WorldWideScience

Sample records for system flow modeling

  1. Novel simplified hourly energy flow models for photovoltaic power systems

    International Nuclear Information System (INIS)

    Khatib, Tamer; Elmenreich, Wilfried

    2014-01-01

    Highlights: • We developed an energy flow model for standalone PV system using MATLAB line code. • We developed an energy flow model for hybrid PV/wind system using MATLAB line code. • We developed an energy flow model for hybrid PV/diesel system using MATLAB line code. - Abstract: This paper presents simplified energy flow models for photovoltaic (PV) power systems using MATLAB. Three types of PV power system are taken into consideration namely standalone PV systems, hybrid PV/wind systems and hybrid PV/diesel systems. The logic of the energy flow for each PV power system is discussed first and then the MATLAB line codes for these models are provided and explained. The results prove the accuracy of the proposed models. Such models help modeling and sizing PV systems

  2. Modelling and control of systems with flow

    NARCIS (Netherlands)

    van Mourik, S.

    2008-01-01

    In practice, feedback control design consists of three steps: modelling, model reduction and controller design for the reduced model. Systems with flow are often complicated, and there is yet no standard algorithm that integrates these steps. In this thesis we make a modest effort by considering two

  3. Dynamic modelling for two-phase flow systems

    International Nuclear Information System (INIS)

    Guerra, M.A.

    1991-06-01

    Several models for two-phase flow have been studied, developing a thermal-hydraulic analysis code with one of these models. The program calculates, for one-dimensional cases with variable flow area, the transient behaviour of system process variables, when the boundary conditions (heat flux, flow rate, enthalpy and pressure) are functions of time. The modular structure of the code, eases the program growth. In fact, the present work is the basis for a general purpose accident and transient analysis code in nuclear reactors. Code verification has been made against RETRAN-02 results. Satisfactory results have been achieved with the present version of the code. (Author) [es

  4. Techno-Economic Modeling and Analysis of Redox Flow Battery Systems

    Directory of Open Access Journals (Sweden)

    Jens Noack

    2016-08-01

    Full Text Available A techno-economic model was developed to investigate the influence of components on the system costs of redox flow batteries. Sensitivity analyses were carried out based on an example of a 10 kW/120 kWh vanadium redox flow battery system, and the costs of the individual components were analyzed. Particular consideration was given to the influence of the material costs and resistances of bipolar plates and energy storage media as well as voltages and electric currents. Based on the developed model, it was possible to formulate statements about the targeted optimization of a developed non-commercial vanadium redox flow battery system and general aspects for future developments of redox flow batteries.

  5. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  6. Power flow prediction in vibrating systems via model reduction

    Science.gov (United States)

    Li, Xianhui

    This dissertation focuses on power flow prediction in vibrating systems. Reduced order models (ROMs) are built based on rational Krylov model reduction which preserve power flow information in the original systems over a specified frequency band. Stiffness and mass matrices of the ROMs are obtained by projecting the original system matrices onto the subspaces spanned by forced responses. A matrix-free algorithm is designed to construct ROMs directly from the power quantities at selected interpolation frequencies. Strategies for parallel implementation of the algorithm via message passing interface are proposed. The quality of ROMs is iteratively refined according to the error estimate based on residual norms. Band capacity is proposed to provide a priori estimate of the sizes of good quality ROMs. Frequency averaging is recast as ensemble averaging and Cauchy distribution is used to simplify the computation. Besides model reduction for deterministic systems, details of constructing ROMs for parametric and nonparametric random systems are also presented. Case studies have been conducted on testbeds from Harwell-Boeing collections. Input and coupling power flow are computed for the original systems and the ROMs. Good agreement is observed in all cases.

  7. Modelling of electrical power systems for power flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The industry systems in Brazil are responsible for a consumption of over 50% (fifty per cent) of the total electrical power generated: therefore, they are import loads in power flow studies, and their modeling should be as much the best. Usually, in power flow studies, the industry systems are modeled by taking the influence of the power (active and reactive) and of the current on the voltage into account. Since the inducting motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversize, it is proposed to represent the industry systems as a function of the characteristic of power on shaft versus voltage into account. Since the induction motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversized, it is proposed to represent the industry systems as a function of the characteristics of power on shaft versus voltage for the analysis of power systems, aiming a load flow study. Thereafter, a model of an equivalent motor which has a basis the typical performance curve of an induction motor is present. This model is obtained from empirical parameters, surveyed from a population of over 1000 motors. (author) 3 refs., 1 fig., 4 tabs.

  8. A nuclear data acquisition system flow control model

    International Nuclear Information System (INIS)

    Hack, S.N.

    1988-01-01

    A general Petri Net representation of a nuclear data acquisition system model is presented. This model provides for the unique requirements of a nuclear data acquisition system including the capabilities of concurrently acquiring asynchronous and synchronous data, of providing multiple priority levels of flow control arbitration, and of permitting multiple input sources to reside at the same priority without the problem of channel lockout caused by a high rate data source. Finally, a previously implemented gamma camera/physiological signal data acquisition system is described using the models presented

  9. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  10. Grey Box Modelling of Flow in Sewer Systems with State Dependent Diffusion

    DEFF Research Database (Denmark)

    Breinholt, Anders; Thordarson, Fannar Örn; Møller, Jan Kloppenborg

    2011-01-01

    . It is shown that an additive diffusion noise term description leads to a violation of the physical constraints of the system, whereas a state dependent diffusion noise avoids this problem and should be favoured. It is also shown that a logarithmic transformation of the flow measurements secures positive lower...... flow prediction limits, because the observation noise is proportionally scaled with the modelled output. Finally it is concluded that a state proportional diffusion term best and adequately describes the one-step flow prediction uncertainty, and a proper description of the system noise is important......Generating flow forecasts with uncertainty limits from rain gauge inputs in sewer systems require simple models with identifiable parameters that can adequately describe the stochastic phenomena of the system. In this paper, a simple grey-box model is proposed that is attractive for both...

  11. Investigation and modelling of thermal conditions in low flow SDHW systems

    Energy Technology Data Exchange (ETDEWEB)

    Shah, L.J.

    1999-07-01

    The purpose of this study was to characterise the thermal conditions in low flow SDHW systems. As the heat storage has proved to be the most important system component, there has been an emphasis on this component in the study. A literature survey revealed that the mantle tank heat storage type is one of the most promising storage designs and therefore only the mantle tank is investigated in this study. To optimise the design of mantle tanks and low flow SDHW systems, it was found necessary to understand how the thermal stratification is built up in the heat storage. In addition, it was necessary to model the flow and heat transfer in the tanks. Due to the complexity of the problems, CFD-models were used to take mantle tanks into calculation. Two CFD programs were used to model the mantle tank: CFX and Fluent. As the CFD-models formed the basis for the theoretical work, they were validated with experiments. In this study, both thermal measurements and experimentally visualised flow patterns were compared with CFD-predictions. The experimental flow visualisation was carried out with Particle image Velocimetry (PIV). With a transparent glass mantle tank, the structures in the mantle were visualised and compared with the CFD-predicted flow structures in the mantle. The results showed that the mantle flow was highly dominated by buoyancy and the CFD-models were able to model this flow. With a steel mantle tank, different dynamic thermal experiments were carried out in a heat storage test facility. These results were used to evaluate the CFD-predicted temperatures. Inner tank and mantle outlet temperatures were compared to the similar CFD-predictions and a good degree of similarity was found between measured and calculated temperatures. With the verified CFX models a parameter analysis was carried out. Based on this analysis, two Nusselt-Rayleigh heat transfer correlations were developed - one for the convective heat transfer in the mantle and one for the convective

  12. Knowledge Representation Using Multilevel Flow Model in Expert System

    International Nuclear Information System (INIS)

    Wang, Wenlin; Yang, Ming

    2015-01-01

    As for the knowledge representation, of course, there are a great many methods available for knowledge representation. These include frames, causal models, and many others. This paper presents a novel method called Multilevel Flow Model (MFM), which is used for knowledge representation in G2 expert system. Knowledge representation plays a vital role in constructing knowledge bases. Moreover, it also has impact on building of generic fault model as well as knowledge bases. The MFM is particularly useful to describe system knowledge concisely as domain map in expert system when domain experts are not available

  13. Knowledge Representation Using Multilevel Flow Model in Expert System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenlin; Yang, Ming [Harbin Engineering University, Harbin (China)

    2015-05-15

    As for the knowledge representation, of course, there are a great many methods available for knowledge representation. These include frames, causal models, and many others. This paper presents a novel method called Multilevel Flow Model (MFM), which is used for knowledge representation in G2 expert system. Knowledge representation plays a vital role in constructing knowledge bases. Moreover, it also has impact on building of generic fault model as well as knowledge bases. The MFM is particularly useful to describe system knowledge concisely as domain map in expert system when domain experts are not available.

  14. Multilevel flow models studio: human-centralized development for operation support system

    International Nuclear Information System (INIS)

    Zhou Yangping; Hidekazu Yoshikawa; Liu Jingquan; Yang Ming; Ouyang Jun

    2005-01-01

    Computerized Operation Support Systems (COSS), integrating Artificial Intelligence, Multimedia and Network Technology, are now being proposed for reducing operator's cognitive load for process operation. This study proposed a Human-Centralized Development (HCD) that COSS can be developed and maintained independently, conveniently and flexibly by operator and expert of industry system with little expertise on software development. A graphical interface system for HCD, Multilevel Flow Models Studio (MFMS), is proposed for development assistance of COSS. An Extensible Markup Language based file structure is designed to represent the Multilevel Flow Models (MFM) model for the target system. With a friendly graphical interface, MFMS mainly consists of two components: 1) an editor to intelligently assist user establish and maintain the MFM model; 2) an executor to implement the application for monitoring, diagnosis and operational instruction in terms of the established MFM model. A prototype MFMS system has been developed and applied to construct a trial operation support system for a Nuclear Power Plant simulated by RELAP5/MOD2. (authors)

  15. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  16. Hepatobiliary system functional analysis by blood flow and clearance delay model

    International Nuclear Information System (INIS)

    Aboltins, A.; Reinholds, E.

    2002-01-01

    A mathematical model for describing liver uptake-excretion is developed and approved. Model is based on different timing delays in hepatobiliary and blood flow system elements. Series of scintigraphic images with 99m Tc-mebrofenins or 99m Tc-HIDA taken with standard nuclear medicine gamma camera are used as the real data for calculations. The time-activity curves are obtained from many regions of human body - heart, liver, gallbladder, spleen, aorta, vein, etc. Both first pass and dynamic acquisition data are used. Results are calculated using real system parameters and compared to real scintigraphy data. Mathematical simulations are made to show difference of hepatobiliary system function at three main points: normal function, good blood flow with bad hepatic function and bad blood flow with good hepatic function. (authors)

  17. Investigation and Modelling of Thermal Conditions in Low Flow SDHW Systems

    DEFF Research Database (Denmark)

    Shah, Louise Jivan

    1999-01-01

    and compared with the CFD-predicted flow structures in the mantle. The results showed that the mantle flow was highly dominated by buoyancy and the CFD-models were able to model this flow. With a steel mantle tank, different dynamic thermal experiments were carried out in a heat storage test facility....... This simulation program predicts the yearly thermal performance of low flow SDHW systems based on mantle tanks. MANTLSIM was verified and afterwards used as a tool for parameter analysis. This analysis showed that MANTLSIM predicted expected tendencies. Only for the mantle gap variations, results in poor...

  18. Three-dimensional hydrogeologic framework model for use with a steady-state numerical ground-water flow model of the Death Valley regional flow system, Nevada and California

    International Nuclear Information System (INIS)

    Belcher, W.R.; Faunt, C.C.; D'Agnese, F.A.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Department of Energy and other Federal, State, and local agencies, is evaluating the hydrogeologic characteristics of the Death Valley regional ground-water flow system. The ground-water flow system covers and area of about 100,000 square kilometers from latitude 35 degrees to 38 degrees 15 minutes North to longitude 115 degrees to 118 degrees West, with the flow system proper comprising about 45,000 square kilometers. The Death Valley regional ground-water flow system is one of the larger flow systems within the Southwestern United States and includes in its boundaries the Nevada Test Site, Yucca Mountain, and much of Death Valley. Part of this study includes the construction of a three-dimensional hydrogeologic framework model to serve as the foundation for the development of a steady-state regional ground-water flow model. The digital framework model provides a computer-based description of the geometry and composition of the hydro geologic units that control regional flow. The framework model of the region was constructed by merging two previous framework models constructed for the Yucca Mountain Project and the Environmental Restoration Program Underground Test Area studies at the Nevada Test Site. The hydrologic characteristics of the region result from a currently arid climate and complex geology. Interbasinal regional ground-water flow occurs through a thick carbonate-rock sequence of Paleozoic age, a locally thick volcanic-rock sequence of Tertiary age, and basin-fill alluvium of Tertiary and Quaternary age. Throughout the system, deep and shallow ground-water flow may be controlled by extensive and pervasive regional and local faults and fractures. The framework model was constructed using data from several sources to define the geometry of the regional hydrogeologic units. These data sources include (1) a 1:250,000-scale hydrogeologic-map compilation of the region; (2) regional-scale geologic cross

  19. Lessons from wet gas flow metering systems using differential measurements devices: Testing and flow modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Cazin, J.; Couput, J.P.; Dudezert, C. et al

    2005-07-01

    A significant number of wet gas meters used for high GVF and very high GVF are based on differential pressure measurements. Recent high pressure tests performed on a variety of different DP devices on different flow loops are presented. Application of existing correlations is discussed for several DP devices including Venturi meters. For Venturi meters, deviations vary from 9% when using the Murdock correlation to less than 3 % with physical based models. The use of DP system in a large domain of conditions (Water Liquid Ratio) especially for liquid estimation will require information on the WLR This obviously raises the question of the gas and liquid flow metering accuracy in wet gas meters and highlight needs to understand AP systems behaviour in wet gas flows (annular / mist / annular mist). As an example, experimental results obtained on the influence of liquid film characteristics on a Venturi meter are presented. Visualizations of the film upstream and inside the Venturi meter are shown. They are completed by film characterization. The AP measurements indicate that for a same Lockhart Martinelli parameter, the characteristics of the two phase flow have a major influence on the correlation coefficient. A 1D model is defined and the results are compared with the experiments. These results indicate that the flow regime influences the AP measurements and that a better modelling of the flow phenomena is needed even for allocation purposes. Based on that, lessons and way forward in wet gas metering systems improvement for allocation and well metering are discussed and proposed. (author) (tk)

  20. Numerical Modeling of Cavitating Venturi: A Flow Control Element of Propulsion System

    Science.gov (United States)

    Majumdar, Alok; Saxon, Jeff (Technical Monitor)

    2002-01-01

    In a propulsion system, the propellant flow and mixture ratio could be controlled either by variable area flow control valves or by passive flow control elements such as cavitating venturies. Cavitating venturies maintain constant propellant flowrate for fixed inlet conditions (pressure and temperature) and wide range of outlet pressures, thereby maintain constant, engine thrust and mixture ratio. The flowrate through the venturi reaches a constant value and becomes independent of outlet pressure when the pressure at throat becomes equal to vapor pressure. In order to develop a numerical model of propulsion system, it is necessary to model cavitating venturies in propellant feed systems. This paper presents a finite volume model of flow network of a cavitating venturi. The venturi was discretized into a number of control volumes and mass, momentum and energy conservation equations in each control volume are simultaneously solved to calculate one-dimensional pressure, density, and flowrate and temperature distribution. The numerical model predicts cavitations at the throat when outlet pressure was gradually reduced. Once cavitation starts, with further reduction of downstream pressure, no change in flowrate is found. The numerical predictions have been compared with test data and empirical equation based on Bernoulli's equation.

  1. Fully coupled thermal-mechanical-fluid flow model for nonliner geologic systems

    International Nuclear Information System (INIS)

    Hart, R.D.

    1981-01-01

    A single model is presented which describes fully coupled thermal-mechanical-fluid flow behavior of highly nonlinear, dynamic or quasistatic, porous geologic systems. The mathematical formulation for the model utilizes the continuum theory of mixtures to describe the multiphase nature of the system, and incremental linear constitutive theory to describe the path dependency of nonlinear material behavior. The model, incorporated in an explicit finite difference numerical procedure, was implemented in two different computer codes. A special-purpose one-dimensional code, SNEAKY, was written for initial validation of the coupling mechanisms and testing of the coupled model logic. A general purpose commercially available code, STEALTH, developed for modeling dynamic nonlinear thermomechanical processes, was modified to include fluid flow behavior and the coupling constitutive model. The fully explicit approach in the coupled calculation facilitated the inclusion of the coupling mechanisms and complex constitutive behavior. Analytical solutions pertaining to consolidation theory for soils, thermoelasticity for solids, and hydrothermal convection theory provided verification of stress and fluid flow, stress and conductive heat transfer, and heat transfer and fluid flow couplings, respectively, in the coupled model. A limited validation of the adequacy of the coupling constitutive assumptions was also performed by comparison with the physical response from two laboratory tests. Finally, the full potential of the coupled model is illustrated for geotechnical applications in energy-resource related areas. Examples in the areas of nuclear waste isolation and cut-and-fill mining are cited

  2. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    Science.gov (United States)

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  3. Modeling a two-layer flow system at the subarctic, subalpine tree line during snowmelt

    Science.gov (United States)

    Leenders, Erica E.; Woo, Ming-Ko

    2002-10-01

    In the subarctic it is common to encounter a two-layer flow system consisting of a porous organic cover overlying frozen or unfrozen mineral soils with much lower hydraulic conductivities. The "simple lumped reservoir parametric," or "semidistributed land-use-based runoff processes" (SLURP), model was adapted to simulate runoff generated by such a flow system from an upland shrub land to an open woodland downslope. A subalpine site in Wolf Creek, Yukon, Canada, was subdivided into two aggregated simulation areas (ASA), each being a unit characterized by a set of parameters. The model computes the vertical water balance and flow generation from several storages, and then routes the water out of the ASA. When applied to the 1999 snowmelt season, the model simulated the very low lateral flow and a large increase in storage in the mineral soil, as was observed in the field. The model was used to assess the sensitivity of the two-layer flow system under a range of temperature, snow cover, and frost conditions. Results show that within the range of possible climatic conditions, the hydrologic system is unlikely to yield significant runoff across the subalpine tree line, but if ground ice is abundant in the soil pores, percolation will be limited and fast flow from the surface layer is enhanced.

  4. Modelling of the Blood Coagulation Cascade in an In Vitro Flow System

    DEFF Research Database (Denmark)

    Andersen, Nina Marianne; Sørensen, Mads Peter; Efendiev, Messoud A.

    2010-01-01

    We derive a mathematical model of a part of the blood coagulation cascade set up in a perfusion experiment. Our purpose is to simulate the influence of blood flow and diffusion on the blood coagulation pathway. The resulting model consists of a system of partial differential equations taking...... and flow equations, which guarantee non negative concentrations at all times. The criteria is applied to the model of the blood coagulation cascade....

  5. Particle Based Modeling of Electrical Field Flow Fractionation Systems

    Directory of Open Access Journals (Sweden)

    Tonguc O. Tasci

    2015-10-01

    Full Text Available Electrical Field Flow Fractionation (ElFFF is a sub method in the field flow fractionation (FFF family that relies on an applied voltage on the channel walls to effect a separation. ElFFF has fallen behind some of the other FFF methods because of the optimization complexity of its experimental parameters. To enable better optimization, a particle based model of the ElFFF systems has been developed and is presented in this work that allows the optimization of the main separation parameters, such as electric field magnitude, frequency, duty cycle, offset, flow rate and channel dimensions. The developed code allows visualization of individual particles inside the separation channel, generation of realistic fractograms, and observation of the effects of the various parameters on the behavior of the particle cloud. ElFFF fractograms have been generated via simulations and compared with experiments for both normal and cyclical ElFFF. The particle visualizations have been used to verify that high duty cycle voltages are essential to achieve long retention times and high resolution separations. Furthermore, by simulating the particle motions at the channel outlet, it has been demonstrated that the top channel wall should be selected as the accumulation wall for cyclical ElFFF to reduce band broadening and achieve high efficiency separations. While the generated particle based model is a powerful tool to estimate the outcomes of the ElFFF experiments and visualize particle motions, it can also be used to design systems with new geometries which may lead to the design of higher efficiency ElFFF systems. Furthermore, this model can be extended to other FFF techniques by replacing the electrical field component of the model with the fields used in the other FFF techniques.

  6. An updated fracture-flow model for total-system performance assessment of Yucca Mountain

    International Nuclear Information System (INIS)

    Gauthier, J.H.

    1994-01-01

    Improvements have been made to the fracture-flow model being used in the total-system performance assessment of a potential high-level radioactive waste repository at Yucca Mountain, Nevada. The ''weeps model'' now includes (1) weeps of varied sizes, (2) flow-pattern fluctuations caused by climate change, and (3) flow-pattern perturbations caused by repository heat generation. Comparison with the original weeps model indicates that allowing weeps of varied sizes substantially reduces the number of weeps and the number of containers contacted by weeps. However, flow-pattern perturbations caused by either climate change or repository heat generation greatly increases the number of containers contacted by weeps. In preliminary total-system calculations, using a phenomenological container-failure and radionuclide-release model, the weeps model predicts that radionuclide releases from a high-level radioactive waste repository at Yucca Mountain will be below the EPA standard specified in 40 CFR 191, but that the maximum radiation dose to an individual could be significant. Specific data from the site are required to determine the validity of the weep-flow mechanism and to better determine the parameters to which the dose calculation is sensitive

  7. UZ Flow Models and Submodels

    International Nuclear Information System (INIS)

    Y. Wu

    2004-01-01

    The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11

  8. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.

    Science.gov (United States)

    Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W

    2013-01-01

    The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.

  9. An updated fracture-flow model for total-system performance assessment of Yucca Mountain

    International Nuclear Information System (INIS)

    Gauthier, J.H.

    1994-01-01

    Improvements have been made to the fracture-flow model being used in the total-system performance assessment of a potential high-level radioactive waste repository at Yucca Mountain, Nevada. The open-quotes weeps modelclose quotes now includes (1) weeps of varied sizes, (2) flow-pattern fluctuations caused by climate change, and (3) flow-pattern perturbations caused by repository heat generation. Comparison with the original weeps model indicates that allowing weeps of varied sizes substantially reduces the number of weeps and the number of containers contacted by weeps. However, flow-pattern perturbations caused by either climate change or repository heat generation greatly increases the number of containers contacted by weeps. In preliminary total-system calculations, using a phenomenological container-failure and radionuclide-release model, the weeps model predicts that radionuclide releases from a high-level radioactive waste repository at Yucca Mountain will be below the EPA standard specified in 40 CFR 191, but that the maximum radiation dose to an individual could be significant. Specific data from the site are required to determine the validity of the weep-flow mechanism and to better determine the parameters to which the dose calculation is sensitive

  10. Modeling Groundwater Flow System of a Drainage Basin in the Basement Complex Environment of Southwestern Nigera

    Science.gov (United States)

    Akinwumiju, Akinola S.; Olorunfemi, Martins O.

    2018-05-01

    This study attempted to model the groundwater flow system of a drainage basin within the Basement Complex environment of Southwestern Nigeria. Four groundwater models were derived from Vertical Electrical Sounding (VES) Data, remotely sensed data, geological information (hydrolineaments and lithology) and borehole data. Subsequently, two sub-surface (local and regional) flow systems were delineated in the study area. While the local flow system is controlled by surface topography, the regional flow system is controlled by the networks of intermediate and deep seated faults/fractures. The local flow system is characterized by convergence, divergence, inflow and outflow in places, while the regional flow system is dominated by NNE-SSW and W-E flow directions. Minor flow directions include NNW-SSE and E-W with possible linkages to the main flow-paths. The NNE-SSW regional flow system is a double open ended flow system with possible linkage to the Niger Trough. The W-E regional flow system is a single open ended system that originates within the study area (with possible linkage to the NNE-SSW regional flow system) and extends to Ikogosi in the adjoining drainage basin. Thus, the groundwater drainage basin of the study area is much larger and extensive than its surface drainage basin. The all year round flowing (perennial) rivers are linked to groundwater outcrops from faults/fractures and contact zones. Consequently, larger percentage of annual rainwater usually leaves the basin in form of runoff and base flow. Therefore, the basin is categorized as a donor basin but with suspected subsurface water input at its northeastern axis.

  11. A New Wind Turbine Generating System Model for Balanced and Unbalanced Distribution Systems Load Flow Analysis

    Directory of Open Access Journals (Sweden)

    Ahmet Koksoy

    2018-03-01

    Full Text Available Wind turbine generating systems (WTGSs, which are conventionally connected to high voltage transmission networks, have frequently been employed as distributed generation units in today’s distribution networks. In practice, the distribution networks always have unbalanced bus voltages and line currents due to uneven distribution of single or double phase loads over three phases and asymmetry of the lines, etc. Accordingly, in this study, for the load flow analysis of the distribution networks, Conventional Fixed speed Induction Generator (CFIG based WTGS, one of the most widely used WTGS types, is modelled under unbalanced voltage conditions. The Developed model has active and reactive power expressions in terms of induction machine impedance parameters, terminal voltages and input power. The validity of the Developed model is confirmed with the experimental results obtained in a test system. The results of the slip calculation based phase-domain model (SCP Model, which was previously proposed in the literature for CFIG based WTGSs under unbalanced voltages, are also given for the comparison. Finally, the Developed model and the SCP model are implemented in the load flow analysis of the IEEE 34 bus test system with the CFIG based WTGSs and unbalanced loads. Thus, it is clearly pointed out that the results of the load flow analysis implemented with both models are very close to each other, and the Developed model is computationally more efficient than the SCP model.

  12. A Wavelet Neural Network Optimal Control Model for Traffic-Flow Prediction in Intelligent Transport Systems

    Science.gov (United States)

    Huang, Darong; Bai, Xing-Rong

    Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.

  13. UZ Flow Models and Submodels

    Energy Technology Data Exchange (ETDEWEB)

    Y. Wu

    2004-11-01

    The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.

  14. Retrieval-travel-time model for free-fall-flow-rack automated storage and retrieval system

    Science.gov (United States)

    Metahri, Dhiyaeddine; Hachemi, Khalid

    2018-03-01

    Automated storage and retrieval systems (AS/RSs) are material handling systems that are frequently used in manufacturing and distribution centers. The modelling of the retrieval-travel time of an AS/RS (expected product delivery time) is practically important, because it allows us to evaluate and improve the system throughput. The free-fall-flow-rack AS/RS has emerged as a new technology for drug distribution. This system is a new variation of flow-rack AS/RS that uses an operator or a single machine for storage operations, and uses a combination between the free-fall movement and a transport conveyor for retrieval operations. The main contribution of this paper is to develop an analytical model of the expected retrieval-travel time for the free-fall flow-rack under a dedicated storage assignment policy. The proposed model, which is based on a continuous approach, is compared for accuracy, via simulation, with discrete model. The obtained results show that the maximum deviation between the continuous model and the simulation is less than 5%, which shows the accuracy of our model to estimate the retrieval time. The analytical model is useful to optimise the dimensions of the rack, assess the system throughput, and evaluate different storage policies.

  15. Modelling and Simulation of TCPAR for Power System Flow Studies

    Directory of Open Access Journals (Sweden)

    Narimen Lahaçani AOUZELLAG

    2012-12-01

    Full Text Available In this paper, the modelling of Thyristor Controlled Phase Angle Regulator ‘TCPAR’ for power flow studies and the role of that modelling in the study of Flexible Alternating Current Transmission Systems ‘FACTS’ for power flow control are discussed. In order to investigate the impact of TCPAR on power systems effectively, it is essential to formulate a correct and appropriate model for it. The TCPAR, thus, makes it possible to increase or decrease the power forwarded in the line where it is inserted in a considerable way, which makes of it an ideal tool for this kind of use. Knowing that the TCPAR does not inject any active power, it offers a good solution with a less consumption. One of the adverse effects of the TCPAR is the voltage drop which it causes in the network although it is not significant. To solve this disadvantage, it is enough to introduce a Static VAR Compensator ‘SVC’ into the electrical network which will compensate the voltages fall and will bring them back to an acceptable level.

  16. Modeling of a District Heating System and Optimal Heat-Power Flow

    Directory of Open Access Journals (Sweden)

    Wentao Yang

    2018-04-01

    Full Text Available With ever-growing interconnections of various kinds of energy sources, the coupling between a power distribution system (PDS and a district heating system (DHS has been progressively intensified. Thus, it is becoming more and more important to take the PDS and the DHS as a whole in energy flow analysis. Given this background, a steady state model of DHS is first presented with hydraulic and thermal sub-models included. Structurally, the presented DHS model is composed of three major parts, i.e., the straight pipe, four kinds of local pipes, and the radiator. The impacts of pipeline parameters and the environment temperature on heat losses and pressure losses are then examined. The term “heat-power flow” is next defined, and the optimal heat-power flow (OHPF model formulated as a quadratic planning problem, in which the objective is to minimize energy losses, including the heat losses and active power losses, and both the operational constraints of PDS and DHS are respected. The developed OHPF model is solved by the well-established IPOPT (Interior Point OPTimizer commercial solver, which is based on the YALMIP/MATLAB toolbox. Finally, two sample systems are served for demonstrating the characteristics of the proposed models.

  17. Cascading failures in interdependent systems under a flow redistribution model

    Science.gov (United States)

    Zhang, Yingrui; Arenas, Alex; Yaǧan, Osman

    2018-02-01

    Robustness and cascading failures in interdependent systems has been an active research field in the past decade. However, most existing works use percolation-based models where only the largest component of each network remains functional throughout the cascade. Although suitable for communication networks, this assumption fails to capture the dependencies in systems carrying a flow (e.g., power systems, road transportation networks), where cascading failures are often triggered by redistribution of flows leading to overloading of lines. Here, we consider a model consisting of systems A and B with initial line loads and capacities given by {LA,i,CA ,i} i =1 n and {LB,i,CB ,i} i =1 n, respectively. When a line fails in system A , a fraction of its load is redistributed to alive lines in B , while remaining (1 -a ) fraction is redistributed equally among all functional lines in A ; a line failure in B is treated similarly with b giving the fraction to be redistributed to A . We give a thorough analysis of cascading failures of this model initiated by a random attack targeting p1 fraction of lines in A and p2 fraction in B . We show that (i) the model captures the real-world phenomenon of unexpected large scale cascades and exhibits interesting transition behavior: the final collapse is always first order, but it can be preceded by a sequence of first- and second-order transitions; (ii) network robustness tightly depends on the coupling coefficients a and b , and robustness is maximized at non-trivial a ,b values in general; (iii) unlike most existing models, interdependence has a multifaceted impact on system robustness in that interdependency can lead to an improved robustness for each individual network.

  18. Modeling of unified power quality conditioner (UPQC) in distribution systems load flow

    International Nuclear Information System (INIS)

    Hosseini, M.; Shayanfar, H.A.; Fotuhi-Firuzabad, M.

    2009-01-01

    This paper presents modeling of unified power quality conditioner (UPQC) in load flow calculations for steady-state voltage compensation. An accurate model for this device is derived to use in load flow calculations. The rating of this device as well as direction of reactive power injection required to compensate voltage to the desired value (1 p.u.) is derived and discussed analytically and mathematically using phasor diagram method. Since performance of the compensator varies when it reaches to its maximum capacity, modeling of UPQC in its maximum rating of reactive power injection is derived. The validity of the proposed model is examined using two standard distribution systems consisting of 33 and 69 nodes, respectively. The best location of UPQC for under voltage problem mitigation in the distribution network is determined. The results show the validity of the proposed model for UPQC in large distribution systems.

  19. Modeling of unified power quality conditioner (UPQC) in distribution systems load flow

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, M.; Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran); Fotuhi-Firuzabad, M. [Department of Electrical Engineering, Sharif University of Technology, Tehran (Iran)

    2009-06-15

    This paper presents modeling of unified power quality conditioner (UPQC) in load flow calculations for steady-state voltage compensation. An accurate model for this device is derived to use in load flow calculations. The rating of this device as well as direction of reactive power injection required to compensate voltage to the desired value (1 p.u.) is derived and discussed analytically and mathematically using phasor diagram method. Since performance of the compensator varies when it reaches to its maximum capacity, modeling of UPQC in its maximum rating of reactive power injection is derived. The validity of the proposed model is examined using two standard distribution systems consisting of 33 and 69 nodes, respectively. The best location of UPQC for under voltage problem mitigation in the distribution network is determined. The results show the validity of the proposed model for UPQC in large distribution systems. (author)

  20. Groundwater Flow Model of Göksu Delta Coastal Aquifer System

    Science.gov (United States)

    Erdem Dokuz, Uǧur; Çelik, Mehmet; Arslan, Şebnem; Engin, Hilal

    2016-04-01

    Like many other coastal areas, Göksu Delta (Mersin-Silifke, Southern Turkey) is a preferred place for human settlement especially due to its productive farmlands and water resources. The water dependent ecosystem in Göksu delta hosts about 332 different plant species and 328 different bird species besides serving for human use. Göksu Delta has been declared as Special Environmental Protection Zone, Wildlife Protection Area, and RAMSAR Convention for Wetlands of International Importance area. Unfortunately, rising population, agricultural and industrial activities cause degradation of water resources both by means of quality and quantity. This problem also exists for other wetlands around the world. It is necessary to prepare water management plans by taking global warming issues into account to protect water resources for next generations. To achieve this, the most efficient tool is to come up with groundwater management strategies by constructing groundwater flow models. By this aim, groundwater modeling studies were carried out for Göksu Delta coastal aquifer system. As a first and most important step in all groundwater modeling studies, geological and hydrogeological settings of the study area have been investigated. Göksu Delta, like many other deltaic environments, has a complex structure because it was formed with the sediments transported by Göksu River throughout the Quaternary period and shaped throughout the transgression-regression periods. Both due to this complex structure and the lack of observation wells penetrating deep enough to give an idea of the total thickness of the delta, it was impossible to reveal out the hydrogeological setting in a correct manner. Therefore, six wells were drilled to construct the conceptual hydrogeological model of Göksu Delta coastal aquifer system. On the basis of drilling studies and slug tests that were conducted along Göksu Delta, hydrostratigraphic units of the delta system have been obtained. According to

  1. UZ Flow Models and Submodels

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report is to document the unsaturated zone (UZ) fluid flow and tracer transport models and submodels as well as the flow fields generated utilizing the UZ Flow and Transport Model of Yucca Mountain (UZ Model), Nevada. This work was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10, Work Package AUZM06). The UZ Model has revised, updated, and enhanced the previous UZ Flow Model REV 00 ICN 01 (BSC 2001 [158726]) by incorporation of the conceptual repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates and their spatial distributions as well as moisture conditions in the UZ system. These 3-D UZ flow fields are used directly by Performance Assessment (PA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic conditions. In addition, this Model Report supports several PA activities, including abstractions, particle-tracking transport simulations, and the UZ Radionuclide Transport Model

  2. UZ Flow Models and Submodels

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-02-11

    The purpose of this Model Report is to document the unsaturated zone (UZ) fluid flow and tracer transport models and submodels as well as the flow fields generated utilizing the UZ Flow and Transport Model of Yucca Mountain (UZ Model), Nevada. This work was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10, Work Package AUZM06). The UZ Model has revised, updated, and enhanced the previous UZ Flow Model REV 00 ICN 01 (BSC 2001 [158726]) by incorporation of the conceptual repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates and their spatial distributions as well as moisture conditions in the UZ system. These 3-D UZ flow fields are used directly by Performance Assessment (PA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic conditions. In addition, this Model Report supports several PA activities, including abstractions, particle-tracking transport simulations, and the UZ Radionuclide Transport Model.

  3. Study of visualized simulation and analysis of nuclear fuel cycle system based on multilevel flow model

    Institute of Scientific and Technical Information of China (English)

    LIU Jing-Quan; YOSHIKAWA Hidekazu; ZHOU Yang-Ping

    2005-01-01

    Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle system based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being. Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples.

  4. A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.

    Science.gov (United States)

    Blake, James R; Easson, William J; Hoskins, Peter R

    2009-09-01

    A dual-phantom system is developed for validation of velocity measurements in stenosis models. Pairs of phantoms with identical geometry and flow conditions are manufactured, one for ultrasound and one for particle image velocimetry (PIV). The PIV model is made from silicone rubber, and a new PIV fluid is made that matches the refractive index of 1.41 of silicone. Dynamic scaling was performed to correct for the increased viscosity of the PIV fluid compared with that of the ultrasound blood mimic. The degree of stenosis in the models pairs agreed to less than 1%. The velocities in the laminar flow region up to the peak velocity location agreed to within 15%, and the difference could be explained by errors in ultrasound velocity estimation. At low flow rates and in mild stenoses, good agreement was observed in the distal flow fields, excepting the maximum velocities. At high flow rates, there was considerable difference in velocities in the poststenosis flow field (maximum centreline differences of 30%), which would seem to represent real differences in hydrodynamic behavior between the two models. Sources of error included: variation of viscosity because of temperature (random error, which could account for differences of up to 7%); ultrasound velocity estimation errors (systematic errors); and geometry effects in each model, particularly because of imperfect connectors and corners (systematic errors, potentially affecting the inlet length and flow stability). The current system is best placed to investigate measurement errors in the laminar flow region rather than the poststenosis turbulent flow region.

  5. Validation of the mathematical model of the NAPS PHT system flow with test data

    International Nuclear Information System (INIS)

    Rajesh Kumar, K.; Vani, K.; Chakraborty, G.; Venkat Raj, V.

    1994-01-01

    A dynamic analysis code to predict the time dependent behaviour of the reactor coolant system flow following the tripping and starting of Primary Circulating Pumps in the different operating modes has been developed for Indian Pressurised Heavy Water Reactor (PHWR) type power plants. The model is comprised of reactor coolant momentum equation, Primary Heat Transport (PHT) pump dynamic equation and pump characteristics. This model forms one of the modules of the integrated system code being developed for transient analysis of 220 MWe PHWR power plants. The Narora Atomic Power Station (NAPS) PHT system flow transient results for different combinations of pump operation predicted by the model have been compared with the experimental data obtained from a test carried out in NAPS-2 for validation of the model. The predicted results are in good agreement with the experimental data. (author). 3 refs., 5 figs

  6. A MATHEMATICAL MODEL OF OPTIMIZATION OF THE VOLUME OF MATERIAL FLOWS IN GRAIN PROCESSING INTEGRATED PRODUCTION SYSTEMS

    OpenAIRE

    Baranovskaya T. P.; Loyko V. I.; Makarevich O. A.; Bogoslavskiy S. N.

    2014-01-01

    The article suggests a mathematical model of optimization of the volume of material flows: the model for the ideal conditions; the model for the working conditions; generalized model of determining the optimal input parameters. These models optimize such parameters of inventory management in technology-integrated grain production systems, as the number of cycles supply, the volume of the source material and financial flows. The study was carried out on the example of the integrated system of ...

  7. Comparison of differential pressure model based on flow regime for gas/liquid two-phase flow

    International Nuclear Information System (INIS)

    Dong, F; Zhang, F S; Li, W; Tan, C

    2009-01-01

    Gas/liquid two-phase flow in horizontal pipe is very common in many industry processes, because of the complexity and variability, the real-time parameter measurement of two-phase flow, such as the measurement of flow regime and flow rate, becomes a difficult issue in the field of engineering and science. The flow regime recognition plays a fundamental role in gas/liquid two-phase flow measurement, other parameters of two-phase flow can be measured more easily and correctly based on the correct flow regime recognition result. A multi-sensor system is introduced to make the flow regime recognition and the mass flow rate measurement. The fusion system is consisted of temperature sensor, pressure sensor, cross-section information system and v-cone flow meter. After the flow regime recognition by cross-section information system, comparison of four typical differential pressure (DP) models is discussed based on the DP signal of v-cone flow meter. Eventually, an optimum DP model has been chosen for each flow regime. The experiment result of mass flow rate measurement shows it is efficient to classify the DP models by flow regime.

  8. Online traffic flow model applying dynamic flow-density relation

    International Nuclear Information System (INIS)

    Kim, Y.

    2002-01-01

    traffic states by employing fuzzy logic and the shock wave theory. The model is extended to describe also the propagation of congestion in the motorway sections with ramps by considering the capacity reduction caused by the interaction between the traffic flow of the mainstream and the ramps. This research represents the potential of the macroscopic traffic flow models for the application to online traffic control systems by applying the dynamic flow-density relation. The new modelling approach alleviates a critical problem, i.e. the parameter calibration problem, of existing traffic flow models. (orig.)

  9. Comparison of short term rainfall forecasts for model based flow prediction in urban drainage systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Poulsen, Troels Sander; Bøvith, Thomas

    2012-01-01

    Forecast based flow prediction in drainage systems can be used to implement real time control of drainage systems. This study compares two different types of rainfall forecasts – a radar rainfall extrapolation based nowcast model and a numerical weather prediction model. The models are applied...... performance of the system is found using the radar nowcast for the short leadtimes and weather model for larger lead times....

  10. Study of visualized simulation and analysis of nuclear fuel cycle system based on multilevel flow model

    International Nuclear Information System (INIS)

    Liu Jingquan; Yoshikawa, H.; Zhou Yangping

    2005-01-01

    Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle sys- tem based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being, Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples. (authors)

  11. Evaluation of an ARPS-based canopy flow modeling system for use in future operational smoke prediction efforts

    Science.gov (United States)

    M. T. Kiefer; S. Zhong; W. E. Heilman; J. J. Charney; X. Bian

    2013-01-01

    Efforts to develop a canopy flow modeling system based on the Advanced Regional Prediction System (ARPS) model are discussed. The standard version of ARPS is modified to account for the effect of drag forces on mean and turbulent flow through a vegetation canopy, via production and sink terms in the momentum and subgrid-scale turbulent kinetic energy (TKE) equations....

  12. Discrete event dynamic system (DES)-based modeling for dynamic material flow in the pyroprocess

    International Nuclear Information System (INIS)

    Lee, Hyo Jik; Kim, Kiho; Kim, Ho Dong; Lee, Han Soo

    2011-01-01

    A modeling and simulation methodology was proposed in order to implement the dynamic material flow of the pyroprocess. Since the static mass balance provides the limited information on the material flow, it is hard to predict dynamic behavior according to event. Therefore, a discrete event system (DES)-based model named, PyroFlow, was developed at the Korea Atomic Energy Research Institute (KAERI). PyroFlow is able to calculate dynamic mass balance and also show various dynamic operational results in real time. By using PyroFlow, it is easy to rapidly predict unforeseeable results, such as throughput in unit process, accumulated product in buffer and operation status. As preliminary simulations, bottleneck analyses in the pyroprocess were carried out and consequently it was presented that operation strategy had influence on the productivity of the pyroprocess.

  13. Integrated soft sensor model for flow control.

    Science.gov (United States)

    Aijälä, G; Lumley, D

    2006-01-01

    Tighter discharge permits often require wastewater treatment plants to maximize utilization of available facilities in order to cost-effectively reach these goals. Important aspects are minimizing internal disturbances and using available information in a smart way to improve plant performance. In this study, flow control throughout a large highly automated wastewater treatment plant (WWTP) was implemented in order to reduce internal disturbances and to provide a firm foundation for more advanced process control. A modular flow control system was constructed based on existing instrumentation and soft sensor flow models. Modules were constructed for every unit process in water treatment and integrated into a plant-wide model. The flow control system is used to automatically control recirculation flows and bypass flows at the plant. The system was also successful in making accurate flow estimations at points in the plant where it is not possible to have conventional flow meter instrumentation. The system provides fault detection for physical flow measuring devices. The module construction allows easy adaptation for new unit processes added to the treatment plant.

  14. CFD Modeling of Flow and Ion Exchange Kinetics in a Rotating Bed Reactor System

    DEFF Research Database (Denmark)

    Larsson, Hilde Kristina; Schjøtt Andersen, Patrick Alexander; Byström, Emil

    2017-01-01

    A rotating bed reactor (RBR) has been modeled using computational fluid dynamics (CFD). The flow pattern in the RBR was investigated and the flow through the porous material in it was quantified. A simplified geometry representing the more complex RBR geometry was introduced and the simplified...... model was able to reproduce the main characteristics of the flow. Alternating reactor shapes were investigated, and it was concluded that the use of baffles has a very large impact on the flows through the porous material. The simulations suggested, therefore, that even faster reaction rates could...... be achieved by making the baffles deeper. Two-phase simulations were performed, which managed to reproduce the deflection of the gas–liquid interface in an unbaffled system. A chemical reaction was implemented in the model, describing the ion-exchange phenomena in the porous material using four different...

  15. A numerical method for a model of two-phase flow in a coupled free flow and porous media system

    KAUST Repository

    Chen, Jie; Sun, Shuyu; Wang, Xiaoping

    2014-01-01

    In this article, we study two-phase fluid flow in coupled free flow and porous media regions. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the porous medium region. We propose a Robin-Robin domain decomposition method for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Numerical examples are presented to illustrate the effectiveness of this method. © 2014 Elsevier Inc.

  16. A numerical method for a model of two-phase flow in a coupled free flow and porous media system

    KAUST Repository

    Chen, Jie

    2014-07-01

    In this article, we study two-phase fluid flow in coupled free flow and porous media regions. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the porous medium region. We propose a Robin-Robin domain decomposition method for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Numerical examples are presented to illustrate the effectiveness of this method. © 2014 Elsevier Inc.

  17. Regression modeling of ground-water flow

    Science.gov (United States)

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  18. Using a Content Management System for Integrated Water Quantity, Quality and Instream Flows Modeling

    Science.gov (United States)

    Burgholzer, R.; Brogan, C. O.; Scott, D.; Keys, T.

    2017-12-01

    With increased population and water demand, in-stream flows can become depleted by consumptive uses and dilution of permitted discharges may be compromised. Reduced flows downstream of water withdrawals may increase the violation rate of bacterial concentrations from direct deposition by livestock and wildlife. Water storage reservoirs are constructed and operated to insure more stable supplies for consumptive demands and dilution flows, however their use comes at the cost of increased evaporative losses, potential for thermal pollution, interrupted fish migration, and reduced flooding events that are critical to maintain habitat and water quality. Due to this complex interrelationship between water quantity, quality and instream habitat comprehensive multi-disciplinary models must be developed to insure long-term sustainability of water resources and to avoid conflicts between drinking water, food and energy production, and aquatic biota. The Commonwealth of Virginia funded the expansion of the Chesapeake Bay Program Phase 5 model to cover the entire state, and has been using this model to evaluate water supply permit and planning since 2009. This integrated modeling system combines a content management system (Drupal and PHP) for model input data and leverages the modularity of HSPF with the custom segmentation and parameterization routines programmed by modelers working with the Chesapeake Bay Program. The model has been applied to over 30 Virginia Water Permits, instream flows and aquatic habitat models and a Virginias 30 year water supply demand projections. Future versions will leverage the Bay Model auto-calibration routines for adding small-scale water supply and TMDL models, utilize climate change scenarios, and integrate Virginia's reservoir management modules into the Chesapeake Bay watershed model, feeding projected demand and operational changes back up to EPA models to improve the realism of future Bay-wide simulations.

  19. The elaboration of a manufacturing flow connectivity model, based on Multi Agent System

    Directory of Open Access Journals (Sweden)

    Fahhama Lamyae

    2017-01-01

    The aim of this paper was to establish a model of the industrial flow connectivity; Afterward, we’ve detailed a network configuration model based on the multi-agents systems, to study the interactions between all the actors and give a more realistic vision onto manufacturing coordination in the supply chain.

  20. Multi-physics Model for the Aging Prediction of a Vanadium Redox Flow Battery System

    International Nuclear Information System (INIS)

    Merei, Ghada; Adler, Sophie; Magnor, Dirk; Sauer, Dirk Uwe

    2015-01-01

    Highlights: • Present a multi-physics model of vanadium redox-flow battery. • This model is essential for aging prediction. • It is applicable for VRB system of different power and capacity ratings. • Good results comparing with current research in this field. - Abstract: The all-vanadium redox-flow battery is an attractive candidate to compensate the fluctuations of non-dispatchable renewable energy generation. While several models for vanadium redox batteries have been described yet, no model has been published, which is adequate for the aging prediction. Therefore, the present paper presents a multi-physics model which determines all parameters that are essential for an aging prediction. In a following paper, the corresponding aging model of vanadium redox flow battery (VRB) is described. The model combines existing models for the mechanical losses and temperature development with new approaches for the batteries side reactions. The model was implemented in Matlab/Simulink. The modeling results presented in the paper prove to be consistent with the experimental results of other research groups

  1. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  2. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    E.L. Hardin

    2000-01-01

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  3. Low-order dynamical system model of a fully developed turbulent channel flow

    Science.gov (United States)

    Hamilton, Nicholas; Tutkun, Murat; Cal, Raúl Bayoán

    2017-06-01

    A reduced order model of a turbulent channel flow is composed from a direct numerical simulation database hosted at the Johns Hopkins University. Snapshot proper orthogonal decomposition (POD) is used to identify the Hilbert space from which the reduced order model is obtained, as the POD basis is defined to capture the optimal energy content by mode. The reduced order model is defined by coupling the evolution of the dynamic POD mode coefficients through their respective time derivative with a least-squares polynomial fit of terms up to third order. Parameters coupling the dynamics of the POD basis are defined in analog to those produced in the classical Galerkin projection. The resulting low-order dynamical system is tested for a range of basis modes demonstrating that the non-linear mode interactions do not lead to a monotonic decrease in error propagation. A basis of five POD modes accounts for 50% of the integrated turbulence kinetic energy but captures only the largest features of the turbulence in the channel flow and is not able to reflect the anticipated flow dynamics. Using five modes, the low-order model is unable to accurately reproduce Reynolds stresses, and the root-mean-square error of the predicted stresses is as great as 30%. Increasing the basis to 28 modes accounts for 90% of the kinetic energy and adds intermediate scales to the dynamical system. The difference between the time derivatives of the random coefficients associated with individual modes and their least-squares fit is amplified in the numerical integration leading to unstable long-time solutions. Periodic recalibration of the dynamical system is undertaken by limiting the integration time to the range of the sampled data and offering the dynamical system new initial conditions. Renewed initial conditions are found by pushing the mode coefficients in the end of the integration time toward a known point along the original trajectories identified through a least-squares projection. Under

  4. Investigation of the stability of melt flow in gating systems

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Larsen, Per

    2011-01-01

    Melt flow in four different gating systems designed for production of brake discs was analysed experimentally and by numerical modelling. In the experiments moulds were fitted with glass fronts and melt flow was recorded on video. The video recordings were compared with modelling of melt flow...... in the gating systems. Particular emphasis was on analysing local pressure and formation of pressure waves in the gating system. It was possible to compare melt flow patterns in experiments directly to modelled flow patterns. Generally there was good agreement between flow patterns and filling times. However...... description of free liquid surfaces proved to be incorrect in the numerical model. Modelled pressure fields served to explain how specific parts of the gating systems cause instability and are a good tool to describe the quality of a gating system. The results shows clearly that sharp changes in the geometry...

  5. RELAPS choked flow model and application to a large scale flow test

    International Nuclear Information System (INIS)

    Ransom, V.H.; Trapp, J.A.

    1980-01-01

    The RELAP5 code was used to simulate a large scale choked flow test. The fluid system used in the test was modeled in RELAP5 using a uniform, but coarse, nodalization. The choked mass discharge rate was calculated using the RELAP5 choked flow model. The calulations were in good agreement with the test data, and the flow was calculated to be near thermal equilibrium

  6. A water treatment case study for quantifying model performance with multilevel flow modeling

    Directory of Open Access Journals (Sweden)

    Emil K. Nielsen

    2018-05-01

    Full Text Available Decision support systems are a key focus of research on developing control rooms to aid operators in making reliable decisions and reducing incidents caused by human errors. For this purpose, models of complex systems can be developed to diagnose causes or consequences for specific alarms. Models applied in safety systems of complex and safety-critical systems require rigorous and reliable model building and testing. Multilevel flow modeling is a qualitative and discrete method for diagnosing faults and has previously only been validated by subjective and qualitative means. To ensure reliability during operation, this work aims to synthesize a procedure to measure model performance according to diagnostic requirements. A simple procedure is proposed for validating and evaluating the concept of multilevel flow modeling. For this purpose, expert statements, dynamic process simulations, and pilot plant experiments are used for validation of simple multilevel flow modeling models of a hydrocyclone unit for oil removal from produced water. Keywords: Fault Diagnosis, Model Validation, Multilevel Flow Modeling, Produced Water Treatment

  7. System identification on two-phase flow stability

    International Nuclear Information System (INIS)

    Wu Shaorong; Zhang Youjie; Wang Dazhong; Bo Jinghai; Wang Fei

    1996-01-01

    The theoretical principle, experimental method and results of interrelation analysis identification for the instability of two-phase flow are described. A completely new concept of test technology and method on two-phase flow stability was developed by using he theory of information science on system stability and system identification for two-phase flow stability in thermo-physics field. Application of this method would make it possible to identify instability boundary of two-phase flow under stable operation conditions of two-phase flow system. The experiment was carried out on the thermohydraulic test system HRTL-5. Using reverse repeated pseudo-random sequences of heating power as input signal sources and flow rate as response function in the test, the two-phase flow stability and stability margin of the natural circulation system are investigated. The effectiveness and feasibility of identifying two-phase flow stability by using this system identification method were experimentally demonstrated. Basic data required for mathematics modeling of two-phase flow and analysis of two-phase flow stability were obtained, which are useful for analyzing, monitoring of the system operation condition, and forecasting of two-phase flow stability in engineering system

  8. Estimating preferential flow in karstic aquifers using statistical mixed models.

    Science.gov (United States)

    Anaya, Angel A; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J; Meeker, John D; Alshawabkeh, Akram N

    2014-01-01

    Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory-scale Geo-HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models (SMMs) are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow-dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit-like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the SMMs used in the study. © 2013, National Ground Water Association.

  9. Flow and transport in hierarchically fractured systems

    International Nuclear Information System (INIS)

    Karasaki, K.

    1993-01-01

    Preliminary results indicate that flow in the saturated zone at Yucca Mountain is controlled by fractures. A current conceptual model assumes that the flow in the fracture system can be approximately by a three-dimensionally interconnected network of linear conduits. The overall flow system of rocks at Yucca Mountain is considered to consist of hierarchically structured heterogeneous fracture systems of multiple scales. A case study suggests that it is more appropriate to use the flow parameters of the large fracture system for predicting the first arrival time, rather than using the bulk average parameters of the total system

  10. River Stream-Flow and Zayanderoud Reservoir Operation Modeling Using the Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Saeed Jamali

    2007-12-01

    Full Text Available The Zayanderoud basin is located in the central plateau of Iran. As a result of population increase and agricultural and industrial developments, water demand on this basin has increased extensively. Given the importance of reservoir operation in water resource and management studies, the performance of fuzzy inference system (FIS for Zayanderoud reservoir operation is investigated in this paper. The model of operation consists of two parts. In the first part, the seasonal river stream-flow is forecasted using the fuzzy rule-based system. The southern oscillated index, rain, snow, and discharge are inputs of the model and the seasonal river stream-flow its output. In the second part, the operation model is constructed. The amount of releases is first optimized by a nonlinear optimization model and then the rule curves are extracted using the fuzzy inference system. This model operates on an "if-then" principle, where the "if" is a vector of fuzzy permits and "then" is the fuzzy result. The reservoir storage capacity, inflow, demand, and year condition factor are used as permits. Monthly release is taken as the consequence. The Zayanderoud basin is investigated as a case study. Different performance indices such as reliability, resiliency, and vulnerability are calculated. According to results, FIS works more effectively than the traditional reservoir operation methods such as standard operation policy (SOP or linear regression.

  11. Application of the load flow and random flow models for the analysis of power transmission networks

    International Nuclear Information System (INIS)

    Zio, Enrico; Piccinelli, Roberta; Delfanti, Maurizio; Olivieri, Valeria; Pozzi, Mauro

    2012-01-01

    In this paper, the classical load flow model and the random flow model are considered for analyzing the performance of power transmission networks. The analysis concerns both the system performance and the importance of the different system elements; this latter is computed by power flow and random walk betweenness centrality measures. A network system from the literature is analyzed, representing a simple electrical power transmission network. The results obtained highlight the differences between the LF “global approach” to flow dispatch and the RF local approach of randomized node-to-node load transfer. Furthermore, computationally the LF model is less consuming than the RF model but problems of convergence may arise in the LF calculation.

  12. Application of flow network models of SINDA/FLUINT{sup TM} to a nuclear power plant system thermal hydraulic code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ji Bum [Institute for Advanced Engineering, Yongin (Korea, Republic of); Park, Jong Woon [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUINT{sup TM} has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA). 5 refs., 10 figs. (Author)

  13. Site-Scale Saturated Zone Flow Model

    International Nuclear Information System (INIS)

    G. Zyvoloski

    2003-01-01

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being

  14. From Traffic Flow to Economic System

    Science.gov (United States)

    Bando, M.

    The optimal velocity model which is applied to traffic flow phenomena explains a spontaneous formation of traffic congestion. We discuss why the model works well in describing both free-flow and congested flow states in a unified way. The essential ingredient is that our model takes account of a sort of time delay in reacting to a given stimulus. This causes instability of many-body system, and yields a kind of phase transition above a certain critical density. Especially there appears a limit cycle on the phase space along which individual vehicle moves, and they show cyclic behavior. Once that we recognize the mechanism the same idea can be applied to a variety of phenomena which show cyclic behavior observed in many-body systems. As an example of such applications, we investigate business cycles commonly observed in economic system. We further discuss a possible origin of a kind of cyclic behavior observed in climate change.

  15. A formal definition of data flow graph models

    Science.gov (United States)

    Kavi, Krishna M.; Buckles, Bill P.; Bhat, U. Narayan

    1986-01-01

    In this paper, a new model for parallel computations and parallel computer systems that is based on data flow principles is presented. Uninterpreted data flow graphs can be used to model computer systems including data driven and parallel processors. A data flow graph is defined to be a bipartite graph with actors and links as the two vertex classes. Actors can be considered similar to transitions in Petri nets, and links similar to places. The nondeterministic nature of uninterpreted data flow graphs necessitates the derivation of liveness conditions.

  16. Electromagnetic field modeling and ion optics calculations for a continuous-flow AMS system

    International Nuclear Information System (INIS)

    Han, B.X.; Reden, K.F. von; Roberts, M.L.; Schneider, R.J.; Hayes, J.M.; Jenkins, W.J.

    2007-01-01

    A continuous-flow 14 C AMS (CFAMS) system is under construction at the NOSAMS facility. This system is based on a NEC Model 1.5SDH-1 0.5 MV Pelletron accelerator and will utilize a combination of a microwave ion source (MIS) and a charge exchange canal (CXC) to produce negative carbon ions from a continuously flowing stream of CO 2 gas. For high-efficiency transmission of the large emittance, large energy-spread beam from the ion source unit, a large-acceptance and energy-achromatic injector consisting of a 45 o electrostatic spherical analyzer (ESA) and a 90 o double-focusing magnet has been designed. The 45 o ESA is rotatable to accommodate a 134-sample MC-SNICS as a second ion source. The high-energy achromat (90 o double focusing magnet and 90 o ESA) has also been customized for large acceptance. Electromagnetic field modeling and ion optics calculations of the beamline were done with Infolytica MagNet, ElecNet, and Trajectory Evaluator. PBGUNS and SIMION were used for the modeling of ion source unit

  17. Simulating the impact of glaciations on continental groundwater flow systems: 2. Model application to the Wisconsinian glaciation over the Canadian landscape

    Science.gov (United States)

    Lemieux, J.-M.; Sudicky, E. A.; Peltier, W. R.; Tarasov, L.

    2008-09-01

    A 3-D groundwater flow and brine transport numerical model of the entire Canadian landscape up to a depth of 10 km is constructed in order to capture the impacts of the Wisconsinian glaciation on the continental groundwater flow system. The numerical development of the model is presented in the companion paper of Lemieux et al. (2008b). Although the scale of the model prevents the use of a detailed geological model, commonly occurring geological materials that exhibit relatively consistent hydrogeological properties over the continent justify the simplifications while still allowing the capture of large-scale flow system trends. The model includes key processes pertaining to coupled groundwater flow and glaciation modeling, such a density-dependent (i.e., brine) flow, hydromechanical loading, subglacial infiltration, isostasy, and permafrost development. The surface boundary conditions are specified with the results of a glacial system model. The significant impact of the ice sheet on groundwater flow is evident by increases in the hydraulic head values below the ice sheet by as much as 3000 m down to a depth of 1.5 km into the subsurface. Results also indicate that the groundwater flow system after glaciation did not fully revert to its initial condition and that it is still recovering from the glaciation perturbation. This suggests that the current groundwater flow system cannot be interpreted solely on the basis of present-day boundary conditions and it is likely that several thousands of years of additional equilibration time will be necessary for the system to reach a new quasi-steady state. Finally, we find permafrost to have a large impact on the rate of dissipation of high hydraulic heads that build at depth and capturing its accurate distribution is important to explain the current hydraulic head distribution across the Canadian landscape.

  18. Modelling of groundwater flow and flow paths for a large regional domain in northeast Uppland. A three-dimensional, mathematical modelling of groundwater flows and flow paths on a super-regional scale, for different complexity levels of the flow domain

    International Nuclear Information System (INIS)

    Holmen, Johan G.; Stigsson, Martin; Marsic, Niko; Gylling, Bjoern

    2003-12-01

    The general purpose of this study is to estimate the groundwater flow for a large regional domain by use of groundwater models; and to do that with such a resolution (degree of detail) that important local properties of the flow system studied is represented in the established models. Based on the results of the groundwater modelling, we have compared different theoretical locations of a repository for nuclear waste, considering length and breakthrough time (advective flow) for flow paths from such a repository. The area studied is located in Sweden, in the Northeast of the Uppland province. The area has a maximum horizontal extension of 90 km by 50 km, and the size of the area is approximately 2,000 km 2 . The study is based on a system analysis approach. The studied system is the groundwater flow in the rock mass of Northeast Uppland. To reach the objectives of the study, different mathematical models were devised of the studied domain; these models will, in an idealised and simplified way, reproduce the groundwater movements at the area studied. The formal models (the mathematical models) used for simulation of the groundwater flow are three dimensional mathematical descriptions of the studied hydraulic system. For establishment of the formal models we used two different numerical codes GEOAN, which is based on the finite difference method and NAMMU, which is based on the finite element method. Considering flow path lengths and breakthrough times from a theoretical repository, we have evaluated the following: Importance of the local and regional topography; Importance of cell size in the numerical model; Importance of depth of domain represented in the numerical model; Importance of regional fracture zones; Importance of local lakes; Importance of areas covered by a clay layer; Importance of a modified topography; Importance of the shore level progress. Importance of density dependent flow. The results of the study includes: Length and breakthrough time of flow

  19. Modelling of groundwater flow and flow paths for a large regional domain in northeast Uppland. A three-dimensional, mathematical modelling of groundwater flows and flow paths on a super-regional scale, for different complexity levels of the flow domain

    Energy Technology Data Exchange (ETDEWEB)

    Holmen, Johan G.; Stigsson, Martin [Golder Associates, Stockholm (Sweden); Marsic, Niko; Gylling, Bjoern [Kemakta Konsult AB, Stockholm (Sweden)

    2003-12-01

    The general purpose of this study is to estimate the groundwater flow for a large regional domain by use of groundwater models; and to do that with such a resolution (degree of detail) that important local properties of the flow system studied is represented in the established models. Based on the results of the groundwater modelling, we have compared different theoretical locations of a repository for nuclear waste, considering length and breakthrough time (advective flow) for flow paths from such a repository. The area studied is located in Sweden, in the Northeast of the Uppland province. The area has a maximum horizontal extension of 90 km by 50 km, and the size of the area is approximately 2,000 km{sup 2}. The study is based on a system analysis approach. The studied system is the groundwater flow in the rock mass of Northeast Uppland. To reach the objectives of the study, different mathematical models were devised of the studied domain; these models will, in an idealised and simplified way, reproduce the groundwater movements at the area studied. The formal models (the mathematical models) used for simulation of the groundwater flow are three dimensional mathematical descriptions of the studied hydraulic system. For establishment of the formal models we used two different numerical codes GEOAN, which is based on the finite difference method and NAMMU, which is based on the finite element method. Considering flow path lengths and breakthrough times from a theoretical repository, we have evaluated the following: Importance of the local and regional topography; Importance of cell size in the numerical model; Importance of depth of domain represented in the numerical model; Importance of regional fracture zones; Importance of local lakes; Importance of areas covered by a clay layer; Importance of a modified topography; Importance of the shore level progress. Importance of density dependent flow. The results of the study includes: Length and breakthrough time of

  20. Development of realistic thermal-hydraulic system analysis codes ; development of thermal hydraulic test requirements for multidimensional flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Yull; Yoon, Sang Hyuk; Noh, Sang Woo; Lee, Il Suk [Seoul National University, Seoul (Korea)

    2002-03-01

    This study is concerned with developing a multidimensional flow model required for the system analysis code MARS to more mechanistically simulate a variety of thermal hydraulic phenomena in the nuclear stem supply system. The capability of the MARS code as a thermal hydraulic analysis tool for optimized system design can be expanded by improving the current calculational methods and adding new models. In this study the relevant literature was surveyed on the multidimensional flow models that may potentially be applied to the multidimensional analysis code. Research items were critically reviewed and suggested to better predict the multidimensional thermal hydraulic behavior and to identify test requirements. A small-scale preliminary test was performed in the downcomer formed by two vertical plates to analyze multidimensional flow pattern in a simple geometry. The experimental result may be applied to the code for analysis of the fluid impingement to the reactor downcomer wall. Also, data were collected to find out the controlling parameters for the one-dimensional and multidimensional flow behavior. 22 refs., 40 figs., 7 tabs. (Author)

  1. Numerical modeling of groundwater flow in the coastal aquifer system of Taranto (southern Italy)

    Science.gov (United States)

    De Filippis, Giovanna; Giudici, Mauro; Negri, Sergio; Margiotta, Stefano; Cattaneo, Laura; Vassena, Chiara

    2014-05-01

    The Mediterranean region is characterized by a strong development of coastal areas with a high concentration of water-demanding human activities, resulting in weakly controlled withdrawals of groundwater which accentuate the saltwater intrusion phenomenon. The worsening of groundwater quality is a huge problem especially for those regions, like Salento (southern Italy), where a karst aquifer system represents the most important water resource because of the deficiency of a well developed superficial water supply. In this frame, the first 2D numerical model describing the groundwater flow in the karst aquifer of Salento peninsula was developed by Giudici et al. [1] at the regional scale and then improved by De Filippis et al. [2]. In particular, the estimate of the saturated thickness of the deep aquifer highlighted that the Taranto area is particularly sensitive to the phenomenon of seawater intrusion, both for the specific hydrostratigraphic configuration and for the presence of highly water-demanding industrial activities. These remarks motivate a research project which is part of the research program RITMARE (The Italian Research for the Sea), within which a subprogram is specifically dedicated to the problem of the protection and preservation of groundwater quality in Italian coastal aquifers and in particular, among the others, in the Taranto area. In this context, the CINFAI operative unit aims at providing a contribution to the characterization of groundwater in the study area. The specific objectives are: a. the reconstruction of the groundwater dynamic (i.e., the preliminary identification of a conceptual model for the aquifer system and the subsequent modeling of groundwater flow in a multilayered system which is very complex from the hydrostratigraphical point of view); b. the characterization of groundwater outflows through submarine and subaerial springs and the water exchanges with the shallow coastal water bodies (e.g. Mar Piccolo) and the off

  2. Flow Battery System Design for Manufacturability.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  3. Real-Time Model-Based Leak-Through Detection within Cryogenic Flow Systems

    Science.gov (United States)

    Walker, M.; Figueroa, F.

    2015-01-01

    The timely detection of leaks within cryogenic fuel replenishment systems is of significant importance to operators on account of the safety and economic impacts associated with material loss and operational inefficiencies. Associated loss in control of pressure also effects the stability and ability to control the phase of cryogenic fluids during replenishment operations. Current research dedicated to providing Prognostics and Health Management (PHM) coverage of such cryogenic replenishment systems has focused on the detection of leaks to atmosphere involving relatively simple model-based diagnostic approaches that, while effective, are unable to isolate the fault to specific piping system components. The authors have extended this research to focus on the detection of leaks through closed valves that are intended to isolate sections of the piping system from the flow and pressurization of cryogenic fluids. The described approach employs model-based detection of leak-through conditions based on correlations of pressure changes across isolation valves and attempts to isolate the faults to specific valves. Implementation of this capability is enabled by knowledge and information embedded in the domain model of the system. The approach has been used effectively to detect such leak-through faults during cryogenic operational testing at the Cryogenic Testbed at NASA's Kennedy Space Center.

  4. Macropore-mesopore model of water flow through aggregated porous media

    International Nuclear Information System (INIS)

    Fong, L.; Appelbaum, H.R.

    1980-12-01

    A combined, one-dimensional, macropore-mesopore, hydrologic model was developed for simulating water flow through soils for analysis of data related to water and chemical flow in soils. Flows within the macroporous system as well as interactive flows between macroporous and mesoporous systems were modeled. Computer subroutines were written and incorporated into the existing one-dimensional Terrestrial Ecosystem Hydrologic Model (TEHM) developed at ORNL. Simulation showed that macropore flow effects are important during heavy precipitation and are more significant in soils of comparatively low hydraulic conductivity (5 to 10 cm/d). Increased drainage and decreased lateral flow result from the addition of the macropore model. The effect was more pronounced in soils of large macroporosity. Preliminary results indicate that the model is insensitive to geometrical properties of macropores

  5. Simple interphase drag model for numerical two-fluid modeling of two-phase flow systems

    International Nuclear Information System (INIS)

    Chow, H.; Ransom, V.H.

    1984-01-01

    The interphase drag model that has been developed for RELAP5/MOD2 is based on a simple formulation having flow regime maps for both horizontal and vertical flows. The model is based on a conventional semi-empirical formulation that includes the product of drag coefficient, interfacial area, and relative dynamic pressure. The interphase drag model is implemented in the RELAP5/MOD2 light water reactor transient analysis code and has been used to simulate a variety of separate effects experiments to assess the model accuracy. The results from three of these simulations, the General Electric Company small vessel blowdown experiment, Dukler and Smith's counter-current flow experiment, and a Westinghouse Electric Company FLECHT-SEASET forced reflood experiment, are presented and discussed

  6. A coupled three dimensional model of vanadium redox flow battery for flow field designs

    International Nuclear Information System (INIS)

    Yin, Cong; Gao, Yan; Guo, Shaoyun; Tang, Hao

    2014-01-01

    A 3D (three-dimensional) model of VRB (vanadium redox flow battery) with interdigitated flow channel design is proposed. Two different stack inlet designs, single-inlet and multi-inlet, are structured in the model to study the distributions of fluid pressure, electric potential, current density and overpotential during operation of VRB cell. Electrolyte flow rate and stack channel dimension are proved to be the critical factors affecting flow distribution and cell performance. The model developed in this paper can be employed to optimize both VRB stack design and system operation conditions. Further improvements of the model concerning current density and electrode properties are also suggested in the paper. - Highlights: • A coupled three-dimensional model of vanadium redox flow cell is proposed. • Interdigitated flow channels with two different manifold designs are simulated. • Manifold structure affects uniformity of distribution patterns significantly. • Increased electrolyte flow rate improves cell performance for both designs. • Decreased channel size and enlarged land width enhance cell voltage

  7. Package Flow Model and its fuzzy implementation for simulating nuclear reactor system dynamics

    International Nuclear Information System (INIS)

    Matsuoka, Hiroshi; Ishiguro, Misako.

    1996-01-01

    A simple intuitive simulation model, which we call 'Package Flow Model', has been developed to evaluate physical processes in nuclear reactor system from a macroscopic point of view. In the previous paper, we showed the physical process of each energy generation and transfer stage in a PWR could be modeled by PFM, and its dynamics could be approximately simulated by fuzzy implementation. In this paper, a PFMs network approach for a total PWR system simulation is proposed and some transients of nuclear ship 'MUTSU' reactor system are evaluated. The simulated results are consistent with those from Nuclear Ship Engineering Simulation System developed by JAERI. Furthermore, a visual representation method is proposed to intuitively capture the profile of fuel safety transient. Using the PFMs network, we can handily calculate the transient phenomena of the system even by a notebook-type personal computer. In addition, we can easily interpret the results of calculation surveying a small number of parameters. (author)

  8. Interplay of Proximal Flow Confluence and Distal Flow Divergence in Patient-Specific Vertebrobasilar System.

    Directory of Open Access Journals (Sweden)

    Xiaoping Yin

    Full Text Available Approximately one-quarter of ischemic strokes involve the vertebrobasilar arterial system that includes the upstream flow confluence and downstream flow divergence. A patient-specific hemodynamic analysis is needed to understand the posterior circulation. The objective of this study is to determine the distribution of hemodynamic parameters in the vertebrobasilar system, based on computer tomography angiography images. Here, the interplay of upstream flow confluence and downstream flow divergence was hypothesized to be a determinant factor for the hemodynamic distribution in the vertebrobasilar system. A computational fluid dynamics model was used to compute the flow fields in patient-specific vertebrobasilar models (n = 6. The inlet and outlet boundary conditions were the aortic pressure waveform and flow resistances, respectively. A 50% reduction of total outlet area was found to induce a ten-fold increase in surface area ratio of low time-averaged wall shear stress (i.e., TAWSS ≤ 4 dynes/cm2. This study enhances our understanding of the posterior circulation associated with the incidence of atherosclerotic plaques.

  9. Plasma flow in toroidal systems with a separatrix

    International Nuclear Information System (INIS)

    Gribkov, V.M.; Morozov, D.Kh.; Pogutse, O.P.

    1984-01-01

    A hydrodynamic plasma flow in toroidal systems is considered. Rlasma flow lines for various magnetic configurations are calculated. A particular attention is given to studying plasma flow in configurations with two magnetic a axes and a separatrix. The flow picture i the toroidal case is shown to qualita ity to penetrate through the separatrix - the latter becomes ''perforated''. Th he pictkre of these flows is calculated. The plasma diffusion coefficient with account for the separatrix is calculated and is shown not to turn into the infin nity in the toroidal case as well. The plasma flow is analytically considered in the model with distributed current as well as in the model with current conce entrated at the oroidal system axis. In the first case the existence of ''stagnant'' regions near the magnetic axis is established from which the plasma a does not flow out

  10. Flow Simulation of Modified Duct System Wind Turbines Installed on Vehicle

    Science.gov (United States)

    Rosly, N.; Mohd, S.; Zulkafli, M. F.; Ghafir, M. F. Abdul; Shamsudin, S. S.; Muhammad, W. N. A. Wan

    2017-10-01

    This study investigates the characteristics of airflow with a flow guide installed and output power generated by wind turbine system being installed on a pickup truck. The wind turbine models were modelled by using SolidWorks 2015 software. In order to investigate the characteristic of air flow inside the wind turbine system, a computer simulation (by using ANSYS Fluent software) is used. There were few models being designed and simulated, one without the rotor installed and another two with rotor installed in the wind turbine system. Three velocities being used for the simulation which are 16.7 m/s (60 km/h), 25 m/s (90 km/h) and 33.33 m/s (120 km/h). The study proved that the flow guide did give an impact to the output power produced by the wind turbine system. The predicted result from this study is the velocity of the air inside the ducting system of the present model is better that reference model. Besides, the flow guide implemented in the ducting system gives a big impact on the characteristics of the air flow.

  11. A dynamic model of the reactor coolant system flow for KMRR plant simulation

    International Nuclear Information System (INIS)

    Rhee, B.W.; Noh, T.W.; Park, C.; Sim, B.S.; Oh, S.K.

    1990-01-01

    To support computer simulation studies for reactor control system design and performance evaluation, a dynamic model of the reactor coolant system (RCS) and reflector cooling system has been developed. This model is composed of the reactor coolant loop momentum equation, RCS pump dynamic equation, RCS pump characteristic equation, and the energy equation for the coolant inside the various components and piping. The model is versatile enough to simulate the normal steady-state conditions as well as most of the anticipated flow transients without pipe rupture. This model has been successfully implemented as the plant simulation code KMRRSIM for the Korea Multi-purpose Research Reactor and is now under extensive validation testing. The initial stage of validation has been comparison of its result with that of already validated, more detailed reactor system transient codes such as RELAP5. The results, as compared to the predictions by RELAP5 simulation, have been generally found to be very encouraging and the model is judged to be accurate enough to fulfill its intended purpose. However, this model will continue to be validated against other plant's data and eventually will be assessed by test data from KMRR

  12. Simulation of groundwater flow in the glacial aquifer system of northeastern Wisconsin with variable model complexity

    Science.gov (United States)

    Juckem, Paul F.; Clark, Brian R.; Feinstein, Daniel T.

    2017-05-04

    The U.S. Geological Survey, National Water-Quality Assessment seeks to map estimated intrinsic susceptibility of the glacial aquifer system of the conterminous United States. Improved understanding of the hydrogeologic characteristics that explain spatial patterns of intrinsic susceptibility, commonly inferred from estimates of groundwater age distributions, is sought so that methods used for the estimation process are properly equipped. An important step beyond identifying relevant hydrogeologic datasets, such as glacial geology maps, is to evaluate how incorporation of these resources into process-based models using differing levels of detail could affect resulting simulations of groundwater age distributions and, thus, estimates of intrinsic susceptibility.This report describes the construction and calibration of three groundwater-flow models of northeastern Wisconsin that were developed with differing levels of complexity to provide a framework for subsequent evaluations of the effects of process-based model complexity on estimations of groundwater age distributions for withdrawal wells and streams. Preliminary assessments, which focused on the effects of model complexity on simulated water levels and base flows in the glacial aquifer system, illustrate that simulation of vertical gradients using multiple model layers improves simulated heads more in low-permeability units than in high-permeability units. Moreover, simulation of heterogeneous hydraulic conductivity fields in coarse-grained and some fine-grained glacial materials produced a larger improvement in simulated water levels in the glacial aquifer system compared with simulation of uniform hydraulic conductivity within zones. The relation between base flows and model complexity was less clear; however, the relation generally seemed to follow a similar pattern as water levels. Although increased model complexity resulted in improved calibrations, future application of the models using simulated particle

  13. A methodology for the parametric modelling of the flow coefficients and flow rate in hydraulic valves

    International Nuclear Information System (INIS)

    Valdés, José R.; Rodríguez, José M.; Saumell, Javier; Pütz, Thomas

    2014-01-01

    Highlights: • We develop a methodology for the parametric modelling of flow in hydraulic valves. • We characterize the flow coefficients with a generic function with two parameters. • The parameters are derived from CFD simulations of the generic geometry. • We apply the methodology to two cases from the automotive brake industry. • We validate by comparing with CFD results varying the original dimensions. - Abstract: The main objective of this work is to develop a methodology for the parametric modelling of the flow rate in hydraulic valve systems. This methodology is based on the derivation, from CFD simulations, of the flow coefficient of the critical restrictions as a function of the Reynolds number, using a generalized square root function with two parameters. The methodology is then demonstrated by applying it to two completely different hydraulic systems: a brake master cylinder and an ABS valve. This type of parametric valve models facilitates their implementation in dynamic simulation models of complex hydraulic systems

  14. Observation and characterization of flow in critical sections of a horizontal pressurized gating system using water models

    Directory of Open Access Journals (Sweden)

    Jaiganesh Venkataramani

    2013-07-01

    Full Text Available This work is concerned with the hydraulics and flow characterization in a pressurized, horizontal gating system with multiple ingates attached to a plate mold, using transparent water models. Runners with two different aspect ratios (w/h = 0.5 and 2 and four different types of ingates (rectangular, convergent, divergent and venturi were examined for their influence on flow behavior. Flow behavior was visualized using a high speed camera capable of capturing images up to 10,000 frames per second. Real time experimentation with a few runner – ingate combinations were carried out to validate the usefulness of water models in predicting the filling behavior. Comparison of the approaches provided useful insights into the filling behavior in critical sections of the flow passages as well as the utility of water models towards understanding of the filling behavior during real time casting.

  15. Improved choked flow model for MARS code

    International Nuclear Information System (INIS)

    Chung, Moon Sun; Lee, Won Jae; Ha, Kwi Seok; Hwang, Moon Kyu

    2002-01-01

    Choked flow calculation is improved by using a new sound speed criterion for bubbly flow that is derived by the characteristic analysis of hyperbolic two-fluid model. This model was based on the notion of surface tension for the interfacial pressure jump terms in the momentum equations. Real eigenvalues obtained as the closed-form solution of characteristic polynomial represent the sound speed in the bubbly flow regime that agrees well with the existing experimental data. The present sound speed shows more reasonable result in the extreme case than the Nguyens did. The present choked flow criterion derived by the present sound speed is employed in the MARS code and assessed by using the Marviken choked flow tests. The assessment results without any adjustment made by some discharge coefficients demonstrate more accurate predictions of choked flow rate in the bubbly flow regime than those of the earlier choked flow calculations. By calculating the Typical PWR (SBLOCA) problem, we make sure that the present model can reproduce the reasonable transients of integral reactor system

  16. Improved inter-assembly heat transfer modeling under low flow conditions for the Super System Code (SSC)

    International Nuclear Information System (INIS)

    Horak, W.C.; Guppy, J.G.

    1984-01-01

    The Super System Code (SSC) was developed at the Brookhaven National Laboratory (BNL) for the thermal hydraulic analysis of natural circulation transients, operational transients, and other system wide transients in nuclear power plants. SSC is a generic, best estimate code that models the in-vessel components, heat transport loops, plant protection systems and plant control systems. SSC also simulates the balance of plant when interfaced with the MINET code. SSC has been validated against both numerical and experimental data bases and is now used by several outside users. An important area of interest in LMFBR transient analysis is the prediction of the response of the reactor core under low flow conditions, such as experienced during a natural circulation event. Under these circumstances there are many physical phenomena which must be modeled to provide an adequate representation by a computer code simulation. The present version of SSC contains numerous models which account for most of the major phenomena. However, one area where the present model in SSC is being improved is in the representation of heat transfer and buoyancy effects under low flow operation. To properly improve the present version, the addition of models to represent certain inter-assembly effects is required

  17. Model calibration of a variable refrigerant flow system with a dedicated outdoor air system: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongsu [Mississippi State Univ., Starkville, MS (United States); Cox, Sam J. [Mississippi State Univ., Starkville, MS (United States); Cho, Heejin [Mississippi State Univ., Starkville, MS (United States); Im, Piljae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-16

    With increased use of variable refrigerant flow (VRF) systems in the U.S. building sector, interests in capability and rationality of various building energy modeling tools to simulate VRF systems are rising. This paper presents the detailed procedures for model calibration of a VRF system with a dedicated outdoor air system (DOAS) by comparing to detailed measured data from an occupancy emulated small office building. The building energy model is first developed based on as-built drawings, and building and system characteristics available. The whole building energy modeling tool used for the study is U.S. DOE’s EnergyPlus version 8.1. The initial model is, then, calibrated with the hourly measured data from the target building and VRF-DOAS system. In a detailed calibration procedures of the VRF-DOAS, the original EnergyPlus source code is modified to enable the modeling of the specific VRF-DOAS installed in the building. After a proper calibration during cooling and heating seasons, the VRF-DOAS model can reasonably predict the performance of the actual VRF-DOAS system based on the criteria from ASHRAE Guideline 14-2014. The calibration results show that hourly CV-RMSE and NMBE would be 15.7% and 3.8%, respectively, which is deemed to be calibrated. As a result, the whole-building energy usage after calibration of the VRF-DOAS model is 1.9% (78.8 kWh) lower than that of the measurements during comparison period.

  18. Dynamic Characteristics of Flow Induced Vibration in a Rotor-Seal System

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2011-01-01

    Full Text Available Flow induced vibration is an important factor affecting the performance of the rotor-seal system. From the point of view of flow induced vibration, the nonlinear models of the rotor-seal system are presented for the analysis of the fluid force, which is induced by the interaction between the unstable fluid flow in the seal and the vibrating rotor. The nonlinear characteristics of flow induced vibration in the rotor-seal system are analyzed, and the nonlinear phenomena in the unbalanced rotor-seal system are investigated using the nonlinear models. Various nonlinear phenomena of flow induced vibration in the rotor-seal system, such as synchronization phenomenon and amplitude mutation, are reproduced.

  19. Experimental Testing Procedures and Dynamic Model Validation for Vanadium Redox Flow Battery Storage System

    DEFF Research Database (Denmark)

    Baccino, Francesco; Marinelli, Mattia; Nørgård, Per Bromand

    2013-01-01

    The paper aims at characterizing the electrochemical and thermal parameters of a 15 kW/320 kWh vanadium redox flow battery (VRB) installed in the SYSLAB test facility of the DTU Risø Campus and experimentally validating the proposed dynamic model realized in Matlab-Simulink. The adopted testing...... efficiency of the battery system. The test procedure has general validity and could also be used for other storage technologies. The storage model proposed and described is suitable for electrical studies and can represent a general model in terms of validity. Finally, the model simulation outputs...

  20. Modeling of two-phase slug flow

    International Nuclear Information System (INIS)

    Fabre, J.; Line, A.

    1992-01-01

    When gas and liquid flow in a pipe, over a range of flow rates, a flow pattern results in which sequences of long bubbles, almost filling the pipe cross section, are successively followed by liquid slugs that may contain small bubbles. This flow pattern, usually called slug flow, is encountered in numerous practical situations, such as in the production of hydrocarbons in wells and their transportation in pipelines; the production of steam and water in geothermal power plants; the boiling and condensation in liquid-vapor systems of thermal power plants; emergency core cooling of nuclear reactors; heat and mass transfer between gas and liquid in chemical reactors. This paper provides a review of two phase slug flow modeling

  1. Complex groundwater flow systems as traveling agent models

    Directory of Open Access Journals (Sweden)

    Oliver López Corona

    2014-10-01

    Full Text Available Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow.

  2. Moving Boudary Models for Dynamic Simulations of Two-phase Flows

    DEFF Research Database (Denmark)

    Jensen, Jakob Munch; Tummelscheit, H.

    2002-01-01

    . The Dymola Modelica translator can automatically reduce the DAE index and thus makes efficient simulation possible. Usually the flow entering a dry-expansion evaporator in a refrigeration system is two-phase, and there is thus no liquid region. The general MB model has a number of special cases where only...... model is used. The overall robustness and the simplicity of the MB model, makes it well suited for open loop as well as closed loop simulations of two-phase flows. Simulation results for an evaporator in a refrigeration system are shown. The open loop system is simulated both with the reduced MB...... but is less complex. The reduced MB-model is well suited for control purposes both for determining control parameters and for model based control strategies and examples of a controlled refrigeration system are shown. The general MB model divides the flow into three regions (liquid, two-phase and vapor...

  3. A model of trophic flows in the northern Benguela upwelling system during the 1980s

    DEFF Research Database (Denmark)

    Shannon, L.J.; Jarre, Astrid

    1999-01-01

    A model of trophic flows through the northern Benguela between 1980 and 1989 was constructed using the ECOPATH approach. The model serves to close the temporal gap between models of the system for the 1970s and 1990s. The aim is to provide a workable model, with the intention of encouraging...... in the northern Benguela during the 1980s was high, comparable to that of the Peruvian system in the 1960s and almost double that of the northern Benguela during the 1970s. Horse mackerel and hake catches were both high, with fishing on hake being ecologically more expensive. Biomass of benthic producers, meio...

  4. Hanford statewide groundwater flow and transport model calibration report

    International Nuclear Information System (INIS)

    Law, A.; Panday, S.; Denslow, C.; Fecht, K.; Knepp, A.

    1996-04-01

    This report presents the results of the development and calibration of a three-dimensional, finite element model (VAM3DCG) for the unconfined groundwater flow system at the Hanford Site. This flow system is the largest radioactively contaminated groundwater system in the United States. Eleven groundwater plumes have been identified containing organics, inorganics, and radionuclides. Because groundwater from the unconfined groundwater system flows into the Columbia River, the development of a groundwater flow model is essential to the long-term management of these plumes. Cost effective decision making requires the capability to predict the effectiveness of various remediation approaches. Some of the alternatives available to remediate groundwater include: pumping contaminated water from the ground for treatment with reinjection or to other disposal facilities; containment of plumes by means of impermeable walls, physical barriers, and hydraulic control measures; and, in some cases, management of groundwater via planned recharge and withdrawals. Implementation of these methods requires a knowledge of the groundwater flow system and how it responds to remedial actions

  5. DENSE MULTIPHASE FLOW SIMULATION: CONTINUUM MODEL FOR POLY-DISPERSED SYSTEMS USING KINETIC THEORY

    Energy Technology Data Exchange (ETDEWEB)

    Moses Bogere

    2011-08-31

    The overall objective of the project was to verify the applicability of the FCMOM approach to the kinetic equations describing the particle flow dynamics. For monodispersed systems the fundamental equation governing the particle flow dynamics is the Boltzmann equation. During the project, the FCMOM was successfully applied to several homogeneous and in-homogeneous problems in different flow regimes, demonstrating that the FCMOM has the potential to be used to solve efficiently the Boltzmann equation. However, some relevant issues still need to be resolved, i.e. the homogeneous cooling problem (inelastic particles cases) and the transition between different regimes. In this report, the results obtained in homogeneous conditions are discussed first. Then a discussion of the validation results for in-homogeneous conditions is provided. And finally, a discussion will be provided about the transition between different regimes. Alongside the work on development of FCMOM approach studies were undertaken in order to provide insights into anisotropy or particles kinetics in riser hydrodynamics. This report includes results of studies of multiphase flow with unequal granular temperatures and analysis of momentum re-distribution in risers due to particle-particle and fluid-particle interactions. The study of multiphase flow with unequal granular temperatures entailed both simulation and experimental studies of two particles sizes in a riser and, a brief discussion of what was accomplished will be provided. And finally, a discussion of the analysis done on momentum re-distribution of gas-particles flow in risers will be provided. In particular a discussion of the remaining work needed in order to improve accuracy and predictability of riser hydrodynamics based on two-fluid models and how they can be used to model segregation in risers.

  6. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  7. MMOSS-I: a CANDU multiple-channel thermosyphoning flow stability model

    Energy Technology Data Exchange (ETDEWEB)

    Gulshani, P [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Huynh, H [Hydro-Quebec, Montreal, PQ (Canada)

    1996-12-31

    This paper presents a multiple-channel flow stability model, dubbed MMOSS, developed to predict the conditions for the onset of flow oscillations in a CANDU-type multiple-channel heat transport system under thermosyphoning conditions. The model generalizes that developed previously to account for the effects of any channel flow reversal. Two-phase thermosyphoning conditions are predicted by thermalhydraulic codes for some postulated accident scenarios in CANDU. Two-phase thermosyphoning experiments in the multiple-channel RD-14M facility have indicated that pass-to-pass out-of-phase oscillations in the loop conditions caused the flow in some of the heated channels to undergo sustained reversal in direction. This channel flow reversal had significant effects on the channel and loop conditions. It is, therefore, important to understand the nature of the oscillations and be able to predict the conditions for the onset of the oscillations or for stable flow in RD-14M and the reactor. For stable flow conditions, oscillation-induced channel flow reversal is not expected. MMOSS was developed for a figure-of-eight system with any number of channels. The system characteristic equation was derived from a linearization of the conservation equations. In this paper, the MMOSS characteristic equation is solved for a system of N identical channel assemblies. The resulting model is called MMOSS-I. This simplification provides valuable physical insight and reasonably accurate results. MMOSS-I and a previously-developed steady-state model THERMOSYPHON are used to predict thermosyphoning flow stability maps for RD-14M and the Gentilly 2 reactor. (author). 11 refs., 7 figs.

  8. Petri net modeling of encrypted information flow in federated cloud

    Science.gov (United States)

    Khushk, Abdul Rauf; Li, Xiaozhong

    2017-08-01

    Solutions proposed and developed for the cost-effective cloud systems suffer from a combination of secure private clouds and less secure public clouds. Need to locate applications within different clouds poses a security risk to the information flow of the entire system. This study addresses this by assigning security levels of a given lattice to the entities of a federated cloud system. A dynamic flow sensitive security model featuring Bell-LaPadula procedures is explored that tracks and authenticates the secure information flow in federated clouds. Additionally, a Petri net model is considered as a case study to represent the proposed system and further validate the performance of the said system.

  9. Flow simulation in piping system dead legs using second moment, closure and k-epsilon model

    International Nuclear Information System (INIS)

    Deutsch, E.; Mechitoua, N.; Mattei, J.D.

    1996-01-01

    This paper deals with an industrial application of second moment closure turbulence model in in numerical simulation of 3D turbulent flows in piping system dead legs. Calculations performed with the 3D ESTET code are presented which contrast the performance of k-epsilon eddy viscosity model and second moment closure turbulence models. Coarse (100 000), medium (400 000) and fine (1 500 000) meshes were used. The second moment closure performs significantly better than eddy viscosity model and predicts with a good agreement the vortex penetration in dead legs provided to use sufficiently refined meshes. The results point out the necessity to be able to perform calculations using fine mesh before introducing refined physical models such as second moment closure turbulence model in a numerical code. This study illustrates the ability of second moment closure turbulence model to simulate 3D turbulent industrial flows. Reynolds stress model computation does not require special care, the calculation is carried on as simply as the k-ξ one. The CPU time needed is less that twice the CPU time needed using k-ξ model. (authors)

  10. Multilevel flow modelling of process plant for diagnosis and control

    International Nuclear Information System (INIS)

    Lind, M.

    1982-08-01

    The paper describes the multilevel flow modelling methodology which can be used to construct functional models of energy and material processing systems. The models describe mass and energy flow topology on different levels of abstraction and represent the hierarchical functional structure of complex systems. A model of a nuclear power plant (PWR) is presented in the paper for illustration. Due to the consistency of the method, multilevel flow models provide specifications of plant goals and functions and may be used as a basis for design of computer-based support systems for the plant operator. Plant control requirements can be derived from the models and due to independence of the actual controller implementation the method may be used as basic for design of control strategies and for the allocation of control tasks to the computer and the plant operator. (author)

  11. Multilevel Flow Modelling of Process Plant for Diagnosis and Control

    DEFF Research Database (Denmark)

    Lind, Morten

    1982-01-01

    The paper describes the multilevel flow modelling methodology which can be used to construct functional models of energy and material processing systems. The models describe mass and energy flow topology on different levels of abstraction and represent the hierarchical functional structure...... of complex systems. A model of a nuclear power plant (PWR) is presented in the paper for illustration. Due to the consistency of the method, multilevel flow models provide specifications of plant goals and functions and may be used as a basis for design of computer-based support systems for the plant...... operator. Plant control requirements can be derived from the models and due to independence of the actual controller implementation the method may be used as a basis for design of control strategies and for the allocation of control tasks to the computer and the plant operator....

  12. Bioinspired sensory systems for local flow characterization

    Science.gov (United States)

    Colvert, Brendan; Chen, Kevin; Kanso, Eva

    2016-11-01

    Empirical evidence suggests that many aquatic organisms sense differential hydrodynamic signals.This sensory information is decoded to extract relevant flow properties. This task is challenging because it relies on local and partial measurements, whereas classical flow characterization methods depend on an external observer to reconstruct global flow fields. Here, we introduce a mathematical model in which a bioinspired sensory array measuring differences in local flow velocities characterizes the flow type and intensity. We linearize the flow field around the sensory array and express the velocity gradient tensor in terms of frame-independent parameters. We develop decoding algorithms that allow the sensory system to characterize the local flow and discuss the conditions under which this is possible. We apply this framework to the canonical problem of a circular cylinder in uniform flow, finding excellent agreement between sensed and actual properties. Our results imply that combining suitable velocity sensors with physics-based methods for decoding sensory measurements leads to a powerful approach for understanding and developing underwater sensory systems.

  13. Refined Three-Dimensional Modelling of Thermally-Driven Flow in the Bormio System (Central Italian Alps)

    Science.gov (United States)

    Volpi, Giorgio; Riva, Federico; Frattini, Paolo; Battista Crosta, Giovanni; Magri, Fabien

    2016-04-01

    Thermal springs are widespread in the European Alps, where more than 80 geothermal sites are known and exploited. The quantitative assessment of those thermal flow systems is a challenging issue and requires accurate conceptual model and a thorough understanding of thermo-hydraulic properties of the aquifers. Accordingly in the last years, several qualitative studies were carried out to understand the heat and fluid transport processes driving deep fluids from the reservoir to the springs. Our work focused on thermal circulation and fluid outflows of the area around Bormio (Central Italian Alps), where nine geothermal springs discharge from dolomite bodies located close to a regional alpine thrust, called the Zebrù Line. At this site, water is heated in deep circulation systems and vigorously upwells at temperature of about 40°C. The aim of this paper is to explore the mechanisms of heat and fluid transport in the Bormio area by carrying out refined steady and transient three-dimensional finite element simulations of thermally-driven flow and to quantitatively assess the source area of the thermal waters. The full regional model (ca. 700 km2) is discretized with a highly refined triangular finite element planar grid obtained with Midas GTS NX software. The structural 3D features of the regional Zebrù thrust are built by interpolating series of geological cross sections using Fracman. A script was developed to convert and implement the thrust grid into FEFLOW mesh that comprises ca. 4 million elements. The numerical results support the observed discharge rates and temperature field within the simulated domain. Flow and temperature patterns suggest that thermal groundwater flows through a deep system crossing both sedimentary and metamorphic lithotypes, and a fracture network associated to the thrust system. Besides providing a numerical framework to simulate complex fractured systems, this example gives insights into the influence of deep alpine structures on

  14. Experimental Validation of the LHC Helium Relief System Flow Modeling

    CERN Document Server

    Fydrych, J; Riddone, G

    2006-01-01

    In case of simultaneous resistive transitions in a whole sector of magnets in the Large Hadron Collider, the helium would be vented from the cold masses to a dedicated recovery system. During the discharge the cold helium will eventually enter a pipe at room temperature. During the first period of the flow the helium will be heated intensely due to the pipe heat capacity. To study the changes of the helium thermodynamic and flow parameters we have simulated numerically the most critical flow cases. To verify and validate numerical results, a dedicated laboratory test rig representing the helium relief system has been designed and commissioned. Both numerical and experimental results allow us to determine the distributions of the helium parameters along the pipes as well as mechanical strains and stresses.

  15. Two-phase flow models

    International Nuclear Information System (INIS)

    Delaje, Dzh.

    1984-01-01

    General hypothesis used to simplify the equations, describing two-phase flows, are considered. Two-component and one-component models of two-phase flow, as well as Zuber and Findlay model for actual volumetric steam content, and Wallis model, describing the given phase rates, are presented. The conclusion is made, that the two-component model, in which values averaged in time are included, is applicable for the solving of three-dimensional tasks for unsteady two-phase flow. At the same time, using the two-component model, including values, averaged in space only one-dimensional tasks for unsteady two-phase flow can be solved

  16. Numerical modeling and investigation of two-phase reactive flow in a high-low pressure chambers system

    International Nuclear Information System (INIS)

    Cheng, Cheng; Zhang, Xiaobing

    2016-01-01

    Highlights: • A novel two-dimensional two-phase flow model is established for the high-low pressure chambers system. • A strong packing of particles is observed at the projectile base and will cause the pressure to rise faster. • Different length–diameter ratios can affect the flow behavior through the vent-holes obviously. • The muzzle velocity decreases with the length–diameter ratio of the high-pressure chamber. - Abstract: A high-low pressure chambers system is proposed to meet the demands of low launch acceleration for informative equipment in many special fields such as Aeronautics, Astronautics and Weaponry. A two-dimensional two-phase flow numerical model is established to describe the complex physical process based on a modified two-fluid theory, which takes into account gas production, interphase drag, intergranular stress, and heat transfer between two phases. In order to reduce the computational cost, the parameters in the high-pressure chamber at the instant the vent-holes open are calculated by the zero-dimensional model as the initial conditions for the two-phase flow simulation in the high-low pressure chambers system. The simulation results reveal good agreement with the experiments and the launch acceleration of a projectile can be improved by this system. The propellant particles can be tracked clearly in both chambers and a strong packing of particles at the base of projectile will cause the pressure to rise faster than at other areas both in the axis and radial directions. The length–diameter ratio of the high-pressure chamber (a typical multi-dimensional parameter) is investigated. Different length–diameter ratios can affect the maximum pressure drop and the loss of total pressure impulse through the vent-hole, then the muzzle velocity and the launch acceleration of projectiles can be influenced directly. This article puts forward a new prediction tool for the understanding and design of transient processes in high-low pressure

  17. Higher energy efficiency and better water quality by using model predictive flow control at water supply systems

    NARCIS (Netherlands)

    Bakker, M.; Verberk, J.Q.J.C.; Palmen, L.J.; Sperber, V.; Bakker, G.

    2011-01-01

    Half of all water supply systems in the Netherlands are controlled by model predictive flow control; the other half are controlled by conventional level based control. The differences between conventional level based control and model predictive control were investigated in experiments at five full

  18. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  19. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    International Nuclear Information System (INIS)

    Jaquet, O.; Namar, R.; Jansson, P.

    2010-10-01

    The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the

  20. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, O.; Namar, R. (In2Earth Modelling Ltd (Switzerland)); Jansson, P. (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2010-10-15

    The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the

  1. Comparison of two conceptual models of flow using the TSA

    International Nuclear Information System (INIS)

    Wilson, M.L.

    1992-01-01

    Several new capabilities have been added to the Total-System Analyzer (TSA), including a new model of unsaturated flow and transport, two new models of source releases, a different computational method for saturated transport, and gas-release capability. In this paper these new capabilities are described, and a comparison is made of results from the two different conceptual models of unsaturated flow that are now part of the TSA, a composite-porosity model and a simple fracture-flow model

  2. Calibration of the Site-Scale Saturated Zone Flow Model

    International Nuclear Information System (INIS)

    Zyvoloski, G. A.

    2001-01-01

    The purpose of the flow calibration analysis work is to provide Performance Assessment (PA) with the calibrated site-scale saturated zone (SZ) flow model that will be used to make radionuclide transport calculations. As such, it is one of the most important models developed in the Yucca Mountain project. This model will be a culmination of much of our knowledge of the SZ flow system. The objective of this study is to provide a defensible site-scale SZ flow and transport model that can be used for assessing total system performance. A defensible model would include geologic and hydrologic data that are used to form the hydrogeologic framework model; also, it would include hydrochemical information to infer transport pathways, in-situ permeability measurements, and water level and head measurements. In addition, the model should include information on major model sensitivities. Especially important are those that affect calibration, the direction of transport pathways, and travel times. Finally, if warranted, alternative calibrations representing different conceptual models should be included. To obtain a defensible model, all available data should be used (or at least considered) to obtain a calibrated model. The site-scale SZ model was calibrated using measured and model-generated water levels and hydraulic head data, specific discharge calculations, and flux comparisons along several of the boundaries. Model validity was established by comparing model-generated permeabilities with the permeability data from field and laboratory tests; by comparing fluid pathlines obtained from the SZ flow model with those inferred from hydrochemical data; and by comparing the upward gradient generated with the model with that observed in the field. This analysis is governed by the Office of Civilian Radioactive Waste Management (OCRWM) Analysis and Modeling Report (AMR) Development Plan ''Calibration of the Site-Scale Saturated Zone Flow Model'' (CRWMS M and O 1999a)

  3. Tracer technology modeling the flow of fluids

    CERN Document Server

    Levenspiel, Octave

    2012-01-01

    A vessel’s behavior as a heat exchanger, absorber, reactor, or other process unit is dependent upon how fluid flows through the vessel.  In early engineering, the designer would assume either plug flow or mixed flow of the fluid through the vessel.  However, these assumptions were oftentimes inaccurate, sometimes being off by a volume factor of 100 or more.  The result of this unreliable figure produced ineffective products in multiple reaction systems.   Written by a pioneering researcher in the field of chemical engineering, the tracer method was introduced to provide more accurate flow data.  First, the tracer method measured the actual flow of fluid through a vessel.  Second, it developed a suitable model to represent the flow in question.  Such models are used to follow the flow of fluid in chemical reactors and other process units, like in rivers and streams, or solid and porous structures.  In medicine, the tracer method is used to study the flow of chemicals—harmful  and harmless—in the...

  4. Multiphase flow modeling in centrifugal partition chromatography.

    Science.gov (United States)

    Adelmann, S; Schwienheer, C; Schembecker, G

    2011-09-09

    The separation efficiency in Centrifugal Partition Chromatography (CPC) depends on selection of a suitable biphasic solvent system (distribution ratio, selectivity factor, sample solubility) and is influenced by hydrodynamics in the chambers. Especially the stationary phase retention, the interfacial area for mass transfer and the flow pattern (backmixing) are important parameters. Their relationship with physical properties, operating parameters and chamber geometry is not completely understood and predictions are hardly possible. Experimental flow visualization is expensive and two-dimensional only. Therefore we simulated the flow pattern using a volume-of-fluid (VOF) method, which was implemented in OpenFOAM®. For the three-dimensional simulation of a rotating FCPC®-chamber, gravitational centrifugal and Coriolis forces were added to the conservation equation. For experimental validation the flow pattern of different solvent systems was visualized with an optical measurement system. The amount of mobile phase in a chamber was calculated from gray scale values of videos recorded by an image processing routine in ImageJ®. To visualize the flow of the stationary phase polyethylene particles were used to perform a qualitative particle image velocimetry (PIV) analysis. We found a good agreement between flow patterns and velocity profiles of experiments and simulations. By using the model we found that increasing the chamber depth leads to higher specific interfacial area. Additionally a circular flow in the stationary phase was identified that lowers the interfacial area because it pushes the jet of mobile phase to the chamber wall. The Coriolis force alone gives the impulse for this behavior. As a result the model is easier to handle than experiments and allows 3D prediction of hydrodynamics in the chamber. Additionally it can be used for optimizing geometry and operating parameters for given physical properties of solvent systems. Copyright © 2011 Elsevier B

  5. Multiphase reacting flows modelling and simulation

    CERN Document Server

    Marchisio, Daniele L

    2007-01-01

    The papers in this book describe the most widely applicable modeling approaches and are organized in six groups covering from fundamentals to relevant applications. In the first part, some fundamentals of multiphase turbulent reacting flows are covered. In particular the introduction focuses on basic notions of turbulence theory in single-phase and multi-phase systems as well as on the interaction between turbulence and chemistry. In the second part, models for the physical and chemical processes involved are discussed. Among other things, particular emphasis is given to turbulence modeling strategies for multiphase flows based on the kinetic theory for granular flows. Next, the different numerical methods based on Lagrangian and/or Eulerian schemes are presented. In particular the most popular numerical approaches of computational fluid dynamics codes are described (i.e., Direct Numerical Simulation, Large Eddy Simulation, and Reynolds-Averaged Navier-Stokes approach). The book will cover particle-based meth...

  6. Regional groundwater-flow model of the Redwall-Muav, Coconino, and alluvial basin aquifer systems of northern and central Arizona

    Science.gov (United States)

    Pool, D.R.; Blasch, Kyle W.; Callegary, James B.; Leake, Stanley A.; Graser, Leslie F.

    2011-01-01

    A numerical flow model (MODFLOW) of the groundwater flow system in the primary aquifers in northern Arizona was developed to simulate interactions between the aquifers, perennial streams, and springs for predevelopment and transient conditions during 1910 through 2005. Simulated aquifers include the Redwall-Muav, Coconino, and basin-fill aquifers. Perennial stream reaches and springs that derive base flow from the aquifers were simulated, including the Colorado River, Little Colorado River, Salt River, Verde River, and perennial reaches of tributary streams. Simulated major springs include Blue Spring, Del Rio Springs, Havasu Springs, Verde River headwater springs, several springs that discharge adjacent to major Verde River tributaries, and many springs that discharge to the Colorado River. Estimates of aquifer hydraulic properties and groundwater budgets were developed from published reports and groundwater-flow models. Spatial extents of aquifers and confining units were developed from geologic data, geophysical models, a groundwater-flow model for the Prescott Active Management Area, drill logs, geologic logs, and geophysical logs. Spatial and temporal distributions of natural recharge were developed by using a water-balance model that estimates recharge from direct infiltration. Additional natural recharge from ephemeral channel infiltration was simulated in alluvial basins. Recharge at wastewater treatment facilities and incidental recharge at agricultural fields and golf courses were also simulated. Estimates of predevelopment rates of groundwater discharge to streams, springs, and evapotranspiration by phreatophytes were derived from previous reports and on the basis of streamflow records at gages. Annual estimates of groundwater withdrawals for agriculture, municipal, industrial, and domestic uses were developed from several sources, including reported withdrawals for nonexempt wells, estimated crop requirements for agricultural wells, and estimated per

  7. Application of flexibility model in modeling of flow boiling heat transfer

    International Nuclear Information System (INIS)

    Peng Jinfeng; Zhao Fuyu

    2009-01-01

    The mathematical modeling and computer simulation have been widely used in the analysis of system's dynamic characteristics, and often useful for system control. One of the popular methods for this purpose is the lumped parameter method. For flow boiling heat transfer system, the traditional lumped parameter modeling method has a problem that the heat transfer coefficients change suddenly at the boundary of coolant phase change. It can cause error. In this paper, an idea of flexibility model is developed to deal with the boundary problem and to improve the model of flow boiling heat transfer. The segments of coolant phase change's boundary are identified, and the membership functions which are derived from Fuzzy Mathematics are used to derive approximate expressions of heat transfer coefficient in those regions. The continuity of heat transfer coefficient can be described by those expressions. The membership functions are derived from mathematical analysis and transformation. The result shows that this idea is feasible and the conclusion is practicable.

  8. Modelling of two-phase flow based on separation of the flow according to velocity

    International Nuclear Information System (INIS)

    Narumo, T.

    1997-01-01

    The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors

  9. Gas Flow Detection System

    Science.gov (United States)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at

  10. Empirical Reduced-Order Modeling for Boundary Feedback Flow Control

    Directory of Open Access Journals (Sweden)

    Seddik M. Djouadi

    2008-01-01

    Full Text Available This paper deals with the practical and theoretical implications of model reduction for aerodynamic flow-based control problems. Various aspects of model reduction are discussed that apply to partial differential equation- (PDE- based models in general. Specifically, the proper orthogonal decomposition (POD of a high dimension system as well as frequency domain identification methods are discussed for initial model construction. Projections on the POD basis give a nonlinear Galerkin model. Then, a model reduction method based on empirical balanced truncation is developed and applied to the Galerkin model. The rationale for doing so is that linear subspace approximations to exact submanifolds associated with nonlinear controllability and observability require only standard matrix manipulations utilizing simulation/experimental data. The proposed method uses a chirp signal as input to produce the output in the eigensystem realization algorithm (ERA. This method estimates the system's Markov parameters that accurately reproduce the output. Balanced truncation is used to show that model reduction is still effective on ERA produced approximated systems. The method is applied to a prototype convective flow on obstacle geometry. An H∞ feedback flow controller is designed based on the reduced model to achieve tracking and then applied to the full-order model with excellent performance.

  11. Regional Balance Model of Financial Flows through Sectoral Approaches System of National Accounts

    Directory of Open Access Journals (Sweden)

    Ekaterina Aleksandrovna Zaharchuk

    2017-03-01

    Full Text Available The main purpose of the study, the results of which are reflected in this article, is the theoretical and methodological substantiation of possibilities to build a regional balance model of financial flows consistent with the principles of the construction of the System of National Accounts (SNA. The paper summarizes the international experience of building regional accounts in the SNA as well as reflects the advantages and disadvantages of the existing techniques for constructing Social Accounting Matrix. The authors have proposed an approach to build the regional balance model of financial flows, which is based on the disaggregated tables of the formation, distribution and use of the added value of territory in the framework of institutional sectors of SNA (corporations, public administration, households. Within the problem resolution of the transition of value added from industries to sectors, the authors have offered an approach to the accounting of development, distribution and use of value added within the institutional sectors of the territories. The methods of calculation are based on the publicly available information base of statistics agencies and federal services. The authors provide the scheme of the interrelations of the indicators of the regional balance model of financial flows. It allows to coordinate mutually the movement of regional resources by the sectors of «corporation», «public administration» and «households» among themselves, and cash flows of the region — by the sectors and directions of use. As a result, they form a single account of the formation and distribution of territorial financial resources, which is a regional balance model of financial flows. This matrix shows the distribution of financial resources by income sources and sectors, where the components of the formation (compensation, taxes and gross profit, distribution (transfers and payments and use (final consumption, accumulation of value added are

  12. Modelling rapid subsurface flow at the hillslope scale with explicit representation of preferential flow paths

    Science.gov (United States)

    Wienhöfer, J.; Zehe, E.

    2012-04-01

    Rapid lateral flow processes via preferential flow paths are widely accepted to play a key role for rainfall-runoff response in temperate humid headwater catchments. A quantitative description of these processes, however, is still a major challenge in hydrological research, not least because detailed information about the architecture of subsurface flow paths are often impossible to obtain at a natural site without disturbing the system. Our study combines physically based modelling and field observations with the objective to better understand how flow network configurations influence the hydrological response of hillslopes. The system under investigation is a forested hillslope with a small perennial spring at the study area Heumöser, a headwater catchment of the Dornbirnerach in Vorarlberg, Austria. In-situ points measurements of field-saturated hydraulic conductivity and dye staining experiments at the plot scale revealed that shrinkage cracks and biogenic macropores function as preferential flow paths in the fine-textured soils of the study area, and these preferential flow structures were active in fast subsurface transport of artificial tracers at the hillslope scale. For modelling of water and solute transport, we followed the approach of implementing preferential flow paths as spatially explicit structures of high hydraulic conductivity and low retention within the 2D process-based model CATFLOW. Many potential configurations of the flow path network were generated as realisations of a stochastic process informed by macropore characteristics derived from the plot scale observations. Together with different realisations of soil hydraulic parameters, this approach results in a Monte Carlo study. The model setups were used for short-term simulation of a sprinkling and tracer experiment, and the results were evaluated against measured discharges and tracer breakthrough curves. Although both criteria were taken for model evaluation, still several model setups

  13. Integrated Surface/subsurface flow modeling in PFLOTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    Understanding soil water, groundwater, and shallow surface water dynamics as an integrated hydrological system is critical for understanding the Earth’s critical zone, the thin outer layer at our planet’s surface where vegetation, soil, rock, and gases interact to regulate the environment. Computational tools that take this view of soil moisture and shallow surface flows as a single integrated system are typically referred to as integrated surface/subsurface hydrology models. We extend the open-source, highly parallel, subsurface flow and reactive transport simulator PFLOTRAN to accommodate surface flows. In contrast to most previous implementations, we do not represent a distinct surface system. Instead, the vertical gradient in hydraulic head at the land surface is neglected, which allows the surface flow system to be eliminated and incorporated directly into the subsurface system. This tight coupling approach leads to a robust capability and also greatly simplifies implementation in existing subsurface simulators such as PFLOTRAN. Successful comparisons to independent numerical solutions build confidence in the approximation and implementation. Example simulations of the Walker Branch and East Fork Poplar Creek watersheds near Oak Ridge, Tennessee demonstrate the robustness of the approach in geometrically complex applications. The lack of a robust integrated surface/subsurface hydrology capability had been a barrier to PFLOTRAN’s use in critical zone studies. This work addresses that capability gap, thus enabling PFLOTRAN as a community platform for building integrated models of the critical zone.

  14. Flow Forecasting in Drainage Systems with Extrapolated Radar Rainfall Data and Auto Calibration on Flow Observations

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Grum, M.; Rasmussen, Michael R.

    2011-01-01

    Forecasting of flows, overflow volumes, water levels, etc. in drainage systems can be applied in real time control of drainage systems in the future climate in order to fully utilize system capacity and thus save possible construction costs. An online system for forecasting flows and water levels......-calibrated on flow measurements in order to produce the best possible forecast for the drainage system at all times. The system shows great potential for the implementation of real time control in drainage systems and forecasting flows and water levels.......Forecasting of flows, overflow volumes, water levels, etc. in drainage systems can be applied in real time control of drainage systems in the future climate in order to fully utilize system capacity and thus save possible construction costs. An online system for forecasting flows and water levels...... in a small urban catchment has been developed. The forecast is based on application of radar rainfall data, which by a correlation based technique, is extrapolated with a lead time up to two hours. The runoff forecast in the drainage system is based on a fully distributed MOUSE model which is auto...

  15. Ecosystem effects of environmental flows: Modelling and experimental floods in a dryland river

    Science.gov (United States)

    Shafroth, P.B.; Wilcox, A.C.; Lytle, D.A.; Hickey, J.T.; Andersen, D.C.; Beauchamp, Vanessa B.; Hautzinger, A.; McMullen, L.E.; Warner, A.

    2010-01-01

    Successful environmental flow prescriptions require an accurate understanding of the linkages among flow events, geomorphic processes and biotic responses. We describe models and results from experimental flow releases associated with an environmental flow program on the Bill Williams River (BWR), Arizona, in arid to semiarid western U.S.A. Two general approaches for improving knowledge and predictions of ecological responses to environmental flows are: (1) coupling physical system models to ecological responses and (2) clarifying empirical relationships between flow and ecological responses through implementation and monitoring of experimental flow releases. We modelled the BWR physical system using: (1) a reservoir operations model to simulate reservoir releases and reservoir water levels and estimate flow through the river system under a range of scenarios, (2) one- and two-dimensional river hydraulics models to estimate stage-discharge relationships at the whole-river and local scales, respectively, and (3) a groundwater model to estimate surface- and groundwater interactions in a large, alluvial valley on the BWR where surface flow is frequently absent. An example of a coupled, hydrology-ecology model is the Ecosystems Function Model, which we used to link a one-dimensional hydraulic model with riparian tree seedling establishment requirements to produce spatially explicit predictions of seedling recruitment locations in a Geographic Information System. We also quantified the effects of small experimental floods on the differential mortality of native and exotic riparian trees, on beaver dam integrity and distribution, and on the dynamics of differentially flow-adapted benthic macroinvertebrate groups. Results of model applications and experimental flow releases are contributing to adaptive flow management on the BWR and to the development of regional environmental flow standards. General themes that emerged from our work include the importance of response

  16. Numerical modelling of a bromide-polysulphide redox flow battery. Part 2: Evaluation of a utility-scale system

    International Nuclear Information System (INIS)

    Scamman, Daniel P.; Roberts, Edward P.L.; Reade, Gavin W.

    2009-01-01

    Numerical modelling of redox flow battery (RFB) systems allows the technical and commercial performance of different designs to be predicted without costly lab, pilot and full-scale testing. A numerical model of a redox flow battery was used in conjunction with a simple cost model incorporating capital and operating costs to predict the technical and commercial performance of a 120 MWh/15 MW utility-scale polysulphide-bromine (PSB) storage plant for arbitrage applications. Based on 2006 prices, the system was predicted to make a net loss of 0.45 p kWh -1 at an optimum current density of 500 A m -2 and an energy efficiency of 64%. The system was predicted to become economic for arbitrage (assuming no further costs were incurred) if the rate constants of both electrolytes could be increased to 10 -5 m s -1 , for example by using a suitable (low cost) electrocatalyst. The economic viability was found to be strongly sensitive to the costs of the electrochemical cells and the electrical energy price differential. (author)

  17. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    International Nuclear Information System (INIS)

    B.W. ARNOLD

    2004-01-01

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ

  18. Research on MEMS sensor in hydraulic system flow detection

    Science.gov (United States)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2011-05-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  19. Modeling future flows of the Volta River system: Impacts of climate change and socio-economic changes.

    Science.gov (United States)

    Jin, Li; Whitehead, Paul G; Appeaning Addo, Kwasi; Amisigo, Barnabas; Macadam, Ian; Janes, Tamara; Crossman, Jill; Nicholls, Robert J; McCartney, Matthew; Rodda, Harvey J E

    2018-05-14

    As the scientific consensus concerning global climate change has increased in recent decades, research on potential impacts of climate change on water resources has been given high importance. However in Sub-Saharan Africa, few studies have fully evaluated the potential implications of climate change to their water resource systems. The Volta River is one of the major rivers in Africa covering six riparian countries (mainly Ghana and Burkina Faso). It is a principal water source for approximately 24 million people in the region. The catchment is primarily agricultural providing food supplies to rural areas, demonstrating the classic water, food, energy nexus. In this study an Integrated Catchment Model (INCA) was applied to the whole Volta River system to simulate flow in the rivers and at the outlet of the artificial Lake Volta. High-resolution climate scenarios downscaled from three different Global Climate Models (CNRM-CM5, HadGEM2-ES and CanESM2), have been used to drive the INCA model and to assess changes in flow by 2050s and 2090s under the high climate forcing scenario RCP8.5. Results show that peak flows during the monsoon months could increase into the future. The duration of high flow could become longer compared to the recent condition. In addition, we considered three different socio-economic scenarios. As an example, under the combined impact from climate change from downscaling CNRM-CM5 and medium+ (high economic growth) socio-economic changes, the extreme high flows (Q5) of the Black Volta River are projected to increase 11% and 36% at 2050s and 2090s, respectively. Lake Volta outflow would increase +1% and +5% at 2050s and 2090s, respectively, under the same scenario. The effects of changing socio-economic conditions on flow are minor compared to the climate change impact. These results will provide valuable information assisting future water resource development and adaptive strategies in the Volta Basin. Copyright © 2018 Elsevier B.V. All rights

  20. Modelling of two-phase flow based on separation of the flow according to velocity

    Energy Technology Data Exchange (ETDEWEB)

    Narumo, T. [VTT Energy, Espoo (Finland). Nuclear Energy

    1997-12-31

    The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors. 45 refs. The thesis includes also five previous publications by author.

  1. Constraining a compositional flow model with flow-chemical data using an ensemble-based Kalman filter

    KAUST Repository

    Gharamti, M. E.

    2014-03-01

    Isothermal compositional flow models require coupling transient compressible flows and advective transport systems of various chemical species in subsurface porous media. Building such numerical models is quite challenging and may be subject to many sources of uncertainties because of possible incomplete representation of some geological parameters that characterize the system\\'s processes. Advanced data assimilation methods, such as the ensemble Kalman filter (EnKF), can be used to calibrate these models by incorporating available data. In this work, we consider the problem of estimating reservoir permeability using information about phase pressure as well as the chemical properties of fluid components. We carry out state-parameter estimation experiments using joint and dual updating schemes in the context of the EnKF with a two-dimensional single-phase compositional flow model (CFM). Quantitative and statistical analyses are performed to evaluate and compare the performance of the assimilation schemes. Our results indicate that including chemical composition data significantly enhances the accuracy of the permeability estimates. In addition, composition data provide more information to estimate system states and parameters than do standard pressure data. The dual state-parameter estimation scheme provides about 10% more accurate permeability estimates on average than the joint scheme when implemented with the same ensemble members, at the cost of twice more forward model integrations. At similar computational cost, the dual approach becomes only beneficial after using large enough ensembles.

  2. Concepts for dynamic modelling of energy-related flows in manufacturing

    International Nuclear Information System (INIS)

    Wright, A.J.; Oates, M.R.; Greenough, R.

    2013-01-01

    Highlights: ► Modelling of the thermal flows in factories and processes is usually separate. ► We propose a set of key features for an integrated thermal model. ► Such models can be used to improve the efficiency of manufacturing processes. - Abstract: Industry uses around one third of the world’s energy, and accounts for about 40% of global carbon dioxide emissions. There is increasing economic and social pressure to improve efficiency and create closed-loop industrial systems, in which energy efficiency plays a key role. This paper describes some of the key concepts involved in modelling the energy flows in manufacturing, both for the building services and the industrial processes. Detailed dynamic energy simulation of buildings is well established and routinely used, working on a time series basis – but current tools are inadequate to model the energy flows of many industrial processes. There are also well-established models of manufacturing flows, used to optimise production efficiency, but typically not modelling energy, and usually representing production and material flows as event-driven processes. The THERM project has developed new software tools to model energy-related and other utility flows in manufacturing, incorporating these into existing thermal models of factory buildings. This makes it possible to map out the whole energy system, and hence to test efficiency measures, to understand the effect of processes on building energy use, to investigate recycling of heat or cooling into other processes or building conditioning, and so on. The paper describes some of the key concepts and modelling approaches involved in developing these models, and gives examples of some real processes modelled in factories. It concludes that such models are entirely feasible and potentially very useful, although to develop a tool which comprehensively models both energy and manufacturing flows would be a major undertaking

  3. Adjoint-consistent formulations of slip models for coupled electroosmotic flow systems

    KAUST Repository

    Garg, Vikram V

    2014-09-27

    Background Models based on the Helmholtz `slip\\' approximation are often used for the simulation of electroosmotic flows. The objectives of this paper are to construct adjoint-consistent formulations of such models, and to develop adjoint-based numerical tools for adaptive mesh refinement and parameter sensitivity analysis. Methods We show that the direct formulation of the `slip\\' model is adjoint inconsistent, and leads to an ill-posed adjoint problem. We propose a modified formulation of the coupled `slip\\' model, which is shown to be well-posed, and therefore automatically adjoint-consistent. Results Numerical examples are presented to illustrate the computation and use of the adjoint solution in two-dimensional microfluidics problems. Conclusions An adjoint-consistent formulation for Helmholtz `slip\\' models of electroosmotic flows has been proposed. This formulation provides adjoint solutions that can be reliably used for mesh refinement and sensitivity analysis.

  4. Acceleration of coupled granular flow and fluid flow simulations in pebble bed energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanheng, E-mail: liy19@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States); Ji, Wei, E-mail: jiw2@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States)

    2013-05-15

    Highlights: ► Fast simulation of coupled pebble flow and coolant flow in PBR systems is studied. ► Dimension reduction based on axisymmetric geometry shows significant speedup. ► Relaxation of coupling frequency is investigated and an optimal range is determined. ► A total of 80% efficiency increase is achieved by the two fast strategies. ► Fast strategies can be applied to simulating other general fluidized bed systems. -- Abstract: Fast and accurate approaches to simulating the coupled particle flow and fluid flow are of importance to the analysis of large particle-fluid systems. This is especially needed when one tries to simulate pebble flow and coolant flow in Pebble Bed Reactor (PBR) energy systems on a routine basis. As one of the Generation IV designs, the PBR design is a promising nuclear energy system with high fuel performance and inherent safety. A typical PBR core can be modeled as a particle-fluid system with strong interactions among pebbles, coolants and reactor walls. In previous works, the coupled Discrete Element Method (DEM)-Computational Fluid Dynamics (CFD) approach has been investigated and applied to modeling PBR systems. However, the DEM-CFD approach is computationally expensive due to large amounts of pebbles in PBR systems. This greatly restricts the PBR analysis for the real time prediction and inclusion of more physics. In this work, based on the symmetry of the PBR geometry and the slow motion characteristics of the pebble flow, two acceleration strategies are proposed. First, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without loss of accuracy. Pebble flow is simulated by a full 3D DEM, while the coolant flow field is calculated with a 2D CFD simulation by averaging variables along the annular direction in the cylindrical and annular geometries. Second, based on the slow motion of pebble flow, the impact of the coupling frequency on the computation accuracy and efficiency is

  5. Acceleration of coupled granular flow and fluid flow simulations in pebble bed energy systems

    International Nuclear Information System (INIS)

    Li, Yanheng; Ji, Wei

    2013-01-01

    Highlights: ► Fast simulation of coupled pebble flow and coolant flow in PBR systems is studied. ► Dimension reduction based on axisymmetric geometry shows significant speedup. ► Relaxation of coupling frequency is investigated and an optimal range is determined. ► A total of 80% efficiency increase is achieved by the two fast strategies. ► Fast strategies can be applied to simulating other general fluidized bed systems. -- Abstract: Fast and accurate approaches to simulating the coupled particle flow and fluid flow are of importance to the analysis of large particle-fluid systems. This is especially needed when one tries to simulate pebble flow and coolant flow in Pebble Bed Reactor (PBR) energy systems on a routine basis. As one of the Generation IV designs, the PBR design is a promising nuclear energy system with high fuel performance and inherent safety. A typical PBR core can be modeled as a particle-fluid system with strong interactions among pebbles, coolants and reactor walls. In previous works, the coupled Discrete Element Method (DEM)-Computational Fluid Dynamics (CFD) approach has been investigated and applied to modeling PBR systems. However, the DEM-CFD approach is computationally expensive due to large amounts of pebbles in PBR systems. This greatly restricts the PBR analysis for the real time prediction and inclusion of more physics. In this work, based on the symmetry of the PBR geometry and the slow motion characteristics of the pebble flow, two acceleration strategies are proposed. First, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without loss of accuracy. Pebble flow is simulated by a full 3D DEM, while the coolant flow field is calculated with a 2D CFD simulation by averaging variables along the annular direction in the cylindrical and annular geometries. Second, based on the slow motion of pebble flow, the impact of the coupling frequency on the computation accuracy and efficiency is

  6. Hydrogeologic Framework Model for the Saturated-Zone Site-Scale Flow

    Energy Technology Data Exchange (ETDEWEB)

    Z. Peterman

    2003-03-05

    Yucca Mountain is being evaluated as a potential site for development of a geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Ground water is considered to be the principal means for transporting radionuclides that may be released from the potential repository to the accessible environment, thereby possibly affecting public health and safety. The ground-water hydrology of the region is a result of both the arid climatic conditions and the complex geology. Ground-water flow in the Yucca Mountain region generally can be described as consisting of two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick, generally deep-lying, Paleozoic carbonate rock sequence. Locally within the potential repository area, the flow is through a vertical sequence of welded and nonwelded tuffs that overlie the carbonate aquifer. Downgradient from the site, these tuffs terminate in basin fill deposits that are dominated by alluvium. Throughout the system, extensive and prevalent faults and fractures may control ground-water flow. The purpose of this Analysis/Modeling Report (AMR) is to document the three-dimensional (3D) hydrogeologic framework model (HFM) that has been constructed specifically to support development of a site-scale ground-water flow and transport model. Because the HFM provides the fundamental geometric framework for constructing the site-scale 3D ground-water flow model that will be used to evaluate potential radionuclide transport through the saturated zone (SZ) from beneath the potential repository to down-gradient compliance points, the HFM is important for assessing potential repository system performance. This AMR documents the progress of the understanding of the site-scale SZ ground-water flow system framework at Yucca Mountain based on data through July 1999. The

  7. Modeling of groundwater flow for Mujib aquifer, Jordan

    Indian Academy of Sciences (India)

    Jordan is an arid country with very limited water resources. ... groundwater flow model to simulate the behavior of the flow system under ... decision makers and planners in selecting optimum management schemes suitable for arid and semi- arid regions. 2. Methodology ..... This work was supported by the Jordan University.

  8. Consequence Reasoning in Multilevel Flow Modelling

    DEFF Research Database (Denmark)

    Zhang, Xinxin; Lind, Morten; Ravn, Ole

    2013-01-01

    Consequence reasoning is a major element for operation support system to assess the plant situations. The purpose of this paper is to elaborate how Multilevel Flow Models can be used to reason about consequences of disturbances in complex engineering systems. MFM is a modelling methodology...... for representing process knowledge for complex systems. It represents the system by using means-end and part-whole decompositions, and describes not only the purposes and functions of the system but also the causal relations between them. Thus MFM is a tool for causal reasoning. The paper introduces MFM modelling...... syntax and gives detailed reasoning formulas for consequence reasoning. The reasoning formulas offers basis for developing rule-based system to perform consequence reasoning based on MFM, which can be used for alarm design, risk monitoring, and supervision and operation support system design....

  9. Adjoint-consistent formulations of slip models for coupled electroosmotic flow systems

    KAUST Repository

    Garg, Vikram V; Prudhomme, Serge; van der Zee, Kris G; Carey, Graham F

    2014-01-01

    Models based on the Helmholtz `slip' approximation are often used for the simulation of electroosmotic flows. The objectives of this paper are to construct adjoint-consistent formulations of such models, and to develop adjoint

  10. Water quality modelling of an impacted semi-arid catchment using flow data from the WEAP model

    Science.gov (United States)

    Slaughter, Andrew R.; Mantel, Sukhmani K.

    2018-04-01

    The continuous decline in water quality in many regions is forcing a shift from quantity-based water resources management to a greater emphasis on water quality management. Water quality models can act as invaluable tools as they facilitate a conceptual understanding of processes affecting water quality and can be used to investigate the water quality consequences of management scenarios. In South Africa, the Water Quality Systems Assessment Model (WQSAM) was developed as a management-focussed water quality model that is relatively simple to be able to utilise the small amount of available observed data. Importantly, WQSAM explicitly links to systems (yield) models routinely used in water resources management in South Africa by using their flow output to drive water quality simulations. Although WQSAM has been shown to be able to represent the variability of water quality in South African rivers, its focus on management from a South African perspective limits its use to within southern African regions for which specific systems model setups exist. Facilitating the use of WQSAM within catchments outside of southern Africa and within catchments for which these systems model setups to not exist would require WQSAM to be able to link to a simple-to-use and internationally-applied systems model. One such systems model is the Water Evaluation and Planning (WEAP) model, which incorporates a rainfall-runoff component (natural hydrology), and reservoir storage, return flows and abstractions (systems modelling), but within which water quality modelling facilities are rudimentary. The aims of the current study were therefore to: (1) adapt the WQSAM model to be able to use as input the flow outputs of the WEAP model and; (2) provide an initial assessment of how successful this linkage was by application of the WEAP and WQSAM models to the Buffalo River for historical conditions; a small, semi-arid and impacted catchment in the Eastern Cape of South Africa. The simulations of

  11. A saturated zone site-scale flow model for Yucca mountain

    Energy Technology Data Exchange (ETDEWEB)

    Eddebbarh, Al Aziz [Los Alamos National Laboratory

    2008-01-01

    A saturated zone site-scale flow model (YMSZFM) was developed for licensing requirements for the Yucca Mountain nuclear waste repository to incorporate recent data and analyses including recent stratigraphic and water-level data from Nye County wells, single-and multiple-well hydraulic testing data, and recent hydrochemistry data. Analyses include use of data from the 2004 transient Death Valley Regional (ground-water) Flow System (DVRFS) model, the 2003 unsaturated zone flow model, and the latest hydrogeologic framework model (HFM). This model includes: (1) the latest understanding of SZ flow, (2) enhanced model validation and uncertainty analyses, (3) improved locations and definitions of fault zones, (4) refined grid resolution (500-to 250-m grid spacing), and (5) use of new data. The flow model was completed using the three-dimensional, Finite-Element Heat and Mass Transfer computer code (FEHM). The SZ site-scale flow model was calibrated with the commercial parameter estimation code, PEST to achieve a minimum difference between observed water levels and predicted water levels, and also between volumetric/mass flow rates along specific boundary segments as supplied by the DVRFS. A total of 161 water level and head measurements with varied weights were used for calibration. A comparison between measured water-level data and the potentiometric surface yielded an RMSE of 20.7 m (weighted RMSE of 8.8 m). The calibrated model was used to generate flow paths and specific discharge predictions. Model confidence was built by comparing: (l) calculated to observed hydraulic heads, and (2) calibrated to measured permeabilities (and therefore specific discharge). In addition, flowpaths emanating from below the repository footprint are consistent with those inferred both from gradients of measured head and from independent water-chemistry data. Uncertainties in the SZ site-scale flow model were quantified because all uncertainty contributes to inaccuracy in system

  12. A saturated zone site-scale flow model for Yucca Mountain

    International Nuclear Information System (INIS)

    Eddebbarh, Al Aziz

    2008-01-01

    A saturated zone site-scale flow model (YMSZFM) was developed for licensing requirements for the Yucca Mountain nuclear waste repository to incorporate recent data and analyses including recent stratigraphic and water-level data from Nye County wells, single-and multiple-well hydraulic testing data, and recent hydrochemistry data. Analyses include use of data from the 2004 transient Death Valley Regional (ground-water) Flow System (DVRFS) model, the 2003 unsaturated zone flow model, and the latest hydrogeologic framework model (HFM). This model includes: (1) the latest understanding of SZ flow, (2) enhanced model validation and uncertainty analyses, (3) improved locations and definitions of fault zones, (4) refined grid resolution (500-to 250-m grid spacing), and (5) use of new data. The flow model was completed using the three-dimensional, Finite-Element Heat and Mass Transfer computer code (FEHM). The SZ site-scale flow model was calibrated with the commercial parameter estimation code, PEST to achieve a minimum difference between observed water levels and predicted water levels, and also between volumetric/mass flow rates along specific boundary segments as supplied by the DVRFS. A total of 161 water level and head measurements with varied weights were used for calibration. A comparison between measured water-level data and the potentiometric surface yielded an RMSE of 20.7 m (weighted RMSE of 8.8 m). The calibrated model was used to generate flow paths and specific discharge predictions. Model confidence was built by comparing: (l) calculated to observed hydraulic heads, and (2) calibrated to measured permeabilities (and therefore specific discharge). In addition, flowpaths emanating from below the repository footprint are consistent with those inferred both from gradients of measured head and from independent water-chemistry data. Uncertainties in the SZ site-scale flow model were quantified because all uncertainty contributes to inaccuracy in system

  13. Numerical investigation on the energetic performances of conventional and pellet aftertreatment systems in flow-through and reverse-flow designs

    Directory of Open Access Journals (Sweden)

    Morrone Pietropaolo

    2011-01-01

    Full Text Available The aim of the paper is the analysis of the energetic performances of structured and pelletized aftertreatment systems in flow-through and reverse-flow designs (passive and active flow control respectively for diesel internal combustion engines. To this purpose, the influence of the engine operating conditions on the system performances has been investigated adopting a one-dimensional time-dependent model. Specifically, the thermal behaviour and the fuel saving capability of several arrangements have been characterized. The analysis has shown that the active emission control system with pelletized design guarantees higher heat retention capability. Furthermore, the numerical model has revealed the significant influence of the solid and exhaust gas temperature on the energy efficiency of the aftertreatment systems and the large effect of exhaust mass flow rate and unburned hydrocarbons concentration.

  14. Modeling of Turbulent Swirling Flows

    Science.gov (United States)

    Shih, Tsan-Hsing; Zhu, Jiang; Liou, William; Chen, Kuo-Huey; Liu, Nan-Suey; Lumley, John L.

    1997-01-01

    Aircraft engine combustors generally involve turbulent swirling flows in order to enhance fuel-air mixing and flame stabilization. It has long been recognized that eddy viscosity turbulence models are unable to appropriately model swirling flows. Therefore, it has been suggested that, for the modeling of these flows, a second order closure scheme should be considered because of its ability in the modeling of rotational and curvature effects. However, this scheme will require solution of many complicated second moment transport equations (six Reynolds stresses plus other scalar fluxes and variances), which is a difficult task for any CFD implementations. Also, this scheme will require a large amount of computer resources for a general combustor swirling flow. This report is devoted to the development of a cubic Reynolds stress-strain model for turbulent swirling flows, and was inspired by the work of Launder's group at UMIST. Using this type of model, one only needs to solve two turbulence equations, one for the turbulent kinetic energy k and the other for the dissipation rate epsilon. The cubic model developed in this report is based on a general Reynolds stress-strain relationship. Two flows have been chosen for model evaluation. One is a fully developed rotating pipe flow, and the other is a more complex flow with swirl and recirculation.

  15. Numerical modeling of flow boiling instabilities using TRACE

    International Nuclear Information System (INIS)

    Kommer, Eric M.

    2015-01-01

    Highlights: • TRACE was used to realistically model boiling instabilities in single and parallel channel configurations. • Model parameters were chosen to exactly mimic other author’s work in order to provide for direct comparison of results. • Flow stability maps generated by the model show unstable flow at operating points similar to other authors. • The method of adjudicating when a flow is “unstable” is critical in this type of numerical study. - Abstract: Dynamic flow instabilities in two-phase systems are a vitally important area of study due to their effects on a great number of industrial applications, including heat exchangers in nuclear power plants. Several next generation nuclear reactor designs incorporate once through steam generators which will exhibit boiling flow instabilities if not properly designed or when operated outside design limits. A number of numerical thermal hydraulic codes attempt to model instabilities for initial design and for use in accident analysis. TRACE, the Nuclear Regulatory Commission’s newest thermal hydraulic code is used in this study to investigate flow instabilities in both single and dual parallel channel configurations. The model parameters are selected as to replicate other investigators’ experimental and numerical work in order to provide easy comparison. Particular attention is paid to the similarities between analysis using TRACE Version 5.0 and RELAP5/MOD3.3. Comparison of results is accomplished via flow stability maps non-dimensionalized via the phase change and subcooling numbers. Results of this study show that TRACE does indeed model two phase flow instabilities, with the transient response closely mimicking that seen in experimental studies. When compared to flow stability maps generated using RELAP, TRACE shows similar results with differences likely due to the somewhat qualitative criteria used by various authors to determine when the flow is truly unstable

  16. Physical modeling of shoreline bioremediation: Continuous flow mesoscale basins

    International Nuclear Information System (INIS)

    Sveum, P.; Ramstad, S.; Faksness, L.G.; Bech, C.; Johansen, B.

    1995-01-01

    This paper describes the design and use of continuous flow basin beach models in the study of bioremediation processes, and gives some results from an experiment designed to study the effects of different strategies for adding fertilizers. The continuous flow experimental basin system simulates an open system with natural tidal variation, wave action, and continuous supply and exchange of seawater. Biodegradation and bioremediation processes can thus be tested close to natural conditions. Results obtained using the models show a significant enhancement of biodegradation of oil in a sediment treated with an organic nutrient source, increased nutrient level in the interstitial water, and sediment microbial activity. These physical models gives biologically significant results, and can be used to simulate biodegradation and bioremediation in natural systems

  17. An analytical model for flow induced by a constant-head pumping in a leaky unconfined aquifer system with considering unsaturated flow

    Science.gov (United States)

    Lin, Ye-Chen; Li, Ming-Hsu; Yeh, Hund-Der

    2017-09-01

    A new mathematical model is developed to describe the flow in response to a constant-head pumping (or constant-head test, CHT) in a leaky unconfined aquifer system of infinite lateral extent with considering unsaturated flow. The model consists of an unsaturated zone on the top, an unconfined aquifer in the middle, and a second aquifer (aquitard) at the bottom. The unsaturated flow is described by Richard's equation, and the flows in unconfined aquifer and second layer are governed by the groundwater flow equation. The well partially penetrates the unconfined aquifer with a constant head in the well due to CHT. The governing equations of the model are linearized by the perturbation method and Gardner's exponential model is adopted to describe the soil retention curves. The solution of the model for drawdown distribution is obtained by applying the methods of Laplace transform and Weber transform. Then the solution for the wellbore flowrate is derived from the drawdown solution with Darcy's law. The issue of the equivalence of normalized drawdown predicted by the present solution for constant-head pumping and Tartakovsky and Neuman's (2007) solution for constant-rate pumping is discussed. On the basis of the wellbore flowrate solution, the results of the sensitivity analysis indicate that the wellbore flowrate is very sensitive to the changes in the radial hydraulic conductivity and the thickness of the saturated zone. Moreover, the results predicted from the present wellbore flowrate solution indicate that this new solution can reduce to Chang's et al. (2010a) solution for homogenous aquifers when the dimensionless unsaturated exponent approaches 100. The unsaturated zone can be considered as infinite extent in the vertical direction if the thickness ratio of the unsaturated zone to the unconfined aquifer is equal to or greater than one. As for the leakage effect, it can be ignored when the vertical hydraulic conductivity ratio (i.e., the vertical hydraulic

  18. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    Science.gov (United States)

    Soltani, M; Chen, P

    2013-01-01

    Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  19. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    Directory of Open Access Journals (Sweden)

    M Soltani

    Full Text Available Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  20. Modelling flow dynamics in water distribution networks using ...

    African Journals Online (AJOL)

    One such approach is the Artificial Neural Networks (ANNs) technique. The advantage of ANNs is that they are robust and can be used to model complex linear and non-linear systems without making implicit assumptions. ANNs can be trained to forecast flow dynamics in a water distribution network. Such flow dynamics ...

  1. Development and assessment of Multi-dimensional flow models in the thermal-hydraulic system analysis code MARS

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Bae, S. W.; Jeong, J. J.; Lee, S. M

    2005-04-15

    A new multi-dimensional component has been developed to allow for more flexible 3D capabilities in the system code, MARS. This component can be applied in the Cartesian and cylindrical coordinates. For the development of this model, the 3D convection and diffusion terms are implemented in the momentum and energy equation. And a simple Prandtl's mixing length model is applied for the turbulent viscosity. The developed multi-dimensional component was assessed against five conceptual problems with analytic solution. And some SETs are calculated and compared with experimental data. With this newly developed multi-dimensional flow module, the MARS code can realistic calculate the flow fields in pools such as those occurring in the core, steam generators and IRWST.

  2. Development and assessment of Multi-dimensional flow models in the thermal-hydraulic system analysis code MARS

    International Nuclear Information System (INIS)

    Chung, B. D.; Bae, S. W.; Jeong, J. J.; Lee, S. M.

    2005-04-01

    A new multi-dimensional component has been developed to allow for more flexible 3D capabilities in the system code, MARS. This component can be applied in the Cartesian and cylindrical coordinates. For the development of this model, the 3D convection and diffusion terms are implemented in the momentum and energy equation. And a simple Prandtl's mixing length model is applied for the turbulent viscosity. The developed multi-dimensional component was assessed against five conceptual problems with analytic solution. And some SETs are calculated and compared with experimental data. With this newly developed multi-dimensional flow module, the MARS code can realistic calculate the flow fields in pools such as those occurring in the core, steam generators and IRWST

  3. Particle in the Brusselator Model with Flow

    DEFF Research Database (Denmark)

    Kuptsov, P.V.; Kuznetsov, S.P.; Mosekilde, Erik

    2002-01-01

    We consider the interaction of a small moving particle with a stationary space-periodic pattern in a chemical reaction-diffusion system with a flow. The pattern is produced by a one-dimensional Brusselator model that is perturbed by a constant displacement from the equilibrium state at the inlet....... By partially blocking the flow, the particle gives rise to a local increment of the flow rate. For certain parameter values a response with intermittent Hopf and Turing type structures is observed. In other regimes a wave of substitution of missing peaks runs across the pattern....

  4. A compact x-ray system for two-phase flow measurement

    Science.gov (United States)

    Song, Kyle; Liu, Yang

    2018-02-01

    In this paper, a compact x-ray densitometry system consisting of a 50 kV, 1 mA x-ray tube and several linear detector arrays is developed for two-phase flow measurement. The system is capable of measuring void fraction and velocity distributions with a spatial resolution of 0.4 mm per pixel and a frequency of 1000 Hz. A novel measurement model has been established for the system which takes account of the energy spectrum of x-ray photons and the beam hardening effect. An improved measurement accuracy has been achieved with this model compared with the conventional log model that has been widely used in the literature. Using this system, void fraction and velocity distributions are measured for a bubbly and a slug flow in a 25.4 mm I.D. air-water two-phase flow test loop. The measured superficial gas velocities show an error within  ±4% when compared with the gas flowmeter for both conditions.

  5. Dispersion-convolution model for simulating peaks in a flow injection system.

    Science.gov (United States)

    Pai, Su-Cheng; Lai, Yee-Hwong; Chiao, Ling-Yun; Yu, Tiing

    2007-01-12

    A dispersion-convolution model is proposed for simulating peak shapes in a single-line flow injection system. It is based on the assumption that an injected sample plug is expanded due to a "bulk" dispersion mechanism along the length coordinate, and that after traveling over a distance or a period of time, the sample zone will develop into a Gaussian-like distribution. This spatial pattern is further transformed to a temporal coordinate by a convolution process, and finally a temporal peak image is generated. The feasibility of the proposed model has been examined by experiments with various coil lengths, sample sizes and pumping rates. An empirical dispersion coefficient (D*) can be estimated by using the observed peak position, height and area (tp*, h* and At*) from a recorder. An empirical temporal shift (Phi*) can be further approximated by Phi*=D*/u2, which becomes an important parameter in the restoration of experimental peaks. Also, the dispersion coefficient can be expressed as a second-order polynomial function of the pumping rate Q, for which D*(Q)=delta0+delta1Q+delta2Q2. The optimal dispersion occurs at a pumping rate of Qopt=sqrt[delta0/delta2]. This explains the interesting "Nike-swoosh" relationship between the peak height and pumping rate. The excellent coherence of theoretical and experimental peak shapes confirms that the temporal distortion effect is the dominating reason to explain the peak asymmetry in flow injection analysis.

  6. Temperature distribution by the effect of groundwater flow in an aquifer thermal energy storage system model

    Science.gov (United States)

    Shim, B.

    2005-12-01

    Aquifer thermal energy storage (ATES) can be a cost-effective and renewable energy source, depending on site-specific thermohydraulic conditions. To design an effective ATES system, the understanding of thermohydraulic processes is necessary. The heat transfer phenomena of an aquifer heat storage system are simulated with the scenario of heat pump operation of pumping and waste water reinjection in a two layered confined aquifer model having the effect of groundwater movement. Temperature distribution of the aquifer model is generated, and hydraulic heads and temperature variations are monitored at both wells during simulation days. The average groundwater velocities are determined with two assumed hydraulic gradients set by boundary conditions, and the effect of groundwater flow are shown at the generated thermal distributions at three different depth slices. The generated temperature contour lines at the hydraulic gradient of 0.001 are shaped circular, and the center is moved less than 5 m to the east in 365 days. However at the hydraulic gradient of 0.01, the contour centers of the east well at each depth slice are moved near the east boundary and the movement of temperature distribution is increased at the lower aquifer. By the analysis of thermal interference data between two wells the efficiency of a heat pump operation model is validated, and the variation of heads is monitored at injection, pumping and stabilized state. The thermal efficiency of the ATES system model is represented as highly depended on groundwater flow velocity and direction. Therefore the hydrogeologic condition for the system site should be carefully surveyed.

  7. Waterhammer modeling for the Ares I Upper Stage Reaction Control System cold flow development test article

    Science.gov (United States)

    Williams, Jonathan Hunter

    The Upper Stage Reaction Control System provides in-flight three-axis attitude control for the Ares I Upper Stage. The system design must accommodate rapid thruster firing to maintain proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted at Marshall Space Flight Center in 2009 were performed using a water-flow test article to better understand fluid characteristics of the Upper Stage Reaction Control System. A subset of the tests examined the waterhammer pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.

  8. Waterhammer Modeling for the Ares I Upper Stage Reaction Control System Cold Flow Development Test Article

    Science.gov (United States)

    Williams, Jonathan H.

    2010-01-01

    The Upper Stage Reaction Control System provides three-axis attitude control for the Ares I launch vehicle during active Upper Stage flight. The system design must accommodate rapid thruster firing to maintain the proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted in the fall of 2009 at Marshall Space Flight Center were performed using a water-flow test article to better understand fluid performance characteristics of the Upper Stage Reaction Control System. A subset of the tests examined waterhammer along with the subsequent pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.

  9. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    International Nuclear Information System (INIS)

    Thomas, J.M.; Benedict, F.C. Jr.; Rose, T.P.; Hershey, R.L.; Paces, J.B.; Peterman, Z.E.; Farnham, I.M.; Johannesson, K.H.; Singh, A.K.; Stetzenbach, K.J.; Hudson, G.B.; Kenneally, J.M.; Eaton, G.F.; Smith, D.K.

    2003-01-01

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units

  10. Scale modeling flow-induced vibrations of reactor components

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1982-06-01

    Similitude relationships currently employed in the design of flow-induced vibration scale-model tests of nuclear reactor components are reviewed. Emphasis is given to understanding the origins of the similitude parameters as a basis for discussion of the inevitable distortions which occur in design verification testing of entire reactor systems and in feature testing of individual component designs for the existence of detrimental flow-induced vibration mechanisms. Distortions of similitude parameters made in current test practice are enumerated and selected example tests are described. Also, limitations in the use of specific distortions in model designs are evaluated based on the current understanding of flow-induced vibration mechanisms and structural response

  11. Model-based design and optimization of vanadium redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Sebastian

    2017-07-19

    This work targets on increasing the efficiency of the Vanadium Redox Flow Battery (VRFB) using a model-based approach. First, a detailed instruction for setting up a VRFB model on a system level is given. Modelling of open-circuit-voltage, ohmic overpotential, concentration overpotential, Vanadium crossover, shunt currents as well as pump power demand is presented. All sub-models are illustrated using numerical examples. Using experimental data from three battery manufacturers, the voltage model validated. The identified deviations reveal deficiencies in the literature model. By correctly deriving the mass transfer coefficients and adapting the effective electrode area, these deficiencies are eliminated. The validated battery model is then deployed in an extensive design study. By varying the electrode area between 1000 and 4000 cm{sup 2} and varying the design of the electrolyte supply channel, twenty-four different cell designs are created using finite element analysis. These designs are subsequently simulated in 40-cell stacks deployed in systems with a single stack and systems with a three-stack string. Using the simulation results, the impact of different design parameters on different loss mechanisms is investigated. While operating the VRFB, the electrolyte flow rate is the most important operational parameter. A novel, model-based optimization strategy is presented and compared to established flow rate control strategies. Further, a voltage controller is introduced which delays the violation of cell voltage limits by controlling the flow rate as long as the pump capacity is not fully exploited.

  12. Model-based design and optimization of vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Koenig, Sebastian

    2017-01-01

    This work targets on increasing the efficiency of the Vanadium Redox Flow Battery (VRFB) using a model-based approach. First, a detailed instruction for setting up a VRFB model on a system level is given. Modelling of open-circuit-voltage, ohmic overpotential, concentration overpotential, Vanadium crossover, shunt currents as well as pump power demand is presented. All sub-models are illustrated using numerical examples. Using experimental data from three battery manufacturers, the voltage model validated. The identified deviations reveal deficiencies in the literature model. By correctly deriving the mass transfer coefficients and adapting the effective electrode area, these deficiencies are eliminated. The validated battery model is then deployed in an extensive design study. By varying the electrode area between 1000 and 4000 cm 2 and varying the design of the electrolyte supply channel, twenty-four different cell designs are created using finite element analysis. These designs are subsequently simulated in 40-cell stacks deployed in systems with a single stack and systems with a three-stack string. Using the simulation results, the impact of different design parameters on different loss mechanisms is investigated. While operating the VRFB, the electrolyte flow rate is the most important operational parameter. A novel, model-based optimization strategy is presented and compared to established flow rate control strategies. Further, a voltage controller is introduced which delays the violation of cell voltage limits by controlling the flow rate as long as the pump capacity is not fully exploited.

  13. Electromechanical Model of Blood Flow in Vessels

    OpenAIRE

    Ivo Cap; Barbora Czippelova

    2008-01-01

    The present paper deals with some theoretical derivations connected with very efficient method of solution of hydrodynamic problems of blood flow in human cardiovascular system. The electromechanical analogy of liquid flow in a tube and electromagnetic wave propagating along an electric transmission line is discussed. We have derived a detailed circuit-like model of an elementary section of the elastic tube with viscose Newtonian liquid. The analogy harmonic current electrical cir...

  14. Modeling complex biological flows in multi-scale systems using the APDEC framework

    Science.gov (United States)

    Trebotich, David

    2006-09-01

    We have developed advanced numerical algorithms to model biological fluids in multiscale flow environments using the software framework developed under the SciDAC APDEC ISIC. The foundation of our computational effort is an approach for modeling DNA laden fluids as ''bead-rod'' polymers whose dynamics are fully coupled to an incompressible viscous solvent. The method is capable of modeling short range forces and interactions between particles using soft potentials and rigid constraints. Our methods are based on higher-order finite difference methods in complex geometry with adaptivity, leveraging algorithms and solvers in the APDEC Framework. Our Cartesian grid embedded boundary approach to incompressible viscous flow in irregular geometries has also been interfaced to a fast and accurate level-sets method within the APDEC Framework for extracting surfaces from volume renderings of medical image data and used to simulate cardio-vascular and pulmonary flows in critical anatomies.

  15. Towards an Agro-Industrial Ecology: A review of nutrient flow modelling and assessment tools in agro-food systems at the local scale

    International Nuclear Information System (INIS)

    Fernandez-Mena, Hugo; Nesme, Thomas; Pellerin, Sylvain

    2016-01-01

    Improvement in nutrient recycling in agriculture is essential to maintain food production while minimising nutrient pollution of the environment. For this purpose, understanding and modelling nutrient cycles in food and related agro-industrial systems is a crucial task. Although nutrient management has been addressed at the plot and farm scales for many years now in the agricultural sciences, there is a need to upscale these approaches to capture the additional drivers of nutrient cycles that may occur at the local, i.e. district, scale. Industrial ecology principles provide sound bases to analyse nutrient cycling in complex systems. However, since agro-food social-ecological systems have specific ecological and social dimensions, we argue that a new field, referred to as “Agro-Industrial Ecology”, is needed to study these systems. In this paper, we review the literature on nutrient cycling in complex social-ecological systems that can provide a basis for Agro-Industrial Ecology. We identify and describe three major approaches: Environmental Assessment tools, Stock and Flow Analysis methods and Agent-based models. We then discuss their advantages and drawbacks for assessing and modelling nutrient cycles in agro-food systems in terms of their purpose and scope, object representation and time-spatial dynamics. We finally argue that combining stock-flow methods with both agent-based models and environmental impact assessment tools is a promising way to analyse the role of economic agents on nutrient flows and losses and to explore scenarios that better close the nutrient cycles at the local scale. - Highlights: • An Agro-Industrial Ecology perspective is essential to model local agro-food systems. • We provide a classification of nutrient (N, P) models, methods and assessment tools. • We distinguished Environmental Assessment, Stock and flow and Agent-based approaches. • The pros and cons of these nutrient cycle models, methods and tools are discussed.

  16. Towards an Agro-Industrial Ecology: A review of nutrient flow modelling and assessment tools in agro-food systems at the local scale

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Mena, Hugo, E-mail: hugo.fernandez@bordeaux.inra.fr [Bordeaux Sciences Agro, Univ. Bordeaux, UMR 1391 ISPA, F-33175 Gradignan (France); INRA, UMR 1391 ISPA, F-33883 Villenave d' Ornon (France); Nesme, Thomas [Bordeaux Sciences Agro, Univ. Bordeaux, UMR 1391 ISPA, F-33175 Gradignan (France); Pellerin, Sylvain [INRA, UMR 1391 ISPA, F-33883 Villenave d' Ornon (France)

    2016-02-01

    Improvement in nutrient recycling in agriculture is essential to maintain food production while minimising nutrient pollution of the environment. For this purpose, understanding and modelling nutrient cycles in food and related agro-industrial systems is a crucial task. Although nutrient management has been addressed at the plot and farm scales for many years now in the agricultural sciences, there is a need to upscale these approaches to capture the additional drivers of nutrient cycles that may occur at the local, i.e. district, scale. Industrial ecology principles provide sound bases to analyse nutrient cycling in complex systems. However, since agro-food social-ecological systems have specific ecological and social dimensions, we argue that a new field, referred to as “Agro-Industrial Ecology”, is needed to study these systems. In this paper, we review the literature on nutrient cycling in complex social-ecological systems that can provide a basis for Agro-Industrial Ecology. We identify and describe three major approaches: Environmental Assessment tools, Stock and Flow Analysis methods and Agent-based models. We then discuss their advantages and drawbacks for assessing and modelling nutrient cycles in agro-food systems in terms of their purpose and scope, object representation and time-spatial dynamics. We finally argue that combining stock-flow methods with both agent-based models and environmental impact assessment tools is a promising way to analyse the role of economic agents on nutrient flows and losses and to explore scenarios that better close the nutrient cycles at the local scale. - Highlights: • An Agro-Industrial Ecology perspective is essential to model local agro-food systems. • We provide a classification of nutrient (N, P) models, methods and assessment tools. • We distinguished Environmental Assessment, Stock and flow and Agent-based approaches. • The pros and cons of these nutrient cycle models, methods and tools are discussed.

  17. Constraining a compositional flow model with flow-chemical data using an ensemble-based Kalman filter

    KAUST Repository

    Gharamti, M. E.; Kadoura, A.; Valstar, J.; Sun, S.; Hoteit, Ibrahim

    2014-01-01

    Isothermal compositional flow models require coupling transient compressible flows and advective transport systems of various chemical species in subsurface porous media. Building such numerical models is quite challenging and may be subject to many sources of uncertainties because of possible incomplete representation of some geological parameters that characterize the system's processes. Advanced data assimilation methods, such as the ensemble Kalman filter (EnKF), can be used to calibrate these models by incorporating available data. In this work, we consider the problem of estimating reservoir permeability using information about phase pressure as well as the chemical properties of fluid components. We carry out state-parameter estimation experiments using joint and dual updating schemes in the context of the EnKF with a two-dimensional single-phase compositional flow model (CFM). Quantitative and statistical analyses are performed to evaluate and compare the performance of the assimilation schemes. Our results indicate that including chemical composition data significantly enhances the accuracy of the permeability estimates. In addition, composition data provide more information to estimate system states and parameters than do standard pressure data. The dual state-parameter estimation scheme provides about 10% more accurate permeability estimates on average than the joint scheme when implemented with the same ensemble members, at the cost of twice more forward model integrations. At similar computational cost, the dual approach becomes only beneficial after using large enough ensembles.

  18. Reflood modeling under oscillatory flow conditions with Cathare

    International Nuclear Information System (INIS)

    Kelly, J.M.; Bartak, J.; Janicot, A.

    1993-01-01

    The problems and the current status in oscillatory reflood modelling with the CATHARE code are presented. The physical models used in CATHARE for reflood modelling predicted globally very well the forced reflood experiments. Significant drawbacks existed in predicting experiments with oscillatory flow (both forced and gravity driven). First, the more simple case of forced flow oscillations was analyzed. Modelling improvements within the reflooding package resolved the problem of quench front blockages and unphysical oscillations. Good agreements with experiment for the ERSEC forced oscillations reflood tests is now obtained. For gravity driven reflood, CATHARE predicted sustained flow oscillations during 100-150 s after the start of the reflood, whereas in the experiment flow oscillations were observed only during 25-30 s. Possible areas of modeling improvements are identified and several new correlations are suggested. The first test calculations of the BETHSY test 6.7A4 have shown that the oscillations are mostly sensitive to heat flux modeling downstream of the quench front. A much better agreement between CATHARE results and the experiment was obtained. However, further effort is necessary to obtain globally satisfactory predictions of gravity driven system reflood tests. (authors) 6 figs., 35 refs

  19. Reflood modeling under oscillatory flow conditions with Cathare

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J M; Bartak, J; Janicot, A

    1994-12-31

    The problems and the current status in oscillatory reflood modelling with the CATHARE code are presented. The physical models used in CATHARE for reflood modelling predicted globally very well the forced reflood experiments. Significant drawbacks existed in predicting experiments with oscillatory flow (both forced and gravity driven). First, the more simple case of forced flow oscillations was analyzed. Modelling improvements within the reflooding package resolved the problem of quench front blockages and unphysical oscillations. Good agreements with experiment for the ERSEC forced oscillations reflood tests is now obtained. For gravity driven reflood, CATHARE predicted sustained flow oscillations during 100-150 s after the start of the reflood, whereas in the experiment flow oscillations were observed only during 25-30 s. Possible areas of modeling improvements are identified and several new correlations are suggested. The first test calculations of the BETHSY test 6.7A4 have shown that the oscillations are mostly sensitive to heat flux modeling downstream of the quench front. A much better agreement between CATHARE results and the experiment was obtained. However, further effort is necessary to obtain globally satisfactory predictions of gravity driven system reflood tests. (authors) 6 figs., 35 refs.

  20. Review and selection of unsaturated flow models

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, M.; Baker, N.A.; Duguid, J.O. [INTERA, Inc., Las Vegas, NV (United States)

    1994-04-04

    Since the 1960`s, ground-water flow models have been used for analysis of water resources problems. In the 1970`s, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970`s and well into the 1980`s focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M&O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing.

  1. Review and selection of unsaturated flow models

    International Nuclear Information System (INIS)

    Reeves, M.; Baker, N.A.; Duguid, J.O.

    1994-01-01

    Since the 1960's, ground-water flow models have been used for analysis of water resources problems. In the 1970's, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970's and well into the 1980's focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M ampersand O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M ampersand O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing

  2. The effects of parameter variation on MSET models of the Crystal River-3 feedwater flow system

    International Nuclear Information System (INIS)

    Miron, A.

    1998-01-01

    In this paper we develop further the results reported in Reference 1 to include a systematic study of the effects of varying MSET models and model parameters for the Crystal River-3 (CR) feedwater flow system The study used archived CR process computer files from November 1-December 15, 1993 that were provided by Florida Power Corporation engineers Fairman Bockhorst and Brook Julias. The results support the conclusion that an optimal MSET model, properly trained and deriving its inputs in real-time from no more than 25 of the sensor signals normally provided to a PWR plant process computer, should be able to reliably detect anomalous variations in the feedwater flow venturis of less than 0.1% and in the absence of a venturi sensor signal should be able to generate a virtual signal that will be within 0.1% of the correct value of the missing signal

  3. Simulation of the regional groundwater-flow system of the Menominee Indian Reservation, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Dunning, Charles P.

    2015-01-01

    A regional, two-dimensional, steady-state groundwater-flow model was developed to simulate the groundwater-flow system and groundwater/surface-water interactions within the Menominee Indian Reservation. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Menominee Indian Tribe of Wisconsin, to contribute to the fundamental understanding of the region’s hydrogeology. The objectives of the regional model were to improve understanding of the groundwater-flow system, including groundwater/surface-water interactions, and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate groundwater/surface-water interactions, provide a framework for simulating regional groundwater-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate groundwater-flow patterns at multiple scales. Simulations made with the regional model reproduce groundwater levels and stream base flows representative of recent conditions (1970–2013) and illustrate groundwater-flow patterns with maps of (1) the simulated water table and groundwater-flow directions, (2) probabilistic areas contributing recharge to high-capacity pumped wells, and (3) estimation of the extent of infiltrated wastewater from treatment lagoons.

  4. Linear Power-Flow Models in Multiphase Distribution Networks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Andrey; Dall' Anese, Emiliano

    2017-05-26

    This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- from advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.

  5. Heavy Class Helicopter Fuselage Model Drag Reduction by Active Flow Control Systems

    Science.gov (United States)

    De Gregorio, F.

    2017-08-01

    A comprehensive experimental investigation of helicopter blunt fuselage drag reduction using active flow control is being carried out within the European Clean Sky program. The objective is to demonstrate the capability of several active flow technologies to decrease fuselage drag by alleviating the flow separation occurring in the rear area of some helicopters. The work is performed on a simplified blunt fuselage at model-scale. Two different flow control actuators are considered for evaluation: steady blowing, unsteady blowing (or pulsed jets). Laboratory tests of each individual actuator are first performed to assess their performance and properties. The fuselage model is then equipped with these actuators distributed in 3 slots located on the ramp bottom edge. This paper addresses the promising results obtained during the wind-tunnel campaign, since significant drag reductions are achieved for a wide range of fuselage angles of attack and yaw angles without detriment of the other aerodynamic characteristics.

  6. Putting the "Ecology" into Environmental Flows: Ecological Dynamics and Demographic Modelling

    Science.gov (United States)

    Shenton, Will; Bond, Nicholas R.; Yen, Jian D. L.; Mac Nally, Ralph

    2012-07-01

    There have been significant diversions of water from rivers and streams around the world; natural flow regimes have been perturbed by dams, barriers and excessive extractions. Many aspects of the ecological `health' of riverine systems have declined due to changes in water flows, which has stimulated the development of thinking about the maintenance and restoration of these systems, which we refer to as environmental flow methodologies (EFMs). Most existing EFMs cannot deliver information on the population viability of species because they: (1) use habitat suitability as a proxy for population status; (2) use historical time series (usually of short duration) to forecast future conditions and flow sequences; (3) cannot, or do not, handle extreme flow events associated with climate variability; and (4) assume process stationarity for flow sequences, which means the past sequences are treated as good indicators of the future. These assumptions undermine the capacity of EFMs to properly represent risks associated with different flow management options; assumption (4) is untenable given most climate-change predictions. We discuss these concerns and advocate the use of demographic modelling as a more appropriate tool for linking population dynamics to flow regime change. A `meta-species' approach to demographic modelling is discussed as a useful step from habitat based models towards modelling strategies grounded in ecological theory when limited data are available on flow-demographic relationships. Data requirements of demographic models will undoubtedly expose gaps in existing knowledge, but, in so doing, will strengthen future efforts to link changes in river flows with their ecological consequences.

  7. Putting the "ecology" into environmental flows: ecological dynamics and demographic modelling.

    Science.gov (United States)

    Shenton, Will; Bond, Nicholas R; Yen, Jian D L; Mac Nally, Ralph

    2012-07-01

    There have been significant diversions of water from rivers and streams around the world; natural flow regimes have been perturbed by dams, barriers and excessive extractions. Many aspects of the ecological 'health' of riverine systems have declined due to changes in water flows, which has stimulated the development of thinking about the maintenance and restoration of these systems, which we refer to as environmental flow methodologies (EFMs). Most existing EFMs cannot deliver information on the population viability of species because they: (1) use habitat suitability as a proxy for population status; (2) use historical time series (usually of short duration) to forecast future conditions and flow sequences; (3) cannot, or do not, handle extreme flow events associated with climate variability; and (4) assume process stationarity for flow sequences, which means the past sequences are treated as good indicators of the future. These assumptions undermine the capacity of EFMs to properly represent risks associated with different flow management options; assumption (4) is untenable given most climate-change predictions. We discuss these concerns and advocate the use of demographic modelling as a more appropriate tool for linking population dynamics to flow regime change. A 'meta-species' approach to demographic modelling is discussed as a useful step from habitat based models towards modelling strategies grounded in ecological theory when limited data are available on flow-demographic relationships. Data requirements of demographic models will undoubtedly expose gaps in existing knowledge, but, in so doing, will strengthen future efforts to link changes in river flows with their ecological consequences.

  8. Fluid flow control system

    International Nuclear Information System (INIS)

    Rion, Jacky.

    1982-01-01

    Fluid flow control system featuring a series of grids placed perpendicular to the fluid flow direction, characterized by the fact that it is formed of a stack of identical and continuous grids, each of which consists of identical meshes forming a flat lattice. The said meshes are offset from one grid to the next. This system applies in particular to flow control of the coolant flowing at the foot of an assembly of a liquid metal cooled nuclear reactor [fr

  9. High anisotropy of flow-aligned bicellar membrane systems

    KAUST Repository

    Kogan, Maxim

    2013-10-01

    In recent years, multi-lipid bicellar systems have emerged as promising membrane models. The fast orientational diffusion and magnetic alignability made these systems very attractive for NMR investigations. However, their alignment was so far achieved with a strong magnetic field, which limited their use with other methods that require macroscopic orientation. Recently, it was shown that bicelles could be aligned also by shear flow in a Couette flow cell, making it applicable to structural and biophysical studies by polarized light spectroscopy. Considering the sensitivity of this lipid system to small variations in composition and physicochemical parameters, efficient use of such a flow-cell method with coupled techniques will critically depend on the detailed understanding of how the lipid systems behave under flow conditions. In the present study we have characterized the flow alignment behavior of the commonly used dimyristoyl phosphatidylcholine/dicaproyl phosphatidylcholine (DMPC/DHPC) bicelle system, for various temperatures, lipid compositions, and lipid concentrations. We conclude that at optimal flow conditions the selected bicellar systems can produce the most efficient flow alignment out of any lipid systems used so far. The highest degree of orientation of DMPC/DHPC samples is noticed in a narrow temperature interval, at a practical temperature around 25 C, most likely in the phase transition region characterized by maximum sample viscosity. The change of macroscopic orientation factor as function of the above conditions is now described in detail. The increase in macroscopic alignment observed for bicelles will most likely allow recording of higher resolution spectra on membrane systems, which provide deeper structural insight and analysis into properties of biomolecules interacting with solution phase lipid membranes. © 2013 Elsevier Ireland Ltd.

  10. Hierarchical and coupling model of factors influencing vessel traffic flow.

    Science.gov (United States)

    Liu, Zhao; Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi

    2017-01-01

    Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.

  11. Radar Based Flow and Water Level Forecasting in Sewer Systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Rasmussen, Michael R.; Grum, M.

    2009-01-01

    This paper describes the first radar based forecast of flow and/or water level in sewer systems in Denmark. The rainfall is successfully forecasted with a lead time of 1-2 hours, and flow/levels are forecasted an additional ½-1½ hours using models describing the behaviour of the sewer system. Bot...

  12. Continuous traffic flow modeling of driver support systems in multiclass traffic with intervehicle communication and drivers in the loop

    NARCIS (Netherlands)

    Tampere, C.; Hoogendoorn, S.P.; van Arem, Bart

    2009-01-01

    This paper presents a continuous traffic-flow model for the explorative analysis of advanced driver-assistance systems (ADASs). Such systems use technology (sensors and intervehicle communication) to support the task of the driver, who retains full control over the vehicle. Based on a review of

  13. Modeling flows of heterogeneous media in pipelines when substantiating operating conditions of hydrocarbon field transportation systems

    Science.gov (United States)

    Dudin, S. M.; Novitskiy, D. V.

    2018-05-01

    The works of researchers at VNIIgaz, Giprovostokneft, Kuibyshev NIINP, Grozny Petroleum Institute, etc., are devoted to modeling heterogeneous medium flows in pipelines under laboratory conditions. In objective consideration, the empirical relationships obtained and the calculation procedures for pipelines transporting multiphase products are a bank of experimental data on the problem of pipeline transportation of multiphase systems. Based on the analysis of the published works, the main design requirements for experimental installations designed to study the flow regimes of gas-liquid flows in pipelines were formulated, which were taken into account by the authors when creating the experimental stand. The article describes the results of experimental studies of the flow regimes of a gas-liquid mixture in a pipeline, and also gives a methodological description of the experimental installation. Also the article describes the software of the experimental scientific and educational stand developed with the participation of the authors.

  14. A Collaborative System Software Solution for Modeling Business Flows Based on Automated Semantic Web Service Composition

    Directory of Open Access Journals (Sweden)

    Ion SMEUREANU

    2009-01-01

    Full Text Available Nowadays, business interoperability is one of the key factors for assuring competitive advantage for the participant business partners. In order to implement business cooperation, scalable, distributed and portable collaborative systems have to be implemented. This article presents some of the mostly used technologies in this field. Furthermore, it presents a software application architecture based on Business Process Modeling Notation standard and automated semantic web service coupling for modeling business flow in a collaborative manner. The main business processes will be represented in a single, hierarchic flow diagram. Each element of the diagram will represent calls to semantic web services. The business logic (the business rules and constraints will be structured with the help of OWL (Ontology Web Language. Moreover, OWL will also be used to create the semantic web service specifications.

  15. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling - Part II: Constraint methodology of hydrodynamic models.

    Science.gov (United States)

    Audebert, M; Oxarango, L; Duquennoi, C; Touze-Foltz, N; Forquet, N; Clément, R

    2016-09-01

    Leachate recirculation is a key process in the operation of municipal solid waste landfills as bioreactors. To ensure optimal water content distribution, bioreactor operators need tools to design leachate injection systems. Prediction of leachate flow by subsurface flow modelling could provide useful information for the design of such systems. However, hydrodynamic models require additional data to constrain them and to assess hydrodynamic parameters. Electrical resistivity tomography (ERT) is a suitable method to study leachate infiltration at the landfill scale. It can provide spatially distributed information which is useful for constraining hydrodynamic models. However, this geophysical method does not allow ERT users to directly measure water content in waste. The MICS (multiple inversions and clustering strategy) methodology was proposed to delineate the infiltration area precisely during time-lapse ERT survey in order to avoid the use of empirical petrophysical relationships, which are not adapted to a heterogeneous medium such as waste. The infiltration shapes and hydrodynamic information extracted with MICS were used to constrain hydrodynamic models in assessing parameters. The constraint methodology developed in this paper was tested on two hydrodynamic models: an equilibrium model where, flow within the waste medium is estimated using a single continuum approach and a non-equilibrium model where flow is estimated using a dual continuum approach. The latter represents leachate flows into fractures. Finally, this methodology provides insight to identify the advantages and limitations of hydrodynamic models. Furthermore, we suggest an explanation for the large volume detected by MICS when a small volume of leachate is injected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Identifying three-dimensional nested groundwater flow systems in a Tóthian basin

    Science.gov (United States)

    Wang, Xu-Sheng; Wan, Li; Jiang, Xiao-Wei; Li, Hailong; Zhou, Yangxiao; Wang, Junzhi; Ji, Xiaohui

    2017-10-01

    Nested groundwater flow systems have been revealed in Tóth's theory as the structural property of basin-scale groundwater circulation but were only well known with two-dimensional (2D) profile models. The method of searching special streamlines across stagnation points for partitioning flow systems, which has been successfully applied in the 2D models, has never been implemented for three-dimensional (3D) Tóthian basins because of the difficulty in solving the dual stream functions. Alternatively, a new method is developed to investigate 3D nested groundwater flow systems without determination of stagnation points. Connective indices are defined to quantify the connection between individual recharge and discharge zones along streamlines. Groundwater circulation cells (GWCCs) are identified according to the distribution of the connective indices and then grouped into local, intermediate and regional flow systems. This method requires existing solution of the flow velocity vector and is implemented via particle tracking technique. It is applied in a hypothetical 3D Tóthian basin with an analytical solution of the flow field and in a real-world basin with a numerical modeling approach. Different spatial patterns of flow systems compared to 2D profile models are found. The outcrops boundaries of GWCCs on water table may significantly deviate from and are not parallel to the nearby water table divides. Topological network is proposed to represent the linked recharge-discharge zones through closed and open GWCCs. Sensitivity analysis indicates that the development of GWCCs depends on the basin geometry, hydraulic parameters and water table shape.

  17. Analyzing Unsaturated Flow Patterns in Fractured Rock Using an Integrated Modeling Approach

    International Nuclear Information System (INIS)

    Y.S. Wu; G. Lu; K. Zhang; L. Pan; G.S. Bodvarsson

    2006-01-01

    Characterizing percolation patterns in unsaturated fractured rock has posed a greater challenge to modeling investigations than comparable saturated zone studies, because of the heterogeneous nature of unsaturated media and the great number of variables impacting unsaturated flow. This paper presents an integrated modeling methodology for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The modeling approach integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model for modeling analyses. It takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. Modeling results are examined against different types of field-measured data and then used to evaluate different hydrogeological conceptualizations and their results of flow patterns in the unsaturated zone. In particular, this model provides a much clearer understanding of percolation patterns and flow behavior through the unsaturated zone, both crucial issues in assessing repository performance. The integrated approach for quantifying Yucca Mountain's flow system is demonstrated to provide a practical modeling tool for characterizing flow and transport processes in complex subsurface systems

  18. Hydraulic modeling and simulation of a System Division of Essential Service Water in a BWR plant with Flow master

    International Nuclear Information System (INIS)

    Vegazo Juzgado, L.; Rodriguez Garcia, G. M.; Mota Coloma, M.

    2012-01-01

    At the conclusion of the project can say that Flow master is a simulation tool that allows you to create your model from a library of components and obtain useful results from the point of view of the operation, engineering and maintenance. Compared to previous software from the point of view of use, can comment that Flow master is a tool which has an intuitive and user-friendly interaction between the user and the program thus facilitating the modeling of the system and definition of the components of same.

  19. Centrifuge modelling of granular flows

    Science.gov (United States)

    Cabrera, Miguel Angel; Wu, Wei

    2015-04-01

    A common characteristic of mass flows like debris flows, rock avalanches and mudflows is that gravity is their main driving force. Gravity defines the intensity and duration of the main interactions between particles and their surrounding media (particle-particle, particle-fluid, fluid-fluid). At the same time, gravity delimits the occurrence of phase separation, inverse segregation, and mass consolidation, among other phenomena. Therefore, in the understanding of the flow physics it is important to account for the scaling of gravity in scaled models. In this research, a centrifuge model is developed to model free surface granular flows down an incline at controlled gravity conditions. Gravity is controlled by the action of an induced inertial acceleration field resulting from the rotation of the model in a geotechnical centrifuge. The characteristics of the induced inertial acceleration field during flow are discussed and validated via experimental data. Flow heights, velocity fields, basal pressure and impact forces are measured for a range of channel inclinations and gravity conditions. Preliminary results enlighten the flow characteristics at variable gravity conditions and open a discussion on the simulation of large scale processes at a laboratory scale. Further analysis on the flow physics brings valuable information for the validation of granular flows rheology.

  20. Position paper -- Tank ventilation system design air flow rates

    International Nuclear Information System (INIS)

    Goolsby, G.K.

    1995-01-01

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems

  1. Construction and calibration of a groundwater-flow model to assess groundwater availability in the uppermost principal aquifer systems of the Williston Basin, United States and Canada

    Science.gov (United States)

    Davis, Kyle W.; Long, Andrew J.

    2018-05-31

    The U.S. Geological Survey developed a groundwater-flow model for the uppermost principal aquifer systems in the Williston Basin in parts of Montana, North Dakota, and South Dakota in the United States and parts of Manitoba and Saskatchewan in Canada as part of a detailed assessment of the groundwater availability in the area. The assessment was done because of the potential for increased demands and stresses on groundwater associated with large-scale energy development in the area. As part of this assessment, a three-dimensional groundwater-flow model was developed as a tool that can be used to simulate how the groundwater-flow system responds to changes in hydrologic stresses at a regional scale.The three-dimensional groundwater-flow model was developed using the U.S. Geological Survey’s numerical finite-difference groundwater model with the Newton-Rhapson solver, MODFLOW–NWT, to represent the glacial, lower Tertiary, and Upper Cretaceous aquifer systems for steady-state (mean) hydrological conditions for 1981‒2005 and for transient (temporally varying) conditions using a combination of a steady-state period for pre-1960 and transient periods for 1961‒2005. The numerical model framework was constructed based on existing and interpreted hydrogeologic and geospatial data and consisted of eight layers. Two layers were used to represent the glacial aquifer system in the model; layer 1 represented the upper one-half and layer 2 represented the lower one-half of the glacial aquifer system. Three layers were used to represent the lower Tertiary aquifer system in the model; layer 3 represented the upper Fort Union aquifer, layer 4 represented the middle Fort Union hydrogeologic unit, and layer 5 represented the lower Fort Union aquifer. Three layers were used to represent the Upper Cretaceous aquifer system in the model; layer 6 represented the upper Hell Creek hydrogeologic unit, layer 7 represented the lower Hell Creek aquifer, and layer 8 represented the Fox

  2. Modelling and measurement of wear particle flow in a dual oil filter system for condition monitoring

    DEFF Research Database (Denmark)

    Henneberg, Morten; Eriksen, René Lynge; Fich, Jens

    2016-01-01

    . The quantity of wear particles in gear oil is analysed with respect to system running conditions. It is shown that the model fits the data in terms of startup “particle burst” phenomenon, quasi-stationary conditions during operation, and clean-up filtration when placed out of operation. In order to establish...... boundary condition for particle burst phenomenon, the release of wear particles from a pleated mesh filter is measured in a test rig and included in the model. The findings show that a dual filter model, with startup phenomenon included, can describe trends in the wear particle flow observed in the gear...... particle generation is made possible by model parameter estimation and identification of an unintended lack of filter change. The model may also be used to optimise system and filtration performance, and to enable continuous condition monitoring....

  3. Mathematical modeling of flow-injection techniques and their applications for environmental monitoring

    International Nuclear Information System (INIS)

    Begum, N.N.; Ahmed, J.

    2006-01-01

    A classification of the existing mathematical models of flow-injection (FI) manifolds based on the main principles on which they are built, have been proposed. Numerous mathematical models of FI systems employing ideas from different scientific areas (e.g. mathematical statistics, chemical engineering, chromatography) have been developed so far. The models have been compared with respect to their predictive power, the complexity of their mathematical treatment, and the requirements for computation time when applied to single-line, multi-channel and conjugated two-line FI systems. It is concluded that the axially dispersed plug flow model deserves special attention because it offers an acceptable compromise between the conflicting requirements for maximal possible mathematical simplicity and maximal possible precision. Applicability of these existing flow-injection models to single-line, multi-channel and conjugated two-line systems for environmental monitoring have been discussed. (author)

  4. Flow pumping system for physiological waveforms.

    Science.gov (United States)

    Tsai, William; Savaş, Omer

    2010-02-01

    A pulsatile flow pumping system is developed to replicate flow waveforms with reasonable accuracy for experiments simulating physiological blood flows at numerous points in the body. The system divides the task of flow waveform generation between two pumps: a gear pump generates the mean component and a piston pump generates the oscillatory component. The system is driven by two programmable servo controllers. The frequency response of the system is used to characterize its operation. The system has been successfully tested in vascular flow experiments where sinusoidal, carotid, and coronary flow waveforms are replicated.

  5. Macroscopic balance equations for two-phase flow models

    International Nuclear Information System (INIS)

    Hughes, E.D.

    1979-01-01

    The macroscopic, or overall, balance equations of mass, momentum, and energy are derived for a two-fluid model of two-phase flows in complex geometries. These equations provide a base for investigating methods of incorporating improved analysis methods into computer programs, such as RETRAN, which are used for transient and steady-state thermal-hydraulic analyses of nuclear steam supply systems. The equations are derived in a very general manner so that three-dimensional, compressible flows can be analysed. The equations obtained supplement the various partial differential equation two-fluid models of two-phase flow which have recently appeared in the literature. The primary objective of the investigation is the macroscopic balance equations. (Auth.)

  6. TRAC-PF1 choked-flow model

    International Nuclear Information System (INIS)

    Sahota, M.S.; Lime, J.F.

    1983-01-01

    The two-phase, two-component choked-flow model implemented in the latest version of the Transient Reactor analysis Code (TRAC-PF1) was developed from first principles using the characteristic analysis approach. The subcooled choked-flow model in TRAC-PF1 is a modified form of the Burnell model. This paper discusses these choked-flow models and their implementation in TRAC-PF1. comparisons using the TRAC-PF1 choked-flow models are made with the Burnell model for subcooled flow and with the homogeneous-equilibrium model (HEM) for two-phae flow. These comparisons agree well under homogeneous conditions. Generally good agreements have been obtained between the TRAC-PF1 results from models using the choking criteria and those using a fine mesh (natural choking). Code-data comparisons between the separate-effects tests of the Marviken facility and the Edwards' blowdown experiment also are favorable. 10 figures

  7. Train flow chaos analysis based on an improved cellular automata model

    International Nuclear Information System (INIS)

    Meng, Xuelei; Xiang, Wanli; Jia, Limin; Xu, Jie

    2015-01-01

    To control the chaos in the railway traffic flow and offer valuable information for the dispatchers of the railway system, an improved cellular model is presented to detect and analyze the chaos in the traffic flow. We first introduce the working mechanism of moving block system, analyzing the train flow movement characteristics. Then we improve the cellular model on the evolution rules to adjust the train flow movement. We give the train operation steps from three cases: the trains running on a railway section, a train will arrive in a station and a train will departure from a station. We simulate 4 trains to run on a high speed section fixed with moving block system and record the distances between the neighbor trains and draw the Poincare section to analyze the chaos in the train operation. It is concluded that there is not only chaos but order in the train operation system with moving blocking system and they can interconvert to each other. The findings have the potential value in train dispatching system construction and offer supporting information for the daily dispatching work.

  8. Modeling of air flow through a narrow crack

    International Nuclear Information System (INIS)

    Trojek, T.; Cechak, T.; Moucka, L.; Fronka, A.

    2004-01-01

    Radon transport in dwellings is governed to a significant extent by pressure differences and properties of transport pathways. A model of air flow through narrow cracks was created in order to facilitate prediction of air velocity and air flow. Theoretical calculations, based on numerical solution of a system of differential equations, were compared with measurements carried out on a window crack. (P.A.)

  9. Bond graph modeling of centrifugal compression systems

    OpenAIRE

    Uddin, Nur; Gravdahl, Jan Tommy

    2015-01-01

    A novel approach to model unsteady fluid dynamics in a compressor network by using a bond graph is presented. The model is intended in particular for compressor control system development. First, we develop a bond graph model of a single compression system. Bond graph modeling offers a different perspective to previous work by modeling the compression system based on energy flow instead of fluid dynamics. Analyzing the bond graph model explains the energy flow during compressor surge. Two pri...

  10. Daily river flow prediction based on Two-Phase Constructive Fuzzy Systems Modeling: A case of hydrological - meteorological measurements asymmetry

    Science.gov (United States)

    Bou-Fakhreddine, Bassam; Mougharbel, Imad; Faye, Alain; Abou Chakra, Sara; Pollet, Yann

    2018-03-01

    Accurate daily river flow forecast is essential in many applications of water resources such as hydropower operation, agricultural planning and flood control. This paper presents a forecasting approach to deal with a newly addressed situation where hydrological data exist for a period longer than that of meteorological data (measurements asymmetry). In fact, one of the potential solutions to resolve measurements asymmetry issue is data re-sampling. It is a matter of either considering only the hydrological data or the balanced part of the hydro-meteorological data set during the forecasting process. However, the main disadvantage is that we may lose potentially relevant information from the left-out data. In this research, the key output is a Two-Phase Constructive Fuzzy inference hybrid model that is implemented over the non re-sampled data. The introduced modeling approach must be capable of exploiting the available data efficiently with higher prediction efficiency relative to Constructive Fuzzy model trained over re-sampled data set. The study was applied to Litani River in the Bekaa Valley - Lebanon by using 4 years of rainfall and 24 years of river flow daily measurements. A Constructive Fuzzy System Model (C-FSM) and a Two-Phase Constructive Fuzzy System Model (TPC-FSM) are trained. Upon validating, the second model has shown a primarily competitive performance and accuracy with the ability to preserve a higher day-to-day variability for 1, 3 and 6 days ahead. In fact, for the longest lead period, the C-FSM and TPC-FSM were able of explaining respectively 84.6% and 86.5% of the actual river flow variation. Overall, the results indicate that TPC-FSM model has provided a better tool to capture extreme flows in the process of streamflow prediction.

  11. Mathematical models for two-phase stratified pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Biberg, Dag

    2005-06-01

    The simultaneous transport of oil, gas and water in a single multiphase flow pipe line has for economical and practical reasons become common practice in the gas and oil fields operated by the oil industry. The optimal design and safe operation of these pipe lines require reliable estimates of liquid inventory, pressure drop and flow regime. Computer simulations of multiphase pipe flow have thus become an important design tool for field developments. Computer simulations yielding on-line monitoring and look ahead predictions are invaluable in day-to-day field management. Inaccurate predictions may have large consequences. The accuracy and reliability of multiphase pipe flow models are thus important issues. Simulating events in large pipelines or pipeline systems is relatively computer intensive. Pipe-lines carrying e.g. gas and liquefied gas (condensate) may cover distances of several hundred km in which transient phenomena may go on for months. The evaluation times associated with contemporary 3-D CFD models are thus not compatible with field applications. Multiphase flow lines are therefore normally simulated using specially dedicated 1-D models. The closure relations of multiphase pipe flow models are mainly based on lab data. The maximum pipe inner diameter, pressure and temperature in a multiphase pipe flow lab is limited to approximately 0.3 m, 90 bar and 60{sup o}C respectively. The corresponding field values are, however, much higher i.e.: 1 m, 1000 bar and 200{sup o}C respectively. Lab data does thus not cover the actual field conditions. Field predictions are consequently frequently based on model extrapolation. Applying field data or establishing more advanced labs will not solve this problem. It is in fact not practically possible to acquire sufficient data to cover all aspects of multiphase pipe flow. The parameter range involved is simply too large. Liquid levels and pressure drop in three-phase flow are e.g. determined by 13 dimensionless parameters

  12. Investigation of spiral blood flow in a model of arterial stenosis

    OpenAIRE

    Paul, M.C.; Larman, A.

    2009-01-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system [Stonebridge PA, Brophy CM. Spiral laminar flow in arteries? Lancet 1991; 338: 1360–1]. We investigate the effects of the spiral blood flow in a model of three-dimensional arterial stenosis with a 75% cross-sectional area reduction at the centre by means of computational fluid dynamics (CFD) techniques. The standard κ–ω model is employed for simulation of the blood flow for the...

  13. The General-Use Nodal Network Solver (GUNNS) Modeling Package for Space Vehicle Flow System Simulation

    Science.gov (United States)

    Harvey, Jason; Moore, Michael

    2013-01-01

    The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.

  14. Numerical simulation of groundwater flow in LILW Repository site:I. Groundwater flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Park, Koung Woo; Ji, Sung Hoon; Kim, Chun Soo; Kim, Kyoung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Ji Yeon [Korea Hydro and Nuclear Power Co. Ltd., Seoul (Korea, Republic of)

    2008-12-15

    Based on the site characterization works in a low and intermediate level waste (LILW) repository site, the numerical simulations for groundwater flow were carried out in order to understand the groundwater flow system of repository site. To accomplish the groundwater flow modeling in the repository site, the discrete fracture network (DFN) model was constructed using the characteristics of fracture zones and background fractures. At result, the total 10 different hydraulic conductivity(K) fields were obtained from DFN model stochastically and K distributions of constructed mesh were inputted into the 10 cases of groundwater flow simulations in FEFLOW. From the total 10 numerical simulation results, the simulated groundwater levels were strongly governed by topography and the groundwater fluxes were governed by locally existed high permeable fracture zones in repository depth. Especially, the groundwater table was predicted to have several tens meters below the groundwater table compared with the undisturbed condition around disposal silo after construction of underground facilities. After closure of disposal facilities, the groundwater level would be almost recovered within 1 year and have a tendency to keep a steady state of groundwater level in 2 year.

  15. A scenario analysis of future energy systems based on an energy flow model represented as functionals of technology options

    International Nuclear Information System (INIS)

    Kikuchi, Yasunori; Kimura, Seiichiro; Okamoto, Yoshitaka; Koyama, Michihisa

    2014-01-01

    Highlights: • Energy flow model was represented as the functionals of technology options. • Relationships among available technologies can be visualized by developed model. • Technology roadmapping can be incorporated into the model as technical scenario. • Combination of technologies can increase their contribution to the environment. - Abstract: The design of energy systems has become an issue all over the world. A single optimal system cannot be suggested because the availability of infrastructure and resources and the acceptability of the system should be discussed locally, involving all related stakeholders in the energy system. In particular, researchers and engineers of technologies related to energy systems should be able to perform the forecasting and roadmapping of future energy systems and indicate quantitative results of scenario analyses. We report an energy flow model developed for analysing scenarios of future Japanese energy systems implementing a variety of feasible technology options. The model was modularized and represented as functionals of appropriate technology options, which enables the aggregation and disaggregation of energy systems by defining functionals for single technologies, packages integrating multi-technologies, and mini-systems such as regions implementing industrial symbiosis. Based on the model, the combinations of technologies on both energy supply and demand sides can be addressed considering not only the societal scenarios such as resource prices, economic growth and population change but also the technical scenarios including the development and penetration of energy-related technologies such as distributed solid oxide fuel cells in residential sectors and new-generation vehicles, and the replacement and shift of current technologies such as heat pumps for air conditioning and centralized power generation. The developed model consists of two main modules; namely, a power generation dispatching module for the

  16. A two-layer model for buoyant inertial displacement flows in inclined pipes

    Science.gov (United States)

    Etrati, Ali; Frigaard, Ian A.

    2018-02-01

    We investigate the inertial flows found in buoyant miscible displacements using a two-layer model. From displacement flow experiments in inclined pipes, it has been observed that for significant ranges of Fr and Re cos β/Fr, a two-layer, stratified flow develops with the heavier fluid moving at the bottom of the pipe. Due to significant inertial effects, thin-film/lubrication models developed for laminar, viscous flows are not effective for predicting these flows. Here we develop a displacement model that addresses this shortcoming. The complete model for the displacement flow consists of mass and momentum equations for each fluid, resulting in a set of four non-linear equations. By integrating over each layer and eliminating the pressure gradient, we reduce the system to two equations for the area and mean velocity of the heavy fluid layer. The wall and interfacial stresses appear as source terms in the reduced system. The final system of equations is solved numerically using a robust, shock-capturing scheme. The equations are stabilized to remove non-physical instabilities. A linear stability analysis is able to predict the onset of instabilities at the interface and together with numerical solution, is used to study displacement effectiveness over different parametric regimes. Backflow and instability onset predictions are made for different viscosity ratios.

  17. Modelling of a cross flow evaporator for CSP application

    DEFF Research Database (Denmark)

    Sørensen, Kim; Franco, Alessandro; Pelagotti, Leonardo

    2016-01-01

    ) applications. Heat transfer and pressure drop prediction methods are an important tool for design and modelling of diabatic, two-phase, shell-side flow over a horizontal plain tubes bundle for a vertical up-flow evaporator. With the objective of developing a model for a specific type of cross flow evaporator...... the available correlations for the definition of two-phase flow heat transfer, void fraction and pressure drop in connection with the operation of steam generators, focuses attention on a comparison of the results obtained using several different models resulting by different combination of correlations......Heat exchangers consisting of bundles of horizontal plain tubes with boiling on the shell side are widely used in industrial and energy systems applications. A recent particular specific interest for the use of this special heat exchanger is in connection with Concentrated Solar Power (CSP...

  18. Representing Causality and Reasoning about Controllability of Multi-level Flow-Systems

    DEFF Research Database (Denmark)

    Heussen, Kai; Lind, Morten

    2010-01-01

    Safe operation of complex processes requires that operators maintain situational-awareness even in highly automated environments. Automatic reasoning can support operators as well as the automation system itself to react effectively and appropriately to disturbances. However, knowledge......-based reasoning about control situations remains a challenge due to the entanglement of process and control systems that co-establish the intended causal structure of a process. Due to this entanglement, reasoning about such systems depends on a coherent representation of control and process. This paper explains...... modeling of controlled processes with multilevelflow models and proposes a new framework for modeling causal influence in multilevel flow models on the basis of a flow/potential analogy. The results are illustrated on examples from the domain of electric power systems....

  19. Investigation on flow stability of supercritical water cooled systems

    International Nuclear Information System (INIS)

    Cheng, X.; Kuang, B.

    2006-01-01

    Research activities are ongoing worldwide to develop nuclear power plants with supercritical water cooled reactor (SCWR) with the purpose to achieve a high thermal efficiency and to improve their economical competitiveness. However, the strong variation of the thermal-physical properties of water in the vicinity of the pseudo-critical line results in challenging tasks in various fields, e.g. thermal-hydraulic design of a SCWR. One of the challenging tasks is to understand and to predict the dynamic behavior of supercritical water cooled systems. Although many thermal-hydraulic research activities were carried out worldwide in the past as well as in the near present, studies on dynamic behavior and flow stability of SC water cooled systems are scare. Due to the strong density variation, flow stability is expected to be one of the key items which need to be taken into account in the design of a SCWR. In the present work, the dynamic behavior and flow stability of SC water cooled systems are investigated using both numerical and theoretical approaches. For this purpose a new computer code SASC was developed, which can be applied to analysis the dynamic behavior of systems cooled by supercritical fluids. In addition, based on the assumptions of a simplified system, a theoretical model was derived for the prediction of the onset of flow instability. A comparison was made between the results obtained using the theoretical model and those from the SASC code. A good agreement was achieved. This gives the first evidence of the reliability of both the SASC code and the theoretical model

  20. Electromechanical Model of Blood Flow in Vessels

    Directory of Open Access Journals (Sweden)

    Ivo Cap

    2008-01-01

    Full Text Available The present paper deals with some theoretical derivations connected with very efficient method of solution of hydrodynamic problems of blood flow in human cardiovascular system. The electromechanical analogy of liquid flow in a tube and electromagnetic wave propagating along an electric transmission line is discussed. We have derived a detailed circuit-like model of an elementary section of the elastic tube with viscose Newtonian liquid. The analogy harmonic current electrical circuit has been designed

  1. Drain Back, Low Flow Solar Combi Systems

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Fan, Jianhua

    2014-01-01

    Drain Back systems with ETC collectors are tested and analyzed in a Danish - Chinese cooperation project. Experiences from early work at DTU, with drain back, low flow systems, was used to design two systems: 1) One laboratory system at DTU and 2) One demonstration system in a single family house...... in Sorö Denmark. Detailed monitoring and modelling of the system in the DTU lab is done to be able to generalize the results, to other climates and loads and to make design optimizations. The advantage with drain back, low flow systems, is that the system can be made more simple with less components...... and that the performance can be enhanced. A combination of the drain back- and system expansion vessel was tested successfully. Small initial problems with installation and proposals for design improvements to avoid these in practice are described in the paper. Installer education and training is an important step to have...

  2. Effect of Flow Rate Controller on Liquid Steel Flow in Continuous Casting Mold using Numerical Modeling

    Science.gov (United States)

    Gursoy, Kadir Ali; Yavuz, Mehmet Metin

    2014-11-01

    In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.

  3. Homogeneous non-equilibrium two-phase critical flow model

    International Nuclear Information System (INIS)

    Schroeder, J.J.; Vuxuan, N.

    1987-01-01

    An important aspect of nuclear and chemical reactor safety is the ability to predict the maximum or critical mass flow rate from a break or leak in a pipe system. At the beginning of such a blowdown, if the stagnation condition of the fluid is subcooled or slightly saturated thermodynamic non-equilibrium exists in the downstream, e.g. the fluid becomes superheated to a degree determined by the liquid pressure. A simplified non-equilibrium model, explained in this report, is valid for rapidly decreasing pressure along the flow path. It presumes that fluid has to be superheated by an amount governed by physical principles before it starts to flash into steam. The flow is assumed to be homogeneous, i.e. the steam and liquid velocities are equal. An adiabatic flow calculation mode (Fanno lines) is employed to evaluate the critical flow rate for long pipes. The model is found to satisfactorily describe critical flow tests. Good agreement is obtained with the large scale Marviken tests as well as with small scale experiments. (orig.)

  4. Development of a continuous flow model system for studies of biofilm formation on polymers and its application on PVC-C and PVC-P

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    could be harvested from three different combinations of flow velocity and residence time. Biofilm formation was followed by ATP analysis on test material (chlorinated polyvinylchloride, PVC-C), negative control (stainless steel) and positive control (plasticized polyvinylchloride, PVC-P) incubated......-C, while most of the very deviating values for PVC-P were between 2-13,000 pg ATP/cm2. During 43 weeks of operation of the continuous flow model systems the biofilm formation increased on all three materials, with biofilm formation on PVC-C at the same level as on the negative steel control (values of 75...... system. In this study, a continuous flow model system was developed, for investigating biofilm formation on polymers, simulating conditions in the distribution system. Commercially available pipes were used for exchangeable test pieces, which allowed for testing over prolonged time periods. Test pieces...

  5. Hierarchical and coupling model of factors influencing vessel traffic flow.

    Directory of Open Access Journals (Sweden)

    Zhao Liu

    Full Text Available Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.

  6. Mathematical Modelling of CSF Pulsatile Flow in Aqueduct Cerebri.

    Science.gov (United States)

    Czosnyka, Zofia; Kim, Dong-Joo; Balédent, Olivier; Schmidt, Eric A; Smielewski, Peter; Czosnyka, Marek

    2018-01-01

    The phase-contrast MRI technique permits the non-invasive assessment of CSF movements in cerebrospinal fluid cavities of the central nervous system. Of particular interest is pulsatile cerebrospinal fluid (CSF) flow through the aqueduct cerebri. It is allegedly increased in hydrocephalus, having potential diagnostic value, although not all scientific reports contain unequivocally positive conclusions. For the mathematical simulation of CSF flow, we used a computational model of cerebrospinal blood/fluid circulation designed by a former student as his PhD project. With this model, cerebral blood flow and CSF may be simulated in various vessels using a system of non-linear differential equations as time-varying signals. The amplitude of CSF flow seems to be positively related to the amplitude of pulse waveforms of intracranial pressure (ICP) in situations where mean ICP increases, such as during simulated infusion tests and following step increases of resistance to CSF outflow. An additional positive association between the pulse amplitude of ICP and CSF flow can be seen during simulated increases in the amplitude of arterial pulses (without changes in mean arterial pressure, MAP). The opposite effect can be observed during step increases in the resistance of the aqueduct cerebri and with decreasing elasticity of the system, where the CSF flow amplitude and the ICP pulse amplitude are related inversely. Vasodilatation caused by both gradual decreases in MAP and by increases in PaCO2 provokes an elevation in the observed amplitude of pulsatile CSF flow. Preliminary results indicate that the pulsations of CSF flow may carry information about both CSF-circulatory and cerebral vasogenic components. In most cases, the pulsations of CSF flow are positively related to the pulse amplitudes of both arterial pressure and ICP and to a degree of cerebrovascular dilatation.

  7. Mathematical model of two-phase flow in accelerator channel

    Directory of Open Access Journals (Sweden)

    О.Ф. Нікулін

    2010-01-01

    Full Text Available  The problem of  two-phase flow composed of energy-carrier phase (Newtonian liquid and solid fine-dispersed phase (particles in counter jet mill accelerator channel is considered. The mathematical model bases goes on the supposition that the phases interact with each other like independent substances by means of aerodynamics’ forces in conditions of adiabatic flow. The mathematical model in the form of system of differential equations of order 11 is represented. Derivations of equations by base physical principles for cross-section-averaged quantity are produced. The mathematical model can be used for estimation of any kinematic and thermodynamic flow characteristics for purposely parameters optimization problem solving and transfer functions determination, that take place in  counter jet mill accelerator channel design.

  8. Multiphase flow modelling of furnace tapholes

    OpenAIRE

    Reynolds, Quinn G.; Erwee, Markus W.

    2017-01-01

    Pyrometallurgical furnaces of many varieties make use of tapholes in order to facilitate the removal of molten process material from inside the vessel. Correct understanding and operation of the taphole is essential for optimal performance of such furnaces. The present work makes use of computational fluid dynamics models generated using the OpenFOAM® framework in order to study flow behaviour in the taphole system. Single-phase large-eddy simulation models are used to quantify the discharge ...

  9. Improving National Water Modeling: An Intercomparison of two High-Resolution, Continental Scale Models, CONUS-ParFlow and the National Water Model

    Science.gov (United States)

    Tijerina, D.; Gochis, D.; Condon, L. E.; Maxwell, R. M.

    2017-12-01

    Development of integrated hydrology modeling systems that couple atmospheric, land surface, and subsurface flow is growing trend in hydrologic modeling. Using an integrated modeling framework, subsurface hydrologic processes, such as lateral flow and soil moisture redistribution, are represented in a single cohesive framework with surface processes like overland flow and evapotranspiration. There is a need for these more intricate models in comprehensive hydrologic forecasting and water management over large spatial areas, specifically the Continental US (CONUS). Currently, two high-resolution, coupled hydrologic modeling applications have been developed for this domain: CONUS-ParFlow built using the integrated hydrologic model ParFlow and the National Water Model that uses the NCAR Weather Research and Forecasting hydrological extension package (WRF-Hydro). Both ParFlow and WRF-Hydro include land surface models, overland flow, and take advantage of parallelization and high-performance computing (HPC) capabilities; however, they have different approaches to overland subsurface flow and groundwater-surface water interactions. Accurately representing large domains remains a challenge considering the difficult task of representing complex hydrologic processes, computational expense, and extensive data needs; both models have accomplished this, but have differences in approach and continue to be difficult to validate. A further exploration of effective methodology to accurately represent large-scale hydrology with integrated models is needed to advance this growing field. Here we compare the outputs of CONUS-ParFlow and the National Water Model to each other and with observations to study the performance of hyper-resolution models over large domains. Models were compared over a range of scales for major watersheds within the CONUS with a specific focus on the Mississippi, Ohio, and Colorado River basins. We use a novel set of approaches and analysis for this comparison

  10. Assessing the Hydrogeomorphic Effects of Environmental Flows using Hydrodynamic Modeling.

    Science.gov (United States)

    Gregory, Angela; Morrison, Ryan R; Stone, Mark

    2018-04-13

    Water managers are increasingly using environmental flows (e-flows) as a tool to improve ecological conditions downstream from impoundments. Recent studies have called for e-flow approaches that explicitly consider impacts on hydrogeomorphic processes when developing management alternatives. Process-based approaches are particularly relevant in river systems that have been highly modified and where water supplies are over allocated. One-dimensional (1D) and two-dimensional (2D) hydrodynamic models can be used to resolve hydrogeomorphic processes at different spatial and temporal scales to support the development, testing, and refinement of e-flow hypotheses. Thus, the objective of this paper is to demonstrate the use of hydrodynamic models as a tool for assisting stakeholders in targeting and assessing environmental flows within a decision-making framework. We present a case study of e-flows on the Rio Chama in northern New Mexico, USA, where 1D and 2D hydrodynamic modeling was used within a collaborative process to implement an e-flow experiment. A specific goal of the e-flow process was to improve spawning habitat for brown trout by flushing fine sediments from gravel features. The results revealed that the 2D hydrodynamic model provided much greater insight with respect to hydrodynamic and sediment transport processes, which led to a reduction in the recommended e-flow discharge. The results suggest that 2D hydrodynamic models can be useful tools for improving process understanding, developing e-flow recommendations, and supporting adaptive management even when limited or no data are available for model calibration and validation.

  11. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit. 2. Flow characteristics of bubbly countercurrent flow

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu.

    1997-01-01

    The authors have developed a measurement system which is composed of an ultrasonic velocity profile monitor and a video data processing unit in order to clarify its multi-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system was applied for bubbly countercurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. Next, turbulence intensity in a continuous liquid phase was defined as a standard deviation of velocity fluctuation, and the two-phase multiplier profile of turbulence intensity in the channel was clarified as a ratio of the standard deviation of flow fluctuation in a bubbly countercurrent flow to that in a water single phase flow. Finally, the distribution parameter and drift velocity used in the drift flux model for bubbly countercurrent flows were calculated from the obtained velocity profiles of both phases and void fraction profile, and were compared with the correlation proposed for bubbly countercurrent flows. (author)

  12. Groundwater flow system stability in shield settings a multi-disciplinary approach

    International Nuclear Information System (INIS)

    Jensen, M.R.; Goodwin, B.W.

    2004-01-01

    Within the Deep Geologic Repository Technology Program (DGRTP) several Geoscience activities are focused on advancing the understanding of groundwater flow system evolution and geochemical stability in a Shield setting as affected by long-term climate change. A key aspect is developing confidence in predictions of groundwater flow patterns and residence times as they relate to the safety of a Deep Geologic Repository for used nuclear fuel waste. A specific focus in this regard has been placed on constraining redox stability and groundwater flow system dynamics during the Pleistocene. Attempts are being made to achieve this through a coordinated multi-disciplinary approach intent on; i) demonstrating coincidence between independent geo-scientific data; ii) improving the traceability of geo-scientific data and its interpretation within a conceptual descriptive model(s); iii) improving upon methods to assess and demonstrate robustness in flow domain prediction(s) given inherent flow domain uncertainties (i.e. spatial chemical/physical property distributions; boundary conditions) in time and space; and iv) improving awareness amongst geo-scientists as to the utility various geo-scientific data in supporting a repository safety case. Coordinated by the DGRTP, elements of this program include the development of a climate driven Laurentide ice-sheet model to constrain the understanding of time rate of change in boundary conditions most affecting the groundwater flow domain and its evolution. Further work has involved supporting WRA Paleo-hydrogeologic studies in which constrained thermodynamic analyses coupled with field studies to characterize the paragenesis of fracture infill mineralogy are providing evidence to premise understandings of possible depth of penetration by oxygenated glacial recharge. In parallel. numerical simulations have been undertaken to illustrate aspect of groundwater flow system stability and evolution in a Shield setting. Such simulations

  13. Computational Modeling of Flow Control Systems for Aerospace Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. proposes to develop computational methods for designing active flow control systems on aerospace vehicles with the primary objective of...

  14. Continuous traffic flow modeling of driver support systems in multiclass traffic with inter-vehicle communication and drivers in the loop

    NARCIS (Netherlands)

    Tampere, C.M.J.; Hoogendoorn, S.P.; Arem, B. van

    2009-01-01

    This paper presents a continuous traffic-flow model for the explorative analysis of advanced driver-assistance systems (ADASs). Such systems use technology (sensors and intervehicle communication) to support the task of the driver, who retains full control over the vehicle. Based on a review of

  15. A pulsatile flow model for in vitro quantitative evaluation of prosthetic valve regurgitation

    Directory of Open Access Journals (Sweden)

    S. Giuliatti

    2000-03-01

    Full Text Available A pulsatile pressure-flow model was developed for in vitro quantitative color Doppler flow mapping studies of valvular regurgitation. The flow through the system was generated by a piston which was driven by stepper motors controlled by a computer. The piston was connected to acrylic chambers designed to simulate "ventricular" and "atrial" heart chambers. Inside the "ventricular" chamber, a prosthetic heart valve was placed at the inflow connection with the "atrial" chamber while another prosthetic valve was positioned at the outflow connection with flexible tubes, elastic balloons and a reservoir arranged to mimic the peripheral circulation. The flow model was filled with a 0.25% corn starch/water suspension to improve Doppler imaging. A continuous flow pump transferred the liquid from the peripheral reservoir to another one connected to the "atrial" chamber. The dimensions of the flow model were designed to permit adequate imaging by Doppler echocardiography. Acoustic windows allowed placement of transducers distal and perpendicular to the valves, so that the ultrasound beam could be positioned parallel to the valvular flow. Strain-gauge and electromagnetic transducers were used for measurements of pressure and flow in different segments of the system. The flow model was also designed to fit different sizes and types of prosthetic valves. This pulsatile flow model was able to generate pressure and flow in the physiological human range, with independent adjustment of pulse duration and rate as well as of stroke volume. This model mimics flow profiles observed in patients with regurgitant prosthetic valves.

  16. An integrated Riverine Environmental Flow Decision Support System (REFDSS) to evaluate the ecological effects of alternative flow scenarios on river ecosystems

    Science.gov (United States)

    Maloney, Kelly O.; Talbert, Colin B.; Cole, Jeffrey C.; Galbraith, Heather S.; Blakeslee, Carrie J.; Hanson, Leanne; Holmquist-Johnson, Christopher L.

    2015-01-01

    In regulated rivers, managers must evaluate competing flow release scenarios that attempt to balance both human and natural needs. Meeting these natural flow needs is complex due to the myriad of interacting physical and hydrological factors that affect ecosystems. Tools that synthesize the voluminous scientific data and models on these factors will facilitate management of these systems. Here, we present the Riverine Environmental Flow Decision Support System (REFDSS), a tool that enables evaluation of competing flow scenarios and other variables on instream habitat. We developed a REFDSS for the Upper Delaware River, USA, a system that is regulated by three headwater reservoirs. This version of the REFDSS has the ability to integrate any set of spatially explicit data and synthesizes modeled discharge for three competing management scenarios, flow-specific 2-D hydrodynamic modeled estimates of local hydrologic conditions (e.g., depth, velocity, shear stress, etc.) at a fine pixel-scale (1 m2), and habitat suitability criteria (HSC) for a variety of taxa. It contains all individual model outputs, computationally integrates these data, and outputs the amount of potentially available habitat for a suite of species of interest under each flow release scenario. Users have the flexibility to change the time period of interest and vary the HSC. The REFDSS was developed to enable side-by-side evaluation of different flow management scenarios and their effects on potential habitat availability, allowing managers to make informed decisions on the best flow scenarios. An exercise comparing two alternative flow scenarios to a baseline scenario for several key species is presented. The Upper Delaware REFDSS was robust to minor changes in HSC (± 10 %). The general REFDSS platform was developed as a user-friendly Windows desktop application that was designed to include other potential parameters of interest (e.g., temperature) and for transferability to other riverine systems.

  17. Development of a risk monitoring system for nuclear power plants based on GO-FLOW methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun, E-mail: youngjun51@hotmail.com [College of Nuclear Science and Technology, Harbin Engineering University, No. 145 Nantong Street, Nangang District, Harbin 150001 (China); Yang, Ming, E-mail: yangming@hrbeu.edu.cn [College of Nuclear Science and Technology, Harbin Engineering University, No. 145 Nantong Street, Nangang District, Harbin 150001 (China); Yoshikawa, Hidekazu, E-mail: yosikawa@kib.biglobe.ne.jp [Symbio Community Forum, Kyoto (Japan); Yang, Fangqing, E-mail: yfq613@163.com [China Nuclear Power Technology Research Institute, 518000 (China)

    2014-10-15

    Highlights: • A method for developing Living PSA is proposed. • Living PSA is easy to update with online modification to system model file. • A risk monitoring system is designed and developed using the GO-FLOW. • The risk monitoring system is useful for plant daily operation risk management. - Abstract: The paper presents a risk monitoring system developed based on GO-FLOW methodology which is a success-oriented system reliability modeling technique for phased mission as well as time-dependent problems analysis. The risk monitoring system is designed to receive information on plant configuration changes either from equipment failures, operator interventions, or maintenance activities, then update the Living PSA model with online modification to the system GO-FLOW model file which contains all the functional modes of equipment represented by a proposed generalized GO-FLOW modeling structure, and display risk values graphically. The risk monitoring system can be used to assist safety engineers and plant operators in their maintenance management and daily operation risk management at NPPs.

  18. Development of a risk monitoring system for nuclear power plants based on GO-FLOW methodology

    International Nuclear Information System (INIS)

    Yang, Jun; Yang, Ming; Yoshikawa, Hidekazu; Yang, Fangqing

    2014-01-01

    Highlights: • A method for developing Living PSA is proposed. • Living PSA is easy to update with online modification to system model file. • A risk monitoring system is designed and developed using the GO-FLOW. • The risk monitoring system is useful for plant daily operation risk management. - Abstract: The paper presents a risk monitoring system developed based on GO-FLOW methodology which is a success-oriented system reliability modeling technique for phased mission as well as time-dependent problems analysis. The risk monitoring system is designed to receive information on plant configuration changes either from equipment failures, operator interventions, or maintenance activities, then update the Living PSA model with online modification to the system GO-FLOW model file which contains all the functional modes of equipment represented by a proposed generalized GO-FLOW modeling structure, and display risk values graphically. The risk monitoring system can be used to assist safety engineers and plant operators in their maintenance management and daily operation risk management at NPPs

  19. Difficulties in modeling dispersed-flow film boiling

    International Nuclear Information System (INIS)

    Andreani, M.; Yadigaroglu, G.

    1991-01-01

    Dispersed Flow Film Boiling (DFFB) is characterized by important departures from thermal and velocity equilibrium that make it suitable for modeling with two-fluid models. The fundamental limitations and difficulties imposed by the one-dimensional nature of these models are extensively discussed. The validity of the assumptions and empirical laws used to close the system of conservation equations is critically reviewed, in light of the multidimensional aspects of the problem. Modifications that could improve the physics of the models are identified. (orig.) [de

  20. Stochastic models for turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

  1. Modelling of convective heat and mass transfer in rotating flows

    CERN Document Server

    Shevchuk, Igor V

    2016-01-01

     This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analyt...

  2. Symposium on unsaturated flow and transport modeling

    International Nuclear Information System (INIS)

    Arnold, E.M.; Gee, G.W.; Nelson, R.W.

    1982-09-01

    This document records the proceedings of a symposium on flow and transport processes in partially saturated groundwater systems, conducted at the Battelle Seattle Research Center on March 22-24, 1982. The symposium was sponsored by the US Nuclear Regulatory Commission for the purpose of assessing the state-of-the-art of flow and transport modeling for use in licensing low-level nuclear waste repositories in partially saturated zones. The first day of the symposium centered around research in flow through partially saturated systems. Papers were presented with the opportunity for questions following each presentation. In addition, after all the talks, a formal panel discussion was held during which written questions were addressed to the panel of the days speakers. The second day of the Symposium was devoted to solute and contaminant transport in partially saturated media in an identical format. Individual papers are abstracted

  3. Symposium on unsaturated flow and transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, E.M.; Gee, G.W.; Nelson, R.W. (eds.)

    1982-09-01

    This document records the proceedings of a symposium on flow and transport processes in partially saturated groundwater systems, conducted at the Battelle Seattle Research Center on March 22-24, 1982. The symposium was sponsored by the US Nuclear Regulatory Commission for the purpose of assessing the state-of-the-art of flow and transport modeling for use in licensing low-level nuclear waste repositories in partially saturated zones. The first day of the symposium centered around research in flow through partially saturated systems. Papers were presented with the opportunity for questions following each presentation. In addition, after all the talks, a formal panel discussion was held during which written questions were addressed to the panel of the days speakers. The second day of the Symposium was devoted to solute and contaminant transport in partially saturated media in an identical format. Individual papers are abstracted.

  4. Core flow control system for field applications; Sistema de controle de core-flow

    Energy Technology Data Exchange (ETDEWEB)

    Granzotto, Desiree G.; Adachi, Vanessa Y.; Bannwart, Antonio C.; Moura, Luiz F.M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Sassim, Natache S.D.A. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro de Estudo do Petroleo (CEPETRO); Carvalho, Carlos H.M. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The significant heavy oil reserves worldwide and the presently high crude oil prices make it essential the development of technologies for heavy oil production and transportation. Heavy oils, with their inherent features of high viscosity (100- 10,000 cP) and density (below 20 deg API) require specific techniques to make it viable their flow in pipes at high flow rates. One of the simplest methods, which do not require use of heat or diluents, is provided by oil-water annular flow (core-flow). Among the still unsolved issues regarding core-flow is the two-phase flow control in order to avoid abrupt increases in the pressure drop due to the possible occurrence of bad water-lubricated points, and thus obtain a safe operation of the line at the lowest possible water-oil ratio. This work presents results of core flow tests which allow designing a control system for the inlet pressure of the line, by actuating on the water flow rate at a fixed oil flow rate. With the circuit model and the specified controller, simulations can be done to assess its performance. The experiments were run at core-flow circuit of LABPETRO-UNICAMP. (author)

  5. Proposal for operator's mental model using the concept of multilevel flow modeling

    International Nuclear Information System (INIS)

    Yoshimura, Seiichi; Takano, Kenichi; Sasou, Kunihide

    1995-01-01

    It is necessary to analyze an operator's thinking process and a operator team's intension forming process for preventing human errors in a highly advanced huge system like a nuclear power plant. Central Research Institute of Electric Power Industry is promoting a research project to establish human error prevention countermeasures by modeling the thinking and intension forming process. The important is the future prediction and the cause identification when abnormal situations occur in a nuclear power plant. The concept of Multilevel Flow Modeling (MFM) seems to be effective as an operator's mental model which performs the future prediction and the cause identification. MFM is a concept which qualitatively describes the plant functions by energy and mass flows and also describes the plant status by breaking down the targets in a hierarchical manner which a plant should achieve. In this paper, an operator's mental model using the concept of MFM was proposed and a nuclear power plant diagnosis support system using MFM was developed. The system evaluation test by personnel who have operational experience in nuclear power plants revealed that MFM was superior in the future prediction and the cause identification to a traditional nuclear power plant status display system which used mimics and trends. MFM proved to be useful as an operator's mental model by the test. (author)

  6. MODELING AND ANALYSIS OF UNSTEADY FLOW BEHAVIOR IN DEEPWATER CONTROLLED MUD-CAP DRILLING

    Directory of Open Access Journals (Sweden)

    Jiwei Li

    Full Text Available Abstract A new mathematical model was developed in this study to simulate the unsteady flow in controlled mud-cap drilling systems. The model can predict the time-dependent flow inside the drill string and annulus after a circulation break. This model consists of the continuity and momentum equations solved using the explicit Euler method. The model considers both Newtonian and non-Newtonian fluids flowing inside the drill string and annular space. The model predicts the transient flow velocity of mud, the equilibrium time, and the change in the bottom hole pressure (BHP during the unsteady flow. The model was verified using data from U-tube flow experiments reported in the literature. The result shows that the model is accurate, with a maximum average error of 3.56% for the velocity prediction. Together with the measured data, the computed transient flow behavior can be used to better detect well kick and a loss of circulation after the mud pump is shut down. The model sensitivity analysis show that the water depth, mud density and drill string size are the three major factors affecting the fluctuation of the BHP after a circulation break. These factors should be carefully examined in well design and drilling operations to minimize BHP fluctuation and well kick. This study provides the fundamentals for designing a safe system in controlled mud-cap drilling operati.

  7. On conditions and parameters important to model sensitivity for unsaturated flow through layered, fractured tuff

    International Nuclear Information System (INIS)

    Prindle, R.W.; Hopkins, P.L.

    1990-10-01

    The Hydrologic Code Intercomparison Project (HYDROCOIN) was formed to evaluate hydrogeologic models and computer codes and their use in performance assessment for high-level radioactive-waste repositories. This report describes the results of a study for HYDROCOIN of model sensitivity for isothermal, unsaturated flow through layered, fractured tuffs. We investigated both the types of flow behavior that dominate the performance measures and the conditions and model parameters that control flow behavior. We also examined the effect of different conceptual models and modeling approaches on our understanding of system behavior. The analyses included single- and multiple-parameter variations about base cases in one-dimensional steady and transient flow and in two-dimensional steady flow. The flow behavior is complex even for the highly simplified and constrained system modeled here. The response of the performance measures is both nonlinear and nonmonotonic. System behavior is dominated by abrupt transitions from matrix to fracture flow and by lateral diversion of flow. The observed behaviors are strongly influenced by the imposed boundary conditions and model constraints. Applied flux plays a critical role in determining the flow type but interacts strongly with the composite-conductivity curves of individual hydrologic units and with the stratigraphy. One-dimensional modeling yields conservative estimates of distributions of groundwater travel time only under very limited conditions. This study demonstrates that it is wrong to equate the shortest possible water-travel path with the fastest path from the repository to the water table. 20 refs., 234 figs., 10 tabs

  8. Modeling heterogeneous unsaturated porous media flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Robey, T.H.

    1994-01-01

    Geologic systems are inherently heterogeneous and this heterogeneity can have a significant impact on unsaturated flow through porous media. Most previous efforts to model groundwater flow through Yucca Mountain have used stratigraphic units with homogeneous properties. However, modeling heterogeneous porous and fractured tuff in a more realistic manner requires numerical methods for generating heterogeneous simulations of the media, scaling of material properties from core scale to computational scale, and flow modeling that allows channeling. The Yucca Mountain test case of the INTRAVAL project is used to test the numerical approaches. Geostatistics is used to generate more realistic representations of the stratigraphic units and heterogeneity within units is generated using sampling from property distributions. Scaling problems are reduced using an adaptive grid that minimizes heterogeneity within each flow element. A flow code based on the dual mixed-finite-element method that allows for heterogeneity and channeling is employed. In the Yucca Mountain test case, the simulated volumetric water contents matched the measured values at drill hole USW UZ-16 except in the nonwelded portion of Prow Pass

  9. Flows of dioxins and furans in coastal food webs: inverse modeling, sensitivity analysis, and applications of linear system theory.

    Science.gov (United States)

    Saloranta, Tuomo M; Andersen, Tom; Naes, Kristoffer

    2006-01-01

    Rate constant bioaccumulation models are applied to simulate the flow of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the coastal marine food web of Frierfjorden, a contaminated fjord in southern Norway. We apply two different ways to parameterize the rate constants in the model, global sensitivity analysis of the models using Extended Fourier Amplitude Sensitivity Test (Extended FAST) method, as well as results from general linear system theory, in order to obtain a more thorough insight to the system's behavior and to the flow pathways of the PCDD/Fs. We calibrate our models against observed body concentrations of PCDD/Fs in the food web of Frierfjorden. Differences between the predictions from the two models (using the same forcing and parameter values) are of the same magnitude as their individual deviations from observations, and the models can be said to perform about equally well in our case. Sensitivity analysis indicates that the success or failure of the models in predicting the PCDD/F concentrations in the food web organisms highly depends on the adequate estimation of the truly dissolved concentrations in water and sediment pore water. We discuss the pros and cons of such models in understanding and estimating the present and future concentrations and bioaccumulation of persistent organic pollutants in aquatic food webs.

  10. A numerical study of boiling flow instability of a reactor thermosyphon system

    International Nuclear Information System (INIS)

    Nayak, A.K.; Lathouwers, D.; Hagen, T.H.J.J. van der; Schrauwen, Frans; Molenaar, Peter; Rogers, Andrew

    2006-01-01

    A numerical study has been carried out to investigate the boiling flow instability of a reactor thermosyphon system. The numerical model solves the conservation equations of mass, momentum and energy applicable to a two-fluid and three-field steam-water system using a finite difference technique. The computer code MONA was used for this purpose. The code was applied to the thermosyphon system of an EO (ethylene oxide) chemical reactor in which the heat released by a catalytic reaction is carried by boiling water under natural circulation conditions. The steady-state characteristics of the reactor thermosyphon system were predicted using the MONA code and conventional two-phase flow models in order to understand the model applicability for this type of thermosyphon system. The two-fluid model was found to predict the flow closest to the measured value of the plant. The stability behaviour of the thermosyphon system was investigated for a wide range of operating conditions. The effects of power, subcooling, riser length and riser diameter on the boiling flow instability were determined. The system was found to be unstable at higher power conditions which is typical for a Type II instability. However, with an increase in riser diameter, oscillations at low power were observed as well. These are classified as Type I instabilities. Stability maps were predicted for both Type I and Type II instabilities. Methods of improving the stability of the system are discussed

  11. A numerical study of boiling flow instability of a reactor thermosyphon system

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, A.K.; Lathouwers, D.; Hagen, T.H.J.J. van der [Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Schrauwen, Frans; Molenaar, Peter; Rogers, Andrew [Shell Research and Technology Centre, Badhuisweg 3, 1031 CM Amsterdam (Netherlands)

    2006-04-01

    A numerical study has been carried out to investigate the boiling flow instability of a reactor thermosyphon system. The numerical model solves the conservation equations of mass, momentum and energy applicable to a two-fluid and three-field steam-water system using a finite difference technique. The computer code MONA was used for this purpose. The code was applied to the thermosyphon system of an EO (ethylene oxide) chemical reactor in which the heat released by a catalytic reaction is carried by boiling water under natural circulation conditions. The steady-state characteristics of the reactor thermosyphon system were predicted using the MONA code and conventional two-phase flow models in order to understand the model applicability for this type of thermosyphon system. The two-fluid model was found to predict the flow closest to the measured value of the plant. The stability behaviour of the thermosyphon system was investigated for a wide range of operating conditions. The effects of power, subcooling, riser length and riser diameter on the boiling flow instability were determined. The system was found to be unstable at higher power conditions which is typical for a Type II instability. However, with an increase in riser diameter, oscillations at low power were observed as well. These are classified as Type I instabilities. Stability maps were predicted for both Type I and Type II instabilities. Methods of improving the stability of the system are discussed. [Author].

  12. Mathematical Modeling of Flow Characteristics in the Embryonic Chick Heart

    DEFF Research Database (Denmark)

    Heebøll-Christensen, Jesper

    This ph.d. thesis contains the mathematical modeling of fluid dynamical phenomena in the tubular embryonic chick heart at HH-stages 10, 12, 14, and 16. The models are constructed by application of energy bond technique and involve the elasticity of heart walls with elliptic cross-section, Womersley...... modified inertia, and resistance due to friction and curvature of the multilayered tubular heart. Through the modeling, flow conditions in the embryonic heart are characterized. The models suggest that eccentric rather than concentric deformation of the beating heart is optimal for mean flows induced...... the models are not conclusive on this point. In addition the Liebau effect is investigated in a simpler system containing two elastic tubes joined to form a liquid filled ring, with a compression pump at an asymmetric location. Through comparison to other reports the system validates model construction...

  13. Modeling of brittle-viscous flow using discrete particles

    Science.gov (United States)

    Thordén Haug, Øystein; Barabasch, Jessica; Virgo, Simon; Souche, Alban; Galland, Olivier; Mair, Karen; Abe, Steffen; Urai, Janos L.

    2017-04-01

    range of viscosities. For identical pressure and strain rate, an order of magnitude range in viscosity can be investigated. The extensive material testing indicates that DEM particles interacting by a combination of elastic repulsion and dashpots can be used to model viscous flows. This allows us to exploit the fracturing capabilities of the discrete element methods and study systems that involve both viscous flow and brittle fracturing. However, the small viscosity range achievable using this approach does constraint the applicability for systems where larger viscosity ranges are required, such as folding of viscous layers of contrasting viscosities. References: Abe, S., Place, D., & Mora, P. (2004). A parallel implementation of the lattice solid model for the simulation of rock mechanics and earthquake dynamics. PAGEOPH, 161(11-12), 2265-2277. http://doi.org/10.1007/s00024-004-2562-x Abe, S., and J. L. Urai (2012), Discrete element modeling of boudinage: Insights on rock rheology, matrix flow, and evolution of geometry, JGR., 117, B01407, doi:10.1029/2011JB00855

  14. On load flow control in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Herbig, Arnim

    2000-01-01

    This dissertation deals with the control of active power flow, or load flow in electric power systems. During the last few years, interest in the possibilities to control the active power flows in transmission systems has increased significantly. There is a number of reasons for this, coming both from the application side - that is, from power system operations - and from the technological side. where advances in power electronics and related technologies have made new system components available. Load flow control is by nature a multi-input multi-output problem, since any change of load flow in one line will be complemented by changes in other lines. Strong cross-coupling between controllable components is to be expected, and the possibility of adverse interactions between these components cannot be rejected straightaway. Interactions with dynamic phenomena in the power system are also a source of concern. Three controllable components are investigated in this thesis, namely the controlled series capacitor (CSC), the phase angle regulator (PAR), and the unified power flow controller (UPFC). Properties and characteristics of these devices axe investigated and discussed. A simple control strategy is proposed. This strategy is then analyzed extensively. Mathematical methods and physical knowledge about the pertinent phenomena are combined, and it is shown that this control strategy can be used for a fairly general class of devices. Computer simulations of the controlled system provide insight into the system behavior in a system of reasonable size. The robustness and stability of the control system are discussed as are its limits. Further, the behavior of the control strategy in a system where the modeling allows for dynamic phenomena are investigated with computer simulations. It is discussed under which circumstances the control action has beneficial or detrimental effect on the system dynamics. Finally, a graphical approach for analyzing the effect of controllers

  15. Comparisons of complex network based models and real train flow model to analyze Chinese railway vulnerability

    International Nuclear Information System (INIS)

    Ouyang, Min; Zhao, Lijing; Hong, Liu; Pan, Zhezhe

    2014-01-01

    Recently numerous studies have applied complex network based models to study the performance and vulnerability of infrastructure systems under various types of attacks and hazards. But how effective are these models to capture their real performance response is still a question worthy of research. Taking the Chinese railway system as an example, this paper selects three typical complex network based models, including purely topological model (PTM), purely shortest path model (PSPM), and weight (link length) based shortest path model (WBSPM), to analyze railway accessibility and flow-based vulnerability and compare their results with those from the real train flow model (RTFM). The results show that the WBSPM can produce the train routines with 83% stations and 77% railway links identical to the real routines and can approach the RTFM the best for railway vulnerability under both single and multiple component failures. The correlation coefficient for accessibility vulnerability from WBSPM and RTFM under single station failures is 0.96 while it is 0.92 for flow-based vulnerability; under multiple station failures, where each station has the same failure probability fp, the WBSPM can produce almost identical vulnerability results with those from the RTFM under almost all failures scenarios when fp is larger than 0.62 for accessibility vulnerability and 0.86 for flow-based vulnerability

  16. An introduction to multilevel flow modeling

    DEFF Research Database (Denmark)

    Lind, Morten

    2011-01-01

    Multilevel Flow Modeling (MFM) is a methodology for functional modeling of industrial processes on several interconnected levels of means-end and part-whole abstractions. The basic idea of MFM is to represent an industrial plant as a system which provides the means required to serve purposes in i...... in detail by a water mill example. The overall reasoning capabilities of MFM and its basis in cause-effect relations are also explained. The appendix contains an overview of MFM concepts and their definitions....

  17. Modeling and Control of a Manufacturing Flow Line using Partial Differential Equations

    NARCIS (Netherlands)

    Berg, van den R.A.; Lefeber, A.A.J.; Rooda, J.E.

    2008-01-01

    This brief deals with a control framework for manufacturing flow lines. For this framework, a continuous approximation model of the manufacturing system is required, which is computationally feasible and able to accurately describe the dynamics of the system (both throughput and flow time). Often

  18. Pumping power of nanofluids in a flowing system

    International Nuclear Information System (INIS)

    Routbort, Jules L.; Singh, Dileep; Timofeeva, Elena V.; Yu, Wenhua; France, David M.

    2011-01-01

    Nanofluids have the potential to increase thermal conductivities and heat transfer coefficients compared to their base fluids. However, the addition of nanoparticles to a fluid also increases the viscosity and therefore increases the power required to pump the fluid through the system. When the benefit of the increased heat transfer is larger than the penalty of the increased pumping power, the nanofluid has the potential for commercial viability. The pumping power for nanofluids has been considered previously for flow in straight tubes. In this study, the pumping power was measured for nanofluids flowing in a complete system including straight tubing, elbows, and expansions. The objective was to determine the significance of two-phase flow effects on system performance. Two types of nanofluids were used in this study: a water-based nanofluid containing 2.0–8.0 vol% of 40-nm alumina nanoparticles, and a 50/50 ethylene glycol/water mixture-based nanofluid containing 2.2 vol% of 29-nm SiC nanoparticles. All experiments were performed in the turbulent flow region in the entire test system simulating features typically found in heat exchanger systems. Experimental results were compared to the pumping power calculated from a mathematical model of the system to evaluate the system effects. The pumping power results were also combined with the heat transfer enhancement to evaluate the viability of the two nanofluids.

  19. Spatially-Distributed Stream Flow and Nutrient Dynamics Simulations Using the Component-Based AgroEcoSystem-Watershed (AgES-W) Model

    Science.gov (United States)

    Ascough, J. C.; David, O.; Heathman, G. C.; Smith, D. R.; Green, T. R.; Krause, P.; Kipka, H.; Fink, M.

    2010-12-01

    The Object Modeling System 3 (OMS3), currently being developed by the USDA-ARS Agricultural Systems Research Unit and Colorado State University (Fort Collins, CO), provides a component-based environmental modeling framework which allows the implementation of single- or multi-process modules that can be developed and applied as custom-tailored model configurations. OMS3 as a “lightweight” modeling framework contains four primary foundations: modeling resources (e.g., components) annotated with modeling metadata; domain specific knowledge bases and ontologies; tools for calibration, sensitivity analysis, and model optimization; and methods for model integration and performance scalability. The core is able to manage modeling resources and development tools for model and simulation creation, execution, evaluation, and documentation. OMS3 is based on the Java platform but is highly interoperable with C, C++, and FORTRAN on all major operating systems and architectures. The ARS Conservation Effects Assessment Project (CEAP) Watershed Assessment Study (WAS) Project Plan provides detailed descriptions of ongoing research studies at 14 benchmark watersheds in the United States. In order to satisfy the requirements of CEAP WAS Objective 5 (“develop and verify regional watershed models that quantify environmental outcomes of conservation practices in major agricultural regions”), a new watershed model development approach was initiated to take advantage of OMS3 modeling framework capabilities. Specific objectives of this study were to: 1) disaggregate and refactor various agroecosystem models (e.g., J2K-S, SWAT, WEPP) and implement hydrological, N dynamics, and crop growth science components under OMS3, 2) assemble a new modular watershed scale model for fully-distributed transfer of water and N loading between land units and stream channels, and 3) evaluate the accuracy and applicability of the modular watershed model for estimating stream flow and N dynamics. The

  20. Incorporation of sedimentological data into a calibrated groundwater flow and transport model

    International Nuclear Information System (INIS)

    Williams, N.J.; Young, S.C.; Barton, D.H.; Hurst, B.T.

    1997-01-01

    Analysis suggests that a high hydraulic conductivity (K) zone is associated with a former river channel at the Portsmouth Gaseous Diffusion Plant (PORTS). A two-dimensional (2-D) and three-dimensional (3-D) groundwater flow model was developed base on a sedimentological model to demonstrate the performance of a horizontal well for plume capture. The model produced a flow field with magnitudes and directions consistent with flow paths inferred from historical trichloroethylene (TCE) plume data. The most dominant feature affecting the well's performance was preferential high- and low-K zones. Based on results from the calibrated flow and transport model, a passive groundwater collection system was designed and built. Initial flow rates and concentrations measured from a gravity-drained horizontal well agree closely to predicted values

  1. Two-phase flow induced parametric vibrations in structural systems

    International Nuclear Information System (INIS)

    Hara, Fumio

    1980-01-01

    This paper is divided into two parts concerning piping systems and a nuclear fuel pin system. The significant experimental results concerning the random vibration induced in an L-shaped pipe by air-water two-phase flow and the theoretical analysis of the vibration are described in the first part. It was clarified for the first time that the parametric excitation due to the periodic changes of system mass, centrifugal force and Coriolis force was the mechanism of exciting the vibration. Moreover, the experimental and theoretical analyses of the mechanism of exciting vibration by air-water two-phase flow in a straight, horizontal pipe were carried out, and the first natural frequency of the piping system was strongly related to the dominant frequency of void signals. The experimental results on the vibration of a nuclear fuel pin model in parallel air-water two-phase flow are reported in the latter part. The relations between vibrational strain variance and two-phase flow velocity or pressure fluctuation, and the frequency characteristics of vibrational strain variance were obtained. The theoretical analysis of the dynamic interaction between air-water two-phase flow and a fuel pin structure, and the vibrational instability of fuel pins in alternate air and water slugs or in large bubble flow are also reported. (Kako, I.)

  2. Modelling traffic flows with intelligent cars and intelligent roads

    NARCIS (Netherlands)

    van Arem, Bart; Tampere, Chris M.J.; Malone, Kerry

    2003-01-01

    This paper addresses the modeling of traffic flows with intelligent cars and intelligent roads. It will describe the modeling approach MIXIC and review the results for different ADA systems: Adaptive Cruise Control, a special lane for Intelligent Vehicles, cooperative following and external speed

  3. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong [Kookmin Univ., Seoul (Korea, Republic of)

    2007-03-15

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow.

  4. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    International Nuclear Information System (INIS)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong

    2007-03-01

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow

  5. Probabilistically modeling lava flows with MOLASSES

    Science.gov (United States)

    Richardson, J. A.; Connor, L.; Connor, C.; Gallant, E.

    2017-12-01

    Modeling lava flows through Cellular Automata methods enables a computationally inexpensive means to quickly forecast lava flow paths and ultimate areal extents. We have developed a lava flow simulator, MOLASSES, that forecasts lava flow inundation over an elevation model from a point source eruption. This modular code can be implemented in a deterministic fashion with given user inputs that will produce a single lava flow simulation. MOLASSES can also be implemented in a probabilistic fashion where given user inputs define parameter distributions that are randomly sampled to create many lava flow simulations. This probabilistic approach enables uncertainty in input data to be expressed in the model results and MOLASSES outputs a probability map of inundation instead of a determined lava flow extent. Since the code is comparatively fast, we use it probabilistically to investigate where potential vents are located that may impact specific sites and areas, as well as the unconditional probability of lava flow inundation of sites or areas from any vent. We have validated the MOLASSES code to community-defined benchmark tests and to the real world lava flows at Tolbachik (2012-2013) and Pico do Fogo (2014-2015). To determine the efficacy of the MOLASSES simulator at accurately and precisely mimicking the inundation area of real flows, we report goodness of fit using both model sensitivity and the Positive Predictive Value, the latter of which is a Bayesian posterior statistic. Model sensitivity is often used in evaluating lava flow simulators, as it describes how much of the lava flow was successfully modeled by the simulation. We argue that the positive predictive value is equally important in determining how good a simulator is, as it describes the percentage of the simulation space that was actually inundated by lava.

  6. Analysis of flow distribution instability in parallel thin rectangular multi-channel system

    Energy Technology Data Exchange (ETDEWEB)

    Xia, G.L. [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China); Su, G.H., E-mail: ghsu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Peng, M.J. [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China)

    2016-08-15

    Highlights: • Flow distribution instability in parallel thin rectangular multi-channel system is studied using RELAP5 codes. • Flow excursion may bring parallel heating channel into the density wave oscillations region. • Flow distribution instability is more likely to happen at low power/flow ratio conditions. • The increase of channel number will not affect the flow distribution instability boundary. • Asymmetry inlet throttling and heating will make system more unstable. - Abstract: The flow distribution instability in parallel thin rectangular multi-channel system has been researched in the present study. The research model of parallel channel system is established by using RELAP5/MOD3.4 codes. The transient process of flow distribution instability is studied at imposed inlet mass flow rate and imposed pressure drop conditions. The influence of heating power, mass flow rate, system pressure and channel number on flow distribution instability are analyzed. Furthermore, the flow distribution instability of parallel two-channel system under asymmetric inlet throttling and heating power is studied. The results show that, if multi-channel system operates at the negative slope region of channel ΔP–G curve, small disturbance in pressure drop will lead to flow redistribution between parallel channels. Flow excursion may bring the operating point of heating channel into the density-wave oscillations region, this will result in out-phase or in-phase flow oscillations. Flow distribution instability is more likely to happen at low power/flow ratio conditions, the stability of parallel channel system increases with system pressure, the channel number has a little effect on system stability, but the asymmetry inlet throttling or heating power will make the system more unstable.

  7. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    Directory of Open Access Journals (Sweden)

    Xia Wang

    2012-12-01

    Full Text Available In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As two-phase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present work aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.

  8. Application of macro material flow modeling to the decision making process for integrated waste management systems

    International Nuclear Information System (INIS)

    Vigil, S.A.; Holter, G.M.

    1995-04-01

    Computer models have been used for almost a decade to model and analyze various aspects of solid waste management Commercially available models exist for estimating the capital and operating costs of landfills, waste-to-energy facilities and compost systems and for optimizing system performance along a single dimension (e.g. cost or transportation distance). An alternative to the use of currently available models is the more flexible macro material flow modeling approach in which a macro scale or regional level approach is taken. Waste materials are tracked through the complete integrated waste management cycle from generation through recycling and reuse, and finally to ultimate disposal. Such an approach has been applied by the authors to two different applications. The STELLA simulation language (for Macintosh computers) was used to model the solid waste management system of Puerto Rico. The model incorporated population projections for all 78 municipalities in Puerto Rico from 1990 to 2010, solid waste generation factors, remaining life for the existing landfills, and projected startup time for new facilities. The Pacific Northwest Laboratory has used the SimScript simulation language (for Windows computers) to model the management of solid and hazardous wastes produced during cleanup and remediation activities at the Hanford Nuclear Site

  9. Simplified hydraulic model of French vertical-flow constructed wetlands.

    Science.gov (United States)

    Arias, Luis; Bertrand-Krajewski, Jean-Luc; Molle, Pascal

    2014-01-01

    Designing vertical-flow constructed wetlands (VFCWs) to treat both rain events and dry weather flow is a complex task due to the stochastic nature of rain events. Dynamic models can help to improve design, but they usually prove difficult to handle for designers. This study focuses on the development of a simplified hydraulic model of French VFCWs using an empirical infiltration coefficient--infiltration capacity parameter (ICP). The model was fitted using 60-second-step data collected on two experimental French VFCW systems and compared with Hydrus 1D software. The model revealed a season-by-season evolution of the ICP that could be explained by the mechanical role of reeds. This simplified model makes it possible to define time-course shifts in ponding time and outlet flows. As ponding time hinders oxygen renewal, thus impacting nitrification and organic matter degradation, ponding time limits can be used to fix a reliable design when treating both dry and rain events.

  10. Modelling Nitrogen Transformation in Horizontal Subsurface Flow ...

    African Journals Online (AJOL)

    A mathematical model was developed to permit dynamic simulation of nitrogen interaction in a pilot horizontal subsurface flow constructed wetland receiving effluents from primary facultative pond. The system was planted with Phragmites mauritianus, which was provided with root zone depth of 75 cm. The root zone was ...

  11. A turbulent two-phase flow model for nebula flows

    International Nuclear Information System (INIS)

    Champney, J.M.; Cuzzi, J.N.

    1990-01-01

    A new and very efficient turbulent two-phase flow numericaly model is described to analyze the environment of a protoplanetary nebula at a stage prior to the formation of planets. Focus is on settling processes of dust particles in flattened gaseous nebulae. The model employs a perturbation technique to improve the accuracy of the numerical simulations of such flows where small variations of physical quantities occur over large distance ranges. The particles are allowed to be diffused by gas turbulence in addition to settling under gravity. Their diffusion coefficients is related to the gas turbulent viscosity by the non-dimensional Schmidt number. The gas turbulent viscosity is determined by the means of the eddy viscosity hypothesis that assumes the Reynolds stress tensor proportional to the mean strain rate tensor. Zero- and two-equation turbulence models are employed. Modeling assumptions are detailed and discussed. The numerical model is shown to reproduce an existing analytical solution for the settling process of particles in an inviscid nebula. Results of nebula flows are presented taking into account turbulence effects of nebula flows. Diffusion processes are found to control the settling of particles. 24 refs

  12. Components for Atomistic-to-Continuum Multiscale Modeling of Flow in Micro- and Nanofluidic Systems

    Directory of Open Access Journals (Sweden)

    Helgi Adalsteinsson

    2008-01-01

    Full Text Available Micro- and nanofluidics pose a series of significant challenges for science-based modeling. Key among those are the wide separation of length- and timescales between interface phenomena and bulk flow and the spatially heterogeneous solution properties near solid-liquid interfaces. It is not uncommon for characteristic scales in these systems to span nine orders of magnitude from the atomic motions in particle dynamics up to evolution of mass transport at the macroscale level, making explicit particle models intractable for all but the simplest systems. Recently, atomistic-to-continuum (A2C multiscale simulations have gained a lot of interest as an approach to rigorously handle particle-level dynamics while also tracking evolution of large-scale macroscale behavior. While these methods are clearly not applicable to all classes of simulations, they are finding traction in systems in which tight-binding, and physically important, dynamics at system interfaces have complex effects on the slower-evolving large-scale evolution of the surrounding medium. These conditions allow decomposition of the simulation into discrete domains, either spatially or temporally. In this paper, we describe how features of domain decomposed simulation systems can be harnessed to yield flexible and efficient software for multiscale simulations of electric field-driven micro- and nanofluidics.

  13. Simulation Results of Closed Loop Controlled Interline Power Flow Controller System

    Directory of Open Access Journals (Sweden)

    P. USHA RANI

    2016-01-01

    Full Text Available The Interline Power Flow Controller (IPFC is the latest generation of Flexible AC Transmission Systems (FACTS devices which can be used to control power flows of multiple transmission lines. A dispatch strategy is proposed for an IPFC operating at rated capacity, in which the power circulation between the two series converters is used as the parameter to optimize the voltage profile and power transfer. Voltage stability curves for test system are shown to illustrate the effectiveness of this proposed strategy. In this paper, a circuit model for IPFC is developed and simulation of interline power flow controller is done using the proposed circuit model. Simulation is done using MATLAB simulink and the results are presented.

  14. Concept of CFD model of natural draft wet-cooling tower flow

    Directory of Open Access Journals (Sweden)

    Hyhlík T.

    2014-03-01

    Full Text Available The article deals with the development of CFD model of natural draft wet-cooling tower flow. The physical phenomena taking place within a natural draft wet cooling tower are described by the system of conservation law equations along with additional equations. The heat and mass transfer in the counterflow wet-cooling tower fill are described by model [1] which is based on the system of ordinary differential equations. Utilization of model [1] of the fill allows us to apply commonly measured fill characteristics as shown by [2].The boundary value problem resulting from the fill model is solved separately. The system of conservation law equations is interlinked with the system of ordinary differential equations describing the phenomena occurring in the counterflow wet-cooling tower fill via heat and mass sources and via boundary conditions. The concept of numerical solution is presented for the quasi one dimensional model of natural draft wet-cooling tower flow. The simulation results are shown.

  15. Control of Networked Traffic Flow Distribution - A Stochastic Distribution System Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong [Pacific Northwest National Laboratory (PNNL); Aziz, H M Abdul [ORNL; Young, Stan [National Renewable Energy Laboratory (NREL); Patil, Sagar [Pacific Northwest National Laboratory (PNNL)

    2017-10-01

    Networked traffic flow is a common scenario for urban transportation, where the distribution of vehicle queues either at controlled intersections or highway segments reflect the smoothness of the traffic flow in the network. At signalized intersections, the traffic queues are controlled by traffic signal control settings and effective traffic lights control would realize both smooth traffic flow and minimize fuel consumption. Funded by the Energy Efficient Mobility Systems (EEMS) program of the Vehicle Technologies Office of the US Department of Energy, we performed a preliminary investigation on the modelling and control framework in context of urban network of signalized intersections. In specific, we developed a recursive input-output traffic queueing models. The queue formation can be modeled as a stochastic process where the number of vehicles entering each intersection is a random number. Further, we proposed a preliminary B-Spline stochastic model for a one-way single-lane corridor traffic system based on theory of stochastic distribution control.. It has been shown that the developed stochastic model would provide the optimal probability density function (PDF) of the traffic queueing length as a dynamic function of the traffic signal setting parameters. Based upon such a stochastic distribution model, we have proposed a preliminary closed loop framework on stochastic distribution control for the traffic queueing system to make the traffic queueing length PDF follow a target PDF that potentially realizes the smooth traffic flow distribution in a concerned corridor.

  16. Scale problems in assessment of hydrogeological parameters of groundwater flow models

    Science.gov (United States)

    Nawalany, Marek; Sinicyn, Grzegorz

    2015-09-01

    An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i) spatial extent and geometry of hydrogeological system, (ii) spatial continuity and granularity of both natural and man-made objects within the system, (iii) duration of the system and (iv) continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale - scale of pores, meso-scale - scale of laboratory sample, macro-scale - scale of typical blocks in numerical models of groundwater flow, local-scale - scale of an aquifer/aquitard and regional-scale - scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical) block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here). Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.

  17. Scale problems in assessment of hydrogeological parameters of groundwater flow models

    Directory of Open Access Journals (Sweden)

    Nawalany Marek

    2015-09-01

    Full Text Available An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i spatial extent and geometry of hydrogeological system, (ii spatial continuity and granularity of both natural and man-made objects within the system, (iii duration of the system and (iv continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale – scale of pores, meso-scale – scale of laboratory sample, macro-scale – scale of typical blocks in numerical models of groundwater flow, local-scale – scale of an aquifer/aquitard and regional-scale – scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here. Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.

  18. Selection of geohydrologic boundaries for ground-water flow models, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Downey, J.S.; Gutentag, E.D.; Kolm, K.E.

    1990-01-01

    The conceptual ground-water model of the southern Nevada/Death Valley, California region presented in this paper includes two aquifer systems: a shallow, intermontane, mostly unconfined aquifer composed of unconsolidated or poorly consolidated sediments and consolidated, layered volcanics, and a deep, regional multiple-layered, confined aquifer system composed of faulted and fractured carbonate and volcanic rocks. The potentiometric surfaces of both aquifer systems indicate that ground water leaks vertically from the deeper to the shallower geologic units, and that water in the shallower aquifer may not flow beyond the intermontane subbasin, whereas water in the deeper aquifer may indicate transbasinal flow to the playas in Death Valley. Most of the hydrologic boundaries of the regional aquifer systems in the Yucca Mountain region are geologically complex. Most of the existing numerical models simulating the ground-water flow system in the Yucca Mountain region are based on limited potentiometric-head data elevation and precipitation estimates, and simplified geology. These models are two-dimensional, and are not adequate. The alternative approach to estimating unknown boundary conditions for the regional ground-water flow system involves the following steps: (1) Incorporate known boundary-conditions data from the playas in Death Valley and the Ash Meadows spring line; (2) use estimated boundary data based on geological, pedological, geomorphological, botanical, and hydrological observations; (3) test these initial boundary conditions with three-dimensional models, both steady-state and transient; (4) back-calculate the boundary conditions for the northern, northwestern, northeastern and eastern flux boundaries; (5) compare these calculated values with known data during model calibration steps; and (6) adjust the model. 9 refs., 6 figs

  19. Towards an Agro-Industrial Ecology: A review of nutrient flow modelling and assessment tools in agro-food systems at the local scale.

    Science.gov (United States)

    Fernandez-Mena, Hugo; Nesme, Thomas; Pellerin, Sylvain

    2016-02-01

    Improvement in nutrient recycling in agriculture is essential to maintain food production while minimising nutrient pollution of the environment. For this purpose, understanding and modelling nutrient cycles in food and related agro-industrial systems is a crucial task. Although nutrient management has been addressed at the plot and farm scales for many years now in the agricultural sciences, there is a need to upscale these approaches to capture the additional drivers of nutrient cycles that may occur at the local, i.e. district, scale. Industrial ecology principles provide sound bases to analyse nutrient cycling in complex systems. However, since agro-food social-ecological systems have specific ecological and social dimensions, we argue that a new field, referred to as "Agro-Industrial Ecology", is needed to study these systems. In this paper, we review the literature on nutrient cycling in complex social-ecological systems that can provide a basis for Agro-Industrial Ecology. We identify and describe three major approaches: Environmental Assessment tools, Stock and Flow Analysis methods and Agent-based models. We then discuss their advantages and drawbacks for assessing and modelling nutrient cycles in agro-food systems in terms of their purpose and scope, object representation and time-spatial dynamics. We finally argue that combining stock-flow methods with both agent-based models and environmental impact assessment tools is a promising way to analyse the role of economic agents on nutrient flows and losses and to explore scenarios that better close the nutrient cycles at the local scale. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Weighted complex network analysis of the Beijing subway system: Train and passenger flows

    Science.gov (United States)

    Feng, Jia; Li, Xiamiao; Mao, Baohua; Xu, Qi; Bai, Yun

    2017-05-01

    In recent years, complex network theory has become an important approach to the study of the structure and dynamics of traffic networks. However, because traffic data is difficult to collect, previous studies have usually focused on the physical topology of subway systems, whereas few studies have considered the characteristics of traffic flows through the network. Therefore, in this paper, we present a multi-layer model to analyze traffic flow patterns in subway networks, based on trip data and an operation timetable obtained from the Beijing Subway System. We characterize the patterns in terms of the spatiotemporal flow size distributions of both the train flow network and the passenger flow network. In addition, we describe the essential interactions between these two networks based on statistical analyses. The results of this study suggest that layered models of transportation systems can elucidate fundamental differences between the coexisting traffic flows and can also clarify the mechanism that causes these differences.

  1. An integrated model for reliability estimation of digital nuclear protection system based on fault tree and software control flow methodologies

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Seong, Poong Hyun

    2000-01-01

    In the nuclear industry, the difficulty of proving the reliabilities of digital systems prohibits the widespread use of digital systems in various nuclear application such as plant protection system. Even though there exist a few models which are used to estimate the reliabilities of digital systems, we develop a new integrated model which is more realistic than the existing models. We divide the process of estimating the reliability of a digital system into two phases, a high-level phase and a low-level phase, and the boundary of two phases is the reliabilities of subsystems. We apply software control flow method to the low-level phase and fault tree analysis to the high-level phase. The application of the model to Dynamic Safety System(DDS) shows that the estimated reliability of the system is quite reasonable and realistic

  2. An integrated model for reliability estimation of digital nuclear protection system based on fault tree and software control flow methodologies

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Seong, Poong Hyun

    2000-01-01

    In nuclear industry, the difficulty of proving the reliabilities of digital systems prohibits the widespread use of digital systems in various nuclear application such as plant protection system. Even though there exist a few models which are used to estimate the reliabilities of digital systems, we develop a new integrated model which is more realistic than the existing models. We divide the process of estimating the reliability of a digital system into two phases, a high-level phase and a low-level phase, and the boundary of two phases is the reliabilities of subsystems. We apply software control flow method to the low-level phase and fault tree analysis to the high-level phase. The application of the model of dynamic safety system (DSS) shows that the estimated reliability of the system is quite reasonable and realistic. (author)

  3. Two Phase Flow Split Model for Parallel Channels | Iloeje | Nigerian ...

    African Journals Online (AJOL)

    The model and code are capable of handling single and two phase flows, steady states and transients, up to ten parallel flow paths, simple and complicated geometries, including the boilers of fossil steam generators and nuclear power plants. A test calculation has been made with a simplified three-channel system ...

  4. A Water Treatment Case Study for Quantifying Model Performance with Multilevel Flow Modelling

    DEFF Research Database (Denmark)

    Nielsen, Emil Krabbe; Bram, Mads Valentin; Frutiger, Jerome

    2018-01-01

    Decision support systems are a key focus of research on developing control rooms to aid operators in making reliable decisions, and reducing incidents caused by human errors. For this purpose, models of complex systems can be developed to diagnose causes or consequences for specific alarms. Models...... during operation, this work aims to synthesize a procedure to measure model performance according to diagnostic requirements. A simple procedure is proposed for validating and evaluating the concept of Multilevel Flow Modelling. For this purpose, expert statements, dynamic process simulations, and pilot...

  5. Long-term consequences of non-intentional flows of substances: Modelling non-intentional flows of lead in the Dutch economic system and evaluating their environmental consequences

    International Nuclear Information System (INIS)

    Elshkaki, Ayman; Voet, Ester van der; Holderbeke, Mirja van; Timmermans, Veerle

    2009-01-01

    Substances may enter the economy and the environment through both intentional and non-intentional flows. These non-intentional flows, including the occurrence of substances as pollutants in mixed primary resources (metal ores, phosphate ores and fossil fuels) and their presence in re-used waste streams from intentional use may have environmental and economic consequences in terms of pollution and resource availability. On the one hand, these non-intentional flows may cause pollution problems. On the other hand, these flows have the potential to be a secondary source of substances. This article aims to quantify and model the non-intentional flows of lead, to evaluate their long-term environmental consequences, and compare these consequences to those of the intentional flows of lead. To meet this goal, the model combines all the sources of non-intentional flows of lead within one model, which also includes the intentional flows. Application of the model shows that the non-intentional flows of lead related to waste streams associated with intentional use are decreasing over time, due to the increased attention given to waste management. However, as contaminants in mixed primary resources application, lead flows are increasing as demand for these applications is increasing.

  6. Grey Box Modelling of Hydrological Systems

    DEFF Research Database (Denmark)

    Thordarson, Fannar Ørn

    of two papers where the stochastic differential equation based model is used for sewer runoff from a drainage system. A simple model is used to describe a complex rainfall-runoff process in a catchment, but the stochastic part of the system is formulated to include the increasing uncertainty when...... rainwater flows through the system, as well as describe the lower limit of the uncertainty when the flow approaches zero. The first paper demonstrates in detail the grey box model and all related transformations required to obtain a feasible model for the sewer runoff. In the last paper this model is used......The main topic of the thesis is grey box modelling of hydrologic systems, as well as formulation and assessment of their embedded uncertainties. Grey box model is a combination of a white box model, a physically-based model that is traditionally formulated using deterministic ordinary differential...

  7. A new approach to flow simulation using hybrid models

    Science.gov (United States)

    Solgi, Abazar; Zarei, Heidar; Nourani, Vahid; Bahmani, Ramin

    2017-11-01

    The necessity of flow prediction in rivers, for proper management of water resource, and the need for determining the inflow to the dam reservoir, designing efficient flood warning systems and so forth, have always led water researchers to think about models with high-speed response and low error. In the recent years, the development of Artificial Neural Networks and Wavelet theory and using the combination of models help researchers to estimate the river flow better and better. In this study, daily and monthly scales were used for simulating the flow of Gamasiyab River, Nahavand, Iran. The first simulation was done using two types of ANN and ANFIS models. Then, using wavelet theory and decomposing input signals of the used parameters, sub-signals were obtained and were fed into the ANN and ANFIS to obtain hybrid models of WANN and WANFIS. In this study, in addition to the parameters of precipitation and flow, parameters of temperature and evaporation were used to analyze their effects on the simulation. The results showed that using wavelet transform improved the performance of the models in both monthly and daily scale. However, it had a better effect on the monthly scale and the WANFIS was the best model.

  8. Scaling of two-phase flow transients using reduced pressure system and simulant fluid

    International Nuclear Information System (INIS)

    Kocamustafaogullari, G.; Ishii, M.

    1987-01-01

    Scaling criteria for a natural circulation loop under single-phase flow conditions are derived. Based on these criteria, practical applications for designing a scaled-down model are considered. Particular emphasis is placed on scaling a test model at reduced pressure levels compared to a prototype and on fluid-to-fluid scaling. The large number of similarty groups which are to be matched between modell and prototype makes the design of a scale model a challenging tasks. The present study demonstrates a new approach to this clasical problen using two-phase flow scaling parameters. It indicates that a real time scaling is not a practical solution and a scaled-down model should have an accelerated (shortened) time scale. An important result is the proposed new scaling methodology for simulating pressure transients. It is obtained by considerung the changes of the fluid property groups which appear within the two-phase similarity parameters and the single-phase to two-phase flow transition prameters. Sample calculations are performed for modeling two-phase flow transients of a high pressure water system by a low-pressure water system or a Freon system. It is shown that modeling is possible for both cases for simulation pressure transients. However, simulation of phase change transitions is not possible by a reduced pressure water system without distortion in either power or time. (orig.)

  9. Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow

    Science.gov (United States)

    Gupta, Atma Ram; Kumar, Ashwani

    2017-12-01

    Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is: Finding impact of probable realistic ZIP load modeling on balanced radial distribution load flow. Finding impact of probable realistic ZIP load modeling on unbalanced radial distribution load flow. Compare the voltage profile and losses with probable realistic ZIP load modeling for balanced and unbalanced radial distribution load flow.

  10. Applications of flow visualization to the development of an innovative boom system

    International Nuclear Information System (INIS)

    Wong, K.F.V.; Wolek, A.

    1996-01-01

    A new oil retention boom system design was developed using a flow visualization technique. Hydrogen bubbles were generated on a fine wire cathode and placed in a stream of moving water with a strong light source to visualize the flow. Observations were made of the flow patterns around some basic shapes and booms modelled as cylinders with and without a skirt. The most effective system design had two booms with skirts in parallel with a submerged airfoil designed to cause the oil to separate and recirculate. Oil was allowed to flow above the airfoil into the recirculation region between the two floating booms. The new system is expected to outperform the conventional boom system only when flow velocity is high. Its most successful application would be in situations where flow is perpendicular to the length of the boom. 1 ref., 6 figs

  11. Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations

    Science.gov (United States)

    Safaei, Soroush; Blanco, Pablo J.; Müller, Lucas O.; Hellevik, Leif R.; Hunter, Peter J.

    2018-01-01

    We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data. PMID:29551979

  12. Predicting the occurrence of channelized debris flow by an integrated cascading model: A case study of a small debris flow-prone catchment in Zhejiang Province, China

    Science.gov (United States)

    Wei, Zhen-lei; Xu, Yue-Ping; Sun, Hong-yue; Xie, Wei; Wu, Gang

    2018-05-01

    Excessive water in a channel is an important factor that triggers channelized debris flows. Floods and debris flows often occur in a cascading manner, and thus, calculating the amount of runoff accurately is important for predicting the occurrence of debris flows. In order to explore the runoff-rainfall relationship, we placed two measuring facilities at the outlet of a small, debris flow-prone headwater catchment to explore the hydrological response of the catchment. The runoff responses generally consisted of a rapid increase in runoff followed by a slower decrease. The peak runoff often occurred after the rainfall ended. The runoff discharge data were simulated by two different modeling approaches, i.e., the NAM model and the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model. The results showed that the NAM model performed better than the HEC-HMS model. The NAM model provided acceptable simulations, while the HEC-HMS model did not. Then, we coupled the calculated results of the NAM model with an empirically based debris flow initiation model to obtain a new integrated cascading disaster modeling system to provide improved disaster preparedness and hazard management. In this case study, we found that the coupled model could correctly predict the occurrence of debris flows. Furthermore, we evaluated the effect of the range of input parameter values on the hydrographical shape of the runoff. We also used the grey relational analysis to conduct a sensitivity analysis of the parameters of the model. This study highlighted the important connections between rainfall, hydrological processes, and debris flow, and it provides a useful prototype model system for operational forecasting of debris flows.

  13. Development of a selection support expert system of mathematical models for dynamic simulation of liquid-vapor two-phase flow

    International Nuclear Information System (INIS)

    Gofuku, Akio; Shimizu, Kenji; Sugano, Keiji; Morimoto, Takashi; Yoshikawa, Hidekazu; Wakabayashi, Jiro

    1992-01-01

    This paper deals with computerized supporting techniques of a numerical simulation of complex and large-scale engineering systems like nuclear power plants. As an example of the intelligent support systems of dynamic simulation, a prototype expert system is developed on an expert system development tool to support the selection of mathematical model which is a first step of numerical simulation and is required both wide expert knowledge and high-level decision making. The expert system supports the selection of liquid-vapor two phase flow models (fluid model and constitutive equations) consistent with simulation purpose and condition in the case of thermal-hydraulic simulation of nuclear power plants. The possibility of the expert system is examined for various selection support cases by both investigation of the appropriateness of the selection support logic and comparison between support results and decision results of several experts. (author)

  14. Evaluation of core modeling effect on transients for multi-flow zone design of SFR

    International Nuclear Information System (INIS)

    Shin, Andong; Choi, Yong Won

    2016-01-01

    SFR core is composed of different types of assemblies including fuel driver, reflector, blanket, control, safety drivers and other drivers. Modeling of different types of assemblies is inevitable in general. But modeling of core flow zones of with different channels needs a lot of effort and could be a challenge for system code modeling due to its limitation on the number of modeling components. In this study, core modeling effect on SFR transient was investigated with flow-zone model and averaged inner core channel model to improve modeling efficiency and validation of simplified core model for EBR-II loss of flow transient case with the modified TRACE code for SFRs. Core modeling effect on the loss flow transient was analyzed with flow-zoned channel model, single averaged inner core model and highest flow channel with averaged inner core channel model for EBR-II SHRT-17 test core. Case study showed that estimations of transient pump and channel flow as well as channel outlet temperatures were similar for all cases macroscopically. Comparing the result of the base case (flow-zone channel inner core model) and the case 2 (highest flow channel considered averaged inner core channel model), flow and channel outlet temperature response were closer than the case1 (single averaged inner core model)

  15. Evaluation of core modeling effect on transients for multi-flow zone design of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Andong; Choi, Yong Won [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    SFR core is composed of different types of assemblies including fuel driver, reflector, blanket, control, safety drivers and other drivers. Modeling of different types of assemblies is inevitable in general. But modeling of core flow zones of with different channels needs a lot of effort and could be a challenge for system code modeling due to its limitation on the number of modeling components. In this study, core modeling effect on SFR transient was investigated with flow-zone model and averaged inner core channel model to improve modeling efficiency and validation of simplified core model for EBR-II loss of flow transient case with the modified TRACE code for SFRs. Core modeling effect on the loss flow transient was analyzed with flow-zoned channel model, single averaged inner core model and highest flow channel with averaged inner core channel model for EBR-II SHRT-17 test core. Case study showed that estimations of transient pump and channel flow as well as channel outlet temperatures were similar for all cases macroscopically. Comparing the result of the base case (flow-zone channel inner core model) and the case 2 (highest flow channel considered averaged inner core channel model), flow and channel outlet temperature response were closer than the case1 (single averaged inner core model)

  16. Mathematical modeling of swirled flows in industrial applications

    Science.gov (United States)

    Dekterev, A. A.; Gavrilov, A. A.; Sentyabov, A. V.

    2018-03-01

    Swirled flows are widely used in technological devices. Swirling flows are characterized by a wide range of flow regimes. 3D mathematical modeling of flows is widely used in research and design. For correct mathematical modeling of such a flow, it is necessary to use turbulence models, which take into account important features of the flow. Based on the experience of computational modeling of a wide class of problems with swirling flows, recommendations on the use of turbulence models for calculating the applied problems are proposed.

  17. Improving Simulations of Extreme Flows by Coupling a Physically-based Hydrologic Model with a Machine Learning Model

    Science.gov (United States)

    Mohammed, K.; Islam, A. S.; Khan, M. J. U.; Das, M. K.

    2017-12-01

    With the large number of hydrologic models presently available along with the global weather and geographic datasets, streamflows of almost any river in the world can be easily modeled. And if a reasonable amount of observed data from that river is available, then simulations of high accuracy can sometimes be performed after calibrating the model parameters against those observed data through inverse modeling. Although such calibrated models can succeed in simulating the general trend or mean of the observed flows very well, more often than not they fail to adequately simulate the extreme flows. This causes difficulty in tasks such as generating reliable projections of future changes in extreme flows due to climate change, which is obviously an important task due to floods and droughts being closely connected to people's lives and livelihoods. We propose an approach where the outputs of a physically-based hydrologic model are used as an input to a machine learning model to try and better simulate the extreme flows. To demonstrate this offline-coupling approach, the Soil and Water Assessment Tool (SWAT) was selected as the physically-based hydrologic model, the Artificial Neural Network (ANN) as the machine learning model and the Ganges-Brahmaputra-Meghna (GBM) river system as the study area. The GBM river system, located in South Asia, is the third largest in the world in terms of freshwater generated and forms the largest delta in the world. The flows of the GBM rivers were simulated separately in order to test the performance of this proposed approach in accurately simulating the extreme flows generated by different basins that vary in size, climate, hydrology and anthropogenic intervention on stream networks. Results show that by post-processing the simulated flows of the SWAT models with ANN models, simulations of extreme flows can be significantly improved. The mean absolute errors in simulating annual maximum/minimum daily flows were minimized from 4967

  18. Comparative study of turbulence model performance for axisymmetric sudden expansion flow

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo; Yoon, Juhyeon

    2013-01-01

    In this study, the performance of turbulence models in predicting the turbulent flow in an axisymmetric sudden expansion with an expansion ratio of 4 is assessed for a Reynolds number of 5.6 Χ 10 4 . The comparisons show that the standard k-ε and RSM models provide the best agreement with the experimental data, whereas the standard k-ω model gives poor predictions. Owing to its computational efficiency, the Reynolds Averaged Navier-Stokes (RANS) approach has been widely used for the prediction of turbulent flows and associated pressure losses in a variety of internal flow systems such as a diffuser, orifice, converging nozzle, and pipes with sudden expansion. However, the lack of a general turbulence model often leads to limited applications of a RANS approach, i. e., the accuracy and validity of solutions obtained from RANS equations vary with the turbulence model, flow regime, near-wall treatment, and configuration of the problem. In light of the foregoing, a large amount of turbulence research has been conducted to assess the performance of existing turbulence models for different flow fields. In this paper, the turbulent flow in an axisymmetric sudden expansion is numerically investigated for a Reynolds number of 5.6 Χ 10 4 , with the aim of examining the performance of several turbulence models

  19. Modeling Submarine Lava Flow with ASPECT

    Science.gov (United States)

    Storvick, E. R.; Lu, H.; Choi, E.

    2017-12-01

    Submarine lava flow is not easily observed and experimented on due to limited accessibility and challenges posed by the fast solidification of lava and the associated drastic changes in rheology. However, recent advances in numerical modeling techniques might address some of these challenges and provide unprecedented insight into the mechanics of submarine lava flow and conditions determining its wide-ranging morphologies. In this study, we explore the applicability ASPECT, Advanced Solver for Problems in Earth's ConvecTion, to submarine lava flow. ASPECT is a parallel finite element code that solves problems of thermal convection in the Earth's mantle. We will assess ASPECT's capability to model submarine lava flow by observing models of lava flow morphology simulated with GALE, a long-term tectonics finite element analysis code, with models created using comparable settings and parameters in ASPECT. From these observations we will contrast the differing models in order to identify the benefits of each code. While doing so, we anticipate we will learn about the conditions required for end-members of lava flow morphology, for example, pillows and sheet flows. With ASPECT specifically we focus on 1) whether the lava rheology can be implemented; 2) how effective the AMR is in resolving morphologies of the solidified crust; 3) whether and under what conditions the end-members of the lava flow morphologies, pillows and sheets, can be reproduced.

  20. Zero-G two phase flow regime modeling in adiabatic flow

    International Nuclear Information System (INIS)

    Reinarts, T.R.; Best, F.R.; Wheeler, M.; Miller, K.M.

    1993-01-01

    Two-phase flow, thermal management systems are currently being considered as an alternative to conventional, single phase systems for future space missions because of their potential to reduce overall system mass, size, and pumping power requirements. Knowledge of flow regime transitions, heat transfer characteristics, and pressure drop correlations is necessary to design and develop two-phase systems. This work is concerned with microgravity, two-phase flow regime analysis. The data come from a recent sets of experiments. The experiments were funded by NASA Johnson Space Center (JSC) and conducted by NASA JSC with Texas A ampersand M University. The experiment was on loan to NASA JSC from Foster-Miller, Inc., who constructed it with funding from the Air Force Phillips Laboratory. The experiment used R12 as the working fluid. A Foster-Miller two phase pump was used to circulate the two phase mixture and allow separate measurements of the vapor and liquid flow streams. The experimental package was flown 19 times for 577 parabolas aboard the NASA KC-135 aircraft which simulates zero-G conditions by its parabolic flight trajectory. Test conditions included bubbly, slug and annular flow regimes in 0-G. The superficial velocities of liquid and vapor have been obtained from the measured flow rates and are presented along with the observed flow regimes and several flow regime transition predictions. None of the predictions completely describe the transitions as indicated by the data

  1. Experimental determination and modelling of interface area concentration in horizontal stratified flow

    International Nuclear Information System (INIS)

    Junqua-Moullet, Alexandra

    2003-01-01

    This research thesis concerns the modelling and experimentation of biphasic liquid/gas flows (water/air) while using the two-fluid model, a six-equation model. The author first addresses the modelling of interfacial magnitudes for a known topology (problem of two-fluid model closure, closure relationships for some variables, equation for a given configuration). She reports the development of an equation system for interfacial magnitudes. The next parts deal with experiments and report the study of stratified flows in the THALC experiment, and more particularly the study of the interfacial area concentration and of the liquid velocities in such flows. Results are discussed, as well as their consistency

  2. The lagRST Model: A Turbulence Model for Non-Equilibrium Flows

    Science.gov (United States)

    Lillard, Randolph P.; Oliver, A. Brandon; Olsen, Michael E.; Blaisdell, Gregory A.; Lyrintzis, Anastasios S.

    2011-01-01

    This study presents a new class of turbulence model designed for wall bounded, high Reynolds number flows with separation. The model addresses deficiencies seen in the modeling of nonequilibrium turbulent flows. These flows generally have variable adverse pressure gradients which cause the turbulent quantities to react at a finite rate to changes in the mean flow quantities. This "lag" in the response of the turbulent quantities can t be modeled by most standard turbulence models, which are designed to model equilibrium turbulent boundary layers. The model presented uses a standard 2-equation model as the baseline for turbulent equilibrium calculations, but adds transport equations to account directly for non-equilibrium effects in the Reynolds Stress Tensor (RST) that are seen in large pressure gradients involving shock waves and separation. Comparisons are made to several standard turbulence modeling validation cases, including an incompressible boundary layer (both neutral and adverse pressure gradients), an incompressible mixing layer and a transonic bump flow. In addition, a hypersonic Shock Wave Turbulent Boundary Layer Interaction with separation is assessed along with a transonic capsule flow. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWTBLI flows assessed. Separation predictions are not as good as the baseline models, but the over prediction of the peak heat flux downstream of the reattachment shock that plagues many models is reduced.

  3. Development of a Reduced-Order Model for Reacting Gas-Solids Flow using Proper Orthogonal Decomposition

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Dwayne [Florida International Univ., Miami, FL (United States); Dulikravich, George [Florida International Univ., Miami, FL (United States); Cizmas, Paul [Florida International Univ., Miami, FL (United States)

    2017-11-27

    This report summarizes the objectives, tasks and accomplishments made during the three year duration of this research project. The report presents the results obtained by applying advanced computational techniques to develop reduced-order models (ROMs) in the case of reacting multiphase flows based on high fidelity numerical simulation of gas-solids flow structures in risers and vertical columns obtained by the Multiphase Flow with Interphase eXchanges (MFIX) software. The research includes a numerical investigation of reacting and non-reacting gas-solids flow systems and computational analysis that will involve model development to accelerate the scale-up process for the design of fluidization systems by providing accurate solutions that match the full-scale models. The computational work contributes to the development of a methodology for obtaining ROMs that is applicable to the system of gas-solid flows. Finally, the validity of the developed ROMs is evaluated by comparing the results against those obtained using the MFIX code. Additionally, the robustness of existing POD-based ROMs for multiphase flows is improved by avoiding non-physical solutions of the gas void fraction and ensuring that the reduced kinetics models used for reactive flows in fluidized beds are thermodynamically consistent.

  4. Experimental modeling of swirl flows in power plants

    Science.gov (United States)

    Shtork, S. I.; Litvinov, I. V.; Gesheva, E. S.; Tsoy, M. A.; Skripkin, S. G.

    2018-03-01

    The article presents an overview of the methods and approaches to experimental modeling of various thermal and hydropower units - furnaces of pulverized coal boilers and flow-through elements of hydro turbines. The presented modeling approaches based on a combination of experimentation and rapid prototyping of working parts may be useful in optimizing energy equipment to improve safety and efficiency of industrial energy systems.

  5. Basic study on an energy conversion system using boiling two-phase flows of temperature-sensitive magnetic fluid. Theoretical analysis based on thermal nonequilibrium model and flow visualization using ultrasonic echo

    International Nuclear Information System (INIS)

    Ishimoto, Jun; Kamiyama, Shinichi; Okubo, Masaaki.

    1995-01-01

    Effects of magnetic field on the characteristics of boiling two-phase pipe flow of temperature-sensitive magnetic fluid are clarified in detail both theoretically and experimentally. Firstly, governing equations of two-phase magnetic fluid flow based on the thermal nonequilibrium two-fluid model are presented and numerically solved considering evaporation and condensation between gas- and liquid-phases. Next, behaviour of vapor bubbles is visualized with ultrasonic echo in the region of nonuniform magnetic field. This is recorded and processed with an image processor. As a result, the distributions of void fraction in the two-phase flow are obtained. Furthermore, detailed characteristics of the two-phase magnetic fluid flow are investigated using a small test loop of the new energy conversion system. From the numerical and experimental results, it is known that the precise control of the boiling two-phase flow and bubble generation is possible by using the nonuniform magnetic field effectively. These fundamental studies on the characteristics of two-phase magnetic fluid flow will contribute to the development of the new energy conversion system using a gas-liquid boiling two-phase flow of magnetic fluid. (author)

  6. Predicting Flow Breakdown Probability and Duration in Stochastic Network Models: Impact on Travel Time Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jing [ORNL; Mahmassani, Hani S. [Northwestern University, Evanston

    2011-01-01

    This paper proposes a methodology to produce random flow breakdown endogenously in a mesoscopic operational model, by capturing breakdown probability and duration. Based on previous research findings that probability of flow breakdown can be represented as a function of flow rate and the duration can be characterized by a hazard model. By generating random flow breakdown at various levels and capturing the traffic characteristics at the onset of the breakdown, the stochastic network simulation model provides a tool for evaluating travel time variability. The proposed model can be used for (1) providing reliability related traveler information; (2) designing ITS (intelligent transportation systems) strategies to improve reliability; and (3) evaluating reliability-related performance measures of the system.

  7. Two-phase flow model with nonequilibrium and critical flow

    International Nuclear Information System (INIS)

    Sureau, H.; Houdayer, G.

    1976-01-01

    The model proposed includes the three conservation equations (mass, momentum, energy) applied to the two phase flows and a fourth partial derivative equation which takes into account the nonequilibriums and describes the mass transfer process. With this model, the two phase critical flow tests performed on the Moby-Dick loop (CENG) with several geometries, are interpreted by a unique law. Extrapolations to industrial dimension problems show that geometry and size effects are different from those obtained with earlier models (Zaloudek, Moody, Fauske) [fr

  8. On some issues of the modeling and analysis of two phase flow systems

    International Nuclear Information System (INIS)

    Ndjinga, M.

    2007-04-01

    Two-fluid and multi-field models are commonly used in the modeling and numerical simulation of two phase flows. They however present several mathematical and numerical difficulties, such as their lack of hyperbolicity or their non trivial Eigen-structure. It is important to understand the well-posedness of such possibly non hyperbolic systems before solving them numerically. For this reason, we study the solutions of systems of first order partial differential equations having a possibly complex Eigen-structure. We then characterise the hyperbolicity of the six equations two-fluid model with interfacial forces having differential expressions such as the interfacial pressure term, virtual mass and lift forces. The study of the characteristic polynomial leads to a diagram representing the location and topology of the non hyperbolic regions. We eventually propose numerous closure laws that make the two-fluid and multi-field models unconditionally hyperbolic. In order to numerically solve the two-fluid and multi-field models equations in a finite volume approach using a Roe type scheme, we propose two new algorithms designed for an efficient computation of the matrix absolute value function. These algorithms are robust as they avoid the computation of the eigenvectors of the argument matrix. The first is based on an iterative approach and converges in a finite number of steps if the eigenvalues are real. The second is faster, and besides can handle the case of complex eigenvalues. Thanks to these new algorithms, it is now possible to solve efficiently the six equations two-fluid model with differential interfacial terms, or the multi-field model with an arbitrary number of fields. We finally show the results of some recent numerical simulations of the six equations two-fluid model and the multi-field model with interfacial forces having a differential expression. (author)

  9. A systems modelling framework for the design of integrated process control systems

    International Nuclear Information System (INIS)

    Lind, M.

    1983-12-01

    The paper describes a systems modelling methodology, called multilevel flow modelling, or MFM, which aims at describing complex production plants as designs, i.e. as systems having goals, functions and equipment realizing these functions. The modelling concepts are based on thermodynamics and lead to a system description in terms of multiple levels of interrelated mass or energy flow structures. The paper discusses as a basis for the modelling framework the general properties of artifacts or designs, characterizes the complexity of production systems and defines the MFM concepts which allow a consistent specification of goals and functions of these systems as generated in the process design. A modelling example is given and the application of the models for the design of plant control strategies is outlined. (author)

  10. Jackson System Development, Entity-relationship Analysis and Data Flow Models: a comparative study

    NARCIS (Netherlands)

    Wieringa, Roelf J.

    1994-01-01

    This report compares JSD with ER modeling and data flow modeling. It is shown that JSD can be combined with ER modeling and that the result is a richer method than either of the two. The resulting method can serve as a basis for a pratical object-oriented modeling method and has some resemblance to

  11. Modelling and transient simulation of water flow in pipelines using WANDA Transient software

    Directory of Open Access Journals (Sweden)

    P.U. Akpan

    2017-09-01

    Full Text Available Pressure transients in conduits such as pipelines are unsteady flow conditions caused by a sudden change in the flow velocity. These conditions might cause damage to the pipelines and its fittings if the extreme pressure (high or low is experienced within the pipeline. In order to avoid this occurrence, engineers usually carry out pressure transient analysis in the hydraulic design phase of pipeline network systems. Modelling and simulation of transients in pipelines is an acceptable and cost effective method of assessing this problem and finding technical solutions. This research predicts the pressure surge for different flow conditions in two different pipeline systems using WANDA Transient simulation software. Computer models were set-up in WANDA Transient for two different systems namely; the Graze experiment (miniature system and a simple main water riser system based on some initial laboratory data and system parameters. The initial laboratory data and system parameters were used for all the simulations. Results obtained from the computer model simulations compared favourably with the experimental results at Polytropic index of 1.2.

  12. Multiplicity fluctuations and collective flow in small colliding systems

    Science.gov (United States)

    Kawaguchi, Koji; Murase, Koichi; Hirano, Tetsufumi

    2017-11-01

    Recent observation of collective-flow-like behaviours in small colliding systems attracts significant theoretical and experimental interests. In large colliding systems, large collective flow has been interpreted as manifestation of almost-perfect fluidity of the quark gluon plasma (QGP). So it is quite intriguing to explore how small the QGP can be as a fluid. Multiplicity fluctuations play a crucial role in centrality definition of the events in small colliding systems since the fluctuations are, in general, more important as the system size is getting smaller. To consider the correct multiplicity fluctuations, we employ PYTHIA which naturally describes multiplicity distribution in p+p collisions. We superpose p+p collisions by taking into account the number of participants and that of binary collisions from Monte-Carlo version of Glauber model and evaluate initial entropy density distributions which contain not only multiplicity fluctuations but also fluctuations of longitudinal profiles. Solving hydrodynamic equations followed by the hadronic afterburner, we calculate transverse momentum spectra, elliptic and triangular flow parameters in p+Au, d+Au and 3He+Au collisions at the RHIC energy and p+Pb collisions at the LHC energy. Although a large fraction of final anisotropic flow parameters comes from the fluid-dynamical stage, the effects of hadronic rescatterings turn out to be also important as well in understanding of the flow data in small colliding systems.

  13. Turbulence models in supersonic flows

    International Nuclear Information System (INIS)

    Shirani, E.; Ahmadikia, H.; Talebi, S.

    2001-05-01

    The aim of this paper is to evaluate five different turbulence models when used in rather complicated two-dimensional and axisymmetric supersonic flows. They are Baldwin-Lomax, k-l, k-ε, k-ω and k-ζ turbulence models. The compressibility effects, axisymmetric correction terms and some modifications for transition region are used and tested in the models. Two computer codes based on the control volume approach and two flux-splitting methods. Roe and Van Leer, are developed. The codes are used to simulate supersonic mixing layers, flow behind axisymmetric body, under expanded jet, and flow over hollow cylinder flare. The results are compared with experimental data and behavior of the turbulence models is examined. It is shown that both k-l and k-ζ models produce very good results. It is also shown that the compressibility correction in the model is required to obtain more accurate results. (author)

  14. Fluid flow dynamics in MAS systems

    Science.gov (United States)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  15. A Two-Scale Reduced Model for Darcy Flow in Fractured Porous Media

    KAUST Repository

    Chen, Huangxin

    2016-06-01

    In this paper, we develop a two-scale reduced model for simulating the Darcy flow in two-dimensional porous media with conductive fractures. We apply the approach motivated by the embedded fracture model (EFM) to simulate the flow on the coarse scale, and the effect of fractures on each coarse scale grid cell intersecting with fractures is represented by the discrete fracture model (DFM) on the fine scale. In the DFM used on the fine scale, the matrix-fracture system are resolved on unstructured grid which represents the fractures accurately, while in the EFM used on the coarse scale, the flux interaction between fractures and matrix are dealt with as a source term, and the matrix-fracture system can be resolved on structured grid. The Raviart-Thomas mixed finite element methods are used for the solution of the coupled flows in the matrix and the fractures on both fine and coarse scales. Numerical results are presented to demonstrate the efficiency of the proposed model for simulation of flow in fractured porous media.

  16. A system dynamics model for stock and flow of tritium in fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kwon, Saerom [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Sakamoto, Yoshiteru; Yamanishi, Toshihiko; Tobita, Kenji [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori-ken 039-3212 (Japan)

    2015-10-15

    Highlights: • System dynamics model of tritium fuel cycle was developed for analyzing stock and flow of tritium in fusion power plants. • Sensitivity of tritium build-up to breeding ratio parameters has been assessed to two plant concepts having 3 GW and 1.5 GW fusion power. • D-D start-up absolutely without initial loading of tritium is possible for both of the 3 GW and 1.5 GW fusion power plant concepts. • Excess stock of tritium is generated by the steady state operation with the value of tritium breeding ratio over unity. - Abstract: In order to analyze self-efficiency of tritium fuel cycle (TFC) and share the systems thinking of TFC among researchers and engineers in the vast area of fusion reactor technology, we develop a system dynamics (SD) TFC model using a commercial software STELLA. The SD-TFC model is illustrated as a pipe diagram which consists of tritium stocks, such as plasma, fuel clean up, isotope separation, fueling with storage and blanket, and pipes connecting among them. By using this model, we survey a possibility of D-D start-up without initial loading of tritium on two kinds of fusion plant having different plasma parameters. The D-D start-up scenario can reduce the necessity of initial loading of tritium through the production in plasma by D-D reaction and in breeding blanket by D-D neutron. The model is also used for considering operation scenario to avoid excess stock of tritium which must be produced at tritium breeding ratio over unity.

  17. Study of flow instabilities in double-channel natural circulation boiling systems

    International Nuclear Information System (INIS)

    Durga Prasad, Gonella V.; Pandey, Manmohan; Pradhan, Santosh K.; Gupta, Satish K.

    2008-01-01

    Natural circulation boiling systems consisting of parallel channels can undergo different types of oscillations (in-phase or out-of-phase) depending on the geometric parameters and operating conditions. Disturbances in one channel affect the flow in other channels, which triggers thermal-hydraulic oscillations. In the present work, the modes of oscillation under different operating conditions and channel-to-channel interaction during power fluctuations and on-power refueling in a double-channel natural circulation boiling system are investigated. The system is modeled using a lumped parameter mathematical model and RELAP5/MOD3.4. Parametric studies are carried out for an equal-power double-channel system, at different operating conditions, with both the models, and the results are compared. Instabilities, non-linear oscillations, and effects of recirculation loop dynamics and geometric parameters on the mode of oscillations, are studied using the lumped model. The two channels oscillate out-of-phase in Type-I region, but in Type-II region, both the modes of oscillation are observed under different conditions. Channel-to-channel interaction and on-power refueling studies are carried out using the RELAP model. At high powers, disturbances in one channel significantly affect the stability of the other channel. During on-power refueling, a near-stagnation condition or low-velocity reverse flow can occur, the possibility of reverse flow being higher at lower pressures

  18. Cellular automata model for traffic flow with safe driving conditions

    International Nuclear Information System (INIS)

    Lárraga María Elena; Alvarez-Icaza Luis

    2014-01-01

    In this paper, a recently introduced cellular automata (CA) model is used for a statistical analysis of the inner microscopic structure of synchronized traffic flow. The analysis focuses on the formation and dissolution of clusters or platoons of vehicles, as the mechanism that causes the presence of this synchronized traffic state with a high flow. This platoon formation is one of the most interesting phenomena observed in traffic flows and plays an important role both in manual and automated highway systems (AHS). Simulation results, obtained from a single-lane system under periodic boundary conditions indicate that in the density region where the synchronized state is observed, most vehicles travel together in platoons with approximately the same speed and small spatial distances. The examination of velocity variations and individual vehicle gaps shows that the flow corresponding to the synchronized state is stable, safe and highly correlated. Moreover, results indicate that the observed platoon formation in real traffic is reproduced in simulations by the relation between vehicle headway and velocity that is embedded in the dynamics definition of the CA model. (general)

  19. A comparative study of turbulence models for dissolved air flotation flow analysis

    International Nuclear Information System (INIS)

    Park, Min A; Lee, Kyun Ho; Chung, Jae Dong; Seo, Seung Ho

    2015-01-01

    The dissolved air flotation (DAF) system is a water treatment process that removes contaminants by attaching micro bubbles to them, causing them to float to the water surface. In the present study, two-phase flow of air-water mixture is simulated to investigate changes in the internal flow analysis of DAF systems caused by using different turbulence models. Internal micro bubble distribution, velocity, and computation time are compared between several turbulence models for a given DAF geometry and condition. As a result, it is observed that the standard κ-ε model, which has been frequently used in previous research, predicts somewhat different behavior than other turbulence models

  20. A stream-based mathematical model for distributed information processing systems - SysLab system model

    OpenAIRE

    Klein, Cornel; Rumpe, Bernhard; Broy, Manfred

    2014-01-01

    In the SysLab project we develop a software engineering method based on a mathematical foundation. The SysLab system model serves as an abstract mathematical model for information systems and their components. It is used to formalize the semantics of all used description techniques such as object diagrams state automata sequence charts or data-flow diagrams. Based on the requirements for such a reference model, we define the system model including its different views and their relationships.

  1. Wave dynamics in an extended macroscopic traffic flow model with periodic boundaries

    Science.gov (United States)

    Wang, Yu-Qing; Chu, Xing-Jian; Zhou, Chao-Fan; Yan, Bo-Wen; Jia, Bin; Fang, Chen-Hao

    2018-06-01

    Motivated by the previous traffic flow model considering the real-time traffic state, a modified macroscopic traffic flow model is established. The periodic boundary condition is applied to the car-following model. Besides, the traffic state factor R is defined in order to correct the real traffic conditions in a more reasonable way. It is a key step that we introduce the relaxation time as a density-dependent function and provide corresponding evolvement of traffic flow. Three different typical initial densities, namely the high density, the medium one and the low one, are intensively investigated. It can be found that the hysteresis loop exists in the proposed periodic-boundary system. Furthermore, the linear and nonlinear stability analyses are performed in order to test the robustness of the system.

  2. Construction and simulation of a novel continuous traffic flow model

    International Nuclear Information System (INIS)

    Hwang, Yao-Hsin; Yu, Jui-Ling

    2017-01-01

    In this paper, we aim to propose a novel mathematical model for traffic flow and apply a newly developed characteristic particle method to solve the associate governing equations. As compared with the existing non-equilibrium higher-order traffic flow models, the present one is put forward to satisfy the following three conditions: 1.Preserve the equilibrium state in the smooth region. 2.Yield an anisotropic propagation of traffic flow information. 3.Expressed with a conservation law form for traffic momentum. These conditions will ensure a more practical simulation in traffic flow physics: The current traffic will not be influenced by the condition in the behind and result in unambiguous condition across a traffic shock. Through analyses of characteristics, stability condition and steady-state solution adherent to the equation system, it is shown that the proposed model actually conform to these conditions. Furthermore, this model can be cast into its characteristic form which, incorporated with the Rankine-Hugoniot relation, is appropriate to be simulated by the characteristic particle method to obtain accurate computational results. - Highlights: • The traffic model expressed with the momentum conservation law. • Traffic flow information propagate anisotropically and preserve the equilibrium state in the smooth region. • Computational particles of two families are invented to mimic forward-running and backward-running characteristics. • Formation of shocks will be naturally detected by the intersection of computational particles of same family. • A newly developed characteristic particle method is used to simulate traffic flow model equations.

  3. Flow energy conversion system

    International Nuclear Information System (INIS)

    Sargsyan, R.A.

    2011-01-01

    A cost-effective hydropower system called here Flow Energy Converter was developed, patented, manufactured and tested for water pumping, electricity generation and other purposes especially useful for the rural communities. The system consists of water-driven turbine with plane-surface blades, power transmission means and pump and/or generator. Working sample of the Flow Energy Converter was designed and manufactured at the Institute of Radio Physics and Electronics

  4. A Dynamic Growth Model for Flows of Foreign Direct Investment

    OpenAIRE

    Yi-Hui Chiang; Yiming Li; Chih-Young Hung

    2007-01-01

    In this work, we for the first time study the dynamic flows of the foreign direct investment (FDI) with a dynamic growth theory. We define the FDI flow as a process which transmits throughout a given social system by way of diverse communication channels. In model formulation, seven assumptions are thus proposed and the foreign capital policy of the host country is considered as an external influence; in addition, the investment policy of the investing country is modeled as an internal influe...

  5. Fluorescent multiplex cell flow systems and methods

    KAUST Repository

    Merzaban, Jasmeen

    2017-06-01

    Systems and methods are provided for simultaneously assaying cell adhesion or cell rolling for multiple cell specimens. One embodiment provides a system for assaying adhesion or cell rolling of multiple cell specimens that includes a confocal imaging system containing a parallel plate flow chamber, a pump in fluid communication with the parallel plate flow chamber via a flow chamber inlet line and a cell suspension in fluid communication with the parallel plate flow chamber via a flow chamber outlet line. The system also includes a laser scanning system in electronic communication with the confocal imaging system, and a computer in communication with the confocal imaging system and laser scanning system. In certain embodiments, the laser scanning system emits multiple electromagnetic wavelengths simultaneously it cause multiple fluorescent labels having different excitation wavelength maximums to fluoresce. The system can simultaneously capture real-time fluorescence images from at least seven cell specimens in the parallel plate flow chamber.

  6. Countercurrent flow limitation model for RELAP5/MOD3

    International Nuclear Information System (INIS)

    Riemke, R.A.

    1991-01-01

    This paper reports on a countercurrent flow limitation model incorporated into the RELAP5/MOD3 system transient analysis code. The model is implemented in a manner similar to the RELAP5 chocking model. Simulations using air/water flooding test problem demonstrate the ability of the code to significantly improve its comparison to data when a flooding correlation is used

  7. Slug flow transitions in horizontal gas/liquid two-phase flows. Dependence on channel height and system pressure for air/water and steam/water two-phase flows

    International Nuclear Information System (INIS)

    Nakamura, Hideo

    1996-05-01

    The slug flow transitions and related phenomena for horizontal two-phase flows were studied for a better prediction of two-phase flows that typically appear during the reactor loss-of-coolant accidents (LOCAs). For better representation of the flow conditions experimentally, two large-scaled facility: TPTF for high-pressure steam/water two-phase flows and large duct test facility for air/water two-phase flows, were used. The visual observation of the flow using a video-probe was performed in the TPTF experiments for good understanding of the phenomena. The currently-used models and correlations based mostly on the small-scale low-pressure experiments were reviewed and improved based on these experimental results. The modified Taitel-Dukler model for prediction of transition into slug flow from wavy flow and the modified Steen-Wallis correlation for prediction of onset of liquid entrainment from the interfacial waves were obtained. An empirical correlation for the gas-liquid interfacial friction factor was obtained further for prediction of liquid levels at wavy flow. The region of slug flow regime that is generally under influences of the channel height and system pressure was predicted well when these models and correlations were applied together. (author). 90 refs

  8. Developed generalised unified power flow controller model in the Newton–Raphson power-flow analysis using combined mismatches method

    DEFF Research Database (Denmark)

    Kamel, Salah; Jurado, Francisco; Chen, Zhe

    2016-01-01

    values are calculated during the iterative process based on the desired controlled values and buses voltage at the terminals of GUPFC. The parameters of GUPFC can be calculated during the iterative process and the final values are updated after load flow convergence. Using the developed GUPFC model......, the original structure and symmetry of the admittance and Jacobian matrices can still be kept, the changing of Jacobian matrix is eliminated. Consequently, the complexities of the computer load flow program codes with GUPFC are reduced. The HPCIM load flow code with the proposed model is written in C......++ programming language. Where, the SuperLU library is utilised to handle the sparse Jacobian matrix. The proposed model has been validated using the standard IEEE test systems....

  9. Physical and numerical modelling of low mach number compressible flows

    International Nuclear Information System (INIS)

    Paillerre, H.; Clerc, S.; Dabbene, F.; Cueto, O.

    1999-01-01

    This article reviews various physical models that may be used to describe compressible flow at low Mach numbers, as well as the numerical methods developed at DRN to discretize the different systems of equations. A selection of thermal-hydraulic applications illustrate the need to take into account compressibility and multidimensional effects as well as variable flow properties. (authors)

  10. Numerical simulation of groundwater flow for the Yakima River basin aquifer system, Washington

    Science.gov (United States)

    Ely, D.M.; Bachmann, M.P.; Vaccaro, J.J.

    2011-01-01

    A regional, three-dimensional, transient numerical model of groundwater flow was constructed for the Yakima River basin aquifer system to better understand the groundwater-flow system and its relation to surface-water resources. The model described in this report can be used as a tool by water-management agencies and other stakeholders to quantitatively evaluate proposed alternative management strategies that consider the interrelation between groundwater availability and surface-water resources.

  11. Groundwater flow and water budget in the surficial and Floridan aquifer systems in east-central Florida

    Science.gov (United States)

    Sepulveda, Nicasio; Tiedeman, Claire; O'Reilly, Andrew M.; Davis, Jeffrey B.; Burger, Patrick

    2012-01-01

    A numerical transient model of the surficial and Floridan aquifer systems in east-central Florida was developed to (1) increase the understanding of water exchanges between the surficial and the Floridan aquifer systems, (2) assess the recharge rates to the surficial aquifer system from infiltration through the unsaturated zone and (3) obtain a simulation tool that could be used by water-resource managers to assess the impact of changes in groundwater withdrawals on spring flows and on the potentiometric surfaces of the hydrogeologic units composing the Floridan aquifer system. The hydrogeology of east-central Florida was evaluated and used to develop and calibrate the groundwater flow model, which simulates the regional fresh groundwater flow system. The U.S. Geological Survey three-dimensional groundwater flow model, MODFLOW-2005, was used to simulate transient groundwater flow in the surficial, intermediate, and Floridan aquifer systems from 1995 to 2006. The East-Central Florida Transient model encompasses an actively simulated area of about 9,000 square miles. Although the model includes surficial processes-rainfall, irrigation, evapotranspiration (ET), runoff, infiltration, lake water levels, and stream water levels and flows-its primary purpose is to characterize and refine the understanding of groundwater flow in the Floridan aquifer system. Model-independent estimates of the partitioning of rainfall into ET, streamflow, and aquifer recharge are provided from a water-budget analysis of the surficial aquifer system. The interaction of the groundwater flow system with the surface environment was simulated using the Green-Ampt infiltration method and the MODFLOW-2005 Unsaturated-Zone Flow, Lake, and Streamflow-Routing Packages. The model is intended to simulate the part of the groundwater system that contains freshwater. The bottom and lateral boundaries of the model were established at the estimated depths where the chloride concentration is 5,000 milligrams

  12. Load-Flow in Multiphase Distribution Networks: Existence, Uniqueness, Non-Singularity, and Linear Models

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Andrey [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Cong [Ecole Polytechnique Federale de Lausanne (EPFL); Le Boudec, Jean-Yves [Ecole Polytechnique Federale de Lausanne (EPFL)

    2018-04-06

    This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for the non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.

  13. Design and Optimization of Annular Flow Electromagnetic Measurement System for Drilling Engineering

    Directory of Open Access Journals (Sweden)

    Liang Ge

    2018-01-01

    Full Text Available Using the downhole annular flow measurement system to get real-time information of downhole annular flow is the core and foundation of downhole microflux control drilling technology. The research work of electromagnetic flowmeter in recent years creates a challenge to the design of downhole annular flow measurement. This paper proposes a design and optimization of annular flow electromagnetic measurement system for drilling engineering based on the finite element method. Firstly, the annular flow measuring and optimization principle are described. Secondly, a simulation model of an annular flow electromagnetic measurement system with two pairs of coil is built based on the fundamental equation of electromagnetic flowmeter by COMSOL. Thirdly, simulations of the structure of excitation system of the measurement system are carried out, and simulations of the size of the electrode’s radius are also carried out based on the optimized structure, and then all the simulation results are analyzed to evaluate the optimization effect based on the evaluation indexes. The simulation results show that optimized shapes of the excitation system and electrode size can yield a better performance in the annular flow measurement.

  14. FuGEFlow: data model and markup language for flow cytometry

    Directory of Open Access Journals (Sweden)

    Manion Frank J

    2009-06-01

    Full Text Available Abstract Background Flow cytometry technology is widely used in both health care and research. The rapid expansion of flow cytometry applications has outpaced the development of data storage and analysis tools. Collaborative efforts being taken to eliminate this gap include building common vocabularies and ontologies, designing generic data models, and defining data exchange formats. The Minimum Information about a Flow Cytometry Experiment (MIFlowCyt standard was recently adopted by the International Society for Advancement of Cytometry. This standard guides researchers on the information that should be included in peer reviewed publications, but it is insufficient for data exchange and integration between computational systems. The Functional Genomics Experiment (FuGE formalizes common aspects of comprehensive and high throughput experiments across different biological technologies. We have extended FuGE object model to accommodate flow cytometry data and metadata. Methods We used the MagicDraw modelling tool to design a UML model (Flow-OM according to the FuGE extension guidelines and the AndroMDA toolkit to transform the model to a markup language (Flow-ML. We mapped each MIFlowCyt term to either an existing FuGE class or to a new FuGEFlow class. The development environment was validated by comparing the official FuGE XSD to the schema we generated from the FuGE object model using our configuration. After the Flow-OM model was completed, the final version of the Flow-ML was generated and validated against an example MIFlowCyt compliant experiment description. Results The extension of FuGE for flow cytometry has resulted in a generic FuGE-compliant data model (FuGEFlow, which accommodates and links together all information required by MIFlowCyt. The FuGEFlow model can be used to build software and databases using FuGE software toolkits to facilitate automated exchange and manipulation of potentially large flow cytometry experimental data sets

  15. FuGEFlow: data model and markup language for flow cytometry.

    Science.gov (United States)

    Qian, Yu; Tchuvatkina, Olga; Spidlen, Josef; Wilkinson, Peter; Gasparetto, Maura; Jones, Andrew R; Manion, Frank J; Scheuermann, Richard H; Sekaly, Rafick-Pierre; Brinkman, Ryan R

    2009-06-16

    Flow cytometry technology is widely used in both health care and research. The rapid expansion of flow cytometry applications has outpaced the development of data storage and analysis tools. Collaborative efforts being taken to eliminate this gap include building common vocabularies and ontologies, designing generic data models, and defining data exchange formats. The Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) standard was recently adopted by the International Society for Advancement of Cytometry. This standard guides researchers on the information that should be included in peer reviewed publications, but it is insufficient for data exchange and integration between computational systems. The Functional Genomics Experiment (FuGE) formalizes common aspects of comprehensive and high throughput experiments across different biological technologies. We have extended FuGE object model to accommodate flow cytometry data and metadata. We used the MagicDraw modelling tool to design a UML model (Flow-OM) according to the FuGE extension guidelines and the AndroMDA toolkit to transform the model to a markup language (Flow-ML). We mapped each MIFlowCyt term to either an existing FuGE class or to a new FuGEFlow class. The development environment was validated by comparing the official FuGE XSD to the schema we generated from the FuGE object model using our configuration. After the Flow-OM model was completed, the final version of the Flow-ML was generated and validated against an example MIFlowCyt compliant experiment description. The extension of FuGE for flow cytometry has resulted in a generic FuGE-compliant data model (FuGEFlow), which accommodates and links together all information required by MIFlowCyt. The FuGEFlow model can be used to build software and databases using FuGE software toolkits to facilitate automated exchange and manipulation of potentially large flow cytometry experimental data sets. Additional project documentation, including

  16. Comparative study of turbulence model performance for axisymmetric sudden expansion flow

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo; Yoon, Juhyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, the performance of turbulence models in predicting the turbulent flow in an axisymmetric sudden expansion with an expansion ratio of 4 is assessed for a Reynolds number of 5.6 Χ 10{sup 4}. The comparisons show that the standard k-ε and RSM models provide the best agreement with the experimental data, whereas the standard k-ω model gives poor predictions. Owing to its computational efficiency, the Reynolds Averaged Navier-Stokes (RANS) approach has been widely used for the prediction of turbulent flows and associated pressure losses in a variety of internal flow systems such as a diffuser, orifice, converging nozzle, and pipes with sudden expansion. However, the lack of a general turbulence model often leads to limited applications of a RANS approach, i. e., the accuracy and validity of solutions obtained from RANS equations vary with the turbulence model, flow regime, near-wall treatment, and configuration of the problem. In light of the foregoing, a large amount of turbulence research has been conducted to assess the performance of existing turbulence models for different flow fields. In this paper, the turbulent flow in an axisymmetric sudden expansion is numerically investigated for a Reynolds number of 5.6 Χ 10{sup 4}, with the aim of examining the performance of several turbulence models.

  17. Insights in Fault Flow Behaviour from Onshore Nigeria Petroleum System Modelling

    Directory of Open Access Journals (Sweden)

    Woillez Marie-Noëlle

    2017-09-01

    Full Text Available Faults are complex geological features acting either as permeability barrier, baffle or drain to fluid flow in sedimentary basins. Their role can be crucial for over-pressure building and hydrocarbon migration, therefore they have to be properly integrated in basin modelling. The ArcTem basin simulator included in the TemisFlow software has been specifically designed to improve the modelling of faulted geological settings and to get a numerical representation of fault zones closer to the geological description. Here we present new developments in the simulator to compute fault properties through time as a function of available geological parameters, for single-phase 2D simulations. We have used this new prototype to model pressure evolution on a siliciclastic 2D section located onshore in the Niger Delta. The section is crossed by several normal growth faults which subdivide the basin into several sedimentary units and appear to be lateral limits of strong over-pressured zones. Faults are also thought to play a crucial role in hydrocarbons migration from the deep source rocks to shallow reservoirs. We automatically compute the Shale Gouge Ratio (SGR along the fault planes through time, as well as the fault displacement velocity. The fault core permeability is then computed as a function of the SGR, including threshold values to account for shale smear formation. Longitudinal fault fluid flow is enhanced during periods of high fault slip velocity. The method allows us to simulate both along-fault drainages during the basin history as well as overpressure building at present-day. The simulated pressures are at first order within the range of observed pressures we had at our disposal.

  18. Revised sequence components power system models for unbalanced power system studies

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Akher, M. [Tunku Abdul Rahman Univ., Kuala Lumpur (Malaysia); Nor, K.-M. [Univ. of Technology Malaysia, Johor (Malaysia); Rashid, A.H.A. [Univ. of Malaya, Kuala Lumpur (Malaysia)

    2007-07-01

    The principle method of analysis using positive, negative, and zero-sequence networks has been used to examine the balanced power system under both balanced and unbalanced loading conditions. The significant advantage of the sequence networks is that the sequence networks become entirely uncoupled in the case of balanced three-phase power systems. The uncoupled sequence networks then can be solved in independent way such as in fault calculation programs. However, the hypothesis of balanced power systems cannot be considered in many cases due to untransposed transmission lines; multiphase line segments in a distribution power system; or transformer phase shifts which cannot be incorporated in the existing models. A revised sequence decoupled power system models for analyzing unbalanced power systems based on symmetrical networks was presented in this paper. These models included synchronous machines, transformers, transmission lines, and voltage regulators. The models were derived from their counterpart's models in phase coordinates frame of reference. In these models, the three sequence networks were fully decoupled with a three-phase coordinates features such as transformer phase shifts and transmission line coupling. The proposed models were used to develop an unbalanced power-flow program for analyzing both balanced and unbalanced networks. The power flow solution was identical to results obtained from a full phase coordinate three-phase power-flow program. 11 refs., 3 tabs.

  19. Dynamic response of piping system subject to flow acoustic excitation

    International Nuclear Information System (INIS)

    Wang, T.; Sun, Y.S.

    1988-01-01

    Through the use of a theoretically derived and test data-calibrated forcing function, the dynamic response of a piping system subject to flow-acoustic induced vibration is analyzed. It is shown that the piping behavior can be predicted when consideration is given to both the wall flexural vibration and the piping system vibration. Piping responded as a system to the transversal excitation due to the swirling motion of the fluid flow, as well as flexurally to the high-frequency acoustic excitations. The transverse piping system response was calculated using a lumped mass piping model. The piping model has more stringent requirements than its counterpart for waterhammer and seismic modeling due to the shorter spiral wavelength and higher frequency of the forcing function. Proper modeling ensured that both the moment stress caused by system excitation and the local stress induced by the support reaction load were properly accounted for. Flexural vibration not only poses a threat to nipples and branch connections, but also contributes substantially to the resultant total stress experienced by the pipe. The forcing function approach has the advantage that the critical locations on the piping system can be identified by means of analysis, facilitating surveillance and inspection, as well as fatigue evaluation

  20. Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Cheng, Larry

    2015-01-01

    This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design.

  1. Numerical modelling of single-phase flow in rough fractures with contacts

    Science.gov (United States)

    Olkiewicz, Piotr; Dabrowski, Marcin

    2017-04-01

    Fracture flow may dominate in rocks with low porosity and it can accompany both industrial and natural processes. Typical examples of such processes are natural flows in crystalline rocks and industrial flows in oil and gas production systems or hydraulic fracturing. Fracture flow provides an important mechanism for transporting mass and energy. The distribution of the apertures of fracture and contact area are the key parameters with regard to the fracture transmissivity. We use the method of correlated random fields [Mourzenko, 1996] to generate synthetic fracture geometry in 3D. The flow of an incompressible Newtonian viscous fluid in geological formation can be approximated by the Stokes, the Stokes-Brinkman or the Reynolds models. We use our own implementation of the finite element method based on MILAMIN [Dabrowski, 2008] to solve governing partial differential equation over domain. We compare the Stokes, the Stokes-Brinkamn and the Reynolds models for fracture flow based on systematic numerical simulations for a wide range of geometric parameters. Mismatch between the Reynolds and the Stokes models becomes significant with increasing fracture roughness or contact area. The Stokes-Brinkman model is more accurate than Reynolds models due to additional Laplacian term, which allows to fulfil no-slip boundary condition. We present condition when the Reynolds and the Stokes-Brinkman models are valid. In the last three decades many authors used the Reynolds equation for studying fracture flow because of its simplicity. We recommend using the Stokes-Brinkman model for fracture flow, which allows to fulfil no-slip boundary condition on asperities boundary and is more accurate for rough fractures than the Reynolds model.

  2. Mathematical modeling of fluid flow in aluminum ladles for degasification with impeller - injector

    Science.gov (United States)

    Ramos-Gómez, E.; González-Rivera, C.; Ramírez-Argáez, M. A.

    2012-09-01

    In this work a fundamental Eulerian mathematical model was developed to simulate fluid flow in a water physical model of an aluminum ladle equipped with impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate on the fluid flow and vortex formation was analyzed with this model. Commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this twophase fluid flow system. The mathematical model was successfully validated against experimentally measured liquid velocity and turbulent profiles in a physical model. From the results it was concluded that the angular speed of the impeller is the most important parameter promoting better stirred baths. Pumping effect of the impeller is increased as impeller rotation speed increases. Gas flow rate is detrimental on bath stirring and diminishes pumping effect of impeller.

  3. Application of SARIMA model to forecasting monthly flows in Waterval River, South Africa

    Directory of Open Access Journals (Sweden)

    Tadesse Kassahun Birhanu

    2017-12-01

    Full Text Available Knowledge of future river flow information is fundamental for development and management of a river system. In this study, Waterval River flow was forecasted by SARIMA model using GRETL statistical software. Mean monthly flows from 1960 to 2016 were used for modelling and forecasting. Different unit root and Mann–Kendall trend analysis proved the stationarity of the observed flow time series. Based on seasonally differenced correlogram characteristics, different SARIMA models were evaluated; their parameters were optimized, and diagnostic check up of forecasts was made using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Information (AI and Hannan–Quinn (HQ criteria, SARIMA (3, 0, 2 x (3, 1, 312 model was selected for Waterval River flow forecasting. Comparison of forecast performance of SARIMA models with that of computational intelligent forecasting techniques was recommended for future study.

  4. Equivalent model and power flow model for electric railway traction network

    Science.gov (United States)

    Wang, Feng

    2018-05-01

    An equivalent model of the Cable Traction Network (CTN) considering the distributed capacitance effect of the cable system is proposed. The model can be divided into 110kV side and 27.5kV side two kinds. The 110kV side equivalent model can be used to calculate the power supply capacity of the CTN. The 27.5kV side equivalent model can be used to solve the voltage of the catenary. Based on the equivalent simplified model of CTN, the power flow model of CTN which involves the reactive power compensation coefficient and the interaction of voltage and current, is derived.

  5. A Generalized Minimum Cost Flow Model for Multiple Emergency Flow Routing

    Directory of Open Access Journals (Sweden)

    Jianxun Cui

    2014-01-01

    Full Text Available During real-life disasters, that is, earthquakes, floods, terrorist attacks, and other unexpected events, emergency evacuation and rescue are two primary operations that can save the lives and property of the affected population. It is unavoidable that evacuation flow and rescue flow will conflict with each other on the same spatial road network and within the same time window. Therefore, we propose a novel generalized minimum cost flow model to optimize the distribution pattern of these two types of flow on the same network by introducing the conflict cost. The travel time on each link is assumed to be subject to a bureau of public road (BPR function rather than a fixed cost. Additionally, we integrate contraflow operations into this model to redesign the network shared by those two types of flow. A nonconvex mixed-integer nonlinear programming model with bilinear, fractional, and power components is constructed, and GAMS/BARON is used to solve this programming model. A case study is conducted in the downtown area of Harbin city in China to verify the efficiency of proposed model, and several helpful findings and managerial insights are also presented.

  6. VOF Modeling and Analysis of the Segmented Flow in Y-Shaped Microchannels for Microreactor Systems

    Directory of Open Access Journals (Sweden)

    Xian Wang

    2013-01-01

    Full Text Available Microscaled devices receive great attention in microreactor systems for producing high renewable energy due to higher surface-to-volume, higher transport rates (heat or/and mass transfer rates, and other advantages over conventional-size reactors. In this paper, the two-phase liquid-liquid flow in a microchannel with various Y-shaped junctions has been studied numerically. Two kinds of immiscible liquids were injected into a microchannel from the Y-shaped junctions to generate the segment flow mode. The segment length was studied. The volume of fluid (VOF method was used to track the liquid-liquid interface and the piecewise-liner interface construction (PLIC technique was adopted to get a sharp interface. The interfacial tension was simulated with continuum surface force (CSF model and the wall adhesion boundary condition was taken into consideration. The simulated flow pattern presents consistence with our experimental one. The numerical results show that a segmented flow mode appears in the main channel. Under the same inlet velocities of two liquids, the segment lengths of the two liquids are the same and depend on the inclined angles of two lateral channels. The effect of inlet velocity is studied in a typical T-shaped microchannel. It is found that the ratio between the lengths of two liquids is almost equal to the ratio between their inlet velocities.

  7. Radar Based Flow and Water Level Forecasting in Sewer Systems:a danisk case study

    OpenAIRE

    Thorndahl, Søren; Rasmussen, Michael R.; Grum, M.; Neve, S. L.

    2009-01-01

    This paper describes the first radar based forecast of flow and/or water level in sewer systems in Denmark. The rainfall is successfully forecasted with a lead time of 1-2 hours, and flow/levels are forecasted an additional ½-1½ hours using models describing the behaviour of the sewer system. Both radar data and flow/water level model are continuously updated using online rain gauges and online in-sewer measurements, in order to make the best possible predictions. The project show very promis...

  8. Dynamic electro-thermal modeling of all-vanadium redox flow battery with forced cooling strategies

    International Nuclear Information System (INIS)

    Wei, Zhongbao; Zhao, Jiyun; Xiong, Binyu

    2014-01-01

    Highlights: • A dynamic electro-thermal model is proposed for VRB with forced cooling. • The Foster network is adopted to model the battery cooling process. • Both the electrolyte temperature and terminal voltage can be accurately predicted. • The flow rate of electrolyte and coolant significantly impact battery performance. - Abstract: The present study focuses on the dynamic electro-thermal modeling for the all-vanadium redox flow battery (VRB) with forced cooling strategies. The Foster network is adopted to dynamically model the heat dissipation of VRB with heat exchangers. The parameters of Foster network are extracted by fitting the step response of it to the results of linearized CFD model. Then a complete electro-thermal model is proposed by coupling the heat generation model, Foster network and electrical model. Results show that the established model has nearly the same accuracy with the nonlinear CFD model in electrolyte temperature prediction but drastically improves the computational efficiency. The modeled terminal voltage is also benchmarked with the experimental data under different current densities. The electrolyte temperature is found to be significantly influenced by the flow rate of coolant. As compared, although the electrolyte flow rate has unremarkable impact on electrolyte temperature, its effect on system pressure drop and battery efficiency is significant. Increasing the electrolyte flow rate improves the coulombic efficiency, voltage efficiency and energy efficiency simultaneously but at the expense of higher pump power demanded. An optimal flow rate exists for each operating condition to maximize the system efficiency

  9. The use of flow models for design of plant operating procedures

    International Nuclear Information System (INIS)

    Lind, M.

    1982-03-01

    The report describe a systematic approach to the design of operating procedures or sequence automatics for process plant control. It is shown how flow models representing the topology of mass and energy flows on different levels of function provide plant information which is important for the considered design problem. The modelling methodology leads to the definition of three categories of control tasks. Two tasks relate to the regulation and control of changes of levels and flows of mass and energy in a system within a defined mode of operation. The third type relate to the control actions necessary for switching operations involved in changes of operating mode. These control tasks are identified for a given plant as part of the flow modelling activity. It is discussed how the flow model deal with the problem of assigning control task precedence in time eg. during start-up or shut-down operations. The method may be a basis for providing automated procedure support to the operator in unforeseen situations or may be a tool for control design. (auth.)

  10. Numerical Modelling of Three-Fluid Flow Using The Level-set Method

    Science.gov (United States)

    Li, Hongying; Lou, Jing; Shang, Zhi

    2014-11-01

    This work presents a numerical model for simulation of three-fluid flow involving two different moving interfaces. These interfaces are captured using the level-set method via two different level-set functions. A combined formulation with only one set of conservation equations for the whole physical domain, consisting of the three different immiscible fluids, is employed. Numerical solution is performed on a fixed mesh using the finite volume method. Surface tension effect is incorporated using the Continuum Surface Force model. Validation of the present model is made against available results for stratified flow and rising bubble in a container with a free surface. Applications of the present model are demonstrated by a variety of three-fluid flow systems including (1) three-fluid stratified flow, (2) two-fluid stratified flow carrying the third fluid in the form of drops and (3) simultaneous rising and settling of two drops in a stationary third fluid. The work is supported by a Thematic and Strategic Research from A*STAR, Singapore (Ref. #: 1021640075).

  11. Hydrodynamics of free surface flows modelling with the finite element method

    CERN Document Server

    Hervouet, Jean-Michel

    2007-01-01

    A definitive guide for accurate state-of-the-art modelling of free surface flows Understanding the dynamics of free surface flows is the starting point of many environmental studies, impact studies, and waterworks design. Typical applications, once the flows are known, are water quality, dam impact and safety, pollutant control, and sediment transport. These studies used to be done in the past with scale models, but these are now being replaced by numerical simulation performed by software suites called "hydro-informatic systems". The Telemac system is the leading software package worldwide, and has been developed by Electricité de France and Jean-Michel Hervouet, who is the head and main developer of the Telemac project. Written by a leading authority on Computational Fluid Dynamics, the book aims to provide environmentalists, hydrologists, and engineers using hydro-informatic systems such as Telemac and the finite element method, with the knowledge of the basic principles, capabilities, different hypothese...

  12. Modeling of hyaluronan clearance with application to estimation of lymph flow

    International Nuclear Information System (INIS)

    Rössler, Andreas; Goswami, Nandu; Fink, Martin; Batzel, Jerry J

    2011-01-01

    One of the important factors in blood pressure regulation is the maintenance of the level of blood volume, which depends on several factors including the rate of lymph flow. Lymph flow can be measured directly using cannulation of lymphatic vessels, which is not clinically feasible, or indirectly by the tracer appearance rate, which is the rate at which macromolecules appear into the blood from the peritoneal cavity. However, indirect lymph flow measurements do not always provide consistent results. Through its contribution to osmotic pressure and resistance to flow, the macromolecule hyaluronan takes part in the regulation of tissue hydration and the maintenance of water and protein homeostasis. It arrives in blood plasma through lymph flow. Lymphatic hyaluronic acid (HA, hyaluronan) concentration is several times higher than that in plasma, suggesting that the lymphatic route may account for the majority of HA found in plasma. Furthermore, circulating levels of HA reflect the dynamic state between delivery to—and removal from—the bloodstream. To develop an accurate estimation of the fluid volume distribution and dynamics, the rate of lymph flow needs to be taken into account and hyaluronan could be used as a marker in estimating this flow. To examine the HA distribution and system fluid dynamics, a six-compartment model, which could reflect both the steady-state relationships and qualitative characteristics of the dynamics, was developed. This was then applied to estimate fluid shifts from the interstitial space via the lymphatic system to the plasma during different physiological stresses (orthostatic stress and the stress of ultrafiltration during dialysis). Sensitivity analysis shows that during ultrafiltration, lymph flow is a key parameter influencing the total HA level, thus suggesting that the model may find applications in addressing the problem of estimating lymph flow. Since the fluid balance between interstitium and plasma is maintained by lymph

  13. Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems

    DEFF Research Database (Denmark)

    Fang, Jiakun; Zeng, Qing; Ai, Xiaomeng

    2018-01-01

    . Simulation on the test case illustrates the success of the modelling and the beneficial roles of the power-to-gas are analyzed. The proposed model can be used in the decision support for both planning and operation of the coordinated natural gas and electrical power systems.......This work focuses on the optimal operation of the integrated gas and electrical power system with bi-directional energy conversion. Considering the different response times of the gas and power systems, the transient gas flow and steady- state power flow are combined to formulate the dynamic...... optimal energy flow in the integrated gas and power systems. With proper assumptions and simplifications, the problem is transformed into a single stage linear programming. And only a single stage linear programming is needed to obtain the optimal operation strategy for both gas and power systems...

  14. System modeling and simulation at EBR-II

    International Nuclear Information System (INIS)

    Dean, E.M.; Lehto, W.K.; Larson, H.A.

    1986-01-01

    The codes being developed and verified using EBR-II data are the NATDEMO, DSNP and CSYRED. NATDEMO is a variation of the Westinghouse DEMO code coupled to the NATCON code previously used to simulate perturbations of reactor flow and inlet temperature and loss-of-flow transients leading to natural convection in EBR-II. CSYRED uses the Continuous System Modeling Program (CSMP) to simulate the EBR-II core, including power, temperature, control-rod movement reactivity effects and flow and is used primarily to model reactivity induced power transients. The Dynamic Simulator for Nuclear Power Plants (DSNP) allows a whole plant, thermal-hydraulic simulation using specific component and system models called from libraries. It has been used to simulate flow coastdown transients, reactivity insertion events and balance-of-plant perturbations

  15. Calculation of lobe mixer flow with reynolds stress model. Oryoku hoteishiki model ni yoru lobe mixer ryu no suchi keisan

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Makoto; Arakawa, Chuichi; Tagori, Tetsuo [Ishikawajima-Harima Heavy Industries, Co., Ltd., Tokyo (Japan) Univ. of Tokyo, Tokyo (Japan). Faculty of Engineering Univ. of Tsukuba, Tsukuba (Japan)

    1990-02-25

    It is considered that exhaust gas energy of turbofan engine is partly collected to realize the improvement of propulsion efficiency together with the reduction of noise appeared by the change in velocity distribution of exhaust gas flow. Then Lobe mixer was studied and its effectiveness was widely recognized, however the development of more realistic prediction method of exhaust nozzle system including Lobe mixer, is not completed yet. The stress equation model with low Reynolds Number which is easily used by the expansion of Launder Reece Rodi model in three dimension coordinate system was newly constructed. Applicability of the stress equation in more complicated flow field was greatly improved. While the above model was applied to Lobe mixer system, then the qualitative reproduction of mixing process accompanied with flow around Lobe and longitudinal eddy of core or bi-pass flow, was realized. There is room for improvement of pressure strain correlation term and behavior of Reynolds stress very close by wall surface in this model. 16 refs., 9 figs., 1 tab.

  16. Navigating the flow: individual and continuum models for homing in flowing environments.

    Science.gov (United States)

    Painter, Kevin J; Hillen, Thomas

    2015-11-06

    Navigation for aquatic and airborne species often takes place in the face of complicated flows, from persistent currents to highly unpredictable storms. Hydrodynamic models are capable of simulating flow dynamics and provide the impetus for much individual-based modelling, in which particle-sized individuals are immersed into a flowing medium. These models yield insights on the impact of currents on population distributions from fish eggs to large organisms, yet their computational demands and intractability reduce their capacity to generate the broader, less parameter-specific, insights allowed by traditional continuous approaches. In this paper, we formulate an individual-based model for navigation within a flowing field and apply scaling to derive its corresponding macroscopic and continuous model. We apply it to various movement classes, from drifters that simply go with the flow to navigators that respond to environmental orienteering cues. The utility of the model is demonstrated via its application to 'homing' problems and, in particular, the navigation of the marine green turtle Chelonia mydas to Ascension Island. © 2015 The Author(s).

  17. Comparison of two conceptual models of flow using the TSA

    International Nuclear Information System (INIS)

    Wilson, M.L.

    1992-01-01

    As part of the performance-assessment task for the potential repository site at Yucca Mountain, Nevada, Sandia National Laboratories is developing a set of programs called the Total-System Analyzer (TSA). The TSA is one of the tools being used in the current effort to provide a systematic preliminary estimate the total-system performance of the Yucca Mountain site. The purposes of this paper are twofold: (1) to describe capabilities that have been added to the TSA in the last year; and (2) to present a comparison of two conceptual models of unsaturated-zone flow and transport, in terms of the performance measure specified by the Environmental Protection Agency (EPA) in 40 CFR Part 191. The conceptual-model comparison is intended to demonstrate the new TSA capabilities and at the same time shed some light on the performance implications of fracture flow at Yucca Mountain. Unsaturated fracture flow is not yet well understood, and it is of great importance in determining the performance of Yucca Mountain

  18. Summary of [alpha]-FLOW, a general purpose three-dimensional fluid analyzing system. Han[prime]yo sanjigen ryutai kaiseki system [alpha]-FLOW no gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    Koike, H [Fuji Research Institute Corporation, Tokyo (Japan)

    1992-08-01

    The [alpha]-FLOW is a three-dimensional fluid analyzing software developed from cooperations among research institutes of private business companies and universities in Japan under the assistance from the Ministry of International Trade and Industry. This paper describes its summary and features. The system is a discrete system utilizing a supercomputer and a work station. The analysis modules incorporated in the system include those for non-compressive fluid analysis, compressive fluid analysis, analysis of non-compressive fluid including free surface, analysis of flows including combustion and chemical reactions, substance migration analysis, and heat transfer analysis. It has a feature that even non-specialists can analyze fluids easily as a result of the development of an expert system to support the numerical analysis. Development of the input data preparing system enables to utilize the work station to process from shape modeling to grid generation, and from inputting analyzing condition data to calculating the flows and outputting the calculation result, all in dialogue modes. An open architecture was adopted. 27 refs., 7 figs., 10 tabs.

  19. Modeling and simulation of reactive flows

    CERN Document Server

    Bortoli, De AL; Pereira, Felipe

    2015-01-01

    Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and va

  20. The JGrass-NewAge system for forecasting and managing the hydrological budgets at the basin scale: models of flow generation and propagation/routing

    Directory of Open Access Journals (Sweden)

    G. Formetta

    2011-11-01

    Full Text Available This paper presents a discussion of the predictive capacity of the implementation of the semi-distributed hydrological modeling system JGrass-NewAge. This model focuses on the hydrological budgets of medium scale to large scale basins as the product of the processes at the hillslope scale with the interplay of the river network. The part of the modeling system presented here deals with the: (i estimation of the space-time structure of precipitation, (ii estimation of runoff production; (iii aggregation and propagation of flows in channel; (v estimation of evapotranspiration; (vi automatic calibration of the discharge with the method of particle swarming.

    The system is based on a hillslope-link geometrical partition of the landscape, combining raster and vectorial treatment of hillslope data with vector based tracking of flow in channels. Measured precipitation are spatially interpolated with the use of kriging. Runoff production at each channel link is estimated through a peculiar application of the Hymod model. Routing in channels uses an integrated flow equation and produces discharges at any link end, for any link in the river network. Evapotranspiration is estimated with an implementation of the Priestley-Taylor equation. The model system assembly is calibrated using the particle swarming algorithm. A two year simulation of hourly discharge of the Little Washita (OK, USA basin is presented and discussed with the support of some classical indices of goodness of fit, and analysis of the residuals. A novelty with respect to traditional hydrological modeling is that each of the elements above, including the preprocessing and the analysis tools, is implemented as a software component, built upon Object Modelling System v3 and jgrasstools prescriptions, that can be cleanly switched in and out at run-time, rather than at compiling time. The possibility of creating different modeling products by the connection of modules with or without the

  1. Debris flow early warning systems in Norway: organization and tools

    Science.gov (United States)

    Kleivane, I.; Colleuille, H.; Haugen, L. E.; Alve Glad, P.; Devoli, G.

    2012-04-01

    In Norway, shallow slides and debris flows occur as a combination of high-intensity precipitation, snowmelt, high groundwater level and saturated soil. Many events have occurred in the last decades and are often associated with (or related to) floods events, especially in the Southern of Norway, causing significant damages to roads, railway lines, buildings, and other infrastructures (i.e November 2000; August 2003; September 2005; November 2005; Mai 2008; June and Desember 2011). Since 1989 the Norwegian Water Resources and Energy Directorate (NVE) has had an operational 24 hour flood forecasting system for the entire country. From 2009 NVE is also responsible to assist regions and municipalities in the prevention of disasters posed by landslides and snow avalanches. Besides assisting the municipalities through implementation of digital landslides inventories, susceptibility and hazard mapping, areal planning, preparation of guidelines, realization of mitigation measures and helping during emergencies, NVE is developing a regional scale debris flow warning system that use hydrological models that are already available in the flood warning systems. It is well known that the application of rainfall thresholds is not sufficient to evaluate the hazard for debris flows and shallow slides, and soil moisture conditions play a crucial role in the triggering conditions. The information on simulated soil and groundwater conditions and water supply (rain and snowmelt) based on weather forecast, have proved to be useful variables that indicate the potential occurrence of debris flows and shallow slides. Forecasts of runoff and freezing-thawing are also valuable information. The early warning system is using real-time measurements (Discharge; Groundwater level; Soil water content and soil temperature; Snow water equivalent; Meteorological data) and model simulations (a spatially distributed version of the HBV-model and an adapted version of 1-D soil water and energy balance

  2. Mathematical modelling of two-phase flows

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Stoop, P.M.

    1992-11-01

    A gradual shift from methods based on experimental correlations to methods based on mathematical models to study 2-phase flows can be observed. The latter can be used to predict dynamical behaviour of 2-phase flows. This report discusses various mathematical models for the description of 2-phase flows. An important application of these models can be found in thermal-hydraulic computer codes used for analysis of the thermal-hydraulic behaviour of water cooled nuclear power plants. (author). 17 refs., 7 figs., 6 tabs

  3. Novel approach for dam break flow modeling using computational intelligence

    Science.gov (United States)

    Seyedashraf, Omid; Mehrabi, Mohammad; Akhtari, Ali Akbar

    2018-04-01

    A new methodology based on the computational intelligence (CI) system is proposed and tested for modeling the classic 1D dam-break flow problem. The reason to seek for a new solution lies in the shortcomings of the existing analytical and numerical models. This includes the difficulty of using the exact solutions and the unwanted fluctuations, which arise in the numerical results. In this research, the application of the radial-basis-function (RBF) and multi-layer-perceptron (MLP) systems is detailed for the solution of twenty-nine dam-break scenarios. The models are developed using seven variables, i.e. the length of the channel, the depths of the up-and downstream sections, time, and distance as the inputs. Moreover, the depths and velocities of each computational node in the flow domain are considered as the model outputs. The models are validated against the analytical, and Lax-Wendroff and MacCormack FDM schemes. The findings indicate that the employed CI models are able to replicate the overall shape of the shock- and rarefaction-waves. Furthermore, the MLP system outperforms RBF and the tested numerical schemes. A new monolithic equation is proposed based on the best fitting model, which can be used as an efficient alternative to the existing piecewise analytic equations.

  4. Computer programs for the numerical modelling of water flow in rock masses

    International Nuclear Information System (INIS)

    Croney, P.; Richards, L.R.

    1985-08-01

    Water flow in rock joints provides a very important possible route for the migration of radio-nuclides from radio-active waste within a repository back to the biosphere. Two computer programs DAPHNE and FPM have been developed to model two dimensional fluid flow in jointed rock masses. They have been developed to run on microcomputer systems suitable for field locations. The fluid flows in a number of jointed rock systems have been examined and certain controlling functions identified. A methodology has been developed for assessing the anisotropic permeability of jointed rock. A number of examples of unconfined flow into surface and underground openings have been analysed and ground water lowering, pore water pressures and flow quantities predicted. (author)

  5. Knowledge, transparency, and refutability in groundwater models, an example from the Death Valley regional groundwater flow system

    Science.gov (United States)

    Hill, Mary C.; Faunt, Claudia C.; Belcher, Wayne; Sweetkind, Donald; Tiedeman, Claire; Kavetski, Dmitri

    2013-01-01

    This work demonstrates how available knowledge can be used to build more transparent and refutable computer models of groundwater systems. The Death Valley regional groundwater flow system, which surrounds a proposed site for a high level nuclear waste repository of the United States of America, and the Nevada National Security Site (NNSS), where nuclear weapons were tested, is used to explore model adequacy, identify parameters important to (and informed by) observations, and identify existing old and potential new observations important to predictions. Model development is pursued using a set of fundamental questions addressed with carefully designed metrics. Critical methods include using a hydrogeologic model, managing model nonlinearity by designing models that are robust while maintaining realism, using error-based weighting to combine disparate types of data, and identifying important and unimportant parameters and observations and optimizing parameter values with computationally frugal schemes. The frugal schemes employed in this study require relatively few (10–1000 s), parallelizable model runs. This is beneficial because models able to approximate the complex site geology defensibly tend to have high computational cost. The issue of model defensibility is particularly important given the contentious political issues involved.

  6. Heat-flow properties of systems with alternate masses or alternate on-site potentials

    Science.gov (United States)

    Pereira, Emmanuel; Santana, Leonardo M.; Ávila, Ricardo

    2011-07-01

    We address a central issue of phononics: the search of properties or mechanisms to manage the heat flow in reliable materials. We analytically study standard and simple systems modeling the heat flow in solids, namely, the harmonic, self-consistent harmonic and also anharmonic chains of oscillators, and we show an interesting insulating effect: While in the homogeneous models the heat flow decays as the inverse of the particle mass, in the chain with alternate masses it decays as the inverse of the square of the mass difference, that is, it decays essentially as the mass ratio (between the smaller and the larger one) for a large mass difference. A similar effect holds if we alternate on-site potentials instead of particle masses. The existence of such behavior in these different systems, including anharmonic models, indicates that it is a ubiquitous phenomenon with applications in the heat flow control.

  7. A novel drag force coefficient model for gas–water two-phase flows under different flow patterns

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Zhi, E-mail: shangzhi@tsinghua.org.cn

    2015-07-15

    Graphical abstract: - Highlights: • A novel drag force coefficient model was established. • This model realized to cover different flow patterns for CFD. • Numerical simulations were performed under wide range flow regimes. • Validations were carried out through comparisons to experiments. - Abstract: A novel drag force coefficient model has been developed to study gas–water two-phase flows. In this drag force coefficient model, the terminal velocities were calculated through the revised drift flux model. The revised drift flux is different from the traditional drift flux model because the natural curve movement of the bubble was revised through considering the centrifugal force. Owing to the revisions, the revised drift flux model was to extend to 3D. Therefore it is suitable for CFD applications. In the revised drift flux model, the different flow patterns of the gas–water two-phase flows were able to be considered. This model innovatively realizes the drag force being able to cover different flow patterns of gas–water two-phase flows on bubbly flow, slug flow, churn flow, annular flow and mist flow. Through the comparisons of the numerical simulations to the experiments in vertical upward and downward pipe flows, this model was validated.

  8. Two-phase flow in refrigeration systems

    CERN Document Server

    Gu, Junjie; Gan, Zhongxue

    2013-01-01

    Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b

  9. Flow diagnostics downstream of a tribladed rotor model

    DEFF Research Database (Denmark)

    Naumov, I. V.; Rahmanov, V. V.; Okulov, Valery

    2012-01-01

    This paper presents results of a study of vortex wake structures and measurements of instantaneous 3D velocity fields downstream of a triblade turbine model. Two operation modes of flow around the rotor with different tip speed ratios were tested. Initially the wake structures were visualized...... and subsequently quantitative data were recorded through velocity field restoration from particle tracks using a stereo PIV system.The study supplied flow diagnostics and recovered the instantaneous 3D velocity fields in the longitudinal cross section behind a tribladed rotor at different values of tip speed ratio...

  10. Development of an alarm analysis system based on multi-level flow models for nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Jiande; Yang Ming; Zhang Zhijian

    2008-01-01

    An alarm analysis system based on Multi-level Flow Models (MFM) was developed for a PWR NPP. By automatically identifying the primary root causes in complex fault situations, the workload of the operators can be reduced. In addition, because MFM also provides a set of graphical symbols that implies causalities, operators can confirm diagnosis results by semiotic analysis, and hence the understandability of the process of alarm analysis as well as the reliability of maintenance task can be increased. 19 cases of simulation data from RELAP5/MOD2 code were utilized for evaluating the performance of the proposed system. The simulation results show that the proposed alarm analysis system has a good ability to detect and diagnose accidents earlier in time before reactor trip. (authors)

  11. Development of the Circulation Control Flow Scheme Used in the NTF Semi-Span FAST-MAC Model

    Science.gov (United States)

    Jones, Gregory S.; Milholen, William E., II; Chan, David T.; Allan, Brian G.; Goodliff, Scott L.; Melton, Latunia P.; Anders, Scott G.; Carter, Melissa B.; Capone, Francis J.

    2013-01-01

    The application of a circulation control system for high Reynolds numbers was experimentally validated with the Fundamental Aerodynamic Subsonic Transonic Modular Active Control semi-span model in the NASA Langley National Transonic Facility. This model utilized four independent flow paths to modify the lift and thrust performance of a representative advanced transport type of wing. The design of the internal flow paths highlights the challenges associated with high Reynolds number testing in a cryogenic pressurized wind tunnel. Weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions ranging from 0.1 to 10 lbm/sec. Results from the test verified system performance and identified solutions associated with the weight-flow metering system that are linked to internal perforated plates used to achieve flow uniformity at the jet exit.

  12. Modeling self-consistent multi-class dynamic traffic flow

    Science.gov (United States)

    Cho, Hsun-Jung; Lo, Shih-Ching

    2002-09-01

    In this study, we present a systematic self-consistent multiclass multilane traffic model derived from the vehicular Boltzmann equation and the traffic dispersion model. The multilane domain is considered as a two-dimensional space and the interaction among vehicles in the domain is described by a dispersion model. The reason we consider a multilane domain as a two-dimensional space is that the driving behavior of road users may not be restricted by lanes, especially motorcyclists. The dispersion model, which is a nonlinear Poisson equation, is derived from the car-following theory and the equilibrium assumption. Under the concept that all kinds of users share the finite section, the density is distributed on a road by the dispersion model. In addition, the dynamic evolution of the traffic flow is determined by the systematic gas-kinetic model derived from the Boltzmann equation. Multiplying Boltzmann equation by the zeroth, first- and second-order moment functions, integrating both side of the equation and using chain rules, we can derive continuity, motion and variance equation, respectively. However, the second-order moment function, which is the square of the individual velocity, is employed by previous researches does not have physical meaning in traffic flow. Although the second-order expansion results in the velocity variance equation, additional terms may be generated. The velocity variance equation we propose is derived from multiplying Boltzmann equation by the individual velocity variance. It modifies the previous model and presents a new gas-kinetic traffic flow model. By coupling the gas-kinetic model and the dispersion model, a self-consistent system is presented.

  13. Modelling cavitating flow around underwater missiles

    Directory of Open Access Journals (Sweden)

    Fabien Petitpas

    2011-12-01

    Full Text Available The diffuse interface model of Saurel et al. (2008 is used for the computation of compressible cavitating flows around underwater missiles. Such systems use gas injection and natural cavitation to reduce drag effects. Consequently material interfaces appear separating liquid and gas. These interfaces may have a really complex dynamics such that only a few formulations are able to predict their evolution. Contrarily to front tracking or interface reconstruction method the interfaces are computed as diffused numerical zones, that are captured in a routinely manner, as is done usually with gas dynamics solvers for shocks and contact discontinuity. With the present approach, a single set of partial differential equations is solved everywhere, with a single numerical scheme. This leads to very efficient solvers. The algorithm derived in Saurel et al. (2009 is used to compute cavitation pockets around solid bodies. It is first validated against experiments done in cavitation tunnel at CNU. Then it is used to compute flows around high speed underwater systems (Shkval-like missile. Performance data are then computed showing method ability to predict forces acting on the system.

  14. Modeling of two-phase flow with thermal and mechanical non-equilibrium

    International Nuclear Information System (INIS)

    Houdayer, G.; Pinet, B.; Le Coq, G.; Reocreux, M.; Rousseau, J.C.

    1977-01-01

    To improve two-phase flow modeling by taking into account thermal and mechanical non-equilibrium a joint effort on analytical experiment and physical modeling has been undertaken. A model describing thermal non-equilibrium effects is first presented. A correlation of mass transfer has been developed using steam water critical flow tests. This model has been used to predict in a satisfactory manner blowdown tests. It has been incorporated in CLYSTERE system code. To take into account mechanical non-equilibrium, a six equations model is written. To get information on the momentum transfers special nitrogen-water tests have been undertaken. The first results of these studies are presented

  15. Measurement system of bubbly flow using Ultrasonic Velocity Profile Monitor and Video Data Processing Unit. 3. Comparison of flow characteristics between bubbly cocurrent and countercurrent flows

    International Nuclear Information System (INIS)

    Zhou, Shirong; Suzuki, Yumiko; Aritomi, Masanori; Matsuzaki, Mitsuo; Takeda, Yasushi; Mori, Michitsugu

    1998-01-01

    The authors have developed a new measurement system which consisted of an Ultrasonic Velocity Profile Monitor (UVP) and a Video Data Processing Unit (VDP) in order to clarify the two-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for two-dimensional two-phase flow. In the present paper, the proposed measurement system is applied to fully developed bubbly cocurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. In addition, the two-phase multiplier profile of turbulence intensity, which was defined as a ratio of the standard deviation of velocity fluctuation in a bubbly flow to that in a water single phase flow, were examined. Next, these flow characteristics were compared with those in bubbly countercurrent flows reported in our previous paper. Finally, concerning the drift flux model, the distribution parameter and drift velocity were obtained directly from both bubble and water velocity profiles and void fraction profiles, and their results were compared with those in bubbly countercurrent flows. (author)

  16. Power flow control for transmission networks with implicit modeling of static synchronous series compensator

    DEFF Research Database (Denmark)

    Kamel, S.; Jurado, F.; Chen, Zhe

    2015-01-01

    This paper presents an implicit modeling of Static Synchronous Series Compensator (SSSC) in Newton–Raphson load flow method. The algorithm of load flow is based on the revised current injection formulation. The developed model of SSSC is depended on the current injection approach. In this model...... will be in the mismatches vector. Finally, this modeling solves the problem that happens when the SSSC is only connected between two areas. Numerical examples on the WSCC 9-bus, IEEE 30-bus system, and IEEE 118-bus system are used to illustrate the feasibility of the developed SSSC model and performance of the Newton–Raphson...

  17. Modeling and numerical analysis of non-equilibrium two-phase flows

    International Nuclear Information System (INIS)

    Rascle, P.; El Amine, K.

    1997-01-01

    We are interested in the numerical approximation of two-fluid models of nonequilibrium two-phase flows described by six balance equations. We introduce an original splitting technique of the system of equations. This technique is derived in a way such that single phase Riemann solvers may be used: moreover, it allows a straightforward extension to various and detailed exchange source terms. The properties of the fluids are first approached by state equations of ideal gas type and then extended to real fluids. For the construction of numerical schemes , the hyperbolicity of the full system is not necessary. When based on suitable kinetic unwind schemes, the algorithm can compute flow regimes evolving from mixture to single phase flows and vice versa. The whole scheme preserves the physical features of all the variables which remain in the set of physical states. Several stiff numerical tests, such as phase separation and phase transition are displayed in order to highlight the efficiency of the proposed method. The document is a PhD thesis divided in 6 chapters and two annexes. They are entitled: 1. - Introduction (in French), 2. - Two-phase flow, modelling and hyperbolicity (in French), 3. - A numerical method using upwind schemes for the resolution of two-phase flows without exchange terms (in English), 4. - A numerical scheme for one-phase flow of real fluids (in English), 5. - An upwind numerical for non-equilibrium two-phase flows (in English), 6. - The treatment of boundary conditions (in English), A.1. The Perthame scheme (in English) and A.2. The Roe scheme (in English)

  18. Development of Numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    Hinds, J.

    2001-01-01

    This Analysis/Model Report (AMR) describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of a complex, three-dimensional (3-D) model, such as the Unsaturated-Zone Flow and Transport Model (UZ Model) of Yucca Mountain. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal loading conditions. Revision 00 of the work described herein follows the planning and work direction outlined in the ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (CRWMS M and O 1999c). The technical scope, content, and management of ICN 01 of this AMR is currently controlled by the planning document, ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001 b, Addendum B, Section 4.1). The steps involved in numerical grid development include: (1) defining the location of important calibration features, (2) determining model grid layers and fault geometry based on the Geologic Framework Model (GFM), the Integrated Site Model (ISM), and definition of hydrogeologic units (HGUs), (3) analyzing and extracting GFM and ISM data pertaining to layer contacts and property distributions, (4) discretizing and refining the two-dimensional (2-D), plan-view numerical grid, (5) generating the 3-D grid with finer resolution at the repository horizon and within the Calico Hills nonwelded (CHn) hydrogeologic unit, and (6) formulating the dual-permeability mesh. The

  19. Downstream flow top width prediction in a river system | Choudhury ...

    African Journals Online (AJOL)

    ANFIS, ARIMA and Hybrid Multiple Inflows Muskingum models (HMIM) were applied to simulate and forecast downstream discharge and flow top widths in a river system. The ANFIS model works on a set of linguistic rules while the ARIMA model uses a set of past values to predict the next value in a time series. The HMIM ...

  20. Conversion and comparison of the mathematical, three-dimensional, finite-difference, ground-water flow model to the modular, three-dimensional, finite-difference, ground-water flow model for the Tesuque aquifer system in northern New Mexico

    Science.gov (United States)

    Umari, A.M.; Szeliga, T.L.

    1989-01-01

    The three-dimensional finite-difference groundwater model (using a mathematical groundwater flow code) of the Tesuque aquifer system in northern New Mexico was converted to run using the U.S. Geological Survey 's modular groundwater flow code. Results from the final versions of the predevelopment and 1947 to 2080 transient simulations of the two models are compared. A correlation coefficient of 0.9905 was obtained for the match in block-by-block head-dependent fluxes for predevelopment conditions. There are, however, significant differences in at least two specific cases. In the first case, a difference is associated with the net loss from the Pojoaque River and its tributaries to the aquifer. The net loss by the river is given as 1.134 cu ft/sec using the original groundwater model, which is 38.1% less than the net loss by the river of 1.8319 cu ft/sec computed in this study. In the second case, the large difference is computed for the transient decline in the hydraulic head of a model block near Tesuque Pueblo. The hydraulic-head decline by 2080 is, using the original model, 249 ft, which is 14.7% less than the hydraulic head of 292 ft computed by this study. In general, the differences between the two sets of results are not large enough to lead to different conclusions regarding the behavior of the system at steady state or when pumped. (USGS)

  1. Two-phase flow heat transfer in nuclear reactor systems

    International Nuclear Information System (INIS)

    Koncar, Bostjan; Krepper, Eckhard; Bestion, Dominique; Song, Chul-Hwa; Hassan, Yassin A.

    2013-01-01

    Complete text of publication follows: Heat transfer and phase change phenomena in two-phase flows are often encountered in nuclear reactor systems and are therefore of paramount importance for their optimal design and safe operation.The complex phenomena observed especially during transient operation of nuclear reactor systems necessitate extensive theoretical and experimental investigations. This special issue brings seven research articles of high quality. Though small in number, they cover a wide range of topics, presenting high complexity and diversity of heat transfer phenomena in two-phase flow. In the last decades a vast amount of research has been devoted to theoretical work and computational simulations, yet the experimental work remains indispensable for understanding of two-phase flow phenomena and for model validation purposes. This is reflected also in this issue, where only one article is purely experimental, while three of them deal with theoretical modelling and the remaining three with numerical simulations. The experimental investigation of the critical heat flux (CHF) phenomena by means of photographic study is presented in the paper of J. Park et al. They have used a high-speed camera system to observe the transient boiling characteristics on a thin horizontal cylinder submerged in a pool of water or highly wetting liquid. Experiments show that the initial boiling process is strongly affected by the properties and wettability of the liquid. The authors have stressed the importance of the local scale observation leading to better understanding of the transient CHF phenomena. In the article of G. Espinosa-Paredes et al. a theoretical work concerning the derivation of transport equations for two-phase flow is presented. The author proposes a novel approach based on derivation of nonlocal volume averaged equations which contain new terms related to nonlocal transport effects. These non-local terms act as coupling elements between the phenomena

  2. International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis.

    Science.gov (United States)

    Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen

    2015-01-01

    This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries' roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading "trophic levels" have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows.

  3. Modeling Surface Water Flow in the Atchafalaya Basin

    Science.gov (United States)

    Liu, K.; Simard, M.

    2017-12-01

    While most of the Mississippi River Delta is sinking due to insufficient sediment supply and subsidence, the stable wetlands and the prograding delta systems in the Atchafalaya Basin provide a unique opportunity to study the constructive interactions between riverine and marine forcings and their impacts upon coastal morphology. To better understand the hydrodynamics in this region, we developed a numerical modeling system for the water flow through the river channel - deltas - wetlands networks in the Atchafalaya Basin. Determining spatially varying model parameters for a large area composed of such diverse land cover types poses a challenge to developing an accurate numerical model. For example, the bottom friction coefficient can not be measured directly and the available elevation maps for the wetlands in the basin are inaccurate. To overcome these obstacles, we developed the modeling system in three steps. Firstly, we modeled river bathymetry based on in situ sonar transects and developed a simplified 1D model for the Wax Lake Outlet using HEC-RAS. Secondly, we used a Bayesian approach to calibrate the model automatically and infer important unknown parameters such as riverbank elevation and bottom friction coefficient through Markov Chain Monte Carlo (MCMC) simulations. We also estimated the wetland elevation based on the distribution of different vegetation species in the basin. Thirdly, with the lessons learnt from the 1D model, we developed a depth-averaged 2D model for the whole Atchafalaya Basin using Delft3D. After calibrations, the model successfully reproduced the water levels measured at five gauges in the Wax Lake Outlet and the modeled water surface profile along the channel agreed reasonably well with our LIDAR measurements. In addition, the model predicted a one-hour delay in tidal phase from the Wax Lake Delta to the upstream gauge. In summary, this project presents a procedure to initialize hydrology model parameters that integrates field

  4. Modeling connected and autonomous vehicles in heterogeneous traffic flow

    Science.gov (United States)

    Ye, Lanhang; Yamamoto, Toshiyuki

    2018-01-01

    The objective of this study was to develop a heterogeneous traffic-flow model to study the possible impact of connected and autonomous vehicles (CAVs) on the traffic flow. Based on a recently proposed two-state safe-speed model (TSM), a two-lane cellular automaton (CA) model was developed, wherein both the CAVs and conventional vehicles were incorporated in the heterogeneous traffic flow. In particular, operation rules for CAVs are established considering the new characteristics of this emerging technology, including autonomous driving through the adaptive cruise control and inter-vehicle connection via short-range communication. Simulations were conducted under various CAV-penetration rates in the heterogeneous flow. The impact of CAVs on the road capacity was numerically investigated. The simulation results indicate that the road capacity increases with an increase in the CAV-penetration rate within the heterogeneous flow. Up to a CAV-penetration rate of 30%, the road capacity increases gradually; the effect of the difference in the CAV capability on the growth rate is insignificant. When the CAV-penetration rate exceeds 30%, the growth rate is largely decided by the capability of the CAV. The greater the capability, the higher the road-capacity growth rate. The relationship between the CAV-penetration rate and the road capacity is numerically analyzed, providing some insights into the possible impact of the CAVs on traffic systems.

  5. A hierarchy for modeling high speed propulsion systems

    Science.gov (United States)

    Hartley, Tom T.; Deabreu, Alex

    1991-01-01

    General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery such as inlets, ramjets, and scramjets. The discussion is separated into four sections: (1) computational fluid dynamics model for the entire nonlinear system or high order nonlinear models; (2) high order linearized model derived from fundamental physics; (3) low order linear models obtained from other high order models; and (4) low order nonlinear models. Included are special considerations on any relevant control system designs. The methods discussed are for the quasi-one dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, moving normal shocks, hammershocks, subsonic combustion via heat addition, temperature dependent gases, detonation, and thermal choking.

  6. Simulation model for centrifugal pump in flow networks based on internal characteristics

    International Nuclear Information System (INIS)

    Sun, Ji-Lin; Xue, Ruo-Jun; Peng, Min-Jun

    2018-01-01

    For the simulation of centrifugal pump in flow network system, in general three approaches can be used, the fitting model, the numerical method and the internal characteristics model. The fitting model is simple and rapid thus widely used. The numerical method can provide more detailed information in comparison with the fitting model, but increases implementation complexity and computational cost. In real-time simulations of flow networks, to simulate the condition out of the rated condition, especially for the volume flow rate, which the accuracy of fitting model is incredible, a new method for simulating centrifugal pumps was proposed in this research. The method based on the theory head and hydraulic loss in centrifugal pumps, and cavitation is also to be considered. The simulation results are verified with experimental benchmark data from an actual pump. The comparison confirms that the proposed method could fit the flow-head curves well, and the responses of main parameters in dynamic-state operations are consistent with theoretical analyses.

  7. Evaluation of load flow and grid expansion in a unit-commitment and expansion optimization model SciGRID International Conference on Power Grid Modelling

    Science.gov (United States)

    Senkpiel, Charlotte; Biener, Wolfgang; Shammugam, Shivenes; Längle, Sven

    2018-02-01

    Energy system models serve as a basis for long term system planning. Joint optimization of electricity generating technologies, storage systems and the electricity grid leads to lower total system cost compared to an approach in which the grid expansion follows a given technology portfolio and their distribution. Modelers often face the problem of finding a good tradeoff between computational time and the level of detail that can be modeled. This paper analyses the differences between a transport model and a DC load flow model to evaluate the validity of using a simple but faster transport model within the system optimization model in terms of system reliability. The main findings in this paper are that a higher regional resolution of a system leads to better results compared to an approach in which regions are clustered as more overloads can be detected. An aggregation of lines between two model regions compared to a line sharp representation has little influence on grid expansion within a system optimizer. In a DC load flow model overloads can be detected in a line sharp case, which is therefore preferred. Overall the regions that need to reinforce the grid are identified within the system optimizer. Finally the paper recommends the usage of a load-flow model to test the validity of the model results.

  8. Development of numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    P. Dobson

    2004-01-01

    This report describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain, Nevada. Numerical grid generation is an integral part of the development of the unsaturated zone (UZ) flow and transport model, a complex, three-dimensional (3-D) model of Yucca Mountain. This revision contains changes made to improve the clarity of the description of grid generation. The numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal-loading conditions. The technical scope, content, and management for the current revision of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 2). Grids generated and documented in this report supersede those documented in Revision 00 of this report, ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2001 [DIRS 159356]). The grids presented in this report are the same as those developed in Revision 01 (BSC 2003 [DIRS 160109]); however, the documentation of the development of the grids in Revision 02 has been updated to address technical inconsistencies and achieve greater transparency, readability, and traceability. The constraints, assumptions, and limitations associated with this report are discussed in the appropriate sections that follow

  9. [Models for quantification of fluid saturation in two-phase flow system by light transmission method and its application].

    Science.gov (United States)

    Zhang, Yan-Hong; Ye, Shu-Jun; Wu, Ji-Chun

    2014-06-01

    Based on light transmission method in quantification of liquid saturation and its application in two-phase flow system, two groups of sandbox experiments were set up to study the migration of gas or Dense Non-Aqueous Phase Liquids (DNAPLs) in water saturated porous media. The migration of gas or DNAPL was monitored in the study. Two modified Light Intensity-Saturation (LIS) models for water/gas two-phase system were applied and verified by the experiment data. Moreover two new LIS models for NAPL/water system were developed and applied to simulate the DNAPL infiltration experiment data. The gas injection experiment showed that gas moved upward to the top of the sandbox in the form of 'fingering' and finally formed continuous distribution. The results of DNAPL infiltration experiment showed that TCE mainly moved downward as the result of its gravity, eventually formed irregular plume and accumulated at the bottom of the sandbox. The outcomes of two LIS models for water/gas system (WG-A and WG-B) were consistent to the measured data. The results of two LIS models for NAPL/water system (NW-A and NW-B) fit well with the observations, and Model NW-A based on assumption of individual drainage gave better results. It could be a useful reference for quantification of NAPL/water saturation in porous media system.

  10. Studying shocks in model astrophysical flows

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.

    1989-01-01

    We briefly discuss some properties of the shocks in the existing models for quasi two-dimensional astrophysical flows. All of these models which allow the study of shock analytically have some unphysical characteristics due to inherent assumptions made. We propose a hybrid model for a thin flow which has fewer unpleasant features and is suitable for the study of shocks. (author). 5 refs

  11. A nonlinear model of flow in meandering submarine and subaerial channels

    Science.gov (United States)

    Imran, Jasim; Parker, Gary; Pirmez, Carlos

    1999-12-01

    A generalized model of flow in meandering subaqueous and subaerial channels is developed. The conservation equations of mass and momentum are depth/layer integrated, normalized, and represented as deviations from a straight base state. This allows the determination of integrable forms which can be solved at both linear and nonlinear levels. The effects of various flow and geometric parameters on the flow dynamics are studied. Although the model is not limited to any specific planform, this study focuses on sine-generated curves. In analysing the flow patterns, the turbidity current of the subaqueous case is simplified to a conservative density flow with water entrainment from above neglected. The subaqueous model thus formally corresponds to a subcritical or only mildly supercritical mud-rich turbidity current. By extension, however the analysis can be applied to a depositional or erosional current carrying sand that is changing only slowly in the streamwise direction. By bringing the subaqueous and subaerial cases into a common form, flow behaviour in the two environments can be compared under similar geometric and boundary conditions. A major difference between the two cases is the degree of superelevation of channel flow around bends, which is modest in the subaerial case but substantial in the subaqueous case. Another difference concerns Coriolis effects: some of the largest subaqueous meandering systems are so large that Coriolis effects can become important. The model is applied to meander bends on the youngest channel in the mid-fan region of the Amazon Fan and a mildly sinuous bend of the North-West Atlantic Mid-Ocean Channel. In the absence of specific data on the turbid flows that created the channel, the model can be used to make inferences about the flow, and in particular the range of values of flow velocity and sediment concentration that would allow the growth and downfan migration of meander bends.

  12. Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering

    KAUST Repository

    El Gharamti, Mohamad

    2013-10-01

    Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data are assimilated in the model. Assuming perfect flow, an ensemble Kalman filter (EnKF) can be used for direct data assimilation into the transport model. This is, however, a crude assumption as flow models can be subject to many sources of uncertainty. If the flow is not accurately simulated, contaminant predictions will likely be inaccurate even after successive Kalman updates of the contaminant model with the data. The problem is better handled when both flow and contaminant states are concurrently estimated using the traditional joint state augmentation approach. In this paper, we introduce a dual estimation strategy for data assimilation into a one-way coupled system by treating the flow and the contaminant models separately while intertwining a pair of distinct EnKFs, one for each model. The presented strategy only deals with the estimation of state variables but it can also be used for state and parameter estimation problems. This EnKF-based dual state-state estimation procedure presents a number of novel features: (i) it allows for simultaneous estimation of both flow and contaminant states in parallel; (ii) it provides a time consistent sequential updating scheme between the two models (first flow, then transport); (iii) it simplifies the implementation of the filtering system; and (iv) it yields more stable and accurate solutions than does the standard joint approach. We conducted synthetic numerical experiments based on various time stepping and observation strategies to evaluate the dual EnKF approach and compare its performance with the joint state augmentation approach. Experimental results show that on average, the dual strategy could reduce the estimation error of the coupled states by 15% compared with the

  13. Amendment to Validated dynamic flow model

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2011-01-01

    The purpose of WP2 is to establish flow models relating the wind speed at turbines in a farm. Until now, active control of power reference has not been included in these models as only data with standard operation has been available. In this report the first data series with power reference excit...... turbine in undisturbed flow. For this data set both the multiplicative model and in particular the simple first order transfer function model can predict the down wind wind speed from upwind wind speed and loading.......The purpose of WP2 is to establish flow models relating the wind speed at turbines in a farm. Until now, active control of power reference has not been included in these models as only data with standard operation has been available. In this report the first data series with power reference...

  14. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    International Nuclear Information System (INIS)

    Tucci, P.

    2001-01-01

    This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M and O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment

  15. Development of a model to predict flow oscillations in low-flow sodium boiling

    International Nuclear Information System (INIS)

    Levin, A.E.; Griffith, P.

    1980-04-01

    Tests performed in a small scale water loop showed that voiding oscillations, similar to those observed in sodium, were present in water, as well. An analytical model, appropriate for either sodium or water, was developed and used to describe the water flow behavior. The experimental results indicate that water can be successfully employed as a sodium simulant, and further, that the condensation heat transfer coefficient varies significantly during the growth and collapse of vapor slugs during oscillations. It is this variation, combined with the temperature profile of the unheated zone above the heat source, which determines the oscillatory behavior of the system. The analytical program has produced a model which qualitatively does a good job in predicting the flow behavior in the wake experiment. The amplitude discrepancies are attributable to experimental uncertainties and model inadequacies. Several parameters (heat transfer coefficient, unheated zone temperature profile, mixing between hot and cold fluids during oscillations) are set by the user. Criteria for the comparison of water and sodium experiments have been developed

  16. Modelling of high-enthalpy, high-Mach number flows

    International Nuclear Information System (INIS)

    Degrez, G; Lani, A; Panesi, M; Chazot, O; Deconinck, H

    2009-01-01

    A review is made of the computational models of high-enthalpy flows developed over the past few years at the von Karman Institute and Universite Libre de Bruxelles, for the modelling of high-enthalpy hypersonic (re-)entry flows. Both flows in local thermo-chemical equilibrium (LTE) and flows in thermo-chemical non-equilibrium (TCNEQ) are considered. First, the physico-chemical models are described, i.e. the set of conservation laws, the thermodynamics, transport phenomena and chemical kinetics models. Particular attention is given to the correct modelling of elemental (LTE flows) and species (chemical non-equilibrium-CNEQ-flows) transport. The numerical algorithm, based on a state-of-the-art finite volume discretization, is then briefly described. Finally, selected examples are included to illustrate the capabilities of the developed solver. (review article)

  17. A numerical model to evaluate the flow distribution in a large solar collector field

    DEFF Research Database (Denmark)

    Bava, Federico; Dragsted, Janne; Furbo, Simon

    2017-01-01

    This study presents a numerical model to evaluate the flow distribution in a large solar collector field, with solar collectors connected both in series and in parallel. The boundary conditions of the systems, such as flow rate, temperature, fluid type and layout of the collector field can...... be easily changed in the model. The model was developed in Matlab and the calculated pressure drop and flow distribution were compared with measurements from a solar collector field. A good agreement between model and measurements was found. The model was then used to study the flow distribution...... in different conditions. Balancing valves proved to be an effective way to achieve uniform flow distribution also in conditions different from those for which the valves were regulated. For small solar collector fields with limited number of collector rows connected in parallel, balancing valves...

  18. Assessment of horizontal in-tube condensation models using MARS code. Part I: Stratified flow condensation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su [Department of Engineering Project, FNC Technology Co., Ltd., Bldg. 135-308, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Hong, Soon-Joon, E-mail: sjhong90@fnctech.com [Department of Engineering Project, FNC Technology Co., Ltd., Bldg. 135-308, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Ju-Yeop; Seul, Kwang-Won [Korea Institute of Nuclear Safety, 19 Kuseong-dong, Yuseong-gu, Daejon (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer This study collected 11 horizontal in-tube condensation models for stratified flow. Black-Right-Pointing-Pointer This study assessed the predictive capability of the models for steam condensation. Black-Right-Pointing-Pointer Purdue-PCCS experiments were simulated using MARS code incorporated with models. Black-Right-Pointing-Pointer Cavallini et al. (2006) model predicts well the data for stratified flow condition. Black-Right-Pointing-Pointer Results of this study can be used to improve condensation model in RELAP5 or MARS. - Abstract: The accurate prediction of the horizontal in-tube condensation heat transfer is a primary concern in the optimum design and safety analysis of horizontal heat exchangers of passive safety systems such as the passive containment cooling system (PCCS), the emergency condenser system (ECS) and the passive auxiliary feed-water system (PAFS). It is essential to analyze and assess the predictive capability of the previous horizontal in-tube condensation models for each flow regime using various experimental data. This study assessed totally 11 condensation models for the stratified flow, one of the main flow regime encountered in the horizontal condenser, with the heat transfer data from the Purdue-PCCS experiment using the multi-dimensional analysis of reactor safety (MARS) code. From the assessments, it was found that the models by Akers and Rosson, Chato, Tandon et al., Sweeney and Chato, and Cavallini et al. (2002) under-predicted the data in the main condensation heat transfer region, on the contrary to this, the models by Rosson and Meyers, Jaster and Kosky, Fujii, Dobson and Chato, and Thome et al. similarly- or over-predicted the data, and especially, Cavallini et al. (2006) model shows good predictive capability for all test conditions. The results of this study can be used importantly to improve the condensation models in thermal hydraulic code, such as RELAP5 or MARS code.

  19. Modeling and analysis of hydrodynamic instabilities in two-phase flow using two-fluid model

    International Nuclear Information System (INIS)

    Zhou, J.; Podowski, M.Z.

    2001-01-01

    Because of the practical importance of two-phase flow instabilities, especially in boiling water nuclear reactor technology, substantial efforts have been made to date to understand the physical phenomena governing such instabilities and to develop computational tools to model the dynamics of marginally-stable/unstable boiling systems. The purpose of this paper is to present an integrated methodology for the analysis of flow-induced instabilities in boiling channels and systems. The major novel aspects of the proposed approach are: (a) it is based on the combined frequency-domain and time-domain methods, the former used to quantify stability margins and to determine the onset of instability conditions, the latter to study the nonlinear system response outside the stability boundaries identified using the nearly-exact results of the frequency-domain analysis; (b) the two-fluid model of two-phase flow has been used for the first time to analytically derive the boiling channel transfer functions for the parallel-channel and channel-to-channel instability modes. In this way, the major characteristics of a boiling system, including the onset-of-instability conditions, can be readily evaluated by using the qualitative frequency-domain approach, whereas the explicit time-domain integration is performed, if necessary, only for the operating conditions that have already been identified as unstable. Both methods use the same physical two-fluid model that, in one case, is linearized and used to derive a rigorous analytical solution in the complex domain, and, in the other case, is solved numerically using an algorithm developed especially for this purpose. The results using both methods have been compared against each other and extensively tested. The testing and validation of the new model included comparisons of the predicted steady-state distributions of major parameters and of the transient channel response against experimental data

  20. Perspectives on continuum flow models for force-driven nano-channel liquid flows

    Science.gov (United States)

    Beskok, Ali; Ghorbanian, Jafar; Celebi, Alper

    2017-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  1. Lattice Boltzmann flow simulations with applications of reduced order modeling techniques

    KAUST Repository

    Brown, Donald

    2014-01-01

    With the recent interest in shale gas, an understanding of the flow mechanisms at the pore scale and beyond is necessary, which has attracted a lot of interest from both industry and academia. One of the suggested algorithms to help understand flow in such reservoirs is the Lattice Boltzmann Method (LBM). The primary advantage of LBM is its ability to approximate complicated geometries with simple algorithmic modificatoins. In this work, we use LBM to simulate the flow in a porous medium. More specifically, we use LBM to simulate a Brinkman type flow. The Brinkman law allows us to integrate fast free-flow and slow-flow porous regions. However, due to the many scales involved and complex heterogeneities of the rock microstructure, the simulation times can be long, even with the speed advantage of using an explicit time stepping method. The problem is two-fold, the computational grid must be able to resolve all scales and the calculation requires a steady state solution implying a large number of timesteps. To help reduce the computational complexity and total simulation times, we use model reduction techniques to reduce the dimension of the system. In this approach, we are able to describe the dynamics of the flow by using a lower dimensional subspace. In this work, we utilize the Proper Orthogonal Decomposition (POD) technique, to compute the dominant modes of the flow and project the solution onto them (a lower dimensional subspace) to arrive at an approximation of the full system at a lowered computational cost. We present a few proof-of-concept examples of the flow field and the corresponding reduced model flow field.

  2. Modeling generalized interline power-flow controller (GIPFC using 48-pulse voltage source converters

    Directory of Open Access Journals (Sweden)

    Amir Ghorbani

    2018-05-01

    Full Text Available Generalized interline power-flow controller (GIPFC is one of the voltage-source controller (VSC-based flexible AC transmission system (FACTS controllers that can independently regulate the power-flow over each transmission line of a multiline system. This paper presents the modeling and performance analysis of GIPFC based on 48-pulsed voltage-source converters. This paper deals with a cascaded multilevel converter model, which is a 48-pulse (three levels voltage source converter. The voltage source converter described in this paper is a harmonic neutralized, 48-pulse GTO converter. The GIPFC controller is based on d-q orthogonal coordinates. The algorithm is verified using simulations in MATLAB/Simulink environment. Comparisons between unified power flow controller (UPFC and GIPFC are also included. Keywords: Generalized interline power-flow controller (GIPFC, Voltage source converter (VCS, 48-pulse GTO converter

  3. Modelling heat transfer during flow through a random packed bed of spheres

    Science.gov (United States)

    Burström, Per E. C.; Frishfelds, Vilnis; Ljung, Anna-Lena; Lundström, T. Staffan; Marjavaara, B. Daniel

    2018-04-01

    Heat transfer in a random packed bed of monosized iron ore pellets is modelled with both a discrete three-dimensional system of spheres and a continuous Computational Fluid Dynamics (CFD) model. Results show a good agreement between the two models for average values over a cross section of the bed for an even temperature profiles at the inlet. The advantage with the discrete model is that it captures local effects such as decreased heat transfer in sections with low speed. The disadvantage is that it is computationally heavy for larger systems of pellets. If averaged values are sufficient, the CFD model is an attractive alternative that is easy to couple to the physics up- and downstream the packed bed. The good agreement between the discrete and continuous model furthermore indicates that the discrete model may be used also on non-Stokian flow in the transitional region between laminar and turbulent flow, as turbulent effects show little influence of the overall heat transfer rates in the continuous model.

  4. Flow Sharing Systems for Mobile Applications

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2002-01-01

    This contribution reports about some analytical and simulation/experimental studies carried out on different flow control systems for mobile applications with respect to their ability to do flow sharing. All systems have two parallel actuators and are considered regarding functionality...

  5. Application of discrete function and software control flow to dependability assessment of embedded digital system

    International Nuclear Information System (INIS)

    Choi, Jong Gyun; Seong, Poong Hyun

    2001-01-01

    This article describes a combinatorial model for estimating the reliability of the embedded digital system by means of discrete function theory and software control flow. This model includes a coverage model for fault processing mechanisms implemented in digital system. Furthermore, the model considers the interaction between hardware and software. The fault processing mechanisms make it difficult for many types of components in digital system to be treated as binary state, good or bad. The discrete function theory provides a complete analysis of multi-state system as which the digital system can be regarded Through adaptation software control flow to discrete function theory, the HW/SW interaction is considered for estimation of the reliability of digital system. Using this model, we predict the reliability of one board controller in a digital system, Interposing Logic System(ILS), which is installed in YGN nuclear power units 3 and 4. Since the proposed model is general combinatinal model, the simplification of this model becomes a conservative model that treats the system as binary state. Moreover, if information for coverage factor of fault tolerance mechanisms implemented in system through fault injection experiment is obtained, this model can consider detailed interaction of system components

  6. Investigation of spiral blood flow in a model of arterial stenosis.

    Science.gov (United States)

    Paul, Manosh C; Larman, Arkaitz

    2009-11-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system [Stonebridge PA, Brophy CM. Spiral laminar flow in arteries? Lancet 1991; 338: 1360-1]. We investigate the effects of the spiral blood flow in a model of three-dimensional arterial stenosis with a 75% cross-sectional area reduction at the centre by means of computational fluid dynamics (CFD) techniques. The standard k-omega model is employed for simulation of the blood flow for the Reynolds number of 500 and 1000. We find that for Re=500 the spiral component of the blood flow increases both the total pressure and velocity of the blood, and some significant differences are found between the wall shear stresses of the spiral and non-spiral induced flow downstream of the stenosis. The turbulent kinetic energy is reduced by the spiral flow as it induces the rotational stabilities in the forward flow. For Re=1000 the tangential component of the blood velocity is most influenced by the spiral speed, but the effect of the spiral flow on the centreline turbulent kinetic energy and shear stress is mild. The results of the effects of the spiral flow are discussed in the paper along with the relevant pathological issues.

  7. Experimental and Numerical Analysis of S-CO2 Critical Flow for SFR Recovery System Design

    International Nuclear Information System (INIS)

    Kim, Min Seok; Jung, Hwa-Young; Ahn, Yoonhan; Lee, Jekyoung; Lee, Jeong Ik

    2016-01-01

    This paper presents both numerical and experimental studies of the critical flow of S-CO 2 while special attention is given to the turbo-machinery seal design. A computational critical flow model is described first. The experiments were conducted to validate the critical flow model. Various conditions have been tested to study the flow characteristic and provide validation data for the model. The comparison of numerical and experimental results of S-CO 2 critical flow will be presented. In order to eliminate SWR, a concept of coupling the Supercritical CO 2 (S-CO 2 ) cycle with SFR has been proposed. It is known that for a closed system controlling the inventory is important for stable operation and achieving high efficiency. Since the S-CO 2 power cycle is a highly pressurized system, certain amount of leakage flow is inevitable in the rotating turbo-machinery via seals. To simulate the CO 2 leak flow in a turbo-machinery with higher accuracy in the future, the real gas effect and friction factor will be considered for the CO 2 critical flow model. Moreover, experimentally obtained temperature data were somewhat different from the numerically obtained temperature due to the insufficient insulation and large thermal inertia of the CO 2 critical flow facility. Insulation in connecting pipes and the low-pressure tank will be added and additional tests will be conducted

  8. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System.

    Science.gov (United States)

    Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.

  9. Numerical flow models and their calibration using tracer based ages: Chapter 10

    Science.gov (United States)

    Sanford, W.

    2013-01-01

    Any estimate of ‘age’ of a groundwater sample based on environmental tracers requires some form of geochemical model to interpret the tracer chemistry (chapter 3) and is, therefore, referred to in this chapter as a tracer model age. the tracer model age of a groundwater sample can be useful for obtaining information on the residence time and replenishment rate of an aquifer system, but that type of data is most useful when it can be incorporated with all other information that is known about the groundwater system under study. groundwater fl ow models are constructed of aquifer systems because they are usually the best way of incorporating all of the known information about the system in the context of a mathematical framework that constrains the model to follow the known laws of physics and chemistry as they apply to groundwater flow and transport. It is important that the purpose or objective of the study be identified first before choosing the type and complexity of the model to be constructed, and to make sure such a model is necessary. The purpose of a modelling study is most often to characterize the system within a numerical framework, such that the hydrological responses of the system can be tested under potential stresses that might be imposed given future development scenarios. As this manual discusses dating as it applies to old groundwater, most readers are likely to be interested in studying regional groundwater flow systems and their water resource potential.

  10. Modelling the Multiphase Flow in Dense Medium Cyclones

    Directory of Open Access Journals (Sweden)

    Kaiwei Chu

    2010-12-01

    Full Text Available Dense medium cyclone (DMC is widely used in mineral industry to separate solids by density. It is simple in design but the flow pattern within it is complex due to the size and density distributions of the feed and process medium solids, and the turbulent vortex formed. Recently, the so-called combined computational fluid dynamics (CFD and discrete element method (DEM (CFD-DEM was extended from two-phase flow to model the flow in DMCs at the University of New South Wales (UNSW. In the CFD-DEM model, the flow of coal particles is modelled by DEM and that of medium flow by CFD, allowing consideration of medium-coal mutual interaction and particle-particle collisions. In the DEM model, Newton's laws of motion are applied to individual particles, and in the CFD model the local-averaged Navier-Stokes equations combined with the volume of fluid (VOF and mixture multiphase flow models are solved. The application to the DMC studies requires intensive computational effort. Therefore, various simplified versions have been proposed, corresponding to the approaches such as Lagrangian particle tracking (LPT method where dilute phase flow is assumed so that the interaction between particles can be ignored, one-way coupling where the effect of particle flow on fluid flow is ignored, and the use of the concept of parcel particles whose properties are empirically determined. In this paper, the previous works on the modelling of DMCs at UNSW are summarized and the features and applicability of the models used are discussed.

  11. Lagrangian generic second order traffic flow models for node

    Directory of Open Access Journals (Sweden)

    Asma Khelifi

    2018-02-01

    Full Text Available This study sheds light on higher order macroscopic traffic flow modeling on road networks, thanks to the generic second order models (GSOM family which embeds a myriad of traffic models. It has been demonstrated that such higher order models are easily solved in Lagrangian coordinates which are compatible with both microscopic and macroscopic descriptions. The generalized GSOM model is reformulated in the Lagrangian coordinate system to develop a more efficient numerical method. The difficulty in applying this approach on networks basically resides in dealing with node dynamics. Traffic flow characteristics at node are different from that on homogeneous links. Different geometry features can lead to different critical research issues. For instance, discontinuity in traffic stream can be an important issue for traffic signal operations, while capacity drop may be crucial for lane-merges. The current paper aims to establish and analyze a new adapted node model for macroscopic traffic flow models by applying upstream and downstream boundary conditions on the Lagrangian coordinates in order to perform simulations on networks of roads, and accompanying numerical method. The internal node dynamics between upstream and downstream links are taken into account of the node model. Therefore, a numerical example is provided to underscore the efficiency of this approach. Simulations show that the discretized node model yields accurate results. Additional kinematic waves and contact discontinuities are induced by the variation of the driver attribute.

  12. Scaling relation and regime map of explosive gas–liquid flow of binary Lennard-Jones particle system

    KAUST Repository

    Inaoka, Hajime

    2012-02-01

    We study explosive gasliquid flows caused by rapid depressurization using a molecular dynamics model of Lennard-Jones particle systems. A unique feature of our model is that it consists of two types of particles: liquid particles, which tend to form liquid droplets, and gas particles, which remain supercritical gaseous states under the depressurization realized by simulations. The system has a pipe-like structure similar to the model of a shock tube. We observed physical quantities and flow regimes in systems with various combinations of initial particle number densities and initial temperatures. It is observed that a physical quantity Q, such as pressure, at position z measured along a pipe-like system at time t follows a scaling relation Q(z,t)=Q(zt) with a scaling function Q(ζ). A similar scaling relation holds for time evolution of flow regimes in a system. These scaling relations lead to a regime map of explosive flows in parameter spaces of local physical quantities. The validity of the scaling relations of physical quantities means that physics of equilibrium systems, such as an equation of state, is applicable to explosive flows in our simulations, though the explosive flows involve highly nonequilibrium processes. In other words, if the breaking of the scaling relations is observed, it means that the explosive flows cannot be fully described by physics of equilibrium systems. We show the possibility of breaking of the scaling relations and discuss its implications in the last section. © 2011 Elsevier B.V. All rights reserved.

  13. A Queuing Model-Based System for Triggering Traffic Flow Management Algorithms, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Next generation air traffic management systems are expected use multiple software tools and quantitative methods for managing traffic flow in the National Airspace....

  14. Real-Time Analysis and Forecasting of Multisite River Flow Using a Distributed Hydrological Model

    Directory of Open Access Journals (Sweden)

    Mingdong Sun

    2014-01-01

    Full Text Available A spatial distributed hydrological forecasting system was developed to promote the analysis of river flow dynamic state in a large basin. The research presented the real-time analysis and forecasting of multisite river flow in the Nakdong River Basin using a distributed hydrological model with radar rainfall forecast data. A real-time calibration algorithm of hydrological distributed model was proposed to investigate the particular relationship between the water storage and basin discharge. Demonstrate the approach of simulating multisite river flow using a distributed hydrological model couple with real-time calibration and forecasting of multisite river flow with radar rainfall forecasts data. The hydrographs and results exhibit that calibrated flow simulations are very approximate to the flow observation at all sites and the accuracy of forecasting flow is gradually decreased with lead times extending from 1 hr to 3 hrs. The flow forecasts are lower than the flow observation which is likely caused by the low estimation of radar rainfall forecasts. The research has well demonstrated that the distributed hydrological model is readily applicable for multisite real-time river flow analysis and forecasting in a large basin.

  15. Equations for the kinetic modeling of supersonically flowing electrically excited lasers

    International Nuclear Information System (INIS)

    Lind, R.C.

    1973-01-01

    The equations for the kinetic modeling of a supersonically flowing electrically excited laser system are presented. The work focuses on the use of diatomic gases, in particular carbon monoxide mixtures. The equations presented include the vibrational rate equation which describes the vibrational population distribution, the electron, ion and electronic level rate equations, the gasdynamic equations for an ionized gas in the presence of an applied electric field, and the free electron Boltzmann equation including flow and gradient coupling terms. The model developed accounts for vibration--vibration collisions, vibration-translation collisions, electron-molecule inelastic excitation and superelastic de-excitation collisions, charge particle collisions, ionization and three body recombination collisions, elastic collisions, and radiative decay, all of which take place in such a system. A simplified form of the free electron Boltzmann equation is developed and discussed with emphasis placed on its coupling with the supersonic flow. A brief description of a possible solution procedure for the set of coupled equations is discussed

  16. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing

    2016-02-28

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  17. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing; Sun, Shuyu

    2016-01-01

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  18. Assessment of effectiveness of geologic isolation systems. Analytic modeling of flow in a permeable fissured medium

    International Nuclear Information System (INIS)

    Strack, O.D.L.

    1982-02-01

    An analytic model has been developed for two dimensional steady flow through infinite fissured porous media, and is implemented in a computer program. The model is the first, and major, step toward the development of a model with finite boundaries, intended for use as a tool for numerical experiments. These experiments may serve to verify some of the simplifying assumptions made in continuum models and to gain insight in the mechanics of the flow. The model is formulated in terms of complex variables and the analytic functions presented are closed-form expressions obtained from singular Cauchy integrals. An exact solution is given for the case of a single crack in an infinite porous medium. The exact solution is compared with the result obtained by the use of an independent method, which assumes Darcian flow in the crack and models the crack as an inhomogeneity in the permeability, in order to verify the simplifying assumptions. The approximate model is compared with solutions obtained from the above independent method for some cases of intersecting cracks. The agreement is good, provided that a sufficient number of elements are used to model the cracks

  19. Development and assessment of multi-dimensional flow model in MARS compared with the RPI air-water experiment

    International Nuclear Information System (INIS)

    Lee, Seok Min; Lee, Un Chul; Bae, Sung Won; Chung, Bub Dong

    2004-01-01

    The Multi-Dimensional flow models in system code have been developed during the past many years. RELAP5-3D, CATHARE and TRACE has its specific multi-dimensional flow models and successfully applied it to the system safety analysis. In KAERI, also, MARS(Multi-dimensional Analysis of Reactor Safety) code was developed by integrating RELAP5/MOD3 code and COBRA-TF code. Even though COBRA-TF module can analyze three-dimensional flow models, it has a limitation to apply 3D shear stress dominant phenomena or cylindrical geometry. Therefore, Multi-dimensional analysis models are newly developed by implementing three-dimensional momentum flux and diffusion terms. The multi-dimensional model has been assessed compared with multi-dimensional conceptual problems and CFD code results. Although the assessment results were reasonable, the multi-dimensional model has not been validated to two-phase flow using experimental data. In this paper, the multi-dimensional air-water two-phase flow experiment was simulated and analyzed

  20. Recharge and Lateral Groundwater Flow Boundary Conditions for the Saturated Zone Site-Scale Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    B. Arnold; T. Corbet

    2001-12-18

    The purpose of the flow boundary conditions analysis is to provide specified-flux boundary conditions for the saturated zone (SZ) site-scale flow and transport model. This analysis is designed to use existing modeling and analysis results as the basis for estimated groundwater flow rates into the SZ site-scale model domain, both as recharge at the upper (water table) boundary and as underflow at the lateral boundaries. The objective is to provide consistency at the boundaries between the SZ site-scale flow model and other groundwater flow models. The scope of this analysis includes extraction of the volumetric groundwater flow rates simulated by the SZ regional-scale flow model to occur at the lateral boundaries of the SZ site-scale flow model and the internal qualification of the regional-scale model for use in this analysis model report (AMR). In addition, the scope includes compilation of information on the recharge boundary condition taken from three sources: (1) distributed recharge as taken from the SZ regional-scale flow model, (2) recharge below the area of the unsaturated zone (UZ) site-scale flow model, and (3) focused recharge along the Fortymile Wash channel.

  1. Unsteady interfacial coupling of two-phase flow models

    International Nuclear Information System (INIS)

    Hurisse, O.

    2006-01-01

    The primary coolant circuit in a nuclear power plant contains several distinct components (vessel, core, pipes,...). For all components, specific codes based on the discretization of partial differential equations have already been developed. In order to obtain simulations for the whole circuit, the interfacial coupling of these codes is required. The approach examined within this work consists in coupling codes by providing unsteady information through the coupling interface. The numerical technique relies on the use of an interface model, which is combined with the basic strategy that was introduced by Greenberg and Leroux in order to compute approximations of steady solutions of non-homogeneous hyperbolic systems. Three different coupling cases have been examined: (i) the coupling of a one-dimensional Euler system with a two-dimensional Euler system; (ii) the coupling of two distinct homogeneous two-phase flow models; (iii) the coupling of a four-equation homogeneous model with the standard two-fluid model. (author)

  2. Numerical investigation on cavitation flow of hydrofoil and its flow noise with emphasis on turbulence models

    Directory of Open Access Journals (Sweden)

    Sanghyeon Kim

    2017-06-01

    Full Text Available In this study, cavitation flow of hydrofoils is numerically investigated to characterize the effects of turbulence models on cavitation-flow patterns and the corresponding radiated sound waves. The two distinct flow conditions are considered by varying the mean flow velocity and angle of attack, which are categorized under the experimentally observed unstable or stable cavitation flows. To consider the phase interchanges between the vapor and the liquid, the flow fields around the hydrofoil are analyzed by solving the unsteady compressible Reynolds-averaged Navier–Stokes equations coupled with a mass-transfer model, also referred to as the cavitation model. In the numerical solver, a preconditioning algorithm with dual-time stepping techniques is employed in generalized curvilinear coordinates. The following three types of turbulence models are employed: the laminar-flow model, standard k − ε turbulent model, and filter-based model. Hydro-acoustic field formed by the cavitation flow of the hydrofoil is predicted by applying the Ffowcs Williams and Hawkings equation to the predicted flow field. From the predicted results, the effects of the turbulences on the cavitation flow pattern and radiated flow noise are quantitatively assessed in terms of the void fraction, sound-pressure-propagation directivities, and spectrum.

  3. Modeling aluminum-air battery systems

    Science.gov (United States)

    Savinell, R. F.; Willis, M. S.

    The performance of a complete aluminum-air battery system was studied with a flowsheet model built from unit models of each battery system component. A plug flow model for heat transfer was used to estimate the amount of heat transferred from the electrolyte to the air stream. The effect of shunt currents on battery performance was found to be insignificant. Using the flowsheet simulator to analyze a 100 cell battery system now under development demonstrated that load current, aluminate concentration, and electrolyte temperature are dominant variables controlling system performance. System efficiency was found to decrease as both load current and aluminate concentration increases. The flowsheet model illustrates the interdependence of separate units on overall system performance.

  4. Incorporating the Impacts of Small Scale Rock Heterogeneity into Models of Flow and Trapping in Target UK CO2 Storage Systems

    Science.gov (United States)

    Jackson, S. J.; Reynolds, C.; Krevor, S. C.

    2017-12-01

    Predictions of the flow behaviour and storage capacity of CO2 in subsurface reservoirs are dependent on accurate modelling of multiphase flow and trapping. A number of studies have shown that small scale rock heterogeneities have a significant impact on CO2flow propagating to larger scales. The need to simulate flow in heterogeneous reservoir systems has led to the development of numerical upscaling techniques which are widely used in industry. Less well understood, however, is the best approach for incorporating laboratory characterisations of small scale heterogeneities into models. At small scales, heterogeneity in the capillary pressure characteristic function becomes significant. We present a digital rock workflow that combines core flood experiments with numerical simulations to characterise sub-core scale capillary pressure heterogeneities within rock cores from several target UK storage reservoirs - the Bunter, Captain and Ormskirk sandstone formations. Measured intrinsic properties (permeability, capillary pressure, relative permeability) and 3D saturations maps from steady-state core flood experiments were the primary inputs to construct a 3D digital rock model in CMG IMEX. We used vertical end-point scaling to iteratively update the voxel by voxel capillary pressure curves from the average MICP curve; with each iteration more closely predicting the experimental saturations and pressure drops. Once characterised, the digital rock cores were used to predict equivalent flow functions, such as relative permeability and residual trapping, across the range of flow conditions estimated to prevail in the CO2 storage reservoirs. In the case of the Captain sandstone, rock cores were characterised across an entire 100m vertical transect of the reservoir. This allowed analysis of the upscaled impact of small scale heterogeneity on flow and trapping. Figure 1 shows the varying degree to which heterogeneity impacted flow depending on the capillary number in the

  5. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    International Nuclear Information System (INIS)

    Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin

    2014-01-01

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body

  6. Two-Fluid Mathematical Models for Blood Flow in Stenosed Arteries: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Sankar DS

    2009-01-01

    Full Text Available The pulsatile flow of blood through stenosed arteries is analyzed by assuming the blood as a two-fluid model with the suspension of all the erythrocytes in the core region as a non-Newtonian fluid and the plasma in the peripheral layer as a Newtonian fluid. The non-Newtonian fluid in the core region of the artery is assumed as a (i Herschel-Bulkley fluid and (ii Casson fluid. Perturbation method is used to solve the resulting system of non-linear partial differential equations. Expressions for various flow quantities are obtained for the two-fluid Casson model. Expressions of the flow quantities obtained by Sankar and Lee (2006 for the two-fluid Herschel-Bulkley model are used to get the data for comparison. It is found that the plug flow velocity and velocity distribution of the two-fluid Casson model are considerably higher than those of the two-fluid Herschel-Bulkley model. It is also observed that the pressure drop, plug core radius, wall shear stress and the resistance to flow are significantly very low for the two-fluid Casson model than those of the two-fluid Herschel-Bulkley model. Hence, the two-fluid Casson model would be more useful than the two-fluid Herschel-Bulkley model to analyze the blood flow through stenosed arteries.

  7. IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 1: Flow-over-terrain models

    DEFF Research Database (Denmark)

    Rodrigo, Javier Sanz; Gancarski, Pawel; Arroyo, Roberto Chavez

    2014-01-01

    The IEA Task 31 Wakebench is setting up a framework for the evaluation of wind farm flow models operating at microscale level. The framework consists on a model evaluation protocol integrated on a web-based portal for model benchmarking (www.windbench.net). This paper provides an overview...... of the building-block validation approach applied to flow-over-terrain models, including best practices for the benchmarking and data processing procedures for the analysis and qualification of validation datasets from wind resource assessment campaigns. A hierarchy of test cases has been proposed for flow...

  8. Modular load flow for restructured power systems

    CERN Document Server

    Hariharan, M V; Gupta, Pragati P

    2016-01-01

    In the subject of power systems, authors felt that a re-look is necessary at some conventional methods of analysis. In this book, the authors have subjected the time-honoured load flow to a close scrutiny. Authors have discovered and discussed a new load flow procedure – Modular Load Flow. Modular Load Flow explores use of power – a scalar – as source for electrical circuits which are conventionally analysed by means of phasors – the ac voltages or currents. The method embeds Kirchhoff’s circuit laws as topological property into its scalar equations and results in a unique wonderland where phase angles do not exist! Generators are shown to have their own worlds which can be superimposed to obtain the state of the composite power system. The treatment is useful in restructured power systems where stakeholders and the system operators may desire to know individual generator contributions in line flows and line losses for commercial reasons. Solution in Modular Load Flow consists of explicit expression...

  9. Application of mathematical model for simulation of groundwater flow

    International Nuclear Information System (INIS)

    Carvalho Filho, Carlos Alberto de; Branco, Otavio Eurico de Aquino; Loureiro, Celso de Oliveira

    2000-01-01

    The main purpose of the present research work is the groundwater flow characterization of the aquifer system of the Engenho Nogueira Creek watershed basin, particularly within the limits of the Pampulha Campus of the Federal University of Minas Gerais and nearby. In order to reach the aforementioned goal, a numerical model was implemented for simulation the groundwater flow, using the MODFLOW code. The local hydrogeology consists of a porous granular aquifer placed above and hydraulically connected to a fractured aquifer, constituting a unique aquifer system, mixed and phreatic type, heterogeneous and anisotropic. The local hydrogeological system is strongly influenced by a complex drain system and by the Engenho Nogueira Creek. After calibration, it was possible to predict the average phreatic depth measured in the observation wells for the period in study with a standard deviation of 1.65 m and a correlation coefficient of 0.94. (author)

  10. SAFSIM theory manual: A computer program for the engineering simulation of flow systems

    Energy Technology Data Exchange (ETDEWEB)

    Dobranich, D.

    1993-12-01

    SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.

  11. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  12. empirical modeling of oxygen modeling of oxygen uptake of flow

    African Journals Online (AJOL)

    eobe

    structure. Keywords: stepped chute, skimming flow, aeration l. 1. INTRODUCTION ..... [3] Toombes, L. and Chanson, H., “Air-water flow and gas transfer at aeration ... of numerical model of the flow behaviour through smooth and stepped.

  13. Multiple Temperature Model for Near Continuum Flows

    International Nuclear Information System (INIS)

    XU, Kun; Liu, Hongwei; Jiang, Jianzheng

    2007-01-01

    In the near continuum flow regime, the flow may have different translational temperatures in different directions. It is well known that for increasingly rarefied flow fields, the predictions from continuum formulation, such as the Navier-Stokes equations, lose accuracy. These inaccuracies may be partially due to the single temperature assumption in the Navier-Stokes equations. Here, based on the gas-kinetic Bhatnagar-Gross-Krook (BGK) equation, a multitranslational temperature model is proposed and used in the flow calculations. In order to fix all three translational temperatures, two constraints are additionally proposed to model the energy exchange in different directions. Based on the multiple temperature assumption, the Navier-Stokes relation between the stress and strain is replaced by the temperature relaxation term, and the Navier-Stokes assumption is recovered only in the limiting case when the flow is close to the equilibrium with the same temperature in different directions. In order to validate the current model, both the Couette and Poiseuille flows are studied in the transition flow regime

  14. Polar-coordinate lattice Boltzmann modeling of compressible flows

    Science.gov (United States)

    Lin, Chuandong; Xu, Aiguo; Zhang, Guangcai; Li, Yingjun; Succi, Sauro

    2014-01-01

    We present a polar coordinate lattice Boltzmann kinetic model for compressible flows. A method to recover the continuum distribution function from the discrete distribution function is indicated. Within the model, a hybrid scheme being similar to, but different from, the operator splitting is proposed. The temporal evolution is calculated analytically, and the convection term is solved via a modified Warming-Beam (MWB) scheme. Within the MWB scheme a suitable switch function is introduced. The current model works not only for subsonic flows but also for supersonic flows. It is validated and verified via the following well-known benchmark tests: (i) the rotational flow, (ii) the stable shock tube problem, (iii) the Richtmyer-Meshkov (RM) instability, and (iv) the Kelvin-Helmholtz instability. As an original application, we studied the nonequilibrium characteristics of the system around three kinds of interfaces, the shock wave, the rarefaction wave, and the material interface, for two specific cases. In one of the two cases, the material interface is initially perturbed, and consequently the RM instability occurs. It is found that the macroscopic effects due to deviating from thermodynamic equilibrium around the material interface differ significantly from those around the mechanical interfaces. The initial perturbation at the material interface enhances the coupling of molecular motions in different degrees of freedom. The amplitude of deviation from thermodynamic equilibrium around the shock wave is much higher than those around the rarefaction wave and material interface. By comparing each component of the high-order moments and its value in equilibrium, we can draw qualitatively the main behavior of the actual distribution function. These results deepen our understanding of the mechanical and material interfaces from a more fundamental level, which is indicative for constructing macroscopic models and other kinds of kinetic models.

  15. Representing Operational Knowledge of PWR Plant by Using Multilevel Flow Modelling

    DEFF Research Database (Denmark)

    Zhang, Xinxin; Lind, Morten; Jørgensen, Sten Bay

    2014-01-01

    situation and support operational decisions. This paper will provide a general MFM model of the primary side in a standard Westinghouse Pressurized Water Reactor ( PWR ) system including sub - systems of Reactor Coolant System, Rod Control System, Chemical and Volume Control System, emergency heat removal......The aim of this paper is to explore the capability of representing operational knowledge by using Multilevel Flow Modelling ( MFM ) methodology. The paper demonstrate s how the operational knowledge can be inserted into the MFM models and be used to evaluate the plant state, identify the current...... systems. And the sub - systems’ functions will be decomposed into sub - models according to different operational situations. An operational model will be developed based on the operating procedure by using MFM symbols and this model can be used to implement coordination rules for organize the utilizati...

  16. Control Theoretic Modeling and Generated Flow Patterns of a Fish-Tail Robot

    Science.gov (United States)

    Massey, Brian; Morgansen, Kristi; Dabiri, Dana

    2003-11-01

    Many real-world engineering problems involve understanding and manipulating fluid flows. One of the challenges to further progress in the area of active flow control is the lack of appropriate models that are amenable to control-theoretic studies and algorithm design and also incorporate reasonably realistic fluid dynamic effects. We focus here on modeling and model-verification of bio-inspired actuators (fish-fin type structures) used to control fluid dynamic artifacts that will affect speed, agility, and stealth of Underwater Autonomous Vehicles (UAVs). Vehicles using fish-tail type systems are more maneuverable, can turn in much shorter and more constrained spaces, have lower drag, are quieter and potentially more efficient than those using propellers. We will present control-theoretic models for a simple prototype coupled fluid and mechanical actuator where fluid effects are crudely modeled by assuming only lift, drag, and added mass, while neglecting boundary effects. These models will be tested with different control input parameters on an experimental fish-tail robot with the resulting flow captured with DPIV. Relations between the model, the control function choices, the obtained thrust and drag, and the corresponding flow patterns will be presented and discussed.

  17. Modeling of Unsteady Flow through the Canals by Semiexact Method

    Directory of Open Access Journals (Sweden)

    Farshad Ehsani

    2014-01-01

    Full Text Available The study of free-surface and pressurized water flows in channels has many interesting application, one of the most important being the modeling of the phenomena in the area of natural water systems (rivers, estuaries as well as in that of man-made systems (canals, pipes. For the development of major river engineering projects, such as flood prevention and flood control, there is an essential need to have an instrument that be able to model and predict the consequences of any possible phenomenon on the environment and in particular the new hydraulic characteristics of the system. The basic equations expressing hydraulic principles were formulated in the 19th century by Barre de Saint Venant and Valentin Joseph Boussinesq. The original hydraulic model of the Saint Venant equations is written in the form of a system of two partial differential equations and it is derived under the assumption that the flow is one-dimensional, the cross-sectional velocity is uniform, the streamline curvature is small and the pressure distribution is hydrostatic. The St. Venant equations must be solved with continuity equation at the same time. Until now no analytical solution for Saint Venant equations is presented. In this paper the Saint Venant equations and continuity equation are solved with homotopy perturbation method (HPM and comparison by explicit forward finite difference method (FDM. For decreasing the present error between HPM and FDM, the st.venant equations and continuity equation are solved by HAM. The homotopy analysis method (HAM contains the auxiliary parameter ħ that allows us to adjust and control the convergence region of solution series. The study has highlighted the efficiency and capability of HAM in solving Saint Venant equations and modeling of unsteady flow through the rectangular canal that is the goal of this paper and other kinds of canals.

  18. TEVA-SPOT-GUI - Containing Preliminary Flow Model

    Data.gov (United States)

    U.S. Environmental Protection Agency — This ZIP file contains the developmental, test version of TEVA-SPOT-GUI's Flow Model. The Flow Model is a new, event based water quality algorithm for EPANET. The...

  19. Development of a Reduced-Order Three-Dimensional Flow Model for Thermal Mixing and Stratification Simulation during Reactor Transients

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui

    2017-09-03

    Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developed at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.

  20. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno [University of Zagreb, Zagreb (Croatia)

    2015-06-15

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R{sup 2}=0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k{sub L}a=4,652-1,9807 h{sup -1}.

  1. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    International Nuclear Information System (INIS)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno

    2015-01-01

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R 2 =0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k L a=4,652-1,9807 h -1

  2. Forecasting Multivariate Road Traffic Flows Using Bayesian Dynamic Graphical Models, Splines and Other Traffic Variables

    NARCIS (Netherlands)

    Anacleto, Osvaldo; Queen, Catriona; Albers, Casper J.

    Traffic flow data are routinely collected for many networks worldwide. These invariably large data sets can be used as part of a traffic management system, for which good traffic flow forecasting models are crucial. The linear multiregression dynamic model (LMDM) has been shown to be promising for

  3. A heat transfer model for evaporating micro-channel coalescing bubble flow

    International Nuclear Information System (INIS)

    Consolini, L.; Thome, J.R.

    2009-01-01

    The current study presents a one-dimensional model of confined coalescing bubble flow for the prediction of micro-channel convective boiling heat transfer. Coalescing bubble flow has recently been identified as one of the characteristic flow patterns to be found in micro-scale systems, occurring at intermediate vapor qualities between the isolated bubble and the fully annular regimes. As two or more bubbles bond under the action of inertia and surface tension, the passage frequency of the bubble liquid slug pair declines, with a redistribution of liquid among the remaining flow structures. Assuming heat transfer to occur only by conduction through the thin evaporating liquid film surrounding individual bubbles, the present model includes a simplified description of the dynamics of the thin film evaporation process that takes into account the added mass transfer by breakup of the bridging liquid slugs. The new model has been confronted against experimental data taken within the coalescing bubble flow mode that have been identified by a diabatic micro-scale flow pattern map. The comparisons for three different fluids (R-134a, R-236fa and R-245fa) gave encouraging results with 83% of the database predicted within a ± 30% error band. (author)

  4. A simple delay model for two-phase flow dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Clausse, A.; Delmastro, D.F.; Juanico`, L.E. [Centro Atomico Bariloche (Argentina)

    1995-09-01

    A model based in delay equations for density-wave oscillations is presented. High Froude numbers and moderate ones were considered. The equations were numerically analyzed and compared with more sophisticated models. The influence of the gravity term was studied. Different kinds of behavior were found, particularly sub-critical and super-critical Hopf bifurcations. Moreover the present approach can be used to better understand the complicated dynamics of boiling flows systems.

  5. Groundwater flow through a natural fracture. Flow experiments and numerical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Erik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Geology

    1997-09-01

    Groundwater flow and transport play an important role not only for groundwater exploration but also in environmental engineering problems. This report considers how the hydraulic properties of fractures in crystalline rock depend on the fracture aperture geometry. Different numerical models are discussed and a FDM computer code for two- and three- dimensional flow-modelling has been developed. Different relations between the cells in the model are tested and compared with results in the literature. A laboratory experimental work has been done to carry out flow experiments and aperture measurements on the same specimen of a natural fracture. The drilled core sample had fractures parallel to the core axis and was placed inside a biaxial cell during the experiments. The water pressure gradient and the compression stress were varied during the experiments and also a tracer test was done. After the flow experiments, the aperture distribution for a certain compression was measured by injecting an epoxy resin into the fracture. The thickness of the resin layer was then studied in saw cut sections of the sample. The results from the experiments were used to validate numerical and analytical models, based on aperture distribution, for flow and transport simulations. In the disturbed zone around a drift both water and air are present in the fractures. The gas will go to the most wide part of the fracture because the capillarity and the conductivity decrease. The dependence of the effective conductivity on t