and NIS : concept and defition of technological innovation and NIS, background and evolution of the NIS theory, basic elements of NIS and their relationship. Identification on scientific-technological characteristics of the nuclear R and D and technological innovation : special aspect of the nuclear R and D and technological innovation, difficulty(or complexity) of the nuclear R and D and technological, innovation. Defining organizational-institutional elements of nuclear R and D and innovation allowing for nuclear scientific-technological peculiarity. Developing the model of national nuclear innovation system for analysis of the national R and D performance. Developing the analytical model including performance measure and procedure for national nuclear innovation system led mainly by national Rand D in Korea. Discussion about the national innovation system with other OECD/NEA member countries

  17. Advanced nuclear systems. Review study; Fortgeschrittene Nuklearsysteme. Review Study

    Energy Technology Data Exchange (ETDEWEB)

    Liebert, Wolfgang; Glaser, Alexander; Pistner, Christoph [Interdisziplinaere Arbeitsgruppe Naturwissenschaft, Technik und Sicherheit (IANUS), Darmstadt University of Technology, Hochschulstrasse 10, D-64289 Darmstadt (Germany); Baehr, Roland; Hahn, Lothar [Institute for applied ecology (Oeko-Institut), Elisabethenstrasse 55-57, D-64283 Darmstadt (Germany)

    1999-04-01

    The task of this review study is to from provide an overview of the developments in the field of the various advanced nuclear systems, and to create the basis for more comprehensive studies of technology assessment. In an overview the concepts for advanced nuclear systems pursued worldwide are subdivided into eight subgroups. A coarse examination raster (set pattern) is developed to enable a detailed examination of the selected systems. In addition to a focus on enhanced safety features, further aspects are also taken into consideration, like the lowering of the proliferation risk, the enhancement of the economic competitiveness of the facilities and new usage possibilities (for instance concerning the relaxation of the waste disposal problem or the usage of alternative fuels to uranium). The question about the expected time span for realization and the discussion about the obstacles on the way to a commercially usable reactor also play a substantial role as well as disposal requirements as far as they can be presently recognized. In the central chapter of this study, the documentation of the representatively selected concepts is evaluated as well as existing technology assessment studies and expert opinions. In a few cases where this appears to be necessary, according technical literature, further policy advisory reports, expert statements as well as other relevant sources are taken into account. Contradictions, different assessments and dissents in the literature as well as a few unsettled questions are thus indicated. The potential of advanced nuclear systems with respect to economical and societal as well as environmental objectives cannot exclusively be measured by the corresponding intrinsic or in comparison remarkable technical improvements. The acceptability of novel or improved systems in nuclear technology will have to be judged by their convincing solutions for the crucial questions of safety, nuclear waste and risk of proliferation of nuclear weapons

  18. Dosimetry systems in nuclear power stations

    International Nuclear Information System (INIS)

    Weidmann, U.

    1992-01-01

    In the following paper the necessity of the use of electronic dosimetry systems in nuclear power stations is presented, also encompassing the tasks which this type of systems has to fulfill. Based on examples the construction principles and the application possibilities of a PC supported system are described. 5 figs

  19. Transmutation of nuclear waste in accelerator-driven systems

    CERN Document Server

    Herrera-Martínez, A

    2004-01-01

    Today more than ever energy is not only a cornerstone of human development, but also a key to the environmental sustainability of economic activity. In this context, the role of nuclear power may be emphasized in the years to come. Nevertheless, the problems of nuclear waste, safety and proliferation still remain to be solved. It is believed that the use of accelerator-driven systems (ADSs) for nuclear waste transmutation and energy production would address these problems in a simple, clean and economically viable, and therefore sustainable, manner. This thesis covers the major nuclear physics aspects of ADSs, in particular the spallation process and the core neutronics specific to this type of systems. The need for accurate nuclear data is described, together with a detailed analysis of the specific isotopes and energy ranges in which this data needs to be improved and the impact of their uncertainty. Preliminary experimental results for some of these isotopes, produced by the Neutron Time-of-Flight (n_TOF) ...

  20. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in a uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation are discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  1. Limit regulation system for pressurized water nuclear reactors

    International Nuclear Information System (INIS)

    Aleite, W.; Bock, H.W.

    1976-01-01

    Described is a limit regulation system for a pressurized water nuclear reactor in combination with a steam generating system connected to a turbine, the nuclear reactor having control rods as well as an operational regulation system and a protective system, which includes reactor power limiting means operatively associated with the control rods for positioning the same and having response values between operating ranges of the operational regulation system, on the one hand, and response values of the protective system, on the other hand, and a live steam-minimal pressure regulation system cooperating with the reactor power limiting means and operatively connected to a steam inlet valve to the turbine for controlling the same

  2. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in an uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation is discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  3. Status report on nuclear electric propulsion systems

    Science.gov (United States)

    Stearns, J. W.

    1975-01-01

    Progress in nuclear electric propulsion (NEP) systems for a multipayload multimission vehicle needed in both deep-space missions and a variety of geocentric missions is reviewed. The space system power level is a function of the initial launch vehicle mass, but developments in out-of-core nuclear thermionic direct conversion have broadened design options. Cost, design, and performance parameters are compared for reusable chemical space tugs and NEP reusable space tugs. Improvements in heat pipes, ion engines, and magnetoplasmadynamic arc jet thrust subsystems are discussed.

  4. A systems analysis approach to nuclear facility siting

    International Nuclear Information System (INIS)

    Gros, J.G.; Avenhaus, R.; Linnerooth, J.; Pahner, P.D.; Otway, H.J.

    1975-01-01

    An attempt is made to demonstrate an application of the techniques of systems analysis, which have been successful in solving a variety of problems, to nuclear facility siting. Within the framework of an overall regional land-use plan, a methodology for establishing the acceptability of a combination of site and facility is discussed. The consequences (e.g. the energy produced, thermal and chemical discharges, radioactive releases, aeshetic values, etc.) of the site-facility combination are identified and compared with formalized criteria in order to ensure 'legal acceptability'. Failure of any consequences to satisfy standard requirements results in a feedback channel which works to effect design changes in the facility. When 'legal acceptability' has been assured, the project enters the public sector for consideration. The responses of individuals and of various interested groups to the external attributes of the nuclear facility gradually emerge. The criteria by which interest groups judge technological advances reflect both their rational assessment and unconscious motivations. This process operates on individual, group, societal and international levels and may result in two basic feedback loops: one which might act to change regulatory criteria; the other which might influence facility design or site selection. Such reactions and responses on these levels result in a continuing process of confrontation, collaborative interchange and possible resolution in the direction of an acceptable solution. Finally, a Paretian approach to optimizing the site-facility combination is presented for the case where there are several possible combinations of site and facility. A hypothetical example of the latter is given, based upon typical preference functions determined for four interest groups. The research effort of the IIASA Energy Systems Project and the Joint IAEA/IIASA Research Project in the area of nuclear siting is summarized. (author)

  5. A reliability centered maintenance model applied to the auxiliary feedwater system of a nuclear power plant

    International Nuclear Information System (INIS)

    Araujo, Jefferson Borges

    1998-01-01

    The main objective of maintenance in a nuclear power plant is to assure that structures, systems and components will perform their design functions with reliability and availability in order to obtain a safety and economic electric power generation. Reliability Centered Maintenance (RCM) is a method of systematic review to develop or optimize Preventive Maintenance Programs. This study presents the objectives, concepts, organization and methods used in the development of RCM application to nuclear power plants. Some examples of this application are included, considering the Auxiliary Feedwater System of a generic two loops PWR nuclear power plant of Westinghouse design. (author)

  6. Proliferation resistance characteristics of advanced nuclear energy systems: a safeguard ability point of view

    International Nuclear Information System (INIS)

    Sevini, F.; Cojazzi, G.G.M.; Renda, G.

    2008-01-01

    Among the international community there is a renewed interest in nuclear power systems as a major source for energy production in the near to mid future. This is mainly due to concerns connected with future availability of conventional energy resources, and with the environmental impact of fossil fuels. International initiatives have been set up like the Generation 4. International Forum (GIF), the International Project on Innovative Nuclear Reactors and Fuel Cycles (IAEA-INPRO), and, partially, the US driven Global Nuclear Energy Partnership (GNEP), aimed at defining and evaluating the characteristics, in which future innovative nuclear energy systems (INS) will have to excel. Among the identified characteristics, Proliferation Resistance plays an important role for being able to widely deploy nuclear technology worldwide in a secure way. Studies having the objective to assess Proliferation Resistance of nuclear fuel cycles have been carried out since the nineteen seventies, e.g., the International Nuclear Fuel Cycle Evaluation (INFCE) and the Non-proliferation Alternative Systems Assessment Program (NASAP) initiatives, and all agree in stating that absolute intrinsic proliferation resistance, although desirable, is not achievable in the foreseeable future. The above finding is still valid; as a consequence, every INS will have to comply with agreements related to the Non Proliferation Treaty (NPT) and will require safeguards measures, implemented through extrinsic measures. This consideration led to a renewed interest in the Safeguard ability concept which can be seen as a bridge between intrinsic features and extrinsic features and measures.

  7. Systems Thinking Safety Analysis: Nuclear Security Assessment of Physical Protection System in Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Tae Ho Woo

    2013-01-01

    Full Text Available The dynamical assessment has been performed in the aspect of the nuclear power plants (NPPs security. The physical protection system (PPS is constructed by the cyber security evaluation tool (CSET for the nuclear security assessment. The systems thinking algorithm is used for the quantifications by the Vensim software package. There is a period of 60 years which is the life time of NPPs' operation. The maximum possibility happens as 3.59 in the 30th year. The minimum value is done as 1.26 in the 55th year. The difference is about 2.85 times. The results of the case with time delay have shown that the maximum possibility of terror or sabotage incident happens as 447.42 in the 58th year and the minimum value happens as 89.77 in the 51st year. The difference is about 4.98 times. Hence, if the sabotage happens, the worst case is that the intruder can attack the target of the nuclear material in about one and a half hours. The general NPPs are modeled in the study and controlled by the systematic procedures.

  8. Fuel cycle modelling of open cycle thorium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Lindley, B.A.; Parks, G.T.; Nuttall, W.J.; Gregg, R.; Hesketh, K.W.; Kannan, U.; Krishnani, P.D.; Singh, B.; Thakur, A.; Cowper, M.; Talamo, A.

    2014-01-01

    Highlights: • We study three open cycle Th–U-fuelled nuclear energy systems. • Comparison of these systems is made to a reference U-fuelled EPR. • Fuel cycle modelling is performed with UK NNL code “ORION”. • U-fuelled system is economically favourable and needs least separative work per kWh. • Th–U-fuelled systems offer negligible waste and proliferation resistance advantages. - Abstract: In this study, we have sought to determine the advantages, disadvantages, and viability of open cycle thorium–uranium-fuelled (Th–U-fuelled) nuclear energy systems. This has been done by assessing three such systems, each of which requires uranium enriched to ∼20% 235 U, in comparison to a reference uranium-fuelled (U-fuelled) system over various performance indicators, spanning material flows, waste composition, economics, and proliferation resistance. The values of these indicators were determined using the UK National Nuclear Laboratory’s fuel cycle modelling code ORION. This code required the results of lattice-physics calculations to model the neutronics of each nuclear energy system, and these were obtained using various nuclear reactor physics codes and burn-up routines. In summary, all three Th–U-fuelled nuclear energy systems required more separative work capacity than the equivalent benchmark U-fuelled system, with larger levelised fuel cycle costs and larger levelised cost of electricity. Although a reduction of ∼6% in the required uranium ore per kWh was seen for one of the Th–U-fuelled systems compared to the reference U-fuelled system, the other two Th–U-fuelled systems required more uranium ore per kWh than the reference. Negligible advantages and disadvantages were observed for the amount and the properties of the spent nuclear fuel (SNF) generated by the systems considered. Two of the Th–U-fuelled systems showed some benefit in terms of proliferation resistance of the SNF generated. Overall, it appears that there is little

  9. Nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1980-01-01

    A safety system for shutting down a nuclear reactor under overload conditions is described. The system includes a series of parallel-connected computer memory type look-up tables each of which receives data on a particular reactor parameter and in each of which a precalculated functional value for that parameter is stored indicative of the percentage of maximum reactor load that the parameter contributes. The various functional values corresponding to the actual measured parameters are added together to provide a control signal used to shut down the reactor under overload conditions. (U.K.)

  10. On the safety performance of the advanced nuclear energy systems

    International Nuclear Information System (INIS)

    Li Shounan

    1999-01-01

    Some features on the safety performances of the Advanced Nuclear Energy Systems are discussed. The advantages and some peculiar problems on the safety of Advanced Nuclear Energy Systems with subcritical nuclear reactor driven by external neutron sources are also pointed out in comparison with conventional nuclear reactors

  11. NCS--a software for visual modeling and simulation of PWR nuclear power plant control system

    International Nuclear Information System (INIS)

    Cui Zhenhua

    1998-12-01

    The modeling and simulation of nuclear power plant control system has been investigated. Some mathematical models for rapid and accurate simulation are derived, including core models, pressurizer model, steam generator model, etc. Several numerical methods such as Runge-Kutta Method and Treanor Method are adopted to solve the above system models. In order to model the control system conveniently, a block diagram-oriented visual modeling platform is designed. And the Discrete Similarity Method is used to calculate the control system models. A corresponding simulating software, NCS, is developed for researching on the control systems of commercial nuclear power plant. And some satisfactory results are obtained. The research works will be of referential and applying value to design and analysis of nuclear power plant control system

  12. Nuclear power plant alarm systems: Problems and issues

    International Nuclear Information System (INIS)

    O'Hara, J.M.; Brown, W.S.

    1991-01-01

    Despite the incorporation of advanced technology into nuclear power plant alarm systems, human factors problems remain. This paper identifies to be addressed in order to allow advanced technology to be used effectively in the design of nuclear power plant alarm systems. The operator's use and processing of alarm system information will be considered. Based upon a review of alarm system research, issues related to general system design, alarm processing, display and control are discussed. It is concluded that the design of effective alarm systems depends on an understanding of the information processing capabilities and limitations of the operator. 39 refs

  13. Nuclear power plant alarm systems: Problems and issues

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J.M.; Brown, W.S.

    1991-01-01

    Despite the incorporation of advanced technology into nuclear power plant alarm systems, human factors problems remain. This paper identifies to be addressed in order to allow advanced technology to be used effectively in the design of nuclear power plant alarm systems. The operator's use and processing of alarm system information will be considered. Based upon a review of alarm system research, issues related to general system design, alarm processing, display and control are discussed. It is concluded that the design of effective alarm systems depends on an understanding of the information processing capabilities and limitations of the operator. 39 refs.

  14. Automated accounting systems for nuclear materials

    International Nuclear Information System (INIS)

    Erkkila, B.

    1994-01-01

    History of the development of nuclear materials accounting systems in USA and their purposes are considered. Many present accounting systems are based on mainframe computers with multiple terminal access. Problems of future improvement accounting systems are discussed

  15. New reactor technology: safety improvements in nuclear power systems.

    Science.gov (United States)

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  16. Nuclear energy. An introduction to the concepts, systems, and applications of nuclear processes. 3. ed.

    International Nuclear Information System (INIS)

    Murray, R.L.

    1988-01-01

    An overview of nuclear energy and its uses is given, aimed at nuclear engineers, plant designers and radiation physicists. The three parts deal with the basic concepts, nuclear systems (including particle accelerators, radiation detectors, breeder reactors and fusion reactors) and nuclear energy and man. This latter section includes chapters on the history of nuclear energy, effects of radiation, isotopes, reactor safety, nuclear propulsion, radiation protection, radioactive waste disposal, laws and regulations economics and nuclear explosions. The final chapter looks to the future of nuclear energy. Each of the 27 chapters has a brief summary and exercises at the end. The appendices give selected references, conversion factors and atomic and nuclear data. (U.K.)

  17. Feasibility study of a dedicate nuclear desalination system: Low-pressure inherent heat sink nuclear desalination plant (LIND)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Sik; No, Hee Cheon; Jo, Yu Gwan; Wivisono, Andhika Feri; Park, Byung Ha; Choi, Jin Young; Lee, Jeong Ik; Jeong, Yong Hoon; Cho, Nam Zin [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-04-15

    In this paper, we suggest the conceptual design of a water-cooled reactor system for a low-pressure inherent heat sink nuclear desalination plant (LIND) that applies the safety-related design concepts of high temperature gas-cooled reactors to a water-cooled reactor for inherent and passive safety features. Through a scoping analysis, we found that the current LIND design satisfied several essential thermal-hydraulic and neutronic design requirements. In a thermal-hydraulic analysis using an analytical method based on the Wooton-Epstein correlation, we checked the possibility of safely removing decay heat through the steel containment even if all the active safety systems failed. In a neutronic analysis using the Monte Carlo N-particle transport code, we estimated a cycle length of approximately 6 years under 200 MW{sub th} and 4.5% enrichment. The very long cycle length and simple safety features minimize the burdens from the operation, maintenance, and spent-fuel management, with a positive impact on the economic feasibility. Finally, because a nuclear reactor should not be directly coupled to a desalination system to prevent the leakage of radioactive material into the desalinated water, three types of intermediate systems were studied: a steam producing system, a hot water system, and an organic Rankine cycle system.

  18. Feasibility study of a dedicated nuclear desalination system: Low-pressure Inherent heat sink Nuclear Desalination plant (LIND

    Directory of Open Access Journals (Sweden)

    Ho Sik Kim

    2015-04-01

    Full Text Available In this paper, we suggest the conceptual design of a water-cooled reactor system for a low-pressure inherent heat sink nuclear desalination plant (LIND that applies the safety-related design concepts of high temperature gas-cooled reactors to a water-cooled reactor for inherent and passive safety features. Through a scoping analysis, we found that the current LIND design satisfied several essential thermal–hydraulic and neutronic design requirements. In a thermal–hydraulic analysis using an analytical method based on the Wooton–Epstein correlation, we checked the possibility of safely removing decay heat through the steel containment even if all the active safety systems failed. In a neutronic analysis using the Monte Carlo N-particle transport code, we estimated a cycle length of approximately 6 years under 200 MWth and 4.5% enrichment. The very long cycle length and simple safety features minimize the burdens from the operation, maintenance, and spent-fuel management, with a positive impact on the economic feasibility. Finally, because a nuclear reactor should not be directly coupled to a desalination system to prevent the leakage of radioactive material into the desalinated water, three types of intermediate systems were studied: a steam producing system, a hot water system, and an organic Rankine cycle system.

  19. NJOY nuclear data processing system: user's manual

    International Nuclear Information System (INIS)

    MacFarlane, R.E.; Barrett, R.J.; Muir, D.W.; Boicourt, R.M.

    1978-12-01

    The NJOY nuclear data processing system is a comprehensive computer code package for producing cross sections for neutron and photon transport calculations from ENDF/B-IV and -V evaluated nuclear data. This user's manual provides a concise description of the code, input instructions, sample problems, and installation instructions. 1 figure, 3 tables

  20. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1983-01-01

    The invention provides a safety system for a nuclear reactor which uses a parallel combination of computer type look-up tables each of which receives data on a particular parameter (from transducers located in the reactor system) and each of which produces the functional counterpart of that particular parameter. The various functional counterparts are then added together to form a control signal for shutting down the reactor. The functional counterparts are developed by analysis of experimental thermal and hydraulic data, which are used to form expressions that define safe conditions

  1. NJOY. A comprehensive system for the processing of ENDF formatted nuclear data

    International Nuclear Information System (INIS)

    Muir, D.W.

    1990-07-01

    An introduction to the program system NJOY is given which processes data files of evaluated neutron nuclear data coded in ENDF format. NJOY is primarily used for neutron and photon transport calculations for nuclear power reactor design. The NJOY code is not available from the IAEA Nuclear Data Section but may be obtained from the Reactor Shielding Information Center, Oak Ridge, USA. (author). 10 refs, 1 fig

  2. Computer system for nuclear power plant parameter display

    International Nuclear Information System (INIS)

    Stritar, A.; Klobuchar, M.

    1990-01-01

    The computer system for efficient, cheap and simple presentation of data on the screen of the personal computer is described. The display is in alphanumerical or graphical form. The system can be used for the man-machine interface in the process monitoring system of the nuclear power plant. It represents the third level of the new process computer system of the Nuclear Power Plant Krsko. (author)

  3. Change of nuclear administrative system and long-term program for nuclear energy in Japan

    International Nuclear Information System (INIS)

    Yun, S. W.; Yang, M. H.; Jeong, H. S.

    2001-01-01

    Japanese new governmental adminstrative system was restructured and became in operation from January 1, 2001 including newly establishment of the Ministry of Cabinet. Accordingly, Japanese nuclear administrative system were also changed significantly, in order to reflect the changing policy environment and response to them more efficiently in the use and development of nuclear energy. Atomic Energy Commission, Nuclear Safety Commission administrated by Science and Technology Agency in the past, were moved to the Ministry of Cabinet, and Integrated Science and Technology Council was also newly established under the Ministry of Cabinet. And Ministry of Economy, Trade and Industry(METI) is in charge of nuclear energy policy and the Ministry of Education, Culture, Sports, Science and Technology(MEXT) is in charge of nuclear academic science consequently. At the same time, the revision work of 'Long-term Program for Research, Development and Utilization of Nuclear of Japan' established in 1994, has been carried out from 1999 in order to set up the long term based national nuclear policy towards the 21st century, and finally the results were open to the public in November 2000. Major changes of nuclear policy of Japan the will be good references in the establishing future national nuclear policy for the use and development of nuclear energy

  4. Advanced nuclear energy systems and the need of accurate nuclear data: the n_TOF project at CERN

    CERN Document Server

    Colonna, N; Praena, J; Lederer, C; Karadimos, D; Sarmento, R; Domingo-Pardo, C; Plag, R; Massimi, C; Calviani, M; Guerrero, C; Paradela, C; Belloni, F

    2010-01-01

    To satisfy the world's constantly increasing demand for energy, a suitable mix of different energy sources has to be devised. In this scenario, an important role could be played by nuclear energy, provided that major safety, waste and proliferation issues affecting current nuclear reactors are satisfactorily addressed. To this purpose, a large effort has been under way for a few years towards the development of advanced nuclear systems with the aim of closing the fuel cycle. Generation IV reactors, with full or partial waste recycling capability, accelerator driven systems, as well as new fuel cycles are the main options being investigated. The design of advanced systems requires improvements in basic nuclear data, such as cross-sections for neutron-induced reactions on actinides. In this paper, the main concepts of advanced reactor systems are described, together with the related needs of new and accurate nuclear data. The present activity in this field at the neutron facility n\\_TOF at CERN is discussed.

  5. A study on expert system applications for nuclear power plant

    International Nuclear Information System (INIS)

    Huh, Young Hwan; Kim, Kil Yoo; Kang, Soon Ju; Park, Nam Seok; Ryu, Chan Ho; Choi, In Seon; Chung, Young Moo; Chung, Tae Eon; Yim, Chang Jae; Lee, Yoon Sang.

    1990-01-01

    The objectives of this research are 1) to develop an expert system which can automatically evaluate eddy current (EC) signal during an eddy current test (ECT) of SG U tube inspection, 2) to build an effective data base management system for ECT data. By this expert system the reliability in EC signal evaluation can be improved, and the required man-power can be reduced. And this expert system can supply a stable ECT and contribute to a safe operation of the nuclear power plant. (author)

  6. System to detect nuclear materials by active neutron method

    International Nuclear Information System (INIS)

    Koroev, M.; Korolev, Yu.; Lopatin, Yu.; Filonov, V.

    1999-01-01

    The report presents the results of the development of the system to detect nuclear materials by active neutron method measuring delayed neutrons. As the neutron source the neutron generator was used. The neutron generator was controlled by the system. The detectors were developed on the base of the helium-3 counters. Each detector consist of 6 counters. Using a number of such detectors it is possible to verify materials stored in different geometry. There is an spectrometric scintillator detector in the system which gives an additional functional ability to the system. The system could be used to estimate the nuclear materials in waste, to detect the unauthorized transfer of the nuclear materials, to estimate the material in tubes [ru

  7. A triggerless digital data acquisition system for nuclear decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt, J.; Tain, J. L.; Albiol, F.; Algora, A.; Estevez, E.; Giubrone, G.; Jordan, M. D.; Molina, F.; Rubio, B.; Valencia, E. [Instituto de Fisica Corpuscular, Centro Mixto C.S.I.C. - Univ. Valencia, Apdo. Correos 22085, 46071 Valencia (Spain)

    2013-06-10

    In nuclear decay experiments an important goal of the Data Acquisition (DAQ) system is to allow the reconstruction of time correlations between signals registered in different detectors. Classically DAQ systems are based in a trigger that starts the event acquisition, and all data related with the event of that trigger are collected as one compact structure. New technologies and electronics developments offer new possibilities to nuclear experiments with the use of sampling ADC-s. This type of ADC-s is able to provide the pulse shape, height and a time stamp of the signal. This new feature (time stamp) allows new systems to run without an event trigger. Later, the event can be reconstructed using the time stamp information. In this work we present a new DAQ developed for {beta}-delayed neutron emission experiments. Due to the long moderation time of neutrons, we opted for a self-trigger DAQ based on commercial digitizers. With this DAQ a negligible acquisition dead time was achieved while keeping a maximum of event information and flexibility in time correlations.

  8. Accounting systems for special nuclear material control. Technical report

    International Nuclear Information System (INIS)

    Korstad, P.A.

    1980-05-01

    Nuclear material accounting systems were examined and compared to financial double-entry accounting systems. Effective nuclear material accounting systems have been designed using the principles of double-entry financial accounting. The modified double-entry systems presently employed are acceptable if they provide adequate control over the recording and summarizing of transactions. Strong internal controls, based on principles of financial accounting, can help protect nuclear materials and produce accurate, reliable accounting data. An electronic data processing system can more accurately maintain large volumes of data and provide management with more current, reliable information

  9. Design of the reactor coolant system and associated systems in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    This Safety Guide was prepared under the IAEA programme for establishing safety standards for nuclear power plants. The basic requirements for the design of safety systems for nuclear power plants are established in the Safety Requirements publication, Safety Standards Series No. NS-R-1 on Safety of Nuclear Power Plants: Design, which it supplements. This Safety Guide describes how the requirements for the design of the reactor coolant system (RCS) and associated systems in nuclear power plants should be met. 1.2. This publication is a revision and combination of two previous Safety Guides, Safety Series No. 50-SG-D6 on Ultimate Heat Sink and Directly Associated Heat Transport Systems for Nuclear Power Plants (1981), and Safety Series No. 50-SG-D13 on Reactor Coolant and Associated Systems in Nuclear Power Plants (1986), which are superseded by this new Safety Guide. 1.3. The revision takes account of developments in the design of the RCS and associated systems in nuclear power plants since the earlier Safety Guides were published in 1981 and 1986, respectively. The other objectives of the revision are to ensure consistency with Ref., issued in 2000, and to update the technical content. In addition, an appendix on pressurized heavy water reactors (PHWRs) has been included

  10. Nuclear information systems: Forming the hub of quality assurance

    International Nuclear Information System (INIS)

    Shepherd, S.H.

    1990-01-01

    Data processing, storage, and transmission technology has advanced sufficiently that nuclear information system networks are developing at many nuclear power plant sites. The networks offer much promise - repetitive tasks can be eliminated, cross checks and reviews can be implemented, and the user can do a more thorough, more professional job. With the arrival of this new power to analyze, plan, communicate, and simplify work comes a duty to properly harness the power. If the power of the information age is misused, or used carelessly, much damage can be done. When it comes to nuclear applications, there are really only three significant features to an information system: quality, reliability, and security. Put simply, the user must trust the accuracy of the system or it cannot be used. A system that is not available for use on demand will not be in demand for long. Fast processors, video graphics, and laser publishing are worthless if one must back up the system with hand calculations and tedious verification of data. An effective nuclear information system has good quality practices interwoven into the hardware and software, so that the system itself can foster and promote better quality assurance

  11. Development of Nuclear Control and Management Information Treatment System

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J. G.; Lee, B. D.; So, D. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    To implement obligations under the Non-Proliferation Treaty (NPT) and the bilateral agreements more effectively, we proposed a computerized system named the Nuclear Control and Management Information Treatment System (NCAMITS) as a part of the Nuclear Transparency Enhancement Project at the Korea Atomic Energy Research Institute (KAERI). The database system is designed not only to undertake the facility-level accounting for and control of nuclear material at KAERI, but also to meet the requirements of the State (National) System of Accounting and Control (SSAC). Since the NCAMITS will provide services for the facility operators as well as the safeguard information managers at KAERI, the development of the system is supposed to accommodate the end-user's convenience and the manager's sophisticated specifications as well.

  12. Nuclear knowledge management system in the regulatory activity

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Klevtsov, A.L.; Kravchenko, N.A.

    2010-01-01

    Important issues on collection, storage and spread of knowledge among organisation dealing with the use of nuclear technologies, role of close cooperation between enterprises and organizations in developing knowledge management, general requirements for creating a nuclear knowledge management system are considered. Recommendations and the main mechanisms are identified to create the knowledge management system in technical support organizations of the regulatory authority.

  13. Waste management strategy for nuclear fusion power systems from a regulatory perspective

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.

    1977-12-06

    A waste management strategy for future nuclear fusion power systems is developed using existing regulatory methodology. The first step is the development of a reference fuel cycle. Next, the waste streams from such a facility are identified. Then a waste management system is defined to safely handle and dispose of these wastes. The future regulator must identify the decisions necessary to establish waste management performance criteria. The data base and methodologies necessary to make these decisions must then be developed. Safe management of nuclear fusion wastes is not only a technological challenge, but encompasses significant social, political, and ethical questions as well.

  14. Waste management strategy for nuclear fusion power systems from a regulatory perspective

    International Nuclear Information System (INIS)

    Heckman, R.A.

    1977-01-01

    A waste management strategy for future nuclear fusion power systems is developed using existing regulatory methodology. The first step is the development of a reference fuel cycle. Next, the waste streams from such a facility are identified. Then a waste management system is defined to safely handle and dispose of these wastes. The future regulator must identify the decisions necessary to establish waste management performance criteria. The data base and methodologies necessary to make these decisions must then be developed. Safe management of nuclear fusion wastes is not only a technological challenge, but encompasses significant social, political, and ethical questions as well

  15. A study on the establishment of national nuclear foreign policy with reference to nuclear export control system, strategy toward IAEA, and NPT review conferences

    International Nuclear Information System (INIS)

    Choi, Young Myung; Nam, Jang Soo; Lee, Han Myung

    1990-02-01

    The objectives of this study are follows: suggestion for i) our future nuclear development directions, ii) establishment of national export control system, iii) establishment of strategy toward IAEA, and suggestion of our standpoints toward the 4th NPT review conference. This study proposes the following; 1) It is desirable that nuclear power generation strategy is propelled under the premise of economics and proven technology. And international cooperation in connection with the nuclear fuel cycle should be reinforced. 2) It is recommened that nuclear export control system should be government-led. 3) Our country needs to make efforts in increasing the number of Korean staff in the IAEA, and to establish permanent mission which is wholly responsible for the IAEA affairs, and to construct a system which deals with nuclear foregin activities. 4) It is desirable that the basic position of our country toward the 4th NPT review conference should be : i) to urge parties to the NPT to conclude safeguards agreement with IAEA as early as possible, ii) to request nuclear suppliers to mitigate their nuclear technology for peaceful uses to nuclear developing countries, and iii) to urge nuclear weapon states to make further efforts for nuclear disarmament. (author)

  16. Establishment of nuclear equipment qualification system

    International Nuclear Information System (INIS)

    Joo, Po Kook; Lim, Nam Jin; Lee, Young Gun

    2003-04-01

    This study is carried out by KEARI(Korea Atomic Energy Research Institute) as the lead organization in cooperation with KIMM(Korea Institute of Machinery and Materials), KTL(Korea Testing Laboratory) and KRISS(Korea Research Institute of Standards and Science) to construct a basis of efficient management of nuclear equipment qualification business by expanding test equipment of each of participating organization, and developing qualification technologies. As for KIMM, control system of large scale shaker was replaced with advanced system, and LOCA(Loss of Coolant Accident) test facility was installed. KTL is now capable of conducting seismic tests of nuclear I and C as a result of installation of seismic test equipment during the first two project years. KRISS participated in the Project with a view to have large scale EMI test equipment and related technologies. In parallel with expansion of test equipment, a industrial-educational-research cooperation committee, as an intermediate step toward integrated equipment qualification system to maximize the usage of test equipment, was established and cooperation methods were investigated. As a result, Korea Nuclear Equipment Qualification Association, an corporate juridical person, was established. Research on development of thermal and radiation aging test technology of nuclear materials was carried out by Hanyang University and SECO(Saehan Engineering and Qualification Co., Ltd.). Integrated Equipment Qualification Database was developed which contains material test data, equipment qualification data and other EQ related informations. Standard qualification procedures were developed in order for test laboratories and manufacturers to establish design requirements and to efficiently perform tests

  17. Radionuclide inventories for short run-time space nuclear reactor systems

    International Nuclear Information System (INIS)

    Coats, R.L.

    1993-01-01

    Space Nuclear Reactor Systems, especially those used for propulsion, often have expected operation run times much shorter than those for land-based nuclear power plants. This produces substantially different radionuclide inventories to be considered in the safety analyses of space nuclear systems. This presentation describes an analysis utilizing ORIGEN2 and DKPOWER to provide comparisons among representative land-based and space systems. These comparisons enable early, conceptual considerations of safety issues and features in the preliminary design phases of operational systems, test facilities, and operations by identifying differences between the requirements for space systems and the established practice for land-based power systems. Early indications are that separation distance is much more effective as a safety measure for space nuclear systems than for power reactors because greater decay of the radionuclide activity occurs during the time to transport the inventory a given distance. In addition, the inventories of long-lived actinides are very low for space reactor systems

  18. Nuclear power safety reporting system feasibility analysis and concept description

    International Nuclear Information System (INIS)

    Finlayson, F.C.; Ims, J.R.; Hussman, T.A.

    1984-01-01

    The Aerospace Corporation is assisting the US Nuclear Regulatory Commission (NRC) in the evaluation of the potential attributes of a voluntary, nonpunitive data gathering system for identifying and quantifying the factors that contribute to the occurrence of significant safety problems involving humans in nuclear power plants. The objectives of the Aerospace Administration (FAA)/National Aeronautics and Space Administration (NASA) Aviation Safety Reporting System (ASRS) in order to determine whether it would be feasible to apply part (or all) of the ASRS concepts for collecting data on human factor related incidents to the nuclear industry; and (2) to identify and define the basic elements and requirements of a Nuclear Power Safety Reporting System (NPSRS), assuming the feasibility of implementing such a system was established

  19. Testing and operation of nuclear air-cleaning systems in Qinshan NPP

    International Nuclear Information System (INIS)

    Yang Lin

    1993-01-01

    The components of nuclear air-cleaning system, system function, operational mode and the performance of cleaning components in Qinshan Nuclear Power Plant are described. The items, purpose, methods and results of in-place testing after the installation are also described in detail. The in-place testing verifies that nuclear air-cleaning systems in Qinshan Nuclear Power Plant are reliable and high effective. It also describes the points of the operational management. It is shown that the good operational management is the key which developed prescription function of nuclear air-cleaning systems. At present, Qinshan Nuclear Power Plant will be in full power, the normal operation of the system is satisfied with the demand of safe operation in Qinshan Nuclear Power Company

  20. Applying formal method to design of nuclear power plant embedded protection system

    International Nuclear Information System (INIS)

    Kim, Jin Hyun; Kim, Il Gon; Sung, Chang Hoon; Choi, Jin Young; Lee, Na Young

    2001-01-01

    Nuclear power embedded protection systems is a typical safety-critical system, which detects its failure and shutdowns its operation of nuclear reactor. These systems are very dangerous so that it absolutely requires safety and reliability. Therefore nuclear power embedded protection system should fulfill verification and validation completely from the design stage. To develop embedded system, various V and V method have been provided and especially its design using Formal Method is studied in other advanced country. In this paper, we introduce design method of nuclear power embedded protection systems using various Formal-Method in various respect following nuclear power plant software development guideline

  1. Application of NASA Kennedy Space Center system assurance analysis methodology to nuclear power plant systems designs

    International Nuclear Information System (INIS)

    Page, D.W.

    1985-01-01

    The Kennedy Space Center (KSC) entered into an agreement with the Nuclear Regulatory Commission (NRC) to conduct a study to demonstrate the feasibility and practicality of applying the KSC System Assurance Analysis (SAA) methodology to nuclear power plant systems designs. In joint meetings of KSC and Duke Power personnel, an agreement was made to select to CATAWBA systems, the Containment Spray System and the Residual Heat Removal System, for the analyses. Duke Power provided KSC with a full set a Final Safety Analysis Reports as well as schematics for the two systems. During Phase I of the study the reliability analyses of the SAA were performed. During Phase II the hazard analyses were performed. The final product of Phase II is a handbook for implementing the SAA methodology into nuclear power plant systems designs. The purpose of this paper is to describe the SAA methodology as it applies to nuclear power plant systems designs and to discuss the feasibility of its application. The conclusion is drawn that nuclear power plant systems and aerospace ground support systems are similar in complexity and design and share common safety and reliability goals. The SAA methodology is readily adaptable to nuclear power plant designs because of it's practical application of existing and well known safety and reliability analytical techniques tied to an effective management information system

  2. Reliable control system for nuclear power plant

    International Nuclear Information System (INIS)

    Okamoto, Tetsuo; Miyazaki, Shiro

    1980-01-01

    The System 1100 for nuclear power plants is the measuring and control system which utilizes the features of the System 1100 for electric power market in addition to the results of nuclear instrumentation with EBS-ZN series, and it has the following features. The maintenance and inspection in operation are easy. The construction of control loops is made flexibly by the combination of modules. The construction of multi-variable control system using mainly feed forward control is easy. Such functions as the automatic switching of control modes can be included. The switching of manual and automatic operations is easy, and if some trouble occurred in a module, the manual operation can be made. The aseismatic ability is improved by rigid structure cubicles. Nonflammable materials are used for wires, multi-core cables, paints and printed boards. The anti-noise characteristics are improved, and the reliability is high. The policy of developing the System 1100 for nuclear power plants, the type approval tests on modules and units and the type approval test on the system are described. The items of the system type approval test were standard performance test, earthquake test, noise isolation test, temperature and humidity test, and drift test. The aseismatic cubicle showed good endurance in its vibration test. (Kako, I.)

  3. A portable meteorological station plus nuclear radiation monitoring system using a basic-8052 micro-controller

    International Nuclear Information System (INIS)

    Al-Mohamad, A.; Aghabi, S.; Weiss, C.

    2002-01-01

    a portable meteorology station capable of measuring various atmospheric parameters (mainly ambient temperature, relative humidity, atmospheric pressure, wind speed and direction) was designed and built. The physical quantities were converted to electrical signals using suitable sensors. These signals were then processed and transferred to digital values to be stored in suitable memories. A nuclear radiation alarm system was also built, on the main board, to monitor the nuclear radiation releases levels. The system consists of three main parts: control board, data acquisition board and signals conditioning board. the overall system is controlled by a BASIC-8052 micro-controller. (authors)

  4. Applicability of trends in nuclear safety analysis to space nuclear power systems

    International Nuclear Information System (INIS)

    Bari, R.A.

    1992-01-01

    A survey is presented of some current trends in nuclear safety analysis that may be relevant to space nuclear power systems. This includes: lessons learned from operating power reactor safety and licensing; approaches to the safety design of advanced and novel reactors and facilities; the roles of risk assessment, extremely unlikely accidents, safety goals/targets; and risk-benefit analysis and communication

  5. System for assembling nuclear fuel elements

    International Nuclear Information System (INIS)

    1980-01-01

    An automatic system is described for assembling nuclear fuel elements, in particular those employing mixed oxide fuels. The system includes a sealing mechanism which allows movement during the assembling of the fuel element along the assembly stations without excessive release of contaminants. (U.K.)

  6. Use of expert systems in nuclear power plants

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1989-01-01

    The application of technologies, particularly expert systems, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which expert systems can increase the efficiency and effectiveness of overall plant and corporate operations. This document presents a number of potential applications of expert systems in the nuclear power field. 36 refs., 2 tabs

  7. Nuclear plant engineering work and integrated management system

    International Nuclear Information System (INIS)

    Ohkubo, Y.; Obata, T.; Tanaka, K.

    1992-01-01

    The Application of computers to the design, engineering, manufacturing and construction works of nuclear power plants has greatly contributed to improvement of productivity and reliability in the nuclear power plants constructed by Mitsubishi Nuclear Group for more than ten years. However, in most cases, those systems have been developed separately and utilized independently in different computer software and hardware environments and have not been fully utilized to achieve high efficiency and reliability. In order to drastically increase the productivity and efficiency, development of NUclear power plant engineering Work and INtegrated manaGement System (NUWINGS) started in 1987 to unify and integrate various conventional and developing systems using the state-of-the-art computer technology. The NUWINGS is almost completed and is now applied to actual plant construction. (author)

  8. The Nuclear Fuel Cycle Information System

    International Nuclear Information System (INIS)

    1987-02-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities. Its purpose is to identify existing and planned nuclear fuel cycle facilities throughout the world and to indicate their main parameters. It includes information on facilities for uranium ore processing, refining, conversion and enrichment, for fuel fabrication, away-from-reactor storage of spent fuel and reprocessing, and for the production of zirconium metal and Zircaloy tubing. NFCIS currently covers 271 facilities in 32 countries and includes 171 references

  9. Development of Nuclear ship Engineering Simulation SYstem (NESSY)

    International Nuclear Information System (INIS)

    Kusunoki, Tsuyoshi; Kyouya, Masahiko; Takahashi, Teruo; Kobayashi, Hideo; Ochiai, Masa-aki; Hashidate, Kouji.

    1993-11-01

    NESSY has been developed for design studies of advanced marine reactors as a part of nuclear ship research and development since 1987. Engineering simulation model of the Mutsu, which is the first nuclear ship in Japan, was completed in March of 1993. In this report we concentration on detail description of softwares for Mutsu modeling. The aims of development of NESSY are as follows; (1) Assessment and confirmation on plant performance of an advanced marine reactor in each step of nuclear ship design (2) Development of abnormality diagnosis system and operator support system as a part of enhanced automization study, and study of human interface with hardware The characteristics of NESSY are the followings. (1) Total engineering simulation system simulate simultaneously ship motions, propulsion system behavior, and nuclear plant behavior under given weather and sea conditions. (2) Models based on physical theory as far as possible. (3) The simulator has high extensibility and flexibility. It is able to apply to other reactors, as the simulation model consists of the part of basic model and the part of plant data which are easy to change. After completion of Mutsu modeling, we are planning to utilize this system as one of design tools for an advanced marine reactor. (author)

  10. Nuclear reactor power control system based on flexibility model

    International Nuclear Information System (INIS)

    Li Gang; Zhao Fuyu; Li Chong; Tai Yun

    2011-01-01

    Design the nuclear reactor power control system in this paper to cater to a nonlinear nuclear reactor. First, calculate linear power models at five power levels of the reactor as five local models and design controllers of the local models as local controllers. Every local controller consists of an optimal controller contrived by the toolbox of Optimal Controller Designer (OCD) and a proportion-integration-differentiation (PID) controller devised via Genetic Algorithm (GA) to set parameters of the PID controller. According to the local models and controllers, apply the principle of flexibility model developed in the paper to obtain the flexibility model and the flexibility controller at every power level. Second, the flexibility model and the flexibility controller at a level structure the power control system of this level. The set of the whole power control systems corresponding to global power levels is to approximately carry out the power control of the reactor. Finally, the nuclear reactor power control system is simulated. The simulation result shows that the idea of flexibility model is feasible and the nuclear reactor power control system is effective. (author)

  11. The Baker system for nuclear access authorization screening: a psychologically developed system for access screening of vendor and owner applicants at nuclear power plants

    International Nuclear Information System (INIS)

    Baker, E.G.; Crouter, F.L.

    1985-01-01

    This paper presents a comprehensive screening program for unescorted access which has proven to be highly effective in determining the intergrity, trustworthiness, socialibility, behaviors and tendencies of an employee applicant--past, present and future. This procedure, designed specifically for the nuclear industry, can be used with owner or vendor applicants, and meets or exceeds all of the NRC's requirements. The Baker system has been used for nuclear selection since 1979

  12. The status of nuclear fuel cycle system analysis for the development of advanced nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Seong Ki; Lee, Hyo Jik; Chang, Hong Rae; Kwon, Eun Ha; Lee, Yoon Hee; Gao, Fanxing [KAERI, Daejeon (Korea, Republic of)

    2011-11-15

    The system analysis has been used with different system and objectives in various fields. In the nuclear field, the system can be applied from uranium mining to spent fuel reprocessing or disposal which is called the nuclear fuel cycle. The analysis of nuclear fuel cycle can be guideline for development of advanced fuel cycle through integrating and evaluating the technologies. For this purpose, objective approach is essential and modeling and simulation can be useful. In this report, several methods which can be applicable for development of advanced nuclear fuel cycle, such as TRL, simulation and trade analysis were explained with case study

  13. The Management System for Nuclear Installations. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a) To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b) As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c) To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a) Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b) Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c) Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d) Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e) Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear

  14. Experience in Modelling Nuclear Energy Systems with MESSAGE: Country Case Studies

    International Nuclear Information System (INIS)

    2018-01-01

    Member States have recognized the increasing need to model future nuclear power scenarios in order to develop strategies for sustainable nuclear energy systems. The IAEA model for energy supply strategy alternatives and their general environmental impacts (MESSAGE) code is a tool that supports energy analysis and planning in Member States. This publication documents the experience gained on modelling and scenario analysis of nuclear energy systems (NES) using the MESSAGE code through various case studies performed by the participating Member States on evaluation and planning for nuclear energy sustainability at the regional or national level. The publication also elaborates on experience gained in modelling of global nuclear energy systems with a focus on specific aspects of collaboration among technology holder and technology user countries and the introduction of innovative nuclear technologies. It presents country case studies covering a variety of nuclear energy systems based on a once-through fuel cycle and a closed fuel cycle for thermal reactors, fast reactors and advanced systems. The feedback from case studies proves the analytical capabilities of the MESSAGE model and highlight the path forward for further advancements in the MESSAGE code and NES modelling.

  15. A new advanced software platform for nuclear power plant process information systems

    International Nuclear Information System (INIS)

    Sorsa, A.

    1993-01-01

    In the late 80s, ABB Stromberg Power Ltd. started the development of a new generation software platform for the power plant Process Information System (PIS). This development resulted in a software platform called Procontrol PMS. Procontrol PMS is a platform for fully distributed systems which provides the following features: distributed data processing, non-stop architecture, low-cost incremental expansion path, open network architecture, high functionality, effective application development environment, and advanced user interface services. A description of the structure of the Procontrol PMS software is given. ABB has received by May 1992 six orders for nuclear power plant PISs based on Procontrol PMS (4 for PWR plants, 2 for BWRs). The first Procontrol PMS based nuclear power plant PIS was commissioned in 1989 at the Loviisa nuclear power plant and has been running with 100% availability since the commissioning. (Z.S.) 2 figs

  16. Nuclear maintenance and management system

    International Nuclear Information System (INIS)

    Yamaji, Yoshihiro; Abe, Norihiko

    2000-01-01

    The Mitsubishi Electric Co., Ltd. has developed to introduce various computer systems for desk-top business assistance in a power plant such as system isolation assisting system, operation parameter management system, and so on under aiming at business effectiveness since these ten and some years. Recently, by further elapsed years of the plants when required for further cost reduction and together with change of business environment represented by preparation of individual personal computer, further effectiveness, preparation of the business environment, and upgrading of maintenance in power plant business have been required. Among such background, she has carried out various proposals and developments on construction of a maintenance and management system integrated the business assistant know-hows and the plant know-hows both accumulated previously. They are composed of three main points on rationalization of business management and document management in the further effectiveness, preparation of business environment, TBM maintenance, introduction of CBM maintenance and introduction of maintenance assistance in upgrading of maintenance. Here was introduced on system concepts aiming at the further effectiveness of the nuclear power plant business, preparation of business environment, upgrading of maintenance and maintenance, and so on, at a background of environment around maintenance business in the nuclear power plants (cost-down, highly elapsed year of the plant, change of business environment). (G.K)

  17. A nuclear medicine information system that allows reporting and sending images through intranet

    International Nuclear Information System (INIS)

    Anselmi, C.E.; Anselmi, O.E.

    2002-01-01

    A nuclear medicine information system that allows reporting and sending images through intranet. Aim: This system was developed in order to improve the processes of typing, correcting, verifying and distribution of the reports and images, improving the efficiency of the personnel in the nuclear medicine department and reducing the time between the creation of the report and its reading by the referring physician. Materials and Methods: The system runs a web server (Personal Web Server, Microsoft) which serves web pages written in hypertext markup language (HTML) and active server pages (ASP). The database utilized is Microsoft Access 97. The whole communication between the web server and the database is performed by the programs written in ASP. Integrating the images from the patients is done through a 486 ibm-pc running Red Hat Linux, which serves as an intermediary between the isolated nuclear medicine network and the hospital's network. Results: The time from report verification and referring physician reading has decreased from approximately 24 hours to 12 hours. It is possible to run queries in the system in order to get productivity reports or clinical research. Imaging storage allows for correlation of current and previous studies. Conclusion: Bureaucratic processes have diminished to a certain extent in the department. Reports are now online as soon as they are verified by the nuclear medicine physician. There is no need to install dedicated software in the viewing stations since the whole system runs in the server

  18. Developing a computerized aging management system for concrete structures in finnish nuclear power plants

    International Nuclear Information System (INIS)

    Al-Neshawy, F.; Piironen, J.; Sistonen, E.; Vesikari, E.; Tuomisto, M.; Hradil, P.; Ferreira, M.

    2013-01-01

    Finland has four nuclear reactors units in two power plants. The first unit started operation in 1977 and in the early 1980's all four units were in use. During the last few years the aging management of the Nuclear Power Plant's (NPP) concrete structures has grown an important issue because the existing structures are reaching the end of their licensed operating lifetime (about 40 years). Therefore the nuclear power companies are developing aging management systems to avoid premature degradation of NPP facilities and to be able to extend their operating lifetime. This paper is about the development of a computerized ageing management system for the nuclear power plants concrete structures. The computerized ageing management system is built upon central database and implementation applications. It will assist the personnel of power companies to implement the aging management activities at different phases of the lifetime of a power plant. It will provide systematic methods for planning, surveillance, inspection, monitoring, condition assessment, maintenance and repair of structures. (authors)

  19. Reliability of emergency ac power systems at nuclear power plants

    International Nuclear Information System (INIS)

    Battle, R.E.; Campbell, D.J.

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project

  20. Decommissioning engineering systems for nuclear facilities and knowledge inheritance for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Tachibana, Mitsuo

    2016-01-01

    Information on construction, operation and maintenance of a nuclear facility is essential in order to plan and implement the decommissioning of the nuclear facility. A decommissioning engineering system collects these information efficiently, retrieves necessary information rapidly, and support to plan the reasonable decommissioning as well as the systematic implementation of dismantling activities. Then, knowledge of workers involved facility operation and dismantling activities is important because decommissioning of nuclear facility will be carried out for a long period. Knowledge inheritance for decommissioning has been carried out in various organizations. This report describes an outline of and experiences in applying decommissioning engineering systems in JAEA and activities related to knowledge inheritance for decommissioning in some organizations. (author)

  1. Nuclear power plant personnel training process management system

    International Nuclear Information System (INIS)

    Arjona Vazquez, Orison; Venegas Bernal, Maria del Carmen; Armeteros Lopez, Ana L.

    1996-01-01

    The system in charge the management of the training process personnel from a nuclear power plant was designed taking into account all the requirements stated in the training guide for nuclear power plant personnel and their evaluation, which were prepared by the IAEA in 1995 in order to implement the SAT in the training programs for nuclear plant personnel. In the preparations of formats and elements that shape the system, account has been taken of the views expressed in such a guide, in some other bibliography that was consulted, and in the authors own opinion mainly with regard to those issues which the guide does not go deeper into

  2. Thirty-five years of successful international cooperation in nuclear knowledge preservation: The International Nuclear Information System (INIS)

    International Nuclear Information System (INIS)

    Atieh, T.; Workman, R.

    2006-01-01

    This paper describes the operations and main activities of the International Nuclear Information System (INIS), which was established 35 years ago as the international mechanism for exchanging information in the fields of peaceful uses of nuclear sciences and technology. It outlines the system's main features, users and products. International cooperation and decentralisation are the distinguishing features of this system. INIS produces, maintains and preserves Member States knowledge in these fields. The system has been instrumental in supporting national nuclear programmes, and thousands of scientists, researchers and universities students are using INIS products to retrieve current and historical nuclear information. (author)

  3. Training programs for the systems approach to nuclear security

    International Nuclear Information System (INIS)

    Ellis, D.

    2005-01-01

    Full text: In support of United States Government (USG) and International Atomic Energy Agency (IAEA) nuclear security programs, Sandia National Laboratories (SNL) has advocated and practiced a risk-based, systematic approach to nuclear security. The risk equation has been developed and implemented as the basis for a performance-based methodology for the design and evaluation of physical protection systems against a design basis threat (DBT) for theft and sabotage of nuclear and/or radiological materials. Integrated systems must include technology, people, and the man-machine interface. A critical aspect of the human element is training on the systems-approach for all the stakeholders in nuclear security. Current training courses and workshops have been very beneficial but are still rather limited in scope. SNL has developed two primary international classes - the international training course on the physical protection of nuclear facilities and materials, and the design basis threat methodology workshop. SNL is also completing the development of three new courses that will be offered and presented in the near term. They are vital area identification methodology focused on nuclear power plants to aid in their protection against radiological sabotage, insider threat analysis methodology and protection schemes, and security foundations for competent authority and facility operator stakeholders who are not security professionals. In the long term, we envision a comprehensive nuclear security curriculum that spans policy and technology, regulators and operators, introductory and expert levels, classroom and laboratory/field, and local and offsite training options. This training curriculum will be developed in concert with a nuclear security series of guidance documents that is expected to be forthcoming from the IAEA. It is important to note that while appropriate implementation of systems based on such training and documentation can improve the risk reduction, such a

  4. The ‘Landscape’ of Nuclear Safeguards: A Comparative Analysis of the International and Regional Systems

    International Nuclear Information System (INIS)

    Colussi, I.A.

    2015-01-01

    The notion of “nuclear non-proliferation” is twofold. It refers to: (a) reduction of the number of existing arsenals (vertical non-proliferation), and (b) containment of the number of States that possess nuclear weapons, or control of non-state actors (horizontal non-proliferation). At the international law level, as vertical non-proliferation, there are bilateral or multilateral agreements that ban weapons of mass destruction in certain areas (e.g.: Nuclear–Weapon– Free Zones treaties). With respect to horizontal non-proliferation, beyond the Nuclear-Weapon-Free Zones approach, the main legal text for addressing the issue is the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). For the implementation of the principles contained in the NPT, anuclear safeguards” system has been created, and the International Atomic Energy Agency (IAEA) has been assigned the role of the nuclear “watchdog” for the NPT. However, along with this international system of safeguards, there are regional safeguards bodies: (a) the European Atomic Energy Community (EURATOM) model is the cornerstone of non-proliferation in the EU, while (b) the Brazilian-Argentine Agency for Accounting for and Control of Nuclear Materials (ABACC) controls nuclear activities in Brazil and Argentina. Moreover, the existing nuclear weapons free-zone treaties contain safeguards provisions that are additional or complementary to IAEA safeguards. For instance, (a) the Agency for the Prohibition of Nuclear Weapons in Latin America and the Caribbean (OPANAL) works for the implementation of Tlatelolco Treaty, (b) the African Commission on Nuclear Energy relates to Pelindaba Treaty, and (c) a Consultative Committee of the Parties is appointed in the context of Raratonga Treaty. The paper aims at critically analysing the different safeguards systems adopted at the international and regional level, through the adoption of a comparative approach. (author)

  5. Nuclear power systems for Lunar and Mars exploration

    International Nuclear Information System (INIS)

    Sovie, R.J.; Bozek, J.M.

    1994-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications

  6. Retrofitting Trojan Nuclear Plant's spent resin transfer system

    International Nuclear Information System (INIS)

    Pierce, R.E.

    1979-01-01

    The spent resin slurry transport system at the Trojan Nuclear Plant operated by Portland General Electric Company is one of the most advanced systems of its type in the nuclear industry today. The new system affords the plant's operators safe remote sonic indication for spent resin and cover water levels, manual remote dewatering and watering capability to establish desirable resin-to-water volumetric ratios, reliable non-mechanical resin agitation utilizing fixed spargers, and controllable process flow utilizing a variable speed recessed impeller pump

  7. A probabilistic approach to safety/reliability of space nuclear power systems

    International Nuclear Information System (INIS)

    Medford, G.; Williams, K.; Kolaczkowski, A.

    1989-01-01

    An ongoing effort is investigating the feasibility of using probabilistic risk assessment (PRA) modeling techniques to construct a living model of a space nuclear power system. This is being done in conjunction with a traditional reliability and survivability analysis of the SP-100 space nuclear power system. The initial phase of the project consists of three major parts with the overall goal of developing a top-level system model and defining initiating events of interest for the SP-100 system. The three major tasks were performing a traditional survivability analysis, performing a simple system reliability analysis, and constructing a top-level system fault-tree model. Each of these tasks and their interim results are discussed in this paper. Initial results from the study support the conclusion that PRA modeling techniques can provide a valuable design and decision-making tool for space reactors. The ability of the model to rank and calculate relative contributions from various failure modes allows design optimization for maximum safety and reliability. Future efforts in the SP-100 program will see data development and quantification of the model to allow parametric evaluations of the SP-100 system. Current efforts have shown the need for formal data development and test programs within such a modeling framework

  8. International outage coding system for nuclear power plants. Results of a co-ordinated research project

    International Nuclear Information System (INIS)

    2004-05-01

    The experience obtained in each individual plant constitutes the most relevant source of information for improving its performance. However, experience of the level of the utility, country and worldwide is also extremely valuable, because there are limitations to what can be learned from in-house experience. But learning from the experience of others is admittedly difficult, if the information is not harmonized. Therefore, such systems should be standardized and applicable to all types of reactors satisfying the needs of the broad set of nuclear power plant operators worldwide and allowing experience to be shared internationally. To cope with the considerable amount of information gathered from nuclear power plants worldwide, it is necessary to codify the information facilitating the identification of causes of outages, systems or component failures. Therefore, the IAEA established a sponsored Co-ordinated Research Project (CRP) on the International Outage Coding System to develop a general, internationally applicable system of coding nuclear power plant outages, providing worldwide nuclear utilities with a standardized tool for reporting outage information. This TECDOC summarizes the results of this CRP and provides information for transformation of the historical outage data into the new coding system, taking into consideration the existing systems for coding nuclear power plant events (WANO, IAEA-IRS and IAEA PRIS) but avoiding duplication of efforts to the maximum possible extent

  9. INIS: new world-wide nuclear information system

    International Nuclear Information System (INIS)

    Ohmori, Eiichi; Furuya, Minoru

    1976-01-01

    A new search system utilizing Atomindex is expounded. The nuclear information system of United States of America will be shifted to the larger scale system, Atomindex, at the moment of discontinuing the publication of Nuclear Science Abstract (NSA). This shifting exerts large or small influence upon the information systems of the other countries. The Atomindex is a publication of the International Nuclear Information System (INIS), and it includes most market unavailable reports. It is delivered through the clearing house to the users. Main differences between INIS and NSA are illustrated. Each piece of literature is listed under one or more descriptor pairs. Each pair is composed of the main heading and its qualifier, both of which are descriptors. Atomindex employs four working languages, namely English, French, Russian and Spanish. However, a version in the original language, even when this is not a working language can be recorded on magnetic tapes. Many special characters (suffixes, Greek, etc.) as well as alphabet are used, and italic type or boldface can be designated, so that the quality of Atomindex is better than that of NSA. The tapes for SDI and RS will be utilized as on-line real time systems. The second generation that utilizes the computer seems to be superseding the first generation that turns over the abstracts page by page. (Iwakiri, K.)

  10. The Nuclear Employee Data System (NEDS)

    International Nuclear Information System (INIS)

    Elliott, J.M.

    1985-01-01

    The Nuclear Employee Data System (NEDS) is a centralized, dedicated, computer-based information management system designed to provide participating utilities with information that allows them to grant unescorted access to transient workers. The ability to access security-related information on individuals is one of the most important features of the NEDS. This paper discusses the sponsorship, management, system development activities, and system configuration and provides a cost/benefit ratio

  11. General framework and key technologies of national nuclear emergency system

    International Nuclear Information System (INIS)

    Yuan Feng; Li Xudong; Zhu Guangying; Song Yafeng; Zeng Suotian; Shen Lifeng

    2014-01-01

    Nuclear emergency is the important safeguard for the sustainable development of nuclear energy, and is the significant part of national public crisis management. The paper gives the definition of nuclear emergency system explicitly based on the analysis of the characteristics of the nuclear emergency, and through the research of the structure and general framework, the general framework of the national nuclear emergency management system (NNEMS) is obtained, which is constructed in four parts, including one integrative platform, six layers, eight applications and two systems, then the paper indicate that the architecture of national emergency system that should be laid out by three-tiers, i.e. national, provincial and organizations with nuclear facilities, and also describe the functions of the NNEMS on the nuclear emergency's workflow. Finally, the paper discuss the key technology that NNIEMS needed, such as WebGIS, auxiliary decision-making, digitalized preplan and the conformity and usage of resources, and analyze the technical principle in details. (authors)

  12. Establishment of nuclear business management system

    International Nuclear Information System (INIS)

    Ahn, Jong Hwan; Cho, Suk Hong; Oh, Du Sub; Kim, Sung Ki; Choi, Young Lok; Kim, Hwa Sup; Jun, Sang Jin; Yoon, Hyung Mo; Park, Jae Hong; Song, Tae Gil

    1991-01-01

    For the formulation of the technology development strategies the nuclear core technology, environmental analysis has been performed in four aspects: ecological environment, energy economy, nuclear policy and R and D environment. After analyzing the environment and identifying the opportunities and threats from the environment, the strategies on individual and organizational level have been developed for both of the short-term and long-term periods. For the betterment of nuclear business management, the management information system, management by objective and the mechanism for the enhancement of negotiation power in the international agreement have been studied. (Author)

  13. Computerized systems for on-line management of failures: a state-of-the-art discussion of alarm systems and diagnostic systems applied in the nuclear industry

    International Nuclear Information System (INIS)

    Kim, I.S.

    1994-01-01

    It is now well perceived in the nuclear industry that improving plant information systems is vital for enhancing the operational safety of nuclear power plants. Considerable work is underway worldwide to support operators' decision-making, particularly in their difficult tasks of managing process anomalies on-line. The work includes development of (1) advanced alarm systems, such as various kinds of computer-based alarm processing systems, Critical Function Monitoring System, Success Path Monitoring System and Safety Assessment System II, and (2) real-timer diagnostic systems, such as Disturbance Analysis System, Maryland Operator Advisory System II, Model-Integrated Diagnostic Analysis System, Diagnosis System using Knowledge Engineering Technique, Detailed Diagnosis, and Operator Advisor System. This paper presents a state-of-the-art review of plant information systems for on-line management of failures in nuclear power plants, focusing on the methodological features of computerized alarm systems and diagnostic systems. (author)

  14. Development of high-reliability control system for nuclear power plants

    International Nuclear Information System (INIS)

    Asami, K.; Yanai, K.; Hirose, H.; Ito, T.

    1983-01-01

    In Japan, many nuclear power generating plants are in operation and under construction. There is a general awareness of the problems in connection with nuclear power generation and strong emphasis is put on achieving highly reliable operation of nuclear power plants. Hitachi has developed a new high-reliability control system. NURECS-3000 (NUclear Power Plant High-REliability Control System), which is applied to the main control systems, such as the reactor feedwater control system, the reactor recirculation control system and the main turbine control system. The NURECS-3000 system was designed taking into account the fact that there will be failures, but the aim is for the system to continue to function correctly; it is therefore a fault-tolerant system. It has redundant components which can be completely isolated from each other in order to prevent fault propagation. The system has a hierarchical configuration, with a main controller, consisting of a triplex microcomputer system, and sub-loop controllers. Special care was taken to ensure the independence of these subsystems. Since most of the redundant system failures are caused by common-mode failures and the reliability of redundant systems depends on the reliability of the common-mode parts, the aim was to minimize these parts. (author)

  15. An approach to the successful design of a minicomputer system for nuclear materials management

    International Nuclear Information System (INIS)

    Paul, R.N.; Anderson, L.L.

    1978-08-01

    A development laboratory to study nuclear fuel fabrication techniques is in operation at the Chalk River Nuclear Laboratories (CRNL). To assist operators in the management of nuclear materials in this laboratory, a minicomputer system (INMACS) has been designed and installed. INMACS is implemented on a PDP-11 with a RSTS/E operating system. A data base management package with on-line backup capability has been developed for this application. Fifteen man-years of effort have been spent on designing and building the system. This paper will discuss the philosophy and the design approach followed for the implementation of INMACS. Clear problem definition and careful system design, effective liaison with the users, detailed program specifications, proper co-ordination of the software development effort, and thorough testing of the integrated system, have all contributed to the achievement of the design goals. INMACS has been readily accepted by the users who were previously not conversant with computers. After eight months of operation, no program changes have been necessary and the system has been performing successfully as specified. (author)

  16. Nuclear plant requirements during power system restoration

    International Nuclear Information System (INIS)

    Adamski, G.; Jenkins, R.; Gill, P.

    1995-01-01

    This paper is one of a series presented on behalf of the System Operation Subcommittee with the intent of focusing industry attention on power system restoration issues. This paper discusses a number of nuclear power plant requirements that require special attention during power system restoration

  17. Concerning improvement and reform towards a more effective and realisable nuclear liability legal system in Japan

    International Nuclear Information System (INIS)

    Iizuka, H.

    2006-01-01

    Japan is the only country in the world that has ever experienced being attacked by atomic bombs. Japanese people have a special feeling towards nuclear power. Japan has opted for an unlimited liability system, which is regarded as a hospitable one to victims in Japan. Under the existing unlimited liability system in Japan, however, there is a problem that nuclear operators cannot necessarily foresee the probable limit of their risks to owe. In this paper, I want to present problems of the nuclear liability legal system, and proposals for improvement and reform towards more effective and realisable system in Japan. (author)

  18. Next Generation Nuclear Plant System Requirements Manual

    International Nuclear Information System (INIS)

    Not Listed

    2008-01-01

    System Requirements Manual for the NGNP Project. The Energy Policy Act of 2005 (H.R. 6; EPAct), which was signed into law by President George W. Bush in August 2005, required the Secretary of the U.S. Department of Energy (DOE) to establish a project to be known as the Next Generation Nuclear Plant (NGNP) Project. According to the EPAct, the NGNP Project shall consist of the research, development, design, construction, and operation of a prototype plant (to be referred to herein as the NGNP) that (1) includes a nuclear reactor based on the research and development (R and D) activities supported by the Generation IV Nuclear Energy Systems initiative, and (2) shall be used to generate electricity, to produce hydrogen, or to both generate electricity and produce hydrogen. The NGNP Project supports both the national need to develop safe, clean, economical nuclear energy and the Nuclear Hydrogen Initiative (NHI), which has the goal of establishing greenhouse-gas-free technologies for the production of hydrogen. The DOE has selected the helium-cooled High Temperature Gas-Cooled Reactor (HTGR) as the reactor concept to be used for the NGNP because it is the only near-term Generation IV concept that has the capability to provide process heat at high-enough temperatures for highly efficient production of hydrogen. The EPAct also names the Idaho National Laboratory (INL), the DOE's lead national laboratory for nuclear energy research, as the site for the prototype NGNP

  19. A coupled nuclear reactor thermal energy storage system for enhanced load following operation

    International Nuclear Information System (INIS)

    Alameri, Saeed A.; King, Jeffrey C.

    2013-01-01

    Nuclear power plants operate most economically at a constant power level, providing base load electric power. In an energy grid containing a high fraction of renewable power sources, nuclear reactors may be subject to significantly variable power demands. These variable power demands can negatively impact the effective capacity factor of the reactor and result in severe economic penalties. Coupling a nuclear reactor to a large thermal energy storage block will allow the reactor to better respond to variable power demands. In the system described in this paper, a Prismatic core Advanced High Temperature Reactor supplies constant power to a lithium chloride molten salt thermal energy storage block that provides thermal power as needed to a closed Brayton cycle energy conversion system. During normal operation, the thermal energy storage block stores thermal energy during the night for use in the times of peak demand during the day. In this case, the nuclear reactor stays at a constant thermal power level. After a loss of forced circulation, the reactor reaches a shut down state in less than half an hour and the average fuel, graphite and coolant temperatures remain well within the design limits over the duration of the transient, demonstrating the inherent safety of the coupled system. (author)

  20. Esfas: An information system on worldwide nuclear power stations

    International Nuclear Information System (INIS)

    Melis, M.

    1990-01-01

    While performing the analysis and transcoding of about 30.000 abnormal events happened in nuclear power stations, in the frame of the AORS - Abnormal Occurrences Reporting System project (CEC-Joint Research Centre, Ispra), it was clear to the transcoders (12 nuclear engineers) that, for a good understanding of the true sequence and safety relevance of events, it was necessary to identify the plant layout and the characteristics of safety and auxiliary systems. This exigence, together with the systematic collection of publicly available information (safety reports, utilities descriptions of plants, etc.) was the starting point for the development of ESFAS - Engineered Safety Features and Auxiliary Systems data base, conceived as a tool for the various phases of nuclear plant/system design, up to operational data analysis

  1. A knowledge based operator support system for emergency conditions in nuclear power plants

    International Nuclear Information System (INIS)

    Venkatesh Babu, C.; Subramanium, K.

    1992-01-01

    The control centres of the operating Indian nuclear power plants contain a large number of indicators and controls spread over many panels. In the event of onset of an emergency condition, there results a profusion of information, both numeric and symbolic. The operator may succumb to an information and cognitive overload that may be compounded by a lack of knowledge. The failure to apply knowledge and reasoning to solve an operational problem can lead to human error, which has been a major contributing factor in nuclear accidents. From the viewpoint of Artificial Intelligence, human error occurs if the operational problem requires computing resources that exceed human capabilities. The application of Artificial Intelligence, particularly expert systems, to nuclear power plant control room activities has considerable potential to reduce operator error and improve safety and reliability. The purpose of this paper is to discuss an investigative study of the feasibility of developing an operator support system incorporating Artificial Intelligence techniques. An information processing model of such a system, herein designated as Knowledge Based Operator Support System - KBOSS, employing expert systems technology, has been developed. The features of this system are described, and issues involved in its development are discussed. (author). 2 refs., 5 figs., 1 tab

  2. Maintenance systems and procedures used in a nuclear power station and their relevance to other industries

    International Nuclear Information System (INIS)

    Kirk, R.R.

    1985-01-01

    The maintenance systems and procedures used at the Forsmark Nuclear Power Plant in Sweden can be viewed as a model which maintenance managers in other non-nuclear industries may adapt for their purposes. With the aid of a computerized information system covering the functions of work orders, preventative maintenance, documentation and others, plus a more conventional personnel structure, the result is an efficient, confident and well informed maintenance group. By following the basic design principles of the computerized information system used at the Forsmark Nuclear Power Station plus similar personnel structures, the performance of maintenance teams in non-nuclear manufacturing, processing and other industries could be improved to the standards of those observed

  3. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  4. Cross-cutting european thermal-hydraulics research for innovative nuclear systems

    International Nuclear Information System (INIS)

    Roelofs, F.; Class, A.; Cheng, X.; Meloni, P.; Van Tichelen, K.; Boudier, P.; Prasser, M.

    2010-01-01

    Thermal-hydraulics is recognized as a key scientific subject in the development of different innovative nuclear reactor systems. From the thermal-hydraulic point of view, different innovative reactors are mainly characterized by their coolants (gas, water, liquid metals and molten salt). This results in different micro- and macroscopic behavior of flow and heat transfer and requires specific models and advanced analysis tools. However, many common thermal-hydraulic issues are identified among various innovative nuclear systems. In Europe, such cross-cutting thermal-hydraulic issues are the subject of the 7. framework programme THINS (Thermal-Hydraulics of Innovative Nuclear Systems) project which runs from 2010 until 2014. This paper will describe the activities in this project which address the main identified thermal hydraulics issues for innovative nuclear systems. (authors)

  5. Estimating inhalation hazards for space nuclear power systems

    International Nuclear Information System (INIS)

    Hoover, M.D.; Cuddihy, R.G.; Seiler, F.Z.

    1989-01-01

    Minimizing inhalation hazards is a major consideration in the design, development, transportation, handling, testing, storage, launch, use, and ultimate disposition of nuclear space power systems (NSPSs). An accidental dispersion of 238 Pu is of concern for missions involving the radioisotope thermoelectric generators (RTGs) or lightweight radioisotope heater units. Materials of concern for missions involving a nuclear reactor might include other radionuclides, such as uranium, or chemically toxic materials, such as beryllium or lithium. This paper provides an overview of some of the current approaches and uncertainties associated with estimating inhalation hazards from potential NSPS accidents. The question of whether inhalation risks can be acceptable for nuclear space power systems is still open and active. The inherently low toxicity of the uranium fuel of a space nuclear reactor is a desirable feature of that option. The extensive engineering and testing that have contributed to the current generation of plutonium RTGs provide a measure of confidence that dispersion of the RTG fuel would be unlikely in an accident. The use of nuclear reactors or RTGs in space, however, requires society to assume a risk (albeit low) for dispersion of the fuel material. It can be argued that any additional risks from the use of nuclear power in space are far less than the risks we face daily

  6. Establishment of nuclear data system

    International Nuclear Information System (INIS)

    Chang, Jong Hwa; Kim, J. D.; Oh, S. Y.; Lee, Y. O.; Gil, C. S.; Cho, Y. S.

    1997-01-01

    Fission fragment data have been collected and added to the existing nuclear database system. A computer program was written for generating on-line graphs of energy-dependent neutron reaction cross section. This program deals with about 300 major nuclides and serves on the internet. As a part of nuclear data evaluation works, the covariance data for neutron cross section of structural nuclides were evaluated. Also the elastic and inelastic cross sections were evaluated by using ABAREX and EGNASH2 code. In the field of nuclear data processing, a cross section library for TWODANT code for liquid metal reactor was generated and validated against Russian and French critical reactors. The resonance data for Pu-242 in CASMO-3 library were updated. In addition, continuous-energy libraries for MCNP were generated from ENDF/B-VI.2, JEF-2.2 and JENDL-3.2. These libraries were validated against the results from a series of critical experiments at HANARO. (author). 87 refs., 29 tabs., 23 figs

  7. A systemic approach to the discussion of sustainability of nuclear energy

    International Nuclear Information System (INIS)

    Aegerter, Irene

    2001-01-01

    In 1998 the four Swiss Scientific Academies formed a working group to study sustainability of electricity production. Having been a member of this group since the beginning I witnessed the evolution of the discussion that led to a consensus. The group found the criteria of sustainability to be special for nuclear energy. While the resource uranium is not needed for any other purpose and thus the use of uranium is sustainable, the possible harm to future generations by nuclear reactors is difficult to evaluate: the potential damage can be large but the probability of its occurrence is very small. Therefore some people judge nuclear power as an environmentally friendly source of electricity production and an important contribution towards a sustainable energy future whereas others look at the potential damage and value nuclear power as not sustainable. The discussion of alternatives then reveals that it is definitely not sustainable to replace nuclear power by fossil fuels. This was a consensus reached by the members of the working group, which consists of the pro and anti nuclear camp. Sustainable energy production is a complex topic and not easy to tackle with our everyday methods. The group decided to solve the problem with a systemic approach to get to know the hidden and indirect effects of electricity production and usage. A system approach brings a new concept into the often blocked discussion of proponents and antinuclear people. In order to assure that a holistic evaluation results which reaches a high degree of consensus, several subgroups were formed representing divergent views on the issues analysed. These groups do not communicate their findings while work on their cross impact matrices (CIMs) is under way. The results are compared and discrepancies are discussed. Usually this shows that once the wording of the variables is corrected and their interpretations are shared by the parties involved, consensus concerning evaluations is achieved

  8. A full life cycle nuclear knowledge management framework based on digital system

    International Nuclear Information System (INIS)

    Wang, Minglu; Zheng, Mingguang; Tian, Lin; Qiu, Zhongming; Li, Xiaoyan

    2017-01-01

    Highlights: • A full life cycle nuclear power plant knowledge management framework is introduced. • This framework benefits the safe design, construction, operation and maintenance. • This framework enhances safety, economy and reliability of nuclear power plant. - Abstract: The nuclear power plant is highly knowledge-intensive facility. With the rapid advent and development of modern information and communication technology, knowledge management in nuclear industry has been provided with new approaches and possibilities. This paper introduces a full cycle nuclear power plant knowledge management framework based on digital system and tries to find solutions to knowledge creation, sharing, transfer, application and further innovation in nuclear industry. This framework utilizes information and digital technology to build top-tier object driven work environment, automatic design and analysis integration platform, digital dynamic performance Verification & Validation (V&V) platform, collaborative manufacture procedure, digital construction platform, online monitoring and configuration management which benefit knowledge management in NPP full life cycle. The suggested framework will strengthen the design basis of the nuclear power plants (NPPs) and will ensure the safety of the NPP design throughout the whole lifetime of the plant.

  9. Air-conditioning and ventilation systems and components of nuclear facilities

    International Nuclear Information System (INIS)

    2006-01-01

    The Guide defines the requirements for the design, implementation and operation of the air-conditioning and ventilation systems of nuclear facilities belonging to safety classes 3 and 4, and for the related documents to be submitted to STUK (Radiation and Nuclear Safety Authority, Finland). Furthermore, the Guide describes the inspections of air-conditioning and ventilation systems to be conducted by STUK during construction and operation of the facilities. As far as systems and components belonging to safety class 2 are concerned, STUK sets additional requirements case by case. In general, air-conditioning systems refer to systems designed to manage the indoor air cleanness, temperature, humidity and movement. In some rooms of a nuclear power plant, ventilation systems are also used to prevent radioactive materials from spreading outside the rooms. Guide YVL1.0 defines the safety principles concerning the air-conditioning and ventilation of nuclear power plants. Guide YVL2.0 gives the requirements for the design of nuclear power plant systems. In addition, YVLGuide groups 3, 4, 5 and 7 deal with the requirements for air-conditioning and ventilation systems with regard to the mechanical equipment, fire prevention, electrical systems, instrumentation and control technology, and the restriction of releases. The rules and regulations issued by the Ministry of the Environment and the Ministry of the Interior (RakMK, the Finnish building code) concerning the design and operation of air-conditioning and ventilation systems and the related fire protection design bases also apply to nuclear facilities. Exhaust gas treatment systems, condenser vacuum systems of boiling water reactor plants and leak collection systems are excluded from the scope of this Guide

  10. Remote nuclear screening system for hostile environments

    International Nuclear Information System (INIS)

    Addleman, R.S.; Keele, B.D.

    1996-01-01

    A remote measurement system has been constructed for in situ gamma and beta isotopic characterization of highly radioactive nuclear material in hostile environments. A small collimated, planar CdZnTe detector is used for gamma-ray spectroscopy. Spectral resolution of 2% full width at half maximum at 662 kiloelectronvolts has been obtained remotely using rise time compensation and limited pulse shape discrimination, Isotopc measurement of high-energy beta emitters was accomplished with a ruggedized, deeply depleted, surface barrier silicon dictator. The primary function of the remote nuclear screening system is to provide fast qualitative and quantitative isotopic assessment of high-level radioactive material

  11. NADS - Nuclear and Atomic Data System

    International Nuclear Information System (INIS)

    McKinley, Michael S.; Beck, Bret; McNabb, Dennis

    2005-01-01

    We have developed NADS (Nuclear and Atomic Data System), a web-based graphical interface for viewing pointwise and grouped cross sections and distributions. Our implementation is a client / server model. The client is a Java applet that displays the graphical interface, which has interactive 2-D, 3-D, and 4-D plots and tables. The server, which can serve and perform computations of the data, has been implemented in Python using the FUDGE package developed by Bret Beck at LLNL. Computational capabilities include algebraic manipulation of nuclear evaluated data in databases such as LLNL's ENDL-99, ENDF/B-V, and ENDF/B-VI, as well as user data. Processed data used in LLNL's transport codes are accessible as well. NADS is available from http://nuclear.llnl.gov/

  12. The Enhancement of Nuclear Control and Emergency Preparedness Systems in KAERI

    International Nuclear Information System (INIS)

    Lee, Goan Yup; Lee, B. D.; Kim, J. S.; Park, H. J.

    2008-12-01

    The objective of this study is to foster international environment for peaceful nuclear technology based on the international transparency with respect to the control, management and surveillance system. In this regards, this study establishes, operates and upgrades the nuclear control and management information system of the KAERI that assumed the prerequisite means for Integrated Safeguards systems of the IAEA which is implemented from the July of 2008. It is also included the radiological emergency system that contains the safety information surveillance system in KAERI to meet the national legislative requirements. The nuclear control and management information system of the KAERI could be controlled and managed the accounting information of the nuclear facility with on-line manner. This system enhances transparency of accounting management of the KAERI in terms of effective ways for the Agency inspectors and national inspectors to implement the no-notice inspection under the Integrated Safeguards system. To complete the nuclear safety information collecting and monitoring system at EOF for KAERI, the real-time remote monitoring systems for RIPF, IMEF, PIEF were established. In addition, after the review of the abnormal condition of RMS data, the notification system for a radiation abnormal condition at nuclear facilities was operated. And also, the server of emergency management system was improved, the emergency situation notification system to all KAERI and KNF site was established

  13. Development of data base system for nuclear material accountancy data at PNC

    International Nuclear Information System (INIS)

    Hirosawa, N.; Akiba, Mitsunori; Nakagima, Kiyoshi; Usui, Shinichi; Tosa, Kiyofumi; Hashimoto, Kazuyuki.

    1993-01-01

    PNC is developing a wide area of nuclear fuel cycle. Therefore, much nuclear material with a various form exists at each facility in the Works, and the controls of the inventory changes and the physical inventories of nuclear material are important. Nuclear material accountancy is a basic measure in safeguards system based on Non-Proliferation Treaty(NPT). In the light of such importance of material accountancy, the data base of nuclear material control and the material accountancy report system for all facilities has been developed by using the computer. By this system, accountancy report to STA is being presented certainly and timely. Property management and rapid corresponding to inquiries from STA can be carried out by the data base system which has free item searching procedure. The present paper introduces 'Development of Data Base System for Nuclear Material Accountancy Data at PNC'. (author)

  14. Safety device and machine system of nuclear power plant

    International Nuclear Information System (INIS)

    1978-10-01

    It introduces principle and kinds of heat power including heat balance and nuclear power. It explains a lot of technical terms about the nuclear power system, which are primary loop, reactor, steam generator, primary coolant pump and pressurizer in PWR, chemical and volume control system, component cooling system, safety injection system, and spent fuel cooling and storage system in auxiliary system, liquid solid and gaseous waste disposal system in radwaste disposal, gland sealing system, turbine instrumentation, turning gear, hydrogen cooling system, condenser, feedwater heater, degenerate heater, auxiliary heat exchanger, centrifugal pump, rotary reciprocating and tank and pressure vessel.

  15. Nuclear material statistical accountancy system

    International Nuclear Information System (INIS)

    Argentest, F.; Casilli, T.; Franklin, M.

    1979-01-01

    The statistical accountancy system developed at JRC Ispra is refered as 'NUMSAS', ie Nuclear Material Statistical Accountancy System. The principal feature of NUMSAS is that in addition to an ordinary material balance calcultation, NUMSAS can calculate an estimate of the standard deviation of the measurement error accumulated in the material balance calculation. The purpose of the report is to describe in detail, the statistical model on wich the standard deviation calculation is based; the computational formula which is used by NUMSAS in calculating the standard deviation and the information about nuclear material measurements and the plant measurement system which are required as data for NUMSAS. The material balance records require processing and interpretation before the material balance calculation is begun. The material balance calculation is the last of four phases of data processing undertaken by NUMSAS. Each of these phases is implemented by a different computer program. The activities which are carried out in each phase can be summarised as follows; the pre-processing phase; the selection and up-date phase; the transformation phase, and the computation phase

  16. Information management for nuclear power stations: System Design Concept

    International Nuclear Information System (INIS)

    Halpin, D.W.

    1978-03-01

    A study of the information management structure required to support nuclear power plant construction was performed by a joint university-industry group under the sponsorship of the Department of Energy (DOE), formerly the Energy Research and Development Administration (ERDA). The purpose of this study was (1) to study methods for the control of information during the construction and start-up of nuclear power plants, and (2) identify those data elements intrinsic to nuclear power plants which must be maintained in a structured format for quick access and retrieval. Maintenance of the massive amount of data needed for control of a nuclear project during design, procurement, construction, start-up/testing, and operational phases requires a structuring which allows immediate update and retrieval based on a wide variety of access criteria. The objective of the research described has been to identify design concepts which support the development of an information control system responsive to these requirements. A conceptual design of a Management Information Data Base System which can meet the project control and information exchange needs of today's large nuclear power plant construction projects has been completed and an approach recommended for development and implementation of a complete operational system

  17. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume V. Economics and systems analysis

    International Nuclear Information System (INIS)

    1979-12-01

    This assessment considers the economics of alternative nuclear reactor and fuel-cycle systems in the light of possible patterns of uranium supply and energy demand, as well as the economic implications of improving the proliferation resistance of the various systems. The assessment focuses on the costs of alternative nuclear technologies and the possible timing of their implementation, based on their economic attractiveness. The objectives of this assessment are to identify when economic incentives to deploy advanced nuclear power systems might exist, to estimate the costs of using technologies that would reduce the risk of proliferation, to assess the impact of major economic uncertainties on the transition to new technologies, and to compare the investments required for alternative systems. This information can then be used to assess the potential economic benefits of alternative research, development, and demonstration programs and the timing of those programs

  18. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume V. Economics and systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    This assessment considers the economics of alternative nuclear reactor and fuel-cycle systems in the light of possible patterns of uranium supply and energy demand, as well as the economic implications of improving the proliferation resistance of the various systems. The assessment focuses on the costs of alternative nuclear technologies and the possible timing of their implementation, based on their economic attractiveness. The objectives of this assessment are to identify when economic incentives to deploy advanced nuclear power systems might exist, to estimate the costs of using technologies that would reduce the risk of proliferation, to assess the impact of major economic uncertainties on the transition to new technologies, and to compare the investments required for alternative systems. This information can then be used to assess the potential economic benefits of alternative research, development, and demonstration programs and the timing of those programs.

  19. A sensor-based automation system for handling nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Kimberly, H.; Wapman, W.; Darras, D.

    1997-01-01

    An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The automation system performs unpacking and repacking of payloads from shipping and storage containers, and delivery of the payloads to the stations in the laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system in order to enhance system safety, flexibility, and robustness, and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and tool release mechanisms were designed to prevent payload mishandling. An extensive Failure Modes and Effects Analysis of the automation system was developed as a safety design analysis tool

  20. Derivation of the Euler equations in Thomas-Fermi theories of a hot nuclear system

    International Nuclear Information System (INIS)

    Wang, C.

    1992-01-01

    The variational extreme condition with respect to statistical distribution of nucleons in momentum space is applied to derive the Euler equation of the nuclear density profile. The resultant Euler equation of the nuclear density profile is proven to be identical with that obtained in the usual Thomas-Fermi theories of a hot nuclear system where the variation is made with respect to the nuclear density profile. A Fermi-Dirac-type distribution appears as a result of variation in the present approach, while it is used as a given expression in obtaining the variation of the nuclear density profile in the usual Thomas-Fermi theories

  1. Reliability analysis of scram system of a critical nuclear power plant

    International Nuclear Information System (INIS)

    Vieira Neto, A.S.; Souza Borges, W. de

    1986-01-01

    The object of this paper is to show the relevancy of reliability analysis of nuclear systems as a mean of evaluating their prospect performance in design phase. For this purpose a typical scram system design for light water cooled critical facilities is analized to verify the effects of alternative maintenance procedure and design redundancies in realibility characteristics. (Author) [pt

  2. Mobile Monitoring System for Nuclear Contamination Analysis

    International Nuclear Information System (INIS)

    Broide, A.; Sheinfeld, M.; Marcus, E.; Wengrowicz, U.; Tirosh, D.

    2002-01-01

    In case of a nuclear accident, it is essential to have extensive knowledge concerning the nature of the radioactive plume expansion, for further analysis. For this purpose a mobile monitoring system may provide important data about the plume characteristics. An advanced Mobile Monitoring System is under development at the Nuclear Research Center-Negev. The system is composed of a network of mobile stations, typically installed onboard vehicles, which transmit radiation measurements along with position information to a central station. The mobile network's communications infrastructure is based on Motorola Mobile Logic Unit devices, which are state-of-the-art reliable modems with an integrated Global Positioning System module. The radiation measurements received by the central station are transferred to a risk assessment program, which evaluates the expected hazards to the populated areas located in the estimated plume's expansion direction

  3. PEGASUS: a multi-megawatt nuclear electric propulsion system

    International Nuclear Information System (INIS)

    Coomes, E.P.; Cuta, J.M.; Webb, B.J.; King, D.Q.

    1985-06-01

    With the Space Transportation System (STS), the advent of space station Columbus and the development of expertise at working in space that this will entail, the gateway is open to the final frontier. The exploration of this frontier is possible with state-of-the-art hydrogen/oxygen propulsion but would be greatly enhanced by the higher specific impulse of electric propulsion. This paper presents a concept that uses a multi-megawatt nuclear power plant to drive an electric propulsion system. The concept has been named PEGASUS, PowEr GenerAting System for Use in Space, and is intended as a ''work horse'' for general space transportation needs, both long- and short-haul missions. The recent efforts of the SP-100 program indicate that a power system capable of producing upwards of 1 megawatt of electric power should be available in the next decade. Additionally, efforts in other areas indicate that a power system with a constant power capability an order of magnitude greater could be available near the turn of the century. With the advances expected in megawatt-class space power systems, the high specific impulse propulsion systems must be reconsidered as potential propulsion systems. The power system is capable of meeting both the propulsion system and spacecraft power requirements

  4. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume V. Economics and systems analysis

    International Nuclear Information System (INIS)

    1980-06-01

    This NASAP assessment considers the economics of alternative nuclear reactor and fuel-cycle systems in the light of possible patterns of uranium supply and energy demand, as well as the economic implications of improvng the proliferation resistance of the various systems. The assessment focuses on the costs of alternative nuclear technologies and the possible timing of their implementation, based on their economic attractiveness

  5. Proceedings of the Digital Systems Reliability and Nuclear Safety Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, D. R.; Cuthill, B. B.; Ippolito, L. M. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Beltracchi, L. [Nuclear Regulatory Commission, Washington, DC (United States) ed.

    1994-03-01

    The United States Nuclear Regulatory Commission (NRC), in cooperation with the National Institute of Standards and Technology conducted the.Digital Systems Reliability and Nuclear Safety Workshop on September 13--14, 1993, in Rockville, Maryland. The workshop provided a forum for the exchange of information among experts within the nuclear industry, experts from other industries, regulators and academia. The information presented at this workshop provided in-depth exposure of the NRC staff and the nuclear industry to digital systems design safety issues and also provided feedback to the NRC from outside experts regarding identified safety issues, proposed regulatory positions, and intended research associated with the use of digital systems in nuclear power plants. Technical presentations provided insights on areas where current software engineering practices may be inadequate for safety-critical systems, on potential solutions for development issues, and on methods for reducing risk in safety-critical systems. This report contains an analysis of results of the workshop, the papers presented panel presentations, and summaries of, discussions at this workshop. The individual papers have been cataloged separately.

  6. Aseismic foundation system for nuclear power stations

    International Nuclear Information System (INIS)

    Jolivet, F.; Richli, M.

    1977-01-01

    The aseismic foundation system, as described in this paper, is a new development, which makes it possible to build standard nuclear power stations in areas exposed to strong earthquakes. By adopting proven engineering concepts in design and construction of components, great advantages are achieved in the following areas: safety and reliability; efficiency; design schedule; cost. The need for an aseismic foundation system will arise more and more, as a large part of nuclear power station sites are located in highly seismic zones or must meet high intensity earthquake criteria due to the lack of historic data. (Auth.)

  7. An integrated reliability management system for nuclear power plants

    International Nuclear Information System (INIS)

    Kimura, T.; Shimokawa, H.; Matsushima, H.

    1998-01-01

    The responsibility in the nuclear field of the Government, utilities and manufactures has increased in the past years due to the need of stable operation and great reliability of nuclear power plants. The need to improve the reliability is not only for the new plants but also for those now running. So, several measures have been taken to improve reliability. In particular, the plant manufactures have developed a reliability management system for each phase (planning, construction, maintenance and operation) and these have been integrated as a unified system. This integrated reliability management system for nuclear power plants contains information about plant performance, failures and incidents which have occurred in the plants. (author)

  8. A study on advanced man-machine interface system for autonomous nuclear power plants

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Numano, Masayoshi; Fukuto, Junji; Sugasawa, Shinobu; Miyazaki, Keiko; Someya, Minoru; Haraki, Nobuo

    1994-01-01

    A man-machine interface(MMI) system of an autonomous nuclear power plant has an advanced function compared with that of the present nuclear power plants. The MMI has a function model of a plant state, and updates and revises this function model by itself. This paper describes the concept of autonomous nuclear power plants, a plant simulator of an autonomous power plant, a contracted function model of a plant state, three-dimensional color graphic display of a plant state, and an event-tree like expression for plant states. (author)

  9. New Nuclear Emergency Prognosis system in Korea

    Science.gov (United States)

    Lee, Hyun-Ha; Jeong, Seung-Young; Park, Sang-Hyun; Lee, Kwan-Hee

    2016-04-01

    This paper reviews the status of assessment and prognosis system for nuclear emergency response in Korea, especially atmospheric dispersion model. The Korea Institute of Nuclear Safety (KINS) performs the regulation and radiological emergency preparedness of the nuclear facilities and radiation utilizations. Also, KINS has set up the "Radiological Emergency Technical Advisory Plan" and the associated procedures such as an emergency response manual in consideration of the IAEA Safety Standards GS-R-2, GS-G-2.0, and GS-G-2.1. The Radiological Emergency Technical Advisory Center (RETAC) organized in an emergency situation provides the technical advice on radiological emergency response. The "Atomic Computerized Technical Advisory System for nuclear emergency" (AtomCARE) has been developed to implement assessment and prognosis by RETAC. KINS developed Accident Dose Assessment and Monitoring (ADAMO) system in 2015 to reflect the lessons learned from Fukushima accident. It incorporates (1) the dose assessment on the entire Korean peninsula, Asia region, and global region, (2) multi-units accident assessment (3) applying new methodology of dose rate assessment and the source term estimation with inverse modeling, (4) dose assessment and monitoring with the environmental measurements result. The ADAMO is the renovated version of current FADAS of AtomCARE. The ADAMO increases the accuracy of the radioactive material dispersion with applying the LDAPS(Local Data Assimilation Prediction System, Spatial resolution: 1.5 km) and RDAPS(Regional Data Assimilation Prediction System, Spatial resolution: 12km) of weather prediction data, and performing the data assimilation of automatic weather system (AWS) data from Korea Meteorological Administration (KMA) and data from the weather observation tower at NPP site. The prediction model of the radiological material dispersion is based on the set of the Lagrangian Particle model and Lagrangian Puff model. The dose estimation methodology

  10. Development of a daily maintenance work management system for nuclear power plants

    International Nuclear Information System (INIS)

    Yoshimura, Sadanori; Maita, Keikichi; Ogawa, Koutaro; Tabata, Nobuyuki; Shibuya, Shinya

    1999-01-01

    Maintenance work plays an important role in keeping the safety and reliability of nuclear power plants. Especially, with the recent trends of reducing the outage length, safe and reliable execution of maintenance work is more earnestly required than ever. Taking this situation into account, a daily maintenance work management system has been developed to support the execution of maintenance work for nuclear power plants. This system supports maintenance personnel in writing and approving the daily work instruction sheet and reduces their workload by providing predetermined lists of items necessary for filling up the sheet and by applying an electronic approval procedure. It also provides information through a computer network to improve the communication among maintenance personnel. For work steps to be treated in the daily work instruction sheet, an analysis was made to identify potential human errors and related counter measures, which were then linked to safety and quality assurance instructions of the sheet. Based on this information, the system automatically presents the safety and quality assurance instructions related to the work content listed in the sheet to improve the appropriateness of the instructions. A prototype of the daily maintenance work management system was developed and a trial use was made for actual periodic maintenance work at a nuclear power plant. This experience shows the usefulness of the system in reducing the workload of maintenance personnel and in providing safer work instructions. (author)

  11. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume II. Proliferation resistance

    International Nuclear Information System (INIS)

    1980-06-01

    The purpose of this volume is limited to an assessment of the relative effects that particular choices of nuclear-power systems, for whatever reasons, may have on the possible spread of nuclear-weapons capabilities. This volume addresses the concern that non-nuclear-weapons states may be able to initiate efforts to acquire or to improve nuclear-weapons capabilities through civilian nuclear-power programs; it also addresses the concern that subnational groups may obtain and abuse the nuclear materials or facilities of such programs, whether in nuclear-weapons states (NWS's) or nonnuclear-weapons states (NNW's). Accordingly, this volume emphasizes one important factor in such decisions, the resistance of nuclear-power systems to the proliferation of nuclear-weapons capabilities

  12. Control system security in nuclear power plant

    International Nuclear Information System (INIS)

    Li Jianghai; Huang Xiaojin

    2012-01-01

    The digitalization and networking of control systems in nuclear power plants has brought significant improvements in system control, operation and maintenance. However, the highly digitalized control system also introduces additional security vulnerabilities. Moreover, the replacement of conventional proprietary systems with common protocols, software and devices makes these vulnerabilities easy to be exploited. Through the interaction between control systems and the physical world, security issues in control systems impose high risks on health, safety and environment. These security issues may even cause damages of critical infrastructures and threaten national security. The importance of control system security by reviewing several control system security incidents that happened in nuclear power plants was showed in recent years. Several key difficulties in addressing these security issues were described. Finally, existing researches on control system security and propose several promising research directions were reviewed. (authors)

  13. Soft computing trends in nuclear energy system

    International Nuclear Information System (INIS)

    Paramasivan, B.

    2012-01-01

    In spite of so many advancements in the power and energy sector over the last two decades, its survival to cater quality power with due consideration for planning, coordination, marketing, safety, stability, optimality and reliability is still believed to remain critical. Though it appears simple from the outside, yet the internal structure of large scale power systems is so complex that event management and decision making requires a formidable preliminary preparation, which gets still worsened in the presence of uncertainties and contingencies. These aspects have attracted several researchers to carryout continued research in this field and their valued contributions have been significantly helping the newcomers in understanding the evolutionary growth in this sector, starting from phenomena, tools, methodologies to strategies so as to ensure smooth, stable, safe, reliable and economic operation. The usage of soft computing would accelerate interaction between the energy and technology research community with an aim to foster unified development in the next generation. Monitoring the mechanical impact of a loose (detached or drifting) part in the reactor coolant system of a nuclear power plant is one of the essential functions for operation and maintenance of the plant. Large data tables are generated during this monitoring process. This data can be 'mined' to reveal latent patterns of interest to operation and maintenance. Rough set theory has been applied successfully to data mining. It can be used in the nuclear power industry and elsewhere to identify classes in datasets, finding dependencies in relations and discovering rules which are hidden in databases. An important role may be played by nuclear energy, provided that major safety, waste and proliferation issues affecting current nuclear reactors are satisfactorily addressed. In this respect, a large effort is under way since a few years towards the development of advanced nuclear systems that would use

  14. Preliminary Cost Estimates for Nuclear Hydrogen Production: HTSE System

    International Nuclear Information System (INIS)

    Yang, K. J.; Lee, K. Y.; Lee, T. H.

    2008-01-01

    KAERI is now focusing on the research and development of the key technologies required for the design and realization of a nuclear hydrogen production system. As a preliminary study of cost estimates for nuclear hydrogen systems, the hydrogen production costs of the nuclear energy sources benchmarking GTMHR and PBMR are estimated in the necessary input data on a Korean specific basis. G4-ECONS was appropriately modified to calculate the cost for hydrogen production of HTSE (High Temperature Steam Electrolysis) process with VHTR (Very High Temperature nuclear Reactor) as a thermal energy source. The estimated costs presented in this paper show that hydrogen production by the VHTR could be competitive with current techniques of hydrogen production from fossil fuels if CO 2 capture and sequestration is required. Nuclear production of hydrogen would allow large-scale production of hydrogen at economic prices while avoiding the release of CO 2 . Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The major factors that would affect the cost of hydrogen were also discussed

  15. A study on the direction for the development of the Korean nuclear R and D system toward the globalization

    Energy Technology Data Exchange (ETDEWEB)

    Won, Byung Chul; Jeong, Yeun Ho; Kim, Myung Ro [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, Young Pyung [Korea Univ., Seoul (Korea, Republic of)

    1996-02-01

    The purpose of this study is to explore future directions for the development of the Korean nuclear research system by comparing the nuclear R and D systems in the U.S., France, Japan, and Canada. In an effort to search for appropriate directions, this study analyzed the characteristics of the nuclear research systems in advanced nations in the following areas; 1. configuration of nuclear R and D, 2. morphological characteristics of major nuclear R and D organization, 3. evaluation of R and D performance, general management issues such as leadership, coordination, culture, etc., and 4. inter-organizationals with government agencies, utilities, and other regulatory organizations. On the basis of comparing the nuclear R and D system in Korea with those in the U.S., France, Japan, and Canada, this study tries to develop recommendations for the future directions of the Korean nuclear R and D system. The results of this research can serve as a reference to a long-term development plan for the Korean nuclear R and D system. 21 tabs., 11 figs., 36 refs. (Author).

  16. A study on the direction for the development of the Korean nuclear R and D system toward the globalization

    International Nuclear Information System (INIS)

    Won, Byung Chul; Chung, Yun Ho; Kim, Myung Ro

    1994-12-01

    This study explores future directions for the development of the Korean nuclear R and D system by comparing the nuclear R and D systems in the US, France, Japan, and Canada. In an effort to search for appropriate directions, this study analyzed characteristics of the nuclear R and D systems in advanced nations in the following areas; (1) configuration of nuclear R and D, (2) morphological characteristics of major nuclear R and D organization, (3) evaluation of R and D performance, general management issues such as leadership, coordination, culture, etc., and (4) inter- organizationals with government agencies, utilities, and other regulatory organizations. On the basis of comparing the nuclear R and D system in Korea with those in the US, France, Japan, and Canada, this study tries to develop recommendations for the future directions of the Korean nuclear R and D system. The results of this research can serve as a reference to a long-term development plan for the Korean nuclear R and D system. 23 tabs., 4 figs., 34 refs. (Author)

  17. A study on the direction for the development of the Korean nuclear R and D system toward the globalization

    International Nuclear Information System (INIS)

    Won, Byung Chul; Jeong, Yeun Ho; Kim, Myung Ro; Kim, Young Pyung

    1996-02-01

    The purpose of this study is to explore future directions for the development of the Korean nuclear research system by comparing the nuclear R and D systems in the U.S., France, Japan, and Canada. In an effort to search for appropriate directions, this study analyzed the characteristics of the nuclear research systems in advanced nations in the following areas; 1. configuration of nuclear R and D, 2. morphological characteristics of major nuclear R and D organization, 3. evaluation of R and D performance, general management issues such as leadership, coordination, culture, etc., and 4. inter-organizationals with government agencies, utilities, and other regulatory organizations. On the basis of comparing the nuclear R and D system in Korea with those in the U.S., France, Japan, and Canada, this study tries to develop recommendations for the future directions of the Korean nuclear R and D system. The results of this research can serve as a reference to a long-term development plan for the Korean nuclear R and D system. 21 tabs., 11 figs., 36 refs. (Author)

  18. A study on the direction for the development of the Korean nuclear R and D system toward the globalization

    Energy Technology Data Exchange (ETDEWEB)

    Won, Byung Chul; Chung, Yun Ho; Kim, Myung Ro [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    This study explores future directions for the development of the Korean nuclear R and D system by comparing the nuclear R and D systems in the US, France, Japan, and Canada. In an effort to search for appropriate directions, this study analyzed characteristics of the nuclear R and D systems in advanced nations in the following areas; (1) configuration of nuclear R and D, (2) morphological characteristics of major nuclear R and D organization, (3) evaluation of R and D performance, general management issues such as leadership, coordination, culture, etc., and (4) inter- organizationals with government agencies, utilities, and other regulatory organizations. On the basis of comparing the nuclear R and D system in Korea with those in the US, France, Japan, and Canada, this study tries to develop recommendations for the future directions of the Korean nuclear R and D system. The results of this research can serve as a reference to a long-term development plan for the Korean nuclear R and D system. 23 tabs., 4 figs., 34 refs. (Author).

  19. Integrated project management information systems: the French nuclear industry experience

    International Nuclear Information System (INIS)

    Jacquin, J.-C.; Caupin, G.-M.

    1990-01-01

    The article discusses the desirability of integrated project management systems within the French nuclear power industry. Change in demand for nuclear generation facilities over the last two decades has necessitated a change of policy concerning organization, cost and planning within the industry. Large corporate systems can benefit from integrating equipment and bulk materials tracking. Project management for the nuclear industry will, in future, need to incorporate computer aided design tools and project management information systems data bases as well as equipment and planning data. (UK)

  20. Integrated project management information systems: the French nuclear industry experience

    Energy Technology Data Exchange (ETDEWEB)

    Jacquin, J.-C.; Caupin, G.-M.

    1990-03-01

    The article discusses the desirability of integrated project management systems within the French nuclear power industry. Change in demand for nuclear generation facilities over the last two decades has necessitated a change of policy concerning organization, cost and planning within the industry. Large corporate systems can benefit from integrating equipment and bulk materials tracking. Project management for the nuclear industry will, in future, need to incorporate computer aided design tools and project management information systems data bases as well as equipment and planning data. (UK).